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Abstract—1In this paper, we propose a novel on-line modeling
algorithm for non-linear and non-stationary systems using a
radial basis function (RBF) neural network with a fixed number
of hidden nodes. Each of the RBF basis functions has a tunable
centre vector and an adjustable diagonal covariance matrix.
A multi-innovation recursive least square (MRLS) algorithm is
applied to update the weights of RBF on-line while the modeling
performance is monitored. When the modeling residual of the
RBF network becomes large in spite of the weight adaptation, a
node identified as insignificant is replaced with a new node, for
which the tunable centre vector and diagonal covariance matrix
are optimized using the quantum particle swarm optimization
(QPSO) algorithm. The major contribution is to combine the
MRLS weight adaptation and QPSO node structure optimiza-
tion in an innovative way so that it can well track the local
characteristic in the non-stationary system with a very sparse
model. Simulation results show that the proposed algorithm has
significantly better performance than existing approaches.

Index Terms—radial basis function (RBF), on-line model-
ing, non-stationary, non-linear, multi-innovation recursive least
square (MRLS), quantum particle swarm optimization (QPSO).

I. INTRODUCTION

Conventional dynamical modeling is based on assumptions
on linearity and stationarity of the underlying systems [1],
[2]. In practice many systems exhibit non-linear and non-
stationary behaviors, for which adaptive non-linear model is
often needed. Unlike off-line modeling methods utilizing the
whole batch of data, the on-line approach keeps adjusting
the model using the incoming data so that the changing
behavior of the non-stationary system is captured by the
model. On-line modeling for non-stationary and non-linear
systems is usually a difficult task. A common approach is
to use adaptive algorithms to track the temporal variation of
the system. Both linear and non-linear adaptive approaches
have been proposed, with typical examples including the
time-varying autoregressive-moving average with exogenous
terms (TV-ARMAX) [3] and time-varying autoregressive with
exogenous terms (TV-ARX) [4] for the linear approaches,
and time-varying neural network (TV-NN) [5] for the non-
linear approaches. In some cases, the associated time-varying
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parameters of a non-stationary system can be expanded by
a series of basis functions, and the non-stationary modeling
is simplified to the time-invariant parameter estimation. For
instance, Legendre and Walsh basis functions are used for
smooth and abrupt changing non-stationary signals respec-
tively [6]. However, such approaches are for specific model
structures based on some a prior knowledge of the systems,
which is clearly not suitable for all non-stationary systems in
practice.

A large class of non-linear systems can be modeled using
the linear-in-the-parameter model. A popular choice of such
models is the radial basis function (RBF) neural network due
to it simplicity and the ability to approximate any continuous
function to an arbitrary degree of accuracy [7]. In the on-line
modeling, the weights of the RBF network are adapted by
linear learning algorithms such as the least mean square (LMS)
[8], givens least square (GLS) [9] and recursive least square
(RLS) algorithms [10]. Recently a variant RLS algorithm,
namely the multi-innovation RLS (MRLS) [11]-[13], has
been proposed. Unlike the classic RLS algorithm which only
considers the current residual error, the MRLS adaptation is
based on a number of recent errors, making it particularly
robust against noise.

The on-line modeling RBF approaches have been well re-
searched. This includes the resource allocating network (RAN)
[14], where the network model starts from empty and grows
with the input data based on the nearest neighbor method. The
RAN extended Kalman filter (RAN-EKF) algorithm improves
the RAN by replacing the LMS with the extended Kalman
filter to adjust the network parameters [15]. Both RAN and
RAN-EKEF algorithms only grow the network size without a
pruning strategy to remove the obsolete RBF nodes, so the
model size can be too large in some applications. Hence
in [16], an improved approach of the RAN algorithm was
proposed by limiting the size of the RBF network (L-RAN).
Further in [17], [18], a more compact model can be achieved
by using the minimal RAN (M-RAN) algorithm which prunes
the inactive kernel nodes based on relative contribution. All
of these algorithms need to carefully pre-determine many
controlling parameters in order to achieve satisfactory perfor-
mance. More computationally efficient growing-and-pruning
RBF (GAP-RBF) algorithm [19] and the generalized GAP-
RBF (GGAP-RBF) algorithm [20] were then proposed, in
which only the nearest RBF node is considered for the model
growing and pruning. The growing and pruning are based on
the “significance” of the nodes which has a direct link to
the learning accuracy, and require some a prior information
such as the input data range and distribution. In order to



guarantee the model generalization, the kernel least mean
square (KLMS) algorithm was proposed in [21], in which
the size of the model can grow based on the well-posedness
analysis in reproducing kernel Hilbert spaces (RKHS). While
all of these RAN-based approaches can identify a system
model on-line with adjustable number of nodes (or the so-
called model size), a common problem is that the structure
of each individual node is not optimized. Rather, the node
structure is simply set based on the incoming data (or the
data itself). This makes the model size often increase with the
number of the sample data, ending up with a very large model
having poor model generalization and high computational
expense, particularly so for non-stationary systems [22]. The
RBF node selection and structure optimization are thus of
particular importance.

In fact, a popular approach for structuring the RBF network
model is to consider the training input data points as candidate
RBF centres and to employ a common variance for every RBF
node. In this approach, the node selection can be performed
using the orthogonal least squares (OLS) algorithm and its
variants including the Regularized-OLS (ROLS), Locally-
ROLS (LROLS), LROLS-leave-one-out (LROLS-LOO) [23]-
[27]. Recently a tunable RBF model identification algorithm
was proposed [28], [29], where each RBF node has a tunable
centre vector and an adjustable diagonal covariance matrix,
and at each forward regression stage, the assocated centre
vector and diagonal covariance matrix are optimized using
particle swarm optimization (PSO) algorithm. This provides
an exceptionally flexible RBF model in which the model size
can be significantly reduced. The PSO is a population based
stochastic optimisation technique inspired by social behaviour
of bird flocking or fish schooling [30]. The PSO method is
becoming very popular due to its simplicity in implementation,
ability to quickly converge to a reasonably good solution and
its ability to escape from local minima. It has been applied to
a wide range of optimisation problems successfully [31], [32].
While the aforementioned approaches provide an powerful
way to automatically determine the model structure of the RBF
network, they are however off-line (batch) learning methods
which are inadequate for on-line applications. This motivates
us to propose a novel on-line RBF network in which the node
structure can be adaptively optimized.

An interesting alternative to the above approaches is the
recently proposed extreme learning machine (ELM) and its
variant [33]-[39], where the node structure optimization are
avoided by using a very large number of nodes. Both off-
line and on-line ELM approaches have been proposed. In
the off-line ELM [33], [34], [39], a large number of nodes
are randomly generated at the beginning and fixed during the
learning process. While in the on-line approach [35]-[38], a
relatively smaller number of nodes are randomly applied at
the training stage, but the node number can be adjusted during
the learning stage depending on the incoming data. The on-
line version can achieve similar performance as the off-line
approach, but has less complexity as it does not deal with the

whole batch of data [38]. While the ELM can achieve high
accuracy with fast learning speed in many applications, the
model size may have to be very large especially for non-
stationary systems so that the model generalization is not
guaranteed. In this paper, we focus on RBF networks whose
structure can be adaptively optimized, as it is particularly
suitable in non-stationary environments.

In this paper, we propose a novel on-line RBF network
with tunable nodes. First we understand that, in the non-
stationary system, because the input statistics keeps varying,
the “local characteristic” of the input data is more relevant
than the “global characteristic” [40], [41]. This implies that the
model size needs not to be large since the modeling needs to
focus on the recent data, but not the older ones. Therefore, we
propose to fix the model size at a small number, and each RBF
node has a tunable centre vector and an adjustable diagonal
covariance matrix which can be optimized on-line one at a
time. At each time step, the RBF weights are adapted using
the multi-innovation RLS (MRLS) [13], and the modeling
performance is monitored. If the RBF network performs poorly
despite the weight adaptation, an insignificant node with little
contribution to the overall system is identified and replaced
by a new node without changing the model size. The struc-
tural parameters of the new node including the centre vector
and diagonal covariance matrix are optimized by using the
quantum swarm optimization (QPSO) algorithm. Unlike the
original PSO algorithm [30], the QPSO does not pre-specify a
searching boundary and can ensure convergence to the global
minimum [42], making it particularly suitable for the node
structure optimization. Because the RBF network has tunable
nodes, the model size can be much smaller than that of a
conventional RBF network due to its structural flexibility. The
main contributions of this paper are summarized as follows:

o Propose a novel on-line RBF network which is funda-
mentally different from existing approaches. It has a fixed
model size but tunable node structure. Simulation results
show that the proposed algorithm with a very sparse
model has significantly better performance than existing
approaches especially in non-stationary environments.

« Propose to use the QPSO algorithm for the node structure
optimization on-line.

« Integrate seamlessly the MRLS weight adaptation and
QPSO node optimization into one approach.

The rest of this paper is organized as follows. Section II
briefly introduces the RBF neural network and describes the
multi-innovation RLS algorithm for the weight adaptation;
Section III proposes a novel approach to optimize the node
structure on-line; Section IV summarizes the proposed algo-
rithm; Section V compares the proposed approach with some
typical existing on-line methods via numerical simulations;
finally, Section VI concludes the paper.



II. RBF NETWORK WITH MULTI-INNOVATION RLS
ADAPTATION

The adaptive RBF network is shown in Fig. 1, where there
are M hidden nodes, or the model size is M. At time ¢, the
input vector of the RBF network is given by

Xt = [xt(l),xt@), e ,It(Nx)]T (1)

where NN, is the model input dimension or the number of input
channels, and x;(7) is the input data from the ith input channel
at time ¢.
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Fig. 1. RBF model structure

The RBF network output is given by

M
f(Xt) = Zwt—l(i)gi(xt) = ¢tTWt—1 )
i=1

where g;(x;) is the output of the ith node, w;_1 () is the
weight coefficient for the ith node at time ¢t — 1, w;_; =
w1 (1), ywer (M)]T and ¢, = [g1(x0), -+, gar(2)]"
In this paper, the Gaussian RBF given by

9i(x¢) = exp (;(Xt —¢;) Hi(xy — Ci)) 3)

is adopted, where c¢; = [c;(1), - -¢;(N,)]" and H; =
diag{o?(1),--- ,02(N,)} which are the centre vector and
diagonal covariance matrix of the ith node respectively, with
¢i(j) and o;(j) being the centre and standard-deviation co-
efficients for the jth input channel respectively. The residual

error of RBF network at time ¢ is given by
e =Y — Py Wi—1 (4)

where y; the observed system output at time ¢.

Originally described for the ARX model adaptation [11], the
MRLS adaptation is based on both current and past residual
errors. To be specific, putting p number of input vectors into

an input matrix gives

€ RPx N ©)

X = [Xt,Xt—h ce 7Xt—p+1]T

where p is the innovation length which determines the number
of past errors used for weight adaptation. Passing X through
the RBF nodes gives the information matrix as

g1 (Xt) 92(Xt) gM<Xt)
Gi(xt-1)  ga(x¢-1) g (Xe—1)
b, =
91 (Xt—pt+1)  g2(X¢—pt1) g (Xe—pt1)
= [¢t7 D1, 7¢t7p+1]T
= [gla 82, - 7g1b1] S RPXM
(6)
where g; is the ith column of ®,; which is the ith RBF
regressor. Letting e, = [eq,e4—1,- ,€py1]” and y; =
(Yt Yt—1, - , Yyt—p+1]", we have the vector/matrix expression
of (4) as

e =y — Pywi_y @)

With &, and e;, the MRLS adaption rules are given by the
following steps.

U, =P, ®"[\I, + &, P, @]’ (8)
P, =Py —U,®P, 1)\ )

wi = w1 + Piey (10)

where W, € RM*P is the Kalman gain matrix, P € RM*M
is the covariance matrix, I, is the p x p identity matrix, and A
is the forgetting factor. P; is usually initialized as Py = 61y,
where § is a large constant.

In this paper, the above MRLS algorithm is used to update
the node weights. Unfortunately, the MRLS by itself is not
adequate enough for non-stationary systems.

III. ON-LINE NODE STRUCTURE OPTIMIZATION

The modeling performance of a RBF network is determined
by both the weight vector and node structure. For the Gaussian
RBF network, the node structure parameters include the centre
vector and covariance matrix of each node, or c; and H; in
(3) respectively. In many RBF network learning methods, the
centres are either determined by the input data such as k-means
cluctering approach ( [43]) or simply by being set as the input
data (e.g. [21]). A common standard-deviation is often used
for all nodes and set by the trial-and-error or cross-validation
method [26]. Such choice of the RBF structure often leads to
over large model size and poor performance in tracking the
system variation for the modeling of non-stationary systems.

In this work, we propose to fix the model size at a small
number. The advantage of fixing the model size is to enable
the MRLS to be seamlessly integrated with the node structure
optimization. Because the changeable “local characteristic” is
of primary importance in a non-stationary system, the node
structure parameters needs to be adaptive accordingly in case
the MRLS becomes inadequate. While the joint structure



optimization for all nodes can be computationally prohibitive,
we propose to only replace one “insignificant” node with a new
node whose structural parameters are then optimized. To be
specific, if the current RBF network performs poorly despite
the weight adaptation with the MRLS, one “insignificant” node
with little contribution to the overall performance is identified
and replaced by a new node. The centre vector and covariance
matrix of the new node are optimized by the quantum PSO
(QPSO) algorithm based on the recent data, but the other
nodes remain unchanged. Consequently, the RBF structure
can be self-tuned to keep tracking the local characteristic of
the non-stationary system, and at the same time maintain the
model complexity at a moderate level in order to minimize
computational cost and achieve fast tracking capability. In
order to realize this strategy, it is essential to determine when
the node replacement takes place and how the structure of the
new node is optimized, which is discussed in detail below.

A. Node replacement

When the RBF structure is not suitable for the current data,
the network residual error becomes large and one insignificant
node with poor performance is replaced with a new node.
In order to prevent the node replacement from occurring too
frequently, the “average” residual error is used to measure the
performance of the RBF network. Noting that multi-innovation
error vector e; in (7) consists p number of most recent errors,
the normalized “average” residual error is given by

o _ L Jled®

=—. (11)
o el

Then we have the following criterion

if 2 < A;, the RBF structure remains unchanged
if €2 > A;, an insignificant node is replaced with
a new node,

(12)
where A; is a constant threshold which is set according to
the performance requirement. In general, the smaller the A,
is, the smaller the residual error can achieve, but the more
frequently the node replacement may occur.

If e, > A, a node with little contribution to the overall
system performance is replaced with a new node. It is known
that the increment of error variance (IEV) can be used to
measure the individual contribution from each node [44], [45].
In order to calculate the IEV for the ith node, we rewrite (7)
as

Vi=®wi 1 te =P w1 +w_1(i)g; + e (13)

where ®; _; is the new information matrix by removing the
ith column g; from ®;, wy_1,_; is w;_; with i" element
being removed, and w;_1(4) is the weight coefficient for the
ith node. Orthogonally projecting g; onto the space spanned
by column vectors of ®, _; gives

-1
a={T1-@, i [®_®, ] @ _}e (14

where I is the identity matrix with appropriate dimension.
Then (13) can be rewritten as

Ve=Ps_ivi1 i +w_1(i)q; + e (15)

where vi_1_; = [®} _,®; ;] ®_,g; which is the least
squares estimation for the new information matrix ®; _;. Then
we have w;_1(¢) = q;y:/q; q,. Because q; is orthogonal to
the space spanned by column vectors of ®; _;, the IEV for
the ith node is given by

IEV; =|| w—1(i)q; |*= wi_; (i)} q;. (16)

While a node with smaller IEV has less contribution to the
overall performance, we order the IEV-s for all nodes as

IEVy <IEVy < - <IEV a7)

where IEV ;/ is for node 7’ with the ith smallest IEV. Therefore,
node 1’ has the least contribution to the overall performance
and can be replaced with a new node.

While the IEV comparison in (17) gives the most “insignif-
icant” node, or the node with least contribution to the overall
performance, its calculation suffers from high complexity
and numerical instability. This is because, as is shown in
(14), the IEV calculation requires the matrix inversion of
(@7 _ P _i] ~'. In a highly non-stationary system, it is pos-
sible that some nodes are so badly structured sometimes that
the node outputs become very small. This makes ®; _,®; _;
be ill-conditioned, resulting in numerical instability.

Alternatively, we can use the weighted node-output variance
(WNV) to determine which node should be replaced. The
WNYV for the ith node is defined as

WNV; =[| wi—1(i)gi) [I°= wi_, (i)g] gi (18)

where w;_1(i)g; is the weighted output for the ith node. The
WNYV for all nodes is ordered as

WNVy <WNVy <o <WNV, (19)

where WNV,/ is for node ¢" with the ith smallest WNV. Then
from (19), the node 1’ with the smallest WNV is replaced with
a new node.

The relation between the IEV and WNYV is shown in Fig. 2,
where there are 3 nodes for illustration. In practice, since the
nodes are often well “separated” to have good data coverage,
the correlation between node outputs is limited. This implies
that, if IEV; < IEV;, we usually have WNV,; < WNV ;.
Therefore, if there exist a group of L (1 < L < M) nodes
with very small WNV, they also have significantly smaller
IEV than the other nodes so that they should all be replaced.
In our proposed on-line scheme where one node is replaced
at a time, it is not important to determine which of these
nodes with small WNYV is replaced first, because other nodes
with small WNV are to be replaced at a later time. In fact,
the IEV criterion in (17) replaces the most “insignificant”
node, and the WNV criterion in (19) chooses one of the
“insignificant” nodes. While they lead to similar performance



in on-line approach applications, the WNV criterion not only
is more robust but also requires much less complexity than its
IEV counterpart. We have done extensive simulations which
all show that node replacement based on (17) and (19) lead
to similar results.
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Fig. 2. The IEV and WNV

B. Iterative node structure optimization and weight adaptation

When an insignificant node is replaced with a new node, the
structure (or the centre vector and covariance matrix for the
Gaussian RBF node) of the new node needs to be optimized
based on the recent data. Without losing generality, we assume
the ith node is replaced. The structure optimization is to find
the best structural parameters of the new node, g;(.), which
minimizes the cost function as
t—p+1

Z 62(i) =eje; = (yr — ®ewi1) (ye — Biwi1),

i=t

(20
with the structure for other nodes, g#i(.), being unchanged,
where the node structure determines how the information ma-
trix ®; is formed. Since J; is the square error summation for
the recent p inputs, the structure of the new node is optimized
for the recent p data rather than the current data, making the
modeling have better performance in generalization.

Because J; depends on both the node structure and weight
vector, when the structure of the new node is adjusted, the
weight vector which is based on the previous structure should
also be modified. The joint optimization of the structure of
the new node and weight vector can be complicated. We
understand that, for a particular node structure, the weight
vector can be adapted by the MRLS algorithm. On the other
hand, when the weight vector is given, the structure of the
new node can be optimized by the the quantum-PSO (QPSO)
searching algorithm [42] (which will be discussed in detail
later). This clearly suggests an iterative approach for the
structure optimization and weight adaptation. To be specific,
when an insignificant node is replaced by a new one, we have
the following iterative steps:

Jt:

1) Initialize the structure of the new node, and initialize
the weight coefficient of the new node as zero, and the

weights of other nodes as the those before the node
replacement. Use the MRLS to update the weight vector
by one step.
2) Fix the weight vector, and update the structure of the
new node with the QPSO algorithm by one step.
3) Fix the structure of the new node, and adapt the weight
vector with the MRLS by one step.
4) Repeat the steps 2) and 3) until the normalized average
error variance is small enough that
L < A2,
e 12
or the maximum iteration number is reached, where A,
is a pre-set constant depending on system requirement.

21

We highlight that in the above iterative process, at every
iteration, the MRLS weight adaption uses the same batch of
input data but with different structure of the new node obtained
from the QPSO optimization. In contrast, when no node is
replaced, the RBF structure remains unchanged and the weight
vector is adapted by the MRLS algorithm with new batch of
input data once at a time.

We particularly note that it is not appropriate to use the
QPSO algorithm to search for the weight vector and the
new node’s structure altogether. Unlike the node structural
parameters as will be shown later, the weight coefficients
usually have large dynamic range with little direct link to
the input data. It is thus hard to properly initialize the QPSO
algorithm for fast convergence. As a result, a large number
of “particles” and iterations may have to be used in the
QPSO searching, leading to very slow convergence and high
complexity. This is especially serious in the non-stationary
system where the weight coefficients keep varying with time.

C. Structure optimization with the QPSO

In this section, we first describe the QPSO algorithm for the
node structure optimization, and then propose a data-driven
method to initialize the QPSO to achieve fast convergence.

1) The Quantum-PSO: The QPSO is an evolutional search-
ing method including K number of particles. When the QPSO
is used for the structure optimization, every particle consists of
N, pairs of centres and standard-deviations parameters of the
new node, where N, is the number of input channels defined
in (1). To be specific, at the [th iteration, the kth particle
(k=1,---,K) is expressed as

1w = {0, el o), aif“%wz}

(22)
where cgc)l (j) and ngk)l(j) are the centre and standard-
deviation coefficients for the jth input channel (j =
1,---, N,) respectively, and the subscript ¢ represents that
the node replacement occurs at time ¢. We particularly note
that, unlike many existing RBF approaches, we do not assume
0i;(1) = -+ = 0;(N;). As a result, different nodes may have
different “width” of Gaussian functions for different input



channels, which enables the nodes with more flexibility in
covering the data.

At every iteration, the particles move from one position
to another, where every particle position corresponds to one
possible structure of the new node. With the weight vector
being fixed from the MRLS adaption at the previous iteration,
the cost function value for the particle position %(k)l can be

obtained as Jt(fyt( )l) k=1,---,K, where Ji(.) is defined in
(20).

At the lth iteration, the best position for the kth particle
(k=1,---, K) has the minimum J; among all of its previous
positions as

pbest( ) = argmin{Jt(vt(fc)i) |i=0,---,1}  (23)

The global best structure of the new node at the [th iteration
is the particle position with the minimum .J; as

gbest;, | = arg mln{Jt(pbest ) | k=0,--- , K} (24)
The local attractor for the kth particle (k =1, .-, K) for its
next iteration is given by

agk)l =y- pbestifc)l + (1 —p) - gbesty, | (25)

where ¢ is a randomly generated number between [0, 1]. Then
the iteration rule for the kth particle (k = 1,---, K) is given
by

(k) (k)

k
’Yt l+1_at l+§ ﬁ |mbestt l—’y()

In 1 (26)
I

where ¢ is randomly generated +1 or —1 with equal probabil-

ity, 1 is a randomly generated number between [0, 1], § is the

only controlling parameter in the QPSO which is determined

according to specific applications, and mbest; ; is the gravity

centre of all particles’ best position at the /th iteration which

is given by
L v best®
T Zp estn !
k=1

2) The QPSO initialization: While the QPSO can achieve
global convergence, the converging time depends greatly on
the particles initialization. If the particles are initialized far
from the optimum solutions, a large number of particles and
iterations may have to be used, leading to slow convergence
and high complexity. In the original QPSO, the particles are
randomly initialized. This is not desirable for the structure
optimization especially in non-stationary systems where the
structure parameters keep varying with time. Below we pro-
pose a data-driven method for the particle initialization which
can follow the “local” statistics of the input data.

mbest, | = 27

In many applications, it is likely that the optimum centres
are around the input data. Some approaches even choose the
node centres as the input data (e.g [14], [15], [17]-[20]),
though this is not optimum. While the structure optimization
is based on the recent p input data, the centre for the first
particle can be initialized as the average of the recent p inputs

as

1)

ciod) = (28)

1
P,
where we recall that z;(j) is the jth channel input at time 4.
The centres for the remaining particles (k = 2,--- , K) are
randomly initialized based on the Gaussian process as

M) = N(me(5), 5:5)),

where N (m(j), s¢(j)) represents one realization of the Gaus-
sian process with mean m;(j) and standard-deviation s;(j).
We let m.(j) = ci 0) (j) which is centre for the first particle,
and s:(j) be the standard-deviation of the input samples as

j:17"'7NLE7 (29)

t

> i) —m(i)P2,

1=t—p+1

1
p

si(j) = j=1 N,
(30)

We highlight that the centre c( )( ) is different for every
particles because each is one random realization of the Gaus-
sian process N(m¢(5),s¢(j)), though m;(j) and s;(j) are the
same for all particles (except the first particle). By doing so,
we have not only many initial particles with centres around
the input data for fast convergence, but also some particles far
from the data to achieve good coverage.

Once the centre parameters for all particles are initialized
as in (28) and (29), the initial standard-deviation parameters
for the particles are determined by how far the corresponding
centres are away from the nearest centre of other nodes.
To be specific, if the centre coefficient for the jth input
(j=1,---,N,) of the kth particle (k = 1,--- , K) for the
new node is c% (7). the corresponding standard-deviation is
initialized as

(k)

o () = p- e () = et ()] (31)

where p is a constant scaling factor, and cl(]e)drebt (j) is the
centre coefficient for the (]th input of the non-replaced node
with nearest distance to ¢; ( 7).

At the beginning, the initial best structure of the new node

is set as the first particle as

gesteo = [ 0(1), -+ el (NL), ol (1), ot (V)]

IV. THE MRLS-QPSO ALGORITHM

The proposed approach is named as the MRLS-QPSO
algorithm in this paper, as it integrates the MRLS weight
adaptation and QPSO node optimization into one process.
The MRLS-QPSO algorithm is fundamentally different from
existing on-line RBF approaches with growing/pruning model
size (e.g. [14]-[21]). In existing approaches, the centres of
the newly added node are simply set as the current input
data and the standard-deviations are determined from a priori
information. As a result, the constructed network structure
only fits into the data rather than the underlying model, which



often makes the model size grow with the data. In comparison,
the proposed MRLS-QPSO algorithm can adaptively optimize
both weight coefficients and node structure on-line, so that it
can track the system variation with a sparse model.

Fig. 3 shows the flowchart of the proposed MRLS-QPSO
algorithm.

[ Initialize: t=1

v
—

Collect new observation x; and y,

v

Form information matrix ®;

NO
t=t+1 YES
Remove an “insignificant” node
Adjust Model
Iterative weights and structure optimization
Update weight vector w; by MRLS f—
NO

YES

| )

Flowchart of the proposed MRLS-QPSO algorithm.

Fig. 3.

The MRLS-QPSO algorithm is summarized as below.

Initialization
Initialize the structure of the RBF nodes

Initialize the weight vector wo = [0,--- ,0]"
Initialize Py = 41 for the MRLS, where ¢ is a large number.
Set the forgetting factor \ for the MRLS.

Set the error threshold A; for the node replacement in (12).
Set the error threshold A for the iterative structure and
weight optimization in (21).

Set the QPSO controlling parameters 3 in (26).
For every observation pair {x¢,y:},t =1,2,3,---

Form the input matrix X; and information matrix ®; as in
(5) and (6) respectively.

Obtain the error vector e; and the average error power &7
in (7) and (11) respectively.

If & > A1, do Structure adaptation

Calculate the WNV for each node as in (18) and order
themas WNVy, <.« <WNV s

Replace the node 1’ with a new node.

Initialization for the iterative weights and structure
optimization

Initialize particle centres and standard-deviations as in
(28), (29) (31) respectively.

Choose the initial best structure for the new node as
the first particle as

1 1 1 1
gbestio = [cig(1), -+, et g (Na), ofg(1), -+ ,0tg(N)]

Initialize the weight of the new node to 0.

Maintain the weights of other nodes unchanged.

Initialize P, ;—o = 41 for the MRLS, where ¢ is a large
number.

Forl=1,---, L, do iterative weights and structure
optimization,

Weight vector adaptation with the MRLS

With the structures of the new node gbest:,;—1 and
the same input data X, do

Obtain the new information matrix ®,; as in (6)
Obtain the new error vector e;; as in (7).

Update the weights with the MRLS as
U, =P 1@y, M, + &0, Pr 1Py -
Pii=(Pri1— U@ Py 1) A
Wi =W -1+ Wy eq
Structure optimization for the new node with the QPSO

Fix the weight vector at w, ;



For every particle, k =1,--- , K, do
Randomly generate ¢ and p within [0, 1].
Randomly generate ¢ to be +1 or —1.

Update pbest\") and gbest:, ; as in (23) and (24)
respectively.
Update the local attractor as

)

agﬁl =¢- pbestf)l + (1 —¢) - gbesty,

Update the gravity centre of all particles as

K
1 ()
mbest:, | = e Zpbestn f

k=1
Update the particles as

k k k 1
’Yt(, ;+1:ai,)l+<'ﬁ'|mbeStt,l_’Yt(,;|'ln;

If J:/ || y¢ |*< Aq, iterative optimization stops.
Else go to the next iteration.

Otherwise, if &2 < A, do weight adaptation only

Adapt the weight with the MRLS as in (7), (8),(9) and (10)

End

Initially the centres of all nodes can be randomly placed
around the data or simply the data itself, and the variances can
be set as a common value. While such initial structure setting
is not optimum, when the on-line adaptation goes on, each of
the nodes is to be replaced by a new one with a better structure
once at a time. It is expected that the node replacement occurs
frequently at the initial stage. At the beginning, the node
structure and weight vector adaptation start simultaneously.
This is verified by extensive simulations including all of those
in Section V.

Another issue is the model size selection which depends
on specific applications. While there are many model size
selection algorithms (e.g. [46], [47]), most are for off-line
approaches or stationary systems so that they are not appli-
cable in on-line applications. The model size selection for
the proposed algorithm will be left as an interesting open
topic for future research. In many cases, the model size of
the proposed approach can be easily determined empirically,
e.g. by trial-and-error of the size until there is no significant
gain in model performance. Extensive simulation results are
given later in this paper to compare the performance of the
proposed algorithm with different model sizes.

Finally, we point out that, although the proposed approach
is for the RBF network with Gaussian kernels, it can be easily
adapted to many other associative networks with linear-in-the-
parameters structure, e. g. thin-plate-spline, B-spline networks.

V. SIMULATION AND DISCUSSIONS

In this section, computer simulations are given to compare
the proposed MRLS-QPSO algorithm with some typical on-
line modeling approaches including the linear MRLS, RAN,
GAP-RBF and ELM algorithms. Except for the linear MRLS,
all approaches apply Gaussian nodes.

In the proposed MRLS-QPSO approach, the error threshold
for the node replacement in (12) is set as A; = 1073,
10 swarm particles are used in the QPSO, and the iterative
weight and structure adaption process stops if Ay < 1076
or the iteration number reaches 5. In all other approaches,
the controlling parameters are carefully chosen based on trial-
and-error to achieve best performance. We note that, while
both off-line and on-line ELM approaches are available [33]—
[39], the off-line ELM with a fixed model size based on the
whole batch of data is used in this section for comparison,
because it is easier to set up the simulation for the best
performance. This is reasonable because the off-line and on-
line ELM approaches have similar performance [38]. Thus the
comparison is logically general for all versions of the ELM.

These algorithms are compared in the application of on-
line time series prediction. To be specific, in this section, the
T-step ahead prediction is to use the past four samples

Xt = (Yt Yi—6, Yi—12, Ye—18]" (33)

to estimate the future sample vy 7.

The prediction performance is measured by the root mean
square error (RMSE) and mean absolute error (MAE). At time
t, the RMSE and MAE are defined as

t

RMSE(t) = % Z (yi — f(x:))? (34)
=1
MAB(H) = £ 3 s — fx0) (35)
=1

respectively.

Two benchmark chaotic time series are considered in this
section: Mackey-Glass and Lorenz time series. In order to
fully verify the proposed approach, both stationary and non-
stationary cases are considered. In the stationary case, the
parameters controlling the chaotic time series behavior are
fixed. While in the non-stationary case, these controlling
parameters are changing either abruptly (piecewise function)
or continuously.

A. Mackey-Glass time series

The Mackey-Glass time series is generated from the differ-
ential delay equation as

dr(t)  ax(t—c)
dt 14210t — c)) —ba(t)

where a, b and c are controlling parameters, and especially
when ¢ > 17 the equation shows typical chaotic behavior. In
this simulation, 5000 samples are generated by the 4th order
Runge-Kutta method with the step size of 1, and the last 3000
samples are used for the prediction. The forward prediction
step is set as T = 60.

1) Mackey-Glass time series with fixed parameters: First,
we let @ = 0.2, b = 0.1 and ¢ = 30. Table I and Fig. 4
compare the final prediction performance and RMSE learning

(36)



TABLE I
Mackey-Glass (fixed parameters): FINAL PREDICTION PERFORMANCE

Algorithm RMSE | MAE | RBF nodes
MRLS 0.3693 | 0.2937 —
RAN 0.1145 | 0.0768 726
GAP-RBF 0.1278 | 0.0957 22
ELM (100 nodes) 0.0761 | 0.0560 100
ELM (300 nodes) 0.0476 | 0.0339 300
ELM (500 nodes) 0.0376 | 0.0253 500
MRLS-QPSO (5 nodes) | 0.0297 | 0.0182 5
MRLS-QPSO (15 nodes) | 0.0180 | 0.0070 15
MRLS-QPSO (25 nodes) | 0.0168 | 0.0053 25

curves for different approaches respectively. It is clear that
the linear MRLS has the worst performance. The RAN and
GAP-RBF have comparable performance, but the GAP-RBF
has far fewer number of nodes than the RAN. This is because
the GAP-RBF can prune the model size and the RAN can
not. Both the ELM and proposed approaches have significantly
better performance than the others, and the proposed approach
with 5 nodes has similar performance to the ELM approach
with 500 nodes.

MRLS

RAN(726 nodes)

ELM(500 nodes) Proposed(15 nodes)

.......................

. . . . .
0 500 1000 1500 2000 2500 3000
Number of Observations (t)

Fig. 4. Mackey-Glass (fixed parameters): RMSE learning curves.

Fig. 5 (a) shows the final prediction performance of the
proposed algorithm with different number of RBF nodes.
It is clear that the prediction performance improves with
larger number of nodes M, but the improvement becomes
insignificant when M > 15. We recall that with M = 5,
the proposed approach has similar performance to the ELM
approach with M = 500. Fig. 5 (b) shows the proposed
algorithm with M = 15 can very well predict the time series
on-line.

2) Mackey-Glass time series with piecewise function:
In this simulation, the above Mackey-Glass time series are
weighted by the piecewise function as

yi(t) =y(t) - (1), 37)
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Fig. 5. Mackey-Glass (fixed parameters): prediction performance of the
proposed MRLS-QPSO algorithm.

where

0.0005 - t 558
0.0006 - t5.55
0.0003 - to.57

0<t<999
1,000 <t < 1,999
2,000 <t < 2,999

(1) = (38)

y1(t) is used for the time series prediction. As is shown in
Fig. 7 (b), y1(t) is clearly non-stationary as it has different
dynamic range at different time intervals.

Table II and Fig. 6 compare the final prediction performance
and RMSE learning curves in this non-stationary case for dif-
ferent approaches respectively. Comparing these results with
those in the previous simulation for the stationary case, we
can observe that, while all approaches have worse prediction
performance than those in the stationary case, the comparison
between different approaches are similar, and particularly the
proposed MRLS-QPSO still has the best performance. Except
for the proposed approaches, all other RBF approaches have
significantly larger number of nodes.

Fig. 7 (a) shows the final prediction performance of the
proposed algorithm with different number of RBF nodes.
Unlike that in the previous stationary case, the prediction
performance changes little with more nodes. In fact, the
RMSE may even become slightly worse when the model size
becomes larger. This actually matches our previous statement
that in the non-stationary scenario, “local” characteristic is



TABLE II
Mackey-Glass (piecewise function): FINAL PREDICTION PERFORMANCE

Algorithm RMSE | MAE | RBF nodes
MRLS 0.9238 | 0.6837 —
RAN 0.6673 | 0.4848 2378
GAP-RBF 0.5323 | 0.3597 195
ELM (300 nodes) 0.3853 | 0.2744 300
ELM (500 nodes) 0.3227 | 0.2226 500
ELM (1,000 nodes) 0.2215 | 0.1470 1,000
MRLS-QPSO (5 nodes) | 0.1158 | 0.0384 5
MRLS-QPSO (10 nodes) | 0.1897 | 0.0314 10
1.4
12} GAP-RBF(195 nodes)

1 RAN(2378 nodes)

-~
S-~ o
~~ o
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Fig. 6. Mackey-Glass (piecewise function): RMSE learning curves.

more important than the “global” one. With fewer nodes, the
proposed algorithm “forgets” the previous data faster so that
it focuses more on the recent data. Fig. 7 (b) clearly shows
that with only 5 nodes, the proposed algorithm well predicts
this non-stationary time series on-line.

B. Lorenz time series

The Lorenz chaotic time series is also often used as a
benchmark in many applications [48]. As a three dimensional
and highly non-linear system, the Lorenz system is governed
by three differential equations as

%9=w@—m@
d%gt) = cx(t) —x(t)z(t) — y(t)
dz(t)

= a(tyye) — bt

where a, b and c are parameters that control the behavior of the
Lorenz system. In the simulations, the 4th order Runge-Kutta
approach with the step size of 0.01 is used to generate the
Lorenz samples, and only the Y -dimension samples, y(t), are
used for the time series prediction. For the 5000 data samples
generated for y(¢), the last 3000 stable samples are used for
the prediction since Lorenz system is very sensitive to the
initial condition.
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(a) Prediction performance vs No. of nodes (M)
(b) On-line prediction with M =5

Fig. 7. Mackey-Glass (piecewise function): prediction performance of the
proposed MRLS algorithm.

1) Lorenz time series with fixed parameters: We first con-
sider the Lorenz time series with fixed parameters as a = 10,
b = 8/3 and ¢ = 28. The trajectory of this Lorenz system is
shown in Fig. 8.

Table III, IV and V compare the final prediction perfor-
mance for different approaches for the prediction step as
T = 20, 40 and 60 respectively. In all of the tables, the linear
MRLS has the worst prediction performance, because a linear
approach cannot model the non-linear time series. The RAN
and GAP-RBF achieve comparable prediction performance but
the GAP-RBF has more compact model than the RAN. The
model size for the GAP-RBF is still very large compared to
the proposed approach: several tens vs only several.

The performance of the ELM and the proposed MRLS-
QPSO algorithms with different model size are also shown in
the tables. It is seen that when the ELM and GAP-RBF have
comparable model sizes, their performance are comparable as
well. But the ELM can achieve better performance than the
GAP-RBF with more nodes.

It is also clear that, while the performance of the ELM
depends greatly on the model size, the proposed approach is
less sensitive to the model size. The propose algorithm with
5 nodes has better performance than the ELM with 500 (or
more) nodes. This clearly states the importance of the node
structure optimization.

Fig. 9 compares the MAE learning curves of the proposed



Fig. 8. Lorenz Attractor.

TABLE III
Lorenz time series (fixed parameters): FINAL PREDICTION

PERFORMANCE, T=20

’ Algorithm \ RMSE \ MAE \ RBF nodes ‘

MRLS 74271 | 5.9214 —

RAN 2.7486 | 2.2543 150
GAP-RBF 2.3294 | 1.4829 70

ELM (100 nodes) 3.7038 | 2.8546 100

ELM (500 nodes) 0.7893 | 0.5389 500
MRLS-QPSO (5 nodes) | 0.2076 | 0.1224 5
MRLS-QPSO (7 nodes) | 0.1946 | 0.1008 7
MRLS-QPSO (9 nodes) | 0.1822 | 0.0858 9

approach with different innovation length p applied in the
MRLS weight adaptation, where the Gaussian noise with zero
mean and 0.02 variance is added to the Lorenz time series to
highlight the noise rejection effect from p. It is clearly shown
that the larger the p is, the more robust the MRLS-QPSO
against the noise. But a higher p leads to higher complexity.

2) Lorenz time series with time varying parameters: In this
simulation, we let the Lorenz controlling parameters vary with
time to obtain a non-stationary system. Specifically, we set
a =10 and
b 44 3(1 4 sin(0.1¢))

B 3 39)
¢ =25+ 3(1 4 cos(2°-001)),

The prediction step is fixed at 7" = 40, and number of nodes
for the proposed approach and the ELM are fixed at 5 and
1,000 respectively. We note that the performance comparison
of the proposed and ELM algorithms with different model
sizes is similar to that in the above simulation so that the
results are not shown.

Figs. 10 (a) and (b) compare the RMSE and model size
learning curves for different approaches respectively. It is
clearly shown that the linear MRLS algorithm has the worst
performance. The RAN and GAP-RBF approaches have com-
parable prediction performance. While the GAP-RBF can pro-

TABLE IV
Lorenz time series (fixed parameters): FINAL PREDICTION
PERFORMANCE, T=40

Algorithm RMSE | MAE | RBF nodes

MRLS 8.1432 | 6.0564 —

RAN 3.4014 | 2.7920 167
GAP-RBF 42010 | 2.6401 55

ELM (100 nodes) 5.2150 | 3.6280 100

ELM (500 nodes) 1.5095 | 1.0353 500
MRLS-QPSO (5 nodes) | 0.3155 | 0.1375 5
MRLS-QPSO (7 nodes) | 0.3027 | 0.1233 7
MRLS-QPSO (9 nodes) | 0.2933 | 0.1197 9

TABLE V

Lorenz time series (fixed parameters): FINAL PREDICTION
PERFORMANCE, T=60

’ Algorithm \ RMSE \ MAE \ RBF nodes ‘

MRLS 9.9497 | 5.6003 —

RAN 4.0956 | 3.2670 130
GAP-RBF 6.2938 | 3.9318 66

ELM (100 nodes) 7.8140 | 5.5330 100
ELM (500 nodes) 3.2723 | 2.1628 500

ELM (1,000 nodes) 0.6011 | 0.4008 1000
MRLS-QPSO (5 nodes) | 0.4529 | 0.1436 5
MRLS-QPSO (7 nodes) | 0.4225 | 0.1333 7
MRLS-QPSO (9 nodes) | 0.4068 | 0.1297 9

duce a more compact model than the RAN, both approaches
have model sizes increasing with the number of data input.
The ELM approach with 1000 nodes has better performance
than the RAN and GAP-RBF, and the proposed algorithm has
the best prediction performance with the smallest model size
among all approaches.

Fig. 11 shows that the proposed MRLS-QPSO algorithm
can predict this non-stationary time series almost perfectly.

3) Lorenz time series with time base drift: In this simula-
tion, the parameters of the Lorenz systems are fixed as a = 10,
b= 8/3, c = 28, but the samples of y(t) are weighted by an
exponential time based drift to obtain

n(t) = 1.10:01¢ ~y(t),

and y; (¢) is used for the time series prediction. The prediction
step is fixed at T' = 40, and number of nodes for the proposed
approach is fixed at 5.

Fig. 12 shows that the proposed MRLS-QPSO algorithm can
well track the y;(¢) on-line. It is clear that y; (¢) is even more
non-stationary than the time series in the previous simulation
with time varying controlling parameters, where the dynamic
range of y;(t) goes from around [-20,20] initially to about
[-2000,2000] in the end.

Table VI and Fig. 13 compare the final prediction perfor-

(40)
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Fig. 9. Lorenz time series (fixed parameters): the MRLS-QPSO with
different innovation length p.
TABLE VI
Lorenz time series (time base drift): FINAL PREDICTION PERFORMANCE,
T=40
’ Algorithm \ RMSE \ MAE \ RBF nodes ‘
MRLS 425.1496 | 246.1235 —
RAN 400.5218 | 270.2865 2769
GAP-RBF 381.8548 | 209.7623 987
ELM (1,000 nodes) | 287.7531 | 186.0943 1000
ELM (2,000 nodes) | 180.9195 | 115.4693 2000
ELM (3,000 nodes) | 88.2288 | 46.2154 3000
MRLS-QPSO 26.6658 | 11.1356 5
(5 nodes)

mance and RMSE learning curves for different approaches
respectively. It is clearly shown that the proposed MRLS-
QPSO has significantly better performance than the others.
In fact, the MRLS-QPSO is effectively the only approach
here that can well track this highly non-stationary Lorenz time
series.

VI. CONCLUSION

In this paper, a novel on-line RBF modeling approach is
proposed for non-linear and non-stationary dynamic systems.
The major contribution is to combine the MRLS weight
adaptation and QPSO node optimization in an innovative
way. Based on a RBF model with a fixed small number
of nodes, the MRLS is used to adapt the node weights at
every time step. The node optimization, of replacing the worst
existent node by a new one, is however activated when the
modeling performance becomes inadequate while using the
MRLS alone. This is achieved by optimizing the center vector
and covariance matrix of the new node using the QPSO on-
line. A data-driven initialization method is proposed in order to
achieve fast convergence in the QPSO. Numerical simulations
have demonstrated that the proposed MRLS-QPSO algorithm
can achieve significantly better performance than existing
approaches with a very sparse model.

MRLS GAP-RBF

-
AR LT R 4o
LI T

ELM (1000 nodes)

Proposed

L L L L L
0 500 1000 1500 2000 2500 3000

Number of Observations (t)
T T T T T
120 ===
- “ 4
v
-
100+ —-' RAN
-’ -
8 .
°
2 sof '
= —_
o 1
o '
o 60f L GAP-RBF
5 ,
2 [
£ " RESTn
5 1 FRTTTONY AFEIIEEN
Z 40
, -
1 '- W
20l ': e Proposed
)
'
0 ' L L L L L
0 500 1000 1500 2000 2500 3000

Number of Observations (t)

(a) RMSE learning curves
(b) Model size learning curves

Fig. 10. Lorenz time series (time varying parameters): RMSE and model
size learning curves.

The algorithm proposed here has been specifically aimed
at modeling general non-stationary, non-linear dynamical sys-
tems using real time observational data. A number of simulated
time series with various non-stationarities have been used
as good demonstrators. Potential applications of the pro-
posed algorithm range from military applications (e.g. target
tracking) to fundamental communications applications (e.g.
channel equalization). We have shown how a very competi-
tive performance can be achieved by integratively employing
flexible model structure, recursive parameter estimation and
evolutionary computationary techniques.
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