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Abstract: A dynamic particle swarm optimization with learning 

strategy (DPSO-LS) is proposed for key parameter estimation 

for permanent magnet synchronous machines (PMSMs), where 

the voltage-source-inverter (VSI) nonlinearities are taken into 

account in the parameter estimation model and can be estimated 

simultaneously with other machine parameters. In the DPSO-LS 

algorithm, a novel movement modification equation with 

variable exploration vector is designed to effectively update 

particles, enabling swarms to cover large areas of search space 

with large probability and thus the global search ability is 

enhanced. Moreover, a Gaussian-distribution based dynamic 

opposition-based learning (OBL) strategy is developed to help 

the pBest jump out local optima. The proposed DPSO-LS can 

significantly enhance the estimator model accuracy and dynamic 

performance. Finally, the proposed algorithm is applied to 

multiple parameter estimation including the VSI nonlinearities 

of a PMSM. The performance of DPSO-LS is compared with 

several existing PSO algorithms, and the comparison results 

show that the proposed parameters estimation method has 

better performance in tracking the variation of machine 

parameters effectively and estimating the VSI nonlinearities 

under different operation conditions.  

 

Index Terms: particle swarm optimization (PSO), dynamic, 

opposition-based learning (OBL), learning strategy, system 

identification, parameter estimation, voltage source inverter 

(VSI) nonlinearity, permanent magnet synchronous machines 

(PMSMs). 

I. INTRODUCTION
1
 

N recent years, permanent magnet synchronous machines 

(PMSMs) are widely employed in high-performance 

applications (such as industrial robots, servo drive system, 

high-speed rail, renew energy generation systems, and 

household appliances) due to their high efficiency, 

high-power density, and good dynamic response [1][2]. 

Accurate knowledge of the machine parameters such as 

winding resistance, direct axis inductances, quadrate axis 

inductances, and rotor PM flux linkage are required for 
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control system design [3][4], condition monitoring and fault 

detection [5][6]. Usually machine parameters are used as a 

normal operation indicator for the PMSM drive system. For 

example, high temperature can cause an increase in winding 

resistance and the variation of inductances may cause torque 

ripple. Similarly, demagnetization in permanent magnet flux 

may cause a decrease in the amplitude of fundamental back 

electromotive force (EMF) and will influence d-q-axis 

inductances of the machine, which in turn will have a direct 

impact on machines performance and power efficiency [7]. In 

real applications, these machine parameters are not known 

exactly as they vary with the load torque, the changes of 

temperature, and other environmental conditions. For 

example, the winding stator resistance is prone to change 

with the variation of temperature, and the rotor flux linkage 

created by PM may vary with the changes of temperature 

and/or operational condition [8] [9]. 

  The PMSM parameters are a key factor for control system 

design, condition monitoring and fault diagnosis, and 

therefore estimation or direct measurement of the parameters 

are important. Traditionally, some measurement instruments 

such as thermal couplers, search coils and load test bench [10] 

[11] are employed to observe the machine parameters. 

However, there are some drawbacks in the direct 

measurement due to two reasons. Firstly, it is difficult to 

measure the machine parameters when PMSM operates; 

Secondly, even if direct measurement is possible, it would 

normally significantly increase the instruments cost and the 

complexity of the associated implementation. Some 

researchers proposed to use self-commissioning technique to 

estimate PMSM parameters under standstill state [12]. 

Unfortunately, this method cannot estimate all the needed 

parameters accurately on load, for example rotor PM flux 

linkage cannot be estimated at a standstill state. Thus, in 

practice system identification method is an ideal technology 

for directly estimating the needed parameters based on 

regularly measured signals instead of using additional 

measurement instruments [8]. Algorithms such as recursive 

least-squares (RLS) [13] [14], extended Kalman filter (EKF) 

[15] [16], model reference adaptive system (MRAS) [17] [18], 

finite-element method [19], adaptive estimation methods [20] 

and artificial neural networks (ANN) [21] are usually 

employed for the design of parameter estimators. Owing to 

linear parameterization for the RLS algorithm, the RLS 

estimator usually suffers from the noise characteristics and 

may lead to the reduction of solution accuracy [13]. In [15], 

an EKF was employed to estimate the winding resistance and 

rotor flux linkage. The results indicate that the estimator 

suffers from noise and instability, and thus cannot obtain 

accurate estimates for the actual parameter values. In [16], an 

EKF was proposed to estimate the rotor speed and position of 
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PMSM. However, it is difficult to use in real applications 

because the algorithm is sensitive to noise. The MRAS 

estimators proposed in [17] and [18] cannot simultaneously 

estimate winding resistance, inductance and rotor flux linkage 

accurately. In the MRAS method, other parameters’ nominal 

values specified in the motor manual are needed to estimate 

one parameter. In this case, the accuracy of identified 

parameters depends on the accuracy of the nominal value. In 

reality, the real parameter value usually depends on a variable 

operating condition caused by the changes of temperature 

and/or load. The FE (finite element) based parameters 

estimator proposed in [19] requires a high computational load 

and it may be challenging task to use this method to estimate 

PMSM parameters due to the complex computations. Some 

ANNs have also been proposed for estimating parameters of 

PMSM in [21]. Although the ANN method is known to be 

precise in parameter estimation, it usually needs a long data 

set to train and more knowledge for weight adjustment.  

Some researchers proposed to inject perturbation signals 

into the drive system to obtain an extra number of state space 

equations of PMSM, and then and apply system identification 

methodologies to estimate machine parameters [8] [12] 

[22][23]. In the signal injection method, the designed 

estimator is based on the conventional d-q-axis equation and 

the VSI (voltage source inverter) nonlinearities are often 

ignored. Since the used signals such as VSI voltages for the 

parameter estimator are usually measured from the output 

voltage of the PI regulator in a PMSM vector control system, 

those methods are prone to suffer from the effect of 

nonlinearity of VSI such as switch voltage drop, switching 

delay and dead zone response [24]. As a result, it cannot 

estimate the actual value of the machine parameters due to 

the ignorance of effects of the nonlinearities on parameters 

estimation. Some methods were proposed to compensate the 

effect of VSI nonlinearity (see e.g. [24]-[27]), but these 

methods need accurate PMSM parameter values. Because the 

VSI nonlinearity and machine parameters cannot be 

simultaneously estimated by using these methods, the errors 

caused by VSI nonlinearity are combined into the parameter 

estimator and this will affect the accuracy of parameter 

estimation. Thus, the VSI nonlinearity should be considered 

in estimating machine parameters.  

Due to the easy implementation , low computational cost  

and fast convergence speed in dealing with practical 

industrial problems,  particle swarm optimization (PSO)  

has recently been introduced as an attractive optimization 

techniques in system identification, optimal and control of 

power electronics [28]-[34]. The parameter estimation 

problem can be treated as a grey-box model based parameter 

optimization task and the issue of parameter cross-coupling 

can be effectively solved by using PSO. In [28], an improved 

PSO method for estimating the unknown composite load 

model parameters was proposed, where a new crossover 

operation was introduced to improve the convergence 

performance. In [29], anther improved PSO was proposed for 

parameter estimation of an induction machine by modifying 

the movement equation of the standard PSO as linear 

time-varying parameters. A least mean square (LMS) method 

combined with PSO was presented to identify the parameters 

of an induction motor in [30]. In the field of PMSM 

parameters identification, some researchers proposed a 

PSO-based parameter estimator for PMSM [31] [32], this kind 

of intelligent estimator is effective in estimating the stator 

resistance and disturbed load torque. In [31], a PSO algorithm 

combined with experimental measurements was proposed for 

the identification of PMSMs. Similarly, a PSO combined with 

self-commissioning scheme was used in [32] for the 

identification and optimization of PMSM parameters. It is 

known that the basic PSO is easy to get trapped in local 

minima, these basic PSO algorithms may not be able to 

exactly estimate multiple parameters simultaneously, such as 

winding resistance, dq-axis inductances and permanent 

magnet flux. In [33], a coevolutionary optimization 

methodology combined multiple cooperate PSO and artificial 

immune system (AIS) was developed to improve 

multi-parameter estimation performance of PMSM. To speed 

up the search process of particles, a method of GPU 

accelerated parallel co-evolutionary immune PSO was 

proposed for parameter estimation and temperature 

monitoring of a PMSM [34], for which the performance of 

the parameter estimates was greatly improved by combining 

PSO and a parallel computing technology. Nevertheless, the 

existing PSO-based parameters estimators of PMSM are 

based on the basic d-q-axis equation which neglects the VSI 

nonlinearity, thus it cannot estimate the actual value of the 

machine parameters.  

In this study, a dynamic particle swarm optimization with 

learning a strategy (DPSO-LS) is proposed to design the 

estimator of machine parameters and VSI nonlinearity in 

PMSM, in which the VSI nonlinearity is seen as a system 

parameter and can be estimated simultaneously with machine 

parameters. In the DPSO-LS, a novel movement modification 

equation with variable exploration vector is designed to 

update particles, it permits some particles with large 

probability to cover large areas of search space and thus the 

global search ability is enhanced. Moreover, a dynamic 

opposition-based learning (OBL) operator using 

Gaussian-distribution is developed to help pBest jump out 

local optima. OBL is a reinforcement learning strategy using 

computing and counter computing simultaneously, and is 

widely used to accelerate the convergence properties of many 

evolutionary algorithms [35][36]. The proposed algorithm is 

applied to the estimation of multiple machine parameters and 

VSI nonlinearity of PMSM. The results indicate that it can 

track parameter variation with the changing operation 

condition effectively. A comparison of the performance of 

DPSO-LS with several existing PSO algorithms is carried out, 

and it demonstrates that the proposed parameters estimation 

method can better track the variation of machine parameters 

and estimating the VSI nonlinearities under different 

operation conditions. 

  In summary, the major contributions of this paper include: 

1) A dynamic estimator using dynamic PSO combined with a 

dynamic OBL scheme is proposed for simultaneous 

estimation of the machine parameters and VSI nonlinearities 

of PMSM. The VSI nonlinearity is seen as system parameters 

and can be estimated by the designed estimator, which takes 

into consideration of the influence of distorted voltage from 

the VSI and thus the accuracy of the estimation of machine 

parameters is improved .The proposed estimator can 
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simultaneously estimate machine parameters and VSI 

nonlinearity without any priori knowledge of the PMSM. 

2) In order to enhance the accuracy and the dynamic 

performance of the estimator, a novel movement modification 

equation using a variable exploration vector is designed to 

update the velocity of particles. Moreover, a dynamic OBL 

mechanism with Gaussian distribution is introduced to 

overcome the blindness of the pBest stochastic evolution and 

enables it jump out the local optimality. The proposed 

estimator has a fast convergence rate, a good accuracy and a 

good dynamic response property. 

3) The proposed estimator has also taken into account the 

identifiability of all the parameters to be estimated and the 

VSI nonlinearities. Furthermore VSI nonlinearities can be 

estimated individually from the d-q-axis equation with id=0 

control and id≠0 (current injection condition), respectively.  

The remainder of this paper is organized as follows. An 

estimator model for the machine parameters and VSI 

nonlinearities of a PMSM is described in section Ⅱ. A 

DPSO-LS algorithm is proposed in section Ⅲ, where a 

scheme to determine the parameters of the estimator and the 

optimization procedure and steps are described. Experimental 

results and the analysis are given in section IV. Finally, some 

concluding remarks are presented in section V. 

II. PMSM MODEL AND DESIGN OF PARAMETER 

ESTIMATION MODEL 

A. PMSM Model and VSI Nonlinearity 

The d-q-axis voltage equations of the PMSM are usually 

employed for the parameter estimation of the machine [8], 

which are given as: 

Ldi uR qd d
i iqddt L L L

d d d

di uLRq qd
i iq ddt L L L Lq q q q
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where ω is the electrical angular velocity, ud, uq id,and iq,  

are d-q-axis stator voltage and current, P is the number of 

pole pairs ,the parameter set{R, Ld, Lq ,ψ}is unknown and 

needs to be identified from measured data. (1) can be 

discretized as follows when the machine is under the 

steady-state: 
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Taking into account the influence of VSI nonlinearity, (3) 

could be rewritten as:  
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where du and qu are the dq-axis reference voltages and 

measured from the PI regulators (V), Dd and Dq can be 

expressed as [25]-[27]:
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where ias, ibs, ics are the stator abc three-phase currents (A). 
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In discrete time domain, the steady-state PMSM equation 

including the distorted voltage due to VSI nonlinearity can be 

expressed as  

( ) ( ) ( ) ( ) ( )deadd d q qu k Dd k V Ri k L k i k         (7a) 

( ) ( ) ( ) ( ) ( ) ( )deadq q d du k Dq k V Ri k L k i k k     (7b) 

The variable Vdead  is the distorted  voltage caused by the 

VSI nonlinearities, and can be represented as 

.( )
2

dead on off sat d
dead dc sat d

T T T V V
V V V V

Ts
  

     (8) 

where deadT , onT , offT , dcV , satV  and dV are the dead-time 

period, turn-on ,turn-off times of the switching device, the 

actual and measured real-time dc bus voltages, the saturation 

voltage drop of the active switch and the forward voltage 

drop of the freewheeling diode, respectively. The switching 

times and voltage drops in the switching device may vary 

during operations and difficult to measure due to the changes 

of current, frequency, DC link voltage, operating conditions , 

dead-time period ,and temperature. Therefore, it is important 

to accurately estimate and compensate the Vdead in order to 

ensure the accuracy of estimated PMSM parameter values.  

B. PMSM Parameter Estimator Design   

 

 
Fig .1.Schematic diagrams of estimation and mathematical model. 
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First of all, the VSI nonlinearity is seen as parameters that 

can be estimated simultaneously with other machine 

parameters by the designed estimator using the proposed 

DPSO-LS algorithm. To obtain more equations, id is set to be 

zero for decoupling the flux and torque control, and a very 

short period of negative id (i.e. id<0) is then injected to obtain 

a full rank reference model. The symbols id0 and id1 indicate 

that the d axis is injected with the current id=0 and id≠0, 

respectively (see Fig. 1). In Fig.1, under normal operation 

condition, the PMSM is under a control state with id=0, the 

Data0 (the data associated with id=0) are firstly measured and 

then a short pulse of negative id<0 is injected, and the 

corresponding data, Data1 (the data associated with id≠0), are 

recorded after 2ms of injection, both with the same sampling 

width and sampling number.  

The parameters of machine are assumed to be constant as 

the duration of injected pulse current is very short due to 

mechanical inertia and fast response of current loop PI 

controller. In this case, the influence of injecting a short pulse 

of id on output torque can be neglected. Thus, the two sets of 

steady state data (Data0 and Data1) can be used for the 

estimation of multiple machine parameters since these 

parameters can be seen as constant within very short time. 

Note that Vdead is directly related to the current, so 

Vdead0≠Vdead1. Thus, the distorted voltage Vdead0 and Vdead1 need 

to be estimated from the data. A total of six parameters (i.e., 

R, Ld, Lq ,ψ, Vdead0,Vdead1) need to be estimated, therefore six 

equations need to be designed. From (7), it is ready to get (9a) 

and (9b) when id=0. When id≠0, (7) can be reformed as (9d) 

and (9e). The measured data are divided into two parts, the 

first part is indexed from 1 to 0.5n and the second one is 

indexed from 0.5n+1 to n. Since iq and id are kept as 

constants, it is reasonable that Vdead is regarded as a constant 

during the data measurement, two additional equations are 

designed as in (9c) and (9f) during the varying speed. The full 

rank reference model is given as  
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The estimation of the parameters can be addressed as an 

optimization problem where the system response to a known 

input is used to find the unknown parameter values of the 

model. The idea is to compare the system response with the 

parameterized model based on a cost function, which is 

defined to measure the similarity between the system 

response and the model response.  

To approximate the dynamic parameters, it needs to define 

cost functions. In this study, the three cost functions or fitness 

functions, under control id =0, are defined as 
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Under control id ≠0, another three fitness functions are given 

as 
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where n is the length of samples, ˆ
du and ˆqu  indicate the 

estimated voltages in dq-axis calculated through measured 

currents and the estimated parameters and VSI nonlinearities. 

Let p̂ = ( 0 1
ˆ ˆ ˆ ˆ, , , , ,q dead deaddR L L V V ), then all the needed 

parameters can be identified simultaneously by minimizing 

the following objective function 

(
1

ˆ
6

) if a fi
i

p  


                         (16) 

where ais are weighting coefficients. Note that the designed 

objective function (16) is related to the actual permanent 

magnet synchronous motor drive system which is highly 

nonlinear and time varying. The nonlinear objective function 

has many local optima and the used optimization method 

should be capable of identifying parameters dynamically and 

adaptively in solving such a problem. So, it is important to 

develop an efficient dynamic parameter tracking approach for 

the estimation of PMSM parameters and VSI nonlinearities.  

III. ESTIMATOR PARAMETER OPTIMIZATION WITH DPSO-LS   

A. Principle of the Basic PSO Algorithm 

PSO is a swarm-based intelligent optimization algorithm 

inspired by the ideas of mimicking behaviors of bird flocking 

foraging. Assuming that the problem is defined in a 

d-dimensional space, and each particle i is composed of two 

vectors, namely the velocity vector Vi={Vi1,Vi2,…,Vid} and the 

position vector Xi={Xi1, Xi2,…, Xid},the searching scheme can 

be represented as 
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 where   is the inertia weight factor decreasing linearly, c1 

and c2 are the acceleration coefficients, rand1 and rand2 are 

two uniformly distributed numbers generated randomly 

within [0,1], respectively. pBestid represents the i-th particle 

has found best position so far (individual best), gBestd is the 

best position found among the entire population (global best).  

B.  The Proposed DPSO-LS Algorithm 

As mentioned in Section II, the objective function is 

multimodal and therefore requires that the proposed 

parameter optimization should be able to adaptively change 

their original trajectories to explore new search space when 

the solution of problem is changing. In order to solve this 

problem, a dynamic particle swarm optimization with a 

learning strategy (DPSO-LS) is proposed for machine 

parameter and VSI nonlinearity estimation.  

 The implementation of the learning strategy contains two 

key aspects. Firstly, a novel movement update equation is 

designed using a variable exploration vector to enhance the 

dynamic performance of PSO. Secondly, a dynamic OBL 

using adaptive Gaussian-distribution is proposed to overcome 

the blindness in the search of pBests through stochastic 

evolution and enables it escape from local optima.  It worth 

noting that the proposed DPSO-LS does not increase time 

complexity in comparison with the basic PSO. Actually, it is 

easy to implement to solve the optimization problem here, 

and to adapt to solve other similar problems. 

The general steps of DPSO-LS are stated as follows. 
Algorithm: DPSO-LS 

Step1: Initialize population; set up parameters for DPSO-LS.  

Step2: for i=1 to N //1≤i≤N, N is the number of particles  

update particlei velocity (Vi)using the equation (19)  

update particlei position (Xi)using the equation(20) } 

Evaluate the fitness value (Fit(Xi))of particlei; 

IF  Fit(Xi) < Fit(pBesti) then Update Pbesti(pBesti Xi) 

IF  Fit(pBesti) < Fit(gBbest) Then Update gBest (gBest pBesti)  

End for 

Step3: for i=1 to N //1≤i≤N, N is the number of pBest  

        If rand <Oc // Oc is a learning probability 

Then Gaussian distribution based dynamic OBL strategy for pBesti 

using the equations (24)-(26) and the Fig. 2. 

Evaluate the fitness value (Fit(Xi))of opBesti (opposition pBesti) 

Update Pbesti (pBesti  pBesti∪opBesti) 

End for 

Step4: Until a terminate condition is met, or else, returns to step2. 

Step5: Output optimal results. 

C. Dynamic PSO Model 

In recent years, many researchers focused on improving the 

performance of basic PSO [33] [34] (mainly on individual 

best position (pBest) and the global best position (gBest)). If 

the particles converge fast, they will always shrink toward 

local regions within a few generations [33]. This phenomenon 

leads to a similar search behavior among the swarms and the 

loss of diversity in the population. If the particles are trapped 

in local regions, they will not be able to jump out due to their 

homogeneous search behavior as well as the absence of an 

adaptive exploration ability [33].To improve the performance 

of PSO, the particles should be able to adaptively change 

their original trajectories to explore new search space. The 

issue is how to guide particles to move toward different 

promising regions and enhance a broader exploration of the 

solution space. An improved movement modification 

equation with an adaptive exploration vector is proposed to 

update the velocity of particles ,i.e., 

1 1

2 2

3 3

( 1) * ()( ( ) ( ))

* ()( ( ) ( ))

* ()( ( ) ( ))

id id id

id

id

V t V c rand Pbest t X t

c rand gBest t X t

c rand R t X t

   

 

 

 (19) 

( 1) ( ) ( 1)id id idX t X t V t            (20) 

The exploration vector (R(t)-Xjd(t)) is added to provide a 

broader exploration of the solution space for the i-th particle 

due to the use of adaptive variable exploration radius (R(t)) 

which permits particles to cover large areas of search space 

with large probability.  

 
Fig.2.IllustrationofPSO searching behavior with adaptive explore mechanism 

The exploration radius R(t) learns adaptively as  

( ) ( )max maxmin min . . cos( )
2 2

( ) 2

d d d dX X X X t
R t ue 


 

 


(21) 

where u is a random in [0,1], X
d
min and X

d
max are the 

designated lower and upper bounds of the problem, 

respectively,   is an adjustment parameter (  is usually≥
2), and t is the  iteration index. The modified velocity 

equation of PSO indicates that the swarm members are 

allowed to explore larger unvisited regions in the objective 

space (as illustrated in Fig.2). A large R(t) facilitates an 

exploration which induces the particles to leave their current 

regions and pushes the particles to search in the other regions. 

A small R(t) enhances the exploitation which refines the best 

solution of the particles by exploiting a small vicinity around 

this best solution. Obviously, the whole feasible solution 

space can be explored and covered as large as possible by this 

modified equation with adaptive variable exploration vector.  

D. A Dynamic OBL for pBests  

In order to help pBest particles jump out the local optimal 

and accelerate the local search, in this study an adaptive 

Gaussian-distributed-based dynamic OBL strategy is 

proposed for a reinforcement learning of pBest.
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Fig.3. The schematic of dynamic OBL for pBests. 

The opposition-based learning (OBL) is a machine learning 

method and was firstly introduced by Tizhoosh [35].  

The key point for OBL is that it introduces a simple 

technique which allows the population-based algorithms to 

search for an optimal point in the opposite direction of the 

current search. Mathematical and experimental proofs show 

that opposite points are more beneficial than random points 

[36], and can be used to accelerate the convergence properties 

of other evolutionary algorithms. The basic idea of OBL is 

that a search in the opposite direction is carried out 

simultaneously when a solution is exploited in a direction, 

i.e., 

x a b x         (22) 

where x is a real number on the interval [a,b], and x is the 

opposite number of x. This definition is also valid for 

D-dimensional space, where for x1,x2,…,xD∈R and xi∈[ai,bi], 

the D-dimensional point xi cis defined as  

i i i ix a b x       (23) 

In order to overcome the drawbacks of the traditional OBL 

and enhance the pBest convergence speed, in this study a 

dynamic OBL strategy using adaptive Gaussian distribution is 

designed as 
2

)( ) ( ) (1 ( , ) .

( ) min( ), ( ) max( )

id d d

d id d id

opBest a t b t Gaussian pBestid

a t pBest b t pBest

    

 
(24) 

where 
2

( , )Gaussian   is a random number of a Gaussian 

distribution with a zero mean(μ)and a standard deviation (σ). 

In order to obtain a better dynamic learning performance for 

pBests, it is assumed that σ decreases nonlinearly, for which a 

good choice may be given as  

 
2

min max min( )(1 )
t

T
               (25) 

where σmax (fixed to one in this study) and σmin (fixed to 

zero)are the upper and lower bounds of σ, which specifies the 

learning scale to reach a new region. We adopt the 

Box-Muller transform [37] to obtain a Gaussian distributed 

random variable, i.e., 

2

2
1( , ) 2 ln(1 ).cos(2 . )Gaussian u u         (26) 

where u1 and u2 are uniformly generated random numbers in 

[0,1].  

The schematic of the dynamic OBL for pBests is shown 

in Fig.3, where the symbol Oc is the learning probability, the 

symbol d is the randomly selected from total dimension (D) 

as *d rand D    . Since not all dimensions are changed to 

their opposite values during OBL, useful information in the 

original individual may be preserved. The point and its 

opposite point are evaluated simultaneously in order to 

continue with the  one that best fit, that is, if the fitness 

(
i

new
pBest ) is better than fitness( ipBest ),then the pBest 

position of i-th particle will be replaced with opBesti; 

otherwise, we continue with pBesti. From the above 

description, it is quite clear that the pBest can be forced to 

jump to a new solution candidate with the improved OBL 

technique. This strategy provides a disturbance at pBest, the 

jump out performance is enhanced by this improved OBL 

with dynamic Gaussian distribution which is beneficial to 

guide particles’ moving direction and enhance convergence 

speed.    

IV. EXPERIMENTAL RESULTS 

A.  Hardware Control System and Software Platform  

The parameter estimation process is divided into two main 

procedures, namely, the experimental data acquisition and 

data processing. To perform our experiments, a permanent 

magnet synchronous motor prototype and DSP vector control 

hardware platform are used as the experimental facility which 

is listed in Fig.4 and Table I. The current signals are obtained 

from the Hall transducers and then sampled by the DSP. The 

DC link is connected with the DC power source whose output 

is fixed to 36V. The sampling period is set to 83.3μs. The 

signals from the DSP are transmitted to a PC via serial 

protocol communication network and recorded in memory for 
 

Fig.4.The schematic diagram of hardware and software platform for system 

identification and parameter estimation in PMSM 
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late use of parameter estimation using the proposed 

DPSO-LS algorithm, and this is carried out in a host 

computer installed with visual studio 2012 software.  

A series of hybrid PSOs are used for a comparison with 

DPSO-LS. The hybrid PSOs algorithms used include OPSO 

(OBL for PSO) [35], HGAPSO (hybrid PSO with genetic 

algorithm) [38], HPSOWM (hybrid PSO with Wavelet 

Mutation) [39], CLPSO (comprehensive learning PSO) [40], 

A-CLPSO (An improved comprehensive learning PSO) [41] 

and APSO (adaptive Particle Swarm Optimization) [42], 

which are frequently used to test the performance of newly 

developed algorithms for dynamic optimization problems. To 

assess the quality of the estimated machine parameters and 

VSI nonlinearities based on the proposed DPSO-LS, a 

statistical analysis is performed and the associated mean, 

standard deviation and t-test values are calculated.  

  With the consideration of the balance between time cost 

and the precision of solutions, in this study the optimal setting 

of parameters for the proposed DPSO-LS is recommended as 

follows: the population size is 50, the inertia weight in (19) is 

on [0.90, 0.4] and decreases linearly, the two acceleration 

coefficients c1, c2 are 1.49445, the adjustment parameter 

set to 6 in equation (12), and the opposition learning 

probability (Oc ) is set to 0.38 in Fig.3. The optimal settings 

for other hybrid PSOs are the same as suggested in the 

associated references.  

The basic settings of these PSOs are as follows: all the 

PSO algorithms using the same population size of 50, the 

maximum iteration is 300 and the number of runs is 30. All 

the hybrid PSOs are operated on the same hardware and 

software platform. All experiments are carried out on the 

same computer equipped with Intel
®

-core™-i5-2450M and 

4.0GB DDR3 RAM. 

TABLE Ⅰ 

DESIGN PARAMETERS AND SPECIFICATION OF PMSM 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. The fitness convergence curve of seven PSOs on multiple parameters 

and VSI nonlinearities identification of PMSM under normal temperature.

B. Estimation of PMSM Parameters and VSI Nonlinearities under Normal Temperature  

            
(a)                                         (b)                                          (c) 

            
      (d)                                           (e)                                        (f) 

 Fig.6.Identified parameters under normal temperature. (a) winding resistance. (b) rotor flux linkage (c) d-axis inductance.(d) q-axis inductance.(e)Vdead0.(f) Vdead1. 

Rated speed 400rpm 

Rated current 4A 

DC link voltage 36v 

Nominal terminal wire resistance 0.043 
Nominal self inductance 2.91mh 

Nominal mutual inductance -0.330mh 

Nominal d-axis inductance 3.24mh 
Nominal q-axis inductance 3.24mh 

Nominal amplitude of flux induced by magnets 77.6 mWb 

Number of pole pairs 5 

Nominal phase resistance (T=25 oC) 0.330   

Inertia 0.8e−5kgm2 
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TABLE Ⅱ.  

RESULT COMPARISONS AMONG SEVEN PSOS ON MULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF PMSM UNDER 

NORMAL TEMPERATURE. 

Estimated Parameters OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSO-LS 

R(  ) 0.396 0.359 0.384 0.346 0.371 0.302 0.342 

ψ(wb) 0.0777 0.0790 0.0784 0.0785 0.782 0.797 0.0783 

Ld(h) 0.00239 0.00287 0.00269 0.00313 0.00248 0.00231 0.00254 

Lq(h) 0.00350 0.00386 0.00386 0.00364 0.00367 0.00367 0.00332 

Vdead0 -0.0819 -0.282 -0.368 -0.122 -0.187 -0.149 -0.068 

Vdead1 -0.119 -0.407 -0.385 -0.257 -0.203 -0.195 -0.090 

Fitness 

Mean 1.535 1.562 1.289 2.43 2.826 2.690 1.176 

Std.dev 0.170 0.383 0.274 0.554 0.486 0.486 0.118 

t-value 6.623 5.305 1.818 13.603 19.604 17.988 0 

The estimation of PMSM parameters using data measured 

from normal temperature environment are shown in Table II , 

and the convergence rates of different PSOs are shown in 

Fig.5 ,the estimated PMSM parameters convergence result 

are shown in Fig.6(a) to Fig.6(d). The estimated VSI 

nonlinearities of voltage under normal temperature condition 

(with id=0 and id=-2) are shown in Fig.6(e) and Fig.6(f).It is 

clear from Table II that DPSO-LS provides the best 

performance in terms of mean, standard deviation and t-test 

values (the confidence level is 90%). From Fig.5, the 

convergence speed of DPSO-LS is faster than other hybrid 

PSOs. The better performance of DPSO-LS can be explained 

in two aspects. Firstly, a novel movement modification 

equation using a variable exploration vector is designed to 

update the velocity of particles. Secondly, a dynamic OBL 

mechanism with adaptive Gaussian distribution is introduced 

to overcome the blindness in the search of pBest through 

stochastic evolution and enables it jump out the local optimal. 

As demonstrated in Table Ⅱ, the estimated winding 

resistance (0.342Ω) with the consideration of the VSI 

nonlinearities is quite close to its nominal value (0.33Ω) 

under normal temperature. Also, the estimated flux linkage ψ 

(78.3mWb) by DPSO-LS is quite close to its nominal value 

(77.6mWb). The slight difference between the estimated and 

nominal values of machine parameters may be caused by 

nonlinearity on load condition. It is interesting that the 

estimated R without the consideration of VSI nonlinearities is 

much larger than that with the consideration of VSI 

nonlinearities , as the influence of VSI nonlinearity distort 

voltages (Dd.Vdead and Dq.Vdead) introduce an error into the 

estimation of the machine parameters. The estimated distorted 

voltage Vdead0 (id=0) does not equal toVdead1 (id≠0), and this 

confirms the fact that the Vdead is directly related to the 

current. 

  As shown in Fig.6 (e) and Fig.6 (f), the value of Vdead0 (id=0) 

and Vdead1 (id≠0) can be estimated simultaneously with other 

machine parameters based on the proposed estimator model. 

Furthermore, the VSI nonlinearities compensation can be 

simultaneously obtained by computing Dd.Vdead and adding 

the value of Dq.Vdead to the output of dq-axis PI regulators. 

Then, the compensation on Vdead slowly increases until Vdead 

approaches to zero, and this can help reduce the its influence 

on system stability.  

In comparison with other hybrid PSOs, the estimates of the 

proposed DPSO-LS are more accurate and the estimated 

parameters for example motor resistance, dq-axis inductances  

and the rotor flux rapidly converge to their right points. As 

can be seen from Fig.5, DPSO-LS converges to the optimum 

after about 50 generations of evolution while other hybrids 

shows poor convergence performance.  

C. Estimation of PMSM Parameters and VSI Nonlinearities 

under Varying Temperature Conditions 

In order to check the performance of the proposed method 

for tracking the change of parameters under varying 

temperature conditions, experiments on a varying 

temperature condition are carried out. A heater is used to 

heat the prototype PMSM. The temperature variation 

experiments are divided into two steps. 

a. Continuously heating the PMSM for 20 minutes and 

recording experimental data. 

b. Estimating the machine parameters and VSI 

nonlinearities of PMSM.  

The comparisons of the performance of different PSOs are 

shown in Table Ⅲ , Fig.7. the estimated PMSM parameters 

convergence result are shown in Fig.8(a) to Fig.8(d).The 

estimated VSI nonlinearities of voltage under varying 

temperature conditions (with id=0 and id=-2) are depicted in 

Fig.8(e) and Fig.8(f). From Table Ⅲ, it is clear that 

DPSO-LS outperforms other hybrid PSOs in terms of mean, 

standard deviation and t-test values. From Fig.7, it can be 

noticed that DPSO-LS has a faster convergence speed than 

other hybrid PSOs. Also, the steadiness of DPSO-LS is better 

than the other methods. Meanwhile, as can be seen from 

Table Ⅲ and Fig.8(a)toFig.8(d) that the estimated winding 

resistance R, d-axis inductance Ld, q-axis inductance Lq and 

rotor flux linkage ψ vary with the changing temperature.  

 
Fig. 7.The fitness convergence curve of several PSOs on PMSM parameter 
identification with heating 20 minutes by heater. 
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TABLE Ⅲ. 

 RESULT COMPARISONS AMONG SEVEN PSOS ON MULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF PMSM UNDER 

TEMPERATURE VARIATION (WITH CONTINUOUS HEATING 20 MINUTES). 

Estimated Parameters OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSO-LS 

R(  ) 0.478 0.480 0.434 0.467 0.489 0.462 0.438 

ψ(wb) 0.0765 0.0778 0.0774 0.0762 0.0759 0.0766 0.0772 

Ld(h) 0.00268 0.00342 0.00283 0.00202 0.00345 0.00294 0.00283 

Lq(h) 0.00352 0.0080 0.00393 0.00319 0.00371 0.00347 0.00329 

Vdead0 -0.0886 -0.361 -0.371 -0.173 -0.177 -0.098 -0.0772 

Vdead1 -0.107 -0.569 -0.323 -0.220 -0.187 -0.192 -0.0957 

Fitness 
Mean 1.43 1.673 1.259 2.41 2.207 2.398 1.229 

Std.dev 0.228 0.702 0.156 0.624 0.528 1.02 0.127 

t-value 3.359 3.988 0.545 11.621 10.856 7.650 0 

 

        
(a)                                     (b)                                  (c) 

  

        
                 (d)                                        (e)                                     (f) 
Fig. 8. Identified parameters with heating 20 minutes. (a) winding resistance.(b) rotor flux linkage.(c) d-axis inductance.(d) q-axis inductance.(e) Vdead0.(f) Vdead1. 

For example, the estimated winding resistance value 

increases from 0.342(  )to 0.438 (  ) under heating 

temperature, the stator winding resistance value increases 

gradually when the temperature rises gradually due to the 

effects of the thermal metal. The estimated rotor flux linkage 

decreases from 78.3 (mWb) to 77.2 (mWb), the abrupt drop in 

the estimated rotor flux linkage after 20 minute heating can 

be explained by the fact that the residual flux density of the 

PM reduces when the temperature of NdFeB magnets 

increases [23]. 

It is interesting to note that for these PSO methods, the 

estimated value of Lq is larger than that of Ld in the 

surface-mounted PMSM. This is probably because Ld is 

significantly affected by the change of permanent magnet 

flux and reaches a magnetic saturation status, while Lq is not 

so sensitive as Ld to the change of the flux. 

The estimated Ld and Lq also change when temperature 

varies, the reason is that the values of Ld and Lq are mainly 

influenced by the flux density as the flux density has changed 

during the data measurement after20-minitues heating. 

Furthermore, from Fig.6(e) ,Fig.6(f), Fig.8(e)and Fig.8(f), it 

can be seen that the estimated Vdead0 varies from -0.068 (v) to 

-0.072(v), the estimated Vdead1 varies from -0.090 (v) to 

-0.0957 (v) after 20 minute heating, and the estimated 

distorted voltage Vdead0 (id=0) does not equal to Vdead1 (id≠0), 

this can be explained by the that the VSI nonlinearity is also 

influenced by the temperature variation. 

The comparison of dynamic tracking performance shows 

that DPSO-LS is better and statistically more robust than the 

other hybrid PSOs in terms of global search capacity and 

local search precision. This may be explained that the 

proposed dynamic search scheme, combined with the 

learning strategy, play a good role in finding the global 

optimum for the nonlinear multimodal optimization problem 

here. 
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V. CONCLUSION 

A novel parameter estimation method for PMSM 

electrical parameters and VSI nonlinearities has been 

proposed, in which the estimation of the needed parameters 

and the influence of VSI nonlinearities were taken into 

account simultaneously. Compared to the conventional 

estimation method using the d-q-axis equations, the proposed 

estimator can provide more accurate estimation of the 

machine parameters with the consideration of VSI 

nonlinearities. The VSI nonlinearities can be considered as 

unknown system parameters and can be simultaneously 

estimated using the proposed method. Furthermore, the VSI 

nonlinearities can be estimated individually from the d-q-axis 

equation with id=0 control and id≠0(current injection 

condition), respectively. In order to enhance the accuracy and 

the dynamic performance of the estimator, a dynamic particle 

swarm optimization with learning strategy (DPSO-LS) is 

proposed to estimate the optimum parameters by minimizing 

the defined objective function. In the DPSO-LS, a novel 

movement modification equation with variable exploration 

vector and a Gaussian-distribution based dynamic OBL 

operator are developed to improve search performance of 

particles. The proposed DPSO-LS can significantly enhance 

the performance of the estimator and enables it to effectively 

track parameter variation with the changing operation 

conditions. Compared with several other existing PSO 

algorithms, the performance of DPSO-LS performs better in 

tracking the variation of machine parameters and estimating 

the VSI nonlinearities under different operation conditions.  

The proposed parameters estimation method can be 

adapted and applied to condition monitoring, fault diagnosis 

for practical industrial PMSM drive systems, such as hybrid 

electric vehicles, renewable energy power generation. We 

would also carry out further investigations on the application 

of the method for flux weakening mode in our future work. 
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