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In backstepping implementation, the derivatives of virtual control signals are re-

quired at each step. This study provides a novel way to solve this problem by combining

online optimisation with backstepping design in an outer and inner loop manner. The

properties of differential flatness and the B-spline polynomial function are exploited

to transform the optimal control problem into a computationally efficient form. The

optimisation process generates not only the optimised states but also their finite order

derivatives which can be used to analytically calculate the derivatives of virtual control

signal required in backstepping design. In addition, the online optimisation repeatedly
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performed in a receding horizon fashion can also realise local motion planning for ob-

stacle avoidance. The stability of the receding horizon control scheme is analysed via

Lyapunov method which is guaranteed by adding a parametrised terminal condition

in the online optimisation. Numerical simulations and flight experiments of a quadro-

tor unmanned air vehicle are given to demonstrate the effectiveness of the proposed

composite control method.

I. Introduction

Backstepping is a recursive nonlinear control method where the feedback control law and the

associated Lyapunov functions can be designed following a step-by-step procedure [1]. Therefore,

this method has been widely used, for systems such as, aircraft, mobile robots, and manipulators,

because their complicated but cascaded dynamic structures can be exploited in this recursive control

design [2–6]. The key feature in backstepping algorithms is to construct a virtual control signal in

each step to guide the state of the subsequent subsystem so that a stabilizing control law can be

found through “step back”. Although the principle of backstepping is effective and easy to follow, the

conventional design procedure suffers from the complicated analytic derivations of the derivatives

of virtual control signal at each step. Especially for high-order systems or multivariable systems

like aircraft dynamics, the computation of analytic derivatives may become quite tedious or even

infeasible in practice. To alleviate this drawback, the most widely used solution is to pass the

desired virtual control signal through a low-pass filter to obtain the filtered virtual control signal

and its corresponding derivative [7]. The magnitude and rate constraints can also be imposed on

the virtual control signal by using a second-order filter known as command filter in [3, 8]. However,

in order to achieve good control performance, the bandwidth and the constraints of each filter need

to be carefully tuned, which is not straightforward [6].

On the other hand, in many application domains the tracking control requirement may be

coupled with path planning problems, for example, to control an unmanned vehicle or robotic

manipulator to avoid obstacles in complex operation environment. The traditional backstepping
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control only focuses on the stability or the tacking performance of the system but has no means to

incorporate path planning. This necessitates the development of a local motion planning function

to adopt newly updated information and repeatedly replan a short term motion profile that satisfies

both system dynamics and obstacle-free requirement. A practical control scheme should incorporate

both motion planning and tracking control in a hierarchical structure. Specifically, the local motion

planner first generates a local obstacle-free reference trajectory online. Then, the tracking controller

governs the system dynamics to achieve the replanned motion. The motion planning or trajectory

generation has been comprehensively studied in [9–16], which is normally formulated as optimisation

problems in a receding horizon fashion. However, the sequential tracking control is usually designed

in a simplified linear region. For example, a linear quadratic regulator in [12], a PID controller

with feed-forward compensation for anticipation time in [17], and a linear model predictive control

technique in [14] are used to cooperate with the local motion planner.

In this paper, instead of dealing the local motion planning and the tracking control separate-

ly, we propose an online optimisation based backstepping method to tackle both the local motion

planning and the cascaded tracking control problem. A quadrotor is adopted as a representative

to simulationally and experimentally demonstrate the effectiveness of the proposed hybrid control

strategy. The differential flatness property of the quadrotor and the polynomial parametrisation are

used to transfer the formulated optimisation problem into a nonlinear programming (NLP) prob-

lem. In this way, not only the optimal local trajectory can be effectively solved online, but also the

optimised attitude angles and their derivatives can be generated simultaneously for backstepping.

To fulfil the replanned motion, an inner-loop backstepping controller is designed to track the opti-

mised attitude angles, which is more appropriate to deal with the inherent nonlinear dynamics than

linear controllers. The main contributions of the proposed control framework include three aspects.

Firstly, it can provide the derivatives of the virtual control signals required in backstepping design.

Different from approximating the derivatives of the virtual control signals through command filters,

these derivatives can be directly calculated by using the optimised states and their derivatives in a

polynomial form. This will reduce the phase lag caused by the filters and the complexity in imple-

mentation and system tuning. Secondly, a parametrised terminal condition is proposed to guarantee

3



the stability of the online optimisation and the overall stability of the system under the composite

control strategy has also been established. Thirdly, compared to the single-functional backstep-

ping tracking methods, it has the capability to achieve obstacle avoidance. Although demonstrated

through a case study on trajectory tracking control of a quadrotor, the proposed composite control

strategy is readily applied to other differential flat systems, such as manipulators, land vehicles,

maglev systems, cranes, etc., after necessary modifications.

The remainder of this paper is organised as follows. Section II introduces the mathematical

model of the quadrotor. In Section III, some preliminaries about differential flatness property, B-

spline polynomial function, and obstacle potential function are presented, respectively. The detailed

description of the online optimisation for local motion planning is demonstrated in Section IV.

Section V is devoted to the design of backstepping tracking controller. Section VI provides the

results of numerical simulation and flight experiment to demonstrate the effectiveness of the proposed

approach, followed by conclusions in Section VII.

II. Quadrotor modelling

Quadrotor is a kind of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)

whose dynamic model has been extensively studied in literatures (e.g. [18–20]). The configuration

of the quadrotor and the coordinate systems employed in this paper are briefly shown in Fig. 1.

Let SB = { OB
−→
XB

−→
YB

−→
ZB } denote the body-fixed frame with origin at the centre of gravity of

the quadrotor and the North-East-Down (NED) inertial frame SI = { OI
−→
XI

−→
YI

−→
ZI } is used to

characterise the translational motion. The equations of motion for a rigid body driven by external

force F ∈ R3 and torque M ∈ R3 can be derived from Newton-Euler equations and expressed as

follows


mζ̈ = mgZI +R(η)F

JΩ̇ = −Ω× JΩ+M

(1a)

(1b)

where ζ = [ x y z ]T , η = [ ϕ θ ψ ]T , and Ω = [ p q r ]
T denote the quadrotor’s inertial positions,

attitude angles, and angular rates, respectively. J is the diagonal moment of inertia tensor. The
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Fig. 1 Quadrotor configuration

transformation matrix from body-fixed frame to inertial frame is given by

R(η) =


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ


where the compact notation c denotes cos and s for sin.

In the generic vehicle dynamic model (1), the formulation of the external force and torque

determines the type of aircraft. For a quadrotor, the external force and torque can be commonly

characterised by thrust force F = [ 0 0 −u ]T and three control torques M = [ uϕ uθ uψ ]T . The

relations between the four control inputs and the angular speed of the four rotors can be represented

as 

u

uϕ

uθ

uψ


=



ρ ρ ρ ρ

0 −ρl 0 ρl

−ρl 0 ρl 0

κ −κ κ −κ





w2
1

w2
2

w2
3

w2
4


where l is the distance from the rotor to the centre of cross frame; ρ and κ are the propeller-to-

force and propeller-to-torque scaling factors, respectively. The propellers are driven by DC motors

and wi, i = 1, 2, 3, 4 are the motor velocities. The dynamic model of motor can be approximately

5



described by the following first-order equation

ẇi = km(wdesi − wi)

where km is the motor time constant and wdesi is the desired angular velocities.

The rotational kinematic relationship between the attitude angle and the angular rate can be

derived as follows

η̇ = Φ(η)Ω (2)

where

Φ(η) =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ


and it also implies Ω = Ψ(η)η̇, Ψ(η) = Φ−1(η). Differentiating Eq. (2) and invoking the rota-

tional dynamics in terms of Ω in (1b), the dynamic model that describes the quadrotor’s rotational

movement can be rewritten in terms of η as

J(η)η̈ +C(η̇,η)η̇ = M

where J(η) = JΨ(η) is defined as a pseudoinertia matrix and C(η̇,η) = J̇(η) +Ψ(η) × Jη̇ is the

Coriolis term [18]. By defining a new pseudocontrol toques M̃ = [ ũϕ ũθ ũψ ]T as

M̃ = J−1(η)(M −C(η, η̇)η̇)

we obtain

η̈ = M̃ (3)

Through this coordinate transformation, the rotational dynamics is further simplified. Using Eqs.
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(1a) and (3), the quadrotor model can be rewritten as follows



ẍ = − 1

m
u(cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ))

ÿ = − 1

m
u(cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ))

z̈ = − 1

m
u cos(ϕ) cos(θ) + g

ϕ̈ = ũϕ

θ̈ = ũθ

ψ̈ = ũψ

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

where the system states are x = [ x ẋ y ẏ z ż ϕ ϕ̇ θ θ̇ ψ ψ̇ ]T , the control inputs are u =

[ u ũϕ ũθ ũψ ]T , and the outputs y = [ x y z ψ ]T .

III. Preliminaries

A. Differential flatness

Differential flatness is a property of some nonlinear dynamic systems, for which all the system

variables can be expressed in terms of a set of specific variables, namely the flat outputs, and their

derivatives up to some finite orders [21]. The concept of differential flatness has been exploited to

design feedforward control schemes for nonlinear systems [22–24], which normally form a specific

combination of a nominal feedforward input and a local feedback controller. In this paper, the

differential flatness property is adopted in the receding horizon framework to facilitate the online

optimisation. Consider a general nonlinear system with state x(t) ∈ Rn and input u(t) ∈ Rm

ẋ(t) = f(x(t),u(t))

This system is differential flat if there exists such a flat output vector z(t) ∈ Rm that has the

following properties [21–23]:

1) the elements of flat output vector z are differentially independent

2) the flat output vector z can be expressed by a combination of system variables

z(t) = λ(x(t))

3) all the system states and inputs can be expressed in dependence of z and its derivatives up

7



to first r -th order

x(t) = Υ(z(t), ż(t), z̈(t), · · · , z(r−1)(t))

u(t) = Γ(z(t), ż(t), z̈(t), · · · , z(r)(t))

(5)

As for the quadrotor dynamics (4), the system outputs y = [ x y z ψ ]T are chosen as the flat

output vector z. The atitude angles and control inputs can be expressed in terms of the flat output

components as [14]



ϕ = sin−1(
m

u
(−ẍ sinψ + ÿ cosψ))

θ = tan−1(− ẍ cosψ + ÿ sinψ

g − z̈
)

ψ = ψ

(6a)

(6b)

(6c)



u = m
√
ẍ2 + ÿ2 + (z̈ − g)2

ũϕ = ϕ̈

ũθ = θ̈

ũψ = ψ̈

(7a)

(7b)

(7c)

(7d)

A complete parametrisation of all system variables also needs the higher derivatives of rotational

states η and control input u. They can be derived by continuously differentiating Eqs. (6) and

(7a). Usually the MATLAB Symbolic Math Toolbox is used to facilitate such kind of derivative

calculation. Singularities appear when g = z̈ in Eqs. (6a) and (6b), which means the quadrotor is in

free fall. This can be avoided by restricting the input u > 0 and pitch and roll angle −90◦ < θ < 90◦

and −90◦ < ϕ < 90◦ according to Eq. (4c) [12].

B. B-spline parametrisation

A p-th degree B-spline curve C(ϵ) is a piecewise polynomial function represented by [25]

C(ϵ) =
n∑
i=1

Ni,p(ϵ)Pi, 0 ≤ ϵ ≤ 1 (8)
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where Pi, i = 1, · · · , n are the control points and Ni,p(ϵ) are the basis piecewise polynomial functions

defined on a non-decreasing knot sequence

U ,
[
ϵ1 · · · ϵ1︸ ︷︷ ︸

p+1

ϵp+2 · · · ϵm−p ϵm · · · ϵm︸ ︷︷ ︸
p+1

]
(9)

where ϵk, k = 1, · · · , m are called knots, ϵ1 = 0, and ϵm = 1. The degree of basis functions p, the

number of control points n, and the number of knots m are related by

m = n+ p+ 1

The i -th B-spline basis function of p-degree is defined as

Ni,0(ϵ) =


1 ϵi < ϵ < ϵi+1

0 otherwise

Ni,p(ϵ) =
ϵ−ϵi

ϵi+p−ϵiNi,p−1(ϵ) +
ϵi+1,p−1−ϵ
ϵi+p+1−ϵi+1

Ni+1,p−1(ϵ)

and the r -th time derivatives of the basis functions Ni,p(ϵ) is given by

N
(r)
i,p (ϵ) = p(

N
(r−1)
i,p−1 (ϵ)

ϵi+p − ϵi
−

N
(r−1)
i+1,p−1(ϵ)

ϵi+p+1 − ϵi+1
)

It should be noted that the derivative order r cannot exceed the selected B-spline curve degree p,

otherwise all higher derivatives would be zero. When the denominators involving knot differences

become zero, the quotient is defined to be zero.

To facilitate the online optimisation problem, each element of the flat outputs z(τ) =

[ x y z ψ ]T can be parametrised in terms of the B-spline basis functions as

zj(τ) = N(ϵ)Pj , t ≤ τ ≤ t+ T (10)

where j = 1, 2, 3, 4 denotes the j th element in z(t), N(ϵ) , [ N1,p(ϵ) N2,p(ϵ) · · · Nn,p(ϵ) ] is the

vector of B-spline basis functions, and Pj , [ P1,j P2,j · · · Pn,j ]
T is the set of control points that

are treated as the decision variables in the online optimisation process. For a specified time horizon

T, the knot ϵ ∈ [0, 1] represents the normalised time index such that the conversion relationship

between current time τ and knot ϵ is

τ = t+ ϵT (11)
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where t is the sampling time instant. Therefore, the first-order time derivatives of the basis functions

are calculated as

dNi,p(ϵ)

dτ
=
dNi,p(ϵ)

dϵ

dϵ

dτ
=

1

T

dNi,p(ϵ)

dϵ
(12)

By using Eqs. (10) and (12), the r -th time derivatives of the flat outputs zj(t), j = 1, 2, 3, 4 are

derived as

z
(r)
j (t) =

1

T r
N (r)(ϵ)Pj (13)

C. Obstacle potential function

In this paper, obstacle potential function is used to describe the obstacle influence. The obstacle

potential function Jobs may consist of several contributors, namely Jobs =
n∑
i=1

J iobs where n is the

number of the obstacles being considered. Each contributor can be described by the elliptical-

potential-function as [26]

J iobs =


A
K e

−αK , K ≥ 1

Ae−αK
1+ 1

α , 1 > K ≥ 0

(14)

where α determines how rapidly the potential rises near the obstacle surface and falls off away from

the obstacle, A acts as an overall scale factor for the potential, and K is defined as a pseudo-distance

in two dimensions from the obstacle:

K =

[(x
a

)2n

+

(
b

a

)2 (y
b

)2n
] 1

2n

− 1

where the semi-major axis a and the semi-minor axis b are determined by the n-ellipse that surrounds

the obstacle. The n-ellipse is defined as

(x
a

)2n

+

(
b

a

)2 (y
b

)2n

= 1

From Eq. (14), it can be known that the potential function J iobs > 0 is always satisfied. The

elliptical formulation is viable for a large class of object shapes by varying the parameter n.
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IV. Online optimisation for local motion planning

A. Problem formulation and simplification

A typical objective of autonomous flight control is to regulate the quadrotor to track a predefined

reference trajectory yr = [ xr yr zr ψr ]
T . However, since the unexpected obstacles might be

encountered during the mission, it is essential to replan a real-time local motion profile online to

deal with this kind of pop-up threats. In addition, some hard constraints should also be taken

into account. Intuitively, receding horizon control (RHC) is considered as a suitable framework to

solve the constrained local motion planning problem [9, 10]. At each sampling time, the RHC is a

finite horizon open-loop optimal control that can handle constraints explicitly. It is solved online

repeatedly, which predicts an optimal control profile based on current states and system model, and

applies the first control action in this profile to the system [27]. To generate the obstacle-free local

motion profile at time instant t, the open-loop optimal control problem can be formulated into the

following general form:

min
x, u

J(x(t),u(t)) (15)

Subject to:

ẋ(τ) = f(x(τ),u(τ)), (16a)

lb0 ≤ c0(x(t),u(t)) ≤ ub0 (16b)

lbf ≤ cf (x(t+ T ),u(t+ T )) ≤ ubf (16c)

lbτ ≤ c(x(τ),u(τ)) ≤ ubτ (16d)

where J(x(t),u(t)) is the cost function to be minimised, x(τ) is the state trajectory of system

dynamics (16a) driven by control input u(τ) for the time period τ ∈ [t, t+T ], Eqs. (16b) and (16c)

are the initial and terminal constraints, respectively, and inequality constraints on trajectory and

actuators are expressed through Eq. (16d).

By using the differential flatness property introduced in Section IIIA, the system states and

inputs in Eq. (16a) can be expressed in flat output space as shown in Eq. (5). With this transfor-
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mation the optimal control problem is rewritten as

min
z̄
J(z̄(t)) (17)

Subject to:

lb0 ≤ c0(z̄(t)) ≤ ub0

lbf ≤ cf (z̄(t+ T )) ≤ ubf

lbτ ≤ c(z̄(τ)) ≤ ubτ

(18)

where z̄ = (z(t), ż(t), z̈(t), · · · ,z(r)(t)). Since the flat outputs can characterise system dynamics

inherently, the dynamic constraint Eq. (16a) in the original OC problem has been removed.

As the quadrotor output y is chosen as the flat output z, the trajectory tracking error is defined

as ze(t) = z(t)− zr(t). To minimise the tracking errors, the cost function J is given as follows

J(ze(t)) = g(ze(t+ T )) +

∫ t+T

t

L(ze(τ))dτ (19)

where g(ze(t + T )) = 1
2ze(t + T )TRze(t + T ) is the terminal cost to guarantee the stability by

penalising the tracking error at the end of prediction horizon, L(ze(τ)) = ze(τ)
TQze(τ) + Jobs(τ)

is the running cost, Jobs is the obstacle potential function introduced in Section III C, and Q and

R are positive definite weighting matrices.

Furthermore, to transform the optimal control problem from an infinite-dimensional space to

a finite one, a suitable parametrisation of the flat outputs is also required. By using the B-spline

polynomial introduced in Section III B, the flat output vector can be parametrised as

z(τ) = [ z1(τ) z2(τ) z3(τ) z4(τ) ]
T

= [ N(ϵ)P1 N(ϵ)P2 N(ϵ)P3 N(ϵ)P4
]T

= Λ(ϵ)P̄

(20)

where Λ(ϵ) = diag(N(ϵ),N(ϵ),N(ϵ),N(ϵ)) is the matrix of B-spline basis functions and P̄ =

[ P T
1 P T

2 P T
3 P T

4
]T is the control point vector. Then the running cost and terminal cost terms
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in Eq. (19) can be written as

L(ze(τ))

=(z(τ)− zr(τ))
TQ(z(τ)− zr(τ)) + Jobs(τ)

=P̄ TΛ(ϵ)TQΛ(ϵ)P̄ − 2P̄ TΛ(ϵ)TQzr(τ) + zr(τ)
TQzr(τ) + Jobs(τ)

(21)

and

g(ze(t+ T ))

=
1

2
(z(t+ T )− zr(t+ T ))TR(z(t+ T )− zr(t+ T ))

=
1

2
P̄ TΛ(1)TRΛ(1)P̄ − P̄ TΛ(1)TRzr(t+ T ) +

1

2
zTr (t+ T )Rzr(t+ T )

(22)

where ϵ = 1 in Eq. (22) is obtained from the conversion relationship (11). Specifically, choosing

ϵ = 1 obtains τ = t+ T from τ = t+ ϵT . Furthermore, defining

Qt =

∫ t+T

t

Λ(ϵ)TQΛ(ϵ)dτ

Gt = −2

∫ t+T

t

Λ(ϵ)TQzr(τ)dτ

Q1 =
1

2
Λ(1)TRΛ(1)

G1 = −Λ(1)TRzr(t+ T )

C =
1

2
zTr (t+ T )Rzr(t+ T ) +

∫ t+T

t

zTr (τ)Qzr(τ) + Jobs(τ)dτ

the cost function (19) is expressed in the following compact form

J(P̄ ) = P̄ T (Qt +Q1)P̄ + P̄ T (Gt +G1) + C (23)

where the control point vector P̄ is the only underlying variable that needs to be optimised. Thus,

the optimal control problem (17) is further simplified as

min
P̄

J(P̄ ) (24)

As to the inequality constraints, such as velocity constraints, acceleration constraints, and altitude

angle constraints, they can also be parametrised in terms of P̄ and incorporated into one constraint

lb ≤ c(P̄ ) ≤ ub (25)
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The final cost function (23) and the corresponding constraint (25) have been highly simplified

compared to the original ones because they are expressed in terms of control point vector P̄ . This

will significantly relieve the computational burden of solving the optimal control problem online.

Moreover, the initial boundary conditions should be satisfied to ensure that the replanned

motion can start smoothly from the current vehicle states. According to the derivatives of the B-

spline curve at the endpoint, the first three control points P1,j , P2,j , and P3,j of each flat output

element can be determined as:

P1,j = zj(0)

P2,j =
żj(0)ϵp+2

p T + P1,j

P3,j =
z̈j(0)ϵp+2ϵp+3

(p−1)p T 2 +
ϵp+2+ϵp+3

ϵp+2
P2,j − ϵp+3

ϵp+2
P1,j

where zj(0), żj(0) and z̈j(0) are the current position, velocity and acceleration provided by cor-

responding sensors and the parameters ϵp+2 and ϵp+3 are the knots defined in (9). Since this

relationship can further scale down the dimension of the control point vector by three, the actu-

al number of variables to be optimised in the online optimisation is j(n − 3). Through all these

transformations, the original optimal control problem has been formulated into an NLP problem

which can be effectively solved by using the MATLAB fmincon function. On the other hand, if the

obstacle avoidance is not required, i.e. there is no the nonlinear obstacle potential function Jobs(t),

the NLP problem is indeed a quadratic programming (QP) problem, for which many faster and

more convenient solvers are available.

B. Stability analysis and implementation

Solving the optimisation problem (17) at time instant t can obtain an open-loop optimal solution

z∗
e (τ) for the time period τ ∈ [t, t + T ]. Since in the moving horizon fashion the optimal motion

profile is only implemented in the time interval ξ ∈ [t, t+ δ) where δ is the sampling time, we have

ze(ξ) = z∗
e (ξ), ξ ∈ [t, t+ δ) (26)

At time t+ δ, the receding horizon control needs to take the current flat output error ze(t+ δ) and

solve the optimisation problem again.
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The stability of the receding horizon control in terms of states and inputs has been extensively

investigated [27–30]. However, in this paper the receding horizon control problem is parametrised

in the flat output space with B-spline polynomials. To analyse its stability, we will first introduce

the terminal condition in the flat output space in the following Lemma.

Lemma. Suppose that the online optimisation problem (17) in differential flatness algorithm

is feasible at the time t ≥ 0. Then the local motion planning problem under the receding horizon

control is the asymptotically stable if the following terminal condition is satisfied:

ġ(z∗
e (ξ + T )) + L(z∗

e (ξ + T )) ≤ 0, ξ ∈ [t, t+ δ) (27)

Proof. Choose the cost function (19) as a Lyapunov function candidate

V (ze(t)) = J(ze(t))

For a time period ξ ∈ [t, t+δ), the Lyapunov function V (ze(ξ)) is nonincreasing due to the following

equation:

V (ze(ξ)) =V (z∗
e (ξ))

=V (z∗
e (t))−

∫ ξ

t

z∗
e (τ)dτ

=V (ze(t))−
∫ ξ

t

ze(τ)dτ

≤V (ze(t))

The difference of the Lyapunov function for two time instants t and t+ δ is given by

V (z∗
e (t+ δ))− V (z∗

e (t))

=g(z∗
e (t+ T + δ)) +

∫ t+T+δ

t+δ

L(z∗
e (τ))dτ − g(z∗

e (t+ T ))−
∫ t+T

t

L(z∗
e (τ))dτ

=g(z∗
e (t+ T + δ))− g(z∗

e (t+ T ))−
∫ t+δ

t

L(z∗
e (τ))dτ +

∫ t+T+δ

t+T

L(z∗
e (τ))dτ

(28)

Integrating Eq. (27) over the time period [0, δ] gives

g(z∗
e (t+ T + δ))− g(z∗

e (t+ T )) +

∫ t+T+δ

t+T

L(z∗
e (τ))dτ ≤ 0 (29)

Substituting Eq. (29) into Eq. (28) and using Eq. (26) yield

V (ze(t+ δ))− V (ze(t)) ≤−
∫ t+δ

t

L(ze(τ))dτ < 0 (ze(t) ̸= 0) (30)
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It can be seen that V (ze(t)) is monotonically nonincreasing and bounded below by zero. So the

following result can be obtained by using the inequality (30) repeatedly:

V (ze(t))− V (ze(0)) ≤−
∫ t

0

L(ze(τ))dτ

=−
∫ t

0

ze(τ)
TQze(τ) + Jobs(τ)dτ

<−
∫ t

0

ze(τ)
TQze(τ)dτ

where the integral term on the right side of the inequality converges and is low bounded. According

to the proofs in [29–31], it follows that ze(t) → 0 as t → ∞. Hence, the actual system output y

under the receding horizon control will converge to the reference trajectory yr asymptotically.

To embed the terminal condition in the optimisation, it also needs to parametrise Eq. (27) in

term of P̄ . Assuming żr = 0, the two items in Eq. (27) are separately expressed as

ġ(ze(t+ T ))

=(ż(t+ T ))TR(z(t+ T )− zr(t+ T ))

=P̄ T Λ̄(1)TRΛ(1)P̄ − P̄ T Λ̄(1)TRzr(t+ T )

(31)

and

L(ze(t+ T ))

=(z(t+ T )− zr(t+ T ))TQ(z(t+ T )− zr(t+ T )) + Jobs(t+ T )

=P̄ TΛ(1)TQΛ(1)P̄ − 2P̄ TΛ(1)TQzr(t+ T ) + zr(t+ T )TQzr(t+ T ) + Jobs(t+ T )

(32)

where Λ̄(1) = diag( 1
T Ṅ(1), 1

T Ṅ(1), 1
T Ṅ(1), 1

T Ṅ(1)) and 1
T Ṅ(ϵ) denotes the first-order derivative of

the basis function defined in (12). Thus, the parametrised terminal condition is obtained by summing

up Eq. (31) and Eq. (32). Consequently, by incorporating it into the integrated constraint (25),

the terminal condition is enforced and satisfied in the optimisation process such that the stability

of online optimisation for local motion planning is guaranteed.

Given the optimised solution P̄ ∗, the replanned obstacle-free trajectory z∗ and the correspond-

ing optimised attitude angle η∗ can be calculated base on the flat output parametrisation (10) and

(13) and the differential flatness property (6). In addition, the optimised force control input u∗

obtained from Eq. (7a) can be directly used for altitude tracking control. However, the inner-loop

attitude control requires much faster control rate that the online optimisation cannot satisfy at the
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current stage. Therefore, it is essential to design an inner-loop controller to track the optimised

attitude angle.

V. Backstepping design for tracking control

The optimisation problem is solved in the receding horizon framework and the optimised motion

profile is replanned in a local region. In order to fulfil the replanned motion, an attitude controller

needs to be designed to track the desired attitude angle η∗ asymptotically. The backstepping method

is adopted to deal with this nonlinear control problem.

Define the attitude tracking error as

e1 = η − η∗ (33)

Consider the Lyapunov function candidate as

V1 =
1

2
eT1 e1 (34)

Taking the time derivative of V1 along the trajectory of (2) yields

V̇1 = eT1 (Φ(η)Ω− η̇∗) (35)

where angular rate Ω is selected as the virtual control signal for e1 subsystem. To make V̇1 negative,

the desired value of Ω can be constructed as

Ωd = Ψ(η)(−k1e1 + η̇∗) (36)

This results in

V1 = −k1eT1 e1 (37)

For the next step, the actual angular rate Ω is forced to track the desired angular rate Ωd.

Define the angular rate tracking error as

e2 = Ω−Ωd (38)

Let the Lyapunov function candidate be

V2 = V1 +
1

2
eT2 e2 (39)
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Taking the time derivative of V2 along the vector field of (1b) and (2) yields

V̇2 = −k1eT1 e1 + eT2 (−J−1Ω× JΩ+ J−1M − Ω̇d) (40)

If the actual control torque is chosen as

M = J(−k2e2 + Ω̇d + J−1Ω× JΩ) (41)

the time derivative of the Lyapunov function V2 satisfies

V̇2 = −k1eT1 e1 − k2e
T
2 e2 < 0, (k1, k2 > 0 and e1, e2 ̸= 0) (42)

Thus, the equilibrium (e1, e2) = 0 is globally stable and the tracking errors e1 and e2 converge to

zero asymptotically.

The overall stability of the closed-loop system must combine both the stability analyses of online

optimisation and backstepping control. Define the total Lyapunov function as

Vtotal = V (ze) + V2(e1, e2)

The difference of the total Lyapunov function is given by

Vtotal(t+ δ)− Vtotal(t) =

∫ t+δ

t

V̇ (ze(τ)) + V̇2(e1(τ),e2(τ))dτ

=V (ze(t+ δ))− V (ze(t)) +

∫ t+δ

t

V̇2(e1(τ), e2(τ))dτ

(43)

Substituting the stability results Eq. (30) and Eq. (42) obtains Vtotal(t + δ) − Vtotal(t) < 0 for

e1, e2, ze ̸= 0. Recursively, it can be inferred that the total Lyapunov function candidate Vtotal

monotonously decreases with respect to time such that the overall stability of the closed-loop system

under the composite online optimisation based backstepping controller is guaranteed.

The time derivative of Ωd is used in (41) and it can be calculated by differentiating Eq. (36) as

Ω̇d = Ψ̇(η)(−k1δ1 + η̇∗)− k1Ω+ k1Ψ(η)η̇∗ +Ψ(η)η̈∗ (44)

As mentioned in the introduction, it is not a straightforward task to get the derivative of virtual

control signal in the backstepping scheme. Taking Eq. (44) for an example, without the information

of η̇∗ and η̈∗ the so-called command filter must be introduced in the design process and such kind

of design can be found in [32]. The first command filter is used to produce the filtered version of η∗
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and its derivative and the second command filter is used to filter Ωd to generate Ω̇d. Although the

good performance under the command filtered backstepping control can be achieved, it is difficult

to tune the cascaded bandwidth and the constraints of the command filters. Furthermore, to prove

the stability, an additional auxiliary linear filter is also integrated to compensate for the unachieved

portion of the desired virtual control signal caused by using command filter [8], which makes the

design process and implementation become more complicated. In this paper, η̇∗ and η̈∗ can be

directly calculated through the optimised control point vector P̄ ∗ due to the differential flatness

and B-spline parametrisation properties. An example of how to calculate ϕ̇ is shown in the following.

Taking the time derivative of Eq. (6a) yields

ϕ̇ = − m√
1− sin(ϕ)2

(

...
x

u
sin(ϕ)−

...
y

u
cos(ϕ)+ (ẍ cos(ψ)+ ÿ cos(ψ))

ψ̇

u
− (ẍ sin(ψ)− ÿ cos(ψ)) u̇

u2
) (45)

where

u̇ =
m√

ẍ2 + ÿ2 + (z̈ − g)2
(ẍ

...
x + ÿ

...
y + (z̈ − g)

...
z ) (46)

is derived by differentiating Eq. (7a) with respect to time. Thus, it can seen that ϕ̇ is characterized

by the flat outputs z = [ x y z ψ ]T and their derivatives up to third-order. Based on the B-spline

parametrisation properties (13) and (20), the derivatives of the flat outputs are expressed as

z(n) =
1

Tn
Λ(n)P̄ ∗, n = 1, 2, 3 (47)

By virtue of the optimised P̄ ∗, ϕ̇ can be calculated by reversing the above steps. Other required

state derivatives, namely η̇∗ and η̈∗, can also be calculated in a similar fashion. As a result, Ω̇d

is directly obtained from Eq. (44) overcoming the derivative calculation problem of virtual control

signal. An overall system diagram showing the connections between the online optimisation, the

backstepping controller and the dynamic system is depicted in Fig. 2.
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VI. Simulation and experiment

A. Numerical simulation

In this section, numerical simulation and flight experiment are carried out to validate the pro-

posed online optimisation based backstepping control strategy. The implementation of the sim-

ulation is conducted by using two computers running the Simulink and MATLAB environment

separately. One computer uses Simulink to execute a full dynamic model of the quadrotor together

with the backstepping attitude controller and the differential flatness calculation module. The other

computer solves the online optimisation problem using fmincon function within MATLAB where

the C-MEX functions are used to improve efficiency. The two computers are connected via LAN

(Local Area Network) using UDP (User Datagram Protocol). Moreover, the two parts of the simu-

lation are synchronised and performed in real time to include the computational delay arisen from

the online optimisation. The model parameters of the quadrotor used in the simulation are listed

in Table 1 and the controller parameters are summarised in Table 2.

Table 1 Quadrotor parameters

Notation Value Notation Value

m, kg 2 ρ,N/rpm2 3× 10−6

J, kg ·m2 diag{5× 10−3, 5× 10−3, 9× 10−3} κ,N ·m/rpm2 1.5× 10−7

l,m 0.22 km, 1/s 20

The quadrotor is required to track a three-dimensional (3D) square trajectory which is clockwise,
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Table 2 Controller parameters

Notation Description Value Notation Description Value

p Order of polynomials 4 n Number of control points 7

m Number of knots 12 ϵ6, ϵ7 Mid knots 0.1, 0.9

T, s Prediction horizon 3 δ, s Sampling time 0.05

A Potential field scaler factor 60 α Potential field decay rate −5

a, b,m Obstacle semi axes 1, 1 k1, k2 Backstepping control gains 10, 20

starting from and ending at the origin. For simplicity, the heading angle command ψr remains

constant. During the route, there are two pop-up obstacles that appear and are detected by the

on-board sensors. The obstacles are assumed to be cylindrical with a radius of 1m and are much

taller than the operating altitude of the quadrotor such that the quadrotor must fly around, not

over, the obstacles. According to the description of elliptical-potential-function in Section III C, the

two-dimensional (2D) potential field about an obstacle with the centre at the origin is depicted in

Fig. 3. As the quadrotor comes close to the obstacle surface, the value of potential would increase
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dramatically. In order to minimise the cost function, the replanned trajectory is away from the

obstacles as shown in Fig. 4 in the 3D space. Obviously, adequate obstacle clearance distance is

created for the quadrotor. If necessary, this safe clearance distance may be increased or decreased

by adjusting the obstacle potential function Jobs. To be more specific, the projection of horizontal

motion is shown in Fig. 5. It can be seen that the quadrotor under the proposed composite online

optimisation based backstepping control law is able to successfully avoid the obstacles encountered as

expected, smoothly pass all the abrupt corners, and closely track the predetermined box trajectory.

The detailed simulation results are presented in Fig. 6 which demonstrates the time histories of

x − y − z positions, attitude angles, and control inputs. As seen in Fig. 6(b), the curves of the

optimised angles and the actual angles are almost coincident, which indicates the good tracking

performance of the inner-loop backstepping attitude controller.
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Fig. 4 Trajectory tracking results

B. Indoor flight test

To demonstrate the effectiveness of the proposed control algorithm, flight tests have been con-

ducted in an indoor flight test environment. The test facility consists of VICON motion capture

system, ground station and UAV platforms, which has been used to support different research
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projects (see e.g. [33, 34] for details). In this work, the quadrotor platform adopts the Asctec

Pelican quadrotor, as shown in Fig. 7. It has two onboard ARM7 microprocessors, i.e. the low level

processor and the high level processor. The low level possessor handles sensor data processing, data

fusion as well as a basic attitude control algorithm which enables pilot controlled flight from a radio

transmitter. The high level processor can be used to implement custom control algorithms which

can communicate to the ground station through a wireless serial modem. MATLAB/Simulink can

be used to program the high level processor of the Pelican. With the help of Asctec Simulink toolk-

it, the Simulink models are able to access all the sensor information, direct motor speed control,

and XBee serial modem. Therefore, the Simulink based control algorithms can be translated into

C-code which is then uploaded on to the Pelican’s high level processor with necessary modifications

[35]. Compared to the numerical simulation in subsection VI A, the backstepping attitude control

algorithm is implemented on the high level processor. On the other hand, the ground station con-

tains the online optimisation module running in MATLAB and the differential flatness calculation

running in Simulink such that it sends attitude η and derivatives η̇, η̈ commands to the high level

processor via the Xbee serial modem. Given that GPS signals are not available when the quadrotor

is operated indoor, the VICON motion capture system is employed to provide the position and ve-
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locity over ethernet to the ground station. In summary, an overall structure of the test environment

is shown in Fig. 8.

Due to the limitation of indoor area, the box trajectory and the radius of cylindrical obstacles

are smaller than those executed in the simulation. Also, the height and heading are controlled

to remain constant such that the test results are 2D as shown in Fig. 9. The tracking results of

x− y positions and attitude angles are given in Fig. 10. It can be observed that the quadrotor can

successfully follow the predefined trajectory and avoid the obstacles in the flight test. Considering

the measurement errors and atmospheric disturbances existing in the actual flight, the actual pitch

and roll angles do not track the command angles that generated by online optimisation as closely

as in the simulated case, which also leads to the fluctuations in actual trajectory. Nevertheless, the
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tracking accuracies of attitude angle and trajectory remain within a favourable range.

Fig. 7 Asctec Pelican
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VII. Conclusion

This paper proposes an online optimisation based backstepping control design which is a hierar-

chical control framework suitable for differentially flat systems and is demonstrated on a quadrotor

unmanned vehicle. The main motivation is driven by the difficulties in calculating the derivatives of

virtual control signals in traditional backstepping approaches. The proposed method is a straight-

forward and convenient way to solve this problem, because the derivatives of virtual control signals
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can be directly calculated based on the optimised states, expressed in polynomial forms, which are

repeatedly generated from online optimisation. The intrinsic properties of differential flatness and

B-spline polynomials make the optimisation problem amenable to real-time solution and easy to

include the terminal condition for assuring the closed-loop stability. Therefore, the local motion

planning function is coupled with tracking control to achieve obstacle-free flight. Numerical simula-

tion and flight test results show that the quadrotor under the proposed composite control strategy

avoids the obstacles successfully and achieves high-quality control performance.
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