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Abstract 

The theme running throughout this thesis is the Painleve equations, in their differ­

ential, discrete and ultra-discrete versions. The differential Painleve equations have 

the Painleve property. If all solutions of a differential equation are meromorphic 

functions then it necessarily has the Painleve property. Any ODE with the Painleve 

property is necessarily a reduction of an integrable PDE. 

Nevanlinna theory studies the value distribution and characterizes the growth 

of meromorphic functions, by using certain averaged properties on a disc of vari­

able radius. We shall be interested in its well-known use as a tool for detecting 

integrability in difference equations - a difference equation may be integrable if it 

has sufficiently many finite-order solutions in the sense of Nevanlinna theory. This 

does not provide a sufficient test for integrability; additionally it must satisfy the 

well-known singularity confinement test. 

Reductions of the self-dual Yang-Mills equations to many integrable systems are 

well known. They can be reduced directly to each of the Painleve equations P1 to 

Pv1. Often an integrable system can be reduced to one or more of the Painleve 

equations. In particular we will work with a reduction called the Ernst equation, 

which arises in the description of spacetimes admitting two commuting Killing vec­

tors by general relativity. In particular we look at the Bianchi models of types I-VII 

as such spacetimes. Furthermore the Ernst equation has reductions to Pm and Pv1. 

For some Bianchi types the particular reduction is believed to be original. 

Roots and poles of a classical meromorphic function are mapped by a limiting 

process called ultra-discretization to our definitions of roots and poles of a (ma.x,+) 

meromorphic function. This is used to derive (max,+) Nevanlinna theory, which 

could be useful in detecting integrability of ultra-discrete equations. Analogously 

to the difference equations, it appears that an integrable ultra-discrete equation has 

sufficiently many finite order (max,+) meromorphic solutions. Numerical simula­

tions of ultra-discrete equations are produced to study their integrability. 
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Chapter 1 

Introduction 

The central theme running throughout this thesis is the Painleve equations. They 

arise in describing many physical systems, of which we shall work with one such 

example in detail, producing some results believed to be new. On another note, 

we shall consider generalizations of the classical Painleve (differential) equations to 

both discrete and ultra-discrete Painleve equations. In the analysis of ultra-discrete 

equations we produce new results, mainly a new version of classical Nevanlinna 

theory, in this case applicable to a certain class of piecewise linear functions. Such 

functions solve ultra-discrete equations. We also make attempts to classify ultra­

discrete equations, using a scheme that is believed to be new, which we also present 

in the preprint by Halburd and Southall [79]. 

Integrable systems of equations shall feature heavily in this text. They are 

significant in that they combine tractability with nonlinearity. In contrast, it is 

difficult to characterise a large class of nonlinear equations. A number of general 

methods for solving integrable systems begin with forming a linear system, whose 

compatibility conditions (constraints that mixed second derivatives commute) are 

the original integrable system [19]. 

The Painleve property is possessed by an ODE' if all movable singularities (ones 

whose positions are dependent on the solution chosen) of its solutions are poles. This 

implies that all solutions are single-valued about all movable singularities. However 

'Throughout the text, the abbreviations ODE and PDE shall be used for ordinary and partial 

differential equations respectively. 

6 



CHAPTER 1. INTRODUCTION 7 

the latter statement does not necessarily imply the former: for instance e11• is single­

valued but does not have a pole at z = 0. The Painleve property is a strong indicator 

(some would take it as a definition) of integrability. The Painleve equations have 

the Painleve property. The Painleve test is a useful tool for identifying equations 

with the Panleve property. Only nonlinear equations can have movable singularities 

[18]. We note that not all solutions of an equation with the Painleve property are 

necessarily meromorphic. 

The six Painleve equations, conventionally labeled by Roman numerals I to VI as 

P1 to Pv~, are solved by a previously unknown class of functions called the Painleve 

transcendents. They were classified between the late nineteenth and early twentieth 

century by Painleve and colleagues (13, 14, 18]. They are related to each other by a 

sequence of reductions called coalescence limits, starting from PVI (which is in some 

sense the most general Painleve equation) and reducing towards P1. The solutions 

of Pv1 may not be meromorphic; they may have branch points. 

There are many discrete equations with continuum limits to the Painleve dif­

ferential equations. However, most of these equations do not inherit the integra­

bility properties of the Painleve equations - such as the existence of associated 

linear problems. The discrete equations which do have the integrability properties 

are known as discrete Painleve equations [55]. These usually look quite different 

from the naive discretizations of the Painleve equations. In turn, the ultra-discrete 

Painleve equations are obtained from certain discrete Painleve equations by a lim­

iting process called ultra-discretization, which was introduced in (69]. We note that 

not every discrete equation can be ultra-discretized. 

We shall progress from defining discrete Painleve equations to the more general 

problem of finding a discrete analogue of the Painleve property as an indicator of 

integrability. The singularity confinement test was introduced in [55] to give such a 

property. Those discrete equations which pass the singularity confinement test, and 

also satisfy a condition of zero algebraic entropy (58], are believed to be integrable. 

A rational function is a ratio of two polynomials, which can be taken to have 

no common factors. The degree of a rational function is the maximum degree of 

these polynomials. A set of functions {Yn} which are each rational in an auxiliary 
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variable z E IC may occur as a solution to a discrete equation. Then we have a set 

of degrees qn := degyn(z). The algebraic entropy of a discrete equation quantifies 

the growth of the degrees of such iterates of that equation. The algebraic entropy of 

a generic discrete equation is nonzero (corresponding to exponential degree growth) 

but the algebraic entropy of a large class of integrable discrete equations is zero 

(corresponding to polynomial degree growth) [74]. 

The self-dual Yang-Mills (SDYM) equations are called the master integrable 

system, since it is conjectured in [2] that any integrable differential equation is ob­

tainable by reduction of the SDYM equations (or their generalizations). The SDYM 

equations arise as a special case of Yang-Mills theory [50] in a four-dimensional space 

with complex-valued coordinates. We are free to specify the Lie algebra in which 

the Yang-Mills connection is valued - the so-called gauge algebra. Where the gauge 

algebra is chosen to be st(2,1C), there exist reductions of the SDYM equations by 

certain three-dimensional symmetry groups to each of the Painleve equations. In­

stead, reduction by a certain two dimensional symmetry yields an integrable equa­

tion called the Ernst equation. Furthermore it has been shown [21 J that the Ernst 

equation can be reduced to Pm and to Pv1• Many integrable systems such as soli ton 

equations possess symmetry reductions to one or more Painleve equations; see for 

example [11, 15]. The process of reducing an integrable system always yields an 

integrable system [20]. It follows that the Painleve equations themselves are each 

one-dimensional integrable systems. 

The Ernst equation finds many applications in the context of general relativity 

such as to gravitational solitons [31]. The vacuum Einstein field equations of general 

relativity for a geometry which admits two commuting Killing vectors include a form 

of the Ernst equation [35]. This class of geometries includes the Bianchi cosmological 

models of types I-VII. 

In 1898 Bianchi [39] classified the distinct three-parameter Lie groups as types 

I to IX. Such groups are equivalent to three-dimensional Bianchi manifolds G. In 

1951 Taub [41] systematically extended the Bianchi classification to general rela­

tivity, by introducing corresponding Bianchi spacetime manifolds M = lR x G [6]. 

The Bianchi models are spatially homogeneous models in cosmology (invariant un-
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der space translations), where the widely used FRW models are subclasses [6]. A 

significant feature of Bianchi spacetime models is that they belong to the class of eo­

homogeneity one class of manifolds, meaning that the local topology of M consists 

of a one-parameter family of three-dimensional submanifolds. The Einstein field 

equations on this class of manifolds reduce to a system of ODEs, which means that 

the rich body of analysis of dynamical systems theory is applicable [23]. We choose 

a coordinate system such that the surfaces of symmetry are the surfaces of constant 

time, by defining a time coordinate t E IR as in [6], which becomes the independent 

variable of the ODEs. 

The reductions of the Ernst equation to Pv was given by Persides and Xan­

thopoulos [10], together with a further reduction to Pm. Also, a reduction to Pvr 

was first given by Calvert and Woodhouse [21 J. Here we shall perform such re­

ductions using discrete groups of variables that are each relevant to a particular 

Bianchi model. The Bianchi models fall into either class A or class B depending on 

a property of their particular symmetries [37]. In particular the Painleve equation 

obtained from a Bianchi model is a special case of either Pm for class A models, 

or Pvr for class B models. The class A reductions were already known [32] but the 

class B reductions are believed to be new. 

As well as the applications detailed above, we shall be concerned with N evanlinna 

theory which studies meromorphic functions in the complex plane. If all solutions of 

a differential equation are meromorphic, then the equation has the Painleve property. 

Given a meromorphic function of one variable f(z), the Nevanlinna characteristic 

T(r, f) is a non-negative non-decreasing function of r > 0. Here T(r, f) is a measure 

of the "affinity" off for infinity on the disc ]z] :::; r. The behaviour of T(r, f) as 

r -> oo encodes a lot of information about f. An important class of meromorphic 

functions are those for which T(r, f) is bounded by ru for some constant a. Such a 

function is said to be of finite order. 

Since Nevanlinna theory is a theory ofmeromorphic functions it can only be used 

on solutions of those differential equations which necessarily have the Painleve prop­

erty and are therefore integrable. In [54] Ablowitz, Halburd and Herbst described 

a natural interpretation of discrete equations as difference equations in the complex 
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domain. This is similar to the interpretation of the factorial function n! as discrete 

points of the Gamma function r(z), which has the property r(z+ 1) = zf(z). They 

found that N evanlinna theory provides many of the tools necessary to detect integra­

bility in a large class of difference equations. In particular, if a difference equation 

has sufficiently many solutions of finite order then the equation is integrable - see 

Ablowitz, Halburd and Herbst [54] and also the review by Halburd and Korhonen 

[78]. 

The{max,+) semiring is (JRU{ -oo }, EB, ®)where the binary operators are defined 

by 

a if! b := ma.x(a, b), a®b :=a +b, a,b E JRU {-oo}. 

The (max,+) semiring has no additive inverse. 

An ultra-discrete equation can be defined naturally on the ( max, +) semiring. 

Take a discrete variable which satisfies a particular discrete equation (we note that 

the following only works on certain types of discrete equations). Ultra-discretization 

of such a variable leads to a new discrete variable Xn which satisfies an ultra­

discretized form of the original discrete equation. It follows that the ultra-discrete 

Painleve equations are derived by ultra-discretization of certain discrete Painleve 

equations, see [68]. As such they serve as prototypes of integrability in the ultra­

discrete sense. An example of an ultra-discrete equation often called u-P1 is 

(1.1) 

where K is an arbitrary constant. An ultra-discrete equation such as (1.1) is a 

generalized cellular automata. This means that the values of solutions may be 

represented as discrete points in a finite dimensional, infinitely sized grid, whose 

evolution over the grid is governed by the ultra-discrete equation. 

Another interpretation of ultra-discrete equations is to take the independent 

variable as continuous, x E lE., and then the dependent variable X(x) can be any 

real number. The ultra-discrete equation (1.1) is then reinterpreted as 

X(x + 1) ® X(x) ® X(x- 1) = 0 If! X(x) ® 7l'1(x), (1.2) 

where 7l'1(x) is an arbitrary period 1 function. The (max,+) meromorphic functions 

we have defined may be admitted as solutions to such equations. The process of 
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going from ultra-discrete equation (1.1) to (1.2) is analogous to that for discrete 

equations on the complex plane introduced in [54]. 

An original extension of Nevanlinna theory to piecewise linear functions is pre­

sented in this thesis. Here the role of meromorphic functions is played by piecewise 

linear functions of integer slopes, in the real domain. We name functions with 

these properties (max,+) meromorphic, since they can be described naturally on 

the ( max, +) semiring and they admit natural analogues of the zeros and poles of 

classical meromorphic functions. This theory is applicable to ultra-discrete equa­

tions. Preliminary results suggest that the ultra-discrete Painleve equations admit 

finite order (max,+) meromorphic solutions. Results are derived in this thesis which 

suggest that this property can be used to detect those certain ultra-discrete equa­

tions of Painleve type. 

An integrable ultra-discrete equation is one obtained by ultra-discretization of 

one of a certain subclass of the integrable discrete/difference equations. Joshi and 

Lafortune [73] have described an analogue of singularity confinement for ultra­

discrete equations as a test of integrability. 

We derive a new theory of the value distribution of (max,+) meromorphic func­

tions on the real line. In many ways this is analogous to Nevanlinna theory on the 

complex plane which concerns the value distribution of meromorphic functions. In 

this light we shall refer to the theory described here as ( max, +) N evanlinna theory. 

We define analogues of the Nevanlinna characteristic, proximity and counting func­

tions. Analogues of some - but not all - of the results from classical N evanlinna 

theory are proved, such as the first main theorem of Nevanlinna and the lemma on 

the logarithmic derivative. 

Some ultra-discrete equations admit ( max, +) meromorphic solutions. We con" 

jecture that in the sense of the (max,+) Nevanlinna theory we have introduced, 

the ultra-discrete Painleve equations (and in general all integrable ultra-discrete 

equations) admit finite-order (max,+) meromorphic solutions on JR. 

As a further, numerical study of ultra-discrete equations we shall work with those 

ultra-discrete equations in a dependent variable Xn where n E Z such as equation 

(1.1). A solution of such an equation is a sequence of iterates. Moreover we shall let 
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each iterate be a (max,+) rational function of an auxiliary variable x E lR U { -oo }. 

Then we shall define the degree Qn of Xn(x). 

The evolution of the degrees of successive iterates is investigated for different 

ultra-discrete equations. The equations are grouped according to whether they are 

integrable or not, determined by whether they satisfy the singularity confinement 

test for ultra-discrete equations introduced in [73]. Our aim in doing this is to 

look for an analogue of the concept of algebraic entropy from section 6.3, which 

can be used as a detector of integrability in discrete equations. We conclude that 

zero algebraic entropy appears to be a necessary condition for integrability of an 

ultra-discrete equation. 



Chapter 2 

Complex analysis 

In this chapter we review those parts of complex analysis which shall form a basis for 

original work presented later in the thesis, but shall provide no original work here. 

Specifically we review the Painleve equations, their properties and some derivations. 

Also we review meromorphic functions and their value distribution in the complex 

plane, as studied by classical Nevanlinna theory. We do not apply classical Nevan­

linna theory in this thesis, but shall later introduce an original generalization of it, 

for a special class of piecewise linear functions on the real line. 

The (differential and difference) Painleve equations live in the complex domain. 

Therefore a study of them will necessitate tools from complex analysis, which is the 

study of complex functions, especially of analytic functions - those that can be 

written locally as a power series. We then study Nevanlinna theory, which is con­

cerned with the value distribution of meromorphic functions on the complex plane 

(13]. A meromorphic function can be written 'Vz in terms of two entire ·functions 

f(z) and g(z) iE 0 as f(z)/g(z) [26]. A function is meromorphic if all of its singu­

larities are poles. If all solutions of a differential equation are meromorphic, then 

the equation has the Painleve property which is a strong indicator of integrability. 

Tools from N evanlinna theory may be used as a detector of integrability in difference 

equations. 

We shall study the different types of singularities a complex function can have. 

In particular a type in singularity called a pole must be defined in order to state 

the Painleve property. An equation satisfies the Painleve property if all movable 

13 
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singularities of its solutions are poles. 

Since the nineteenth century, the study of integrable equations has been an active 

area of research in nonlinear analysis. The six Painleve equations, nonlinear ODEs 

from complex analysis, have special properties that will be described in this chapter. 

2.1 Holomorphic functions 

Definition 2.1.1 Given a set S that is a subset of the complex plane S c; C, a 

mapping w: S-> C which assigns to each z E S a unique complex number w(z), is 

called a complex valued function on S. A complex function w is differentiable at z 

if 

I
. w(z + 8z) - w(z) 
!ill , 

6z-o Oz 
(2.1) 

exists. When the limit exists it is denoted by w' ( z) or ~~. If the function is differ­

entiable at every point of S, then it is said to be a holomorphic function inS. 

Let w be differentiable at z = x + iy. Then we write 

w(z) = u(x, y) + iv(x, y), (2.2) 

where u, v are real-valued functions defined on an open1 subset of C. There, we can 

obtain the first derivatives Ux, uy, Vx,"Vy by calculating w'(z) using the definition (2.1) 

with h taken as either pure real, or pure imaginary. We find that w'(z) = Ux + ivx 

and w'(z) = -iUy + vy. Equating the real and imaginary parts separately gives the 

Cauchy-lliemann equations, 

(2.3) 

which do not hold at a point (x, y) if w(z) is not differentiable there. They provide a 

necessary, but not necessarily sufficient condition for a function to be holomorphic. 

It is a sufficient condition if, for example, ux, uy, Vx, Vy are continuous everywhere. 

Theorem 2.1.2 Letw(z) = u(x,y)+iv(x,y), whereu andv have continuous partial 

derivatives throughout a region !1. Then w is holomorphic throughout !1 if and only 

if u and v satisfy the Cauchy-Riemann equations (2.3) there. 

1 A set is said to be open if and only if it contains no points on its boundary. 
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Note that the Cauchy-Riemann equations can be written compactly as Wz = 0. The 

terms analytic function and holomorphic function may be used interchangeably. In 

this text we shall mainly use the former. 

Example 2.1.3 Consider w(z) = x2 + iy2• Then the first derivatives are Ux = 2x, 

Vy = 2y, uy = Vx = 0. The Cauchy-Riemann equations give that w'(z) only exists 

where x = y. 

Varying x gives the limit 

(x + h)2 - x2 

lim h = lim(2x +h) = 2x, 
h-o h-o 

(2.4) 

while varying y gives the limit 

(y + k)2- y2 
lim k = lim(2y+k) = 2y, 
ik-o ik-o 

(2.5) 

which can be equal to w'(z) only on the line x = y. The Cauchy-Riemann equations 

do not hold on any open disc in the complex plane, so w is nowhere analytic. 

2.2 Singularities and zeros 

Singularities of a complex-valued function w(z) are points z0 in the domain where 

w fails to be holomorphic/analytic. The point z = z0 is called regular if w is 

holomorphic there. A singularity may be, for example, a pole or a branch point. 

A critical point is a singularity (a point at which the solution is not holomorphic) 

which is not a pole. Therefore a critical point may be, for example, a branch point 

or an essential singularity. 

Definition 2.2.1 A pole of a function w(z) of order/multiplicity m is a point Zo E IC 

such that the Laurent series w(z) = 2:::"=-oo an(z- Zo)n has an = 0 for n < -m 

and a_m # 0, where m is a positive integer. Therefore it behaves like 1/(z- z0 )m 

at z = ZQ. A pole of order 1, 2, 3 is referred to as a simple pole, double pole, triple 

pole and so on. 

Corollary 2.2.2 Let z0 be a pole of w(z) of order n. Then (z- z0 )mw(z) is non­

singular, and (z- z0)kw(z) is singular fork= 0, 1, ···,m- 1. 
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Definition 2.2.3 A zero of a function of order m is a point zo E IC such that the 

function takes the form w(z) = (z- z0)m f(z) where f is a holomorphic function 

such that f(Zo) i- 0. 

We note that a zero is not a singularity. 

A removable singularity of a function is a point at which the function is not 

defined (a singularity) but at which the function can be so defined that it is analytic 

at the singularity. An isolated singularity z = z0 of a function f is called an essential 

singularity if (z- z0 )m f(z) is also singular at z = z0 , Vm E Z. 

An essential singularity z = z0 of a function f(z) is one also exhibited by (z­

z0 )m f(z), for any finite m. In some way, an essential singularity behaves like a pole 

of order oo. 

Singularities of ODEs are either fixed or movable. The location of a fixed sin­

gularity does not vary with the particular solution chosen but can only occur at 

special points. The location of a movable singularity depends on the constant(s) of 

integration in the solution. Only nonlinear equations can have movable singularities. 

Example 2.2.4 As an example of an equation which possesses fixed singularities, 

consider the linear ODE 

w" + p(z)w' + q(z)w = 0. (2.6) 

A solution w(z) can only have singularities when p or q is singular. Therefore they 

are fixed singularities. 

Example 2.2.5 Consider the nonlinear ODE, 

w' +w2 = 0, (2.7) 

which admits a solution w(z) = .:c where c E IC is an arbitrary constant. Therefore 

z = c is a movable singularity. 

Example 2.2.6 The function •':41 = ~ + · · · has a triple pole at z = 0. The 

function •'+,~:- 1 has a removable singularity at z = -1, since the function can be 

rewritten as z2 + z + 1 which is analytic at z = -1. 
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2.3 Cauchy's integral theorem 

Definition 2.3.1 Let f(z} be holomorphic inside and on a positively oriented con­

tour 'Y· For a inside 'Y, Cauchy's integral formula is 

f(a} = _21 ·1 f(w} dw. 
m ~w-a 

(2.8} 

Liouville's theorem states that if f is an entire function that is bounded in the 

complex plane IC, then f is constant. To prove this, s 

Example 2.3.2 Suppose lf(w}l :<:; M for all w E IC. Fix a, b E IC. Take R ;::: 

2max {lal, lbl}, so that lw- ai ;::: !R and lw- bl ;::: !R whenever lwl ;::: R. Applying 

Cauchy's integral formula with the contour 'Y(O; R}, 

f(a)- f(b} = ~1f(w) (-
1
-- -

1
-) dw, 

27l'z ~ w-a w-b 
(2.9} 

and its magnitude is 

If( a)- f(b}l :-:; 4MI~- bl. (2.10} 

We can make this distance arbitrarily small by letting R --> oc. Then we can take 

f (a} = f (b), in which case f is constant. 0 

Let p( z) be a non-constant polynomial with constant coefficients. Then there 

exists ( E IC such that p((} = 0. This is the fundamental theorem of algebra. 

We prove this by contradiction, i.e. by supposing that p(z} # 0 for all z. Since 

jp(z)l --> oc as lzl --> oc, there exists R such that 1/lp(z)l < 1 for lzl > R. On 

the compact set D(O; R), 1/p(z} is continuous and hence bounded on IC. It is also 

holomorphic. Therefore by Liouville's theorem, it is constant. 

2.4 Painleve property 

Definition 2.4.1 An ODE is said to possess the PainleVt§ property if all movable 

singularities are poles. 

In this section we will describe Painleve's a-test and use it to classify first order 

equations with the Painleve property. 
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We consider a rational equation of the form 

, P(z, u) 
u = -:oQ'""'(---'z ,'---u_,_) ' 

18 

(2.11) 

where P and Q are polynomials in u. Then Q(z, u) = (u(z)- a1(z))m'(u(z) -

a2(z))m' · · · (u(z)- an(z))m•, where the a;(z) are distinct functions. Making the 

transformation u --+ u + a1r after renaming m 1 as m, locally equation (2.11) takes 

the form 

(2.12) 

where F is analytic in a neighbourhood of (z = z0 , u = 0) and F(z0 , 0) # 0. Applying 

the coordinate transformations u = aU, z- Zo = am+!z =? :f. =a-m-!~' and 

taking the limit as a --+ 0, 

um~~ = F(zo + am+!z,aU)--+ F(zo,O), (2.13) 

which takes the constant value F(z0 , 0) = K for some z0 • The solution of this 

equation is U(Z) = ((m+1)KZ +C)(m+W'. For m> 0 the solution is branched. In 

order for equation (2.13) to have the Pa}nleve property U(Z) must not be branched 

and therefore m= 0 =? U(Z) =KZ+ C. This implies that Q(z, u) = Q(z) only. In 

this case we can write 

The transformation w(z) = .{,) preserves the Painleve property and gives 

w' - - wL> (ao(z)wn + a1(z)wn-! + a2(z)wn-2 + · · · + an(z)) 

- -ao(z)w2 - a1 (z)w- a2(z) + · · ·- an(z)w2-n 

(2.14) 

(2.15) 

Note that (2.15) is a rational equation of the form (2.11). We have just shown 

that the right hand side of such an equation with the Painleve property is in fact a 

polynomial. Therefore n :S: 2, and in terms of u, 

(2.16) 

Equation (2.16) is the Riccati equation, see for example [13]. It is the most general 

first order ODE that possesses the Painleve property. 
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Example 2.4.2 The general solution of the equation 

w12 = 4w3 + w + 1 (2.17) 

is solved by a Weierstrass function, whose only singularities are poles, and therefore 

this equation possesses the Painleve property. 

Example 2.4.3 The general solution of the equation 

(2.18) 

can be shown to have branch points. Therefore it does not possess the Painleve 

property. 

2.5 The Painleve equations 

Here we consider only second order equations that have the Painleve property. 

Specifically we consider equations of the form 

w" = f(z; w, w'), (2.19) 

where f is analytic in z, and rational in w and in w'. There are fifty equivalence 

classes2 of equations of the form (2.19) that possess the Painleve property. The 

solutions of forty four of these equations which satisfy the Painleve property may 

be expressed in terms of known functions (trigonometric, elliptic, solutions of linear 

ODEs etc.) The other six are the Painleve equations, labeled PI- Pvi, classified by 

Painleve and colleagues (1887-1909), see for example [11, 14]. 

The Painleve equations require the introduction of new transcendental functions, 

Painleve transcendents, for their solution. The first three, PI- Pm, were discovered 

by Painleve; Piv and Pv were later added by Gambier; and Pvi was added by Fuchs 

[11 J. We note that a special case of Pvi with fixed parameters can be transformed 

to Pm. 
2We consider equivalence classes each consisting of equations that are transformed into each 

other under MObius (bilinear rational) transformations, 

W(() _ a(z)w +b(z) 
- c(z)w + d(z)' 

( = ,P(z), 

where a, b, c, d and 4> are all locally analytic functions of z (14]. 

{2.20) 
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The Painleve equations are [14, 13] 

P 11 6 2 I: w = w +z, (2.21) 

Pn : W
11 = 2w3 + zw +a, (2.22} 

Pm: 11 w'2 w' (aw2 + !3) 3 o 
W =---+ +'YW +-, 

w z z w 
(2.23} 

wm 3 f3 
W

11 =-+ -w3 + 4zw2 + 2(z2
- a)w + -, 

2w 2 w 
(2.24} 

Pv : wll = (...!.. + _1_) w'2 _ w' + (w-p' (aw + fl.) + :!!£ + 5w(w+1) 
2w w-1 z z w z w 1 ' 

(2.25} 

p : wll = ! (1. + _1_ + _1_) w'2 _ (! + _1_ + _1_) w' 
VI 2 w w-1 w-z z w-1 w-z 

+ w(w-1)(w-z) (a+ fi£ + ~(z-1J + 5z(z-V) 
z2(z 1)2 w2 (w-1) (w-z) 

(2.26} 

where a, /3, 'Y and o are constant parameters. 

An integrable equation is a nonlinear equation which is solvable by an associated 

linear problem, in that the nonlinear equation is the compatibility condition of the 

linear problem, so any solution of the linear problem can be used to construct a 

solution of the nonlinear equation. We shall present examples of methods of reducing 

integrable equations to one or more than one equations which possess the Painleve 

property. Such reductions led to the formulation of the following conjecture by 

Ablowitz, Ramani and Segur, the ARS conjecture [11]: 

Any ODE which arises as a reduction of an integmble PDE possesses the Painleve 

property, possibly following a tmnsformation of variables. 

The singular points of PI- Pvi are tabulated as follows [14], 

z w 

P~, Pn 00 00 

Pm O,oo O,oo 

Piv 00 O,oo 

Pv O,oo 0,1,oo 

Pvi 0, l,w,oo 0,1,z,oo 
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The Painleve equations have asymptotic limits to other equations with the Prunleve 

property. Such limits are called coalescence limits because singularities of the equa­

tion merge under them. Coalescence limits usually take one Prunleve equation to 

another, as represented by (2.27), but these limits also occur for integrable PDEs 

[14]. 

Pm 

/ '\. 
Pv1 __. Pv Pn __. P1. (2.27) 

'\. / 

P1v 

2.6 Solutions of the Pairileve equations 

We shall check a necessary condition for the Painleve property, by using a method 

due to Ablowitz, Ramani and Segur considering the asymptotic behaviour [15]. The 

method was based on the work of Kowalevskaya [13]. We consider equations of the 

form 

w" = 6w2 + f(z), (2.28) 

which reduces to P1 (2.21) if f(z) = z. Equation (2.28) has a solution in the limit 

as w __. oo, with the leading order behaviour 

w(z) = A(z- zot­

Substituting (2.29) in (2.28) gives 

n(n- 1)A(z- zo)n-z = 6A2(z- Zo) 2n + f(z). 

(2.29) 

(2.30) 

Supposing that n < 0, we may neglect the last term on the right in the limit, since 

the other terms will tend to infinity. Then by comparing coefficients we find that 

n = -2 and A= 1. 

We look for series solutions of the form w(z) = L:~o a;(z - z0)i-Z where the 

above analysis gives a0 = 1 and a1 = a2 = a3 = 0. In this case equation (2.28) may 

be expanded as 

00 00 00 00 J(i)( ) 
L:)i- 2)(i- 3)a;(z- zo)i-4 = 6 L L:a;aJ(z- zo)i+J-4 + L .,zo (z- zoJi. 

~-i=O i=O j=O i=D 
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Now we compare the coefficients of (z _:_ zot-4 and substitute ao = 1 to find 

n-1 

(n + 1)(n- 6)an= 6 ~ aman-m + (n ~ 4)
1
J<n-4l(zo), (2.31) 

The index n of a coefficient an is called a resonance if the value of that coefficient is 

free. The above expansion fails to define a6 : equation (2.31) for n = 6 is 

therefore since a1 = a2 = a3 = 0 there is a resonance when n = 6 that gives 

f"(Zo) = 0. Since this is true for all Zo we get 

w"=6w2 +Az+B (2.32) 

where A and B are constants, and z can be scaled and shifted to get P1 provided 

that A # 0. If A does vanish then the equation can be solved in terms of elliptic 

functions [16]. 

For special values of the parameters, Pn - Pv1 possess rational solutions and 

solutions expressible in terms of special functions. 

The solutions of P~, Pn and P1v are meromorphic functions of the independent 

variable z. If the substitution z = e' is made in Pm and Pv, then the solutions 

become meromorphic functions oft. For Pvh 0, 1 and oo are fixed critical points 

which are branch points. Hence its general solution is not meromorphic throughout 

the finite complex plane. Since there exist three branch points, no transformation 

can remove all of them from the finite complex plane. In fact PVI contains the other 

five Painleve equations, which may be obtained from it by taking appropriate limits 

[11] 

2. 7 Nevanlinna theory 

N evanlinna theory studies the value distribution of meromorphic functions in the 

complex plane. A meromorphic function can always be written as f(z) = g(z)/h(z), 

where g(z) and h(z) # 0 are entire functions. The function tan z = =~ is mero­

morphic. A further example of a meromorphic function is a rational function, which 
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takes the form of a quotient of two polynomials multiplied by a constant factor 

CE C, 

f( ) 
= f1;!1 (z- al') 

Z C N • 
f1v=l (z- bv) 

(2.33) 

In particular, f(al') = 0 and j(bv) = oo, so that a, and bv are respectively called 

the zeros and poles of f. The number of times a zero or a pole appears in the 

appropriate product is its multiplicity. A zero or pole of multiplicity one is said to 

be simple, a double pole or zero has multiplicity two and so on [26]. 

Basics of N evanlinna theory 

In the 1920s the Nevanlinna brothers developed an extensive theory of the value 

distribution of meromorphic functions [18]. Nevanlinnatheory associates to each 

meromorphic function j(z) the real valued functions m(r, f), N(r, f) and T(r,j). 

These functions can be used indirectly to obtain information on the growth and 

value distribution of f(z) more efficiently than a direct analysis. 

In the complex plane, consider the open disc D = {z : lzl < r}. Let f(z) 

be a function which is analytic and nowhere zero on D. Using polar coordinates 

we have that the boundary of the disc is the circle lzl = r, called 8D. We use 

Caucby's integral theorem (2.8) to calculate log lfl at the origin in terms of its value 

distribution on 8 D, choosing to traverse 8 D in the anti clockwise direction, 

loglf(O)I = -
2
1 .1 loglf(z)ldz = 

2
1 {

2

~ loglf(re;~)ld<P. 
n:t fao z n: fo 

(2.34) 

However we wish to generalize to the case where f has finitely many zeros a 1, ••• , aM 

and poles b1, .•• , bN, counting multiplicities, in the punctured disc D \ {0}. We 

suppose that the Laurent series expansion of f at z = 0 is 

j(z) = (Jz~ + ... , (2.35) 

where (3 # 0. If 'Y < 0 then f has a pole of order -'Y at z = 0, or if 'Y > 0 then f 
has a pole of order 'Y there. Otherwise if 'Y = 0 then z = 0 is a regular point of f. 

Then we define the function 

( ) -~IT;!1 B(al',z)f( ) 
gz=z N z 

ITv=l B(bv, z) 
(2.36) 
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where B(a, z) = ;~z-:.."a). Then g(z) has no zeros or poles in D. To see why, we note 

that if f has a zero a then f has a factor ( z - a), while a pole b introduces a factor 

(z~b)" Then ~~::;) f(z) does not have these factors. This argument is particularly 

clear if f is a rational function (2.33). 

Jensen's formula results from writing (2.34) for g, see for example [27], 

1 12• r r 
logi.BI+'Ylogr= 211" loglf(re;~)ld</>- L log-la I+ L log-lbvl .(2.37) 

0 la"l<r p lbvl<r 
boundary of disc '--.....-"' '-....-' 

zeros of f on disc poles of f on disc 

In the case where f is regular at z = 0, the left hand side becomes log lf(O)I, which 

gives the form of Jensen's formula that is usually presented in textbooks [18, 26, 27]. 

Solutions of f(z) = a, called a-points, are counted, with due count of multi­

plicities, by a counting function n(t, a, f), t E IR, which gives the number of a­

points on the disc lzl ::; t ::; r. Defining there to be n(r, a, f) = n such a-points 

z = a;, i = 1, 2, ... , n on the disc, ordered by 0 :5 lad :5 lazl :5 .. : :5 lanl :5 r. In 

particular 

n(t, a, f)= 

0 (0 :5 t :5 lad) 

1 (latl :5 t :5 lazl) 

i (la; I :5 t::; laHd) 

n (lanl :5 t :5 r). 

(2.38) 

It could equivalently be said that n(r, a, f) counts the poles of g(z) = f(z\-a (count­

ing multiplicities). Also, a pole of f(z) is a zero of g(z). For example f(z) = z +a 

leads to g(z) = ~ which has a simple pole at z = 0 so f(z) has a simple a-point 

there. 

We define the integrated counting function as the integral of n( t, a, f) over the 

disc lzl ::; r with respect to the logarithmic measure dtft, 

N ( r, a,J) = 1r n( t, a ,f) ~ n(O, a, f) dt + n(O, a ,f) log r. (2.39) 

It can be shown that these solutions a; satisfy 

(2.40) 
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Applying this to the poles and zeros off respectively, 

L log I: I= N(r,O,f), 
JaJ.<.J<r IJ. 

L log l~l = N(r, oo,j). 
JbvJ<r 

(2.41) 

We define the function log+ of a positive real argument x E JR+ by 

log+ x = max(O,logx), (2.42) 

and note that logx =log+ x -log+~' 'lx > 0. Now we are in a position to define 

the proximity function of a function f as 

. 1 12~ 
m(r, oo, f) = 

2
11" 

0 
log+ lf(rei<'>)ld4>. (2.43) 

This is the mean value of log+ If I on the circle lzl = r. Roughly speaking, it describes 

how close on average the values of f ( z) are to infinity on this circle. Another useful 

variant of the proximity function is 

1 12~ 1 
m(r, a, f) = 2rr o log+ lf(rei1>)- al d4>. (2.44) 

Its growth correlates with the proximity of the values of f(z) to the value a E IC. 

The closer the values of f(z) are to a on the circle lzl = r, the larger the function 

m( r, a, f) is. 

The characteristic function is 

T(r, f) = m(r, oo, f)+ N(r, oo, f), (2.45) 

which provides a measure of the affinity of a meromorphic function f for the value 

oo. In a similar way, 

T(r, f~a) =m(r,a,f)+N(r,a,f) (2.46) 

is the Nevanlinna characteristic giving the affinity off for the value a. In particular 

T (r, J-) gives the affinity of f for 0. In terms of meromorphic functions f;, i = 

1, ... , n, some properties of the Nevanlinna characteristic are given for example in 

[27], 

n 

:::; LT(r, f;), (2.47) 
i=l 
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T (r, tf;) $ tT(r,f;) + logn. (2.48) 

We shall prove these results by noting that 

( 
n ) 1 12• n m r,oo,ttf; $ 

2
11" 

0 
1og+(n']1]\xlf;(rei0)i)d<P $ t:tm(r,J;)+logn,(2.49) 

m (r, oo, g /;) ::; t m(r, oo,f;), (2.50) 

where we use the inequality log+ IIT~=l J;j $ I:~= 1 log+ If; I. The number of poles, 

with due count of multiplicity, of the sum or product of the functions J; at a point 

is at most equal to the sum of the multiplicities of the poles at that same point. 

Therefore 

N (r, oo, I:~=l J;) $ I:~1 N(r, oo, /;), 
(2.51) 

N (r, oo, IJ~=l /;) $ I:7=1 N(r, oo, /;). 

We now combine the results according to equation (2.45) to prove the inequalities 

[26]. 

In order to relate the Nevanlinna characteristic of f to that· of r, n E N we 

observe that log+lrl = log+lfln = nlog+l/1, since 1!1 ::; 1 * lrl $ 1, so 

m(r, oo, r) = nm(r, oo,f). Also the multiplicities of all the poles of f are mul­

tiplied by a factor of n, and therefore so is the counting function, so we have 

T(r, r) = nT(r, f). (2.52) 

To end this section, we state the Poisson-Jensen formula for f(z) f. 0, oo, which is 

a generalization of the Jensen formula (2.37) at any point lzl < r, 

log lf(z)l = 2~ fo2
• r' 2rpr;-;;(~

2 

.P)+p' log lf(reiql)ld<P 

+ I:la"l<r log I ~~·~::JI (2.53) 

- I:lbvl<r log I ~~·~::JI· 
Fundamental theorems of N evanlinna 

Substituting the identity log If I =log+ IJI-log+ 
1
}

1 
in the Jensen formula (2.37) and 

using results of the previous section gives (provided that f(O) f. 0 and f(O) f. oo) 

log lf(O)I = m(r,oo,J)- m(r, O,f) + N(r,oo, f)- N(r, 0, f) 

= T(r,J)- T (r, y) . (2.54) 
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That is, the affinity of any meromorphic function for oo and its affinity for 0 differ 

only by a constant. Replacing f by f - a and comparing with the original, we have 

that 

T (r, f ~a) = T(r, f)+ 0(1), (2.55) 

where 0(1) is bounded as r--+ oo. This relation is Nevanlinna's first main theorem 

[26, 18]. It implies that if f(z) takes a value a E IC U { oo} fewer times than average, 

i.e. the counting function N ( r, a, f) is relatively small, then the proximity function 

m(r, a, f) must be large, and vice versa. Loosely speaking, if a meromorphic function 

takes a certain value a relatively few times, then the values of f(z) are "near" the 

value a in a large part of the complex plane. 

As an example, we shall investigate the effect of a Mobius transformation of f 

on the Nevanlinna characteristic. Specifically we want a relation between T(r, f) 

and T (r, ~}~n, where a, {3, "f, 6 E IC are such that a6- f3"t # 0.3 Then, the Mobius 

transformed function can be written as 1:_. + b, where a, b, c are constant. Then 

application of Nevanlinna's first fundamental theorem together with properties of 

the characteristic give 

( 
af + {3) 

T r, 'Yf + 6 = T(r,J) + 0(1). (2.56) 

Nevanlinna's second main theorem depends on an estimate for the proximity func­

tion m(r, f' I f), where f' If is the logarithmic derivative of f. Given a meromorphic 

function f, we denote by S(r, f) any quantity that is of growth o(T(r, !)) as r--+ oo, 

outside of a possible exceptional set E of finite linear measure; that is JE dr < oo. An 

important result of N evanlinna theory is the lemma on the logarithmic derivative, 

m (r, j) = S(r,f), 

which holds for all transcendental meromorphic functions f. 
3In the case ao- !h = 0 then the transformed function is 

af+(3 a(f+oh) a 
"'f +0 = 'YU +oh) "' 

which is not allowed since it transforms f to a constant. 

(2.57) 
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Now we state Nevanlinna's second theorem. Let q ;::: 2, and let z1o •• • , Zq be 

distinct points in the complex plane, then the value distribution off satisfies [27] 

m(r, f) +~m (r, f ~ zJ :::; 2T(r, f) + S(r, f). (2.58) 

It is a generalization of Picard's great theorem, which states that if a meromorphic 

function f takes each of three distinct values in IC U { oo} at most finitely many 

times, then f is a constant [18]. 



Chapter 3 

Geometry and integrable systems 

In this chapter we shall not introduce any original work, but shall present examples 

of reductions of integrable differential equations to Painleve equations, by imposing 

either an appropriate symmetry group or a transformation of variables. In turn, 

the integrable equations we consider may be obtained as reductions of the SDYM 

equations. We also review the reductions of the integrable Ernst equation to either 

Pm or Pvr, which will be the basis of original work in a later chapter. 

Integrable systems are systems of equations (differential or difference) that com­

bine nontrivial nonlinearity with unexpected tractability. Often such systems admit 

large families of exact solutions [19). There are deep links between integrability and 

geometry. 

The SDYM equations are a system of equations for Lie algebra-valued func­

tions on a complex manifold IC4• They play a central role in the field of integrable 

equations, amongst other areas of mathematics and physics [29). Many examples 

of integrable equations may be obtained from the SDYM equations by symmetry 

reduction. This is suggested by the fact that their associated linear problems arise 

as reductions of the linear problem for the SDYM equations. The Painleve equa­

tions are further examples of integrable systems that are reductions of the SDYM 

equations [11, 20). In general, Ward (1985) conjectured in [2) that: 

Many (possibly all} of the ODEs and PDEs that are regarded as being integrable 

or solvable may be obtained from the self-dual gauge field equations (or its generaliza­

tions) by reduction {that is, imposing more symmetry conditions on the equations). 

29 
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3.1 Symmetry reductions of integrable PDEs to 

Painleve equations 

Some examples were given in [11, 15] where known integrable PDEs were reduced 

to one of the Painleve equations, after a possible change of variables. 

KdV equation and extensions 

The KdV (Korteweg-de Vries) equation is a nonlinear wave equation of the form 

Ut + 6UUx + Uxxx = 0, (3.1) 

in 1+1 dimensions [11, 15, 17]. We choose to effect the following transformation, 

u(t,x) = (3tt213F(z), (3.2) 

where the numerical factors are included for later convenience, and we find that 

-2F- zF' + 6FF' + F111 = 0. (3.3) 

Equation (3.3) may be transformed such that it can be expressed in terms of solutions 

of Pn. There exists a correspondence between solutions of this equation and those 

of Pn (2.22) given by [14] 

F= -w'-w2
, 

F'+a 
w=2F-z' (3.4) 

where a is the constant that appears in Pn. It can also be shown that the modified 

KdV equation and the cylindrical KdV equation both reduce to Pn via the method 

explained above [17]. 

Sine-Gordon equation 

Another example of an integrable equation is provided by the sine-Gordon equation, 

Utx = sinu, (3.5) 

which admits the scaling symmetry (t,x) = (.X-1t, .Xx). We restrict to the subspace 

of solutions invariant under this scaling symmetry by introducing 

y(z) = u(t,x), z = xt. (3.6) 
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Then we get [16] 

zy" + y' = siny. (3.7) 

We note that equation (3.7) does not have the Painleve property. However making 

the transformation w = eiY puts the reduction of the sine-Gordon equation in a 

rational form. It is 

1 
z(ww"- w12

) + ww' = 2w(w2 -1), (3.8) 

which is a particular case of Pm. We can conclude that the sine-Gordon equation 

has a reduction to Pm. We have therefore performed a change of variables which 

takes an equation which does not have the Painleve property to one which does. 

3.2 Self-dual Yang-Mills (SDYM) equations 

Yang-Mills theory was introduced in the seminal work of Yang and Mills [50], as 

a generalization of Maxwell's Abelian gauge theory of electromagnetism to include 

non-Abelian gauges. Here we shall introduce Yang-Mills theory using the language 

of differential forms; see for example [3] for an introduction. 

We introduce a four dimensional manifold M, over some neighbourhood of which 

is defined a connection one-form A which is valued in a Lie algebra g; see appendix 

A for a brief introduction to Lie algebras and Lie groups. The Lie group generated 

by this algebra is the structure group of A. Then we define a two-form F called the 

curvature of A, and a covariant derivative D = d + A, 

F[A] = dA +A 1\ A=: DA. (3.9) 

The definition of F[A] given by [11, 29] differs from our definition (3.9) which can 

be reached by the transformations A--> -A, F--> -A. 

The Hodge dual ofF (see again [3]) is called' F which on our four dimensional 

manifold is a two-form. Then we define the Yang-Mills equation of motion, 

D'F = 0. (3.10) 

Additionally, any solution F of equation (3.10) must satisfy the Bianchi identity 

DF=O. (3.11) 
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The Yang-Mills equation gives second order PDEs for A and is in general very 

difficult to solve [29]. However if we impose the c?nstraint 

*F=>.F, (3.12) 

where >. is a constant scalar, then equation (3.10) reduces to an identity due to 

(3.11). Note that we can impose this condition (3.12) in the case when we work on 

a four dimensional manifold, in which case * F and F are both two-forms. In any 

D i' 4 dimensions it does not work, owing to the fact that* F is a (D- 2)-form. 

We shall work with that special case of (3.12) where>. = 1, in which the curvature 

is equal to its dual. Therefore it is known as the self-dual Yang-Mills (SDYM) 

equation. Since we have shown solutions of the SDYM equation necessarily satisfy 

the Yang-Mills equation (3.10), all solutions of the SDYM equation form a subset 

of the solutions of Yang-Mills theory [29]. 

Now define a set of four local coordinates {x~} on a neighbourhood of M. Then 

the potential and curvature take the respective forms 

A= A~dx~, F = ~Fwdx~ 1\ dx". (3.13) 

We shall now write the curvature (3.14) in component form, 

(3.14) 

The covariant derivative D = d+ A has components D~ = 8~ +A~, in terms of which 

curvature as F~v = [D~, Dv]· We define a column vector if>= (if>!, 1>2, ... , if>N )T for 

arbitrary N, from which it follows that the compatibility conditions of the linear 

equations 

(3.15) 

are equivalent to the vanishing of the Yang-Mills curvature. In this way the Yang­

Mills curvature arises naturally in linear analysis [19]. The connection components 

AI' may be either scalars or N x N matrices, but we consider only the latter, more 

yielding case. 

We consider an element g of a Lie group G. In terms of this we define the 

transformation 

gEG. (3.16) 
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We now wish to determine the resulting curvature from transformation (3.16). Using 

(3.14), 

" " " " " -1 -1 -1 -1 F~v = o~Av- ovA,.- [A,., Av] = o~(g Avg- g ovg)- ov(g A~g- g o~g) 

-[g-1 A~<g- g-1 o~"g, g-1 Avg- g-1ovg] 

= o~(g-1 Avg)-ov(g-1 A~<g)-[g-1 A~"g, g-1 Avg]+[g-1 A~g, g- 1 ovg]+[g- 1 o~g, g-1 Avg] 

= g-1 Fwg- g-1 (o~g)g-1 Avg + g-1 A"o~"g + g-1(ovg)g- 1 Al'g- g-1 A~o"g 

+[g-1 A~g, g-1avg] + [g-18~g, g-1 Avg] 

-1p =g ~v9· 

The action of this conjugation is by the structure group G only, so symmetries on 

the manifold M remain unaffected. In this light equation (3.16) is called a gauge 

transformation of Yang-Mills theory1 

Following [29], we now give the component form of the Hodge dual *F. On a 

four dimensional manifold * F is a two-form 

* F = ~VY€~" ~li F~0dx~ 11 dx", 

where the antisymmetric tensor €~"~" is defined with £0123 = +1, and g := det g~"" 

Indices are raised and lowered using a metric g~v(x) defined locally on M. 

If both F and its dual are defined in the same coordinate system, then the 

self-dual equation * F = F is 

(3.17) 

We will proceed in the specific case where M = IR2•2 , on which we define the metric 

(3.18) 

The SDYM equations on !R2•2 , (and also on IR\ which we shall not consider here) 

are, with the metric defined in (3.18) substituted in (3.17) 

(3.19) 

1We consider the example of electromagnetism. The structure group is G = U(l), meaning in 

this case the connection is Abelian. Therefore the curvature as defined by {3.9) is F = dA and a 

general element is g = eX where X is a pure imaginary scalar. Using this Lie group in {3.16) we 

see that a gauge transformation in electromagnetism is A~' =A~'+ 811-X => F,.w = F~J.v· 
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It shall be convenient to transform to the complex null coordinates (r,r,a,i't) as 

(3.20) 

Here an overhead bar denotes complex conjugation. The metric (3.18) is hence 

· transformed to 

ds2 = -drdr + dadi't. (3.21) 

Under a local coordinate transformation x~ --> x~, the curvature tensor transforms 

to F.:>.= F~v~~: ~· In terms of the coordinates (3.21) the SDYM equations are 

F,~ = 0, (3.22) 

where it is noted that the Greek indices here label components of the curvature 

tensor. We shall define the connection components using a similar convention, 

The SDYM equations (3.22) in terms of the connection components are 

(3.23) 

(3.24) 

(3.25) 

We present the isospectrallinear problem [29], 

(3.26) 

where (is the spectral parameter, and ol>(r,r,a,i't) E SL(2,C). The SDYM equa­

tions (3.22) are the compatibility conditions [8, + (8~, 8u + (8,]ol> = 0 which we 

calculate explicitly, 

= (8,A, + Au8, + ((8uA~ + A~8, + 8,A, + A,8,) + (2(8~A, + A,8~))ol>. 

-(8uA, + A,8, + ((8~A, + A,8, + 8,A, + A,8,) + (2(8,A~ + A~8,))ol> 

= (F,, + ((Fu~- F,,) + (2F,,.)ol>, 
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where we must substitute equations (3.26) back in to obtain the final step. We see 

that each of the SDYM equations (3.22) must be satisfied in order for the isospectral 

linear problem (3.26) to hold. 

We define two maps H, fi : IR2•2 __, SL(2, C), and therefore the maps are each 

complex-valued 2 x 2 matrices with determinant + 1. The maps are defined up to 

H __, P(r, a)H, fi-> P(r, a)f!, where P, PE SL(2, C). Following Pohlmeyer [47] 

and Yang [48] we have the freedom to give the connection components as 

--1 -Ac; =H 8c;H, --1 -A, =H 87 H, 

since after these substitutions the SDYM equations (3.23-3.25) all reduce to trivial­

ity. Since the gauge group has been chosen as SL(2, C) the connection is valued in 

the algebra s[(2, IC), whose elements are complex-valued traceless 2 x 2 matrices. 

We present Yang's matrix J = H FI-1 E SL(2, C), which is defined up to J -> 

P J p-1. Introducing an element g E SL(2, C), recall that the gauge transformation 

(3.16) sends F -> g-1 Fg and therefore leaves the SDYM equations invariant. We 

have from [48] that A is gauge-equivalent to 

We will show the gauge equivalence of A and A by setting g = FI-1• Then 

and the other two components may be obtained in similar ways. The first two SDYM 

equations (3.23,3.24) are then trivial, while the other SDYM equation (3.25) is 

(3.27) 

which is named Yang's equation (see for example [47].) Up to the freedom J -> 

PJP-I, Yang's equation is therefore equivalent to the SDYM equations. 
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3.3 An isomonodromy problem 

We introduce a complex vector <I> = (<I> I> <I>2)T. Each of the six Palnleve equations 

can be expressed as compatibility conditions (<I>A)z = (<I>,)A of the following linear 

system [14] 

<I> A = M(z; >.)<I>, (3.28) 

<I>, = N(z; >.)<I>. (3.29) 

Equations (3.28,3.29) are collectively known as an isomonodromy problem. The 

parameter>. is independent of z, and the particular 2 x 2 matrices M and N depend 

on the particular Painleve equation. The compatibility condition (<I>,)A = (<I>A)z of 

this system is 

M, - NA + [M, NJ = 0. (3.30) 

Isomonodromy problems for Palnleve equations are not unique [14]. We will show 

how the particular equation (3.30) may be obtained from the SDYM equations 

(3.23-3.25). We define a connection on IR2•2 as 

A= -Md>.- Ndz, 

and in terms of the coordinates ( r, 'f, a, a) we define T := >. and a := z. Then the 

SDYM equation (3.23) reduces to (3.30) while the other SDYM equations (3.24,3.25) 

each reduce to triviality. 

3.4 The Painleve equations as reductions of the 

SDYM equations 

In 1907, Fuchs considered the linear monodromy problem [11] 

Wyy = p(y; t)w, · (3.31) 

where p(y; t) is a rational function of y and t, with four regular singular points of 

y; three of which can be located at the fixed points 0, 1, oo, and the fourth at the 
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variable point t. Fuchs showed that the monodromy matrices are independent of t 

if and only if y(t) satisfies Pv1. Historically, this is how the sixth Painleve equation 

was discovered [11]. It is the compatibility condition of equation (3.31) and the 

equation 

w' = M(y; t)wy + N(y; t)w. (3.32) 

It is well known that the six Painleve equations are equivalent to reductions of the 

SDYM equations [20], with certain three dimensional Abelian conformal symmetry 

groups giving the different equations [20]. The Yang-Mills connection is valued in 

s[(2,1C). The Painleve transcendents are gauge invariants of the Yang-Mills fields, 

and determine the fields uniquely up to gauge and choice of constants of integration. 

We recall that the orbits of a group generated by a given set of vectors consist 

of the union of the points of the manifold obtained by the operation of the vectors 

on the manifold. In terms of a four dimensional spacetime M, for a reduction to 

one dimension, the orbits of M must be three dimensional. For this the Abelian 

symmetry G group is generated by three independent commutating Killing vectors, 

(3.33) 

We shall use the notation for the contraction of a one-form Z with a vector V, 

VJZ := V~'Zw Since there is no dependence on tin (3.33) it is permissible to 

make a gauge transformation to eliminate the dt component (since X J dt = Y J dt = 
ZJdt = 0). Then the Yang-Mills potential in component form is 

(3.34) 

and we define s[(2,1C)-values functions P := XJA = Ap,Q := YJA = Aq,R := 

Z JA = A., where P, Q, R are each functions of t only. If the orbits of G are 

null, that is the tangent vector to every orbit has vanishing norm, then the SDYM 

equations for the connection (3.34) are singular. In all other cases they reduce to 

ODEs in t [19]. 

We recall that P, Q, R, being valued in s[(2,1C) are each zero trace 2 x 2 matrices 

with complex-valued components. 
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There is a gauge freedom in the matrices P,Q,R in the SDYM equations up to 

conjugation by a constant 2 x 2 matrix K. For instance P--> KPK-1 is a gauge 

transformation. We may exploit this by reducing P to either 

P=K-(1 0 ), 
0 -1 

(3.35) 

according to whether K. # 0 (where P is semisimple2), or K. = 0 (where P is nilpo­

tent), since K-2 := ! Tr P 2 is an invariant . 

. We note that with this choice, one of the SDYM equations is fixed to P' = 0 [19]. 

This is achieved by choosing an appropriate single independent variable t = t(z; .X) 

in equation (3.30). 

The other two s[(2, iC) matrices Q, R take the component forms, 

Q = ( ~ :.X), 

R= (; ~P) 

(3.36) 

(3.37) 

In each case, the equations for the unknown components A, p,, v, p, e7, r come down 

to a single ODE of second order- which is the corresponding Painleve equation. 

We shall use the manifold M = JR2
•
2

, as in the previous section using complex 

null coordinates, as in metric (3.21) with three dimensional symmetry groups G 

of conformal transformations. These are generated by three commuting conformal 

Killing vectors X, Y, Z. Up to conjugation there are five possible choices of G. One 

corresponds to P1 and to P 11 , the others to one each of Pm - Pv1 [20]. The list of 

groups is 

Reduction(s) X y z 
P~, Pn a, r(au- aij) +(a- e7)a, +aT a"+ aij 

Pm a, (7a"- aaij aT 

P1v a, 2(C7au +raT) r8u + a8, + aij 

Pv a, raT+ aa" (7a<T +raT 

Pv1 -raT- C7au C7au + ra, raT+ a8u 
2 A square matrix M is called nilpotent if there exists some integer q such that M' = 0. 

Otherwise if no such integer exists then M is calld semisimple 
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The full list of Painleve equations in matrix form is given below [19] 

P1 P' = 0 Q' = [R,P] R' = [tP+R,Q] 

Pn P'=O Q' = [R,P] R' = [tP + R, Q] 

Pm P'=O tQ' = 2[Q,R] R' = 2t[Q,P] 
(3.38). 

plY P' =0 Q' = [P, R + tQ] R'=[Q,R] 

Pv P' =0 Q' = [P,R] tR' = [R,tP + Q] 

Pv1 P' = 0 tQ' = [R,Q] t(1- t)R' = [tP + Q, R] 

We will now present the derivation that leads to the result that the Painleve equa-

tions are equivalent to reductions of the s[(2, C) SDYM equations (3.23-3.25) with 

the above groups [20]. In further work, we shall find it necessary to work with only 

the matrix forms of Pm and Pvh so we shall study only these cases separately. 

Pm 

We shall explicitly derive the matrix form of Pm as a reduction of the SDYM 

equations, assuming that the symmetry group G is generated by two translations 

and a rotation, as above. In coordinates (r,i',a,a) the Killing vectors are 

X = (0, 1, 0, 0), Y = (0, 0, a, -iT), z = (1,0,0,0). (3.39) 

Then we introduce an s[(2, C)-valued potential1-form A = A~dx~ = ATdr + Ardi' + 
Auda + AadiT, on which we use the gauge invariance of the SDYM equations under 

A --+ g-1 Ag + g-1dg, g Es[(2, C) to set Aa = 0, and then have 

P = XJA = Ar, 

Now we substitute in the SDYM equations (3.23-3.25), 

0 = FuT =OuR- [)TQ + .!_[Q, R], 
a a 

0 =Far =BaP, 

8aQ 
0 = Fua- FTf = --- 8TP+8rR- [R,P]. 

a 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

We next make the substitution (Q, R) --+ (R, -Q) in order to make this system 

equivalent to that given in table (3.38). Insisting now that P, Q and Rare functions 

only oft = ,;;;g, we reduce to the ODEs 

P'=O, tQ' = 2[Q, R], R' = 2t[Q, P], (3.44) 
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which is equivalent to Pm. The second equation of system (3.44), for both semisim­

ple and nilpotent P, has components 

tJ..' = 2(p,r- 17v), tp,' = 4()..(7- pp,), tv' = 4(pv- J..r). (3.45) 

The third equation of system (3.44), for semisimple matrices P has components 

rJ = 0, 171 = -4Ktp,, r' = 4Ktv, (3.46) 

while for nilpotent matrices P it has components 

p' = -2tv, a'= 4tJ.., T
1 = 0. (3.47) 

Also we have the three conserved quantities £2 = !Tr Q2 , m = Tr PR and n = 

Tr QR. In both semisimple and nilpotent cases, £2 = J.. 2 +p,v and n = 2pJ..+p,r+vi7. 

In the semisimple case m = 2Kp while in the nil potent case m = T. 

We note that a Pm transcendent is y(t) = t- 1u(t) [19, 20, 21] which solves Pm, 

" y'2 y' ay2 + f3 3 o 
y =---+ +'l'Y --. 

y t t y 
(3.48) 

where {a, (3, ')', o} is a set of constant parameters to be determined. 

Provided that "fO of 0, we can rescale y and t such that without loss of generality, 

equation (3.48) can be transformed to 

y'2 y' &y2 + /J 1 
y"=---+ +y3 

y t t y' 
(3.49) 

which is Pm with t = 1 and 8 = -1 [14]. Rational solutions of the transformed 

equation exist if 

& + t/3 = 4n, nEZ, (3.50) 

where E = ±1 [22]. 

PVI 

We will write Pv1 as 

P' =0, tQ' = [R,Q], t(1- t)R' = [tP + Q, R], (3.51) 



CHAPTER 3. GEOMETRY AND INTEGRABLE SYSTEMS 41 

The second equation of system (3.51), for both semisimple and nilpotent P, has 

components 

tX = av- Jl.T, t/11 = 2(pJ1- Ao-), tv' = 2(Ar- pv). (3.52) 

The third equation of system (3.51), for semisimple P has components 

(1 - t)p' +X = o, (1 - t)a' + 11' = 2M, (1 - t)r' + v' = -2Kr, (3.53) 

while for nilpotent P it has components 

(1 - t)p' + A1 = r, (1- t)a' + 11' = -2p, (1 - t)r' + v' = 0. (3.54) 

Also we have the three conserved quantities £2 = !Tr Q2 , m2 = !Tr R2 and n2 = 

!Tr (P + Q + R)2 • In both semisimple and nilpotent cases, f.2 = A2 + Jl.V and 

m 2 = p2 + ar. In the semisimple case n2 = (K +A+ p)2 + (Jl + a)(v + r) while in 

the nilpotent case n2 =(A+ p)2 + (1 + /1 + a)(v + r). 

Finally, we note that a Painleve transcendent can be obtained in all cases given, 

in terms of a root u(t) of the equation 

det[P, uQ - R] = 0. (3.55) 

In the semisimple case, the roots are u1 = ~ and u2 = ~. while in the nilpotent case 

we have the single repeated root u = ~. 

If we consider an Abelian group, then P = 0 which implies that the SDYM 

equations are trivial [20]. We shall deal with such cases separately. 

We note that a PVI transcendent is y(t) = t(1 + (1- t)u(t)t1 [19, 20, 21] which 

solves Pv1 (3.56), 

y" = ! (! + _1_ + -'-) yl2 - (! + _1_ + -'-) y' 2 y y-1 y-t t t-1 y-t 

y(y-l)(y-t) ( f] t (t-1) < t(t-ll) + t'(t t)' a + ;r + 'Y~ + u (y-t) , 

(3.56) 

where {a, {3, -y, 8} is a set of constant parameters to be determined. 

3.5 The Ernst equation 

We have seen that the SDYM equations are equivalent to Yang's equation (3.27) 

up to a gauge transformation. We shall reduce (3.27) to the Ernst equation, which 
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has two independent variables (p, z) defined asp= 20"112u112 and z = T- 7. Then 

Yang's equation for J = J(p, z) is· 

0 = 8,,(J-18rJ) - 8u(J-18uJ) 

= -8z(J-18zJ) _ (}"1/2(j-1/28p(J-10"-1/2(jl/28pJ) 

Substituting the above definition of p, we arrive at 

(3.57) 

Where J is real, the components of equation (3.57) can also be obtained as reductions 

of the Einstein vacuum field equations for cases when the spacetime geometry admits 

a pair of commuting Killing vectors [19, 21, 31] which we shall study in chapter 4. 

All solutions of the Einstein vacuum equations with such symmetry were shown in 

[12] to correspond to solutions of the SDYM equations with gauge group SU(2). 

More specifically, to obtain the Ernst equation as originally derived in [35], we 

parameterize Yang's matrix as 

J=-1 ( 1 
f g 

j,gER 

On substitution of this Yang's matrix in (3.57) we obtain the system 

f'l 2f = 'lj. 'lf- 'lg. 'lg, f'l 2g = 2('1 f). ('V g). 

Introducing a complex-valued Ernst potential t: = f + ig, we can write the above 

system as the Ernst equation, 

(Re t:)'l2t: = 'lt:. 'lt:, 

where the gradient 'V:= (8p, 8z) and Laplacian '12 := p-1 tp(Ptp) +-£,are defined 

on R3 in cylindrical polar coordinates, acting only on functions that are independent 

of azimuth. 

The Ernst equation is found [21] to have reductions to Pm and to Pv1. Referring 

to the table of Killing vectors given in the previous section which generate the five 

distinct three dimensional conformal symmetry groups, we have that in the Pm case, 

reduction of the SDYM equations by Y and X + Z gives the Ernst equation. In the 



CHAPTER 3. GEOMETRY AND INTEGRABLE SYSTEMS 43 

Pv1 case, reduction by X+ Y and Y + Z also gives the Ernst equation [11, 21]. We 

then may determine solutions to the Ernst equation from the third or sixth Painleve 

transcendents. In order that a solution be physical, J(p, z) should be real. These 

reductions were originally presented in [21], and we shall present such reductions 

in chapter 5, made by postulating a separation of the two variables in the Ernst 

equation. 



Chapter 4 

Spacetimes with two commuting 

Killing vectors 

In this chapter we shall work within the theory of general relativity, which is outlined 

. in appendix B. We do not present any original work here, but shall consider four­

dimensional solutions (spacetimes) that admit two commuting Killing vectors, which 

are said to be hypersurface orthogonal. The vacuum Einstein field equations are thus 

reduced to a system which includes the Ernst equation (or an analytic continuation 

of it). As we saw in chapter 3 the Ernst equation is integrable [11, 31], and has 

known reductions to certain Painleve equations [21]. In the next chapter we apply 

these methods in the context of particular Bianchi spacetime models that admit two 

commuting Killing vectors, which is believed to be original for some such models. 

An integrable equation, in the context of an inverse scattering method, yields 

well-behaved solutions via a related linear problem. The Ernst equation in general 

relativity is a nonlinear PDE which is a special case of the vacuum Einstein field 

equations, when the spacetime geometry admits two commuting Killing vectors. 

The compatibility condition of this linear system is the Ernst equation, which in 

turn can be reduced to either Pm or Pv1. 

44 
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4.1 Killing vectors 

Consider a Riemannian manifold M endowed locally with a metric tensor 9w· A 

Killing vector field K is said to be defined on a manifold M where its operation 

leaves the metric invariant; it is said to generate an isometry. By virtue of this it 

solves Killing's equation 

(4.1) 

where '\1,. is the covariant derivative compatible with g,.v (in that we demand 

'\1 ,.9vn = 0 over the subset of M on which the metric is defined.) 

In terms of the isometry group of M, the orbit of a spacetime point x E M is 

the set of points to which x can be moved to by the elements of the isometry group, 

see for example [4]. 

4.2 Hypersurface orthogonality 

We shall consider those local solutions of general relativity (M, g,.v) which admit 

two commuting, hypersurface orthogonal Killing vectors. It is known that Bianchi 

type I-VII models are amongst such spacetimes [31]. In a coordinate system labeled 

( t, x1 , x2 , z) we choose the commuting, spacelike Killing vectors K1 = 81 and K 2 = 82 

which generate translational symmetries in the x1 and x 2 coordinates respectively, 

along a given hypersurface h(x1, x2 ) = constant. We have the freedom to choose 

Ka = 8., where a= 1, 2. In order for the metric to admit these Killing vectors, we 

must have 9w = g,v(t, z) only. 

A Killing vector is Ka = K.b8b. We chose K.b = o.b, from which we have that 

9a3 = 9b38ab = (K.)s = 0 and similarly 9ao = 0 [8, 9]. The vacuum field equations 

together with the requirement that the metric signature should be (- + ++) lead 

to 

ds2 = f(t, z)( -dt2 + dz2
) + 9ab(t, z)dx"dxb, (4.2) 

where a, b = 1, 2. 
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4.3 Light cone coordinates 

We shall define two dimensional submanifolds of the spacetime manifold with metric 

( 4.2) by the constraints X' = constant. On any such submanifold the metric is 

On this submanifold a null geodesic satisfies dt2 - dz2 = 0. We define the light cone 

(null) coordinates((, TJ) by t = (- TJ and z = ( + TJ, in terms of which the equation 

of a null geodesic is d(dTJ = 0. Then the metric (4.2) becomes [11] 

(4.3) 

We shall use a coordinate system (x0 ,x1,x2 ,x3
) = ((,x,y,TJ). We require that the 

conformal factor f((, TJ) be a positive definite function in order to preserve metric 

signature(-+++). Therefore the coordinate freedom ((,TJ) --> ((,ij) is allowed 

provided that ((ijq > 0. 

4.4 Vacuum Einstein field equations 

In order to calculate the curvature tensor, we define the 2 x 2 matrix g =(gab), 

g((,TJ) = ( a((,TJ) b((,TJ)) 
b((,TJ) c((,TJ) 

(4.4) 

and define a2 = det g = ac - b2• It shall also be convenient to define the matrices 

A -1 = -ag,g ' B -1 = agqg . (4.5) 

The first step is to write the spacetime metric g~v and its inverse g~" defined by 

g~·g"" = 6"~, 

0 0 0 2f 0 0 0 I 
2/ 

0 a b 0 0 c b 0 
(g~v) = (gW) = "'" 

-.,. 
b a 0 b c 0 0 -.,. 

"'" 
0 

2f 0 0 0 I 0 0 0 2/ 

The affine connection coefficients are 

(4.6) 
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from which we see that r~w = r~"( (, 77) only and similarly for R~Kv" This, and 

the requirement that everything be symmetric under interchange of ( and ry, sim­

plifies the calculation of the curvature tensor. In displaying the curvature we have 

substituted our definition of a where convenient. 

ro !!!1. 
11 = -4!' r o !'!!. 

12 =;= -4/' rooo = (in f),, 

ro - !'>!. 22- -4/' f 1
01 =-!,;.(ea(- bbd 

f 2
02 = -!,;.(-bb< + ac<). 

f 1
02 = ~(cb,- be,), (4.7) 

f 2o! = ~( -ba, + abd, 

The non vanishing components of the Ricci tensor are derived from the Riemann 

curvature tensor as the contraction Rp,v = R~~"' giving 

1 
Ro3 = -(lna)(q- (lnf)(q + 

4
a 2 Tr AB, 

Roo =-(In a)«+ (lnf)((lna),- ....!.._2Tr A2
, 

4a 

R33 = -(lna)qq + (lnf)q(lna)q- ....!.._2Tr B 2
, 

4a 

Rn =-~1 + s)a2 (a(4b\bq- a,eq- aqc<)- 2b(a,bq + b,aq) + 2ca,aq), 

R22 =- ~1 + sla2(2ac,eq- 2b(b,eq + bqcd + c(4b\bq- a,eq- aqc,)), 

R12 =- ~1 + sla2 (a(b,eq + bqc,)- 2b(a,eq + aqcd + c(a,bq + aqb,)). 

Then the Ricci curvature scalar is 

+ :2 ( ~~ - s)a2 (2ca,a.q - 2b(a,bq + a.qbd +a( 4bqb( - a.qc, - aqcd) . 

We impose Rp,v = 0, i.e. the vacuum field equations in the case A = 0. The dynam­

ical equation is the Ernst equation, a matrix equation formed from the equations 

R11 = R12 = R22 = 0. Therefore we have [9] 

(4.8) 
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which governs the dynamics of g((, 1J) [9]. It is an integrable equation [11, 15, 29, 31]. 

For any square matrix M, deteM = eTr M. Making use of this identity and the 

cyclical property of the trace 1 

With this result, taking the trace of equation (4.8) yields [31, 32] 

(4.9) 

The other non-trivial vacuum field equations Ro3 = Roo = R33 = 0 are 

1 
(In f),~= -(lna),~ + 

4
a 2 Tr AB, (4.10) 

(In f) =(In a)"+ _1_Tr A2, 
' (ina), 4aa, 

(4.11) 

(in f) -(In a)~~+ - 1-Tr B 2 (4.12) 
~- (In a)~ 4aa~ ' 

where equations (4.11) and (4.12) may be solved for f((, 1J) using numerical methods, 

upon which (4.10) is trivialized [9]. 

For convenience in later calculations we shall write the reduced Einstein field 

equations in terms of the original coordinates (t, z) in the metric (5.26). The matrices 

A = -a(gz + g1)g-1 and B = -a(gz - g,)g-1• 

We consider the Ricci-flat metrics of the above form - satisfying the equations 

R~"" = 0 for such a metric. In terms of a matrix g = (9ab), the equations Rab = 0 

give 

(4.13) 

The trace equation ( 4.9) transforms to 

O:'tt - Gzz = 0. (4.14) 

The remaining nontrivial Einstein vacuum field equations, Roo = 0, R33 = 0 and 

Ro3 = 0 respectively, transform to 

(lnflz + (lnf)t = (lna)zz +2(lna)zt + (lna)tt + Tr A
2 

, 

(in a)z +(in a)1 4a(az +a,) 
(4.15) 

-----------------
1It is not clear whether the matrix logarithmic derivative (lng)0 is equal to g,g-1 or to g- 1g,. 

However using the cyclical property of the trace, Tr g,g-1 = Tr g-1g0 , so we can define Tr (lng)0 

unambiguously. 
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(lnf)z _ (lnf), = (lna)zz- 2(lna)zt + (lna)tt + Tr B
2 

, ( ) 

(lna).- (lna), 4a(a.- a,) 
4

·
16 

TrAB 
(lnf)zz- (lnf)tt = 

4
a2 - (lna)zz + (lna)tt, (4.17) 

4.5 Vacuum Einstein field equations with cosmo­

logical constant 

We consider the Einstein field equations (B.2) in vacuum Tw = 0 with arbitrary 

cosmological constant A, 

(4.18) 

Contraction of (4.18) with the inverse metric gJW yields the trace equation R = 4A 

in four spacetime dimensions. 

We shall continue to work with the metric admitting two commuting Killing 

vectors ( 4.3) 

ds2 = 4/((, 17)d(d'7 + 9ab((, 'l)dx"dal, 

and will adopt the definitions of section 4.4. 

It is convenient to define a quantity X := -A, + B,. Then the dynamical 

equation (4.13) when A = 0 becomes X = 0. In order to generalize for any A, 

by reducing some of equations ( 4.18) to an analogous system, we aim to write the 

matrix 

X= ( Xu X1z) 
Xz1 Xzz 

in terms of components of the Ricci curvature tensor. We calculate 

X 11 = 2a-1(a,,c- bb,,) + ~a-3 [(a,c, + a,c,)(ac- 2b2
) 

-4bcb,ac- 2a,a,c2 + 3bc(a,b, + a,bc) +ab( bee,+ b,cc)] 

X 12 = 2a-1(b,,a- ba,c) + ~a-3 [(a,cc + acc,)ab 

+4bcb,ab + 2a,a,bc- (ac + 2b2 )(a,b, + a,bc)- a2(bcc, + b,cc)] 

x21 = 2a-1(b,,c- bc,c) + ~a-3 [(a,c, + a,c,)bc 

+4bcb,bc + 2c,c,ab- c2 (a,b, + a,b,) - (ac + 2b2 )(b,c, + b,cc)] 

(4.19) 

(4.20) 

( 4.21) 

(4.22) 
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x22 = 2a-1(c,,a- bb~d + !a-3 [(a~c, + a,c,)(ac- 2b2) 

-4b<b~ac- 2c,c,a2 + bc(a,b~ + a~b,) + 3ab(b,c, + b~c,)] 
(4.23) 

Comparing these results with the relevant Riemann curvature tensor components, 

Ru =-~1 + sla2 (a(4b,b~- a,c,- a~cd- 2b(a,b~ + b,a~) + 2ca,a~), 

R22 =-~1 + sla2(2ac,c,- 2b(b,c, + b~cd + c(4b<b~- a,c,- a~cd), 

R,2 =-~1 + sla2(a(bcc, + b~cd- 2b(a,c, + a~c,) + c(a,b~ + a~bd). 
we deduce that Xu = ¥-(-cRu + bR12 ) = ~(-ac + b2) = -4Afa, X 12 

¥-(-aR12 +bRu) = 0, X21 = ¥-(-cR12+bR22) = 0 and X22 = ¥-(-aR22 +bR!2) = 

-4Afa. Then 

(4.24) 

Taking the trace of equation (4.24) yields a,~ = -2Afa. 

It remains to calculate the other components of the Einstein field equations. 

They are Roo = R33 = 0 and Ro3 = 2Af, 

1 
2Af = -(In a),~ - (In!),~ + 

4
a2 Tr AB, 

(In f) = (In a)«+ _1_Tr A2, 
< (in a)< 4aa, 

(In f) = (In a)~~+ _l_Tr B2, 
~ (in a)~ 4aa~ 

We can now substitute to find the following equation for g((, 71), 

( (
(lna)« 1 2) 1 ) A~-B< = 2a -(lna),~- (In a), + 4aa, Tr A ~ + 4a 2 Tr AB h-(4.25) 

and its trace, 

a,~=- (-(In a),~-(~~~)~<+ 4~a, Tr A
2

) ~ + 4~2 Tr AB) a. (4.26) 

We note that equations ( 4.25,4.26) while dependent only on g and its determinant 

a2, are both of third order in a. We could reduce them to second order equations by 

substituting a,~= -2Afa, however this would unavoidably introduce the conformal 



CHAPTER 4. SPACETIMES WITH TWO COMMUTING KILLING VECTORS51 

factor f into the equations. We shall look at a way to remove f from the equations, 

by means of an extra constraint on the metric, in the next section. 

Transforming back to the coordinates ( t, z) equation ( 4.24) becomes 

(4.27) 

and its trace yields -att + azz = -2Afa. 

4.6 Generalization of the elliptic Ernst equation 

We shall modify the metric (5.26) by introducing the spacelike coordinate p = it. 

Then 

a= 1,2. (4.28) 

Such a metric admits one spacelike and one timelike Killing vector, and describes 

a stationary, axially symmetric gravitational field. This means the field does not 

change in time, and it admits a single spatial axis of symmetry. 

In order to give the metric (4.28) signature(-+++), then a 2 := detg must be 

negative, hence a is imaginary in this case. We define a real variable (3 by a = i(3, 

in terms of which equation ( 4.24) reduces to 

(4.29) 

The trace of ( 4.24) in the present coordinates yields 

(3pp + f3zz = -2AJ(3. (4.30) 

We note that f3(p, z) is a harmonic function if and only if the cosmological constant 

A=O. 

From equation ( 4.24), we obtain 

(4.31) 

where we define a two dimensional gradient \1 = ( tP, %, ) and the Laplacian we shall 

use2 is /':, = 8' + !!e..§_ + 8' + !!e..§_ apr (3 8p azor (3 az. 
2The Laplacian is not on our defined spa<etime manifold [4] with metric (4.33), but is on the 

metric 

(4.32) 
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We shall consider the specific metrics 

(4.33) 

with 

(x\x2
) = (t,<p), 

( 
-h -ah ) 

9 = -ah -a2h + (Ph-1 ' 
(4.34) 

where h,k,a,/3 are each functions of (p,z) only. We note that setting f](p,z) = p 

yields the case, using Weyl-Papapetrou coordinates, in which case the Ernst equation 

was originally derived from some of the symmetry reduced Einstein field equations 

[35]. We see from substituting for {3 in equation (4.30) that in this case A= 0. 

Writing the matrix gin component form as above, and defining h := e2u, the 11 

and 12 matrix components of equation ( 4.31) respectively are 

-2Afh2 = h6h- ('Vh) 2 + {3-W('Va) 2, 

-2Afah = a/':,h- ah-1('Vh) 2 + h(app +a •• )+ 2\la · 'Vh (4.35) 

+f3-2ah3('Va)2 - {3-1h'V/3 ·\la. 

Substituting these equations into one another gives 

The 22 component of the matrix equation ( 4.31) yields 

0 = a2 /':,h + {32h-26h + 2ah(app +a •• )+ h('Va)2 + 4a'Va · 'Vh 

-2{3-1ah'V/3 ·\la- 2{3h-1 ((Jpp + f3zz) + 2Afa2h- 2Af(J2h-1 (4.37) 

+f3-2a2h3('Va)2. 

Substituting the 11 component equation yields 

which proves the wave equation for {3 (4.30) after substitution of equation (4.36). 

The remaining function k is determined by solving the following two equations, 

~ = il~~il~ [2/3z/3pz + /3p(/3pp- /3zz) + h-2{3(Jz(hphz + bpbz) 

+lh-2/3/3 (h2- h2 + b2- b2)] 2 p p z p z 

(4.39) 
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( 4.40) 

It is notable that the cosmological constant does not enter either of the equations 

(4.39,4.40). 

We consider the complex variable, called an Ernst potential and first introduced 

in [35], 

t:(p, z) = h(p, z) + ib(p, z), (4.41) 

where b(p, z) is defined in terms of its first derivatives, 

( 4.42) 

since the compatibility condition (bp)z = (bz)p is then equivalent to the equation of 

motion ( 4.36). Then the matrix equation ( 4.31) can be written as the equation 

(Re £)(L£ + 2Ak) = (V'£) 2
• ( 4.43) 

Here we have used the same operator notation as above. We note that when A 

vanishes equation (4.43) is the Ernst equation [35]. With general A, the real and 

imaginary parts of this equation respectively are 

h(Lh + 2Ak) = (V'h)2
- (V'W, hLb = 2V'h · V'b. (4.44) 

The former equation is the 11 component of the Einstein field equations, and the 

latter becomes an identity after imposing the conditions ( 4.42). 



Chapter 5 

Bianchi models 

In this chapter we review the Bianchi classification of the distinct three dimensional 

Lie algebras and corresponding Lie groups into types I-IX, and the systematic ap­

plication of this classification to Bianchi spacetime models in general relativity. 

It is known that the Bianchi models of types I-VII admit two commuting Killing 

vectors, and in these cases we recall that the vacuum Einstein field equations are 

reduced to a system including the Ernst equation. Then a separation of variables 

is postulated under which the Ernst equation is reduced to a particular case of Pm 

or PVI, in accordance with the reductions obtained in [21]. Each Bianchi model 

falls into either class A or B; the class A reductions to particular cases of Pm are 

already known [33], but the class B reductions to particular cases ofPv1 - following 

a change of independent variables - are believed to be new. 

Bianchi models are four dimensional spacetime manifolds having local topology 

M = 1R x 2:, where E is .a three dimensional space manifold. The Bianchi models 

are spatially homogeneous in the sense that they each admit a three dimensional 

group of isometries G, which acts simply transitively on each manifold 2: of the 

foliation by JR. The spatial coordinates are defined on E, which is foliated by a 

time coordinate. For a recent survey of Bianchi models in the context of general 

relativity, see [49]. The time evolution of the metric is determined by the Einstein 

field equations, which are reduced to a system of ODEs. For Bianchi types I-VII 

some of these ODEs are Painleve equations, after a possible change of independent 

variable. Techniques from dynamical systems analysis can also be readily applied 

54 
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to systems of ODEs. The evolution of a universe described by a Bianchi model is 

determined solely from the time dependence of the metric, once we have specified 

the Bianchi type [36]. The Bianchi type of a model cannot change [37]. 

Physical motivations for the study of various Bianchi models are that they may 

describe local anisotropic regions of the observed universe, or large scale anisotropy 

in its early evolution. They are also useful to study the singularity structure of 

general relativity [6, 43]. 

5.1 Bianchi algebra classification 

In 1898, Bianchi published a list of the nine types of three parameter Lie algebra 

[39]. He labeled them as Bianchi types I to IX, where types VI and VII are each 

one-parameter families of algebras, while the other types are each single algebras 

[6]. It is not possible to convert between one Bianchi type and another by means of 

·a change of basis. We shall derive the Bianchi classification of structure constants, 

following [ 30 ]. 

Let g be a three parameter Lie algebra, which admits a basis { e;}, i = 1, 2, 3 

where e; = e;i&i. Recall from appendix A that the algebra is defined, up to global 

topological considerations, by its structure constants determined by the commuta­

tion relations [e;, ei] = C\jek [34]. For the case of the Bianchl classification, the 

structure constants may be decomposed as [37] 

(5.1) 

where Nii = NCii). 

Taking the trace of the structure constants (5.1) we find [4, 36] 

Nii = ~Eik!(Cilk- oikAl)· 

which completely define a three dimensional Lie algebra. Here Eiik is the totally 

antisymmetric tensor. 
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Any Lie algebra is required to satisfy the Jacobi identity C\;kC1m]i = 0, which 

gives the condition 

The first term and the third term vanish identically, since they are the product of a 

symmetric part and an antisymmetric part, but the second term does not. Therefore 

we require that a three dimensional algebra of the above form must satisfy 

(5.2) 

It follows from the definition of a Lie bracket that the structure constants behave as 

a tensor. Therefore Lie algebras are defined only up to a change of basis e; --> e: = 

R/ej where RE GL(3,1R). The transformations of the structure constants are (30] 

(5.3) 

(5.4) 

(5.5) 

where R-T denotes the transpose of the inverse of R or equivalently, the inverse 

of the transpose. Without loss of generality, the above rotations allow us to take 

Nii = diag (Nb N2 , N3) and A; = (0, 0, A) [36]. Class A Bianchi algebras are those 

for which the identity part of the structure constants A = 0, while class B Bianchi 

algebras have A f 0 and therefore a nontrivial identity part [37]. 

We shall enumerate the Bianchi classification by noting that the invariants of 

Nii are its rank (number of non vanishing diagonal components) and its signature. 

Non vanishing eigenvalues may be normalised as A; = ±1. With such a normalisation 

the signature is given by the modulus of the trace of Nii. We shall use Bianchi's 

classification scheme. The possible cases are (30]: 

Rank Nii = 3: Nii = diag (.Xb .X2, .X3). The Jacobi identity (5.2) tells us that in 

this case all components of A; necessarily vanish. Therefore the possible algebras are 

Nii = diag (1, 1, 1), Tr Nii = 3 (Bianchi IX) and Nii = diag (1, -1, 1), TrNii = 1 

(Bianchi VIII). 
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Rank N'J = 2: N'J = diag (At, A2, 0). In this case the Jacobi identity gives 

the most general form A; = (0, 0, A), where A is a further invariant parameter 

which gives families of algebras, including special cases we shall return to later. The 

families are N'J = diag (1, 1, 0), Tr NiJ = 2 (Bianchi VIIh) and NiJ = diag(I, -1, 0), 

Tr N'J = 0 (Bianchi Vh). Here we find it convenient to define A= VhNliN22. 

However for Bianchi type VIh there is a restriction h f -1. This case turns out to 

be unique and we classify it as Bianchi III [18]. 

The invariant h which arises in the above rank 2 cases is defined by 

(5.6) 

Rank NiJ = 1: N'J = diag (A1 , 0, 0). In this case, the Jacobi identity together 

with arbitrary rotations give that either A; = 0 or A; = (0, 0, 1). Here, the only 

possibility is N'J = diag (1,0,0), with A;= 0 (Bianchi II) or with A;= (0,0,1) 

(Bianchi IV). 

Rank NiJ = 0: NiJ = 0. As in the previous case we find that either A; = 0 

(Bianchi I) or A; = (0, 0, 1) (Bianchi V). 

A summary of the results is [34, 41] 

Bianchi type A Nt N2 N3 Class 

I 0 0 0 0 A 

II 0 1 0 0 A 

III=VLt 1 1 -1 0 B 

IV 1 1 0 0 B 

V 1 0 0 0 B 

VIo 0 1 -1 0 A 

VIh hi 0,-1 Fh 1 -1 0 B 

VIIo 0 1 1 0 A 

vnh hfO Vh 1 1 0 B 

VIII 0 1 -1 1 A 

IX 0 1 1 1 A 

An important property of Bianchi I to VII algebras which results from the ob­

servation C\2 = 0 is that two of the elements { e;} commute. Therefore they admit 
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an Abelian invariant subalgebra [7]. The linearly independent structure constants 

corresponding to the Bianchi I-VII algebras are 

Bianchi type C\1 Ci23 C231 C232 

I 0 0 0 0 

II 0 1 0 0 

m 1 1 -1 1 

IV 1 1 0 1 

V 1 0 0 1 

Vlh Fh 1 -1 Fh 
VIIh VFi 1 1 VFi 

We can use the trace to distinguish a class A for which the trace of the structure 

constant matrix, Ciij vanishes, for which A; = 0 (including Bianchi I, II, VI0 and 

VII0), and a class B for which the trace does not vanish, for which A; oJ 0 (including 

Bianchi m, IV, V, VIh and VIIh) [6, 36, 37]. 

In this article we choose to focus on Bianchi algebras of types I-VII, which share 

the property N3 = 0. These types may be parameterized by the 2 x 2 matrix 

K = (C•b3) where a= 1, 2. Explicitly 

( 
A N1) 

K= -N2 A . 
(5.7) 

Defining k = Tr K, we note that class A Bianchi algebras of types I-VII have k = 0, 

while class B Bianchi algebras have k oJ 0. In what follows we shall find it necessary 

to consider the two cases separately. 

We shall introduce, for later convenience, the zero trace constant matrix k = 

K- ~h. which is valued in a Lie subalgebra of st(2,JR), and generates a Lie group 

fi c SL(2, JR). Explicitly 

(5.8) 

We note that this matrix does not distinguish between class A and class B algebras 

due to the subtraction of the trace. 
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A further classification distinguishing the Bianchi I-VII algebras involves ask­

ing whether the corresponding matrix k is either nilpotent or semisimple.1 The 

classifications are shown in the following table. 

Class A Class B 

Nil potent I,II IV,V 

Semisimple VIo, VIIo Ill, VIh, VIIh 

5.2 Bianchi groups 

A Bianchi group G of type I-IX is generated by a Bianchi algebra g of the same 

type [39] as explained in Appendix A. In this thesis we choose to focus on Bianchi 

groups of types I-VII, which take the local form 

G=Rx H, 

where the defining subgroup H c GL(2, R). In contrast we note that the Bianchi 

VIII and IX groups are isomorphic to 80(2, 1) and 80(3) respectively. 

The exterior derivative of a 1-form w(X) is 

dw(X, Y) = X(w(Y))- Y(w(X))- w([X, Y]), (5.9) 

in terms of a second arbitrary vector field Y. 

A Maurer-Cartan 1-form wa is defined globally on a Lie group G, which like any 

Lie group may be identified with a manifold. Let T9G be the tangent space to G 

at g E G. In particular if e denotes the identity element of G then T.G is the Lie 

algebra g which generates G, see [46] for more details. Then the Maurer-Cartan 

form is a linear mapping 

(5.10) 

where the'set of left invariant vector fields {e;l9 } comprise a basis for T9G, and it 

follows that {e;le} are the generators of the Lie algebra. 

1 A square matrix M is called nilpotent if there exists some integer q such that Mq = 0. 

Otherwise if no such integer exists then M is called semisimple 



CHAPTER 5. BIANCHI MODELS 60 

Let e; be a dual basis to the Maurer-Cartan forms wh such that wh(ei) = o'J· 

Returning to equation (5.9) and defining X = e; and Y = ej, in component form 

where the structure constants have been introduced by [e;, ei] = Cf,ek. Henceforth 

we neglect the G subscript, and arrive at the Maurer-Cartan structure equations for 

the components (dwk)ii = dwk(e;, ej), 

. 1 . . k 1 . . k 
dw' = 2(dw')ikw' 1\ w = -

2
c•Jkw' 1\ w . (5.11) 

which states that the Maurer-Cartan derivative forms dwi are each 2-forms hav­

ing components -Cjk. We find it convenient to impose the boundary conditions 

wijlz=D = o'j· We proceed by substituting for each form of c~j given in the above 

table. Motivated by the form of the metric resulting from the hypersurface orthogo­

nality condition, we choose a basis in each case of a Bianchi I-VII group of the form 

[33], 

(5.12) 

Then dw3 = Jl-z = 0 in all ca.Ses. Our aim is to derive the 1-forms w•(z) from 

the structure constants for each Bianchi algebra, as classified in section 5.1. In the 

Bianchi I case the Maurer-Cartan structure equations reduce to dw1 = 0, dw2 = 0, 

from which w1 = Adx + Bdy and w2 = Cdx + Ddy, where upper case letters A, B, 

C and D are arbitrary constants to be determined from the boundary conditions 

w'Jfz=D = oi;- Then we find A= D = 1 and B = C = 0. 

In the Bianclti II case we have dw1 = w3 1\ w2 , dw2 = 0, so w2 = Edx + Fdy and 

dw1 dw1 

dz1 dz 1\ dx + dz2 dz 1\ dy = w2
1dz 1\dx + w2

2dz 1\ dy = Edz 1\dx + Fdz 1\ dy. 

Therefore we have two independent equations that give w\ = Ez -+' G and w\ = 
Fz +H. Using the boundary conditions, we find that w1 = d:t + zdy and w 2 = dy. 

For the remaining Bianchi IV-VII groups we shall give the appropriate reductions 

of the Maurer-Cartan equations for w•b(z), 

For Bianchi IV groups, 

dwla 2 I dz =Wa-Wa, 
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For Bianchi V groups, 

dw2
a 2 

-- = -wa. 
dz 

For Bianchi VIh groups, 

For Bianchi VIIh groups, 

Specifying the boundary conditions w•b(O) = o•b, we find that the exact form of 

each dual basis is 

Bianchi type w\ w'2 w2 
1 

w2 
2 

I 1 0 0 1 

II 1 z 0 1 

III e-•coshz e-• sinh z e-• sinh z e-• cosh z 

IV e-• ze-z 0 e-• 

V e-• 0 0 e-• 

VIo coshz sinhz sinhz coshz 

Vh e-~•coshz c~'sinhz e-~•sinhz e-~•coshz 

VIIo cosz sinz -sinz cosz 

vnh e-v'liz cos z e-v'liz sin z -e-v'li• sin z e-v'liz cos z 

The tabulated one-forms for Bianchi types I, II, IV and V are the same as those in 

[6). 

5.3 Bianchi spacetime models 

A spatially homogeneous spacetime is one which possesses a three dimensional group 

of isometries whose orbits are a one-parameter family of spacelike hypersurfaces 

which foliate (pass through every point of) the spacetime, such that for each value 

of the time coordinate t and for arbitrary points p, q E E1, there exists an isometry 

of g,v which takes p into q. In a spatially homogeneous spacetime (M, g,v) there 
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exists a family of spacelike hypersurfaces I:, such that for arbitrary p, q E I:, there 

exists an element g E G of the Lie group of isometries, g : M __. M such that 

g(p) = q. In the case where each g is unique in this way, G is said to act simply 

transitively on each I:,. This is the case for all Bianchi models, and implies that 

dim I:,= dimG = 3 [4]. 

Considering a simply transitive action, we can put the elements of G into corre­

spondence with arbitrary points p E I:, by the association g __. g(p). The action of 

I:, of the isometry g E G corresponds to left multiplication by gonG [4]. 

Bianchi models each admit a three dimensional isometry Lie group G that acts 

simply transitively on each leaf I:, of the homogeneous foliation [32]. Consequently, 

there exists a set of three left invariant vector fields { e;} on I:, which form the Lie 

algebra of G. It is found that the basis { e;} in all cases of Bianchi models depend 

only on the spatial coordinates x = (x,y,z) [36]. We define a dual basis {wi} by 

wi(ej) = oii' having components wi = wijdxi. The condition of spatial homogeneity 

implies that the Bianchi models take the form [4] 

(5.13) 

We introduce a coordinate basis {dxi}, in terms of which the metric transforms as 

(5.14) 

The manifold structure of a spatially homogeneous spacetime on which the isometry 

group G acts in a simply transitive manner is M = JR. x G. We can make a change 

of coordinate t __. T(t) which scales the 00 component to any desired function of 

t. We define the timelike vector e0 = 8, which generates translations along the real 

line JR. in the topological product. It commutes with the elements of the basis { e;}. 

In the case of a homogeneous model, we may introduce a coordinate system in 

spacetime such that the dependence of the 9ij on the spatial coordinates is deter­

mined by the symmetry requirements, as determined from the particular structure 

constants. The Einstein field equations then determine the time dependence of the 

9ij, and also the allowed forms of 9oo(t) given 9ij(t, x). 

Three spacelike Killing vectors { K;} form a basis of the isometry Lie group G 

admitted by a Bianchi type metric. Killing vectors correspond to the right invariant 

vector fields on G. Their components are given by K; = K/8j. 
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The Lie derivatives of the invariant basis { K;} with respect to the Killing vectors 

vanish, 

(5.15) 

Due to the simple transitivity the Killing vectors also form a basis of a spatial 

hypersurface E,, as does {e;}. In light of this the elements of the bases are related 

by linear transformations. Furthermore we define e; lv = K; lv at a fixed spatial point 

p E E,. This is consistent with equation (5.15). Then 

(5.16) 

(5.17) 

By substituting (5.16) in (5.15), and comparing this evaluated at p with the Lie 

algebra definition (A) we find that 

(5.18) 

We may evaluate 

at p, and comparison with the Lie algebra definition of appendix A gives the defin­

ition 

(5.19) 

which tells us that since the C~i are independent of position, the Killing vectors 

satisfy a Lie algebra at all points in the spacelike hypersurface E, 

Once we have a basis of three Killing vectors {K;}, we can generate a Lie group 

G which is the isometry group of M by means of exponentiation, to obtain a group 

element g E G as 

(no sum), (5.20) 

where the {Oi} are a set of three arbitrary parameters [6]. 

Although the condition that the Bianchi types each admit simply transitive 

groups requires there to exist three Killing vectors, the full group of isometries 

may well be bigger [30] .. 
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We consider the reduced metric 'Yii(t) which was defined in (5.13) as a three­

metric. For Bianchi I-VII models we have from the condition of hypersurface 

orthogonality that 'Y3i = 03;, so we consider the two-metric 'Yab· In the first in­

stance, we shall choose 'Yab(t) = diag(a2(t), b2(t)) as the reduced metric [33]. Using 

such a basis, the metrics of Bianchi spacetimes as defined in (5.23) take the forms 

g.b(t, z) = 'Ycd(t)W0
0 (z)wdb(z). 

Now that we have developed the theory of Bianchi models, we shall specialize it 

to Bianchi types I-VII, naming x3 = z in all such cases. Substituting the appropriate 

structure constants into the Maurer-Cartan structure equations (5.11), we find that 

w3 = dz, and w•(z) = w"b(z)dxb where a = 1, 2, and the 2 x 2 matrix w = (w"b) 

satisfies the equation 

Wz=Kw, (5.21) 

with K the matrix defined by (5. 7) describing the relevant Bianchi type I-VII alge­

bra; this is solved by w(z) = eK•. Then (5.14) reduces to the matrix equation 

(5.22) 

where the 2 x 2 matrices g = (gab) and 'Y = bab). 

We see that the metric (4.2) derived under the condition of hypersurface orthog­

onality is only of Bianchi I-VII type if an.obstruction condition is satisfied by the 

conformal factor f(t, z) = f(t). Therefore 

(5.23) 

and we find from the above 1-forms the following classes of left invariant metrics 

g.b(t,z). 
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Bianchi type 

I 

II 

m 
IV 

V 

a2(t)dx2 + b2(t)dy2 

a2(t)(dx + zdy)2 + b2(t)dy2 

e-2z(a2(t)(cosh zdx + sinh zdy)2 + b2(t)(sinh zdx + coshzdy)2) 

e-2z(a2(t)(dx + zdy)2 + b2(t)dy2 ) 

e-2z(a2(t)dx2 + b2 (t)dy2 ) 

VI0 a2(t)(coshzdx + sinhzdy) 2 + b2(t)(sinhzdx +cosh zdy) 2 

VIh (h < 0, h ol -1) c 2V-hz(a2(t)(cosh zdx + sinh zdy) 2 + b2(t)(sinh zdx + coshzdy) 2 ) 

VII0 

VIIh (h > 0) 

a2(t)(coszdx + sinzdy) 2 + b2(t)(sinzdx- coszdy)2 

c 2Vhz(a2(t)(cos zdx + sinzdy) 2 + b2(t)(sin zdx- cos zdy) 2 ) 

As we noted, the analysis is greatly simplified for Bianchi type I-VII models com­

pared with Bianchi type VIII and IX models. For completeness, we shall give some 

explicit forms of these metrics, found using the Maurer-Cartan equations with the 

appropriate structure constants. We find the Bianchi type VIII metric 

ds2 = -dt2 + a2(t)(coshzdx- sinhzsinhxdy)2 

+b2(t)(sinhzdx- coshz sinhxdy) 2 + 2(t)(dz + coshxdyj2, 

and the Bianchi type IX metric 

ds2 = -dt2 + a2(t)(coszdx + sinzsinxdy) 2 

+b2(t)(- sinzdx + coszsinxdy)2 + c2(t)(dz + cosxdy) 2• 

(5.24) 

(5.25) 

5.4 Einstein field equations for Bianchi I-VII mod­

els 

In the current chapter we have seen that the Bianchi I-VII spacetime models admit 

two commuting Killing vectors. The reductions of the Einstein field equations for 

these spacetimes are described in chapter 4. The spacetime metric to be considered 

is 

(5.26) 

For strict compliance with the Bianchi models we should choose f = f(t) only in 

(5.26). However since we have already assumed the more general case, we shall not 

impose this restriction until necessary. 
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Here we shall only consider the case in which the cosmological constant vanishes. 

Then equations ( 4.13-4.17) are the appropriate reductions [33]. We will reduce these 

further by imposing the following separation of variables postulate, in line with the 

preceding analysis, 

in accordance with (5.22). Taking its determinant, 

where we define a 2 := det 'Y and k := Tr K 2 • Then we must also require that 

(5.27) 

With the definition (5.27), the wave equation (4.14) reduces to the ODE in t, 

.. k2 a= 0', (5.28) 

where an overhead dot always denotes a total derivative with respect to the metric 

time coordinate t. 

We find that [J = a-1g also solves (4.13), with det[J = 1. The transformed metric 

[J can be written as 

with k = K- Vz being the tracefree part of K, and det J = 1. Since [J solves 

(4.13) we can substitute (5.29) in it to find the ODE in t, 

! (air1
) = a[KT, JKr1

] + ka(KT + JKr1
). (5.30) 

We shall consider separately those cases where k = 0 (Bianchi class A spacetimes), 

and those where k ~ 0 (Bianchi class B spacetimes). 

2For any square matrices A and B, 

detB = detBT 
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5.4.1 Bianchi class A models 

We recall that Bhinchi class A models are types I, 11, VI0 and VII0 , VIII and IX, of 

which we shall only work with the first four. The vacuum Einstein field equations 

for these four types are reduced by a separation of variables to a system including 

a form of P1j~, first given in [33]. 

Here the linear wave equation for a(t,z) = a(t) simplifies to a= 0, whose general 

solution is a = At+ B. With the assumption that A # 0, we shift and rescale to 

get a= t [32]. Noting k = 0 and k = K for Bianchi class A groups, equation (5.30) 

then reduces to 

(5.31) 

If we now define P =KT, Q = ~JKJ-1 and R = -~tjJ-1, then we obtain the 

system of equations, 

tQ = 2[Q,R], R=2t[Q,P]. (5.32) 

where the first two are consequences of the parameterization whilst the third is equiv­

alent to equation (5.31). For general P,Q,R E s[(2,1C), system (5.32) is equivalent 

to Pm [19]. The matrix P can be transformed to either 

or (5.33) 

according to whether K # 0 (when Pis semisimple) or K = 0 (when Pis nilpotent), 

see [19] for details. Equivalently ,..2 = ~ Tr p 2
• 

We define the components of J as 

J(t) = ( A(t) B(t) ) 
B(t) C(t) 

(5.34) 

and have that det J = AC- B2 = 1. Writing Q, R in terms of this with P in 

semisimple form gives the components defined in (3.36,3.37), 

,\ = ~K(AC + B 2
), p, = -~KAB, V= ~KBC, 

p =~(BB- AC), (J =~(AB- AB), T = HBC- BC). 
(5.35) 
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Considering the nilpotent case, p, 0', r are the same as in the semisimple case, but 

instead 

(5.36) 

This parameterization on the nil potent case gives £2 = .A2 + JW = 0. 

Now that we have P, Q, R written in terms of (components of) J(t), we wish to 

use equation (3.55) to write them in terms of a Painleve transcendent y(t). In the 

nilpotent case, we find it necessary to consider separately the cases m := r = 0 and 

m # 0. With m = 0 the equations reduce to triviality. With m # 0 we find that 

the independent components of J(t) are 

(5.37) 

(5.38) 

where Y(t) = f dty(t). 

In the semisimple case, the independent components are 

B(t) = exp (~ f dt ( KY- il~4"- t)), (5.39) 

C(t) = exp ( ~ f dt ( KY + v~•· + t)) + exp ( ~ f dt ( 3Ky- v~•· - t)) . (5.40) 

Dynamical equation (5.31) is equivalent to Pm in the following form 

.. y2 if -2my2 + 8(m- ~>) 2 ( 3 16) y=---+ +~> y -- , 
y t t y 

(5.41) 

where we have applied the equations m = 4n and £2 = /6 K.2 that are implied by both 

types of parameterizations. This equation describes the semisimple cases, namely 

Bianchi types VI0 and VII0 . The nil potent case, namely Bianchi type II, is obtained 

by setting K = 0. We note that the Bianchi I model is a special case for which the 

present analysis does not apply, since the Painleve transcendent defined by equation 

(3.55) is trivial. We shall return to it later. 

We shall consider the semisimple case "" # 0. Then we can substitute rescaled 

variables by y = 2w and t = 2~s in (5.41) such that 

11 w'2 w' -2mw2 + 2(m- ~>) 3 1 
w =---+ +w --, 

W S KS W 
(5.42) 
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where w' = : [14]. Substituting in (3.50) gives a +Et3 = -2,- 4
,:" +2. We saw that 

rational solutions exist provided that this quantity equals 4n, n E Z, which it does 

not, so we conclude that rational solutions d_o not exist in the semisimple case [22]. 

Using the fact that the trace of a matrix is invariant under conjugation, Tr C = 

Tr DCD-1, we find that A:= -a(gz + g,)g-1 and B := -a(gz- g,)g-1 give 

Tr A2 = 2+Tr (t(P+4Q) -2R)2
, Tr B2 = 2+Tr (t(P+4Q)+2Rj2.(5.43) 

Substituting a= tin equations (4.15, 4.16) and taking appropriate linear combina­

tions gives 

(lnf), = -~+ ;t(Tr A2 +Tr B2
) = ;t(-4+2t2Tr (P+4Qj2+8Tr R 2),(5.44) 

1 
(in f)z = St (Tr A2

- Tr B 2
) = -Tr (P + 4Q)R := -(m+ 4n) = -2m, (5.45) 

where we have substituted (5.43). Solving (5.45) gives f(t,z) = F(t)e- 2mz. We can 

therefore only impose the obstruction condition f(t, z) = f(t) to obtain a spatially 

homogeneous class A Bianchi model in cases where m= 0. In the semisimple case, 

the conformal factor in terms of the appropriate Painleve transcendent is given by 

3 -I -I 1 -I. 1 -2 •2 1 1 2 1 -I 

( )

2 

(in f), = - 8t +2my +4:Y y+8ty y + 2my-2x: t 2Y- 2y ,(5.46) 

whereas the conformal factor in the nilpotent case is obtained by setting x: = 0. 

Example 5.4.1 We shall now present the particular results for the Bianchi type 

V/0 model. The relevant structure constant matrices from (5. 7} in this case are 

from which k = Tr K = 0 and x: = ±V!Tr P2 = ±1. We also require the homo­

geneity condition m= 0. Then the reduction of Pm (5.41} is 

.. iP iJ 8€ ( 3 16) 
y=-y-t-t+ y --y ' (5.47) 

where E = -1,1 depending on the particular choice of x:. Equation (5.46) reduces to 

(5.48) 
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5.4.2 Bianchi class B models 

We recall that Bianchi class B models are types Ill, IV, V, Vlh;<o and VIIh;"O· The 

reductions of the vacuum Einstein equations for these models to a system including a 

Painleve equation, involving a change of variable, are original. Here a( t, z) = O"( t )ek• 

with k # 0. 

We wish to write (5.30) in terms of commutators. In order to do this we shall 

eliminate its final term. To this end we let 

J(t) = eh(t)kT H(t)eh(t)k, (5.49) 

for a function h(t) to be determined such that the result may be written purely in 

terms of commutators. We have det J = det H = 1. We define its components 

H(t) = ( D(t) E(t) ) . 
E(t) F(t) 

(5.50) 

Substitution in equation (5.30) gives 

f,(O"i!H- 1 ) = h[O"HH-l,f<I'- HKH-1] + 0"(1- h2 )[kT,HKH-1] 

+ ( kO"- f,(O"h)) (kT + HKH- 1
). 

(5.51) 

We will eliminate the last term in order to get the equation in commutator form. 

Therefore we impose 

d . 
kO" = dt (O"h). (5.52) 

Substituting the reduced wave equation (5.28) in equation (5.52) and integrating, · 

we get 

(5.53) 

where c is an arbitrary constant. Using the general solution of (5.28) O"(t) = Aekt + 
Be-kt, we can calculate 

c = A(1- h)ekt- B(1 + h)e-k'. (5.54) 

We then substitute the solution O"(t) and expression (5.54) into (5.53), upon which 

we find that 

ekt = 2~ ((1 + h)O" +c), (5.55) 
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which may be substituted back into our expression for O"(t) to yield a quadratic 

expression in a. After defining h by applying the constraint r? + 4AB = 0, solving 

the quadratic gives the repeated root 

2ch 
0"= --.-

1- h2 ' 

With this result equation (5.51) now simplifies to 

(5.56) 

(5.57) 

We define the matrices X = i,O" if H-1 and Y = H k H-1• This parameterization 

automatically satisfies aY= 2c(X, Y]. Then equation (5.57) can be rearranged to 

X= h[X- Y, kT- X]. (5.58) 

We define 8 = h} as a natural new independent variable. Substituting this definition 

into (5.52) and expanding the derivative, we find that 

8 = k8112(1- 8) =?a~= 2ck8 !, (5.59) 

thus s(t) = tanh2 ~- Then 

8
112 kt kt kt kt c 

a= -
1

- = 2ctanh -
2 

cosh2
- = 2csinh -

2 
cosh-= -(ekt + e-kt), (5.60) 

-8 2 2 2 

which is a particular solution of the reduced wave equation (5.28). 

We define three matrices P, Q, R, which are functions oft, as 

kQ=Y, kR=X- Y, (5.61) 

which have the component forms (3.36-3.35). 

In terms of s, we obtain the form of Pv1 given by 

P'=O, sQ' = (R,Q], s(1- 8)R' = [sP + Q, R], (5.62) 

where f' = f.. For general P, Q, R E s[(2, IC), system (5.62) is equivalent to Pv1 

(19]. The matrix P can be transformed to either 

or (5.63) 
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according to whether K # 0 (when P is semisimple) or K = 0 (when P is nil potent), 

see [19] for details. Equivalently ,..2 = ~Tr P 2 . 

In terms of s, X = fcsH' H-1 • We wish to write the components of H in 

terms of the zero trace matrices P, Q, R. From its definition (5.49) we have that 

det H = D F - E 2 = 1. Writing Q, R in terms of this with P in semisimple form 

gives the components defined in (3.36,3.37), 

A= -K(DF + E 2
), Jl = 2KDE, 

v = -2KEF, p = s(D'F- E'E) + K(DF + E 2), 

r7 = s(-D'E + E'D)- 2KDE, r = s(E'F- F'E) + 2KEF. 

Considering the nilpotent case, we find instead that 

A= -EF, 

V= -F2 , 

Jl = E2, 

p = s(D'F- E'E) + EF, 

r7=s(-D'E+E'D)-E2
, r=s(E'F-F'E)+F2 • 

This parameterization on the nilpotent case gives C2 = A2 + JlV = 0. 

(5.64) 

(5.65) 

We wish to write the matrix H(s) in terms of a Painleve transcendent y(s) 

defined by equation (3.55). In the semisimple case, we find that the independent 

components of H(s) are 

E(s) = exp (~I ds ( ~ - 1 ~, ( ~ - 2Ky ( (l;fl' + 27 + 1 ~')))) , (5.66) 

F(s) = exp (~I ds ( ~ - 1~, ( ~ - 2Ky ( (•;Jl' + 1~')))) , (5.67) 

which implies that the constant of motion C2 = K2, while in the nil potent case, the 

independent components are 

E(s) = (I dsJt,-:!})) exp ( H ds ( ~ + 1t,-=_~l))) , 

F(s) = exp (!I ds ( ~ + ~(~-=_~l))). 

(5.68) 

(5.69) 

In the semisimple case, the dynamical equation (5.62) is equivalent to Pv1 in the 

following form 

y" = 1 (! + _1_ + _!_) yl2 - (! + _1_ + _!_) y' 
2 y- y-1 y-s s s-1 y-s 

+y(y-l)(y-s) (2,_2 + 2,_ +! _ 2•'• + 2m
2(s-1) + (-2m2+!) s(s-lj) 

s2(s 1)2 2 7 (y 1)2 2 (y-s) ' 

(5.70) 
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and we find that m2 = n2 in both nilpotent and semisimple cases. This equation 

describes the semisimple case, namely Bianchi types Ill, VIh and VIh. The nilpotent 

case, namely Bianchi type IV, is obtained by setting 1> = 0. We note that the Bianchi 

V model is a special case for which the present analysis does not apply, since the 

Painleve transcendent defined by equation (3.55) is trivial. We shall return to it 

later. 

Using the fact that the trace of a matrix is invariant under conjugation, Tr C = 

Tr DCD-1, we find that A:= -a(gz + g,)g-1 and B := -a(gz- g,)g-1 as defined 

earlier give, in terms of the variable s, 

k-2e-2kz'Tr A2 = ~ (1 +s1/2)2 +Tr 
2 1 - s1/ 2 ( 

8112 )
2 

1 - s1/2 (-p + Q) + Q + R 

( 
8112 )

2 

1+s1/2(P-Q)+Q+R 

(5.71) 

(5.72) 

Substituting a= ekzs112(1- s)-1 in equations (4.15, 4.16) and taking appropriate 

linear combinations gives 

(I f) = k (1 +s)(Tr A2 -Tr B2
) 

n z + 4ks1/2e2kz 
Tr A2 + Tr B2 = k (~2-2m2) ,(5.73) 

2ke2kz 

(I f) __ __!±!..._ _ Th A'-Th B' + (l+s)(Th A2+Th B2 ) 

n 8 - 2s(l-s) 2k2sl/2(1-s)e2k.; 4k2s(l s)e2kz 

= 4(1 \>'• ((y- s)(s + 1)(y -1 + s -1)- (y- s)(y -1)- •<~::!>') 
+(1-~)sy((y-1)(y-s)+y(l+s))~>2 + 1.:.. (.(t::•1) +~)m2 .(5.74) 

2(1 \>'• (y- s + •<~::!>' - (y -1)(1 + s)) y' 

+ s (1 + Jl=.! s(y-1)) r2 4(1 s)y2 8 - y-1 - y-s Y 

From equation (5.73), which holds in nilpotent and semisimple cases, we find that 

f(t, z) = F(t)ek<!-2m'>z, so the condition for a model to be spatially homogeneous 

(of Bianchi type) is m= ±'1. Equation (5.74) holds for the semisimple case, and 

with 1> = 0 for the nil potent case. 

Example 5.4.2 We shall now present the particular results for the Bianchi type III 

model. The relevant structure constant matrices from (5. 7} and (5.8} in this case 

are 



CHAPTER 5. BIANCHI MODELS 74 

from which k = Tr K = 2 and;;,= ±V!Tr P 2 = ±!. We also require the homo­

geneity co~dition m= ±1. Then the reduction ofPv1 (5. 70) is 

Y/1 = ! (! + _1_ + _1_) y12 - (! + _1_ + _1_) y' 
2 y y-1 y-s s s-1 y-s 

+vlv-1)(y-8) ( 28 _ 8 + 318-1\ _ 8(8-jl) 
s2(s 1)2 ~ ~ (y-s ' 

(5.75) 

where 8 = 0, 1 depending on the particular choice of;;,. Equation (5. 74) reduces to 

(lnf)8 = 4(1
1
8)38 ((y- s)(s + 1)(y -1 + s -1)- (y- s)(y -1)- 8(~::!'') 

+ 4(1 \)8Y ((y -1)(y- s) + y(1 + s)) + 4(13_•) (./Y-=:.81) + ~) 
(5.76) 

2(1 
1
8)2y (y- s + •(v::!''- (y -1)(1 + s)) y' 

+ 8 (1 = s(y-1)) 12 
4(1 s)y2 + S - y-1 - y-8 Y · 

5.4.3 Bianchi models with two-parameter Abelian reduced 

subgroups 

When the two parameter isometry subgroup fi is Abelian, as in the Bianchi models 

of types I and V, the corresponding spacetime metric (5.26) can always be written 

in the diagonal form [41 J 

(5.77) 

If we consider the reduction to a spatially homogeneous (Bianchi) model, namely 

where f(t, z) = f(t) only, then E = 0 corresponds to a Bianchi I model, while E = 1 

corresponds to a Bianchi V model. 

We found in the above cases that there was one model in each case - Bianchi 

I, V respectively - for each of which k = 0 and the self-duality equations reduced 

to triviality. Therefore a different analysis is required for these cases. The metric 

g = a-1g for both models becomes 

, "'(t) 1 ( a
2
(t) 

g(t, z) = J(t) = a(t) = a(t) 0 (5.78) 

where a 2 = det 1' = a2b2
• We have used the diffeomorphism invariance of general 

relativity which allows us to write the metric in diagonal form. This is only possible 

for Bianchi types I and V. The field equations (4.13) in both cases are 

(5.79) 
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For the Bianchi I model, as previously for class A models we choose a = t, 
• 2 • .. a a 

a=--­
a t' 

75 

(5.80) 

so that a(t) satisfies Pm. Integrating gives a(t) = Atm, where A, mE lR are arbitrary 

constants. We choose to scale the coordinate x such that A = 1. 

For the Bianchi V model, like previously for class B models we define a new 

independent variable s and determine the function a(s). Then, noting that the 

trace k = 2, equation (5. 79) with the substitutions (5.59) becomes 

d a'2 a' 
2s112(1- s)-(4csa-1a') = 0 *a"=---, 

ds a s 
(5.81) 

where a' = :, so that a(s) satisfies Pm. Integrating gives a(s) = Bsn, where 

B, n E lR are arbitrary constants. We choose to scale the coordinate x such that 

B=l. 

For a Bianchi I model, equation (5.44) becomes 

(In f),= 2m(m -1)t-1
, (5.82) 

and equation (5.45) implies that f(t, z) = f(t) only. Therefore the model is spatially 

homogeneous, with f(t) = t 2m(m-l) (with (t, z) scaled appropriately), ~nd b(t) = 

tl-m. 

For a Bianchi V model, in terms of the (s, z) variables and after substituting 

a(s) = sn we find 

(! f) 1+s ( 1 2 1+s 4n
2

) 
n • = 1- s (1- s)2 - n s(1- s) + -s- ' (5.83) 

and 

(In f)z = (1 ~ 8 
) 2 (1 - 4s + s

2
) + 8n G ~ :) -16n2. (5.84) 

We solve the homogeneity condition (In f)z = 0 with (5.84) as a quadratic equation 

in n, on whiCh we find the solutions n = 4h+_•.) ± 4. However these values are not 

allowed since we require n to be a constant, so we conclude that our analysis leads 

to no Bianchi V solutions. 
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Discrete Painleve equations 

In this chapter we review some known methods for determining whether a given 

complex discrete equation is integrable, as extensions of criteria for integrability of 

differential equations presented in earlier chapters. We perform numerical tests using 

integrable and nonintegrable discrete equations with particular initial conditions to 

investigate the degree growth, to confirm known results. Also we present Nevanlinna 

theory for difference equations (discrete equations where the independent variable 

varies over the complex plane). In following chapters we shall discover analogous 

concepts to these in the context of ultra-discrete equations. 

A discrete equation is a recurrence relation between an iterate Yn - where n 

is a discrete independent variable taking only integer values - and other iterates 

which are shifted along the discrete variable. A jth order discrete equation relates 

Yn-j to Yn· In the usual sense a solution of a discrete equation is a set of iterates 

{y; : i E Z}. Alternatively, in section 6.3 we consider each iterate Yn to be a rational 

function in an auxiliary, continuous variable z. 

There are many discrete equations with continuum limits to the Painleve differ­

ential equations. Some cases of this are considered in section 6.1. However, most 

of these equations do not inherit the integrability properties of the Painleve equa­

tions - such as the existence of associated linear problems. The discrete equations 

which do have the integrability properties are known as discrete Painleve equations 

[55]. These usually look quite different from the naive discretizations of the Painleve 

equations. 
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We shall progress from defining discrete Painleve equations to the more gen­

eral problem of finding a discrete analogue of the Painleve property, which is a 

strong indicator (some would take it as a definition) of integrability. The singular­

ity confinement test was introduced in [55] to find such a property. Those discrete 

equations which pass the singularity confinement test, and also satisfy a condition 

of zero algebraic entropy [58], are believed to be integrable. 

Discrete Painleve equations do occur in physics. For example the Ising model 

in statistical field theory [56], and in quantum gravity where a discrete Painleve 

equation often called d-P1 has arisen, 

an+b 
Yn+l + Yn + Yn-1 = --- + c, 

Yn 
(6.1) 

where {a, b, c} are arbitrary constants. Specifically, it has arisen from the calculation 

of a certain partition function in a model of 2 dimensional quantum gravity [52, 53]. 

It is the compatibility condition for a linear problem, and it has a simple continuum 

limit to P~, hence its name. However it is not unique in possessing such a limit. 

In order to find a complex analytic analogue of the Painleve property for discrete 

equations, it was necessary in [54] to reinterpret discrete equations as difference 

equations. For example (6.1) is reinterpreted as the difference equation 

az+b 
y(z + 1) + y(z) + y(z- 1) = y(z) +c. (6.2) 

Here the discrete independent variable n E :Z of equation ( 6.1) has been replaced by 

a continuous variable z E C. In this way the independent variable is allowed much 

greater freedom. Another example of a generalization of a discrete to a continuous 

variable is the replacement of the factorial n! by the gamma function r(z). 

Nevanlinna theory, which we studied in section 2.7, may be applied to mero­

morphic solutions of difference equations such as (6.2). Of particular interest is the 

order of solutions. It was suggested in [54] that a difference equation is integrable if 

it has sufficiently many finite order solutions. This usefulness of Nevanlinna theory 

should be contrasted with the situation for differential equations. In that case, if 

all solutions of an equation are meromorphic then the equation has the Painleve 

property. However since Nevanlinna theory is a theory of meromorphic functions it 
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can only be used on solutions of those equations which necessarily have the Palnleve 

property, and are therefore integrable. 

A rational function is a ratio of two polynomials, which are taken to have no 

common factors. The degree of a rational function is the maximum degree of these 

polynomials. A set of functions {y.} which are each rational in an auxiliary variable 

z E C may occur as a solution to a discrete equation such as ( 6.1). Then we have a 

set of degrees qn := degyn(z). The algebraic entropy of a discrete equation quantifies 

the growth of the degrees of such iterates of that equation. The algebraic entropy of 

a generic discrete equation is nonzero (corresponding to exponential degree growth) 

but the algebraic entropy of a large class of integrable discrete equations is zero 

(corresponding to polynomial degree growth) [74]. 

6.1 The continuous limit 

We start from the discrete equation, with n as discrete independent variable and Yn 

as dependent variable, 

(an+b)y.+c 
Yn+1 + Yn-1 = 1 2 ' -y. 

(6.3) 

where a, b and c are constants. We will show that it has P 11 as a continuous limit. 

First we define an independent variable z = nh, where h is a small number1. Then 

we identify Yn = w(z), and 

h2 h3 
Yn+1 = w(z +h) = w(z) + hw'(z) + -w"(z) + -

6 
u"'(z) + O(h4

), (6.4) . 2 

using a Taylor series expansion. We obtain a similar.result for Yn- 1 with h replaced 

by -h. Substituting in the discrete equation (6.3) gives 

2w + h2w" = ((az/h + b)w + c)(1 + w2
) + O(h4

), (6.5) 

where we have used the truncated series (1 - w2)-1 = 1 + w2 + . . .. Rescaling 

w-> hw, 

1 We used a similar method in going from the discrete equation ( 6.1) to the difference equation 

(6.2) where h = 1, but there z = n only on the integers. 
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Now we choose a= h3
, b = 2 and c = h3a and omit terms of order (hw)\ to give 

the continuous form of Pn, 

w" = 2w3 + zw +a. (6.7) 

As a second example, we consider the discrete equation we referred to as d-P1 (6.1). 

By applying Yn = 1-3h2w(z), setting (a,b,c) = (-3h5,-2,4) and taking the limit 

h-> 0, a similar procedure to above yields P1, 

w" = 6w2 + z. (6.8) 

Many other discrete Painleve equations exist that can be transformed to one or more 

of the continuous Painleve equations using the methods we have outlined. 

6.2 Singularity confinement 

The singularity confinement test, first introduced in [55], provides a test for inte­

grability of discrete equations. It is not a perfect test of integrability, having to be 

augmented by a condition of zero algebraic entropy for this. The algebraic entropy 

of a discrete equation shall be defined in section 6.3. 

We consider the behaviour of a sequence of iterates Yn of a discrete equation. 

We shall consider equation (6.1) with initial conditions Yn-1 = K and Yn = €, where 

K is finite and € is small. After calculating a list of iterates, we take € -> 0 to 

find Yn+i = oo, therefore the solution has a singular point. We might expect all 

further iterates to be singular, and for generic equations they would be, but for 

equation ( 6.1) there is cancellation such that future iterates are finite, such that 

the singularity Yn is confined. It is found that in particular, all discrete Painleve 

equations possess the singularity confinement property. 

Discrete-time integrable systems take one of two forms; as lattices or mappings. 

In lattices the spatial and time variables have been discretized, while mappings are 

finite-degrees-of-freedom systems in discrete time. We shall present a way to deter­

mine the integrability of a discrete time system, based on the singularity structure 

[55]. We consider the integrable lattice KdV equation [61], 

H1 i-1 1 1 
YJ = Yj+l + i - -,-. -

Yj YJ+l 
(6.9) 



CHAPTER 6. DISCRETE PAINLEVE EQUATIONS 80 

which is a partial discrete equation, having two discrete independent variables (i,j). 

Equation (6.9) is of second order in i; to this end we specify two pieces of initial 

data at i - 2 and i - 1. Evolution takes place as the value of i increases. Let us 

assume that as evolution takes place y] --> 0. The point where it vanishes depends 

on the initial data, so the singularity induced is movable, or confined. 

We have seen that integrability in discrete-time systems is related to the existence 

of confined (movable) singularities. 

Example 6.2.1 We shall show how singularity confinement works by explicitly cal­

culating the first few iterates of a solution of a discrete Painleve equation, namely 

equation ( 6.1), 
am+b 

Ym+l = -Ym - Ym-1 + +C. 
Ym 

The idea is to follow the sequence of iterates to see whether we can eventually "get 

through" the singularity and return to finite values. Equation ( 6.1) is singular when 

Yn = 0. We let Yn = f and Yn-1 = k, arbitrary. After we have calculated "enough" 

values, we will take the limit as f --> 0. 

m=n: 

Yn+1 

1 

Yn+l 

m=n+1: 

Yn+2 = 
an +a +b 

-Yn+l - Yn + + C 
Yn+l 

= -(an+b+(c-k)-E)-E+Ean+a+b(1 - c-kE+ .. ·)+c 
E an+b an+b 

= _an + b + k + an + a + b f + ... 
f an+b 

= _an+ b ( 1 _ _ k -E + .. ·) 
f an+b 

1 = __ f_ (1 + _k_f + .. ·) 
an+b an+b Yn+2 
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m=n+2: 
an+2a+ b 

Yn+3 - -Yn+2 - Yn+l + + C 
Yn+2 

=' - ---+k+ E+··· - --+(c-k)-E ( 
an+b an+a+b · ) (an+b ) 

t an+ b t 

-1' 1 + --1' + . . . + c an+2a+b ( k ) 
an+b an+b 

an+3a+b 
= €+··· an+b 

m=n+3: 
an+3a+b 

Yn+4 = -Yn+3 - Yn+2 + + C 
Yn+3 

( 
an + b an + a + b ) 

= 0(€)- --€- +k+ an+b E+ ... 

+(an+3a+b) ( (an:n3::b)E +··-) +c 

= 0(1) 

Taking the limit t -+ 0 gives the sequence of iterates: 

Yn-1 = k, Yn = 0, Yn+l = oo, Yn+2 = oo, Yn+3 = 0, Yn+4 =finite 
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6.3 Evolution of degree of solutions of discrete 

equations 

In this section we will reinterpret a discrete equation such that each iterate is a ra­

tional function of an auxiliary variable. We consider a sequence of rational functions 

{Yn : n E Z} in a complex variable z, 
~Sn i 

( ) u;-o an;Z 
Yn Z = tn ., 

L:j=O bnjZJ 
(6.10) 

where (an;, bnj) are complex-valued arbitrary constants. We define the degree of Yn 

as qn = max(sn, tn)· 

Examples 

The two families of equations we shall consider are 

Pn Q 
Yn+l + Yn-1 = - + n> 

Yn 

Rn + SnYn 
Yn+l + Yn-1 = 1 2 • 

-Yn 
(6.11) 
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where Pn, Qn, Rn and Snare each polynomial functions inn. 

We shall consider the second order discrete equation 

3yn 
Yn+l + Yn-1 = -1--2 · 

-yn 
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(6.12} 

Substituting the definition (6.10}, computer experiments suggest that qn = Pnqo + 
rnqb which gives the boundary conditions (p0 ,p" r0 , r1} = (1, 0, 0, 1}. The subse­

quent evolution of Pn appears to be governed by the discrete equation 

Pn+l- 2pn + Pn-1 = 1- (-1}", n 2: 1, (6.13} 

and for the r n we find 

n2;1. (6.14} 

We have that Tn = Pn+l, and equation (6.13} admits the general solution 

(6.15} 

We can substitute this solution back in (6.13} and substitute the initial conditions 

Po = 1 and p1 = 0 to find that a = ~, f3 = -1, 'Y = ~ and IS = i· If we define 

the discrete operator .6 by .6yn = Yn+l- Yn and the second order discrete operator 

.62yn = .6(.6Yn-1) = .6yn- .6Yn-l = Yn+l- 2yn + Yn-1> then equations (6.13} and 

(6.14} can be written as 

.62pn = 1- (-1}", n2;1. (6.16} 

Next we consider the equation 

3 
Yn+l + Yn-1 = - - 76. 

Yn 
(6.17} 

Again we find a relation Qn = Pnqo + r nQ1 , where the discrete variables are 
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n Pn Tn 

0 1 0 

1 0 1 

2 1 1 

3 1 2 

4 2 3 

5 3 5 

6 5 6 

7 6 9 
I 

8 9 11 

9 11 14 

We note as before that rn = Pn+i· 

From here on we shall summarize our results for further discrete equations. As 

in all previous cases, the relation qn = Pnqo + Pn+l q1 is found to hold in all cases, so 

it suffices to list the first few Pn in each case. 

n' 1 Yn+l + Yn-1 = Yn -
n' 

Yn+l + Yn-1 = Yn 
n'o 

Yn+l + Yn-1 = Yn 

n Pn Pn Pn 

2 1 1 1 

3 1 1 1 

4 2 2 2 

5 3 2 2 

6 5 3 3 

7 7 3 3 

8 11 4 4 

9 16 4 4 

The degree growth of the two right equations in the above table is linear in each case 

(indicating therefore integrability). However, these two equations are not considered 

to be integrable. Both of the these equations are of the form 

an 
Yn+i + Yn-1 = -. 

Yn 
(6.18) 
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Equations of the form (6.18) are in fact linearisable and would therefore normally 

be considered to be integrable. Specifically, let Xn = YnYn+l· Then equation (6.18) 

becomes the first-order linear equation 

(6.19) 

In the case in which an = n20, finding a solution involves calculating a polynomial 

of degree 20. In the case in which an= n2
, a particular solution is Xn = n(n + 1)/2. 

To find the general solution, we substitute Xn = n(n+ 1)/2+un into equation (6.19) 

with an = n2
, giving 

Un-1 + Un = 0. 

So Un = c( -1) n, for some constant c. Hence 

n(n + 1) n 
YnYn+l=Xn= 

2 
+c(-1). (6.20) 

This is a Riccati equation for Yn· Substituting Yn = Wn/Wn-1 in equation (6.20) 

gives 

Wn+l = ( n(n t 1) + c(-1t) Wn-b 

which is linear (and therefore, slow growth). 

Yn+l + Yn-1 = ~. + n 

n Pn 

2 1 

3 1 

4 2 

5 3 

6 5 

7 8 

8 13 

9 21 

Next we consider the equation 

· n+1 
Yn+l + Yn-1 = -- + 1 

Yn 

n' 1 Yn+l + Yn-1 = ;;-, + n + 

Pn 

1 

1 

2 

3 

5 

8 

13 

21 

and calculate the first few Pn and 6.2pn, 

+ n+1 
Yn+l Yn-1 = U. 

Pn 

1 

1 

2 

2 

3 

3 

4 

4 

(6.21) 
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n Pn £:::,}pn 

2 1 -1 

3 1 1 

4 2 0 

5 3 1 

6 5 -1 

7 6 2 

8 9 -1 

9 11 1 

10 14 0 

11 17 1 

12 21 -1 

13 24 2 

14 29 -1 

15 33 1 

16 38 0 

17 43 1 

18 49 -1 

19 54 2 

20 61 -1 

We find in this case that Pn satisfies the difference equation 

(6.22) 

and the second discrete operator on Yn is of period 6, that is l::.2Pn+6 = l::. 2Pn· 

It would seem that as far as the behaviour of Pn is concerned, the most general 

equations of the two families we have analyzed are 

an+b 
Yn+l + Yn-1 = -- + c, 

. Yn 

d+(en+J)yn 
Yn+l + Yn-1 = 1 2 • -yn 

(6.23) 

for arbitrary constants {a,b,c,d,e,f}. These are known to be integrable, discrete 

Painleve equations. Here the growth of the degree is polynomial rather than expo­

nential. 



CHAPTER 6. DISCRETE PAINLEVE EQUATIONS 86 

6.4 Algebraic entropy 

Hietarinta and Viallet found an example [57] of a simple equation that appears to 

possess the singularity confinement property but is chaotic (non-integrable). There­

fore the singularity confinement property must be augmented by some other prop­

erty to give a condition for integrability, which they suggested is that the algebraic 

entropy of the discrete equation should vanish. 

The algebraic entropy quantifies the growth of the degree of the nth iterate of a 

discrete equation as a function of the initial conditions, see for example [58]. Here 

the initial conditions are rational functions of one variable: however the same theory 

may be applied for an arbitrary number of such variables. We consider the rational 

functions (6.10) where the degree of the nth function is qn. Then the definition of 

algebraic entropy is 

s := lim !ogqn. 
n-oo n 

(6.24) 

For exponential degree growth, set Qn = dn where d is a constant. Then the algebraic 

entropy is 

I. n!ogd 1 d 
s= 1m -- = og. 

n-oo n 

which is nonzero provided that d Y, 1. For polynomial growth, set qn = nu where rJ 

is constant, 
. logn 

s = rJ hm -- = 0. 
n-oo n 

Therefore the algebraic entropy quantifies the growth type of the degree accord­

ing to whether it vanishes (which means polynomial growth) or not (which means 

exponential growth). 

The idea of using the growth in the degree of iterates to determine whether a map­

ping is integrable was formulated by Veselov [59] and independently by Falqui and 

Viallet [60]. When an integrable mapping is used the degree growth is polynomial, 

while when an non-integrable mapping is used the degree growth is exponential. 

The algebraic entropy of a generic discrete equation is nonzero (corresponding to 

exponential degree growth) but the algebraic entropy of a large class of integrable 

discrete equations is zero (corresponding to polynomial degree growth) [74]. For 

example equation (6.12) - which is well known to be integrable - gave rise to 
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degree growth of the form (6.15). We see that the asymptotic degree in this case is 

2 qn rx n . 

6.5 Nevanlinna theory 

It is known that large classes of difference equations admit meromorphic solutions 

[54]. Therefore the existence of meromorphic solutions is alone not a good indicator 

of integrability, and for a better indicator we turn to Nevanlinna theory. In section 

2.7 we gave an introduction to Nevanlinna theory, which studies the value distri­

bution of meromorphic functions in the complex domain. Here, the meromorphic 

functions we consider solve difference equations [71 J. 
For a meromorphic function f(z), the Nevanlinna characteristic T(r, f) := N(r, f)+ 

m(r, f) is defined in terms of an open disc [z[ < r, and measures the growth off as 

r varies. We may take the limit r --> oo to consider the behaviour of f at infinity, 

in terms of its value distribution on the finite plane. Nevanlinna theory provides a 

number of important concepts and tools that can be used as detectors of equations 

that are integrable. In particular, the order of equations plays a central role. The 

order of a meromorphic function f is 

(f) 
·- 1. log T(r, f) 

u .- 1msup 
1 

. 
r-oo ogr 

The order is a natural measure of the growth of a function at infinity. It was sug­

gested in [54] that a useful analogue of the Pain! eve property for difference equations 

is the existence of sufficiently many meromorphic solutions of finite order. 

We recall the lemma on the logarithmic derivative (2.57), which puts an upper 

bound on the proximity function of the logarithmic derivative f' / f of a meromorphic 

function. If the function has discrete dependence on an independent variable, then it 

is not possible to define its derivative. However we may instead define a logarithmic 

difference as 1}-(~)c) where c E C. Then we state the result for a non-constant 

meromorphic function f [71] 

( 
f(z +c)) = (T(r + [c[, J)l+') (6.25) 

m r, f(z) o r' , 6 < 1, € > 0, 

for all r outside of a possible exceptional set of finite logarithmic measure, that is 

(dr<oo 
JE r · 



Chapter 7 

(Max, +) semiring and 

ultra-discrete equations 

The language of this chapter, and its application to ultra-discrete equations, shall 

be used in the preprint of Halburd and Southall [79]. 

We begin this chapter by reviewing the (max,+) semiring and the notion of a 

( max, +) polynomial. Then we present a known limiting procedure on certain dis­

crete equations to obtain ultra-discrete equations, which may be written in a concise 

form on the (max,+) semiring. We present a singularity confinement property for in­

tegrability in ultra-discrete equations. If the discrete independent variable is allowed 

to be continuous, then the ultra-discrete equations admit piecewise linear functions. 

In original work we define (max,+) meromorphic functions as piecewise linear with 

integer slopes everywhere, and we define roots and poles of such functions at points 

where the slope changes. 

A (max,+) semiring is (!RU { -oo }, E&, ®) where the binary operators are defined 

by 

·a E& b := max(a, b), a@b := a+b, a,b E IRU {-oo}. 

The (max,+) semiring has no additive inverse. Note that we do not work with 

complex numbers in this presentation, since the maximum of complex numbers 

cannot be defined. 

A ( max, +) polynomial is a non-decreasing piecewise linear function with integer 

slopes. It may be defined using the ( E&, @) operators in the same way that standard 
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additive and multiplicative operators are used to define a standard polynomial. We 

only consider (max,+) polynomials in one independent variable x E lR U { -oo }. 

We extend this to define a (max,+) rational function, which is the difference of two 

(max,+) polynomials. It does not have the restriction on a (max,+) polynomial of 

being non-decreasing. 

A ( max, +) meromorphic function is a piecewise linear function with ·integer 

slopes. Note that the number of distinct linear pieces may be infinite. A (max,+) 

rational function is necessarily (max,+) meromorphic. We shall define zeros and 

poles of (max,+) meromorphic functions at points of discontinuity in their first 

derivatives. 

Ultra-discrete equations are obtained from certain discrete/difference equations, 

in a limiting procedure called ultra-discretization of which we shall present an ex­

ample [67, 68]. 

An ultra-discrete equation may be written naturally on the (max,+) semiring. 

We may choose the independent variable to be discrete, in which case an example 

of an ultra-discrete equation often called u-P 1 is 

(7.1) 

An ultra-discrete equation such as (7.1) is a generalized cellular automata. This 

means that the values of solutions may be represented as discrete points in a finite 

dimensional, infinitely sized grid, whose evolution over the grid is governed by the 

ultra-discrete equation. Alternatively, the independent and dependent variables can 

be taken as continuous, being valued on the real line. As an example we take 

X(x + 1) ® X(x) ® X(x- 1) = 0 EBX(x) ® 1r1(x), (7.2) 

where 1r1(x) is an arbitrary period 1 function. The (max,+) meromorphic functions 

we have defined may be admitted as solutions to such equations. The process of 

going from ultra-discrete equation (7.1) to (7.2) is analogous to that for discrete 

equations on the complex plane introduced in [54]. 

An ultra-discrete equation may be written concisely on the (max,+) semiring. 

We note that not every discrete equation can be ultra-discretized. A (max, +) mero­

morphic function may be admitted as a solution to an ultra-discrete equation in 

which the independent variable is continuous. 
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An integrable ultra-discrete equation is one obtained by ultra-discretization of 

an integrable discrete/difference equation. Joshi and Lafortune [73] have described 

an analogue of singularity confinement for ultra-discrete equations as a test of inte­

grability. The ultra-discrete Painleve equations - many of which were first given in 

[68] - are obtained by ultra-discretization of particular discrete Painleve equations. 

As such they serve as prototypes of integrability in the ultra-discrete sense. 

We want to find out whether the existence of (max,+) meromorphic solutions to 

an ultra-discrete equation is linked to its integrability properties. 

7.1 (Max,+) • • sem1rmg 

We define an addition and a multiplication operation between two elements a, b E 

IlW { -oo} by [62, 63, 64, 65, 66] 

a 9 b = max(a, b), a®b= a+b. (7.3) 

The standard convention that a@ b 9 c ® d = (a® b) 9 (c ®d), i.e. multiplication 

takes priority over addition, is applicable. The additive identity 0 = -oo while the 

multiplicative identity li = 0. The addition and multiplication tables are 

9 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 1 2 3 4 5 6 7 8 9 

2 2 2 2 3 4 5 6 7 8 9 

3 3 3 3 3 4 5 6 7 8 9 

4 4 4 4 4 4 5 6 7 8 9 (7.4) 

5 5 5 5 5 5 5 6 7 8 9 

6 6 6 6 6 6 6 6 7 8 9 

7 7 7 7 7 7 7 7 7 8 9 

8 8 8 8 8 8 8 8 8 8 9 

9 9 9 9 9 9 9 9 9 9 9 
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0 0 1 

0 0 1 

1 1 2 

2 2 3 

2 

2 

3 

4 

3 

3 

4 

5 

4 

4 

5 

6 

5 6 

5 6 

6 7 

7 8 

7 8 9 

7 8 9 

8 9 10 

9 10 11 

3 3 4 5 6 7 8 9 10 11 12 

4 4 5 6 7 8 9 10 11 12 13 

5 5 6 

6 6 7 

7 8 9 10 11 12 13 14 

8 9 10 11 12 13 14 15 

7 7 8 9 10 11 12 13 14 15 16 

8 8 9 10 11 12 13 14 15 16 17 

9 9 10 11 12 13 14 15 16 17 18 

(7.5) 

This structure, (S, 0, EEl) where in this caseS= IRU{ -oo }, is a semiring. A semiring 

is a set together with two binary operators (EEl, 0) satisfying the following conditions: 

• Additive associativity: Ita, b, c E S, a EEl (b EEl c) = (a EEl b) EEl c, 

• Additive commutativity: Ita, b E S, a EEl b = b EEl a, 

• Multiplicative associativity: Ita, b, c E S, a 0 (b 0 c) = (a 0 b) 0 c, 

• Left and right distributivity: Ita, b, c E S, a 0 (b EEl c) = (a 0 b) EEl (a 0 c) and 

(a EEl b) 0c= (a0c) EEJ(b0c). 

The multiplicative inverse of a is -a (a 0 -a = ll). The operation EEl has an identity 

element but not all elements have an additive inverse. For example, the equation 

a EEl 3 = 1 has no solution. Commutativity of both operations follows from their 

definitions. The operations are each associative, 

(aEEJb)EEJc = max(max(a, b), c) = max(a, b, c) = max(a, max(b, c)) = aEEJ(bEEJc),(7.6) 

(a 0 b) 0 c =(a+ b)+ c =a+ (b+ c)= a 0 (b 0 c), (7.7) 

and are distributive, 

a 0 (b EEl c) = a+ max(b, c) = max( a+ b, a +c) = a 0 b EEl a 0 c. (7.8) 
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The operation E& is idempotent, that is a E& a = a. A semiring which carries this 

property is called a dioid. 

We note that some authors, in a similar context, define min in place of max. 

That this is a matter of personal choice is demonstrated by noting that one can be 

transformed into the other by means of 

min(a,b) + max(a, b)= a+ b, (7.9) 

and in the min case the real line must be augmented with +oo rather than -oo, 

and the additive identity 0 = +oo. In particular, the semiring (NU { +oo }, 0, E&) is 

named the tropical semiring [62, 66]. 

We tabulate some quantities written in conventional notation and write the same 

quantities using the ( E&, 0) notation. 

(max,+) (Ell, 0) 

ra a®r =a 0 a 0 · · · 0 a (r times) 

·a-b a0b =a® b-1 

none aeb 

L:7=t ai ®~1 ai 

maxf=t ai EB:=I ai 

Considering the 2-vector transformation if' = Aii', the (max, +) version of matrix 

multiplication is given in component form by [62] 

From this we deduce that the (max,+) 2x2 identity matrix is 

7.2 (Max,+) polynomials 

A (max, +) polynomial [63] in a variable x of degree n is an expression of the form 

n 

p(x) = ffie; ®x®i, 
i=O 

(7.11) 
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which in conventional notation takes the form p(x) = maxf~1 (ix + e;), where i EN. 

The (max,+) binomial theorem is, for n E N [63], 

(7.12) 

We shall consider the particular case n = 2 where 

(a Ell b)02 = a02 Ell a® bEll b ®a Ell b02 

= max(2a, a+ b,b +a, 2b) = 2max(a, b)= a02 ® b®2, 
(7.13) 

The middle two terms in the expansion are redundant since either 2a ;::: a + b or 

2b 2:: a + b. This brings us to a way to determine inessential terms in a polynomial. 

The condition for the rth term to be an inessential term, in the polynomial notation 

of (7.11) is [63] 
n 

c,. ® x0 r ::; ffi e; ® x 0 i. 

i=O,i=f=r 

(7.14) 

Analogously to the definition of a complex rational function (6.10), a (max,+) ra­

tional function f(x) is a ratio (in a consistent sense) of two (max,+) polynomials. 

Namely 

f(x) = (ffi A;® x0 i) 0 (4 BJ ®x0 J) = rf:gc(A;+ix)-~~(BJ+jx).(7.15) 
,=0 ,1=0 

A (max,+) rational function is more general than a (max,+) polynomial in the sense 

that the latter is a strictly non-decreasing function in x. 

7.3 Ultra-discretization 

Ultra-discrete equations are obtained from discrete/difference equations, in a lim­

iting procedure called ultra-discretization of which we shall present an example 

[67, 68]. 

Ultra-discretization is a technique used to obtain ultra-discrete equations from 

discrete equations. As we shall see, ultra-discretization is a procedure that requires 

definition of a certain limit. 

We define real variables a, b, c 2:: 0, in terms of which the new variables A, B, C E 

~u {-oo} are 

(7.16) 
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If we consider the equation c = a x b, we deduce that C = A+ B. Recalling that our 

definitions of new binary operations gives C = A 0 B, we deduce that "ordinary" 

multiplication of a with b corresponds to our redefined multiplication of A with B. 

Next we consider c = a+ b, in which case we cannot so easily relate A, B and C. 

However 

C = lim e log(eA/< + e8 1') = max(A, B). 
E-o+ 

(7.17) 

This limiting process is referred to as ultra discretization. With our redefined notion 

of addition it can be written as OC = A E!1 B. We shall now prove that this limit is 

correct. If A;::: B, we have 

dog(eAf' + e8 1') = € log eAf'(1 + e(B-A)f•) =A+ t log(1 + e(B-A)f•). (7.18) 

Now taking the limit as €--> o+, the second term on the right tends to zero since 

B-A :::; 0. Then we get the correct answer of max(A, B) = A. The proof for the 

case A ;::: B follows by symmetry. 

We consider the generalization of equation (7.17) to n dependent variables a; = 

eA•/•, i = 1, ... , n. We see that 

lim (€ log ..f.. a;) = EB A;, 
€-o+ L....t 

i=l i=l 

n n 

dogiJ a;= Q9A;. 
i=l i=l 

(7.19) 

As an example of carrying out ultra discretization, we start with a discrete equation 

called d-Pm (see for example [70]), as there exists a certain continuum limit in which 

the equation can be cast as the Pm differential equation. It is, with discrete variable 

Yn = y(qn), 

aq• + y~ 
Yn+!Yn-1 = 1 + n 2 ' aq Yn 

(q- 1)2 
a= q ' 

• 
(7.20) 

Note that we must restrict all variables to the real line. We define the ultra-discrete 

variables Yn, Q, A by 

Y 
_ eYn(< 

n- ' 

in terms of which equation (7.20) is 

= dog(e(A+nQ)/< + e2Yn/<) _dog( eO/<+ e(A+nQ+2Yn)l<) 

max(A + nQ, 2Yn)- max(O, A+ nQ + 2Yn) 

(7.21) 

(7.22) 
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in the limit as E--> o+. Also we find A= max(2Q,O)- Q = IQI. With the circled 

binary operators and the associated notation we have 

A= (QE!ln)®2oQ,(7.23) 

which bears a striking, if slightly superficial, resemblance to the form of (7.20). We 

needed to use the notation for the multiplicative identity 0 = l We refer to it as 

a form of u-Pm (ultra discrete Pm) because of its relation to the continuous Pm 

[67]. The independent variable n E Z in equation (7.23). We wish to generalize it to 

x E IR U { -oo}, in a similar way to how we generalized the independent variable in 

the discrete equation (6.1) to obtain the difference equation (6.2). Then we obtain 

the ultra-discrete equation 

Y(x + 1) ® Y(x- 1) =(A® Q®• Ell Y(x)®2 ) 0 (n Ell A® Q®• ® Y(x)®2
), 

(7.24) 
A= (QE!lll)®2 0Q, 

A (max,+) rational function (7.15) - or equivalently a piecewise linear function -

may arise as a solution to (7.24). 

7.4 (Max, +). meromorphic functions 

Here we shall produce original ideas in defining a class of piecewise linear functions, 

and concepts of roots and poles of such functions, in a way that seems to be the 

most natural for extendeing the well-known definitions given in previous chapters. 

Definition 7.4.1 A piecewise linear function f : IR --> IR is said to be (max,+) 

meromorphic if its first derivative f'(x), x E IR is an integer at each point x E JR. 

Note that it is a generalization of a (max,+) rational function (7.15) to a function 

which may have an infinite number of distinct linear segments. For example a non­

constant periodic (max,+) meromorphic function is not (max,+) rational. 

In terms of a particular (max,+) meromorphic function j, define the function 

Wf: IR--> z by 

w1(x) = lim [f'(x +e)- f'(x- E)], 
t:-.o+ 

(7.25) 
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and if w1(x) > 0 then xis called a root off with multiplicity w1(x). If w1(x) < 0 

then xis called a pole off with multiplicity -w1(x). Otherwise if w1(x) = 0 then 

x is called an ordinary point of f. 
Now we define the root/pole structure off at x = ±oc. Define Xt, x2 such that 

f'(x) = mt'ifx < x 1 and f'(x) = m 2Vx > x2 • Then -oc is a root of multiplicity m1 

if m1 > 0, but is a pole of multiplicity -m1 if m1 < 0. Conversely +oc is a pole of 

multiplicity m2 if m2 > 0, but is a root of multiplicity -m2 if m2 < 0. 

Let f and g be (max,+) meromorphic functions; then h = fog is piecewise 

linear. Moreover, on any interval on which the first derivative h' is defined, h is a 

composition of two linear functions With integer slopes. It follows that his (max,+) 

meromorphic. To prove this, we work with an interval !l <;;JR. in which f(x) = Ax+ B 

and g(x) = Cx +D. Then 

h =fog= A(Ca; +D)+ B, X E !1, 

for which h' = AC # 0. We can extend this result to prove that if f and g are 

(max,+) meromorphic on !l <;;JR., then so are f EB g, f 0 g and fog. Furthermore, 

if g # -oc, then f 0 g is also (max,+) meromorphic. 

Let R(x,y) be a (max,+) rational function in y, with coefficients (A,,B1) that 

are (max,+) meromorphic functions of x. Then it can be written as a (max,+) ratio 

of ( max, +) polynomials, as 

(7.26) 

If y(x) is (max,+) meromorphic then so is R(x, y(x)). 

Examples of (max,+) meromorphic functions 

Reverting temporarily to the definitions of complex analysis, the complex function 

f(z) = zn, n E N has a zero of multiplicity n at the origin of the complex plane. 

It has a pole of multiplicity n at oc. We restrict this function to JR.; f(x) = x and 

define ultra-discrete variables s, F( s) by x = e•l• and f = eFI•. Then the function 

transforms to 

F(s) = s0 n = ns, nE N, 
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which, in our (max,+) language, has a root of multiplicity n at s = -oo, and has 

a pole of multiplicity n at s = +oo. We see that we have mapped the origin of the 

complex plane to -oo adjacent to the real line. 

Using similar techniques on f(z) = 1/z",n EN which has a pole of multiplicity 

n at z = 0 and a zero of multiplicity n at z = oo we obtain 

F(s),;, ll0 s0 " = -ns, nEN, 

which, in our (max,+) language, has a pole of multiplicity n at s = -oo, and has a 

root of multiplicity n at s = +oo. 

7.5 A test for integrability of ultra-discrete equa­

tions 

As in [73] we. consider the ultra discrete equation 

Xn+i + Xn + Xn-1 = max(Xn + K, 0), (7.27) 

which is obtainable as the limit of an integrable discrete equation. The equation 

(7.27) has a critical point at Xn = -K, where the right hand side is discontinuous. 

Introducing a small number E, we perturb from the critical point to Xn = - K +E. 

With this choice equation (7.27) will vary depending on the sign of E. We demand 

that Xn-1 > 2IKI. Then we get the iterates tabulated below .. 

I E>O E<O 

Xn -K+E -K+E 

Xn+l K -Xn-1 K -Xn-1-E 

Xn+2 Xn-1- E Xn-1 
(7.28) 

Xn+3 Xn-1 Xn-1 +E 

Xn+4 K- Xn-1 + E K -Xn-1 

Xn+S -K-E -K-E 

Xn+6 Xn-1 Xn-1 

From table (7.28) it is seen that while we have imposed the initial condition that 

Xn is the same for E < 0 and E > 0, the coefficients of E in X; do not match in the 



CHAPTER 7. (MAX,+) SEMIRING AND ULTRA-DISCRETE EQUATIONS98 

range n + 1 ::; i ::; n + 4. This implies they are not differentiable at X; = - K in that 

range, but are outside it, meaning the discontinuity in the derivative is confined. 

For generic ultra-discrete equations we would expect a discontinuity to persist in 

future iterates once it has formed. This type of singularity confinement is argued in 

[73] to be a test for integrability of ultra-discrete ~quations. 



Chapter 8 

Nevanlinna theory on the (max,+) 
• • sem1r1ng 

We shall work with ( max, +) meromorphic functions as defined in the previous chap­

ter, and derive an original theory of the value distribution of such functions on the 

real line. The theory is presented in the preprint by Halburd and Southall [79]. 

In many ways this is analogous to Nevanlinna theory on the complex plane which 

concerns the value distribution of meromorphic functions, as presented in sections 

2.7 and 6.5. In this light we shall refer to the theory described here as (max,+) 

N evanlinna theory. 

In terms of a (max,+) meromorpic function f, we define the Nevanlinna charac­

teristic T(r, f), proximity function m(r, f) and counting function N(r, f). Analogues 

of some - but not all - of the results from classical N evanlinna theory are proved, 

such as the first main theorem of Nevanlinna and the lemma on the logarithmic 

derivative. 

Some ultra-discrete equations admit (max,+) meromorphic solutions. We con­

jecture that in the sense of the (max,+) Nevanlinna theory we have introduced, the 

ultra-discrete Painleve equations (and in general all integrable ultra-discrete equa­

tions) admit finite-order (max,+) meromorphic solutions on R Our definition of a 

finite-order (max,+) meromorphic function f is that there exist positive numbers rJ 

and ro such that T(r, f) :5 ru, Vr > r0 . 

It will be shown that many ultra-discrete equations admit infinite-order (max,+) 

99 
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meromorphic solutions but the ultra-discrete Painleve equations appear to admit 

finite-order (max, +) meromorphic solutions. The general solutions of both difference 

equations and ultra-discrete equations contain arbitrary period one functions. One 

significant difference, however, is that many meromorphic period one functions have 

infinite order in the complex setting, while all non-constant (max,+) meromorphic 

periodic functions have order two. 

8.1 (Max,+) Poisson-Jensen formula 

Lemma 8.1.1 Suppose that f is a {max,+) meromorphicfunction definedforx E 

[-r, r], r > 0. The roots off in this interval are denoted by all, J.l = 1, ... , M 

and the poles are denoted by bv, v = 1, ... N. They are denoted according to their 

multiplicities; for example a double pole - meaning of multiplicity two - is counted 

twice in the appropriate summation. In this interval we have the ( max, +) Poisson­

Jensen formula [7gj, 

f(x) = !{J(r) + /(-r)) + f,.(f(r)- f(-r)) 
(8.1) 

1M2 !N2 I) 
- zr 2:1=1 (r - la!' - xir- al'x) + Zr Ev=l (r - lbv -X r - bvx . 

Proof. Define a finite increasing series of points { ck}, k = -p, ... , q as follows. Let 

eo = x and let the other elements in the series denote the points in 'Y E ( -r, r) at 

which f'('Y) does not exist. We denote by mk the gradients of the line segments in 

the graph of f. 

Figure 8.1: Notation used in the proof of the (max,+) Poisson-Jensen formula 

ffiq-1 

mq 

-r C-p Cq-1 q r 
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Specifically, fork= 0, ... ,p we set mk+l = limHo+ f(ck + €), and deduce that 

q 

f(x) = f(r)- m1(r- x) + 2)mi- m1+t)(r- c1). (8.2) 
j=1 

and fork= -q, ... , 0 we set mk-1 = limHo+ f(ck- €). It follows that 

p 

f(x) = f(-r) + m_1(r + x) + 2)m-i-1- m_;)(r + c_;). (8.3) 
i=l 

Adding equation (r+x)x(8.2) to (r-x)x(8.3) gives 

2rf(x) = r(f(r) + f(-r)) +x(f(r)- f(-r)) + (r2 - x2)(m_1 - mt) 

+ I:;'=1(m-i-1- m_;)(r2 + (c_;- x)r- c_;x) (8.4) 

+ L:J=1(m1 - mJ+l)(r2 + (x- c1)r- cp) 

We now wish to write the summations in terms of the roots a~ and poles bv. In 

particular, if c_; is a root of multiplicity w_; E Z, then m_;_1 - m_; = w_;, but if it 

is a pole of multiplicity W-i then m_;_1 - m_; = -w-;. After performing the same 

procedures on the sum over j we obtain the Poisson-Jensen formula (8.1). D 

We define a real independent variable x E [-r, r], and a function f : lR -+ IR, and 

define in terms of this the nonnegative function 

j+(x) = max(f(x),O), (8.5) 

from which we find the property j+ + (-J)+ = lfl\lf ER The {max,+) proximity 

function is 

( f)
_j+(r)+J+(-r) 

m r, -
2 

. (8.6) 

The (max, +) counting function n(r, f) gives the number of poles bv of f in the 

interval ( -r, r), counting multiplicities. This integrates to yield 

11r 1 N 
N(r, f) = 2 n(t, f)dt = 2l)r -lbviJ· 

0 v=l 

(8.7) 

Putting together the above results, we define the (max, +) Nevanlinna characteristic 

function as 

T(r, f) = m(r, f)+ N(r, f). (8.8) 
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8.2 An analogue of Nevanlinna's first main theo-

rem for piecewise linear functions 

With x = 0 the (max,+) Poisson-Jensen formula reduces to the (max,+) Jensen 

formula, 

1 1 M 1 N 

f(O) = 2(f(r) + f( -r)) - 2 I:(r -la!' I)+ 2 I:(r -lb. I). 
p.=l v=l 

(8.9) 

We note that inverting f about the x-axis is equivalent to replacing f with - f, in 

which case the roots and poles swap. As equation (8.7) counts the number of poles 

n(r, f) off, it follows that n(r,- f) counts the roots of f. Integrating, 

1 M 
N(r,- f) = 2 I:(r -lal'l). 

p.=l 

(8.10) 

Since max(f, 0)- max(-f, 0) = f, 

m(r, f)- m(r,- f)= f(r) + :( -r)). (8.11) 

Substituting these results in equation (8.9) yields 

T(r, f)- T(r,- f) = f(O). (8.12) 

8.3 Properties of the Nevanlinna characteristic 

Lemma 8.3.1 T(r, f) is a continuous non-decreasing piecewise linear function of 

r. 

Proof. Choose r > 0 such that f does not have a root or a pole at either x = r or 

x = -r. Differentiation yields 

dT(r,f) =.!. (dj+(r) _ dj+(-r)) + .!.n(r,f). 
dr 2 dr d(-r) 2 

(8.13) 

In the case where both f(r) < 0 and f( -r) < 0, then the non negativity of n(r, f) 

implies r!T~~,f) ~ 0\:/r which is the required result. 

Before evaluating the case where f( -r) ~ 0 and f(r) ~ 0, we· differentiate the 

(max,+) Jensen formula, 

0 = f'(r)- f'(-r) .!. ( f)-~ ( -f) 
2 

+ 
2

n r, 
2

n r, (8.14) 
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where a prime denotes a derivative of a function with respect to its argument. Then 

<IT(r,f) = W'(r)- !'( -r) + n(r, f)) dr 

= !(n(r,- f)- n(r, f)+ n(r, f)) 
(8.15) 

= !n(r,- f) 

2: 0. 

Next we consider the case in which f( -r) < 0 and f(r) 2: 0. There must be a 

sub-interval of ( -r, r) on which the graph off has strictly positive slope. Therefore 

its slope at x = r is strictly greater than -n(r, f) - f'(r) > -n(r, f). It follows that 

dT~ f) = ~(f'(r) + n(r, f))> 0. (8.16) 

Lastly we consider the case in which f( -r) 2: 0 and f(r) < 0. Similar reasoning to 

that in the previous case shows that f'( -r) < n(r,J). Hence 

dT~f) = ~(-J'(-r) +n(r,f)) > 0. (8.17) 

0 

We introduce a finite set of piecewise linear functions f;(x) E IR U {-oo}, i = 

1, ... , n which satisfy, in the (max,+) notation, 

T (r,~f;) ~ ifRr(r,f;), 

T (r,ifRf•) ~ ifRr(r,J,). 

(8.18) 

(8.19) 

We shall prove these properties in the case n = 2 with (h, h) = (!,g), from which 

the general results follow by induction. Then ffif=di = max(f, g) and ®~d; = f +g. 

In particular 

m(r, f +g) = (f+g)+(rl+Jf+g)+(-r) 

~ t+(r)+r(-r) + g+(rl+,tC-rl = m(r, f)+ m(r, g). 
(8.20) 

Also 

m(r, max(f, g)) = (max(f,g))+(r)+tax(f,g))+(-r) 

~ t+(rl+fC-rl + g+(r)+t(-r) = m(r, f)+ m(r, g). 
(8.21) 
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The above inequalities can be proved using general arguments. Elements a, b E 

lR U { -oo} satisfy (a+ b)+ :S: a+ + b+, The equality is satisfied if a 2: 0, b 2: 0 since 

then a + b 2: 0. Otherwise the left hand side is strictly less than the right. Also 

(max(a, b))+ :S: a++ b+. Here, if a 2: 0 2: b, or if b 2: 0 2: a then the equality is 

satisfied. Otherwise the left hand side is strictly less than the right. Then we may 

replace a and b by f(x) and g(x) respectively, and the same inequalities will hold 

Vx E [-r,r). 

Next we consider the poles off and g. If all poles off differ from those of g, 

then N(r,j +g) = N(r,J) + N(r, g). However in general their poles may coincide 

in which case N(r, f +g) :S: N(r, f)+ N(r, g). The function max(J, g), as the upper 

envelope off and g will have at most the sum of the roots off and of g. Therefore 

the counting functions satisfy N(r, max(J,g)) :S: N(r, f)+ N(r,g). 

Combining the results into T(r, f) = m(r, f)+ N(r, f) and switching to (max,+) 

notation, 

T(r, f f3J g) :S: T(r, f) 0 T(r, g), T(r, f 0 g) :S: T(r, f) 0 T(r, g). (8.22) 

These are easily generalized by induction to equations (8.18,8.19). 

Theorem 8.3.2 If f is a (max,+) meromorphic function, then T(r,f) = O(r) if 

and only if f is a ( max, +} rational function. 

· Proof. If f is a (max,+) rational function then there exists R > 0 such that f(r) = 

A1r+A2, f(-r) = A3r+A4 and n(r,j) = A5 where the A; are constants and r > R. 

The result then follows from our definitions of N(r, f) and T(r, f). 

Next we assume that f is a meromorphic function satisfying T(r, f) :S: Kr, for 

some K and all sufficiently larger. From Lemma 8.3.3 we have, for any k > 1, 

2 2 2kK 
n(r, f) :S: (k _ 1)r N(kr, f) :S: (k _ 1)r T(kr, f) :S: (k _ 1). 

Hence f has a finite number of poles. Similarly, using equation (??), we find that 

n(r,- f) is also bounded and so f has a finite number of roots. It follows from 

Lemma ?? that f is rational. D 

Let f be a non-constant periodic function with period 2w. Then there exist positive 

constants K1, K 2 such that 

Vr 2: w. (8.23) 
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Lemma 8.3.3 For any k > 1 we have that 

2 
n(r,J) <:;, (k _ 1)rN(kr,j). (8.24) 

Proof. 

n(r, f)r = n(r, f) tr dt <:;, fr2r n(t, f)dt <:;, J:" n(t, f)dt = 2N(2r, f). (8.25) 

D 

8.4 Borel-Nevanlinna lemma 

Lemma 8.4.1 Let T(r, f), ~(x) and if>(r) be positive, nondecreasing, continuous 

functions with rE [r0 , oo). Also assume that T(r, f) :2: e, and x E [e, oo). 

Borel-Nevanlinna lemma (see {72}) states that 

( 
rf>(r) ) 

T r + ~(T(r, f)), f <:;, 2T(r, f), 

Vr outside of a set E which satisfies, for R < oo, 

f dr 1 1 lT(R,f) dx 

JEn[ro,R] rf>(r) <:;, ~(e) + log2 e x~(x)' 

Then the 

(8.26) 

(8.27) 

In particular, by choosing rf>(r) = 1 and ~(x) = x this implies the standard Bore! 

Lemma (see for example (26]) which states that 

(8.28) 

outside an exceptional set E of finite linear measure, that is JE dt < oo. 

Theorem 8.4.2 If f is (max, +) meromorphic, then the (max, +) counting function 

satisfies 

4 
n(r,j) <:;, -N(r, f) I+< 

r 
(8.29) 

where € > 0, outside of a possible exceptional set E of finite logarithmic measure, 

that is JE !l[- < oo. 
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Proof. If n(r, f) = 0, there is nothing to prove. From Lemma 8.3.3 with k = 

1 + N(r, !)-',we have 

n(r, f)~ ~N(r, f)'N (r + N(;, /)''f)· 

Now we apply Lemma 8.26 with T(r) = N(r, f), <f>(r) = r and ~(x) = x', which 

shows that 

N (r + N(;, /)',!) ~ 2N(r,j), 

outside an exceptional set E satisfying 

1 dr 1 1 1N(R,f) dx ( 1 ) - < -+-- -- < 1+-- e-'. 
En[ro,RJ r - e' log 2 e xl+< - dog 2 

D 

Definition 8.4.3 A {max, +) meromorphic function is said to be of finite order if 

there exist positive numbers !7 and r0 such that T(r, f)~ r", for all r·> r0 • 

Corollary 8.4.4 Let f be a finite-order {max,+) meromorphic function. Then for 

all o < 1, n(r,f) ~ r-5N(r,f), outside an exceptional set E of finite logarithmic 

measure. 

Proof. Now N(r, f) ~ T(r, f) ~ r". Choose E < (1- o)/!7. Then for sufficiently 

larger, 4N(r, f)' < r 1- 5• Now apply Theorem 8.4.2. D 

The finite-order condition is important in Corollary 8.4.4. Consider the infinite­

order function f such that f(x) = 0 for all x < 0, f has no roots and its only poles 

occur at each non-negative integer n with multiplicity 2n. In this case N(r,j) = 

O(n(r,J)). 

8.5 An analogue of the lemma on the logarithmic 

derivative 

In standard Nevanlinna theory we work with a meromorphic function f of a single 

complex variable z. One useful result in N evanlinna theory is the lemma on the 

logarithmic derivative f'(z)/ f(z). In [71] an analogue of this lemma was proved for 
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the logarithmic difference f(z+c)/ f(z), f, z, c E IC. This result was important in the 

classification of difference equations admitting finite-order meromorphic solutions by 

Halburd and Korhonen [78]. 

The (max,+) analogue of the logarithmic difference is f(x +c) 0 f(x) = f(x + 

c)- f(x), f, x, c E JR. 

Lemma 8.5.1 Let f be a {max,+) meromorphic function. Then 

2'+' · 14lcl 
m(r, f(x +c) 0 f(x)) :':: {T(r +I cl, f)'+'+ o(T(r +I cl, f)}, (8.30) 

r 

for any € > 0, outside an exceptional set of finite logarithmic measure. 

Proof. We define a function g(x) = f(x +c) 0 f(x). For any p > r + lcl and 

x E [-r, r], the (max,+) Poisson-Jensen formula gives 

g(x) = f(x +c)- f(x) = {p(f(p) + f(-p)) 

+iP L:l'[(la~'- x- cl-la~'- xl)p +ea~'] 

- ip Lv[(lbv- X- cl-lbv- xl)p + cbv], 

(8.31) 

with lal'l < p and lbvl < p. We shall next prove (8.30). We first deduce a relation 

between x+ and lxl where x E IR, 

lxl = max(x, 0) + max( -x, 0) = x+ + ( -x)+, 

which implies x+ :':: I xi- Using the results (8.22) we deduce that 

m(r,g(x)) :'::m (r, {p(f(p) + f(-p))) 

+m (r, iP L:~'[(la~'- x- cl-la~'- xl)p +ea~']) 
+m (r, - 2~ Lv[(lbv- X- cl-lbv- xi)P + cbvJ). 

We note that the first term on the right is independent of x; therefore, 

m (r, {p(f(p)+ f(-p))) = (zi;U(P) + f(-p))r 

:-::: 1-f,;(f(p) + f(-p))l 

:-::: ~(lf(p)l +If( -p)l) 

= ~(J+(p) + (-J)+(p) 

+J+(-p)+(-J)+(-p)) 

= ~(m(p, f)+ m(p,- f)). 

(8.32) 

(8.33) 

(8.34) 
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Also 

m (r, 2
1
p {([al'- x- c[-[a"- x[) p +ea"}) 

:::; ~ ({[[a!'- r- c[-[al'- r[[ +[[a!'+ r- c[-[al' + r[[} + ~~~'I) :::; ~[c[, 
since [al'[ < p. From the above estimates and Theorem 8.4.2, for any € > 0, 

m(r,f(x +c)- f(x)) 

:::; [c[ { ~ (m(p, f)+ m(p,-f))+~ (n(p, f)+ n(p,-f))} 
< lS {T(p, f)+ T(p,- f)+ 6T(p, f) I+<+ 6T(p,- j)l+'} 

p 

:::; 7[c[ {T(p, f) I+• + T(p,- j)l+'} 
p 

:::; 14[c[ {T(p, f) I+<+ o (T(p, f))}' 
p 

outside an exceptional set of finite logarithmic measure. Choosing p = r + [c[ + 

1/T(r + [c[, f) and using Lemma 8.26 with r replaced by r + [c[, we obtain T(p, f) :::; 

2T(r + [c[, f), outside a set of finite linear measure. 0 

Lemma 8.5.2 Let T : JR+ --> JR+ be a non-decreasing continuous function, s > 0, 

a< 1, and let F ={rE JR+ : T(r):::; aT(r + s)}. If the logarithmic measure ofF 

is infinite, that is, JF ~ = oo, then limsupr~oo logT(r)/logr = oo. 

Theorem 8.5.3 Given 8 < 1, any finite-order (max, +) meromorphic function f 

satisfies the lemma on the logarithmic difference, 

m(r, f(x +c) 0 f(x)) = 0 (r-5T(r, f)), (8.35) 

outside an exceptional set of finite logarithmic measure. 

Proof. Since f has finite order, Lemma 8.5.2 implies that T(r + [c[, f) :::; 2T(r, f) 

outside an exceptional set of finite logarithmic measure. Also, there exist positive 

constants u and r0 such that T(r,f):::; ru for all r > r0 • Choose € = (1- 8)/u. 

Then T(r, f)' jr :::; r-5• 0 
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Figure 8.2: Graph showing function (8.36) 

f(x) 

1 

1 X 

8.6 Applications to (max,+) rational functions 

We consider a (max,+) rational function of degree 1 with A0 = 0, A1 = 1, B0 = 0, 

f(x) = max(O,x), (8.36) 

which has a simple root at x = 0 and no poles. Its graph is shown in Figure 8.2. 

Its inverse with respect to the® operation is -f(x) = -max(O,x), which has no 

roots and a simple pole at x = 0. We substitute this in the (max,+) Poisson-Jensen 

formula (8.1) to give . 

f(x) = ~(max(r, 0) + max(-r,O)) + ~(max(r, 0)- max(-r,O)) 

-ir(r2 -[x[r) 

= ~ q - ~(r -[xi) 

= !(x+ [x[), 

(8.37) 

which is an alternative expression of function (8.36). The (max,+) proximity func­

tion (8.6) becomes 

( f) _ max(max(r,O),O)+max(max(-r,O),O) _ ! 
m r, - 2 - 2' 

m(r, _f)= max(-max(r,O),O)+;'a.x(-max(-r,O),O) = O. 
(8.38) 
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The (max,+) counting function n(r, f) gives the number of poles off in the interval 

(-r,r), which is zero 'Vr. It follows that n(r,-f) gives the number of roots, which 

equals one, with due count of multiplicities 'Vr. The integrated (max,+) counting 

function (8. 7) becomes 

1 N 
N(r, f) = 2 2)r -lbv!) = 0, 

v=l 

r 
N(r,-f) = 2. (8.39) 

Then the (max,+) characteristic function (8.8) is 

r 
T(r, f) = m(r, f)+N(r, f) = 2, r 

T(r,- f) = m(r,- f)+N(r,- f) = 2,(8.40) 

so T(r, f) - T(r,- f) = 0 =: f(O) as required. 

We shall see that inequality (8.24) holds for our current definition of f. There 

is nothing to prove for f(x) = max(O,x) since both sides vanish. For - f(x) = 

- max(O, x) we have 

1 < 2 kr = _k_' 
- (k- 1)r 2 k- 1 

k > 1. (8.41) 

Similarly we shall see that inequality (8.29) is satisfied. Again it holds trivially for 

f(x) = max(O,x). For -f(x) = -max(O,x) we have 

(8.42) 

which is true for sufficiently large r. We next consider the difference function, 

assuming c > 0, 

{ 

0, x < -c 

f(x+c)0f(x) = max(O,x+c) -maxO,x) = x+c, -c~ x < 0 

C, X 2:0, 

while if c ~ 0 then the difference function vanishes. 

{ 

0, X< 0 

f(x +c) 0 f(x) = max(O,x +c)- maxO,x) = -x, 0 ~ x < -c 

c, x;::: -c. 

The (max,+) proximity function (8.6) is, for arbitrary c and r > !cl, 

c 
m(r, f(x +c) 0 f(x)) = 2· 

We next substitute into the lemma on the logarithmic difference (8.30), 

(8.43) 

(8.44) 

(8.45) 

(8.46) 
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Single ramp (max,+) rational function 

Figure 8.3: Graph showing function (8.47) 

-k 

f(x) 

h 

k X 

The next piecewise linear function we shall consider has f(x) = 0 as x --> -oo, 

and f(x) = h > 0 as x --> oo. It is non constant only within a range centred on the 

origin, 

{ 

0, X,$ -k, 

f(x) = 2~(x + k), -k < x::; k, 

h, k < x. 
(8.47) 

= !(max(O, h(x/k + 1))- max(O, h(x/k- 1))) 

Its graph is shown in Figure 8.3. We note that J(x) has a root of multiplicity h/2k 

at x = -k and a pole of multiplicity h/2k at x = k. In orderfor J(x) to be (max,+) 

rational we require h/2k EN. 

We shall apply our findings to the (max,+) Poisson-Jensen formula (8.1) to check 

we recover the original function. We let r > k, where x E ( -r, r). In fact we may 

let r --> oo in which case x E JR. Then 

f(x) = :i'r(r+x)- f,;~(r2 -lk+xlr+kx) + ir 2~(r2 -lk-xlr- kx) 

= !(2k + ik + xl-lk- xi), 

which may be shown by working out a few specific cases to be equivalent to the 

original form ( 8.4 7). 
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8.7 Application to a (max,+) meromorphic func­

tion 

-6k 

Figure 8.4: Graph showing function (8.48) 
f(x) 

h 

-2k 2k 4k 

-h 

6k X 

. We shall consider a periodic (max,+) meromorphicfunction f(x), x E [-oo, +oo). 
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It oscillates between ±h with period 4k, with h/k EN, and f(O) =h. Then 

h(x/k + 5), -6k ::; X ::; -4k, 

h(-x/k- 3), -4k ::; X ::; - 2k, 

f(x) = 
h(x/k + 1), 

h(-x/k+ 1), 

-2k::; X::; 0, 

0 ::; X ::; 2k, 
(8.48) 

h(xjk- 3), 2k ::; X ::; 4k, 

h(-x/k+5), 4k ::; X ::; 6k, 

.. 

Its graph is shown in Figure 8.4. Substitution off and - f respectively in (8.6) give 

h(-r/k + 1), 0 ::; r ::; k, 

0, k ::; r ::; 3k, 

m(r,f) = 
h(r/k- 3), 3k ::; r ::; 4k, 

h(-r/k+5), 4k ::; r ::; 5k, 
(8.49) 

0, 5k::; r::; 7k, 

., 

0, 0 ::; r ::; k, 

h(r/k -1), k ::; r ::; 2k, 

m(r,-f) = 
h(-r/k+3), 2k ::; r ::; 3k, 

(8.50) 
0, 3k ::; r ::; 5k, 

h(r/k- 5), 5k ::; r ::; 6k, 

.. 

We see that the function (8.48) has roots at x = 4k(p + !), p E Z and poles at 

x = 4kv, v E Z, and each root or pole has multiplicity 2hjk, where h/k E Z. We 

note that each root or pole x = a is repeated at x = -a, except for the root or pole 

at the origin which is not repeated. Then the (max,+) counting function (8.7) for 

our cases is 

{ 

hrjk, 

N(r,J) = h(3r/~- 8), 

0::; r < 4k, 

4k::; r < 8k, 

., 

(8.51) 
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0, 0 :S: r < 2k, 

N(r,-f) = 
h(2r/k- 4), 2k :S: r < 6k, 

(8.52) 
h(4r/k- 16), 6k :S: r < 10k, 

.. 

We can now calculate the Nevanlinna characteristic T(r, f) = m(r, f)+ N(r, f) for 

f and - f respectively, 

h, 0 :S: r < k, 

hr/k, k :S: r < 3k, 

T(r,j) = h(2r/k- 3), 3k :S: r < 5k, (8.53) 

h(3r/k- 8), 5k :S: r < 7k, 

., 

,0, 0 :S: r < k, 

h(r/k-1), k :S: r < 3k, 

T(r,-f) = h(2r/k- 4), 3k :S: r < 5k, (8.54) 

h(3r/k- 9), 5k :S: r < 7k, 

.. 

Then we calculate T(r, f) - T(r,- f) = h =: f(O) as expected from the (max,+) 

analogue of Nevanlinna's first main theorem (8.12), for rE [0, 7k). Since f(x) was 

defined to repeat to infinity it follows that the result holds for arbitrary values of r. 

8.8 Applications to ultra-discrete equations 

The main application that we have in mind for (max,+) Nevanlinna theory is as 

a measure of the complexity of solutions of ultra-discrete equations. In particular, 

the aim is to use ideas from (max,+) Nevanlinna theory to classify equations that 

are natural ultra-discrete analogues of the Painleve equations. Many such equa­

tions have been considered in the literature recently [67, 70, 68, 76, 73]. Most of 

these equations have been obtained directly as ultra-discretizations of known discrete 

Painleve equations. Examples of such equations include 

Yn+i + Yn-1 = max{yn + n, 0}- Yn, (8.55) 
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Yn+l + Yn-1 = a+ ma.x{yn, n} - ma.x{yn + n, 0} - Yn> (8.56) 

Yn+l + Yn-1 = ma.x{n +a, Yn} + ma.x{n- a, Yn} 

- ma.x{yn + n + b, 0}- ma.x{yn + n- b, 0}, (8.57) 

where a and b are constants. 

Conventionally, only solutions of ultra-discrete equations that are functions from 

Z to itself are considered. However, equations such as (8.55-8.57) can be re­

interpreted as equations for a continuous piecewise linear real function y of a real 

variable x. In particular, instead of equation (8.55), we consider the "extended" 

equation 

y(x + 1) + y(x- 1) = ma.x{y(x) + x, 0}- y(x), X E JR. (8.58) 

It now makes sense to ask about the existence and general properties of (ma.x,+) 

meromorphic solutions of equations such as (8.58). Based on analogous consider­

ations of (genuine) meromorphic solutions of difference equations in the complex 

domain in [54, 68, 78], it is natural to begin by considering ultra-discrete equations 

admitting finite-order (ma.x,+) meromorphic solutions. We will present evidence 

that this property can be thought of as an ultra-discrete analogue of the Painleve 

property. The Painleve property is property is closely associated with the integra­

bility of differential equations. 

We begin by addressing some simple questions on the existence of (max,+) mero­

morphic solutions. 

Lemma 8.8.1 The equation 

y(x + 1) = y(x)®n := ny(x) (8.59) 

admits a non-constant (max, +) meromorphic solution on IR if and only if n = ±1. 

Proof. If n = 0 then y = 0 is the only solution. Recall that any periodic (max,+) 

meromorphic function is of finite order. If n = 1 then y is any (ma.x,+) meromorphic 

period one function. If w is any period two ( max, +) meromorphic function, then 

y(x) := w(x + 1)-w(x) is a (max,+) meromorphic solution of equation (8.59) with 

n = -1. 
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If y is non-constant then 3x0 E IR such that y' exists and is a non-zero integer 

m at x0 • It follows from equation (8.59) that for all v E Z, y'(x0 - v) = m/n". 

Therefore if v 'I ±1 then for sufficiently large v, 0 < IY'(x0 - v)l < 1, and hence the 

slope is not an integer. D 

Note that the (max,+) Nevanlinna characteristic can be defined for arbitrary 

continuous piecewise linear functions (not necessarily with integer slopes) if we allow 

the counting function n(r, f) to count poles of non-integer multiplicites (i.e., the 

differences in slopes). For now we remark that allowing for non-integer multiplicities, 

the extra condition of finite-order needs to be added to the assumptions in equation 

(8.59) in order to reach the same conclusion. 

Apart from the analogue of Clunie's lemma which we derive in section 8.9, we 

shall restrict our attention to ultra-discrete equations of the form 

y(x + 1) 0 y(x- 1) = R(x, y(x)), (8.60) 

where R is (max,+) rational in x and y. We remark that all such equations admit 

infinitely many (max,+) meromorphic solutions. To see this, choose y(O) and y(1) 

to be any real numbers and calculate y(2) := R(1, y(1)) - y(O). Now define y on 

(0, 1) U (1, 2) such that y is a continuous piecewise-linear function on [0, 2] with 

integer slopes wherever y' is defined. Then the equation itself extends y uniquely to 

a (max,+) meromorphic solution on IR. 

We will show that large classes of equations of the form (8.60) admit infinite­

order solutions. In the simplest cases, this can be achieved by showing that there 

is a sequence of integers (vn) such that lvnl -+ oo and y(x0 + vn) 2:: C"• for some 

C>l. 

Lemma 8.8.2 Let y 't 0 be a (max,+) meromorphic solution of 

y(x + 1) 0 y(x- 1) = y(x)0 n, (8.61) 

for some nE Z. If y is of finite order then In I :::; 2. 

Proof. Let 
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3xo E JR. such that y(x0 ) # 0. Therefore, for at least one choice of "+" or "-", we 

have that y(x0 + 1) # >.±y(x0 ). Then for each v E Z, 

y(xo + v) =a>.~+ (3>.':.., (8.62) 

where 

are not both zero. 

Now if n > 2, then >.+ > 1 and >.:1 > 1, while if n < -2 then ->._ > 1 and 

->.:;:' > 1. Hence either y(x0 + v) or y(x0 - v) grows exponentially as v tends to 

infinity on the even integers. So T(r, y) is not bounded by a power of r. D 

Theorem 8.8.3 Let P(y) = max{a0 , a1 + y, ... , ap + py} and Q(y) = mW<{b0 , b1 + 

y, ... ,b.+qy} be two (max,+) polynomials with no common roots and neitherap 

nor bq is -oo. If lP- ql > 2, then the equation 

y(x + 1) + y(x -1) = P(y(x))- Q(y(x)) (8.63) 

admits infinitely many infinite-order (max, +) meromorphic solutions. 

Proof If y is sufficiently large for all x larger than some number~' then equation 

(8.63) reduces to 

y(x + 1) + y(x- 1) = (p- q)y(x) + ap- bq, 

for all x > ~- If p- q > 2 then, given a> 0, there is a family of solutions such that 

any member evaluated at an integer v > ~ has the form 

() 
bq-ap ((p-q)+y'(p-q)2-4)" 

y v = +a 
p-q-2 2 

So y and hence T(r, y) grow exponentially. If p- q < -2 then the same argument 

works with a minus sign in front of the square root. D 

In [73], Joshi and Lafortune consider the equation 

Yn+3yn+Yn-1 =max{n+K,O}, 

where K is a constant, as an example of an ultra-discrete equation that does not 

possess their singularity confinement property. Analogously, we have the following. 
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Lemma 8.8.4 Let K be a positive constant and let y be a (max,+) meromorphic 

solution of 

y(x + 1) + 3y(x) + y(x -1) = ma.x{y(x) + K, 0} (8.64) 

such that y(O) > 0, y(1) < -K and y(1) < -y(O). Then y has infinite order. 

Proof. It is straightforward to show by induction that for all n ;::: 1, if n is odd then 

y(n + 1);::: -2y(n) > 0 and if n is even then -y(n + 1);::: y(n) > 0. Hence y grows 

exponentially on N. D 

In [76], Joshi and Lafortune considered the ultra-discrete equation 

Xn-1 + Xn + Xn+l = ma.x{Xn + t/Jn, 0}. 

and showed that the condition for singularity confinement is 

tPn+5 -</>n+3 - rPn+2 + rPn = 0. 

That is, 

rPn =o:+,Bn+i(-1t+ocos c;n) +wsin c;n). 

We consider the analogous equation 

y(x- 1) + y(x) + y(x + 1) = ma.x{y(x) + <P(x), 0}. (8.65) 

The confinement criterion now becomes 

<P(x) = 1r2(x) + 1r3(x) + Nx + C, 

where 1r2 and 1r3 are arbitrary periodic (max,+) meromorphic functions of period 2 

and 3 respectively, and N is an integer and C is a real number. 

We note some important observations of equation (8.65). Analytically it can be 

shown that the solutions of equation (8.65) are of finite-order if <Pis a linear function. 

Furthermore, numerical studies suggest that if <P is a periodic function of order 2 

or 3 (or a sum of such functions) then the order of y is finite. If <Pis chosen to be 

a ( max, +) meromorphic function of period 4 or 5 then y appears to have infinite 

order. However, when ifJ(x) is chosen to have the form x+,P(x), where .Pis bounded, 

then numerical studies suggest that y is finite order, regardless of the precise form 
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of 1/J. However, in the cases studied, for sufficiently large x, the solutions of equation 

(8.65) are identical to (not merely asymptotic to) solutions of simpler "integrable" 

ultra-discrete equations. This is quite unlike the complex analytic setting in which 

we have uniqueness of analytic continuation. 

In [78], the classification of difference equations admitting finite-order meromor­

phic solutions in the complex domain relied on estimating the relative distribution 

of the points at which the solution, y, hits one of the finite singular values of the 

equation and the distribution of the poles of y. The method used naturally led to a 

variant of the usual singularity confinement method. An analogue of this part of the 

argument exists relating the distribution of the singular values where y(x) = -<P(x) 

to the poles of y, using method related to singularity confinement. In order to de­

duce that non-confinement implies that the solution has infinite order, we need to 

show that there are "many" points at which the solution takes a singular value. In 

the complex analytic case [78], this is guaranteed by using a difference version of 

Clunie's lemma and Nevanlinna's first main theorem. Below we present an ultra­

discrete version of Clunie's lemma, however, it is the absence of a strong (max,+) 

version of N evanlinna's first main theorem that prevents the same argument going 

through. Indeed, when <P grows sufficiently fast it appears from numerical studies 

that any solution only hits a singular point a finite number of times. 

In [77], Grammaticos, Ramani, Tamizhmani, Tamizhmani and Carstea show that 

the equation 

y(x + 1) = y(x- 1) + ly(x)l (8.66) 

does not possess the ultra-discrete singularity confinement property. From the 

(max,+) Nevanlinna point of view, equation (8.66) possesses infinite-order (max,+) 

meromorphic solutions. In particular, if y(O) = y(1) = 1 then (y(n))nEN is the 

Fibonacci sequence, which grows exponentially. 
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8.9 Clunie's lemma for (max,+) meromorphic func-

tions 

We will present an analogue of Clunie's lemma for ultra-discrete equations. Let 

A= (Ao, A" ... , Am), where the AjS are non-negative integers, be a multi-index with 

respect to the shifts ( 0, c1, ... , em) E JRm+l. Let 

An expression of the form 

where A is a finite set of indices, is called a (max,+) polynomial in f and its shifts. 

We will say that the coefficients are small if T(r, a~) = o(T(r, f)) outside a set of 

finite logarithmic measure. 

The following is a natural analogue of Clunie's lemma. 

Theorem 8.9.1 Let P(x, f) and Q(x, f) be (max,+) polynomials in f and its shifts 

with small coefficients. If f is a finite-order (max, +) meromorphic function satisfy­

ing f'<m(x)P(x, f) = Q(x, f), where the degree of Q in f and its shifts is less than 

or equal to n, then for any o < 1, 

m (r, P(x, f))= 0 (r-'T(r, f))+ o (T(r, f)), 

outside an exceptional set of finite logarithmic measure. 

Proof. Given r > 0, letS+:= {s : f(s);::: 0 and jsj = r} and S_ := {s : f(s) < 

0 and lsl = r}. Then 

m(r,P(x,J)) = ~ (L P(s,f)+ + L P(s,J)+). 
sES+ sES-

Let P(x, f)= E~EAp a~(x) 0 f0~(x) and Q(x, f)= z=~EAo b~(x) 0 f0~(x). For any 

X E S_, 

P(x,f) = 
(.>to, ... ,Am}EAp 

:0:: max {a~(x) + A![j(x +cl)- f(x)] + · · · + Am[f(x +Cm)- f(x)]}. 
(>.o, ... ,>.m) 

EAp 
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So using the lemma on the logarithmic difference (8.35), we see that 

L P(s, !)+ = 0 (r-5T(r,J)) + o(T(r,J)), 
sES-

outside in exceptional set of finite logarithmic measure. For x E S+, we note that 

P(x, f) = Q(x, f)- nf and the degree of Q is at most n. Hence 

P(x, f)::; max {bA(x) + Ai[j(x +et)- f(x)J + · · · + Am[f(x +Cm)- f(x)J}. 
(>.o, ... ,.>.m) 

EAQ 

So again using the lemma on the logarithmic difference (8.35) we find that 

L P(s,J)+ = 0 (r-5T(r,f)), 
sES+ 

outside an exceptional set of finite logarithmic measure. D 



Chapter 9 

(Max,+) algebraic entropy 

In this chapter we shall work with numerical simulations of various integrable and 

nonintegrable ultra-discrete equations. The ultra-discrete Painleve equations are 

prototypal integrable equations, while perturbations of their coefficients are believed 

to lead to nonintegrable equations. The conclusions we reach are believed to be 

original. 

We consider those ultra-discrete equations in a dependent variable Xn where 

nEZsuchas 

Xn+t 0Xn 0Xn-t = 0 E9 Xn 0 K, 

where K is an arbitrary constant. A solution of such an equation is a sequence of 

iterates. Moreover we shall let each iterate be a (ma.x,+) rational function of an 

auxiliary variable x E RU {-oo}. Then we shall define the degree qn of Xn(x). As 

initial conditions we specify the (ma.x,+) rational functions X0 (x) and X 1(x). 

The evolution of the degrees of successive iterates is investigated for different 

ultra-discrete equations. The equations are grouped according to whether they are 

integrable or not, determined by whether they satisfy the singularity confinement 

test for ultra-discrete equations introduced in [73]. Our aim in doing this is to 

look for an analogue of the concept of algebraic entropy from section 6.3, which 

can be used as a detector of integrability in discrete equations. We conclude that 

zero algebraic entropy appears to be a necessary condition for integrability of an 

ultra-discrete equation. 

122 



CHAPTER 9. (MAX,+) ALGEBRAIC ENTROPY 123 

9.1 Theory 

We shall work with ultra-discrete equations in a similar way to which we worked with 

discrete equations in section 6.3. That is we consider the iterates of an ultra-discrete 

equation to be ( max, +) rational functions of an auxiliary independent variable x E 

lR U { -oo }. This function Xn(x) takes the form 

Xn(x) = (E£):;:0 Ani@ x0 i) 0 ($~'::0 Bnj@ x0 i) 

= max:;;0 (Ani + ix) - max]';,0 ( Bni + j x) 
(9.1) 

where on the right we have switched from (<Si, Ell) notation to conventional (max,+) 

notation. The degree of Xn(x) is qn := max(sn, tn)· We must ensure that a (max,+) 

rational function is represented such that there are no additive factors that might 

affect the degree; for example f(x) = max(6x, 7x) - max(3x, 5x) might naively be 

said to be of degree 7, but it may be simplified to f(x) = 3x- max(O,x); therefore 

its degree is 3. 

Our intention is to study the evolution of the degree qn of a sequence of (max,+) 

rational functions Xn(x), which are related by a second-order ultra-discrete equation. 

We define the algebraic entropy of an ultra-discrete equation in the way we defined 

it for a discrete equation, namely as equation (6.24), 

s := lim logqn. 
n-oo n 

We recall that an (nonintegrable) equation with exponential degree growth has 

nonzero algebraic entropy whereas an (integrable) equation with polynomial degree 

growth has zero algebraic entropy. 

We will describe how to calculate the degree of a (max,+) rational function (9.1) 

from its value distribution. We see that Xn(x) has Bn roots and tn poles in IRU{ -oo }, 

counting multiplicities. It is necessary also to consider the behaviour of Xn(x) at 

x = +oo. We see that for large x (9.1) is 

where each kn is an arbitrary constant. If Bn = tn then it-follows that Xn(x) has no 

roots or poles at infinity. If Bn < tn then Xn(x) has a root at infinity of multiplicity 

max(O, tn- sn), and the degree is the number of roots in lR U {±oo} counting 
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multiplicities, Bn +ma.x(O, tn- Bn) = ma.x(sn, tn) =: qn. If Bn > tn then Xn(x) has a 

pole at infinity of multiplicity max(O, Bn- tn), and the degree is the number of poles 

in IR U { ±oo} counting multiplicities, tn + max(O, Bn - tn) = ma.x(sn, tn) =: qn. 

Next we describe a way to calculate the number of roots or poles of Xn(x). We 

recall the function (7.25) which calculates the multiplicities of any roots or poles at 

given x, 

wx.(x) = lim [X~(x +E)- X~(x- E)]. 
t:-+O+ 

In practice we will work with the approximation wx. (x) "" x.(x+v)-2X~(x)+X.(x-v) 

where v E IR is small but finite. In order for this to suffice we must take v to be 

sufficiently small such that Xn ( x) does not "wiggle" up and down between integer 

points. 

The numbers of roots or poles in IRU{-oo} counting multiplicities are then given 

by 

L (0 
Xn(X + v)- 2Xn(x) + Xn(X- v)) 

max ,a , 
V 

\fxevz 

where a = + 1 counts only roots while a = -1 counts only poles. The parameter 

v is again taken to be small so that vZ "" JR. In practice we take the domain of x 

to be finite and large, compared with the orders of the coefficients in our (max,+) 

rational functions, so that we may assume that there are no roots or poles outside 

the domain. 

Because the domain must be finite we will also have to deduce whether the 

function has roots/poles at -oo. Define x1 E IR such that f'(x) = m'v'x < x1 . Then 

-oo is a root of multiplicity m if m > 0, but is a pole of multiplicity -m if m < 0. 

9.2 Examples of ultra-discrete equations 

We shall work with the following ultra-discrete Painleve equation, which is a form 

of u-P~, 

Xn+! + Xn + Xn-1 = ma.x(Xn +a+ n, 0), (9.2) 

where a E IR is constant. This example is taken from [68] where many examples of 

ultra-discrete Painleve equations are given. That paper extends the definition of a 

Painleve equation to ultra-discrete equations. 
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It was first reported in [73] that a generalization of equation (9.2) which also has 

the property of singularity confinement in the sense of section 7.5 and is therefore 

believed to be integrable, is 

Xn+l + Xn + Xn-1 = ma.x(Xn + <I>n, 0), (9.3) 

<I>n =a+ ,6(-lt + 'YCOS c;n) + Osin c;n) + .\n. 

Note that this is equivalent to the Painleve equation (9.2) with ,6 = 'Y = 0 = 0 and 

.\ = 1. We shall make the change of variables Xn --+ Xn- 7cose;n)- o sine;n), 

and using the trigonometric addition formulas we also have 

Xn+l --+ Xn+l 

+'Y (!cos { 2~n) + fl sin { 2~n)) + 0 (!sin { 2~n) - fl cos { 2~n)) 
2 3 2 3 2 3 2 3 , (9.4) 

Xn-1 --+ Xn-1 

+'Y (!cos e;n)- 4sin e;n)) + 0 (~sin e;n) + 4cos e;n)). 

Substitution of this transformation in equation (9.3) cancels the trigonometric terms 

in <I>n. It follows that without loss of generality we can set 7 = 0 = 0 there. 

Next, we wish to consider an ultra-discrete equation which is not integrable, 

that is does not satisfy singularity confinement. To obtain one we change one of the 

coefficients in u-P1 to obtain 

Xn+l + 3Xn + Xn-1 = ma.x(Xn +a+ n, 0). (9.5) 

The next ultra-discrete equation we shall work with is a form of u-P11 , which is also 

taken from [68], 

Xn+l + Xn-1- Xn = ma.x( -Xn + n +a, 0)- ma.x(Xn + n + b, 0). (9.6) 

Also from [73] a generalization of (9.6) which has confined singularities is 

(27rn) . (271'n) <I>n=a+,6n+'Ycos 3 +Osm 3, 

Wn = JL( -l)n +V, 

and a non-Painleve form of (9.6) is 

Xn+l + Xn-1 - 3Xn = ma.x(-Xn + n + a, 0) - ma.x(Xn + n + b, 0). (9.8) 
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9.3 Numerical results 

As with any second order equation, to determine a particular solution we must 

specify two initial conditions, which in our case are (max,+) rational functions. We 

choose 

Xo(x) = max( -15,x- 5, 2x- 2, 3x, 4x + 4) 

- max(O, x, 2x- 4, 3x- 15), 

X 1(x) = max(-19,x- 8, 2x- 5, 3x- 3,4x) 

- max(1, x- 3, 2x- 6, 3x- 16, 4x- 22). 

(9.9) 

Also, to investigate the effect of varying the initial conditions we choose a second 

set, 

Xo(x) = qox, (9.10) 

These are (max,+) rational functions of the form (9.1) with (s0,t0 ) = (q0 ,0) and 

(s1, t1) = (q1, 0). The coefficients are A.o = A,1 = 0 and Aw = -oo, i < s0, 

An = -oo, i < s 1• 

We see that the initial conditions (9.9) have (q0 ,q1) = (4,4), where the degrees 

can be reduced by deleting appropriate terms. 

In all simulations we shall work with the step size v = 0.01, which seems to 

be sufficiently small to account for "wiggling" of our sample functions. Then the 

presence of roots or poles at x is given by 

( ) 
~ X.(x + 0.01)- 2Xn(x) + Xn(x- 0.01) 

wx. X ~ 0.01 • 

We shall calculate this at all points x E 0.01Z in the range [-100, 100]. All roots 

and poles in our analysis seem to be well within this range and none were found 

outside it, excepting those expected at ±oo. 

Tables 9.1 and 9.2 show the sequences of degrees obtained from iterates of the 

non-integrable equation Xn+! + 3Xn + Xn-! = max(Xn + n,O). The plots of qn 

against n show in all cases distinctly exponential evolution. To confirm this, plots 

of log qn against n are approximately linear. Although the exact numbers qn differ 

between the tables, the graphs are nearly the same and this is independent of initial 

conditions besides their degrees. 
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(qo, qi) (4,4) (4,3) (4,2) (4,1) (4,0) (3,4) (2,4) (1,4) (0,4) (0,1) (1,0) 

q2 16 13 10 7 4 15 14 13 12 3 1 

q3 39 35 27 15 12 36 33 30 28 5 3 

q4 90 80 62 36 28 83 76 69 64 12 7 

qs 203 179 138 77 64 172 156 140 144 19 16 

qs 424 367 284 169 132 361 328 295 300 45 33 

q7 877 759 585 335 276 708 639 570 620 71 69 

qg 1734 1484 1148 692 540 1429 1294 1159 1224 168 135 

qg 3457 2971 2290 1325 1088 2740 2468 2196 2440 265 272 

q!O 6688 5701 4410 2671 2084 5447 4926 4405 4716 627 521 

Table 9.1: Evolution of degree using equation (9.5) with a = 0, with initial condi­

tions (9.9). 

(qo, q,) (4,4) (4,3) (4,2) (4,1) (4,0) (3,4) (2,4) (1,4) (0,4) (0,1) (1,0) 

q2 16 13 10 7 4 15 14 13 12 3 1 

q3 40 33 26 19 12 37 34 33 28 7 3 

q4 92 76 60 44 28 85 78 71 64 16 7 

qs 196 163 130 97 64 180 164 148 132 33 16 

q6 408 339 270 201 132 375 342 309 276 69 33 

q7 816 681 546 411 276 747 678 609 620 71 69 

qg 1628 1356 1084 812 540 1493 1358 1223 1088 272 135 

qg 3172 2651 2130 1609 1088 2900 2628 2356 2084 521 272 

q!O 6224 5189 4154 3119 2084 5703 5182 4661 4140 1035 521 

Table 9.2: Evolution of degree using equation (9.5) with a = 0, with initial condi­

tions (9.10). 



CHAPTER 9. (MAX,+) ALGEBRAIC ENTROPY 128 

Evolution equation Degree growth 

Xn+I + Xn + Xn-1 = max(O, Xn + n) Slow /linear 

Xn+! + Xn + Xn-1 = max(O,Xn + 3 + 2n + 5(-1t) Slow /linear 

Xn+l + Xn + Xn-1 = max(O, Xn + n + cos(';n)) Slow /linear 

Xn+l + 2Xn + Xn-1 = max(O, Xn + n) Slow /linear 

Xn+l-Xn+Xn-1 = 1+ (-1)n+max(O,Xn +n) -max(O,Xn) Slow /linear 

Table 9.3: Evolution of degree of iterates Xn(x) according to particular integrable 

discrete equations. 

Evolution equation Degree growth 

Xn+! + 3Xn + Xn-1 = max(O,Xn + n) Exponential 

Xn+l + Xn + Xn-1 = max(O, Xn + n + cos(~2n) + sin(~2n)) Slow /linear 

Xn+l + Xn + Xn-1 = max(O, Xn + n5 + cos(';n)) Slow /linear 

Xn+l + Xn/2 + Xn-1 = max(O, Xn + n) Slow /linear 

Xn+l + Xn + 2Xn-! = max(O, Xn + n) Exponential 

Xn+! +Xn +Xn-1 = 3max(O,Xn + n) Slow /linear 

Xn+l - 3Xn + Xn-1 = 1 + ( -1)n + max(O, Xn + n) - max(O, Xn) Exponential 

Table 9.4: Evolution of degree of iterates Xn(x) according to particular non­

integrable discrete equations. 
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We see from table 9.3 that for all integrable equations, the evolution of the degree 

with increasing n is slow and not exponential. This is also the conclusion reached 

from plots of log qn against n. As for the non-integrable equations considered in 

table 9.4, the type of degree growth seems dependent only on the coefficients (a, b) 

in the term Xn+l + aXn + bXn-l on the left hand sides of the equations. Namely if 

labl :::; 1 then the degree growth is slow, but if iabl > 1 then a multiplicative factor 

of lab In may be expected in the nth iterate, leading to exponential degree growth. 

According to the definition of algebraic entropy provided by equation (6.24), ex­

ponential degree growth corresponds to nonzero algebraic entropy while slow /linear 

(polynomial) degree growth corresponds to zero algebraic entropy. We conclude 

that zero algebraic entropy appears to be a necessary condition for integrability of 

an ultra-discrete equation. 



Appendix A 

Lie algebras and Lie groups 

We consider a Lie algebra g which has a basis of N elements {e;}, i = 1, 2, ... N, 

defined locally by the commutation relations 

(A.1) 

where the constant components of the tensor CkiJ = Ck[iJJ are the structure constants 

of the Lie algebra. The elements { e;} of g are said to be the generators of an element 

of a Lie group G. They generate the group elements by means of exponentiation. 

An element g E G is 

(A.2) 

where { Bi} is a set of N arbitrary parameters which give a particular group element. 

We will work with a Lie algebra valued Yang-Mills connection on a manifold M 

given by 

(A.3) 

The e; are generators of a Lie group G, and are therefore elements of the corre­

sponding Lie algebra g. The x~' are coordinates chosen on a part of the manifold 

M. The connection is a function of these coordinates. 
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Appendix B 

Outline of general relativity 

We consider a D dimensional pseudo-Riemannian manifold M whose points are 

spacetime events; see for example [4]. We describe a local patch of M by means of 

a set of D spacetime coordinates x = (x~'). Then we give the invariant spacetime 

interval 

where 9~<v(x) is called a metric. The metric describes the local gravitational field 

which is, according to general relativity, synonymous with the geometry of space­

time. 

We proceed in our aim by defining an object called the affine connection, 

f\.v = ~g~"(81'9<v + 8v9<1'- 8,gl'v), 

where 8~< = 8~". 
We define the Riemann tensor, 

(B.1) 

which is of second order in derivatives of the metric. Defining the Einstein tensor 

GJ<v = Rl'v - ~ Rg~'v' where the Ricci tensor Rw = R~J<~v and the Ricci scalar 

R = g~'v R~'v' we are now in a position to write the Einstein field equations [4, 5, 7, 8], 

(B.2) 

We shall work in units in which c = fi = 1. The stress-energy tensor Tl'v quantifies 

any present external sources of the field. The cosmological constant A acts as an in-
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trinsic pressure source [5]. A local solution (M, g,v) of (B.2) exhibits diffeomorphism 

invariance, under coordinate transformations x" --> x"(x). 

Considering the case where A = 0, and when there is also no matter to act as a 

source hence T,v = 0, we have the vacuum field equations 

The trace of these equations is R(l- !D) = 0, yielding R = 0 provided that D f 2. 

Solutions g,v of this reduced equation are said to be Ricci flat. However, such 

solutions are not necessarily flat (in which case the Riemann curvature tensor would 

vanish) since a gravitational field can act as its own source [5]. 
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