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The problem of optimum sparse array configuration to maximize
the beamformer output signal-to-interference plus noise ratio (MaxS-
INR) in the presence of multiple sources of interest (SOI) has been re-
cently addressed in the literature. In this paper, we consider a shared
aperture system where optimum sparse subarrays are allocated to
individual SOIs and collectively span the entire full array receiver
aperture. Each subarray may have its own antenna type and can
comprise a different number of antennas. The optimum joint sparse
subarray design for shared aperture based on maximizing the sum
of the subarray beamformer SINRs is considered with and without
SINR threshold constraints. We utilize Taylor series approximation
and sequential convex programming techniques to render the initial
nonconvex optimization a convex problem. The simulation results val-
idate the shared aperture design solutions for MaxSINR for both cases
where the number of sparse subarray antennas is predefined or left
to constitute an optimization variable.
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I. INTRODUCTION

Shared aperture antenna describes a system of two or
more sparse subarrays, each performing a separate task, de-
ployed on a common aperture [1]. The subarray tasks are
dependent on the system operation, which could jointly sup-
port several required services. A three-dimensional shared
aperture antenna that supports different operating frequen-
cies was proposed in [1]. The compound system consists
of two stacked arrays, transmitting through the same aper-
ture, the upper level operating in the L-band and being
electrically isolated from the lower one that operates in
the X-band. The coexistence of radar, electronic warfare,
and communications functions on the same aperture was
investigated in [2], where subarrays with different oper-
ating frequencies and polarization are utilized to perform
separate tasks. The design of a shared dual-band transmit-
ting/receiving platform, where separated sparse subarrays
of S-band and X-band elements are designed for simul-
taneous transmitting and receiving operation was investi-
gated in [3]. Three different radar applications of a shared
aperture antenna using interleaved sparse subarrays on a
common platform were considered in [4], namely, multi-
frequency shared aperture antenna, shared aperture antenna
implementing polarization agility, and interleaved trans-
mitting/receiving shared aperture antenna. The synthesis
of linear multibeam arrays on a shared aperture through
hierarchical almost difference set based interleaving was
studied in [5].

In this paper, each sparse subarray of the shared aperture
performs separate beamforming and strives to maximize the
signal-to-interference and noise ratio (SINR) for its desig-
nated source or for a specific direction. Maximizing SINR
at the receiver increases the probability of target detection in
radar and reduces bit error rates in communications. In this
respect, the different tasks assigned to the shared aperture
antenna could belong to the same functionality, i.e., either
radar or communication across different functions as part of
platform coexistence, i.e., joint radar communication sys-
tem [6]. In either case, the system may mandate unshared
antennas among the subarrays to reduce signal processing
complexity and limit radar cross sections. Moreover, the dif-
ferent tasks may demand antennas with diverse properties,
polarization or bandwidth [3]. The beamformer output is
not only affected by the antenna output multiplicative coef-
ficients but also by the antenna array configuration [7]–[9].
Hence, optimal beamforming should utilize both the beam-
pattern array coefficients as well as the array configuration
[10], [11].

Optimal beamforming techniques efficiently mitigate
the interference and noise at the output of the system while
enhancing the response toward the sources of interest (SOI)
[12]–[16], casting it as a powerful tool for many active
and passive sensing applications, such as radar, sonar,
wireless communications, radio telescope, ultrasound, and
seismology [17]–[21]. Sparse transmit array design for
radiating shaped beamformers was investigated in [22]
exploiting compressive sensing. Adaptive interference
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nulling techniques based on the appropriate selection of the
array elements were proposed in [23] and [24], utilizing
genetic algorithms and SINR maximization, respectively.
As demonstrated in [25] and [26], sparse array configu-
ration has a substantial impact on both the beamformer
output signal-to-noise ratio (SNR) and SINR. Optimum
adaptive sparse arrays for maximizing SNR (MaxSNR)
and SINR (MaxSINR) are superior to structured sparse
arrays such as coprime, nested, and uniform arrays [26].
This is attributed to the fact that adaptive beamforming and
sparse array design take into consideration the operating
environment, by incorporating the source, interference,
and noise spatial and temporal characteristics in the
optimization [27].

Most of the existing work on maxSINR beamforming
focuses on a single mission array where the entire array
aperture, regardless of whether it is full or sparse, is tasked
to deal with one or more sources in the field of view [28].
In such case, the main objective is to maximize the SINR
at the output of the receiver by optimally configuring the
array and deciding on the beamformer coefficients. This
technique is deemed to result in unequal SINR or SNR for
the sources considered and does not guarantee an acceptable
minimum SNR or SINR performance for any of the sources.
Using a separate beamformer, along with its antennas and
coefficients, for each source is a generalization of the above
technique.

In this paper, we investigate scenarios that fall into the
aforementioned framework of multimission or multitask
sensing of a shared aperture with separate, but complement-
ing, sparse subarrays. That is, the combined subarrays make
up the system aperture. The multiple sources considered are
in the far field and may represent targets reflecting a trans-
mitted waveform or active emitters, thus covering many
scenarios including radar, wireless communications, elec-
tronic warfare, and radio telescope. We propose a method
for optimum design of antenna aperture comprising mul-
tiple sparse subarrays, each processes the signal from one
source. The goal is to select the antenna positions and co-
efficients to jointly maximize the SINR for all sources. The
optimum subarrays are obtained by performing a joint SINR
optimization for matched minimum variance distortionless
response (MVDR) beamforming. We examine both cases
in which specific cardinality of antennas per subarray is set
a priori and when the number of antennas in each subarray
is left as an optimization variable. By considering the cardi-
nality as an optimization variable, we provide more design
flexibility and additional degrees of freedom to the sys-
tem, resulting in higher SINR performance, especially when
dealing with high spatially correlated sources. The choice of
SINR as a performance metric is motivated by the fact that
higher SINR enhances target detection in radar, and mini-
mizes bit error rates in communications, leading to a better
quality of service [29]–[32]. We also propose a joint opti-
mum sparse subarray design technique with the objective
of maximizing the SINR of some sources, while attaining
a predefined SINR threshold for the remaining sources.
We utilize Taylor series approximation and sequential

convex programming (SCP) techniques to render the ini-
tially nonconvex SINR optimization problems as convex.

The rest of the paper is organized as follows: The math-
ematical model of the system is formulated in Section II.
The sparse subarray design for both cases of given num-
ber of antennas per subarray and when the cardinality of
antennas is a design variable is examined in Section III.
The SINR constrained optimum sparse subarray design is
presented in Section IV. Simulation results and remarks on
the results are given in Section V, and the final conclusions
are drawn in Section VI.

II. SYSTEM MODEL

We consider a uniform linear array (ULA), consist-
ing of N isotropic antennas with positions given by ynd,
n = 1, . . . , N , where d denotes the interelement spacing.
Suppose there are P sources impinging on the array from di-
rections defined by {φs,1, . . . , φs,P }. The main goal of this
work is to jointly design P sparse, nonoverlapping sub-
arrays that collectively span the entire length of the ULA.
Depending on the assigned mission, each subarray is tasked
either with communicating with a source or detecting the
presence of a target along a specified direction. The num-
ber of antennas in subarray i is given by Ki , i = 1, . . . , P

with coordinates specified by yind, n = 1, . . . , Ki . Assume
there are m interfering signals impinging on the array from
angles {φi,1, . . . , φi,m}. For the communications applica-
tions, all P − 1 emitters other than the one tasked to a
given subarray are considered interferences for that subar-
ray. Depending on signal carrier and bandwidth, these in-
terferences can be full-band or partial-band interferences.
For a radar function, interference will only be present if
target backscatterings are in the same range Doppler cell.
An illustrative example of a setup with two sparse nonover-
lapping subarrays and an interfering source is presented in
Fig. 1. The receive steering vectors for subarray i toward
direction φ can be written as

ai(φ) = [ejk0yi1d cos φ, . . . , ejk0yiKi
d cos φ]T , i = 1, . . . , P

(1)

where k0 is the wavenumber and is given by k0 = 2π/λ

with λ denoting the wavelength. The received signals for
subarray i at time instant t can be written as

xi(t) = si(t)ai(φsi) + Cici(t) + ni(t) (2)

where Ci = [ai(φs,1), . . . , ai(φs,i−1), ai(φs,i+1), . . . , ai

(φs,P ), ai(φi,1), . . . , ai(φi,m)] denotes the interference ar-
ray manifold matrix with full column rank regarding
subarray i, i = 1, . . . , P . The source i signal is rep-
resented by si(t) ∈ C, i = 1, . . . , P , with correspond-
ing power σ 2

is . The interfering signals for subarray i

are given by the vector ci(t) = [s1(t), . . . , si−1(t), si+1(t),
. . . , sP (t), c1(t), . . . , cm(t)] ∈ C

m+P−1, with covariance
matrix Rbi and ni(t) ∈ C

Ki denotes the received Gaussian
noise vector at subarray i. We presume that the noise vectors
for all subarrays have common power given by σ 2

n .
The received signal at subarray i is filtered by the receive

weight, or coefficient, vector of subarray i denoted as wi ∈
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Fig. 1. Model of two separated sparse subarrays addressing two SOI in
the presence of one interfering source.

C
Ki . Thus, the output SINR for source i is written as

SINRi = σ 2
is |wH

i a(φs,i)|2
wH

i Rn,iwi

(3)

where Rn,i = CiRb,iCH
i + σ 2

n IKi
defines the interference

plus noise covariance matrix for subarray i. The MVDR
beamformer that maximizes the SINR, by securing the de-
sired source signal while suppressing the undesired inter-
ference and noise, is written as [27]

wi = R−1
n,ia(φs,i)

a(φs,i)H R−1
n,ia(φs,i)

. (4)

By substituting (4) into (3), we obtain the output SINR
of the matched MVDR beamformer at subarray i as

SINRi = σ 2
isGi = σ 2

isa(φs,i)
H R−1

n,ia(φs,i) (5)

where

Gi = a(φs,i)
H R−1

n,ia(φs,i) (6)

denotes the ith subarray gain of the MVDR beamformer
toward the direction of source i (φs,i). It is evident from (1)
that the subarray configuration affects the receive steering
vectors and hence, from (5), the output SINR for every
subarray. To show analytically the full extent of the effect
of the subarray selection on the output SINR, we utilize the
matrix inversion lemma and restate the interference plus
noise covariance matrix R−1

n,i as

R−1
n,i = σ 2

n [IKi
− Ci(Rm,i + CH

i Ci)
−1CH

i ] (7)

where Rm,i = σ 2
n R−1

b,i . By defining SNRi = σ 2
is/σ

2
n as the

input SNR at subarray i and substituting (7) into (5), the

output SINR at subarray A can be written as in (8). It
is evident from (8) that the output SINR of the MVDR
beamformer at subarray i is influenced by the subarray
configuration through the source steering vectors a(φsi) and
the interference array manifold matrix Ci

SINRi = SNRi[Ki − a(φs,i)
H Ci(Rm,i

+ CH
i Ci)

−1CH
i a(φs,i)]. (8)

III. SPARSE SUBARRAY DESIGN THROUGH
SINR OPTIMIZATION

A. Given Cardinality of Antennas per Subarray

The optimum sparse subarray design can be defined
as dividing the full ULA into P separate subarrays that
collectively cover the entire ULA and select the optimal
grid location for each subarray with the respective weights
determined by MVDR beamforming. The optimum config-
uration of the subarrays is obtained by jointly maximizing
the SINRs at the output of the different subarrays. In this
section, we assume that the number of antennas that con-
stitute each subarray is given, i.e., the values of Ki , ∀i are
prefixed and determined a priori. This number can be de-
cided based on the achievable array gain. Hence, the main
objective is to simultaneously select the optimum subar-
ray configurations in order to maximize the SINR for each
source. Toward that objective, we define P selection vec-
tors zi ∈ {0, 1}N , i = 1, . . . , P , where entry “1” stands for
a selected location and “0” for a discarded location for
antenna placement regarding subarray i. Since we assume
knowledge of all the antenna locations, we may define the
full array receive steering vector toward direction φ as

â(φ) = [ejk0y1d cos φ, . . . , ejk0yNd cos φ]T . (9)

Therefore, the respective receive steering vectors for sub-
array i toward angle φ can be given by ai(φ) = zi � â(φ)
and dispose of the zero entries in order to have a vector of
length Ki . In order to simultaneously design the optimal
sparse, separate subarrays, we consider the following joint
output SINR maximization problem:

max
z1,...,zP

P∑

i=1

SINRi

s.t. 1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

zi ∈ {0, 1}N ∀i. (10)

The first constraint in (10) dictates the number of anten-
nas in each subarray. The second and the third constraints
ensure that the disjoint subarrays collectively span the en-
tire ULA and that the elements of the selection vectors
are strictly 0 or 1, respectively. From (5), the SINR max-
imization problem (10) can be restated as a subarray gain
optimization problem. In particular, we can define the gain
for the full ULA case by substituting (7) into (6) and replac-
ing the subarray steering vectors with the full array steering
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vectors as shown in (11), where Ĉa,i = [Ĉi , âi(φs,i)] and
Ĉi is defined in (12). The extended interference covariance
matrix can be written as

Ĝi = σ 2
n [â(φs,i)

H â(φs,i) − â(φs,i)
H Ĉi(Rm,i

+ ĈH
i Ĉi)

−1ĈH
i â(φs,i)] = σ 2

n

|ĈH
a,iĈa,i + Ri |

|ĈH
i Ĉi + Rm,i |

(11)

Ĉi = [âi(φs,1), . . . , âi(φs,i−1), âi(φs,i+1), . . . , âi(φs,P ),

× âi(φi,1), . . . , âi(φi,m)]

Ri =
[

Rm,i 01×m

0m×1 0

]
. (12)

The equality in (11) can be proved by utilizing the block
matrix determinant formula, as shown below:

|ĈH
a,iĈa,i + Ri | =

∣∣∣∣∣
ĈH

i Ĉi + Rm,i ĈH
i â(φs,i)

â(φs,i)H Ĉi â(φs,i)H â(φs,i)H

∣∣∣∣∣

= |ĈH
i Ĉi + Rm,i |Ĝi . (13)

Hence, the SINR maximization (10) can be reformulated as
the maximization of the logarithm of the subarray gain for
each subarray as [33]

max
z1,...,zP

P∑

i=1

log |ĈH
a,iD(zi)Ĉa,i + Ri |

− log |ĈH
i D(zi)Ĉi + Rm,i |

s.t. 1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

zi ∈ {0, 1}N ∀i (14)

where D(zi) denotes the diagonal matrix populated with the
vector zi along the diagonal. There are two reasons that ren-
der the optimization (14) nonconvex: the nonconcave ob-
jective function, that is, defined as the difference of concave
functions, and the nonconvex binary constraint enforced by
the antenna selection vectors zi ∈ {0, 1}N . However, since
the objective function is the difference of concave func-
tions, the respective global optimizer locates at the extreme
points of the polyhedron and thus we may replace the binary
constraint with the box constraint 0 ≤ zi ≤ 1 [34], [35]. To
circumvent the nonconcavity of the objective function, we
utilize first-order Taylor series that can iteratively approx-
imate the negative logarithms of the objective function,
which cause the nonconcavity. The (k + 1)th Taylor ap-
proximations of those terms based on the previous solution
z(k)
i are shown in (15), where �gi(z

(k)
i ) represents the gra-

dient of the logarithmic function log |ĈH
i D(zi)Ĉi + Rm,i |

evaluated at the point z(k)
i and is written as in (16), where âi,j

denotes the j th column vector of the matrix ĈH
i . This SCP

technique recasts the initially nonconvex problem to a se-
ries of convex subproblems, each of which can be optimally
solved via convex optimization [36]. By substituting (15)
into (14), we obtain the following approximated convex

optimization problem that provides the antenna selection in
the (k + 1)th iteration based on the solution z(k)

i , ∀i from
the previous iteration:

log |ĈH
i D(zi)Ĉi + Rm,i | ≈ log |ĈH

i D(zk
i )Ĉi

+ Rm,i | + �gT
A(z(k)

i )(zi − z(k)
i ) � Ti (15)

� gi(z
(k)
i ) = [âH

i,j (ĈH
i D(z(k)

i )Ĉi

+ Rm,i)
−1âi,j , j = 1, . . . , N]T (16)

max
z1,...,zP

P∑

i=1

log |ĈH
a,iD(zi)Ĉa,i + Ri | − Ti

s.t. 1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

0 ≤ zi ≤ 1 ∀i. (17)

It should be highlighted that SCP is a local heuristic and
thus the final solution is dependent on the initial subarray
selection vectors z(0)

i , ∀i. Hence, we consider several ini-
tialization points z(0)

i , ∀i for optimization (17) and select
the solution that provides the maximum objective function
value. We use the MATLAB embedded CVX software [37]
to solve the optimization problem (17).

B. Cardinality as an Optimization Variable

In this section, we consider the cardinality of the an-
tennas in each subarray as an optimization variable of the
SINR maximization problem (17). Adding the numbers of
sensors per subarray as an optimization variable maintains
the convexity of the SCP optimization problem (17) and the
reformulated problem can be written as

max
z1,...,zP

K1,...,KP

P∑

i=1

log |ĈH
a,iD(zi)Ĉa,i + Ri | − Ti

s.t. 1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

0 ≤ zi ≤ 1 ∀i. (18)

In this case, the optimization does not only decide the loca-
tion of the sparse subarrays sensors but also their number,
i.e., Ki , i = 1, . . . , P , based on the mission information
and requirements. It should be highlighted that this method
should be applied in cases where there is no minimum re-
quirement regarding the performance of the system for each
source, since the solution will allocate more antennas to a
source with higher channel gain.

IV. OPTIMUM SUBARRAY DESIGN THROUGH SINR
CONSTRAINED OPTIMIZATION

The common aperture dual or multitask receiver plat-
forms must provide a sufficient gain to the incoming signal
regardless of whether it represents communication or radar
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data. This gain improves successful decoding of symbols
for the former case and enhances probability of target detec-
tion for the latter case. Hence, in this section, our primary
objective is to design an algorithm that maximizes the SINR
for some sources subject to attaining a specific set of SINRs
for the remaining sources. By setting the cardinality of the
antennas as an optimization variable, the proposed scheme
not only derives the optimum sparse subarray configura-
tions but also the optimal number of antennas (Ki , ∀i) for
each subarray.

Without loss of generality, we consider that there is
a predefined SINR criterion γ ∗

l , l = 1, . . . , L for the first
L out of a total of P SOI. With a total of N antennas
placed on a uniform linear grid, we may define the optimum
sparse subarray design with SINR constraints as selecting
the optimum sparse subarrays that constitute a ULA. Each
subarray considers one source of interest and jointly maxi-
mizes the SINRi performance toward P − L sources where
i = L + 1, . . . , P , while attaining the SINR threshold γ ∗

l ,
l = 1, . . . , L for the rest of the sources. To achieve this
arrangement, we consider the following constrained-SINR
maximization problem:

max
z1,...,zP

K1,...,KP

P∑

i=L+1

SINRi

s.t. SINRl ≥ γ ∗
l , l = 1, . . . , L

1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

zi ∈ {0, 1}N ∀i. (19)

The nonconcave objective function and SINR constraints
and also the nonconvex binary selection constraints zi ∈
{0, 1}N render the optimization (19) nonconvex. Similarly
to Section III, we relax the selection vector constraints to
box constraints and we exploit first-order Taylor series ap-
proximation SCP to iteratively approximate the objective
function and the SINR constraints. We derive the following
approximated convex optimization problem:

max
z1,...,zP

K1,...,KP

P∑

i=L+1

log |ĈH
a,iD(zi)Ĉa,i + Ri | − Ti

s.t. log |ĈH
a,lD(zl)Ĉa,l+Rl|−Tl ≥ γ ∗

l , l = 1, . . . , L

1T
Nzi = Ki ∀i

P∑

i=1

zi = 1N

0 ≤ zi ≤ 1 ∀i. (20)

The optimization (20) is a local heuristic problem and its
solution depends on the initialization vectors z(0)

i . Hence,
we initialize the SCP algorithm (20) with several starting
points z(0)

i and save the solution that gives the maximum
objective function value.

Fig. 2. Output SINR for subarrays 1 and 2 derived from enumeration
and (17).

V. SIMULATION RESULTS

In this section, simulation results are presented to val-
idate the effectiveness of the proposed joint aperture opti-
mum subarray design algorithms.

A. Example 1

We consider a ULA consisting of N = 16 antennas with
an interelement spacing of d = λ/2. The receiving plat-
form aims to maximize the SINR of two separate sources
utilizing two sparse subarrays of fixed number of anten-
nas, K1 = K2 = 8. The first source signal arrives at the
array from a direction φs,1 that is changing from 0◦ to 180◦

with a step of 3◦, and with an SNR set at 0 dB, whereas
the second source is fixed at φs,2 = 45◦, with an SNR of
3 dB. An interfering source is also active, impinging on the
ULA from φi,1 = 112◦ with an INR set at 20 dB. For each
arrival angle of source 1, we obtain the corresponding op-
timum sparse subarrays regarding both sources according
to SINR maximization (17), and using 12 random initial-
ization points z(0)

i . In order to validate the efficiency of the
first-order Taylor series approximation SCP, we obtain the
true optimum sparse subarrays through enumeration and
compare the output SINRs of both methods in Fig. 2. It
is evident that the optimum performance of the proposed
method closely approximates the global optimum solution
obtained from enumeration. Moreover, there is an evident
SINR drop for both subarrays when the two sources are
closely separated, since each source, in essence, plays the
role of an interfering signal for the reception of the other
source. Subarray 1 experiences one more SINR drop when
source 1 is closely located to the interfering source, whereas
this drop is not present for subarray 2, since source 2 is fixed
at φs,2 = 45◦. In order to demonstrate the impact of the sub-
array configuration on the output SINR, we fix the incoming
angle of source 1 at φs,1 = 143◦ and enumerate all possible
12 870 subarray selections. We present the corresponding
output SINR in descending values for both sources in Fig. 3.
The cardinalities of all possible selections for subarrays 1
and 2 are obtained from N!

K1! (N−K1)! and N!
K2! (N−K2)! , respec-

tively, which are equal, since N = K1 + K2. It is clear that
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Fig. 3. Output SINR for all different sparse subarrays for φs,1 = 143◦
and φs,2 = 45◦.

TABLE I
Maximum SINR for Optimization (17) With

Varying Number of Initialization Points
z(0)
i (dB)

the different subarray designs significantly alters the output
SINR, up to 5 dB difference. As mentioned in Section III,
the number of initialization points z(0)

i affects the perfor-
mance of the optimization (17). Table I presents the output
SINR for subarrays 1 and 2 for different number of ini-
tialization vectors z(0)

i . It is evident that there is a minor
increase in performance with increased number of initial-
ization points. It also shows that even by using few ini-
tialization points, we achieve performance that closely ap-
proximates the global optimum, which is SINR∗

1 = 9.0306
and SINR∗

2 = 12.0302. Simulations also showed that there
is insignificant change in SINR when using more than 12
initialization points.1

1Regarding the computational complexity of the proposed algorithm, it
is noted that the complexity of an N × N matrix inversion is of the or-
der O(N3) and the solution of a convex problem is of polynomial time
complexity. In the proposed algorithm, we perform miter × niter iterations,
where miter is the number of initialization points of the respective optimiza-
tion and niter is the number of iterations needed to achieve the required
Taylor approximation accuracy. During each iteration, P matrix inver-
sions and P convex optimizations are performed, where P is the number
of desired sources considered.

B. Example 2

In the next simulation, we extend the ULA to N = 36
antennas and add a third source of interest at φs,3 = 68◦ with
SNR fixed for all sources at 0 dB. The interfering source is
assumed to be the same as in the first example. We assume
two cases of highly and weakly spatially correlated sources.
Case I represents highly spatially correlated sources, where
the incident angles of sources 1 and 2 are set at φs,1 =
47◦ and φs,2 = 45◦, respectively. In case II of low spatial
correlation, the angles-of-arrival are set at φs,1 = 143◦ and
φs,2 = 45◦, respectively. The spatial correlation matrices of
the steering vectors corresponding to sources 1 and 2 for
the high and the low correlation cases are

Rhigh =
[

1 + 0j 0.1318 + 0.6837j

0.1318 − 0.6837j 1 + 0j

]
,

Rlow =
[

1 + 0j 0.0060 + 0.0118j

0.0060 − 0.0118j 1 + 0j

]
.

In order to shed light on the mechanism of joint subarray
design, we derive the optimum subarrays for the two cases
of given antennas cardinality and when the cardinality is
a design parameter, which are associated with (17) and
(18), respectively. We also obtain the optimal subarrays by
maximizing the output SINR for each of the sources when
considered separately through the following optimization:

max
z

SINRoi

s.t. 1T
Nz = K

0 ≤ z ≤ 1 (21)

for i = 1, . . . , P . Optimization (21) is nonconvex and can
be recasted as a convex one by using SCP. Since there is
no explicit constraint on shared antennas across subarrays,
some antennas could be allocated to more than one sub-
array and hence this design cannot be used for simultane-
ous multitask function. The subarray configurations derived
from (17), (18), and (21) are depicted in Figs. 4 and 5 for
the highly and the weakly correlated cases, respectively.
In particular, the blue dots represent the respective active
sensors for the corresponding subarray. Two important ob-
servations are in order: First, for the case of highly spatially
correlated sources, the optimum subarrays for sources 1
and 2 obtained from the separate design (21) are fully over-
lapped [see Fig. 4(g) and (h)], since they consist of exactly
the same antennas, whereas for the weakly correlated case
they share only 4 out of 12 antennas [see Fig. 5(d) and
(e)]. Hence, the competition for the optimum antennas lo-
cated at the two far edges of the ULA in the joint aperture
subarray design is more intense for higher spatial corre-
lation of the SOI. As depicted in Fig. 4, subarrays 1 and
2 from (17) and (18) contest over the optimal antennas
located at the two far edges of the ULA, whereas most
of the antennas in the center of the ULA are allocated to
subarray 3. The second observation is that the optimum sub-
array configurations from both (17) and (18) is exactly the
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Fig. 4. Arrays for case I: (a) Subarray 1 for given cardinality of
antennas (17), (b) Subarray 2 from (17), (c) Subarray 3 from (17),

(d) Subarray 1 when the cardinality is a design parameter (18),
(e) Subarray 2 from (18), (f) Subarray 3 from (18), (g) Subarray 1 from

separate design (21), (h) Subarray 2 from (21), and (i) Subarray 3
from (21).

Fig. 5. Arrays for case II: (a) Subarray 1 for given cardinality of
antennas (17) and when the cardinality is a design parameter (18),

(b) Subarray 2 from (17) and (18), (c) Subarray 3 from (17) and (18),
(d) Subarray 1 from (21), (e) Subarray 2 from (21), and (f) Subarray 3

from (21).

same for the weakly correlated sources, as seen in Fig. 5.
However, for the case of highly correlated sources, opti-
mization (18) allocates more antennas to the less correlated
source 3 (K1 = 10, K2 = 11, K3 = 15), since it results in
higher total SINR for the system, as shown in Table II. This
table presents the maximum output SINR values and the to-
tal SINR for all three sources for optimizations (17), (18),
and (21). It is also evident from Table II that for the case of
highly correlated sources, the proposed methods provide a
substantially lower SINR as compared to separate subarray
optimization. On the other hand, for less correlated sources,
the joint optimizations (17) and (18) provide almost

TABLE II
Maximum SINR for the Proposed Methods of (17), (18)

and Separate Optimization (21) (dB)

Fig. 6. Beampatterns for all subarrays for case I from (17).

Fig. 7. Beampatterns for all subarrays for case II from (17).

identical performance to the separate design technique (21).
The beampatterns for the optimum subarrays obtained from
(17) for the highly and weakly correlated cases are plotted
in Figs. 6 and 7, respectively.

C. Example 3

In this simulation, we consider the same layout as the
weak correlation case of the previous example. We assume
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Fig. 8. Beampatterns toward source 2 for different γ ∗
2 .

TABLE III
Optimal Number of Antennas for Subarays 1, 2, and 3 and

Maximum SINR1 and SINR3 (dB) for Different Target SINR γ ∗
2

a predefined fixed desired SINR2 for source 2. The primary
objective is to obtain three separate sparse subarrays that
constitute the entire ULA and maximize the SINR at the
output of subarrays 1 and 3 while satisfying the desired
output SINR for subarray 2. It is noted that the algorithm
decides on both the optimal locations of the antennas for
each subarray and also the optimal number of antennas
for each subarray (K1, K2, K3). The beampatterns toward
source 2 for different SINR thresholds γ ∗

2 are shown in
Fig. 8. It is evident that higher γ ∗

2 generates a more accu-
rate mainbeam toward source 2 with lower sidelobe levels
and more efficient mitigation of interference. The optimum
cardinality of the antennas in each subarray along with the
maximum SINRs obtained from (20) for different γ ∗

2 are
listed in Table III. As expected, the higher the desired SINR
level toward source 2 is, the more antennas are allocated to
subarray 2, which naturally leads to a drop of SINR for the
other subarrays.

D. Example 4

In order to further demonstrate the superiority of the
proposed adaptive algorithms, we compare the performance
of the sparse subarrays obtained from (17) to the case when
the structured nested and coprime arrays are utilized to de-
rive subarray 1 [38], [39]. We consider a ULA of N = 20
antennas and two SOI. For a fair comparison, we employ
K1 = 8 antennas to design the optimum adaptive sparse
subarray 1 from (17) and also eight antennas to build the
prefixed nested and coprime subarray 1. The angles-of-
arrival of the SOI are φs,1 = 80◦ and φs,2 = 68◦ with their
SNR set at 0 dB. An interfering source is also present at
φi,1 = 112◦ with INR = 20 dB. The subarray 1 structures

Fig. 9. Subarray 1: (a) proposed method (17), (b) Nested array,
(c) Coprime array, (d) proposed method (20) with γ ∗

1 = 8.4102.

Fig. 10. Beampatterns for subarrays (a), (b), and (c) in Fig. 9.

TABLE IV
Comparison of the System Performance for the Proposed Methods, the

Nested Arrays, and the Coprime Arrays Schemes

are depicted in Fig. 9 and the corresponding beampatterns
in Fig. 10. It can be observed that the proposed joint sparse
subarray design yields a better shaped beampattern with
deeper nulls at the direction of interference and lower side-
lobes when contrasted with the prefixed nested and coprime
arrays beampattern. In order to quantify the comparison,
Table IV shows the maximum SINR obtained from the pro-
posed adaptive algorithms and the prefixed techniques. We
also added the optimum subarray structure obtained from
(20) with γ ∗

1 = 8.4102 (subarray (d) in Fig. 9) to match
the SINR performance of the prefixed nested array tech-
nique. It is evident that the proposed adaptive algorithms
substantially outperform the prefixed nested and coprime
schemes in terms of output SINR for the SOI. Furthermore,
as shown in Table IV, the proposed adaptive optimization
(20) matches the performance of the nested arrays struc-
ture toward source 1, even though employing only seven
antennas. Therefore, the extra antenna can be allocated to
subarray 2, maximizing the SINR2 performance for source 2
as shown in Table IV.
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Fig. 11. Normalized beampattern of subarray 1.

Fig. 12. Normalized beampattern of subarray 2.

Fig. 13. Normalized beampattern of subarray 3.

E. Example 5

The proposed sparse subarray design algorithms can
be also applied in the case of planar antenna arrays. For
illustration, we consider a 10 × 10 uniform rectangular
array with an interelement spacing among any two adjacent
antennas along any column or row is dx = dy = λ/2,
respectively. Three SOI are considered with angles of
arrival θs,1 = −35◦, θs,2 = −55◦, θs,3 = 45◦, where θs,i

denotes the elevation angle of source i and φ̂s,1 = 47◦,
φ̂s,2 = 130◦, φ̂s,3 = 68◦, with φ̂s,i stands for the azimuth

Fig. 14. Sparse subarrays configuration map: circle: subarray 1,
triangle: subarray 2, square: subarray 3.

Fig. 15. Collective contour plot of the three beampatterns.

angle of source i. There is also one interfering source
present impinging on the two-dimensional array from
θi,1 = 74◦ (elevation), φ̂i,1 = 112◦ (azimuth). We allocate
34 antennas for subarray 3 and 33 antennas for each of
the subarrays 1 and 2, i.e., K3 = 34, K1 = K2 = 33. The
respective normalized beampatterns for each subarray are
plotted in Figs. 11, 12, and 13. The sparse separated sub-
arrays configuration is shown in Fig. 14 and the collective
contour plot of all three beampatterns is depicted in Fig. 15.

VI. CONCLUSION

We have examined the problem of sparse array de-
sign, where the array aperture is divided among different
subarrays—a concept known as shared aperture. At first,
we proposed an algorithm that optimally decides the loca-
tions of predetermined number of antennas for each sub-
array using SINR as a criterion and conditioned of having
unshared antennas among the subarrays. Furthermore, we
generalized the above problem by including the cardinality
of the antennas in each subarray as an optimization variable,
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providing more degrees of freedom to the algorithm to fur-
ther increase the efficiency of the system. Additionally, we
proposed an algorithm that maximizes the SINR for some
sources, while satisfying a certain SINR threshold for the
other sources. SCP and Taylor series approximation tech-
niques were employed to render the initially nonconvex
sparse subarray design as a convex problem. Simulation
results demonstrated that the proposed method closely ap-
proximates the true optimum sparse subarray design perfor-
mance obtained by enumeration. Furthermore, it was shown
that the proposed algorithm can be applied to high spatially
correlated sources and in the case of planar antenna arrays.
Finally, the superior performance of the resulting subarrays
over other prefixed sparse array configurations was also
demonstrated.
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