

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Packet Transmission Optimisation using Genetic

Algorithms

Mark Withall, Chris Hinde, Roger Stone, and Jason Cooper

Department of Computer Science, Loughborough University, Loughborough, Leics.
LE11 3TU, United Kingdom

{m.s.withall2,c.j.hinde,r.g.stone,j.l.cooper}@lboro.ac.uk

Abstract. A Genetic Algorithm (ga) is used to optimise the parame-
ters for a sequence of packets sent over the Internet. Only the parameters
that a client machine can change are used and the fitness is based on the
delay time returned by the Traceroute program. The ga performance is
compared to a fixed packet size with no priority used to assess the status
of the network. The ga generally performed to the same level as the
control settings but in some cases significant improvements were made.

Keywords. Internet Applications, Genetic Algorithms, Adaptive Con-
trol

1 Introduction

Various work has been done on using heuristic and adaptive techniques, such as
Genetic Algorithms (ga), to solve networking problems (see for example [4, 6,
14]). The main focus of this work has been on areas such as network topology
design, routing table construction and performance analysis. Most of these areas
involve having some form of control or access to large areas of the network. This
work looks at what performance increase, if any, can be gained from the per-
spective of a single client machine on the Internet, without having any external
effect on the network other than the packets sent.

The aims of the experiments were to find good parameters for a sequence
of packet transmissions to optimise the time taken to send 10,000 bytes of data
(experiment 1) and minimise the delay of the slowest packet (experiment 2), over
the Internet. The parameters being varied were the packet size, and hence the
number of packets, and the priority settings of the packets. The optimisation was
performed using a Genetic Algorithm[9] and was compared to a control setting,
to monitor the state of the network, of the maximum packet size and no priority
settings.

2 Genetic Algorithms

Genetic Algorithms (ga) began in the 1950s, some of the early papers being by
Fraser [7, 8] and Bremermann [1]. Later on work by Holland[10–12] popularised

genetic algorithms and Holland’s work is often cited as the origins of Genetic
Algorithms. gas are based on Darwin and Wallace’s theories of Natural Selec-

tion[5, 18] and Gregor Mendel’s theory of Genetic Inheritance[15]. A ga takes a
population of possible solutions to a given problem (individuals), evaluates these
solutions based on some criteria (fitness) and then genetically recombines the
solutions based on the fitness of the individuals (using genetic operators) in the
population to form a new generation of the population. This process is repeated
until some termination criterion is met. Figure 1 gives the basic flow diagram
for a ga.

Start

Stop

Create Initial Population

Evaluate Population Fitness

Create New Population From Old

Terminate?
Yes

No

Fig. 1. Flow diagram for the basic Genetic Algorithm

2.1 Representation

The way that the individuals are represented (genome) can have a great effect
on the performance of the ga. Traditionally, ga individuals are represented as
binary strings, however, any representation that is appropriate for the problem
can be used.

2.2 Initial Population

The initial population of a ga is important as it specifies the gene values which
the ga has to work with. This gene pool can then be expanded using mutation
as the ga runs. It is usual to start with a randomly generated population.

2.3 Fitness Evaluation

The fitness evaluation, for the ga, determines how good an individual from a
population is at solving a given problem. The fitness is traditionally given as
some integer or real number value, where the higher the value the greater the
fitness. The fitness value is used to select parents for the reproduction stage of
the algorithm.

2.4 Reproduction

Parent selection is used to determine which individuals from a population will
be used to create the next generation of individuals. Genetic operators are used
to manipulate the genes of the selected parents to create new individuals for the
next generation. There are two main genetic operators: crossover and mutation.

Crossover: This consists of combining the genes from two or more parent in-
dividuals to create a new individual. This can take the form of picking a
random point on the genome and using the genes before this point from one
parent and those after from the other. Multiple points can be chosen and
used in the same way. At the most extreme, a decision can be made for every
gene for which parent to take it from.

Mutation: This consists of changing one or more genes in the individual to a
new random value.

2.5 Termination Conditions

The two main methods of terminating a ga are to pre-specify a number of
generations to run the algorithm for or to run until a member of the population
reaches a specific fitness level.

2.6 Variables

Both the population size and the probability of a mutation can be instantiated
with different values. The values set can greatly affect the performance of the
ga.

3 Experimental Procedure

The following subsections describe the particular ga being used for the experi-
ments. The first subsection describes the representation being used for the indi-
viduals in the population. The second subsection describes the method of fitness
evaluation for the individuals in each experiment. The third subsection describes
the genetic manipulation operators being used and other parameters for the ga.
Finally, the hardware and software used for testing is summarised.

3.1 Problem Representation

There are two parameters being varied in this experiment: the packet size and
the priority. As two parameters would be too few to be usefully varied, the values
are represented in binary. The packet size is represented as an 11-bit value (0–
2047), however, the packet size is restricted to being between 500 and 1460 bytes
in length, plus a 40 byte header. If the packet size is less than 500 it is rounded
up and if greater than 1460 it is rounded down. The priority is represented as an
8-bit value which directly maps to the 8 bits for priority in the packet header,
shown in Figure 2. Therefore, the representation of each individual is a 19-bit
binary string which means there are 524288 possible settings being searched
through, although some will be functionally the same.

| DS Codepoint | Unused | DS Field

| (6 bits) | (2 bits) |

Bits 0-2 define class Bits 3-5 define relative priority with class

[Format from http://www.itec.uni-klu.ac.at/~hellwagn/RN-QoS/rn2-kap5-DiffServ.pdf]

Fig. 2. The DiffServ priority octet

3.2 Fitness Evaluation

The fitness evaluation for the ga was conducted by recording the delay time for
each packet of a 10,000 byte message being sent over the Internet. For exper-
iment 1, the total time taken (sum of packet delays) to send the 10,000 bytes
was used as the fitness value. For experiment 2, the time taken (delay) for the
slowest packet was used as the fitness value. The data was sent to an IP address
in Japan, as the path was quite a slow one. The source and destination IP ad-
dresses are given in Figure 3. To test the effectiveness of a transmission strategy
takes a week or two. The method used here will not tell us the effectiveness of
the individual except at the time of the test. The reason for using this method
is that it is quicker and that it will show if there are improvements to be made
at times. If it shows that there are times where the ga performs better than the
control then it would be worth running a ga using a partial fitness function [2]
to evolve transmission strategies.

The data was sent using the Traceroute program with the following command
line switches:

traceroute -q 1 -n -S 28 -t <priority> <address> <packetsize>

The -q switch specifies how many packets to send, the -n switch keeps output
concise, the -S switch specifies only to print the information for the destination
address and not intermediate servers and the -t switch specifies the priority.

The Internet

158.126.96.6

202.33.28.186

Fig. 3. Source and destination addresses used for the experiment

The shorter the time, for both experiments, the better. This value is inverted
and normalised so that the higher the value the fitter the individual, for easier
selection at the reproduction stage.

In addition to the ga tests, a control was run with no priority and a packet
size of 1500 bytes (including header). This control was run once for every indi-
vidual in the population i.e. ten individual runs and ten control runs.

3.3 Genetic Operators and Parameters

The ga uses two types of genetic operator. The first is a crossover operator,
where two parents are chosen and some genes from one parent and some from
the other are used to create the new individual. The crossover is uniform i.e.
performed at every point in the genome[16]. The second genetic operator is
mutation, where one gene value is randomly changed to a new random value.
All new individuals are created by the crossover of two parent individuals with
some probability of mutation in the new individual.

The population size used for the experiment was 10 individuals and the
mutation rate was a probability of 1 gene in 100. The population was initialised
randomly.

3.4 Hardware and Software

The ga was written in Perl version 5.6.1[17] and used Traceroute version 6.0
gold. The experiments were run on a Sun Sparc 4 with a Debian Linux operating
system. The machine was connected to the Internet over a 10Mb/s switched lan

and to the SuperJanet network.

4 Results

The following sections give the results for the two experiments. The aim of
experiment 1 was to minimise the total delay to send 10,000 bytes of data over

the Internet and the aim of experiment 2 was to minimise the delay for the
slowest packet in the same transmission.

4.1 Experiment 1

The graph in Figure 4 shows the best control at each generation against the best
evolved individual at each generation.

2000

2500

3000

3500

4000

17/05 18/05 19/05 20/05 21/05 22/05 23/05 24/05 25/05 26/05 27/05 28/05

D
el

ay
 (

m
s)

Time

Network Optimisation GA

Control
GA

Fig. 4. Delay against time for the best control and best ga solution, at each generation,
for experiment 1

For most of the experiment, the best ga individual and the best control per-
formance are virtually identical. The ga quickly learns that the largest packet
sizes perform best. There are two main occasions where the ga performs signif-
icantly better than the control. These occur at around generation 3000 (∼00:00
21/05) and generation 4440 (∼18:00 21/05). The priority settings at these points
are generally 199 (class 6, priority 1) and 207 (class 6, priority 3) in the first
instance and 227 (class 7, priority 0) and 243 (class 7, priority 4) in the sec-
ond. The result seems logical as the higher priority classes would be likely to
receive better service. However, it is uncertain why the ga can not maintain this
performance.

4.2 Experiment 2

The graph in Figure 5 shows the best control at each generation against the best
evolved individual at each generation.

200

300

400

500

600

700

800

28/05 29/05 30/05 31/05 01/06 02/06 03/06 04/06 05/06 06/06

D
el

ay
 (

m
s)

Time

Network Optimisation GA

Control
GA

Fig. 5. Delay against time for the best control and the best ga solution, at each
generation, for experiment 2

The results for experiment 2 are quite different to those in experiment 1. The
ga in most cases manages to keep up with the performance of the control when
the network is busy but when the network is quiet it can outperform the control.
The results show that the ga uses a large packet size when the network is busy.
This seems reasonable as sending less packets decreases the chance that one of
them will be held up in the congestion. When the network was quiet, the ga used
a small packet size. This gives enough of a performance improvement to beat the
control with a fixed maximum packet size when there is less chance of a packet
being held up in traffic. The priority settings being used in the three main areas
of improved performance were 33 (class 1, priority 0, at ∼20:00 29/05), 120 (class
3, priority 6, at ∼19:00 30/05) and 123 (class 3, priority 6, at ∼00:00 02/06).
It seems as if the main performance improvement for the ga in this situation is
caused by the decrease in packet size rather than the priority setting.

5 Summary and Conclusions

For experiment 1, the ga performed, in general, at the same level as the control
settings. However, for two periods the ga showed a significant improvement over
the control by using high priority classes. Unfortunately, this performance could
not be maintained. For experiment 2, the ga performed well during the periods
of low network congestion but only to the level of the control settings or worse
during high congestion periods.

In conclusion, the ga managed to adapt to different conditions on the net-
work, and different fitness requirements, quite well but was inconsistent in its
ability to outperform the control settings’ performance. Although external fac-
tors play the major role in determining transmission delays the experiments have
shown that some improvements can be made from the perspective of an indi-
vidual machine. Further work is required to find if any consistent improvements
can be obtained over a simple fixed parameter setting.

Alternative approaches to the problem include a Nested Evolution Strategy,
which has been shown to be good at many adaptive problems. Genetic Pro-

gramming could be used to produce a parameter control program to adjust the
packet settings based on the performance of previous packets sent (and perhaps
even other known facts about the network being used). This approach would
probably be an improvement of the simple ga, which is just reacting blindly
to the changing conditions of the network without memory of previous network
changes. The disadvantage to this approach is that a reasonable complete fitness
evaluation would take about a week per individual (or even more) and therefore
it would take a very long time to evolve good solutions.

Partial fitness functions [2] is a promising approach which uses an individuals
fitness combined with the age of the individual, this allows the fitness testing to
continue to completion but also uses early results to permit promising individuals
to breed. A study using evaluations of over a week shows that the most effective
policy depends on the destination and route taken. For example, priority settings
on one route which produce good transmission times fail to replicate across a
range of routes but do replicate across limited sets of routes. This indicates that
the optimum strategy depends on the destination and route chosen [3].

6 Acknowledgements

Thanks to Nortel for their support, both intellectual and financial, during the
project.

References

1. Bremermann H.J. (1962). Optimization through evolution and recombination. in [19].
pp. 93-106.

2. Cooper J.L. & Hinde C.J. (2003). Improving the performance of Genetic Algorithms

Using Partial Fitness Functions. Submitted to GECCO 2003.

3. Cooper J.L. Withall M.S. Hinde C.J. & Stone R.G. (2003). Investigation into the

effects of varying the parameters of packets travelling across the Internet. Lough-
borough University Department of Computer Science Internal Report no. 1070.

4. Corne D. Smith G. & Oates M. (2000). Telecommunications Optimization: Heuristic
and Adaptive Techniques. John Wiley and Sons Ltd.

5. Darwin C. (1996). The Origin of Species. Oxford University Press. First published
1859.

6. Di Caro G. & Dorigo M. (1998). AntNet: Distributed Stigmergetic Control for Com-

munications Networks. In Journal of Artificial Intelligence Research, 9:317-365.
7. Fraser A.S. (1957a). Simulation of Genetic Systems by Automatic Digital Computers

1, Introduction. Australian J. of Biol.Sci., Vol. 10, pp. 484-491.
8. Fraser A.S. (1957b). Simulation of Genetic Systems by Automatic Digital Com-

puters 2, Effects of Linkage on Rate of Advance under Selection. Australian J. of
Biol.Sci., Vol. 10, pp. 492-499.

9. Goldberg D.E. (1989). Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley Publishing Co. Inc.

10. Holland J.H. (1973). Genetic Algorithms and the Optimal Allocation of Trials. In
SIAM Journal on Computing, 2(2):88-105, June.

11. Holland J.H. (1975). Adaption in Natural and Artificial Systems. MIT Press.
12. Holland J.H. (1992). Adaption in Natural and Artificial Systems. MIT Press, Sec-

ond Edition.
13. Langdon W.B.,(2002). Proceedings of the Genetic and Evolutionary Computation

Conference 2002,Morgan Kaufmann.
14. Liang S. Zincir-Heywood A.N. & Heywood M.I. (2002). Intelligent Packets for

Dynamic Network Routing using Distributed Genetic Algorithm. In [13]. pp. 88-96.
15. Mendel G. (1865). Experiments in Plant Hybridization.
16. Syswerda G. (1989). Uniform Crossover in Genetic Algorithms. In Schaffer D.,

editor, Proceedings of the Third International Conference on Genetic Algorithms,
2-9. Morgan Kaufmann.

17. Wall L. Christiansen T. & Schwartz R.L. (1996). Programming Perl. O’Reilly &
Associates, Inc., Second Edition.

18. Wallace A.R. (1858). On the Tendency of Varieties to Depart Indefinitely From

the Original Type. In Journal of the Proceedings of the Linnean Society: Zoology
3(9):53-62.

19. Yovits M.C., Jacobi G.T. & Goldstein G.D. (1962). Self Organizing Systems. Spar-
tan Books, Washuington D.C.

