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Eutectic solidification front formed in the presence of a highly anisotropic solid-liquid interfacial free energy. It 

has been demonstrated that the eutectic pattern is sensitive to the morphology of the solid-liquid interface.    
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ABSTRACT 

A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three 

dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed 

model can be made quantitative for Ag-Cu. Next, we explore the effect of material properties, and the conditions 

of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free 

energies (solid-liquid and solid-solid), the crystal misorientation relative to pulling, the lateral temperature 

gradient, play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which 

form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two 

solid phases are drastically different. 
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Introduction 

Ultrafine eutectic structures (of sub-micron eutectic wavelength) have drawn considerable interest recently, 

owing to their outstanding mechanical [1-5], and unique optical properties [6-13] associated with the fine-scale 

(micron, submicron) distribution of the eutectic phases. This interest has been manifested in research projects 

such as the EU FP7 “ENSEMBLE” [11] aimed at creating eutectic metamaterials of special optical properties 

(e.g., negative refractive index, etc. [6-13]). A variety of eutectic patterns are regarded as promising candidates 

[6-17].   

During the past decade, phase-field modelling contributed substantially to a better understanding of factors 

determining the eutectic patterns. Advances in this field are reviewed in Refs. [18-21]. Most of the previous 

studies considered isotropic solid-solid and solid-liquid interfaces. A broad variety of the eutectic systems show 

interfaces with anisotropic interfaces. Recent papers [22-26] address the effect of anisotropy of the solid-solid 

and solid-liquid interfaces on the eutectic pattern; reporting e.g., the existence of locked and unlocked relative 

orientations in the case of supercritical anisotropy [22-24]. 

Characteristic features of the eutectic meta-materials based on ceramic materials include fine/ultrafine patterns, 

high anisotropy, and often the presence of line compounds (compounds of strict stoichiometry) [27]. During the 

course of the ENSEMBLE project [13], we addressed the formation of various eutectic patterns using phase-field 

techniques (a few examples are shown in Fig. 1). Depending on the size scale of the problem, we used different 

formulations of the phase-field approach: the one whose results are presented here relies on two fields: a phase 

field, (r, t), which monitors the solid-liquid transition, and a concentration field, c(r, t), characterizing the local 

composition. Square-gradient (SG) terms were included into the free energy density for both fields. This model 

was applied up to the micrometer and microsecond scales, while assuming physical interface thickness (~ 1 nm), 

thus there was no need to correct for an artificially broad interface, often employed in quantitative phase-field 

modelling, when larger scale solidification is addressed [28-32].  
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Herein, we investigate the effects on various types of anisotropies on the eutectic pattern in the framework of 

the two-field model mentioned above relying on a physical interface thickness, which is therefore expected to be 

quantitative on nanoscale. 

Model applied 

The model used here is an extension of a phase-field model described in [33] (itself originating from [34]), 

obtained by adding a 2c term to the free energy density and removing the free energy term associated with the 

orientation field. (For details of the derivation of the model see Refs. [33] and [34].) 
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Here A,B, A,B, and TA,B denote the interface free energy and thickness of the equilibrium solid-liquid interface, 

and the melting point for the components A and B. T is the temperature, whereas g() and p() are the double 

well and interpolation functions, while ‘ stands for differentiation with respect to the argument of the function. w 

and wA,B denote the free energy scales. s,,c,M and s0,,c,M are the anisotropy functions and strengths for the SG terms 

for the phase and concentration fields, and for the phase-field mobility M, whereas ,,c,M  are the angle for the 

normal vector of the solid-liquid and solid-solid interfaces in the laboratory frame, while ,,c,M are the 

crystallographic orientation of the actual crystal grain, relative to which the respective anisotropy is measured. 

Unless stated otherwise the anisotropy functions shown above were used. Note that the present construction 

allows the assignment of different anisotropies to both SG terms and the phase-field mobility. While a very recent 
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work [35] indicates that the handling of anisotropies can be far more complex owing to mechanical effects than 

the “usual” treatment adopted here, the latter proved to be a practical way to address anisotropy for various 

complex problems [36-39]. Anisotropy functions of the types employed here were used to represent the results 

from molecular dynamics studies [36, 40, 41] and molecular scale theories [42-44]. Future work is planned to 

consider the influence of mechanical effects on the eutectic patterns.     

In the majority of the present simulations, free energy densities fS,L taken from the regular solution model were 

adopted with temperature dependent interaction coefficients for the solid (S) and liquid (L) phases (0
S,L and  

1
S,L), which enables a reasonably accurate modelling of simple systems such as Ag-Cu. Here R and vm are the gas 

constant and the molar volume. While 2 is related to the properties of the solid-liquid interface, c
2

 controls the 

magnitude of free energy contribution from the spatial variation of the concentration field across the interfaces.   

The corresponding equations of motion for the phase and concentration fields read as follows: 
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Here F/X stands for the functional derivative of the free energy with respect to field X ( =  or c), M = M,0 

sM(M, M) and Mc = vmDc(1  c)/RT are the phase field and concentration mobilities, whereas D = DS + (DL  

DS)p() is a phase-field-dependent diffusion coefficient.  

With c-dependent switching functions q(c) that vary between 0 and 1 monotonously, one may implement 

different anisotropies for the solid-liquid interfacial free energy or the phase-field mobility of the solid phases  
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and : e.g., s = q(c) s, + [1  q(c)] s,. Eqs. 2 and 3 were solved numerically by two methods, with explicit 

finite difference (FD) method with Euler forward time stepping, and by a spectral method combined with operator 

splitting (SOS) [45]. Periodic boundary conditions were used in the latter case, in the case of FD various 

combinations of boundary conditions were applied. The computations were performed on a CPU cluster of 928 

cores, and on several GPU cards of various types.  

Materials parameters 

We applied here two sets of thermodynamic properties for Al-Cu, one from the ThermoCalc database [46] that 

yields the phase diagram shown in Fig. 2a. These data were used in the simulations compared to the experimental 

data. The other set, is from the regular solution model leading to the phase diagram displayed in Fig. 2b. In the 

latter case, we have chosen the interaction parameters 0
S = 26.0 kJ/mol, 0

L = 16.0 kJ/mol,  1
S = 4.0 J/mol/K,   

and  1
L = 4.0 J/mol/K, respectively, so that they yield a reasonable approximation of the phase diagram, TE = 

1055.5 K and cE = 0.35 for the temperature and Cu concentration of the eutectic point. This set of data was used 

in mapping the solidification morphology.  

Other materials parameters, we used were as follows. The solid/liquid interfacial free energies were taken from 

the compilation [47], AgL = 172 mJm2, CuL = 227 mJ m2, which represent the average values deduced from 

dihedral angle measurements. The melting points used were taken from thermodynamic database [46]: TAg = 1234 

K, TCu = 1358 K, and the heat of fusions HAg = 11.30 kJ mol1, and HCu = 13.05 kJ mol1. A constant molar 

volume taken as the average of vAg = 10.27 cm3 mol1, and vCu = 7.11 cm3 mol1 was used [48]. In agreement with 

molecular dynamics simulations, the 10%  90% thickness of the interfaces were assumed to be 1 nm for both 

the solid-solid and solid-liquid interfaces. Herein, we assumed c
2

 = 2/4. Finally, we adopted DL = 1.4  109 

m2s 1 for the liquid state and a 4 orders of magnitude smaller value for the solid phases (DS = DL/104). The phase-

field mobility has been chosen as M = 0.25 m3 (Js)1. Unless stated otherwise, isotropic interfacial properties 

were assumed. 
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Results and discussion 

Comparison with experiment 

First, we investigate, whether the applied model can be regarded quantitative for a simple eutectic system such 

as Ag-Cu. With reasonable values of the materials parameters (from ThermoCalc), the velocity dependence of 

the eutectic wavelength  predicted by SOS implementation of the model is in a reasonable agreement with the 

experimental results [49] (see Fig. 3). Simulations with regular solution thermodynamics yield 2 v = 0.4  1017 

m3s1 for the Jackson-Hunt coefficient [50] (blue line), which is somewhat below the experimental value 2 v = 

1.4  1017 m3s1 reported for Ag-Cu in the undercooling regime T = 19  104 K [49] (red line in Fig. 3). 

Apparently, with the present choice of model parameters a quantitative agreement is seen between theory and 

experiment. 

Next, we investigated the morphologies the SOS version predicts in the highly undercooled state. Owing to 

the periodic boundary conditions used, we applied a temperature profile that has a constant section in the central 

region below TE and constant sections above TE that are connected with the central section by constant gradient 

sections. Thus the molten material traveling from above with a constant velocity first solidifies and then melts 

again. The results are summarized in Fig. 4. With increasing undercooling the following sequence of eutectic 

patterns was found: lamellae, lamellae mixed with globules, globules and merged horizontal globule pair, merged 

globules, and a “band-like” structure composed of lamellae parallel with the fronts. The latter essentially one 

dimensional eutectic growth mechanism is possible owing to the ease of the formation of the new phase due to 

the presence of the SG term for concentration in the free energy, allowing a spinodal-like transition. Lamellae 

close to perpendicular to growth were also seen for high cooling rate in splat cooling experiment [51]. 
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Anisotropy of c
2 in two dimensions 

This part of our work has been motivated by Ref. 24. Here we used the regular solution approximant of Ag-

Cu, however, the anisotropies were treated as adjustable parameters. First, we used the same anisotropy function 

as Ghosh et al., s = 1 + s0 cos[2(  0)] [24], which was associated here exclusively with the SG term for the 

concentration field. No other quantities were made anisotropic, so in this section only, we omit the index c, which 

usually denotes that the anisotropy function refers to the (c)2 term. It is worth noting that, as there is 

concentration gradient at the solid-liquid interface too, this anisotropy influences not only the solid-solid interface 

but also the solid- liquid interfaces. The thermodynamic data were taken from the regular solution approximant, 

whereas the simulations were performed on a rectangular 8192  1024 grid with periodic boundary condition on 

all sides. The shorter side was chosen to be equal to 8JH, where JH is the (natural) Jackson-Hunt wavelength. 

(Accordingly, we had 128 pixels within JH.) Solidification was started by a central slab parallel with the shorter 

side, containing 8 lamellae. No temperature gradient was applied. The initial front direction is conserved here 

owing to the restriction by the boundary condition. To mimic the local situation in the experiments [23], in which 

a circular disc was rotated so that the solidification front was in a fixed temperature gradient, here we varied the 

orientation of the long axis of the anisotropy relative to the direction of the long side of the simulation box. Here 

0 = 0 applies, when the long axis of the anisotropy is parallel with the long side of the simulation box. To mimic 

the experiment with rotating disc, 0 was varied with time with a constant angular velocity. Simulations were 

performed with constant and time dependent 0. 

The results are summarized in Figs. 5 and 6. Fig. 5 displays the eutectic patterns observed for different strengths 

of the anisotropy in the range 0  so  0.5. The pattern changes substantially. Two critical anisotropy values were 

observed: (i) The usual critical anisotropy [s0 = 1/(2n  1) for n-fold symmetry] that corresponds the limit for the 

occurrence of excluded orientations in the equilibrium shape (see e.g., [52]), yielding here 1/3. Beyond this value, 

sharp changes in the phase-boundary can be observed at 0 =  /2,  3/2, etc. (ii) A more drastic change in the 

pattern was observed for soc1 > 0.4125, in which regime, two-dimensional eutectic growth switches to one-
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dimensional (lamellae parallel with the front) at 0 =  /2. As reported in Refs. [22-24], the tilting angle of the 

phase boundary may considerably differ from the actual tilting angle. This is demonstrated for different anisotropy 

strengths in Fig. 6, where for comparison, results for ideal locking (realization of the actual tilting angle), and 

predictions of an analytical formulation based on the assumption of a symmetric-pattern (SP) described in Refs. 

[22, 24] are also displayed. For small anisotropies (so  0.1), the present simulations are in an excellent agreement 

with the analytical SP model, and thus with the results from the boundary integral method [24] and from 

quantitative phase-field modelling based on the multi-phase concept [24]. However, the difference between the 

results of the SP model and the present simulations increases with increasing anisotropy (for so > 0.15). While for 

nearly critical and supercritical anisotropies (e.g., so = 0.4), the present results approximate full locking reasonably 

for small actual angles, at odd multiples of  /2 they are about perpendicular to each other. This is clearly visible 

in Fig. 7 displaying the actual 0 by green arrows, which follow closely the    interphase boundary, except for 

the vicinity of 0 =  /2,  3/2, etc. In fact, for so > so,c = 1/3, the SP model predicts a discontinuity in the 

lamella orientation, and the appearance of a new solution. The increasing deviation between the present phase-

field predictions and the analytical model is probably associated with the fact that, as opposed to the assumption 

of the SP approximation, here the solid-liquid interfacial free energy is anisotropic owing to the anisotropy of the 

coefficient of (c)2. Indeed, while the interfaces observed at small anisotropy are fairly symmetric, as opposed 

with the ones seen at large anisotropy that are rather asymmetric (cf. Figs. 8a and 8b). Work is underway to clarify 

the origin of these differences. 

The results obtained above indicate that under appropriate conditions, the present phase-field model is in a 

quantitative agreement with experiments and other solutions from a quantitative phase-field model, analytic 

solution based on the symmetric pattern approximation, and the boundary integral method. 

Multiple anisotropies in two dimensions 

We attempted to model exotic eutectic structures, where the solid-liquid interface of one of the interfaces is 

faceted. We have chosen the example [43] shown in Fig. 9a. To model this morphology, we used a concentration 
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dependent switching functions. For the minority phase, we assumed a supercritical anisotropy of 4-fold symmetry 

(s0 = 0.4), and a large 2-fold kinetic anisotropy (s0M = 1.98), whereas the majority phase was kept isotropic 

(s0 = 0.0 and s0M = 0.0). The respective solidification morphology is shown in Fig. 9b. This morphology is 

transient both in the experiment and the simulation as the initial lead of the faceted phase disappears with time, 

and the isotropic phase catches up with the needles as the liquid depletes in the component dominant in the faceted 

phase. This similarity indicates that reverse engineering in terms of anisotropy functions can model fairly complex 

situations.  

Anisotropy of c
2 in three dimensions 

In three dimensions (3D), straightforward generalizations of Eqs. 2 and 3 were solved using the FD and SOS 

schemes. The model has been adopted for directional solidification: material flow with a uniform velocity and a 

temperature gradient both parallel to the growth direction were incorporated. On the lateral surfaces periodic 

boundary condition was applied, while liquid of given composition (which was made to vary between xCu = 0.2 

and 0.8) of given temperature entered at the side ahead of the front. We assumed that the diffusion in the solid is 

orders of magnitude smaller than in the liquid, and is thus negligible on the time scale studied, so, unless stated 

otherwise, we employed DS = 0. We implemented an automatism, which kept the position of the solidification 

front essentially at a fixed position in the simulation box. The coefficient of the SG term for the concentration 

field was assumed to be orientation dependent. In 3D, we applied the following single-parameter anisotropy 

function: 
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Here the notation c = {cx, cy, cz} is used, whereas s0 stands for the strength of the anisotropy. 

Anisotropy of (c)2: The solidification morphologies obtained varying the magnitude and sign of the 

anisotropy 0 are shown in Fig. 10 for the same volume fractions of the solid phases. (These are indeed nanoscale 
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eutectic structures. We note in this respect that a recent analysis [54] suggests that for e.g., Al-Cu the minimum 

attainable lamella spacing might be as low as 3.7 nm.) Apparently, the anisotropies tilted forward by 22.5 prefer 

horizontal lamellae for s0,c < 0, whereas for s0,c > 0 irregular quadrangles were observed. For positive and negative 

anisotropy strengths (s0,c = 0.3 and 0.3), we explored how the tilting angle (which was set to 0, 22.5, and 45) 

influences pattern formation (Fig. 11). In both cases, large tilting yielded lamellar structures, however that are 

perpendicular to each other. The effect of volume fraction under similar condition is shown for three values of s0 

(0.1, 0, and 0.1) in Fig. 12. Depending on anisotropy, with increasing volume fractions we see different 

sequences of patterns: s0,c = 0.1: broken lamellae  lamellae with line and point defects  thin lamellae that 

break up; for s0,c = 0: rods  disordered lamellae  rods of the other phase; and s0,c = 0.1: irregular quadrangles 

 disordered lamellae  lamellas with defects  rods aligned into lines. The line and point defects in these 

simulations occur as a result of a dynamic evolution of the eutectic patterns due to the compositional change of 

the incoming liquid. 

Tailoring the eutectic pattern 

One of the structures identified as desirable for some applications can be approximated by a microstructure 

alternating between the rod and lamellar structures. We attempted to produce such periodic rod-lamellar 

transitions along the pulling direction of the sample. A straightforward possibility (that is, however, not easy to 

realize experimentally) is to use an oscillatory composition for the liquid entering the simulation box. Choosing 

appropriate limits for this oscillation, periodical transition from the rod structure to the lamellar and backward 

can be achieved. We performed simulations for an isotropic system. Our results indicate that oscillatory 

temperature gradient may have a similar effect.  

Unfortunately, the lamellar structure was fairly random as might have been expected in such a case (see Fig. 

13a). One possibility to make it regular is to apply a cross-sectional temperature gradient [45]. We opted for a 

sinusoidal temperature change in the x direction (horizontal in Fig. 13b). Indeed, a fairly regular lamellar structure 
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was obtained, however, the lamellae are yet connected, which - we believe - can be avoided by varying the average 

composition of the liquid entering the simulation box. 

Anisotropy of the solid-liquid interface in three dimensions 

The investigations in two dimensions indicated that the morphology of the solid-liquid interface may have an 

essential role in determining the eutectic pattern. To investigate this possibility, we assigned different anisotropies 

to the solid-liquid interfaces.  An anisotropy function,  
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analogous to Eq. 4, has been applied in the coefficient of the ()2 term of the free energy density leading to 

anisotropic solid-liquid interfacial free energy. It has been confirmed that indeed the interface morphology and 

the evolving eutectic pattern are closely coupled. A few examples are shown in Fig. 14. However, with sufficiently 

high temperature gradient, the roughness of the solid-liquid interface can be suppressed (Fig. 15).  

An interesting case, where the importance of interface anisotropy is uncertain is the formation of two-phase 

spiralling dendrites in ternary alloys [56]. Using a ternary version of the present model for a model system, in 

which ideal solution thermo-dynamics is used in the liquid and the regular solution model in the solid phase, we 

were able to capture this morphology and pattern, however, assuming kinetic anisotropy (Fig. 16) [57]. A later 

analytical treatment though suggests that no anisotropy is needed for the formation of the two-phase dendrites 

[58]. A subsequent phase-field study of ours investigated this issue in some details [26], and still supports the 

importance of anisotropy in the formation of steady-state ternary eutectic dendrites: Without anisotropy, the 

emerging cellular structure does not display regular steady state spiralling. 

 

 

 



13 
 

Summary 

The effect of anisotropies of the interfacial properties on eutectic pattern formation has been investigated. We 

demonstrated that (i) the applied simple phase-field model can be made quantitative for Ag-Cu; (ii) for small 

anisotropy of the solid-solid interface, the predictions are in a good agreement with those of a quantitative multi-

phase-field theory, the boundary integral method, and an analytical solution based on the symmetric-pattern 

approximation; (iii) with appropriate choice of anisotropies, experimental morphologies observed in a system 

consisting of a faceted minority and a non-faceted majority phase can be recovered; (iv) it has been demonstrated 

that the uneven morphology of the solid-liquid interface influences strongly the eutectic pattern; and (v) the 

anisotropies play an essential role in determining the eutectic patterns. 
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Figure captions: 

Fig. 1 Eutectic patterns in directional solidification. Selection of pairs of micron scale experimental images (on 

the left) and snapshots of phase-field simulations (on the right) that reproduce similar patterns on the nanoscale 

(obtained within the EU FP7 project ENSEMBLE [13]) are shown. Experimental panels in the first column show: 

rods [6]; lamellae with line defects [15]; triangular structure [16]; fishnet structure [11]. In the third column the 

following structures are displayed: lamellae with point defects [7]; broken lamellae [7]; random rectangular split-

ring-resonator structure (horizontal size: ~110 m) [9]; spiraling eutectic growth (~ 20 m  15 m) [17]. In the 

phase-field simulations, we varied the anisotropies of the    solid-solid, and   liquid and   liquid interfaces 

together with the composition, tilting angle, and pulling velocity. Although on much smaller scale, we were able 

to capture similar rod, and lamellar structure with point and line defects, the broken lamellae, and triangular 

motifs, and achieved some resemblance in the cases of the multi-scale split-ring resonators of rectangular C-like 

cross-section, the fish-net, and spiraling structures. Further work is needed in the case of the latter three to improve 

the similarity. The size of the simulation box used were as follows: In the second column: 40 nm  40 nm  20 

nm, 40 nm  40 nm  20 nm, 20 nm  20 nm  20 nm, and 128 nm  128 nm, respectively; while in the fourth 

column: 40 nm  40 nm  20 nm, 20 nm  20 nm  20 nm, 40 nm  40 nm  40 nm, whereas for the lowest panel 

assuming a physical interface thickness in the dimensionless computation of Ref. 23, one obtains 95 nm  95 nm 

 128 nm). We note that eutectic structures such as rods and lamellae were seen to appear in a broad size range 

that covers several orders of magnitude when varying the pulling velocity, and following the Jackson-Hunt 

scaling, 2v = const., where  is the eutectic wavelength, and v the front velocity. Probably, similar relationship 

stands for the other eutectic patterns. 
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Fig. 2 Ag-Cu phase diagrams: a. Computed using thermodynamic data from the ThermoCalc database [36], and 

b. from the regular solution model with parameters specified in the text. 

 

Fig. 3 Eutectic wavelength vs velocity in the Ag-Cu system: Comparison of experiments (full symbols and solid 

line) [49] with phase-field (SOS version) predictions relying on ThermoCalc data (empty circles & dashed line) 

and using the regular solution model (2 v = 0.41017 m3 s1; dotted line). Apparently, the Jackson-Hunt scaling 

(2v = const. [50], dashed line) is fairly closely followed. 

 

Fig. 4 Eutectic patterns predicted by the present phase-field mode (SOS version) at extreme undercoolings at the 

front. The concentration field is shown, accordingly the color bar indicates changes between c = 0 (black) and 1 

(white). In these simulations the matter moves downwards, while solidification takes place at the upper front and 

melting occurs at the lower front. This was achieved by applying the following schematic temperature profile in 

the vertical direction: \
 , where the highest and lowest temperatures were 1100 K and TE  T, respectively. 

At the solidification and melting fronts the temperature varied linearly with position. Here DS = 0.01 DL was used. 

Note the transition from lamellae to globules, and finally to a band-like pattern (lamellae parallel with the front). 

(The lamella spacing is ~18 nm for the leftmost panel.) The size of the simulation box was 160 nm  320 nm. 

 

Fig. 5 Eutectic patterns predicted for rotating anisotropy. The concentration field is shown (the colourbar covers 

c  [0, 1], the Cu reach phase is white; while the initial liquid concentration was c = 0.45, and T = 150 K). The 

numbers in the upper left corner indicate the strength of the anisotropy, so. Above a critical anisotropy (so > so,c = 

1/3), the orientation of the lamella varies sharply at 0,c =  /2,  3/2, …, while above another critical value (so 

> so,c1  0.4125), one-dimensional eutectic growth is seen at 0,c =  /2. (SOS scheme.) 8192  1024 grid was 

used. 
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Fig. 6 Lamella angle vs. actual angle as a function of anisotropy. Besides the simulation results with constant 

rotation rate (empty symbols), and at fix tilting angles (full magenta symbols), the line corresponding to ideal 

locking (black dashed line), and results from analytical SP theory (colored solid lines) are also shown. Colors 

indicate the anisotropy strength. 

 

Fig. 7 Eutectic pattern (concentration field, here yellow stands for the Cu reach phase) predicted by SOS version 

of the present phase-field model obtained with rotating anisotropy function for s0 = 0.4 (the right half of the 6th 

panel of Fig. 5 is shown). The green arrows show the orientation of the anisotropy function of 2-fold symmetry 

at the instance when the solidification front was there. Initially (t = 0), 0 = 0, i.e., the long axis of the anisotropy 

function is parallel with the initial phase boundaries. The long axis of anisotropy (denoted by the arrows) rotates 

counter-clockwise. At about x = 5500 (x is the position in number of pixels from the left edge of the simulation 

box), the direction of the long axis of the anisotropy function becomes 0 = /2. Note that owing to the twofold 

symmetry of the anisotropy function antiparallel arrows indicate equivalent situations. (The right half of a 

simulation performed on an 8192  1024 grid is shown.) 

 

Fig. 8. Growth fronts observed at small and large anisotropies (concentration map is shown; the yellow color 

stands for the Cu-rich and the blue for the Ag-rich phases). a. s0 = 0.05 (Fig. 5, 2nd panel), and b. s0 = 0.4 (Fig. 5, 

6th panel). 200  1024 section of 8192  1024 simulations are shown. 

 

Fig. 9 Eutectic morphology: small amount of faceted phase with majority non-faceted phase. a. Snapshot from 

the video [53]. (Size of the image is about 80 m  60 m.) b. Phase-field simulation on a 4096  1024 grid with 

an isotropic black and a highly anisotropic white phase [characterized by a 2-fold kinetic anisotropy with s0,M = 
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1.98, and a 4-fold anisotropy for ()2 with s0,   = 0.4, tilting angles: 0,,M = 22.5]. (The SOS scheme was 

used; c0 = 0.3, T = 200 K, while DS/ DL = 0.001.) 

 

Fig. 10 The effect of the anisotropy (upper row: large objects) of the phase boundary energy on the equilibrium 

(Wulff) shape (upper row: small objects to the left) and on the eutectic solidification pattern (lower row). FD 

scheme was used. From left to right s0,c = 0.3, 0.1, 0.0, 0.1, and 0.3, respectively. Coordinate axes: x is parallel 

to growth direction; y horizontal; and z vertical. The phase-field simulations have been performed on a 160  160 

 80 grid (40 nm  40 nm  20 nm), for Ag-Cu at spatially uniform undercooling T = 155.5 K, and assuming a 

diffusion coefficient of DL = 1.4  109 m2s1. The vertical axis of the anisotropy function was tilted forward by 

22.5. The yellow color indicates is the copper rich phase. Note the transition from faceted lamellae to regular 

rods, and then to faceted irregular quadrangles. 

 

Fig. 11 The effect of tilting angle between the surface normal and the axis of anisotropy as a function of the 

anisotropy parameter (upper row: s0,c = 0.3; lower row: s0,c = 0.3). From left to right, the tilting angle is 0, 22.5, 

and 45 along the horizontal axis. Other conditions are the same as for Fig. 10. Panels on the right show the 

respective Wulff shapes. 

 

Fig. 12 The effect of the varying volume fraction on the eutectic pattern formation as a function of the anisotropy 

parameter. Upper row: s0,c = 0.1; central row: s0,c = 0; lower row: s0,c = 0.1. The volume fraction of the light 

colored phase increases from left to right (c  0.30, 0.5, 0.7, and 0.75; in the rightmost column deviation from the 

nominal volume fraction along the interface is due to its wavy shape). Other conditions are the same as for Fig. 

10. Note the transition from horizontal to vertical lamellae via disordered ones as s0,c increases in the 4th column. 

With further increasing of the volume fraction, these patterns break up into ordered or disordered chains of rods. 
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Fig. 13 Three dimensional structure of one of the solid phases formed in directional solidification using 

periodically changing composition for the liquid entering the simulation performed (FD discretizaton was used): 

(a) Without and (b) with cross-sectional temperature gradient. Note the regularization of the lamellar structure. 

Another effect of cross-sectional temperature gradient is the declination of the rods from the pulling direction. 

Here s0,c = 0. The size of the simulation structures are given in nm. The thickness of the simulation window was 

20 nm. The solid structure that left the simulation box at its back surface of were used to create these structures.    

Other conditions were the same as for Fig. 10. 

 

Fig. 14 The effect of uneven surface on the eutectic pattern in the phase-field model (FD discretization): 1st row: 

composition and morphology of the solidification front (the  = 0.5 surface is shown). Coordinate axes: x is 

parallel to growth direction; y horizontal; and z vertical. 2nd row: the cross-sectional (y  z) distribution of 

composition (yellow and blue correspond to the eutectic phases). The size of the simulation box was 32 nm  32 

nm  32 nm. Conditions for the three columns: Left: c = 0.775, s0, = s0,c = 0.3, with a 45 rotation of the anisotropy 

function for the (c)2 term around the x-axis. Centre: c = 0.45, s0, = s0,c = 0.3, with a 45 rotation of the anisotropy 

function for the ()2 term around the x-axis. Right: c = 0.775, s0,  = 0.3 with a 6 rotation of the anisotropy 

function for the ()2 term around the y-axis, and s0,c = 0.3 with a 45 rotation of the anisotropy function for the 

(c)2 term around the x-axis. Note the two size scales that correlate with the ledges observed in the latter case. 

 

Fig. 15 Snapshots showing quantitative 3D eutectic simulations with anisotropic solid-liquid interfacial free 

energy (s0, = 0.1) performed in the presence of different thermal gradients parallel with pulling. The concentration 

field is shown (blue and red corresponds to the eutectic compositions). [The computations were performed on a 

rectangular grid of 64 nm  64 nm  64 nm size, using advanced numerical methods (SOS scheme run on GPU 
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cards), using thermodynamic data of Ag-Cu taken from ThermoCalc [36], and a physical interface thickness, 

whereas the undercooling was T = 155 K, while a pulling velocity v = 0.01 m s1 was applied. The temperature 

gradient increases from left to right.] 

 

Fig. 16 Tip of spiraling eutectic dendrites. From left to right the free energy of the solid-liquid interface, and thus 

the tip radius increases. Composition maps are shown (blue and red denote the eutectic phases). The front view 

(1st row), the lateral section (2nd row), the side view (3rd row), and the cross-sectional composition distribution 

(4th row) are shown. (FD scheme.) The computations were performed on a 96  96  612 rectangular grid, 

assuming a physical interface thickness, this corresponds to about 24 nm  24 nm  153 nm. For other details of 

the simulations see Ref. [57]. 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

  



30 
 

 

Fig. 5 

 

 

 

 

 

 



31 
 

 

Fig. 6 
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Fig. 7 
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