Performance-based seismic design of a modular pipe-rack

Aimed at demonstrating the benefits of using a robust PBD (performance-based design) framework in the engineering construction industry, the seismic analysis of a typical pipe-rack module is presented in this paper, comparing prescriptive and performancebased approaches. The case-study steel frame is 6 m long, 8 m wide and 10 m tall, and is representative of this type of structures in the oil and gas industry. The hazard analysis is used to select a representative set of recorded accelerograms for increasing values of the seismic intensity measure (IM), chosen as the spectral ordinate at the fundamental period of vibration of the structure. Nonlinear time-history analyses are carried out with the commercial software SAP2000 to establish the fragility curves relevant to the pipe rack. The process is automated through MATLAB coding and a range of EDPs (engineering demand parameters) are statistically characterised, namely internal forces, deformations and absolute accelerations, which in turn are associated with various DMs (damage measures).