
 0 

Optimization of Square Microneedle Arrays for increasing Drug 
Permeability in Skin 

 
 
 
 
 
 
 
 
 
 
 

Barrak Al-Qallaf1, Diganta Bhusan Das 2 * 

 
 
 
 
 
 
 
 
 

1 Department of Engineering Science, Oxford University, Oxford OX1 3PG, UK  
 

2 Department of Chemical Engineering, Loughborough University, Loughborough LE11 
3TU, UK 

 
 
 
 
 
 
 
 
 
 
 

Revised Manuscript Submitted for Publication in the journal: 
 
 
 

Chemical Engineering Science 
 
 
 

9 January 2008 
 
 
 
 

*Author for correspondence     (Email: D.B.Das@lboro.ac.uk) 
 

mailto:D.B.Das@lboro.ac.uk


 1 

 
Optimization of Square Microneedle Arrays for increasing Drug Permeability in Skin 

 
 

Barrak Al-Qallaf1, Diganta Bhusan Das2 * 5 
 

1 Department of Engineering Science, Oxford University, Oxford OX1 3PG, UK  
2 Department of Chemical Engineering, Loughborough University 

Loughborough LE11 3TU, UK 
 10 
  
 

Abstract 
 
Microneedles array is a new transdermal drug delivery technique designed to create holes in 15 

the epidermis and penetrate the stratum corneum, thus avoiding the high resistance of this 

barrier. Microneedles have been shown to increase the skin permeability of drugs with no 

or little pain. However, the skin permeability of epidermis while using microneedle arrays 

has yet to be fully studied. In some cases, microneedle and microneedle array designs 

which were developed based on certain criteria (e.g., material of the microneedles) have to 20 

be related to other criteria (e.g., drug permeability in skin, skin thickness, etc). Therefore, in 

order to determine the optimum design of   the microneedle arrays, the effect of different 

factors (e.g., number of the microneedle, surface area of the patch, etc) along with skin 

permeability by using microneedles should be determined accurately. In this work, an 

optimization framework for transdermal delivery of high molecular weight drug from 25 

microneedle is presented. The outputs of this framework have allowed us to identify the 

optimum design of various microneedles. Data from this optimization algorithm is then 

used to predict skin permeability of high molecular weight injected into the skin from a 

microneedle system. The effect of the optimized micro-needles on blood drug concentration 

has been determined. The outcome of this study is useful to propose an optimum design 30 

based on different measurement (e.g., variation of skin thickness) for transdermal delivery 

of drugs. 
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1. Introduction 

In order to overcome the barrier function of the stratum corneum (i.e., the outer layer of 

skin), several attempts have been made to develop techniques for transdermal drug 40 

delivery. These include, e.g., electroporation (Sen et al., 2002), phonophoresis (Mitragotri 

et al., 1995), sonophoresis (Merino et al., 2003), chemical enhancers (Williams and Barry, 

2004) and microneedles (Kim and Lee, 2007). One of the most recent methods is the 

application of microneedle arrays which combine the concepts of drug delivery across the 

skin using patches and the hypodermic injections. The working principle of the 45 

microneedle arrays has been discussed in a number of previous studies (Prausnitz, 2004; 

Al-Qallaf et al. 2007), etc. In short, this involves insertion of microneedles into skin so that 

they penetrate the stratum corneum and reach the viable epidermis. Since their first 

fabrication (e.g., Henry et al., 1998), microneedle designs with different geometries have 

been proposed as shown in Table 1. They are available as both solid and hollow 50 

microneedles made of glass (Martanto et al., 2006), silicon (Wilke and Morrissey, 2007), 

polymer (Sammoura et al., 2007; Park et al., 2007), titanium (Parker et al., 2007), metal 

(Kim and Lee, 2007), etc. The microneedles can also vary according to their tip shape, e.g.,, 

volcano like, micro-hypodermis and snake-fang design (Mukerjee et al., 2004) or the 

overall shape, e.g.,  pyramidal, spiked, candle-like and spear-shaped structure (Shikida et 55 

al., 2004). A review of different microneedle arrays being used for transdermal drug 

delivery has been carried out recently by Teo et al. (2006). 

 

Although there has been an increase of up to three orders of magnitude in drug permeability 

in skin by using microneedles of various types and geometries, generally skin permeability 60 

has not been considered as a critical parameter in most previous studies. Skin permeability 

is a parameter that represents the path length of a solute across a given skin thickness over 

unit time (Environmental Protection Agency, 1992). The permeability of skin has been 

reported as a key factor that determines the efficiency of transdermal drug delivery process 

(Wilke et al., 2006). To deliver drugs across human skin for any medical reasons, the 65 

transport of drugs needs to be enhanced. One way to achieve this is by increasing skin 

permeability by artificial means which reduces the resistance of skin barrier to enhance the 

delivery of drugs. As expected, this necessitates knowing various factors that affect skin 

permeability when using microneedle arrays. In principle, skin permeability can be 

increased as a result of optimum microneedle dimensions. However, it is difficult to reach 70 
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an optimum design without understanding the transport and mechanical properties of skin, 

e.g., skin permeability (Zahn et al., 2005). 

 

In the literature, different approaches have been proposed to predict skin permeability 

across stratum corneum which are mostly applicable for low molecular weight compounds, 75 

see, e.g., Wilschut et al. (1995) for a review of these approaches. In these approaches, the 

stratum corneum is assumed to be the rate limiting layer and the resistance of the drug 

transport provided by the viable skin is ignored (McCarley and Bunge, 2001). In the present 

context, the resistance of the stratum corneum is overcome by insertion of the microneedle 

and the rate limiting barrier of skin is the viable skin. Consequently, most of these 80 

approaches are not directly applicable. It must be pointed out that a number of attempts 

have been made already to evaluate skin permeability when using microneedle arrays. Wu 

et al. (2006) obtained a relationship between the number of bores and skin permeability 

using macroneedles instead of microneedles. They also found a relationship between 

molecular weight of macromolecules and skin permeability for hairless rat's skin. Another 85 

relationship between skin permeability and high molecular weight compounds was 

observed for hairless rat skin (Wu et al., 2007). However, both of these attempts used 

animal skin and not human skin. Also, these approaches did not consider the geometry of 

microneedles (e.g., number of microneedle, microneedle radius, etc) while evaluating skin 

permeability. 90 

 

Recently, there has been an interest to investigate the influence of different variables related 

to the microneedles to reach optimum microneedle design and, hence, improve the 

transdermal drug delivery using microneedle arrays. Many relevant factors have been 

considered to formulate an optimized microneedle array system, including the mask shape 95 

of the microneedle, location of the microneedle hole, the microneedle tip radius, etc. Wilke 

and Morrissey (2007) present a method to optimize the mask shaped microneedles for three 

different shapes. They conclude that the square mask shape has the optimum shape 

compared to other shapes (e.g., diamond and circular). Khumpuang et al. (2007) have 

considered the optimum locations for various microneedle holes. The microneedle tip 100 

radius has been optimized to improve the tip sharpness by Teo et al. (2006). Whatever may 

be the aim of these studies, the ultimate aim is to deliver a quantity of a given drug in an 

effective manner to avoid any problems that may appear (e.g., damaging the liver, low 

absorption, etc) (Perennes et al., 2006). Recently, other questions have appeared related to 
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optimisation of the microneedle arrays, e.g., how to make the needle diameters as small as 105 

possible so as to prevent bacteria and other foreign particles from entering into skin through 

the holes (Meidan and Michniak, 2004). 

 

Our previous study considered the effects of various parameters (e.g., microneedle length, 

duration of application, etc) influencing the drug concentration in blood (Al-Qallaf et al., 110 

2007). It carried out a sensitivity study which allowed identifying the important parameters 

for this paper. In this study, we present a framework developed specifically to design 

optimum microneedle arrays (e.g., number of microneedles, microneedle radius, etc) for 

transdermal drug delivery with a view to increase drug permeability in skin, called skin 

permeability hereafter. The framework includes the center-to-center spacing (pitch) of the 115 

microneedles to avoid any overlapping of the microneedle upon insertion into skin. The 

developed framework considers both solid and hollow microneedles which expand the 

scope of the current literature on microneedles for transdermal drug delivery. Another 

major goal of our study is to provide quantitative analysis of in vitro skin permeation when 

using microneedles by studying theoretically the influence of microneedle geometry on 120 

skin permeability. To achieve our objectives, an optimization algorithm based on java 

program has been developed in this work. A preliminary version of this optimization 

algorithm was presented by Al-Qallaf and Das (2007). In this work, we expand the range of 

geometrical parameters such as microneedle radius, surface area of microneedles etc, from 

what are available in the current literature (Al-Qallaf and Das, 2007) with the main aim to 125 

optimise these parameters. Skin permeability has been correlated to the variation of skin 

thickness depending on anatomical region and sex; whereas in our previous work (Al-

Qallaf and Das, 2007) the variation of skin thickness was based on age and race. It is shown 

that correlation for predicting skin permeability of viable epidermis for high molecular 

weight can be developed which are envisaged to help design of the drug delivery devices. A 130 

relationship is presented between skin permeability and diffusion coefficient for the 

optimum of both the solid and hollow microneedles for various drugs. Previously obtained 

results (Al-Qallaf et al., 2007) of the maximum blood concentration are combined with the 

current results to demonstrate the optimum microneedle design. 

 135 

2.  Methodology  

2.1 Theoretical Model 
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The developed framework is based on a simple theoretical in vitro model for calculating 

skin permeability (McAllister et al., 2003): 

 
hL

DfK =           (1) 140 

Where K is skin permeability of drugs, f is the fractional skin area after insertion by 

microneedles, D is the effective diffusion coefficient of drugs and Lh is the length of the 

hole in skin. The effective diffusion coefficient (D) is often calculated using the Stokes-

Einstein equation, if experimental data are not available (Poling et al., 2001). It must be 

pointed out that the hole length (Lh) represents the epidermis thickness (h) in case of solid 145 

microneedles, while this represents the microneedle length (L) in case of hollow 

microneedles. This is because the drug molecules do not move through the microneedle 

itself in case of solid microneedle but traverse through various disruptions in the skin (i.e. 

epidermis) from the donor compartment (i.e., patch) to the receiver compartment (e.g., 

blood flow). On the other hand, when the molecules move through their bores in case of 150 

hollow microneedle, the path length represents the microneedle length as shown in Fig. 1. 

To develop the theoretical model, the following assumptions are made: 

(a) One-dimensional transport of injected drug molecules (Lv et al., 2006). 

(b) Viable epidermis is a homogenous medium. 

(c) The drug injected by either solid or hollow microneedles is delivered into two parts. 155 

The first part is the epidermis and the second part is the dermis where the drug is 

absorbed into blood vessel. The sink condition (100% absorption) occurs at the 

interface between the epidermis and dermis. 

When the microneedles are inserted, a cylindrical shaped hole is obtained with radius (R), 

which refers to the microneedle radius (R), and annular gap width (W) between two holes. 160 

The shape of the microneedle hole in the skin is conical if observed from the side. 

However, our assumption of the cylindrical shape of the microneedle hole in skin relates to 

top view, as shown in Figure 1. This has also been experimentally observed using scanning 

electron microscopy (McAllister et al., 2003). The fractional skin area when the 

microneedles are inserted is given as: 165 

A
R)WR(nf

22
2 −+
π=        (2) 

Where n is the total number of microneedles for a given patch, R is the microneedle radius, 

W is the annular gap width (W) and A is the surface area of the patch. As mentioned 

before, we want to be able to increase skin permeability by optimizing the dimensions of 



 6 

the microneedles. Therefore, equation (2) is adopted as our main governing equation for 170 

optimization. 

 

The annular gap width (W) is defined as a function of microneedle radius (R) as follows: 

RW ε=           (3) 

Where ε  is a dimensionless parameter for the ratio of annular gap width over microneedle 175 

radius. 

 

2.2 Formulation of Optimization Function 

We assume that the patch is a square patch, where the numbers of microneedles (n2) are n 

by n (the number of microneedles per row). As Lh, D and π are constants, equation (2) can 180 

be reformulated as: 

A
Rncg

22
=           (4) 

Where )2(c +εε=            (5) 

In equation (4), c is dimensionless constant. Rewriting equation (4),  

A
Rng

22
=          (6) 185 

Such that: 

maxmin nnn ≤≤          (7) 

maxmin RRR ≤≤           (8) 

maxmin AAA ≤≤           (9) 

From the first investigation of function (g), it is obvious that g reaches its highest value at 190 

maximum n and R and minimum A. However, a careful study of the square patch as shown 

in Fig. 2 revealed the need of considering another physical parameter which is the pitch 

( tP ), the distance of centre-to-centre between two adjacent microneedles. This new 

constraint is given as: 

RPt α≥                    (10) 195 

Where 0.2>α  (i.e., α  is the aspect ratio of pitch over microneedle radius). To calculate 

the pitch, we define that in a given row of an array, the total distance for this row (X) is 

given as: 

tnPX =                    (11) 
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Therefore, the surface area of a square patch is: 200 

2
t

2PnA =  

or, 

n
APt =                    (12) 

Equation (10) and (12) are combined to yield a new constraint for optimisation as: 

R
n
A

α≥                    (13) 205 

 

2.3 Governing Equations for Drug Transport in Skin 

The transient drug transport in skin tissue is expressed by Fick's second law as: 

2

2

x
CD

t
C

∂
∂

=
∂
∂                   (14) 

Where C is the drug concentration, D is the diffusion coefficient, t is time and x is the 210 

distance in a given skin layer. The initial boundary condition for solving equation (14) is 

given by the following equation, where the initial drug concentration in skin is set to zero: 

)0t(hxLat0C =<<=                  (15)  

 

At the tip of the microneedle, the drug concentration is: 215 

)tt0(LxatCC as ≤<==                  (16)  

At the bottom of the skin epidermis, the concentration of the drug is: 

)t0(hxat0C <==                   (17) 

Where, Cs is the drug concentration at the tip of microneedle, L is the microneedle length, ta 

is the duration of application of the microneedles array and h is the epidermis thickness 220 

(i.e., distance to blood vessel). At x = h, the concentration of the drug is assumed to be zero 

(sink condition), as the drug has been up taken by dermal microcirculation (100% 

absorbed). 

 

The drug concentration in blood after imposing the transdermal drug delivery is given by 225 

one-compartmental pharmacokinetic model (Al-Qallaf et al., 2007; Tojo, 2005): 

bbea
b

b VCKS
dt
dQ

dt
dC

V −





=                 (18) 
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Where, Ke is the elimination rate constant from the blood compartment, dQ/dt is the 

penetration rate of drug through the skin, Sa is the surface area of the delivery system (i.e., 

patch of microneedles), Vb is the volume of distribution in the blood, Cb is the drug 230 

concentration in the blood. 

 

2.4 Method of solution 

The optimization equation (6) and the constraint equations (7-9) and (13) were 

implemented and solved using an optimization model (Fig. 3). The optimization model is 235 

based on an in-house java program which searches the whole space of a possible solution 

based on the given limitations (constraints). The algorithm determines each value of the 

optimization function (g) at every point in a given space until it finds the optimum of (n, R, 

A) corresponding to the highest value of (g). The main idea of this framework is to iterate 

through the whole space of the parameters (i.e., n, R, A) using three nested loops. 240 

Moreover, in order to do this iteration, a scale (step size) must be defined by the user for 

each parameter as shown in Table 1. This iteration continues until the program finds the 

points representing the maximum value of g, provided the geometrical conditions are 

fulfilled. The optimization model employs a java swing program to carry out the above 

mentioned procedure which is explained in the flowchart in Fig. 4. 245 

 

The governing equations (14-18) were implemented and solved using the software, SKIN-

CAD® (Biocom Systems, 2006). The mathematical framework of this software (i.e., SKIN-

CAD®) has been explained previously by Al-Qallaf et al. (2007) and is not discussed here. 

 250 

3. Results and Discussions 

We begin the discussions by presenting typical results of microneedle systems optimization 

for both solid and hollow microneedles with a view to demonstrate the developed 

optimisation framework. Table 2 shows some results of the developed program for the 

input parameters in Table 1. As mentioned before, our approach of optimization involves 255 

developing a method to provide optimum microneedle design with different geometries for 

solid and hollow microneedles. The results (Table 1) show that both solid and hollow 

microneedles reach their maximum optimization function (g) at a value of ≈0.06. To 

illustrate this optimization process in more details, various parameters (e.g., number of 

microneedles per row, microneedle radius, etc) have been optimized and analysed to 260 
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provide better understanding of their influences in the optimization function (g), and hence, 

the design of microneedle. 

 

3.1 Optimization of Surface Area of Patch 

There have been many different sizes of both solid and hollow microneedles surface areas 265 

since their first manufacture. As expected, it is noticed that the transdermal drug delivery 

for a given amount of drug is constrained by the surface area of microneedle arrays (e.g., 

Gill and Prausnitz, 2007). This suggests the necessity to consider and optimise the surface 

area of patch while designing the array system of microneedles. As shown in equation (6), 

the surface area of patch has an inverse relationship with the optimization function (g). For 270 

the purpose of this section, we have carried our simulations to evaluate the optimum 

surface area of square patch for given number of microneedles per row (n) for both solid 

and hollow microneedles (Fig. 5). Our optimization program suggests that the optimum 

patches for solid and hollow microneedles for the input parameters in Table 1 are when the 

number of microneedles per row (n) equal 20 and 13, respectively. The optimum surface 275 

area of the patch is obtained for the highest value of the optimization function (g). This is 

because in cases of higher values of g, the transdermal drug transport is enhanced due to 

increased skin permeability. Fig. 5 shows that for the parameters in Table 1, the highest 

value of the optimization function (g) is reached when the surface area of patch and 

microneedle radius equal 0.04 cm2 and 0.0025 cm, respectively, in case of solid 280 

microneedles. On the other hand, in case of hollow microneedles, the highest value of 

optimization function g is reached when the surface area of patch and microneedle radius 

equal 0.53 cm2 and 0.014 cm, respectively.  

 

3.2 Optimization of Microneedle Radius 285 

The radius of microneedles has a significant ability to increase the permeability of the skin. 

In a previous study, the transdermal drug delivery using solid and hollow microneedles was 

studied for different microneedle radius by Teo et al. (2005). By using two different radii, 

50μm and 150µm, Teo et al. (2005) showed an increase of flux by 10 times for the second 

radius. This illustrates that microneedle radius is an important dimension to be optimized 290 

while designing microneedle arrays. To understand the effect of microneedle radius on the 

optimization function g, and hence determine optimum microneedle radii, we have carried 

out simulations for both solid and hollow microneedles as shown in Fig. 6. The figure 

shows the optimum microneedle radius for the parameters in Table 1. It seems that the 
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optimum radii for solid and hollow microneedles are 0.0025 cm and 0.014 cm, respectively, 295 

for these parameters. We define the optimum value when the highest value of g function is 

reached. This is because we are seeking the maximum skin permeability and hence, the 

maximum values of g function. On the other hand, the suboptimum case is defined as the 

lowest value of g function. The results suggest that optimizing microneedle radius and 

hence, relating it to skin permeability is valuable for enhancing the performance of 300 

microneedles. 

 

3.3 Optimization of the number of microneedles per row 

A number of different microneedle designs that vary in the total number of microneedles 

have appeared in the literature for both solid and hollow microneedles (Table 1). In some 305 

cases, the number of microneedles is related to the surface area of patch which is defined as 

‘microneedle density’. The influence of the total number of microneedles has been studied 

experimentally by Park et al. (2005). They have changed the total number of microneedles 

for two model drugs (i.e., calcein and bovine serum albumin (BSA)). The results show that 

when the number of microneedles equals 100, skin permeability increases four fold as 310 

compared to another design where the number of microneedles is 20 for the model drugs 

(Park et al., 2005). The efficiency of transdermal drug delivery has been shown to improve 

by increasing the number of microneedles (Stoeber and Liepmann, 2005). In general, a high 

microneedle density is needed in order to increase the penetration efficiency (Shikida et al., 

2006). 315 

 

Although the influence of number of microneedles on the performance of the microneedles 

has been addressed before, we still need to consider how to optimize the number of 

microneedles in a given patch. The implications of changing the number of microneedles 

per row (n) on the optimization function (g) for both optimum/suboptimum microneedle 320 

designs is shown in Fig. 7. The optimum designs have significant increase in skin 

permeability indicated by higher values of the optimization function (g). The optimum 

designs offer variety of different microneedle geometries based on a given criterion, e.g., 

cost of fabrication, etc. Referring to Fig. 8, it is clear that the optimization function (g) 

starts to reduce when it reaches the highest value (i.e., g≈0.06) in all cases. 325 
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The optimization function for both solid and hollow microneedles varies nonlinearly with 

surface area of patch when changing the optimum number of microneedle per row with 

their optimum microneedle radius. 

 330 

Fig. 9 illustrates the importance of considering the optimum microneedle geometries (i.e., 

microneedle radius (R), number of microneedles per row (n)) for increasing skin 

permeability. For example, the value of g for the optimum microneedle (i.e., n=20, 

R=0.0025 cm) is five times more than the suboptimum design (i.e., n=10, R=0.0025 cm) 

for solid microneedles. This figure suggests that reaching the optimum value for a given 335 

geometry (i.e., microneedle radius) is not always the best approach to increase skin 

permeability. It is noticed that the optimization function (g) depends on all the input 

parameter which are again connected to one another. Therefore, in order to reach the 

highest value of our optimization function, the input parameters must be optimized too. 

 340 

3.4  Optimization of the Aspect Ratio (α) 

The aspect ratio of the microneedle geometry has been defined in different ways so far. For 

example, Huang and Fu (2007) define it as the base over tip diameter. Park et al. (2005) 

describe it as the ratio of microneedle length to tip diameter. In other case, the aspect ratio 

refers to the length over width (Davis et al., 2005) of the microneedles. The ratio of needle 345 

height to base diameter has been called as the aspect ratio too (Wilke et al., 2005). In our 

work, the aspect ratio (α) relates to the ratio of the center-to-center distance between two 

microneedles (pitch) to the microneedle radius (R). In general, this parameter should be 

greater than 2.0 so that an overlapping between any microneedles does not occur. Further, if 

the pitch is too small (<2.0), then the needles are placed too close to one another which may 350 

prevent them from pain free penetration of the skin due to their mechanical strengths and 

reaching the targeted depth (e.g., see Miyano et al., 2005). 

 

Fig. 10 and 11 depict the influences of the aspect ratio (α) for both solid and hollow 

microneedles. Fig. 10 shows that in some cases the aspect ratio has no obvious influence on 355 

the optimum microneedle radius or pitch. This is clear in case of hollow microneedles of 

aspect ratio equal 25 and the microneedle radius is 0.004 cm. On the other hand, in case of 

other aspect ratios, the optimum pitch for both solid and hollow microneedles varies 

linearly with microneedle radius. Fig. 11 reveals how the aspect ratio of solid and hollow 

microneedles influences the optimization function. The highest value of the optimization 360 
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function for solid and hollow microneedles occurs for an aspect ratio of 3.1 and 2.7, 

respectively. This figure also demonstrates that for a given aspect ratio, changing the 

number of microneedles per row does not affect the optimization function significantly. 

Therefore, it seems that the optimization function is more sensitive to aspect ratio than the 

number of microneedles. It also seems that for a given number of microneedles, a smaller 365 

aspect ratio would increase the optimization function and hence, skin permeability. 

  

3.5 Effect of the Skin Thickness 

As well known, skin thickness can vary according to age, race, anatomical region and sex 

(Lee and Hwang, 2002). See, for example, Artz et al. (1979) who show that the ratio of 370 

epidermis to dermis has a significant variation from one anatomical region to another. Skin 

thickness therefore can play an important role as a barrier against any injected drugs. In a 

previous work, Al-Qallaf and Das (2007) have studied the influence of epidermis thickness 

of various anatomical regions and sex on skin permeability for various drugs. In this work, 

we evaluate the effect of epidermis thickness for various age groups and race on drug 375 

permeation in skin. There is a strong evidence of the changes in the function and structure 

of the human skin as human age (Fenske and Lober, 1986). For example, a comparison has 

been done between the thicknesses of the Korean skin with another race (Caucasian) (Lee 

and Hwang, 2002). These results show that the thickness of the epidermis is lower in 

Caucasians than in Koreans. These studies clearly suggest that the skin thickness should be 380 

considered when designing microneedles. As explained previously, the path length of skin 

disruption made by solid microneedles represents the effective diffusion length (i.e., 

thickness of the epidermis) and there is an inverse relationship between the epidermis 

thickness (h) and skin permeability (K) (equation 1). 

 385 

The dependency of the thickness of epidermis (h) for various age groups (Artz et al., 1979) 

on skin permeability (K) for calcein as a model drug is shown in Fig. 12. Although calcein 

has a low molecular weight allowing it to diffuse across stratum corneum, calcein has been 

adopted in many papers for transdermal drug delivery using microneedles (Gill and 

Prausnitz, 2007; Park et al., 2006; Wang et al., 2006; Miyano et al., 2005; Park et al., 2005; 390 

Teo et al., 2005; McAllister et al., 2003; Henry et al., 1998). The skin permeability of 

calcein without/with using microneedles is 1 μg/cm2/hr and 50 μg/cm2/hr, respectively (Xie 

et al., 2005). In another study, the skin permeability of calcein was determined to be 
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7101 −× cm/h without microneedles and 2101 −× cm/h with microneedles (Henry et al., 

1998). Calcein is therefore a very suitable model drug which allows one to identify the 395 

effectiveness of microneedle. However, we must point out that calcein does not necessarily 

diffuse across stratum corneum. For example, Kolli and Banga (2007) observe that calcein 

does not diffuse across the intact stratum corneum (i.e., follicular pathway and 

appendages). These studies also prove the necessity of considering calcein as a model drug 

for transdermal drug delivery using microneedles. In other words, in cases where calcein 400 

does not necessarily diffuse through stratum corneum, one may use microneedles as a 

transdermal drug delivery method.  

 

Fig. 12 shows the influence between optimum/suboptimum designs on skin permeability. 

As expected, there is a significant increase in skin permeability for the optimum design 405 

compared with the suboptimum design. For example, the difference in skin permeability for 

a given microneedle between the epidermis thickness of age group (0-5) and age group (11-

15) proves the necessity of considering the skin thickness. Fig. 13 shows the effect of the 

epidermis thickness of different races (i.e., Korean and Caucasian) on skin permeability. 

The optimized design shows significant increase when compared with the suboptimum 410 

design for a given race. For example, in case of Caucasian skin the skin permeability of the 

optimum design increases 13 times more than the suboptimum design. These results are 

consistent with our claim to consider the classification of skin thickness when designing 

microneedle arrays. 

 415 

3.6 Effect of Skin Permeability 

The geometries of our optimized configuration (solid microneedles) were compared with 

another design (McAllister et al., 2003) for different model drugs. This comparison is 

particularly useful to illustrate the efficiency of the developed framework. Fig. 14 reflects 

the influences of two designs for various model drugs on skin permeability before and after 420 

applying optimised microneedle systems. As expected, skin permeability dramatically 

increases for different drugs when using the optimum design. The results show that skin 

permeability reaches its highest value when calcein is delivered. This is obviously because 

calcein has the highest diffusion coefficient ( s/cm106 26−× ) (McAllister et al., 2003) among 

the model drugs and the lowest molecular weight (623 Da) (Nishimura and Lemasters, 425 

2001). In an attempt to generalize the influence of our optimized design on skin 



 14 

permeability across human skin, a relationship was formulated between skin permeability 

(K) and diffusion coefficient (D) for the selected model drugs as shown in Fig. 15. It seems 

there is a linear correlation for both solid and hollow microneedles. In case of solid 

microneedles, the correlation is given by,  430 

22103D14.1K −×−×=   cm/s  68 105D105.6 −− ×<<×         (19) 

Where, epidermis thickness (h) is 0.005 cm, the total number of microneedles (n2) is 400, 

microneedle radius (R) is 0.0025 cm, surface area of patch (A) is 0.04 cm2 and pitch (Pt) is 

0.01 cm. In case of hollow microneedles, the correlation is given by the following 

relationship: 435 

22106D98.1K −×−×=   cm/s  68 105D105.6 −− ×<<×         (20) 

Where, the microneedle length (L) is 0.005 cm, the total number of microneedles (n2) is 

169, microneedle radius (R) is 0.014 cm, surface area of patch (A) is 0.53 cm2 and pitch 

(Pt) is 0.056 cm. 

 440 

In a previous study, we have shown the effect of microneedle dimensions (i.e., surface area 

of patch) on blood drug concentration. In Fig. 16, we have plotted skin permeability with 

maximum insulin concentration (steady-state) in blood for the optimum hollow 

microneedles (n=13) to determine the intercept point. This intercept point shows the 

optimum design (i.e., surface area of patch (A) ≈0.45 cm2) of hollow microneedles. In some 445 

cases, where the blood drug concentration and skin permeability are considered in 

manufacturing microneedles, this graph might be useful. 

 

This shows that this intercept occurs at a patch surface area of ≈ 0.45 cm2 corresponding to 

skin permeability and maximum insulin concentration in blood of 5.2×10-7 cm/s and 450 

7.6×10-5 µg/mL, respectively. The input parameters of this figure are shown in Table 3. 

This result is important in some cases where both the skin permeability and blood drug 

concentration are considered. 

 

4. Conclusion 455 

A framework has been presented in this paper to optimize the microneedle dimensions used 

in transdermal drug delivery with a view to increase skin permeability. The paper provides 

different optimum designs of solid and hollow microneedles with various dimensions. The 

variation of microneedle geometries (e.g., total number of microneedles, microneedle 
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radius, pitch, etc) of the optimum design allows one to choose dimensions according to 460 

one's need. The results presented in this paper suggest that the pitch has more priority than 

microneedle radius when designing microneedles. The influence of skin thickness with its 

classifications (i.e., age group, race) on skin permeability using microneedle systems has 

been studied. We have shown that the skin thickness is major factor that must be considered 

in designing microneedles. This suggests that for designing microneedle arrays, optimizing 465 

various transport parameters as well as physical dimensions of the system enhance 

efficiency of transdermal drug delivery techniques. 

 

These relationships between diffusion coefficient and skin permeability enable prediction 

of drug permeation across human skin to deliver low/high molecular weight drug using 470 

microneedles. The maximum blood concentration of insulin on hollow microneedle was 

determined, and plotted against skin permeability. These data were useful in case of 

considering both skin permeability and blood drug concentration to determine the optimum 

surface area of the patch. The study presented in this paper is expected to be suitable to 

overcome the problems arising for drugs with low skin permeability. 475 
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Table 1. The input geometrical parameters used in this work for optimizing solid and 

hollow microneedles arrays (Al-Qallaf and Das, 2007) 

  

Parameters Solid Hollow Scaling 

Parameters 

References 

Number of 

Microneedles per 

row: n (-) 

10d≤n≤20e 4h≤n≤20a 1 a. Kaushik et al. (2001) 

b. Shikida et al. (2004) 

c. Park et al. (2005) 

d. Teo et al. (2005) 

e. Xie et al. (2005) 

f. Wu et al. (2007) 

g. Khumpuang et al. (2007) 

h. Verbaan et al. (2007) 

Microneedle 

Radius: R (cm) 

0.0025b≤R≤0.0075d 0.004a≤R≤0.015g 5 

Surface area of  

microneedles 

array: Sa (cm2) 

0.04d≤A≤0.81c 0.04d≤A≤0.56f 0.01 

Aspect ratio of 

pitch over radius: 

α (-) 

2.7d≤α≤12c 3.1a≤α≤25f 
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Table 2. The output of  the optimum parameters after applying our optimization model for both solid and hollow microneedles.

Solid Microneedles Hollow Microneedles 
Number of 
Microneedles 
per row: n (-) 

Microneedle 
Radius: R 
(cm) 

Surface area 
of  Patch: A 
(cm2) 

Pitch: Pt 
(cm) 

Optimization 
Function: g(-) 

Number of 
Microneedles 
per row: n (-) 

Microneedle 
Radius: R 
(cm) 

Surface area 
of  Patch: A 
(cm2) 

Pitch: Pt 
(cm) 

Optimization 
Function: g(-) 

10 0.007 0.08 0.0283 0.06125 4 0.015 0.06 0.0612 0.06 
11 0.006 0.07 0.0241 0.06223 5 0.014 0.08 0.0566 0.06125 
12 0.0075 0.13 0.03 0.06231 6 0.015 0.13 0.0601 0.06231 
13 0.006 0.1 0.0243 0.06084 7 0.015 0.18 0.0606 0.06125 
14 0.0075 0.18 0.0303 0.06125 8 0.012 0.15 0.0484 0.06144 
15 0.006 0.13 0.024 0.06231 9 0.01 0.13 0.0401 0.06231 
16 0.006 0.15 0.0242 0.06144 10 0.009 0.13 0.0361 0.06231 
17 0.0055 0.14 0.022 0.06244 11 0.0085 0.14 0.034 0.06244 
18 0.005 0.13 0.02 0.06231 12 0.0135 0.42 0.054 0.06249 
19 0.006 0.21 0.0241 0.06189 13 0.014 0.53 0.056 0.0625 
20 0.0025 0.04 0.01 0.06250 14 0.013 0.53 0.052 0.0624 

 15 0.006 0.13 0.024 0.0623 
16 0.0095 0.37 0.038 0.06244 
17 0.0105 0.51 0.042 0.06248 
18 0.009 0.42 0.036 0.06249 
19 0.008 0.37 0.032 0.06244 
20 0.008 0.41 0.032 0.06244 
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Table 3. The values of model parameters used in this work for analyzing the blood 

concentration of Insulin penetrated through the skin using our optimum microneedles 

arrays patch. 

 

 

 

Parameters Model drug 
(Insulin) 

References 

Duration for medication (calculation): tm 
(hour) 

8 Al-Qallaf et al. (2007) 

Duration of microneedles application: td 
(hour) 

4 Al-Qallaf et al. (2007) 

Surface area of  microneedles array: A (cm2) Variable - 
Thickness of viable epidermis: hv (cm) 0.02 Lee and Hwang (2002) 
Effective skin thickness: he (cm) 0.01 - 
Diffusion Coefficient in viable skin: Dvs 
(cm2/s) 

1.3 ×10-6 McAllister et al. 
(2003) 

Volume of distribution: Vb(ml) 21000 Van Rossum (1977) 
Elimination rate constant: Ke (s-1) 1.27 ×10-4 Van Rossum (1977) 
Skin surface concentration: Cs (μg/ml) 4.17 Davis (2003) 
Microneedle length: L (cm) 0.01 Teo et al. (2005) 
Number of microneedles: n (-) 13 - 
Microneedle radius: R (cm) 0.0115 - 
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Figure 1. The Schematic diagram of solid and hollow microneedles (a) side view, (b) 

top view (W is the annular gap width, R is microneedle radius). 
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Figure 2. The Schematic diagram of a square patch of microneedle 

array (top view)
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Figure 3. Graphical user interface of in-house Java program used for microneedles 

system optimization.
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Figure 4. Algorithm used in Java program (Figure 2) for microneedles system 

optimization.
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Figure 5. Influence of the surface area of the patch (A) of solid (dark points) and 

hollow (light points) microneedles on optimization function (g), (number of 

microneedles per row (n) =20, 13 for solid and hollow microneedles, respectively, 

aspect ratio (α) =4). 
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Figure 6. Influence of the microneedle radius (R) of solid (dark points) and hollow 

(light points) microneedles on the optimization function (g), (number of microneedles 

per row (n) =20, 13 for solid and hollow microneedles, respectively, aspect ratio (α) 

=4). 

. 
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Figure 7. Influence of the optimum/suboptimum number of microneedles per row (n) 

for solid (dark points) and hollow (light points) microneedles on the optimization 

function (g) for parameters as shown in Table 2, (aspect ratio (α) = 4). 
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Figure 8.  Influence of the number of microneedles per row (n) for solid (dark points) 

and hollow (light points) microneedles with their optimum radii on the optimization 

function (g) (aspect ratio (α) = 4). 
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Figure 9. Influence of optimum/suboptimum number of microneedles per row (n) for 

solid (dark points) and hollow (light points) microneedles with their 

optimum/suboptimum radius on the optimization function (g) (aspect ratio (α) = 4). 
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Figure 10. Influence of the aspect ratio of pitch over microneedle radius (α) of solid 

(dark points) and hollow (light points) microneedles on the optimum pitch (Pt) for 

various number of microneedles per row (n).
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Figure 11. Influence of the aspect ratio of pitch over microneedle radius (α) of solid 

(dark points) and hollow (light points) microneedles on our optimization function (g) 

for various number of microneedles per row (n). 
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Figure 12. Influence of epidermis thickness (h) of optimum/suboptimum numbers of 

microneedles per row (n) for solid microneedles for various groups age on skin 

permeability (K). 
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Figure 13. Influence of epidermis thickness (h) of optimum/suboptimum numbers of 

microneedles per row (n) for solid microneedles for different races on skin 

permeability (K). 
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Figure 14. Influence of applying our optimization model in skin permeability (K) for 

different drugs (i.e., insulin is hexameric insulin, nano(25) and nano(50) are 

nanosphere particles with molecular radii of 25 nm and 50 nm, respectively). 



 42 

 

 

 

 

Figure 15. Relationship between skin permeability (K) and diffusion coefficient (D) 

of the optimum solid (n=20, R=19 µm and A=0.04 cm2) and hollow (n=13, R=14 µm 

and A=0.53 cm2) microneedles for various drugs (i.e., calcein, insulin, BSA (bovine 

serum albumin), nano25 and nano50 (nanosphere particles with radii of 25 nm and 50 

nm, respectively)). 
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Figure 16. The optimum point (intercept) between skin permeability (K) and 

maximum blood drug concentration (Cb,max) of the optimum hollow microneedles 

(n=13 and R=115 µm) with various surface area of patch for insulin as a model drug. 
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