Pace and critical gradient for hill runners: an analysis of race records

2014-12-12T13:39:34Z (GMT) by Anthony Kay
Route choice through mountainous terrain requires a knowledge of how pace (the reciprocal of speed) varies with gradient of ascent or descent. To model this variation for runners, we analyse record times for 91 uphill and 15 downhill races or race stages. The pace is modelled as a nonlinear function of gradient and a linear function of race duration, using ordinary least squares to obtain a best fit. For the gradient-dependence, six functional forms are compared, of which a quartic is found to fit the data best; however, at steep gradients the quartic model is unrealistic and it may be argued that a linear model is more appropriate. Critical gradients, at which a runner's vertical speed (uphill or downhill) is maximised, may be calculated from a nonlinear model, although it appears that there is no uphill critical gradient within the range of our dataset. © 2012 American Statistical Association.