Loughborough University
Browse
0308119.pdf (239.35 kB)

Phase-space path-integral calculation of the Wigner function

Download (239.35 kB)
preprint
posted on 2006-06-29, 10:36 authored by John Samson
The Wigner function W(q,p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the mid-point of their ends; short paths where the mid-point is close to (q,p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state.

History

School

  • Science

Department

  • Physics

Pages

245099 bytes

Publication date

2003

Notes

This is a pre-print. The definitive version: SAMSON (2003), Phase-space path-integral calculation of the Wigner function. Journal of Physics A: Mathematical and General, 36, 10637 - 10650, is available at: http://www.iop.org/EJ/journal/JPhysA.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC