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Abstract    

Understanding how people move and interact within urban settings has been 
greatly facilitated by the expansion of personal computing and mobile studies. 
Geosocial data derived from social media applications have the potential to both 
document how large segments of urban populations move about and use space, as 
well as how they interact with their environments. In this paper we examine 
spatial and temporal clustering of individuals’ geosocial messages as a way to 
derive personal activity centres for a subset of Twitter users in the City of 
Toronto. We compare the two types of clustering, and for a subset of users, 
compare to actual self-reported activity centres. Our analysis reveals that home 
locations were detected within 500 m for up to 53 percent of users using simple 
spatial clustering methods based on a sample of 16 users. Work locations were 
detected within 500 m for 33 percent of users. Additionally, we find that the 
broader pattern of geosocial footprints indicated that 35 percent of users have only 
one activity centre, 30 percent have two activity centres, and 14 percent have three 
activity centres. Tweets about environment were more likely sent from locations 
other than work and home, and when not directed to another user. These findings 
indicate activity centres defined from Twitter do relate to general spatial activities, 
but the limited degree of spatial variability on an individual level limits the 
applications of geosocial footprints for more detailed analyses of movement 
patterns in the city.   
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Introduction 

The proliferation of Internet and communications technologies (ICTs) and their 
associated information infrastructures are having transformative impacts on how 
people use, perceive, and co-develop urban spaces and places. Massive data 
streams are providing new ways to monitor, deliver, and analyze a variety of ur-
ban services (e.g. water and electricity consumption), community resources (e.g. 
transit and greenspace) and human activities (e.g. financial transactions and com-
muting flows) (Miller 2010).  For researchers, new data streams with embedded 
geographic coordinates produce digital traces of individuals’ interactions with 
each other and their surroundings and provide new opportunities to understand 
how urban communities operate and evolve, often at much finer spatial and tem-
poral resolutions than previously possible (Batty et al. 2012). 

Many of these digital traces result from user-generated and geosocial media 
which consist largely of photos, videos, text messages and tags, along with 
metadata related to locational references, time stamps and links to users’ profiles.  
There are clear challenges to using these data, as data quality, coverage, locational 
accuracy and thematic relevance may be uneven, unknown, or limited (e.g., Rob-
ertson & Feick 2015). However, these data are often the only source of infor-
mation available that can describe routine activities, patterns of movement, and 
observations of events and surroundings for large numbers of people (Goodchild  
2007; Poorthuis et al. 2016).  In this light, it is not surprising that a sizeable body 
of research has coalesced around using geosocial media from Twitter, Flickr, and 
Foursquare, for example, to gain new insights on topics as varied as fine-grained 
mobility patterns, place-sensing, vernacular geographies, and public sentiment, 
among others (e.g., Hollenstein & Purves 2013; Crampton et al. 2013; Mitchell et 
al. 2013).   

In this paper, we explore the use of geosocial data for analysis of personal ac-
tivity of individuals through the development of individual spatial and temporal 
clusters of granular geosocial media traces. An individual-based approach to spa-
tial analysis of geosocial data is in contrast to more commonly used analyses of 
spatial aggregate patterns of social media activity. Aggregate approaches can 
highlight areas that display comparatively high or low levels of personal and 
work-related social communication (e.g. business, tourism and entertainment dis-
tricts of large cities) as illustrated in Figure 1 below). However, aggregate ap-
proaches can also obscure our understanding of how individuals’ use of urban 
space varies and contributes to overall patterns. As well, individual-level patterns 
can be aggregated to examine broader-scale patterns more common to ‘big data’ 
analyses. The goal of this work is to examine the use of spatial and temporal clus-
terings for exploring place-use within urban complexes and identifying locations 
that are of personal or functional significance to individuals.  To demonstrate the 
possible value of this approach, we apply it to operationalize the concepts of home 
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(primary), work (secondary) and “third” places as a way of delineating locations 
of social and functional importance to individuals and groups and untangling these 
spaces from global patterns (Hickman 2013; Oldenburg  & Brissett 1982; Soukup 
2006). We use the term “activity centre” to mean the spatial expression of an indi-
vidual’s most important locations that they interact with on a regular basis 
(Golledge & Stimson 1997).  

Given the increasingly varied work-life arrangements of urban populations as 
they respond to, and spur, changing economic, social and technological condi-
tions, traditional place- and time-specific divisions between home, work and lei-
sure time become more heterogeneous. Growing numbers of people are engaged 
in telecommuting, are “always connected” to work via mobile devices, and aug-
ment face-to-face socialization with digital alternatives (e.g. Facebook, online 
gaming, etc.) (Steinkuehler & Williams 2006; Sykora et al. 2015). Such changes 
have implications for planners and researchers alike. For example, there are public 
health implications of shifting activity centres in relation to exposure to environ-
mental hazards as well as opportunities for interventions. Geosocial data offer 
possibilities to examine these developments in ways that are not possible with tra-
ditional data sources, such as censuses and surveys that are spatially and temporal-
ly coarse.  

The use of user-generated and geosocial media in the social sciences has not 
been without criticism and challenges.  Common to other forms of “big” geodata, 
early analyses often conflated data set size and frequency with objective truth and 
assumed that simple mapping of thousands or even millions of geosocial data 
points would shed light on broader social and urban processes (Crampton et al. 
2013).  As Kitchin (2014) notes, many forms of big data are by-products or “the 
exhaust” of specific activities. In contrast, small data are assembled based on care-
fully designed sample frames and variable selections. This has raised important 
questions related to data quality in multi-authored data sets, how the availability of 
massive data streams influences research foci, and the role of theory in analysis 
(Miller & Goodchild 2015).  

More balanced and critical approaches to data-driven research using geosocial 
media have emerged recently in response to these criticisms.  The representative-
ness of geosocial media is now recognized as being highly variable since its use 
and creation is dominated by relatively few advantaged groups (Haklay 2010; Mil-
ler & Goodchild 2015) and is concentrated spatially in core urban areas and places 
of widespread popularity (Li, Goodchild & Xu 2013).  

A growing suite of papers describe activity centre analysis from geolocated 
Tweets. Huang and Wong (2016) used the DBSCAN method to generate spatial 
clusters for users, and then inferred activity zone types from urban land use data. 
Huang (2014) took a similar approach using DBSCAN to derive spatial clusters 
and then auxiliary data and metadata to infer activity space details. One of the 
challenges of relying on social media data to derive functional activity spaces of 
individuals is the huge uncertainty in the specificity of detection and how that un-
certainty is distributed geographically and by demographics. In this study, we con-
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front this challenge by adopting a bifurcated approach to geosocial activity cen-
tres. Firstly, we explore the use of DBSCAN to generate both spatial and temporal 
clusters for individuals at the population (e.g., big data) scale. Secondly, we exam-
ine a small sample of individuals who were recruited directly to provide infor-
mation to characterize the relationships between our cluster-based methods and 
the true locations of participants’ home, work, and other locations. Our specific 
research objectives in this paper are to: 1) provide a comparative analysis of two 
clustering approaches to generate personal activity centres (PACs) from geosocial 
data (big data), 2) compare the outputs of these algorithms to personally defined 
activity centres for a small subset of user-reported data (small data), and 3) exam-
ine whether participants’ activity on social media are directly related to their sur-
roundings at the time. We see this as a first step towards developing a robust 
methodology with known providence that allows individuals’ routine use of urban 
space to be examined independently. As well, we aim to provide some degree of 
validation and contextual enrichment of ‘big data’ approaches by integrating re-
ports from individual participants captured within such data streams.  

Fig. 1 Kernel density heatmap for 2.6 million geotagged Tweets in Toronto, Canada 
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2. Methods 

2.1 Data Sources 

Data were obtained from the public Twitter Streaming API during the year of 
September 2013 to August 2014 within the boundaries of the city of Toronto, 
Canada. There were a total of 2.6 million geocoded messages and more than 
99,000 unique users in the dataset after duplicates were removed. As we were in-
terested in highly active users and given the skewed distributions of user-
generated content in general, we constrained our analysis to users with a minimum 
of twenty-five messages over the year. Users with extremely high numbers of 
tweets (more than 2500) were also removed from the database since inspection re-
vealed these users represented automated accounts (“bots”) and/or businesses.  
This reduced our database to a final dataset of 2 million messages distributed 
across just over 16,000 unique users. 

A secondary data source was individual survey responses from a subset of ac-
tive Twitter users who resided in the study area and also had records within the 
larger database of tweets. We recruited participants through direct messaging and 
public posts on Twitter and other social media networks as part of a larger study 
investigating geolocated sentiment analysis and urban form. For the analysis re-
ported here, survey data for a total of 16 participants were used. Details of the 
methodology for these data are reported in Sykora et al. (2015). In short, partici-
pants filled out a short entry survey upon initiation into the project that provided a 
baseline demographic profile including home and work locations.  Over a series of 
weeks, each participant received short follow-up surveys that were triggered by 
their social media activity (e.g., posting a message to Twitter). Variables collected 
in these surveys included their location at the time of Tweeting (home, work, oth-
er) and the activity they were engaged in at the time of Tweeting (working, relax-
ing, etc.). The participant data cover a period from August 2015 to November 
2016, slightly after the larger database described above. The temporal displace-
ment between the small and big datasets used here is due to technical problems 
with data storage which limited our ability to collect Tweets during the concurrent 
period. However, we consider the impacts of this misalignment to be marginal as 
we collected length-of-residence data for participants in the survey, which indicat-
ed the majority had not changed residence in the period since the collection of 
Tweets from the API.  

2.2 Analysis Methods 

Recognizing some of the issues inherent in aggregate spatial analysis of geolo-
cated social media data described above, we aimed to detect spatial areas of signif-
icance to individual users in the dataset. Two simple methods were used to derive 
clusters from individual social media users’ geosocial data – clustering by space, 
and clustering by time. Our intuition is that user-activity may be similar in space 
(e.g., Tweeting from home or work) or similar in time (e.g., Tweeting at lunch 
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hour from the same or from different locations), and these may be used as indica-
tors of how people are behaving. With granular activity detection, scaled up to the 
population level, we may be able to investigate interesting questions about the use 
of space, and link expressions and meaning derived from social media content to 
their geographic context in a meaningful way for individuals.  

2.2.1 Personal Activity Centres and Big Data Analysis of Georefer-
enced Tweets 

The clustering algorithm used was the density-based clustering of applications 
with noise (DBSCAN) method (Ester et al. 1996), one of the more widely used 
methods for simple clustering of points. The purpose of DBSCAN is to find spa-
tial clusters of high density and to identify points in low-density regions as outliers 
(or noise). The density in DBSCAN is defined by two key parameters, the neigh-
bourhood size and the minimum number of points belonging to a cluster. Togeth-
er, these parameters define the types of clusters that will be found by the algo-
rithm. To find irregularly shaped clusters, the algorithm distinguishes between 
core points and border points through the concept of whether points are density-
reachable, such that point p in a spatial pattern is density-reachable from point q if 
there is a chain of points connecting them with density above the threshold deter-
mined by the two parameters.  

We operationalized the DBSCAN algorithm to find spatial clusters with a min-
imum number of five points, and a maximum neighbourhood size of 100 m. We 
set these parameters after exploratory analysis and consideration for GPS error 
and local mobility within the same functional place within an urban setting (e.g. 
movement within a single property).  

For temporal clustering we set the neighbourhood size to 30 minutes, and again 
the minimum number of points to five points per cluster. Connected segments of 
Twitter activity within 30-minute intervals would then be connected into clusters 
of minimum density. To capture clusters occurring over midnight, we transformed 
the hour of the Tweet to two dimensions (cosine and sine transforms) and used 
these as input into the DBSCAN algorithm. Note that because clusters are defined 
exclusively at the individual level, clusters can overlap spatially across users. Var-
ying of parameters and re-running these analysis did not significantly change our 
overall results. 

Derived clusters were ranked for each user based on spatial density. For each 
user, we took the set of points belonging to cluster K for user i, and computed the 
maximum distance separating the points. The density for user i and cluster k was 
computed as:  

!",$ =
&",$

'() *+ − *- ∀* ∈ 0 

 
and ranked such that, 

*12",3 = *" ∈ 0 
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where,  

!",$ > !",$53 > !",$5+ 

Thus the set PACi1 is the highest density clustering of points for user i, fol-
lowed by PACi2 and so on up to the number of clusters for user i. This ranking of 
individual-level clusters therefore maps onto our sociological-derived notions of 
space-use based on function: home, work, and other. Here, we focused mostly on 
the analysis of the first two orders (i.e., highest density locations). We hypothesize 
here that the densities will follow from highest density Tweeting at home, second 
highest at work, and third and higher order rankings at third places. 

Note that for both spatial and temporal clusters we use the spatial distance in 
the denominator, as we are ultimately interested in functional areas of the city at 
the individual level. To distinguish between cluster types, spatial PACs are re-
ferred to here as PAC-Ss, while temporal clusters are noted as PAC-Ts.  Corre-
spondence between rank orders of PAC-Ss across the dataset therefore is seen to 
indicate equivalent types of spatial areas at the individual level and similarly for 
PAC-Ts. We use this framework to investigate spatial patterns of activity centres, 
and to compare to the true functional areas for the smaller subset of study partici-
pants. 

Spatial and temporal clustering methods were compared using the variance of 
information (VI) distance for comparing clustering methods (Meila 2007). The VI 
statistic is based on the difference in entropy introduced by the different clustering 
methods. The entropy of a clustering C of k clusters,is defined as: 

6 2 = − * 0 789*(0)
$

$<3
 

where P(K) is the proportion of points in cluster k. Given two clustering methods, 
we can compute the joint-entropy, otherwise known as the mutual information of 
clustering C and clustering C′ as: 
 

> 2, 2′ = * 0, 0?
$@

$@<3
789 * 0, 0?

* 0)*?(0?
$

$<3
 

 
which is the amount of information common to the two types of clusters. We can 
therefore measure the similarity between two clustering methods using the follow-
ing statistic as defined by Meila (2007); 
 

A> 2, 2? = 6 2 − 	> 2, 2′ + [6 2′ − > 2, 2′ ] 
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The VI is combined entropy, minus the mutual information (i.e., the entropy 
common to both clustering methods). As such the VI is a metric that measures 
how dissimilar cluster sets are, and has a value of zero when the two cluster sets 
are identical. We will use the VI to measure the degree to which spatial and tem-
poral clusterings of social media activity in Toronto are similar, and how similari-
ties vary across space. As all analysis was done at an individual level, cluster 
comparisons were made for individual users, yielding a distribution of cluster dis-
tances for the two clustering methods across the approximately 16,000 users rep-
resented in the dataset. We examined the magnitude, distribution, and spatial pat-
terns of cluster distances.  

2.2.2 Comparison of clustering methods and validation data 

For the subset of 16 users who participated in the validation study, we had both 
spatial and temporal clusters (PACs) calculated from the larger Twitter database 
(n=3738), as well as data obtained from their participation in the wider study of 
social media use in Toronto (n=125). Using our PAC ordering framework de-
scribed earlier, we compared home, work, and other locations as reported by par-
ticipants, to PAC orders as derived from clusters in space and time.   

Deriving clusters for users from the Twitter database allowed us to map hy-
pothesized functional areas for each individual in the wider population of users. 
We examined the proportion of cluster types in relation to the total number of 
Tweets measured in each neighbourhood of Toronto. 

2.2.3 Examining Tweets pertaining to the environment 

Participants who were sent a survey in response to their Twitter activity were 
asked to report if their Tweet related to their immediate environment. The purpose 
of this question was in order to better understand the explicit linkage between the 
content shared on Twitter and their surroundings at the time of Tweeting. Social 
media have been postulated as a potential tool for researching person-place link-
ages, especially in the context of health and epidemiological research. To explore 
this idea further, we estimated the probability that a submitted Tweet was about 
the environment in relation to the place it was sent from, whether it was a message 
directed to someone, whether the user used Twitter for professional or personal 
purposes, and the age of the user. To explore these relationships, a logistic regres-
sion model was constructed with a random effect for users. In this subset of the 
data, there were 59 unique users and 772 messages. 

 
Results 

 A total of 2,090,637 messages by 16,793 unique users were analyzed for spa-
tial and temporal clustering. In general, the number of clusters per user was higher 
for temporal clustering than for spatial clustering (Table 1), and temporal clusters 
had higher densities and higher numbers of Tweets. In terms of distribution, only 
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1.9% of users did not have temporal clusters, which signifies no dominant time 
periods in which these users posted messages.  Of the remaining users, 16.9% had 
only one temporal cluster, 23.7% had two and 20.3% had three as their highest or-
der temporal cluster.  

 

Table 1 Descriptive statistics of spatial and temporal clusters of Twitter messages 

 
Metric Spatial Temporal 
Number of clusters total 42,606 52,351 
Avg. number of points per cluster 35.80 30.42 
Mean density  0.19 1.41 
Mean number of clusters per user 2.54 3.23 

 
In contrast to the PAC-T findings, only 2.5% of users had zero spatial clusters.  

Some 35.1% had a maximum of one spatial cluster, 29.8% had only two, and 
14.1% had three PAC-Ss. Overall, 18.5% and 37.0% of users had four or more 
spatial and temporal clusters respectively. In general, users’ clusters tended to be 
found at only a handful of discrete locations, whether defined spatially or tempo-
rally. This finding is in line with research in the urban sociological, geography and 
planning fields that has found consistency in urban space use due to stability in 
home, work and often social activity spaces (Oldenburg & Brissett, 1982). Note 
that the spatial footprint of temporal clusters could vary significantly, as only time 
was used as a criterion for clustering, although density ranking was based on spa-
tial densities. The distributions for the maximum number of clusters are shown in 
Figure 2. 

 
Fig. 2 Number of spatial and temporal clusters per user 
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The distribution of VI scores ranged from 0 to 5.14, with a mean of 2.18 and 
standard deviation of 0.78. Randomly sampling from the upper and lower tails of 
the VI distribution, we present the groupings of two similar and dissimilar PAC 
clusterings in Figure 3. In this figure, red points belong to first order PAC-Ss and 
PAC-Ts, blue points signify second order PACs, while points classed as third or 
higher order PACs are green. Grey points do not belong to a PAC cluster. Differ-
ent behaviours are captured temporally compared to spatially.  In the case of User 
A, the locations of the first (red) and second order (blue) clusters are reversed 
when their PACs are defined based on space (Fig. 3a) as opposed to time, however 
the points that are members of the clusters are very similar. For User B, where 
spatial clustering reveals two distinct clusters for order one and order two, tem-
poral clustering captures what is likely a commuting pattern as part of the second-
ary cluster. In general, the more clusters that were discovered for a user, the lower 
their cluster agreement scores. However, by constraining comparisons between the 
two lower order clusters and investigating individual users, the differences and 
meaning behind the different clusters becomes more apparent. 

 
Fig. 3 Spatial and temporal clusters of Twitter messages from DBSCAN; similar (a-b) and 
dissimliar (c-d) clusterings. 
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In Figure 4, we see spatial and temporal clusters in relation to users’ true home 
and work locations as reported by the 16 study participants. In this way, we see 
how the spatial expression of the activity centres differs from the functionally im-
portant areas they identified. For User C’s spatial clusters (Figure 4a), we see that 
the tweets around their home location (red square) are spread out over a range of 
about 1 km in their local neighbourhood. Conversely, their highest density spatial 
PAC was at a distant location. Exploratory analyses of PAC-S-1 and PAC-S-2 for 
User C revealed these locations to be both houses in residential areas.  

 
Fig. 4 Spatial (a-c) and temporal (d-f) clusters for 3 users in relation to their reported home, 
work and other locations. 

 
With temporally defined clusters (Figure 4d), User C’s PAC-T-1 (red) is be-

tween 4 and 6 pm, and PAC-T-2 is later in the evening around 8-10 pm (blue). 
The varied spatial pattern associated with these temporal clusters indicates that 
while this user regularly tweets at these times, they do so from different locations. 
For User D, the spatial cluster (Figure 4b) identifies their home location well 
(red), while no tweets were recorded or predicted at work. Their work location is 
associated with a number of tweets (green), but these did not constitute their PAC-
S-2. The pattern shows several areas of high activity as well as some commuting 
patterns, over a very small area (~1km). For User D’s temporal clusters (Figure 
4e), the majority of tweets were in PAC-T-1 (red) which was a cluster of quite 
regular tweeting activity that spans over the entire working day from 8am until 
around midnight. User D had the most tweets of the users we investigated. User E 
had a lower density overall spatial pattern (Figure 4c) and a temporal pattern of 
tweeting (Figure 4e) similar to user D. 
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In terms of spatial clusters, for user E (Figure 4c), PAC-S-1 was located near 
an urban park in the west side of the city, while their home location was located 
4km east in the central district. PAC-S-2 was located 500m west of their home, 
while their work location was 500m east of their home. This is within the range of 
locational accuracy provided by the postal code reference used to locate home and 
work locations. Temporal clustering for User E (Figure 4f) found a PAC-T-1 to be 
morning, between 7 and 9 am, and PAC-T-2 was evening, between 7 and 10 pm, 
both of which were highly dispersed at the neighbourhood scale (~3km).  

The distribution of spatial PACs computed over the full dataset differed signifi-
cantly from the pattern in Figure 1. Figure 5 presents the proportional mapping of 
Tweets by neighborhood and the proportion of PAC-S-1 tweet clusters relative to 
the total number of tweets. Figure 5a shows a pattern similar to Figure 1 with a 
familiar high concentration of messages in the downtown central core, and incre-
mentally fewer as one moves out to suburban and non-core parts of the city. Al-
ternatively, mapping PAC-S-1 tweets as a proportion of the total tweets in a 
neighbourhood shows the inverse pattern where the highest values are in outlying 
areas. This shows that in aggregate, the spatial PAC-1 clustering captures an intui-
tive demarcation of predominantly working and entertainment areas of the city 
and predominantly residential areas. 

 
Fig. 5 Spatial distribution of: a) total Tweet variation, and b) spatial cluster order 1 (PAC-
S-1), aggregated by neighbourhoods 

 
The relationships of PAC-S-1 to home and work locations for all study partici-

pants are provided in Figure 6. The figure shows that, in general, spatial PAC-1 
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clusters (PAC-S-1) are very close to home locations. Over 50% of PAC-S-1s are 
within 500 m of the study participants’ geocoded home location. For PAC-S-2, the 
median distance to work locations is 1.4 km, with about 20% within 500 m and 
33% within 1 km. PAC-S-3 clusters show the largest median distances to both 
home and work locations. For temporal clustering, the PAC-T-1 was closest to 
home locations, with a median distance of 1.4 km, and a median distance of 2.2 
km to work locations. 

 

Fig. 6 Median distance between cluster types, home and work locations for all participants. 
 
For the 59 users and 772 messages investigated here, 28.0% were reported to 

be about users’ surroundings at the time of Tweeting. By users, the 1st and 3rd 
quartiles of this proportion were 7.0% and 42.9% respectively, indicating a high 
degree of individual variation. The results of the regression model that examined  
Tweets that were about users’ environments are reported in Table 2. From this ta-
ble we see that two variables are significant predictors of the log-odds of an envi-
ronmental Tweet, whether the Tweet was directed at another user (negative asso-
ciation) and whether the Tweet was sent from a third place (positive association). 
The variance of the random effects term was 0.789 and the mixed-effects model 
reported here performed better than a regular logistic model based on AIC (how-
ever same effects were present plus a slight positive effect for age).  
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Table 2 Logistic Regression models results  

Model Term  Estimate Standard Error P-Value 
Intercept  -1.92 0.607 0.001 
Use for work 0.175 0.502 0.727 
Tweet directed -1.059 0.234 <0.001 
Age of User 0.022 0.017 0.195 
Place-work -0.071 0.233 0.760 
Place-other 1.583 0.234 <0.001 

 
We visualize these results in Figure 7 which shows the probability of a Tweet 

being about the environment as reported by users, which shows some discrimina-
tive ability of the factors reported in Table 2.  

 
Fig. 7 Model probabilities of environment-related Tweets in participant data. 

 

Discussion 

Our analysis provides a comparative clustering of geosocial footprints for both 
a large database of geolocated tweets in the City of Toronto and a subset of study 
participants selected for more in-depth analysis. The spatial and temporal cluster-
ings provide reasonable estimates of personal activity centres for many individu-
als. From the distribution of cluster orders, we see that on average Twitter users 
are active from only a handful of locations, usually within close proximity to their 
home and work locations (e.g. Figure 3 a and b). For some users, there is also evi-
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dence of commuting behaviours in their geosocial footprints (Figure 3d) and tem-
poral consistency in messaging behaviour.  

Spatial clustering of individual tweet locations provided a more realistic esti-
mate of space use at the individual level. We discovered clusters that aligned with 
our hypothesized activity space categories of home and work locations as evi-
denced in Figure 6. The hypothesis that personal activity centres derived from ge-
osocial data can estimate real functional areas seem to be supported by the analy-
sis. Our focus on using clustering to delimit the spatial and temporal extents of 
ranked PACs complements other approaches that derive individuals’ activity 
spaces through social network connections or message content.  Study partici-
pants’ reported home, work and other activity locations provided a means to ex-
amine how well the calculated PACs corresponded to what may be considered true 
functional areas for individuals. In this way, we sought to couple the analytical 
advantages of big geodata, including extensive sampling of populations and unob-
trusive data collection methods, with more structured small data that serve as an 
indicator of the validity of the clusterings to delimit meaningful locations at the 
individual level.  

There are important limitations to this work that we are seeking to address in 
ongoing research.  Like many types of big data, geosocial media is partial in na-
ture. For instance, social media users are not representative of a city’s socio-
demographic composition, these data can only be created under certain conditions 
(e.g. not while driving), and only a small fraction of the data are encoded with 
GPS coordinates (Morstatter et al. 2013). In our study, these realities were accen-
tuated by the small set of active participants that produced the validation data and, 
in recognition of this limitation, ongoing work is focused on expanding the partic-
ipant pool within Toronto and selected other cities in North America.  As well, 
even though our analyses focused on individuals, we aimed to understand both 
how people use social media in the city (generalizing to the broader population of 
Twitter users), and how individuals’ digital expressions are impacted by their en-
vironment. In general however, representativeness issues related to analysis of so-
cial media may be alleviated as these technologies become more utilized and ac-
cessible by more of the population (Boyd 2014). 

There are several interesting implications of this work that merit further study.  
First, the approach demonstrated for deriving spatial and temporal footprints from 
geosocial data streams offers new information to understand individuals’ use of 
urban space. This could be of particular value for examining the dynamics of 
space use in response to evolving work-life patterns, changes to the urban fabric 
(e.g. promotion of mixed land uses), or seasonal conditions (e.g. snow storms, heat 
waves). Second, an individual’s PACs can be enriched with complementary data 
extracted from their social media user profiles (e.g. interests, profession, demo-
graphic characteristics) or from analysis of the content of their messages (e.g. sen-
timent analysis).  This could help researchers to understand some of the reasons 
that underlie a person’s routine activity patterns.  In particular, combining detailed 
analysis of message content with PACs may hold potential for public health plan-
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ning and evaluation in cities, examining spatial health and equity issues related to 
congestion, pollution, stress, and fear of crime. Finally, there is a clear need to 
consider methods to protect personal privacy given the growing sources of geo-
spatial traces and new methods to rapidly derive associated outputs. This could in-
clude, for example, limited random displacement of data points prior to develop-
ing PACs or post-process randomization of data points within the convex hull of a 
PAC.  

Figure 5 demonstrated the stark contrast in spatial pattern when mapping ag-
gregate tweet density versus mapping aggregate patterns of PACs. There is poten-
tial to provide more nuanced spatial analysis of geosocial data by providing func-
tional meaning to otherwise disaggregate patterns. For example, in an urban 
analytics setting, we could constrain an analysis of place-based issues to only 
those messages located within the vicinity of individuals’ PAC-1s to help filter out 
noise in the signal and provide meaningful spatial context to other forms of public 
engagement tools for urban managers and planners.  

Finally, model results indicate that the ‘environmental content’ in tweets may 
be limited, and importantly, may vary systemically. Significant associations with 
the place from which the message was sent, as well as whether it was directed 
could be used as filtering criterion when doing environmental analyses of Twitter 
data. Deeper understanding of these forms of variability in the content and inten-
tion in geosocial data is needed before such data can be used to their greater po-
tential for understanding human activities and interactions with the environment. 

Our analysis provided comparative clustering using existing algorithms to de-
rive personal activity centres from geosocial media data. We demonstrated the ef-
fectiveness in locating home and work locations from simple spatial clustering for 
a majority of users investigated. Ongoing studies and validation data will provide 
further insight into the preliminary patterns investigated here. 
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