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Abstract: Raw depectinized apple juice was clarified in a laboratory scale ultrafiltration 

(UF) system using ceramic tubular membranes (Tech-Sep Carbosep) with a molecular weight 

cut-off of 300,000, 50,000, and 30,000 daltons. The experiments have been carried out over a 

wide range of transmembrane pressures (100-400 kPa), temperatures (20-55°C), and feed 

flow rates (100-900 mL/min). Permeate flux significantly decreased with time until a steady 

state was established. The steady-state permeate flux reached a maximum at a transmembrane 

pressure of about 200 kPa. Higher permeate flux was obtained at higher temperatures due to 

lower permeate viscosity. The steady-state permeate flux was proportional to the feed flow 

rate raised to powers ranging between 0.22 and 0.31. All the membranes studied produced the 

clarified juice with a satisfactory clarity and color intensity value. 
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1. Introduction 

 

Application of ultrafiltration (UF) to the clarification of fruit and vegetable juices has 

been extensively studied during the last 25 years. Heatherbell, Short, & Strubi (1977) 

introduced UF to clarify apple juice and obtained a stable clear product. UF has also been 

investigated for the clarification of pear (Kirk, Montgomery, & Kortekaas, 1983), orange and 

lemon (Capannelli, Bottino, Munari, Lister, Maschio, & Becchi, 1994), starfruit (Sulaiman, 

Sulaiman, & Yih, 1998), kiwifruit (Wilson & Burns, 1983), guava (Chan & Chaing, 1992), 

pineapple (Jiraratananon, Uttapap, & Tangamornsuksun, 1997), and passion (Jiraratananon & 

Chanachai, 1996) juice. Besides that, UF has been used in conjunction with ion-exchange 

resins to deacidify passion juice (Lue & Chiang, 1989) and to debitter grapefruit juice and 

grapefruit pulp (Hernandez, Couture, Rouseff, Chen, & Barros, 1992). 

Compared to the conventional clarification process, UF can bring the following benefits: 

(1) eliminate the use of diatomaceous earth, thereby, reducing production costs and the 

problem of waste treatment; (2) improve the clarity of the juice; (3) increase the product yield; 

(4) reduce labor costs; and (5) allow enzyme recovery for potential reuse, thereby reducing 

total enzyme consumption to about 1/3 (Rösch, 1985). 

Membrane clarification of juices has been studied using membrane modules of different 

configurations, such as tubular (Alvarez, Andres, Riera, & Alvarez, 1996), plate-and-frame 

(Sheu, Wiley, & Schlimme, 1987), spiral wound (Wu, Zall, & Tzeng, 1990), and hollow fiber 

(Constenla & Lozano, 1996), as well as dead-end or stirred batch cells (Riedl, Girard, & 

Lencki, 1998, Sulaiman et al., 1998). These studies have been carried out using ceramic 

(Alvarez et al., 1996), metallic (Barefoot, Tai, Brandon, & Thomas, 1989), and polymeric 

membranes made of polysulfone, polyamide, fluoropolymers, polypropylene, etc. 
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The main problem in practical applications of UF is the reduction of permeate flux with 

time, caused by the accumulation of feed components in the pores (membrane fouling) and on 

the membrane surface (concentration polarization and gel formation). In order to control 

membrane fouling during juice clarification, several flux enhancement methods have been 

proposed such as periodic gas backwashing with air or N2 (Su, Liu, & Wiley, 1993), permeate 

backwashing by pulsating entry flow (Ben Amar, Gupta, & Jaffrin, 1990; Padilla & McLellan, 

1993), and enzymatic treatment before UF (Alvarez, Alvarez, Riera, & Coca, 1998). 

UF can be modeled using osmotic pressure theories, employing thermodynamical 

principles governing true solution behavior (Koutake, Matsuno, Nabetani, Nakajima, & 

Watanabe, 1993) or hydrodynamic theories based on the premise that a cake forms on the 

membrane surface, which offers a hydrodynamic resistance to permeate flow (Fane & Fell, 

1987). Osmotic pressure models are traditionally used for UF of small solute particles and 

macromolecules that does not lead to formation of a gel layer on the membrane surface. 

However, in UF of fruit juice hydrodynamic or filtration theories are commonly used, since a 

cake or a gel layer is formed. According to a constant pressure UF theory, the permeate flux 

(J) is expressed by the resistance-in-series model: 

)R/(pJ tµ∆=         (1) 

where ∆p is the transmembrane pressure, µ the permeate viscosity, and Rt the total hydraulic 

resistance defined in this paper by (Jiraratananon, Uttapap, & Sampranpiboon, 1998):    

ifefmfmt RRRRRR ++=+=         (2) 

where Rm is the hydraulic resistance of clean membrane and Rf the total (overall) fouling 

resistance (Rf = Ref + Rif). Here, the external fouling resistance (Ref) includes concentration 

polarization and deposition of solids on the membrane surface. The internal fouling resistance 

(Rif) is due to internal fouling inside the pores.  
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The main objective of this work is to study the effect of operating parameters such as 

transmembrane pressure, feed flow rate through the module, and temperature on the permeate 

flux and fouling resistance in apple juice UF. The experiments have been carried out using 

commercial ceramic membranes in a batch mode of operation with total retentate recycle and 

continuous removal of the permeate stream. Ceramic membranes hold many advantages over 

polymeric membranes such as thermal and chemical tolerance, resistance to abrasion and high 

mechanical strength.   

 

2. Materials and methods 

 

2.1. Apple juice 

 

Apple juice used in this work was made from a mix of different apples (Jonagold, Idared, 

Golden Delicious, etc). Before UF, depectinization was performed at 55 °C for 1 hour by 

adding 0.1 % (w/w) of pectinase (Gamma Chemie GmbH, München, Germany). The juice 

was then subjected to a centrifugal separation to remove enzyme molecules and large haze 

particles. Until further use the juice was stored in a stainless steel tank at the CO2 gauge 

pressure of 200 kPa. 0.5 % (w/w) potassium sorbate was added as a preservative.       

 

2.2. Membranes 

 

The experiments were performed with three tubular inorganic UF membranes produced 

by Tech-Sep (Rhône-Poulenc Group, Miribel, France), type Carbosep M9, M8, and M7. 

These anisotropic membranes are made with an inner diameter of 6 mm and a molecular 

weight cut-off of 300,000, 50,000 and 30,000 daltons, respectively. Carbosep membranes are 
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composed of thin permselective skin of zirconium oxide and titanium dioxide supported by a 

porous carbon substructure. The membranes were installed inside a cylindrical stainless steel 

module with an effective membrane length of 225 mm and an effective membrane area of 

42.4 cm2. The membrane was cleaned after each experiment with a hot 1 % (w/w) aqueous 

solution of NaOH and 1 mg/L NaClO solution for about 30 min. The acid cleaning was not 

used because no improvement in permeate flux recovery was observed. 

 

2.3. Experimental set-up and procedure 

 

The schematic view of the experimental setup is shown in Fig. 1. The feed juice in the 

amount of 1.5-2 L was recycled between the retentate reservoir and the module by a rotary 

pump and the feed flowrate was controlled with a laboratory made rotameter. Temperature in 

the system (20-55 °C) was adjusted by passing the juice stream from a bypass line through the 

thermostat bath. Transmembrane pressure was controlled by the back-pressure valve. The 

permeate (clear juice) was collected in a reservoir placed on a digital balance. The mass of 

permeate collected was measured with an accuracy of ± 0.1 g every 1 min for periods of 120 

min. The cumulative permeate volume was in the range of 30-150 and 130-280 mL at 20 and 

55 °C, respectively. Therefore, the volume concentration factor (VCR) at the end of each run 

ranged between 1.02 and 1.2. The flow rate through the membrane tube was in the range of 

100-900 mL/min, which was equivalent to a mean velocity of 0.06-0.5 m/s. It corresponds to 

the tube Reynolds number of 240-2200 at 20° C and 390-3500 at 50° C.  

 

3. Results and discussion 

 

3.1. Influence of operating conditions on the permeate flux 
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The cumulative permeate volume as a function of time for Carbosep M7 membrane at 

different pressures, temperatures and feed flow rates is shown in Fig. 2. Similar dependencies 

were also obtained for M7 and M8 membranes. The permeate volume collected during UF of 

apple juice increased with time but at a decreasing rate. Besides that, the permeate volume 

collected at any time increased with transmembrane pressure, temperature and feed flow rate 

in the investigated range of operating parameters. The lower permeation rates for apple juice 

in comparison with those of water were due to membrane fouling. 

The permeate volume collected during UF of pure water increased linearly with time, 

which is in accordance with Eqs. (1) and (2). In that case Rt = Rm = const throughout the 

whole operation and J = const at ∆p = const. The Rm values estimated from the slopes of V vs. 

τ  lines were 6.7, 6.5, and 40 × 1012 1/m for M7, M8, and M9 membrane, respectively.  

Experimental data corresponding to the permeate flux decline for the Carbosep M7 

membrane are presented in Fig. 3. Flux values were obtained by numerical differentiation of 

the mass versus time data collected during each experiment. The measurement of mass and 

time was started 10-20 s after the beginning of the experiments, which was time interval 

necessary to adjust a required transmembrane pressure. According to Lahoussine-Turcaud, 

Wiesner, & Bottero (1990), the flux curve can be devided in two domains. Domain 1 

corresponds to the initial flux decline for t → 0 and it involves internal fouling. Domain 2 

corresponds to the remaining flux decline for t » 0 and is believed to involve external 

membrane fouling (Mondor, Girard, & Moresoli, 2000). In Fig. 3, the initial flux decline (in 

the first 10-20 s) was 50-74 % of the total flux decline. The steady state was established after 

55-94 min of operation and the steady-state permeate fluxes were 27-53 % of their initial 

values. Contrary to this, the permeate flux during UF of a silica sol and protein solutions 

dropped to a steady-state value in a matter of seconds (Chudacek and Fane, 1984).  
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It should be noted that the initial permeate flux was independent on the feed flow rate in 

the membrane tube. It could be explained by the fact that in the early stage of UF, permeate 

flux is controlled by the internal fouling, which is not significantly influenced by the feed 

flow rate. The steady state permeate flux was, however, higher at the higher feed flow rate, 

which is in accordance with the film model (Fane & Fell, 1987).    

The effect of transmembrane pressure, ∆p, on steady-state permeate flux, Js is shown in 

Fig. 4. The permeate flux increased initially with the applied transmembrane pressure, and 

then decreased with continued increase in the transmembrane pressure. The point at which the 

permeate flux was maximal was the optimum transmembrane pressure. In our experiments 

this optimum occurred at 160-240 kPa and decreased with feed stream flow rate. The 

optimum ∆p value of 160 kPa for Carbosep M8 membrane at 800 mL/min is in excellent 

agreement with 157 kPa reported by Kirk et al. (1983) for pear juice UF, 154 kPa reported by 

Sulaiman et al. (1998) for starfruit juice UF, and 140-145 kPa reported by Rao, Acree, 

Cooley, & Ennis (1987) for apple juice UF using polysulfone hollow fibers. However, the 

optimum transmembrane pressures in this work were somewhat higher than 117 kPa, found 

by Jiraratananon & Chanachai (1996) for UF of passion fruit juice at 50 ºC. 

The bell-shaped permeate flux-pressure behavior for UF of apple juice is in contrast to 

what many investigators have found for protein solutions (Do & Elhassadi, 1985) and 

colloidal inorganic oxide dispersions (e.g., Vladisavljević, Milonjić, Nikolić, & Pavasović, 

1992; Vladisavljević, Milonjić, & Pavasović, 1995). Permeate flux of protein solutions and 

colloidal inorganic oxide dispersions continued to increase but at a decreasing rate with 

transmembrane pressure until it reached a constant limiting value. 

However, it must be noted that pectic substances and suspended juice solids have 

physical characteristics different from proteins and inorganic oxide particles. Proteins can be 

regarded as rigid globular molecules. When a gel layer of protein builds up, the spherical 
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shape leaves spaces for passage of the permeate. On increasing transmembrane pressure these 

spaces never become completely closed, thus allowing the permeate to pass through to give a 

flux plateau above the optimum ∆p value. On the other hand, haze particles of apple juice are 

chain-like aggregates of polymerized polyphenol and/or polyphenol-protein complexes 

(Beveridge & Tait, 1993). At a sufficiently high transmembrane pressure, these large 

aggregates are disrupted into much smaller particles forming a less porous and more resistive 

gel. Similar to that, pectic substances are chain-like macromolecules of galacturonic acid units 

aggregated by hydrogen bond bridges. Kirk et al. (1983) have suggested that when pectic gel 

layer is compressed, these bridges could collapse leading to the closure of interstitial spaces 

between the chains. They reported that the pectic gel layer is elastic as evidenced by the 

partial restoration of permeate flux upon gradual release of the transmembrane pressure. 

Fig. 5 indicates that log(steady-state permeate flux) increases in proportion to log(feed 

flow rate) for all three Carbosep membranes, i.e.: 

B
fs AQJ =                    (3) 

The power law parameters A and B in Eq. (3) were obtained by the nonlinear least-squares 

regression of the plots in Fig. 5 (Table 1). The exponent on feed flow rate ranges between 

0.22 and 0.31 which is in a good agreement with 0.33 anticipated by Lévêque (1928) for heat 

transfer in laminar flow channels. On the other hand, the B values in Table 1 are lower than 

0.54 obtained by Charcosset & Choplin (1996) for UF of pectin solutions under laminar flow 

conditions using Carbosep M8 membrane. In this work, however, pectin content in the feed 

juice after depectinization was only 7 mg/L. 

The effect of temperature on permeate flux for the three Carbosep membranes at a 

transmembrane pressure of 200 kPa and a feed flow rate of 800 mL/min is illustrated in Fig. 

6. An increase of temperature from 20 to 55 °C enhanced permeate flux due to an increase of 

mass-transfer coefficient according to the film model (Fane & Fell, 1987). For Carbosep M9 
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membrane, the permeate flux increased linearly with temperature at a rate of 0.23 L/(m2h) for 

each 1°C. It is in contrast to what Jiraratananon & Chanachai (1996) have found for passion 

fruit juice. They observed a drop of permeate flux by increasing temperature from 40 to 50 °C 

due to gelatinization at the membrane surface caused by cross-linking between deposited 

pectin and starch molecules. A downside to the use of higher temperatures during apple juice 

UF may be a larger post-bottling haze formation (Tajchakavit, Boye, & Couture, 2001).    

 

3.2. Influence of operating conditions on the fouling resistance 

 

Influence of feed flow rate on the total and fouling resistance for M7 and M9 membrane 

is shown in Figs. 7 and 8. These resistances were determined from the steady-state permeate 

fluxes and Rm values using Eqs. (1) and (2). Both Rt and Rf decreased with feed flow rate 

because an increase in flow rate enhanced mass transfer coefficient and reduced concentration 

polarization and accumulation of retained solutes on the membrane surface. In the case of less 

resistive M7 membrane, the fouling resistance was the major resistance to permeate flow over 

the whole range of feed flow rate investigated. For more resistive M9 membrane, however, Rf 

controlled the permeate flux at a feed flow rate below 260 mL/min, while at the higher feed 

flow rates, the permeate flux was controlled by the membrane resistance, Rm.  

Fig. 9 shows the relative magnitude of fouling resistance as a function of transmembrane 

pressure for M7 membrane. The steady-state fouling resistance increased with transmembrane 

pressure and at 400 kPa, reached more than 93 % of the total resistance. For small 

transmembrane pressures,  e.g. 100 kPa, the fouling resistance significantly decreased with 

increasing the feed flow rate, which was due to a higher rate of solute back-transfer. At 

relatively high operating pressures (above 300 kPa for the conditions as in Fig. 9), the steady-

state fouling resistance, i.e. permeate flux was virtually independent on the feed flow rate. 
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Under these conditions, permeate flux was limited by the dense structure of the deposited 

fouling layer. 

 

3.3. Influence of UF on chemical composition of the apple juice 

 

Influence of clarification process on juice composition is shown in Table 2. The titratable 

acids and sugars content of the juice were not affected by the process. These parameters were, 

respectively, about 0.45 % malic acid and 98 g/L. According to the European regulations, the 

clarified juice presented a satisfactory clarity (transparency at 625 nm more than 80 %) and 

color intensity (transparency at 420 nm more than 30 %) value in all the cases. The highest 

clarity and the lowest color intensity value for the juice clarified using M7 membrane can be 

explained by the smallest molecular weight cut-off of that membrane. Due to the same fact, 

the total phenolics content in the permeate of M7 membrane was the lowest.  

 

4. Conclusion 

 

Ceramic tubular UF membranes with 300,000, 50,000, and 10,000 dalton molecular 

weight cut-off were successfully used to clarify depectinized apple juice. Decline in permeate 

flux over time was attributed to the formation of a layer of retained juice solids on the surface 

of the membrane that increased overall hydraulic resistance. The fouling resistance decreased 

with feed flow rate at a transmembrane pressure below 300 kPa. In the case of less resistive 

M7 membrane, the fouling resistance was the major resistance to permeate flow over the 

whole range of feed flow rate investigated. For more resistive M9 membrane, however, the 

fouling resistance controlled the permeate flux only at a feed flow rate less than 260 mL/min. 

The steady-state permeate flux increased with transmembrane pressure until it reached a 
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maximum value at ∆p of about 200 kPa and then decreased with further increase in ∆p. The 

observed decrease in permeate flux after reaching a maximum value was probably due to the 

disruption of large aggregates of haze particles into much smaller particles forming a less 

porous and more resistive gel layer.  
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FIGURE CAPTIONS 
 

Fig. 1. Schematic view of the experimental setup used in this work (PG – pressure gauge, 

BPR – back-pressure regulator). 

 

Fig. 2. Permeate volume vs. time for ultrafiltration of apple juice and pure water using 

Carbosep M7 membrane (every second data point is shown). 

 

Fig. 3. Variation of permeate flux with time for Carbosep M7 membrane (the time τs at which 

the steady state was established is shown in brackets). 

 

Fig. 4. Effect of transmembrane pressure on steady-state permeate flux at 20° C using 

Carbosep M7, M8, and M9 membranes at different feed flow rate. 

 

Fig. 5. Effect of feed flow rate on steady-state permeate flux for all three membranes. 

 

Fig. 6. Effect of temperature on steady-state permeate flux for all three membranes. 

 

Fig. 7. Effect of feed flow rate in the membrane tube on total and fouling resistance in the 

steady-state for M9 membrane at 20 ºC and 100 kPa. 

 

Fig. 8. Effect of feed flow rate in the membrane tube on total and fouling resistance in the 

steady-state for M7 membrane at 20 ºC and 100 kPa. 

 

Fig. 9. Effect of transmembrane pressure on relative magnitude of steady-state fouling 

resistance at different feed flow rates (M7 membrane at 20 ºC). 
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T A B L E S 
 

 

Table 1 

Values of parameters A and B in the permeate flux vs. feed flow rate correlations (Eq. 3) at 

100 kPa and 20°C determined using the least-squares regression analysis method. 

  

Membrane A∗ B∗ 
Correlation 

coefficient 

Carbosep M7 1.72 0.29 0.978 

Carbosep M8 1.30 0.31 0.987 

Carbosep M9 1.10 0.22 0.945 

 
 

     *With Js in L/(m2h) and Qf in mL/min.  



-17- 

Table 2 

Composition of apple juice after pretreatment (depectinization plus centrifugation) and after 

clarification (traditional process using fining agents or UF).  

 

 

Component 
Pre-

treated 

raw juice 

Clear juice 

Traditional 
process 

UF 
M7 membrane 

UF 
M8 membrane 

UF 
M9 membrane 

Total solids 
(%) 10.7 10.2 10.2 10.2 10.2 

Sugars  
(g/L) 99 96 98 98 98 

Titratable 
acids 

expressed as 
malic acid (%) 

0.46 0.45 0.45 0.45 0.45 

Total 
phenolics 
(mg/L) 

582 475 420 445 475 

Pectin 
(mg/L) 6.8 0 0 0 0 

Color 
(transparency at 

420 nm, %) 
24 51 36 54 54 

Clarity 
(transparency at 

625 nm, %) 
75 95 96 94 92 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7.  
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Figure 8. 
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Figure 9. 
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