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Abstract 

 Stable and compatible cathode materials are a key factor for realizing the low-temperature (LT, 

≤600 ˚C) operation and practical implementations of solid oxide fuel cells (SOFCs). In this 

study, perovskite oxides SrFe1-xTixO3-δ (x < = 0.1), with various ratios of Ti doping, are prepared 

by a sol-gel method for cathode material for LT-SOFCs.  The structure, morphology and thermo-

gravimetric characteristics of the resultant SFT powders are investigated. It is found that the Ti is 

successfully doped into SrFeO3-δ to form a single phase cubic perovskite structure and crystal 

structure of SFT shows better stability than SrFeO3-δ. The dc electrical conductivity and 

electrochemical properties of SFT are measured and analysed by four-probe and electrochemical 

impedance spectra (EIS) measurements, respectively. The obtained SFT exhibits a very low 

polarization resistance (Rp), 0.01 Ωcm
2
 at 600◦C. The SFT powders using as cathode in fuel cell 

devices, exhibit maximum power density of 551 mW cm
-2

 with open circuit voltage (OCV) of 

1.15V at 600◦C. The good performance of the SFT cathode indicates a high rate of oxygen 

diffusion through the material at cathode. By enabling operation at low temperatures, SFT 

cathodes may result in a practical implementation of SOFCs. 

Keywords: LT-SOFCs; Perovskite Cathode; SrFeTiO3-δ; material stability; low polarization 

resistance; power density. 

1 Introduction 

To realize the practical implementations of solid oxide fuel cells (SOFCs), extensive efforts 

have been made to lower the operational temperature of the SOFCs from 1000◦C to 300-600◦C 



[1]. Low operating temperature (LT) can reduce many issues in SOFCs, i.e. material degradation 

and gas sealing. It brings more choice of ceramic interconnects with cheap metals & materials, 

eventually realizing cost-effective SOFCs for commercialization [2].  Therefore, decrease in 

operating temperature is of great importance of the development of inexpensive and reliable 

SOFCs. However, at low temperatures it is extremely difficult to maintain sufficient 

electrochemical performance of each part (anode, electrolyte and cathode) for normal operation 

of SOFCs at LT [3-4]. Especially, in these part the cathode demands particular attention due to a 

larger activation energy of oxygen reduction reaction (ORR) caused by slower kinetic process at 

low temperatures. Therefore, conventionally, a high operational temperature is the major 

requirement for cathode in SOFCs to keep a sufficiently high reaction rate. For instance, 

typically conventional cathode La1-xSrxMnO3 (LSM) requires temperatures over 1000◦C 
[5]. To 

realize practical LT-SOFCs, it is very necessary to develop advanced cathode materials with high 

mixed ionic- electronic conduction, and good ORR activity rate for good electrochemical 

performance as well as good stability at LT circumstances. 

In the past decade, a large number of mixed ionic and electronic conductors (MIECs) have 

been studied as cathode materials for intermediate temperature (IT) SOFCs [6, 7]. Among the 

perovskite oxides, the materials with high mixed ionic and electronic conductivity exhibited 

tremendous prospective potential for LT-SOFCs [8]. The perovskites have a general formula 

ABO3, where A, B are distinct metal cations. The ABO3 perovskite can be doped either on A site 

or B site to adjust its electrical properties. In general, a cation having larger ionic radius occupies 

the A-site, and the cation with smaller radius is on the B-site [9, 10]. In most of the perovskite 

cathodes, A site cations are alkaline and rare earth elements such as La, Sr, Ca, and Ba, and B 

site cations are reducible transition metal such as Fe, Co, Mn and Ni. Among these perovskite 



materials, LSM is the most widely used cathode in SOFCs, because of its high electronic 

conductivity, good electrochemical activity for ORR, and high thermal stability [11]. Some other 

typical Fe-based perovskite oxides, such as La0.8Sr0.2FeO3-δ, BaxSr1-x FeO3-δ, and Sm0.5Sr0.5 FeO3-

δ are also commonly proposed as cathode materials for IT-SOFCs [12]. It is studied in the past 

decade that many iron-based oxides have emerged in the form of perovskite structure. These Fe-

doped perovskite oxides have attracted much attention, as iron is naturally abundant and cost-

effective. In addition, iron oxides are reported to possess effective catalytic activity for ORR and 

are structurally stable when associated with the flexible coordination numbers of the iron cations 

surrounded by oxygen anions in the perovskite structure. As another representative, perovskite 

SrFeO3-δ exhibits high mixed ionic and electronic conductivity and Mo-doped SrFeO3−δ shows 

good stability in a wide range of oxygen partial pressures and has been demonstrated as a redox 

stable electrode for SOFCs [13]. The thermal expansion coefficient is also key parameter for the 

thermally stable and long term operation of the SOFCs. The thermal expansion coefficient (TEC) 

of Ti-doped SrFeO3-δ (approximately 25.9×10
-6

) is reported to be thermally compatible with Sm-

doped ceia (SDC) electrolyte [14]. It has also been indicated that by doping Ti into the B site 

SrFeO3−δ lattice can improve the structure stability and realize good electrochemical performance 

[15]. These results promote interests in studying doped SrFeO3-δ perovskites as advanced cathode 

family materials.    

In this work, the authors prepared a Ti-doped SrFeO3-δ perovskite SrFe1-xTixO3-δ (x < = 0.1) with 

various Ti-doping ratios, and evaluated them as cathode materials for LT-SOFCs. The phase 

structure and morphology of the prepared materials were characterized. The electrical and 

electrochemical properties of the prepared materials are also investigated. 

2 Experimental  



2.1 Synthesis of SFT by wet chemical method 

SrFe1-xTixO3-δ (x < = 0.1) powders were synthesized by sol-gel method. The stoichiometric 

amounts of strontium nitrate hexa-hydrate Sr(NO3)2·6H2O (Sigma Aldrich 99.99%), iron nitrate 

nona- hydrate Fe(NO3)3·9H2O (Sigma Aldrich 99.99%) and titanium dioxide (TiO2, Sigma 

Aldrich 99.99%) were used. An appropriate molar ratio of strontium and iron nitrates were 

dissolved into distilled water, while TiO2 was dissolved into hot concentrated (66%) H2SO4) and 

NH4OH were added to form neutral solutions respectively. Both solutions were combined to 

form an aqueous solution to the material after 30 minutes continuous stirring. Citric acid was 

then added with 25 % of total moles of SFT into the solution. Following which, these solutions 

were stirred (200 rev/min) and heated continuously at 80◦C for four hours to obtain gel. 

Subsequently, the resulting gel was dried at 200 
o
C

 
for 3 hours and ground in mortar pestle to 

attain powder, followed by calcinations at 1100◦C for 5 hours. Finally, the powders were 

grounded adequately again for characterizations and cell fabrication. 

2.2 Preparation of single cell and fabrication of fuel cell devices 

For fabrication of fuel cells, the powders of the anode, electrolyte and cathode were filled 

one by one into a die, and compressed under a pressure of 220 MPa using a CARVER Hydraulic 

press (USA). The thickness of the fuel cell was 1.5 mm and the active area was 0.64 cm
2
. 

Sm0.2Ce0.8O2 (SDC) [16], LiNiCuZn-oxide [17], and SFe1-xTixO 3-δ were used as the electrolyte, 

anode and cathode, respectively. The fabricated cells were then sintered at 700◦C for 1 hour 

before measurements. The silver paste was used as current collector on both sides of the cells. 

For DC four Probe conductivity measurements, the samples were fabricated into pellets with 2 

mm in thickness and 13 mm in diameter at 220 MPa.  



2.3 Material characterizations and electrochemical measurements 

The phase structure of the synthesized SrFe1-xTixO3-δ (x < = 0.1) powders was characterized 

using X-ray diffraction ((PAN analytical with Cu Kα radiation, λ=1.5418
 
Å) in 2θ scan range of 

0-90˚
 
with a scanning step of 0.02

o
. All refinement for obtained XRD was studied by MJAD 6.5 

software. The surface morphology of the synthesized SFT was studied by scanning electron 

microscopy (SEM, Vega 3, LMU, Tescan). Images were captured at different magnifications 

with accelerated voltage of 10 kV. Thermo-gravimetric analysis (TGA) was employed 

to measure the weight loss or gain studies using TA Instruments (SDT Q 600 V 8.2 build 100) in 

temperature range of 25- 800◦C in the presence of Nitrogen (heating rate: 15◦C/min). The 

particle surface area and pore size of samples were measured through surface area and porosity 

analyzer Brunauer–Emmett–Teller (BET; Tristar). 

Electrochemical impedance spectroscopy (PARSTAT 4000 EIS Analyser) was used for the 

measurements of electrochemical performance under the cell open circuit voltage (OCV) mode 

(Working and Sense, Reference and Common). The measurements were carried out in frequency 

ranges from 0.1Hz-1MHz with an AC applied signal voltage of 10mV in amplitude in 

temperature range 500-600◦C. ZSIMPWIN software was used to simulate the experimental EIS 

data based on equivalent circuits. DC conductivity measurements were carried out at 350-650◦C 

using four-probe method by KEITHLEY 2450 source meter and simulated by Kick Start 

software. The electrical conductivity is calculated from equation σdc =L/RA, where L is the 

thickness (length), R is the resistance and A is the active area of the pellet. The fuel cells were 

tested using H2 - air as fuel and oxidant, respectively, with a flow rate of 100ml/min. The voltage 

and current was recorded   for I-V (current voltage) and I-P (current density-power density) 

characteristics.  



 

3 Results and discussions 

3.1.1 Crystal & Microstructure   

The X-ray diffraction patterns of the as-prepared SrFe1-xTixO3-δ (x < = 0.1) samples are 

shown in Fig. 1. The characteristic peaks in Fig. 1(a) manifest the single phase cubic perovskite 

structures. No other phase formation can be observed in all compositions, suggesting that Ti was 

successfully doped into B-site to replace partial Fe ions. The refinements were calculated using 

MJAD 6.5 software according to JCPDS File No. 33-0677.The crystallite size was calculated 

using Scherer equation, 

             

 Where D is the crystallite size, λ is the wavelength and L is the full width half maxima 

(FWHM). The average crystallite size of 44 nm is calculated for sample with x = 0.1. The XRD 

patterns characteristic peaks show slight shift towards the lower angle with the increase of 

titanium contents, indicating a lattice parameter change by expanding the unit cell structure. The 

unit cell parameters for the samples are calculated, revealing increasing value from 3.86405 Å 

(x=0) to 3.89605 Å (x=0.1), as summarized in table 1 and presented in Fig.1(c). The lattice 

parameter of the unit cell is linearly increased with the titanium contents, which may be 

attributed to the difference in their ionic radii and possible reduction of Fe
4+

 to Fe
3+

 and Ti
4+

 to 

Ti
3+

, obeying Vegard’s law [18,19]. 

           Fig.2 presents the SEM micrograph of the resultant SrFe1-xTixO3-δ (x < = 0.1) powders. 

The figure 2(a-c), correspond to Ti contents with x = 0, 0.05 and 0.075 powders, respectively.  

The average grain size is calculated by ImageJ software to be 2.98, 0.953 and 0.5 µm, 



respectively for the three samples. To check the presence of Ti contents into SrFeTiO3-δ, EDX is 

used. Fig. 2b shows the SEM image and EDX elements mapping for all the elements present in 

SrFe0.9Ti0.1O3-δ. It can be seen from the images that the grain size is obviously affected with the 

introduction of Ti, decreasing along with the increase of Ti content, which suggests that the 

substitution of Ti for Fe restrains the grain growth [14]. The grain size change leads to a more 

porous morphology, which is more suitable for gas diffusion when the samples are used as 

cathodes of fuel cells. It can be seen that all the elements are distributed homogenously at all the 

surface. 

3.1.2 Thermo-gravimetric Analysis (TGA) 

         Thermodynamic analysis is essential for predicting the long-term stability of perovskite 

cathode material besides the electrical conduction and structural characteristics. The TGA of 

SrFe1-xTixO3-δ (x < = 0.1) was performed to study the mechanisms of decomposition and the 

formation of the final desired phase. Fig. 3 shows thermal analysis (TA) plot, consisting of three 

regions spanned over the range of 25-290◦C, 290-450◦C, and 450-800◦C, respectively. It can be 

seen from the plot that there is a large weight loss in region-I due to the physically desorption of 

absorbed water and chemical water in nitrates which evaporate in this temperature region [20]. In 

region-II, it can be seen that the weight loss is associated with the decomposition of the chemical 

compounds, e.g. nitrates [21].In region-III, two ranges can be discerned: a) from 450-500◦C, the 

combustion process of material has occurred and the required oxide phase formation has 

commenced; b) a second weight loss stage is observed from 500-800◦C, probably due to the loss 

in lattice oxygen. The weight losses increasing with titanium contents could be attributed to the 

difference in initial oxygen vacancy content or superior reduction of titanium in the prepared 



cathode material [22]. Comparatively, it is found SrFe1-xTixO3-δ with x = 0.1 exhibits markedly 

better thermodynamic stability than the other three samples. 

3.1.3 BET (Brunaurr-Emmett-Teller) 

For further investigation, the pore sizes of powders were carried out using BET analysis. 

The data obtained from BET studies are summarized in table 1. Both pore size and BET surface 

area show an increasing trend with the increase of x, corresponding to the decrease of particle 

size. These results provide good argument with the above SEM results. 

3.2 Electrical conductivity 

         Sufficient electrical conductivity is the major parameter for better performance of cathode 

material. Four-probe dc conductivity measurements of SrFe1-xTixO3-δ (x < = 0.1) were carried out 

in air in the temperature range of 350-650◦C. The results are presented in Fig. 4 in form of 

Arrhenis plot (1000/T (K) vs. Ln σ T). Generally, in MIECs perovskite, the electronic 

conductivity can be considered several orders of magnitude high than the ionic conductivity [18]. 

It is clear from the plot that the electrical conductivity gradually improves with the increase of 

temperature, which primarily reflects the property of electronic conduction of the semiconductor. 

The electrical conductivity is observed to be reduced with increasing titanium content. The 

maximum conductivity obtained was 9 Scm
-1 

for SrFeO3-δ, at 650◦C, but gradually reduced to 

2.25 Scm
-1

 for SrFe0.9Ti0.1O3-δ. This decrease in electrical conductivity can be attributed to the 

reduction in charge carriers i.e., the ratio of Fe
4+

/Fetotal due to increasing titanium content. 

Additionally, the corresponding activation energy (Ea) for electrical conductivity was calculated 

based on Arrhenius relationship σ = (σo/T) exp (-Ea/RT), where σ is the conductivity, σo is the 

pre-exponential constant, Ea is the activation energy, R is the universal gas constant and T is the 



process temperature [24, 25]. As a result, the calculated activation energy values for the prepared 

SFT samples are 59.6
 
J/mol, 56.02 J/mol, 54 J/mol and 48.79 J/mol for x = 0, 0.05, 0.075 and 

0.1, respectively, at 350-650◦C. The lowest activation energy is observed in SrFe1-xTixO3-δ, (x = 

0.1), as compared to other Ti contents. Thus, it provides support that the sample with x = 0.1 is a 

good material for cathode at low-temperature operation. 

3.3 EIS Analysis  

To investigate the effect of Ti-doping contents on the electrochemical performance, 

symmetrical cells with SrFe1-xTixO3-δ (x < = 0.1) electrodes were constructed on Sm0.2Ce0.8O2 

(SDC) electrolyte (SFT/SDC/SFT). The oxygen reduction reaction (ORR) capabilities of both 

Ti-doped and un-doped perovskite oxides were studied by electrochemical impedance 

spectroscopy (EIS). Fig. 5(a-d) present the typical impedance spectra for the symmetric cells of 

SFT|SDC|SFT measured in air over a temperature range from 500-600◦C. The EIS data was 

fitted based on equivalent circuit, i.e., L/R1/(R2Q) (Fig. 5g) using ZSIPWIN software. It is 

clearly seen that each EIS data fits well with the equivalent circuit. The R1 corresponds to the 

ohimic resistance of electrolyte, devices and system wires simultaneously. The corresponding 

cathode polarization resistance Rp can be obtained based on the fitting results of R2 (Rp=R2) [26-

32]. The calculated Rp values of all four cathodes at various temperatures from EIS are presented 

in Fig. 5f, the polarization resistance values of the SrFe1-xTixO3-δ (x < = 0.1) electrodes are 0.625, 

0.283, 0.096 and 0.01 Ω cm
2
 at 600◦C, respectively. This indicates that the Rp of SFT (x = 0.05, 

0.075, 0.1) is less than that of SF1-xTixO3-δ (x=0) at 600◦C. At other temperatures, the Ti-doped 

oxides also exhibit lower polarization resistance than the parent SFO3-δ, and the SrFe1-xTixO3-δ (x 

= 0.1) electrode shows the lowest Rp at each temperature. These results confirm that the catalytic 

activity for ORR of SFO3-δ can be improved through proper Ti doping. Fig. 5(e) describes the 



comparison of EIS results for all four cathodes at 600◦C. The ohmic resistance from the 

electrolyte has been subtracted for the sake of clarity. The Arrhenius plot of Rp is presented in 

Fig. 5 (f). It can be clearly seen in Fig. 5 (f) that the Rp decreased with increase in temperature 

and Ti content. Table 3a lists the summary of EIS fitted results. It should be noted that the 

polarization resistance values of SrFe1-xTixO3-δ (x = 0.1) cathode are comparable to many 

reported B-site Ti-doped SF cathodes, as listed in table 3b. 

3.4 Fuel Cell Performance  

         The fuel cell performance of SrFe1-xTixO3-δ (x < = 0.1), as cathodes was studied using cell 

configurations of LiNiCuZn/SDC/SFT cells. Fig.6 (a) shows typical current-voltage (I-V) and 

current-power (I-P) characteristics of the cells with SrFe1-xTixO3-δ (x < = 0.1) measured at 600◦C. 

The best performance of maximum power density of 551 mW cm
-2

 and open circuit voltage 

(OCV) of 1.15V are achieved at 600◦C for Ti contents with x=0.1. Fig. 6 (a) shows the 

comparison of power densities for all compositions at 600◦C. The peak power densities of 551 

mW cm
-2

, 442 mW cm
-2

, 332 mW cm
-2

 and 236 mW cm
-2

 are obtained for SrFe1-xTixO3-δ (x < = 

0.1), respectively. Considering the results obtained at 600◦C for SFT cathode, we further studied 

cell with best performance at various temperatures, which are presented in fig. 6 (b). Summary of 

the fuel cell performances for different compositions is presented in Table 4a.  It should be 

noticed that both the cell open circuit voltages (OCVs) and peak power output are dependent on 

the Ti content. The increase in Ti content can directly enhance OCV values and corresponding 

power outputs. This indicates clearly that the Ti doping can strongly promote ORR process, thus 

reducing cathode polarization resistance significantly as proved by the results from the EIS 

discussions. The Table 4 summarises the authors’ obtained cell performance in comparison with 

previous reported SrFeTiO3-δ-based perovskite cathodes listed in table 4b. Consequently, it can 



be established that the fuel cell based on SrFe1-x TixO3-δ (x=0.1) fabricated here demonstrates 

better performance even at lower temperature. 

4. Conclusions 

         In summary, the SrFe1-xTixO3-δ (x < = 0.1) was successfully prepared using a sol-gel 

method. The prepared samples show a single phase cubic perovskite structure. It was observed 

that lattice parameters increase with increasing titanium concentration. The electrical 

conductivity is decreased by increasing the dopant content of titanium. The maximum 

conductivity is 9 Scm
-1

 at 600◦C for SrFeO3-δ, whilst it decreases to 2.25 Scm
-1

 for the sample 

with x = 0.1. The SrFe1-xTixO3-δ Cathode material possessed the polarization resistance of 0.01 

Ωcm
2
 for x = 0.1 at 600◦C. The pore size is increased with higher titanium content, i.e. the 

titanium concentration increases the porosity of the material. This can fulfil the cathode 

requirement and thus highly benefit the charge diffusion and ORR processes resulting in very 

low polarization resistance and high cell performance at low temperatures. Therefore, these 

results suggest that SrFe0.9Ti0.1O3-δ can be considered for highly promising cathode material for 

advanced LT-SOFCs. 
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Figures 

3.1.1 Crystal & Microstructure 
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Fig. 1 (a) X-ray diffraction pattern of respective powders of SrFe1-xTixO3-δ sintered at 1100
o
C in 

air for 5 hour, (b) peaks shifting in diffraction pattern with different Ti contents, (c) change in 

unit cell parameters with various Ti contents. 

 

 



 

Fig. 2 (a) SEM micrograph of SrFe1-xTixO3-δ samples with x=0, 0.05 and 0.075 after calcinations 

at different magnifications, (b) SEM image, EDX mapping of all the elements for SrFe1-xTixO3-δ 

(x = 0.1) 

 

 

 



3.1.2 Thermo-gravimetric Analysis (TGA) 
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Fig. 3 Thermo-gravimetric analysis (TGA) curve for the respective SrFe1-xTixO3-δ (x < = 0.1) 

from 25◦C - 800◦C in N2/air. 

3.2 Electrical conductivity 

                           

Fig. 4 Arrhenius plot of dc electrical conductivities and calculated activation energy values are 

inserted for SrFe1-xTixO3-δ (x < = 0.1) from 350◦C - 650◦C in air 



3.3 EIS Analysis  
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Fig. 5 (a - d) Nyqust plot Electrochemical Impedance Spectroscopy (EIS) in frequency range of 

0.1Hz- 1MHz as a function of temperature for SrFe1-xTixO3-δ (x < = 0.1), (e) Arrhenius plot of 



polarization resistance, (f) Nyqust plot for comparison of all the compositions at 600˚C, (g) 

Equivalent circuit of EIS data calculated by Zsimpwin software. 

3.4 Fuel Cell Performance  
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Fig. 6 (a) Typical I-V and I-P characteristics for fuel cells with the SrFe1-xTixO3-δ (x< = 0.1) 

cathodes at 600◦C, (b) Fuel cell performance for SrFe0.9Ti0.1O3-δ cathode at various temperatures 
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Tables 

 

Table 1 Space group, lattice parameters and unit volume cell parameters refinements of SrFe1-

xTixO3-δ (x < = 0.1)  

                          SrFeO3-δ         SrFe0.95Ti0.05O3-δ      SrFe0.925Ti0.075O3-δ         SrFe0.9Ti0.1O3-δ 

Space group     pm-3m             pm-3m                      pm-3m                          pm-3m 

a (Å)                3.86405            3.8751                       3.8850                          3.89605 

V (Å
3
)              57.9                   59.18                         60.4                              63.1               

 

Table 2 Brunaurr-Emmett-Teller (BET), results for pore size, surface area and particle size 

Sample                    pore size m
2
/g             BET surface area m

2
/g         particle size μm 

 SrFeO3-δ                     0.862                              0.8786                                 2.57 

SrFe0.95Ti0.05O3-δ             1.4067                            1.4527                                  0.95 

SrFe0.925Ti0.075O3-δ         1.7269                            1.7735                                 0.32 

SrFe0.9Ti0.1O3-δ                   2.5757                            2.6232                                0.154                                              

 

 

Table 3a Summary of fitted EIS results at 600 oC temperatures for SrFe1-xTixO3-δ (x < = 0.1)        

Ti Contents       Inductance (Henry)    Rohmic (ohm)      Rp (ohm)      CPE (Q)        n        % error     

x = 0                    8.41E-15                   0.31                   0.62            101.3           0.8            18.0                  

x = 0.05               1.196E-15                  0.28                   0.28            101E-5         0.54         16.0                 

x = 0.075                     4.653E-15                     0.25                     0.096          5.563E-5       0.45         12.8          

x = 0.1                         1E-15                      0.29                    0.01            5.323E-8      0.3            8.0 

    



 

Table 3b Comparison of polarization (Rp) and area specific (ASR) resistances in typical Ti 

contents containing cathodes. 

Cathode material              Operating Temperature     Rp (Ωcm
2
)       ASR (Ωcm

2
)    Reference 

Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3- δ      800
o
C                                              -                                   0.088               [33] 

SrTi0.3Fe0.7O3-δ                                     800
o
C/H2                                    0.39                     -                    [34]  

Sr2FeTi6-δ                                                  700
o
C                               -                     0.204                [35] 

SrFe0.9Ti0.1O3- δ                         600
o
C                               -                      0.16                 [36] 

SrFe0.95Ti0.05O3-δ                                   700
o
C                               -                      0.22                 [37] 

SrFe0.9Ti0.1O3- δ                          600
o
C                            0.01                     -             presented work   

 

Table 4a Summary of fuel cells performances using the SrFe1-xTixO3-δ (x < = 0.1) cathodes at 

600
o
C. 

Cathode material           Open circuit voltage (OCV)                           Peak power density (Pmax) 

SrFeO3-δ                                         0.74 (Volts)                                                    236 (mWcm
-2

) 

SrFe0.95Ti0.05O3-δ                      0.83 (Volts)                                                    322 (mWcm
-2

) 

SrFe0.925Ti0.075O3-δ                 0.94 (Volts)                                                    400 (mWcm
-2

) 

SrFe0.9Ti0.1O3-δ                          1.15 (Volts)                                                    551 (mWcm
-2

)   

  



 

Table 4b Comparison of SrFe0.9Ti0.1O3- δ cathode with different Titanium contents in literature.  

Cathode materials                    Temperature         Peak power density               Reference 

Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ                  800
o
C                   480 (mWcm

-2
)                               [33] 

SrTi0.3Fe0.7O3-δ                                                800
o
C                   337 (mWcm

-2
)                               [34] 

Sr2FeTi6-δ                                                                  800
o
C               441 (mWcm

-2
)                               [35] 

SrFe1-xTixO3-δ (x=0-0.15)                    800
o
C             475-432 (mWcm

-2
)                          [36] 

SrFe0.95Ti0.05O3-δ+ 20% SDC              800
o
C                513 (mWcm

-2
)                               [37] 

SrFe0.9Ti0.1O3- δ  600
 o
C               551(mWcm

-2
)                      presented work 

 

 

 




