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Abstract

Dirac’s delta functions enable simple and effective representations of point loads and singularities in a variety of structural prob-
lems, leading very often to elegant and otherwise unworkable closed-form solutions. This is the case of cracked beams under static
loads, whose theoretical and practical significance has attracted in recent years the interest of many researchers. Nevertheless,
analytical formulations currently available for this problem are not completely satisfactory, either in terms of computational effi-
ciency, when the continuity conditions must be enforced with auxiliary equations, or in terms of physical consistency, when the
singularities in the beam’s flexural rigidity are represented with Dirac’s delta functions having a questionable negative sign. These
considerations motivate the present study, which offers a novel and physically-based modelling of slender Euler-Bernoulli beams
and short Timoshenko beams with any number and severity of cracks, conducing in both cases to exact closed-form solutions. For
validation purposes in non-trivial examples, a standard finite element code is used, along with two nascent deltas (uniform and
Gaussian density functions) to describe a smeared increase in the bending flexibility around the abscissa of the crack.

Keywords: Concentrated crack, Dirac’s delta function, Theory of distributions, Euler-Bernoulli beam, Timoshenko beam,
Generalized functions

1. Introduction

Structural analysis of multi-cracked beams is of great engi-
neering interest, and has been extensively studied in the last
decades. As a matter of fact, presence of cracks may radically
change the behaviour of beams and reduce their performances
in statics and dynamics, leading to excessive deflections and
unexpected failures.

Research in this field has been mainly concentrated on two
classes of problems: i) definition of appropriate linear and
non-linear models for representing the effects of cracks under
static and dynamic loadings and ii) detection of position and
severity of the damage by using either static or dynamic tests
(e.g., Banan and Hjelmstad, 1994; Dimarogonas, 1996; Hjelm-
stad and Shin, 1997; Chondros et al., 1998). Belonging to the
first stream of research, this paper deals with an effective and
physically-based linear modelling of multi-cracked beams sub-
jected to static loadings, although the results presented herein
can be useful for treating any type of concentrated damage
occurring in slender and short beams, e.g. corrosion of steel
bars in reinforced concrete members, defects of material and
attacks of biotic agents in timber elements, and etcetera. In-
deed, the proposed model enables one to analytically represent
a local increase in the bending flexibility of the beam, which
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is actually what all the types of damage mentioned above have
in common. According to the classification by Friswell and
Penny (2002), the proposed approach falls in the broad cate-
gory of “discrete spring models”, being equivalent to an inter-
nal hinge coupled with a linear elastic spring, which is herein
assumed to have constant rigidity independently of the loading
direction. Although very simple, this “always open” model (Ir-
win, 1957) proves to be very efficient for static problems (Buda
and Caddemi, 2007; Caddemi and Morassi, 2007; Caddemi
and Di Paola, 2008); it can be also applied to dynamic prob-
lems when the amplitude of vibration is smaller than the static
deflection (Chondros et al., 2001), while “breathing in time”
models (Kirmsher, 1944) are mandatory when cracks open and
close, in so causing more complicated nonlinear phenomena.
Extended finite element method (e.g. Belytschko and Black,
1999; Moës et al., 1999) and meshless methods (e.g. Nguyen
et al., 2008; Yaw et al., 2009) are very powerful computational
strategy in this context, particularly when initiation and prop-
agation of cracks are studied in 2D or 3D models of structural
members.

Classical analytical approaches are particular appealing
when the global behaviour of frame structures is concerned.
The idea of treating multi-cracked beams with equivalent lin-
ear springs at the cracks’ position is based on the partition of
the each member into undamaged pieces between two consec-
utive cracks. For slender Euler-Bernoulli beams, the governing
fourth-order differential equation of bending can be written for
each subsystem, but it is necessary to impose the pertinent con-
tinuity conditions between adjacent subsystems to obtain the
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static response of the whole beam. As a results, the computa-
tional effort increases with the number of cracks: that is, for n
cracks along the beam, 4(n + 1) algebraic equations have to be
solved to compute the 4(n + 1) integration constants. Clearly,
this way to proceed is computationally inefficient and is not par-
ticularly convenient for identifications purposes, when analyses
are repeated until position and severity of the damage are found.

Moving from the same idea, a FEM (finite element method)
approach has been recently pursued (Skrinar and Pliberšek,
2007; Skrinar, 2009), in which stiffness matrix and load vector
of the uncracked Euler-Bernoulli beam are modified with some
dimensionless coefficients which take into account the effects
of internal cracks. These coefficient have to be evaluated, for
each cracked member, by exploiting the continuity equations
between adjacent uncracked segments.

A completely different strategy is to make use of the so-
called generalized functions to handle static and kinematical
discontinuities along the beam (Macaulay, 1919; Brungraber,
1965). Among others, Yavari et al. (2000) used the auxil-
iary beam method to solve the governing equations for uniform
Euler-Bernoulli and Timoshenko beams with various jump dis-
continuities; Yavari et al. (2001) derived the differential equa-
tions in terms of single displacement and rotation functions for
non-uniform beams with transverse and rotation jumps. These
procedures, however, do require the enforcements of continu-
ity conditions at each jump, and hence additional integration
constants are needed. This issue has been tackled in the for-
mulation originally developed by Biondi and Caddemi (2005,
2007), which will be referred in what follows as “rigidity mod-
elling”. This basically consists of singularities in the flexural
stiffness represented by Dirac’s delta functions, which in turn
are equivalent to internal hinges with rotational linear-elastic
springs. For uniform slender beams under static transverse
load, this approach enables one to compute the exact deflection
in closed form, and has been also used for a range of further
structural problems, including theoretical buckling and modal
analyses of multi-cracked Euler-Bernoulli members (Caddemi
and Calió, 2008, 2009), and experimental static (Buda and Cad-
demi, 2007) and dynamic (Caddemi et al., 2010) investigations.

Even though computationally very efficient, and able to de-
liver elegant closed-form (exact) solutions, this rigidity mod-
elling lacks physical consistency. The reason is that, as stressed
by Buda and Caddemi (2007), the bending stiffness of the
cracked beam is represented in their approach by a distribu-
tion, rather than by a classical function. As a consequence,
from a mere mathematical point of view, it is only required
the integrability of the bending stiffness for a suitable choice
of test functions (e.g., Strichartz, 2003). From a more physical
perspective, however, when Dirac’s delta functions are substi-
tuted with proper nascent deltas (e.g., Kelly, 2006), it would be
expected that meaningless negative signs do not appear in the
flexural rigidity of the cracked beam. Unfortunately, the op-
posite happens with the analytical solutions by Caddemi and
his associates, which then result to be not completely satisfac-
tory. Moreover, this approach has been suggested to be unable
of tackling mixed-type singularities in Euler-Bernoulli beams,
i.e. slender beams where discontinuities in terms of rotation and

bending moment occur at the same location (Failla and Santini,
2007). Finally to the best of authors’ knowledge, the extension
of rigidity modelling via Dirac’s delta functions to cope with
multi-cracked short Timoshenko beam is not available in the
literature.

Aimed at addressing the above issues, an alternative and
physically-based “flexibility modelling” of concentrated dam-
ages is presented in this paper, leading to exact solutions for the
static analysis of multi-cracked Euler-Bernoulli beams in bend-
ing, which are fully equivalent to those obtained with the rigid-
ity modelling (Biondi and Caddemi, 2007). Comparison with
two nascent deltas, selected as uniform and Gaussian proba-
bility density functions, demonstrate the physical soundness of
the proposed approach, while the rigidity modelling cannot be
used in conjunction with nascent deltas, as a negative stiffness
would appear. It will be also shown that the exact solutions
catered by both rigidity and flexibility modelling can be applied
to every mixed type of internal and external discontinuities pro-
vided that proper representations are used for the generalised
functions. Finally, the proposed approach will be extended to
take into account shear deformations in the undamaged pieces
of a short member, which allow deriving exact solutions for the
static analysis of multi-cracked Timoshenko beams.

2. Bending deflection of inhomogeneous Euler-Bernoulli
elastic beams

Aim of this section is to review the differential equation
governing the bending deflection of inhomogeneous Euler-
Bernoulli beams. These equations will be particularised in the
next section either with concentrated losses of rigidity or con-
centrated increases in the flexural flexibility of the beam, i.e.
with two alternative inhomogeneous terms for modelling the
macroscopic effects of cracks and similar localized damages.

Let us consider an elastic slender beam with abscissa-
dependent flexural stiffness E(z)I(z), where E(z) and I(z) are
Young’s modulus and second moment of area, respectively,
while z is the spatial coordinate spanning from 0 to the length l
of the member. Within the Euler-Bernoulli beam’s theory, equi-
librium Eqs. (1), compatibility Eqs. (2) and constitutive Eq. (3)
read:

d
dz

V(z) + q(z) = 0;
d
dz

M(z) − V(z) = 0; (1)

χ(z) =
d
dz
φ(z); φ(z) = − d

dz
u(z); (2)

χ(z) =
M(z)

E(z)I(z)
, (3)

where M(z) and V(z) are bending moment (positive if sagging)
and shear force along the beam; u(z), φ(z) and χ(z) are de-
flection (positive if downward), slope and curvature functions,
respectively; q(z) is the transverse load on the beam (positive
if downward). Combining the Eqs. (1) to (3) yields to the
well-known Euler-Bernoulli fourth-order differential equation
for beams in bending:

d2

dz2

[
E(z)I(z)

d2

dz2 u(z)
]
= q(z). (4)
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For the subsequent developments, it is more convenient to
work with the dimensionless counterpart of Eq. (4):[

ẼI(ζ )̃u′′(ζ)
]′′
= q̃(ζ), (5)

where the prime denotes differentiation with respect to the di-
mensionless abscissa ζ = z/l, which takes values from 0 to 1,
and:

ũ(ζ) =
u(ζ l)

l
; q̃(ζ) =

q(ζ l) l3

EI0
; ẼI(ζ) =

E(ζ l) I(ζ l)
EI0

,

(6)
EI0 being the reference value of the flexural stiffness, e.g. the
uncracked value of a significant cross section, while the over-
tilde denotes dimensionless functions of ζ.

3. Rigidity versus flexibility modelling of cracks with
Dirac’s delta functions

Two alternative formulations for modelling concentrated
cracks via Dirac’s delta functions are compared in this section.
The first approach has been successfully used in recent years by
Caddemi and his associates (Biondi and Caddemi, 2005, 2007;
Buda and Caddemi, 2007; Caddemi and Calió, 2008, 2009) in a
variety of structural problems involving cracked slender mem-
bers. In these papers, a Dirac’s delta function with negative
sign accounts for the concentrated loss of flexural stiffness at
the crack’s position. The novel model proposed in this paper
consists of a Dirac’s delta function with positive sign in the flex-
ural flexibility. Both models lead to exact (and thus equivalent)
closed-form solutions for the differential equations of multi-
cracked slender beams in bending, which are presented and dis-
cussed. The problem is illustrated in Fig. 1, in which a slender
beam cracked at the abscissa z = z̄ j and subjected to the generic
transverse load q(z) is shown (left), along with the correspond-
ing macroscopic model with a rational spring of stiffness K j

(right).

3.1. Rigidity modelling reviewed

Originally proposed by Biondi and Caddemi (2005), the mod-
elling of cracks via Dirac’s delta functions as loss of rigidity
leads to the following expression of the dimensionless flexural
stiffness of the beam:

ẼI(ζ) = 1 −
n∑

j=1

β jδ(ζ − ζ̄ j), (7)

where n is the number of concentrated cracks, ζ̄ j = ζ̄ j/l is the
dimensionless abscissa where the j − th crack occurs, and the
parameter β j is related to the dimensionless stiffness of the cor-
responding rotational spring:

K̃ j =
K j l
EI0
=

1 − β jÃ
β j

, (8)

where K j is the actual value of the stiffness and Ã = 2.013 is a
positive constant which has been suggested by Bagarello (1995)

for representing the product of two Dirac’s deltas both centred
at the same point ζ̄:

δ(ζ − ζ̄) δ(ζ − ζ̄) = Ã δ(ζ − ζ̄). (9)

It is worth noting that, according to Eq. (8), the parameter β j

is subjected to the constrain 0 ≤ β j ≤ 1/Ã in order to avoid
a negative value for the stiffness K j. Substituting Eq. (7) into
Eq. (5), after some algebra and resorting to the properties of
Dirac’s delta functions, the following exact solution in terms
of deflection for multi-cracked Euler-Bernoulli beams has been
proposed in closed-form (Biondi and Caddemi, 2007):

ũ(ζ) = C1 +C2ζ +C3

ζ2 + 2
n∑

j=1

K̃−1
j

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j)


+C4

ζ3 + 6
n∑

j=1

K̃−1
j ζ̄ j

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j)


+ q̃[4](ζ) +

n∑
j=1

K̃−1
j q̃[2](ζ̄ j)

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j) , (10)

where q̃[m](ζ) stands for the primitive of order m of the loading
function q̃(ζ), and H(ζ) indicates the Heaviside’s unit step func-
tion, which in turn is the primitive of the Dirac’s delta function
centered at zero:

H(ζ) = δ[1](ξ) =
∫ ζ

−∞
δ(ξ)dξ =


0, ζ < 0;
1
2 , ζ = 0;
1, ζ > 0.

(11)

Interested readers can find the full mathematical derivation of
Eq. (10) in the paper by Biondi and Caddemi (2007).

Moreover, it is worth noting that alternative definitions of the
Heaviside’s unit step function are known to the literature (e.g.,
Muscolino and Palmeri, 2005), which differ in the value of H(ζ)
at ζ = 0 (either H(0) = 0 or H(0) = 1) and may have a huge
impact on the modelling of engineering systems and phenom-
ena. Even though Biondi and Caddemi (2005, 2007) do not
explicitly define the value of the unit step at the origin, it seems
sensible in the present context to assume H(0) = 1

2 . Indeed, this
choice is consistent with a symmetric distribution of the loss of
rigidity with respect to the generic abscissa ζ̄ j, which is what
is actually expected (unless further information on the crack is
available). From a mere mathematical point of view, the value
H(0) is not strictly required in the vast majority of the situa-
tions, in which it provides a clear link between mathematical
modelling and engineering intuition of the problem. However,
when a concentrated couple is applied at the same position of
a cracked section (i.e. the limitation suggested by Failla and
Santini (2007)), the value of the Heaviside’s unit step function
at the discontinuity turns out to be very important, as shown in
the first numerical application (Section 6.1).

3.2. Proposed flexibility modelling

Although leading to an exact solution for the problem in hand,
the mathematical modelling of concentrated cracks with Dirac’s
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Figure 1: Sketches of cracked beam (a) and corresponding linear-elastic macroscopic model (b).

deltas in the flexural stiffness of the beam is not physically con-
sistent. Indeed, it is well known that a Dirac’s delta can be
used to represent lumped quantities in the domain of defini-
tion, where impulsive singularity appears. Hence, according
to Eq. (7), the application of a Dirac’s delta at the position of
the j − th crack, ζ = ζ̄ j, results in a negative impulse in the
flexural stiffness. Fig. 2 (a) makes use of the same representa-
tion adopted by Biondi and Caddemi (2005, 2007) to illustrate
the concept of a concentrated loss of rigidity at the position of
the crack. This picture clearly highlights the physical inconsis-
tency of the rigidity modelling, in which the flexural stiffness
EI(z) ideally goes to −∞ at the cracked sections z = z̄ j. It
can be argued that the value of a Dirac’s deltas is not defined
strictly where the singularity occurs, but there is still a negative
flexural stiffness somehow lumped at the position of the crack.
It could be quite challenging to explain this concept in simple
terms (e.g. in an undergraduate module of Structural Analy-
sis), since the rigidity modelling so formulated and represented
seems to violate the principle that elastic rigidities are always
non-negative. To overcome this apparent flaw, Dirac’s deltas
centered at the position of the cracks are used as test functions
in the mathematical derivations proposed by Biondi and Cad-
demi (2005, 2007), recalling also the properties of the product
of the two Dirac’s deltas at the same abscissa (Bagarello, 1995),
which in turn leads to the parameter Ã appearing in Eq. (8).

Aimed at overcoming the misleading representation of neg-
ative impulses in the flexural stiffness (Fig. 2(a)), and avoid-
ing unnecessary involved mathematical concepts (including the
seemingly arbitrary parameter Ã, which actually does not ap-
pear in the final expression (Eq. (10)), it seems more appropri-
ate to introduce Dirac’s deltas in the bending flexibility:

ẼI(ζ)−1 = 1 +
n∑

j=1

α j δ(ζ − ζ̄ j) , (12)

where the dimensionless parameter α j defines the intensity of
the j − th impulse, which in fact is related to the severity of
the damage at ζ = ζ̄ j, i.e. the larger is α j, the more severe is
the j − th damage. Fig. 2(b) shows a graphical representation
of the proposed flexibility modelling, where Dirac’s deltas are
associated to lumped increases in flexural flexibility.

Upon substitution of Eq. (12) into Eq. (5), one obtains:
1 + n∑

j=1

α j δ(ζ − ζ̄ j)

−1

ũ′′(ζ)


′′

= q̃(ζ) , (13)

whose double integration leads to:

ũ′′(ζ) =

1 + n∑
j=1

α j δ(ζ − ζ̄ j)

 (̃q[2](ζ) +C1ζ +C2

)
, (14)

where C1 and C2 are two unknown integration constants. Tak-
ing the Laplace’s transform of both sides of Eq. (14) yields:

Ũ (s) = L ⟨̃u (ζ)⟩ = 1
s2

[
C1

s2 +
C2

s
+C3 +C4s

+L ⟨q̃[2] (ζ)⟩ +
n∑

j=1

α je−ζ̄ j s
(
C1ζ̄ j +C2 + q̃[2]

(
ζ̄ j

)) ]
; (15)

where L ⟨•⟩ stands for the Laplace’s transform operator, while
s is the Laplace’s variable associated with the dimensionless
abscissa ζ. Taking now the inverse Laplace’s transform, we
get:

ũ (ζ) = L −1⟨Ũ (s)⟩ = C4 +C3ζ +
1
2

C2 ζ
2 +

1
6

C1 ζ
3 + q̃[4](ζ)

+

n∑
j=1

α j

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j)

[
C2 +C1 ζ̄ j + q̃[2](ζ̄ j)

]
. (16)

It is worth emphasizing that, similarly to Eq. (10) for the
rigidity modelling, the beam’s deflection of Eq. (16), obtained
with the proposed flexibility modelling, depends on four in-
tegration constants only (C1,C2,C3 and C4), and that these
quantities can be evaluated by means of boundary conditions
only, without the enforcement of continuity conditions where
the singularities are located. Moreover since Eq. (10) and
Eq. (16) are two closed-form solutions of the same boundary-
value elastic problem, they are equivalent, although the pro-
posed derivation just involves very popular mathematical tools,
namely Laplace’s transform (Eq. (15)) and inverse Laplace’s
transform (Eq. (16)).

The first derivate of Eq. (16) gives the slope function:

φ (ζ) = −ũ′ (ζ) = −C3 −C2 ζ −
1
2

C1 ζ
2 − q̃[3](ζ)

−
n∑

j=1

α jH(ζ − ζ̄ j)
[
C2 +C1ζ̄ j + q̃[2](ζ̄ j)

]
. (17)
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Figure 2: Negative Dirac’s delta in the rigidity modelling of cracked beam (a), and positive counterpart in the flexibility modelling (b).

It follows that the jump discontinuity in the slope function, ∆φ j,
that occurs at the position of the j − th crack, ζ̄ j, takes the ex-
pression:

∆φ j = lim
ζ→ζ̄+j
φ(ζ)− lim

ζ→ζ̄−j
φ(ζ) = −α j

[
C2 +C1ζ̄ j + q̃[2](ζ̄ j)

]
, (18)

where the continuity of q[2](ζ) has been assumed at ζ = ζ̄ j (this
condition is met even for point load q(ζ) ∝ δ(ζ − ζ̄ j) and con-
centrated couple q(ζ) ∝ δ′(ζ − ζ̄ j)).

Dimensionless bending moment M̃(ζ) and shear force Ṽ(ζ)
can be also obtained by considering first and second derivatives
of Eq. (17), respectively:

M̃(ζ) =
M(ζ l) l

EI0
= −ẼI(ζ )̃u′′(ζ) = −C2 −C1 ζ − q̃[2](ζ); (19)

Ṽ(ζ) =
V(ζ l) l2

EI0
= −ẼI(ζ )̃u′′′(ζ) = −C1 − q̃[1](ζ) , (20)

where the singularities arising from the summation in the right-
hand side of Eq. (17) are compensated by those in flexural flex-
ibility of Eq. (12). Comparing now Eqs. (18) and (19) leads
to:

∆φ j = α j

M̃
(
ζ̄ j l

)
l

EI0
. (21)

At the macroscopic level, on the other hand, jump in the ro-
tation, ∆φ j, and bending moment at the position of the j − th
crack, M

(
ζ̄ j l

)
, are related by:

∆φ j =
M̃

(
ζ̄ j l

)
K j

. (22)

Equating now the right-hand side of Eqs. (21) and (22), one
gets:

α j =
EI0

K j l
=

1

K̃ j
, (23)

which defines the mathematical relationship between the flex-
ibility parameter α j and the elastic stiffness of the rotational
spring of the corresponding internal hinge K j.

Interestingly, the coefficient α j can be viewed ad a measure
of the severity of the j− th concentrated damage: at the limiting
condition when K̃ j → 0, i.e. with an internal hinge with no
rotational stiffness, α j goes to infinity, which means that the
cross section is fully damaged, and hence does not provide any
flexural rigidity; on the contrary, for K̃ j → +∞, i.e. without
solution of continuity in the beam’s flexibility, α j → 0, which
is the case of an undamaged cross section.

4. Flexibility modelling by means of two nascent deltas

In the previous section, two alternative representations of
concentrated cracks in slender beams through Dirac’s delta
functions have been compared. The proposed mathematical
derivation is straightforward, as it simply involves Laplace’s
transform and inverse Laplace’s transform (Section 3.2). It
has been also argued that the proposed flexibility modelling is
preferable, in so avoiding the questionable negative impulses
appearing in the rigidity modelling (Section 3.1) by Caddemi
and his associates.

Aimed at proving the argument, the Dirac’s delta function
δ(ζ) in the flexibility modelling (Eq. (12)) will be treated in this
section as the ideal limit of two alternative sequences of nascent
deltas, i.e. approximating impulse functions.

As usual in the context of probability theory, a nascent delta
is herein an even Probability Density Function (PDF) with zero
mean and dispersion around the centre going to zero. Without
lack of generality, uniform (Section 4.1) and Gaussian (Section
4.2) PDFs will be considered to model the smeared increase
in the bending flexibility at the position of cracks. It could be
worth emphasizing that PDFs are used in our formulation to de-
scribe a deterministic increment in the beam’s bending flexibil-
ity in the vicinity of each crack, rather than a random fluctuation
of this quantity.

4.1. Uniform PDF

Let δ(U)
p̃ (ζ) be the PDF of a dimensionless zero-mean random

variable uniformly distributed in the interval [−p̃, p̃], which can
be mathematically defined as:

δ(U)
p̃ (ζ) =

1
2 p̃

[H(ζ + p̃) − H(ζ − p̃)] . (24)

The PDF δ(U)
p̃ (ζ) is a nascent delta, since the Dirac’s delta can

be obtained as the dispersion parameter p̃ goes to zero:

δ(ζ) = lim
p̃→0+
δ(U)

p̃ (ζ) , (25)

as illustrated in Fig. 3(a).
Substitution of Eq. (24) into Eq. (12) gives the beam’s bending
flexibility in presence of n uniformly smeared cracks:

ẼI(ζ)−1 = 1 +
n∑

j=1

α j δ
(U)
p̃ (ζ − ζ̄ j) . (26)
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Figure 3: Nascent deltas as uniform PDF (a) and corresponding bending stiffness in the proposed flexibility modelling (b) for different values of the dispersion
parameter p̃.

Incidentally, this model is equivalent to the representation of
damage in slender beams proposed in the paper by Cerri and
Vestroni (2000).

Assuming no overlapping cracked intervals, it follows that
the dimensionless bending flexibility is: 1 outside the cracked
areas of the beam; 1+α j/(2 p̃) within the interval ]ζ̄ j− p̃, ζ̄ j+ p̃[.
Hence, the corresponding flexural stiffness takes the dimension-
less form:

ẼI(ζ)−1 = 1 −
2 n∑
i=1

γi H(ζ − ξ̄i) ; (27)

where intensity and location of the j − th finite jump are given
by:

γi = (−1)i
/(

1 +
2 p̃

αint[(1+i)/2]

)
, (28)

and:

ξ̄i = ζ̄int[(1+i)/2] + (−1)i p̃ , (29)

respectively, int[•] being the integer part of the number within
the square brackets.

It is worth noting that, according to Eq. (26), for the j− th of
the n smeared cracks there are two finite jumps in the dimen-
sionless function ẼI(ζ), namely a downward jump γ2 j−1 > 0 at
ζ = ξ̄2 j−1 = ζ̄ j − p̃, which is recovered at ζ = ξ̄2 j = ζ̄ j + p̃
with an upward jump with the same module but opposite sign,
γ2 j = −γ2 j−1 < 0. As a results, 2n finite jumps appears in the
right-hand side of Eq. (27).

For illustrative purpose, the bending stiffness ẼI(ζ) is plot-
ted in Fig. 3(b) in the neighborhood of a single smeared crack
centered at ζ̄ j = 0.5 (beam’s midspan), with different size pa-
rameters p̃ and intensity coefficient α j = 0.1.

With the adoption of the uniform PDF as nascent delta, the
approximate model for the multi-cracked beam turns out to be
a particular case of stepped beam, i.e. a beam with sudden
changes in the flexural rigidity, which is constant between two
consecutive jumps. The exact solution for the deformed shape
of stepped beams under static transverse load has been obtained

by Biondi and Caddemi (2007) in closed form:

ũ(ζ) = C1 +C2 ζ +C3

[
ζ2 +

2 n∑
i=1

γi µi µi+1(ζ − ξ̄i)2H(ζ − ξ̄i)
)]

+C4

[
ζ3 +

2 n∑
i=1

γi µi µi+1(ζ3 − 3 ξ̄2i ζ + ξ̄
3
i )H(ζ − ξ̄i)

]
+q̃[4](ζ)+

2 n∑
i=1

γi µi µi+1

[̃
q[4](ζ)−q̃[4](ξ̄i)−(ζ−ξ̄i) q̃[3](ξ̄i)

]
H(ζ−ξ̄i) ,

(30)

in which:
µi =

1

1 −
i−1∑
k=1
γk

; (31)

once again, the four integration constants (C1,C2,C3 and C4)
have to be evaluated by imposing the pertinent boundary con-
ditions.

The general solution of Eq. (30) will be used in the next sec-
tion to validate the proposed modelling of the bending flexibil-
ity with Dirac’s delta functions (Section 3.2). Interested readers
can find the mathematical derivation of Eq. (30) in the paper
by Biondi and Caddemi (2007). A very similar expression has
been independently derived by Cicirello (2007).

4.2. Gaussian PDF
As an alternative nascent delta, let us now consider the Gaus-
sian PDF of a dimensionless random variable with zero mean
and standard deviation σ̃ ≪ 1:

δ(G)
σ̃ (ζ) =

1
√

2πσ̃
exp

[
−1

2

(
ζ

σ̃

)2]
. (32)

The dimensionless flexural rigidity with n cracks smeared
with Gaussian law takes the expression:

ẼI(ζ) =
1

1 +
∑n

j=1 α jδ
(G)
σ̃ (ζ − ζ̄ j)

. (33)

The Gaussian PDF δ(G)
σ̃ (ζ), being continuous, lends itself to

approximate actual Dirac’s delta functions in numerical anal-
yses of problems with impulsive terms. As an example, this
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nascent delta has been recently used to prove the existence of
long-neglected impulsive forces occurring when a moving os-
cillator enters and exits the supporting beam (Muscolino et al.,
2009).

For the sake of illustration, nascent Gaussian delta and cor-
responding flexural rigidity around a smeared crack with centre
at ζ = ζ̄ j = 0.5 and intensity coefficient α j = 0.1 are depicted
in Fig. 4.

4.3. Rigidity modelling with nascent deltas

Figures 3(b) and 4(b) show that substitution of uniform and
Gaussian nascent deltas into the proposed flexibility modelling
(Eq. (12)) leads to meaningful flexural rigidities. The smaller
is the dispersion parameters ( p̃ and σ̃, respectively), the larger
is the loss of stiffness at the abscissa of the crack, but always
with a consistent positive value, which in turn demonstrates the
physical soundness of the proposed model.

The opposite happens with the rigidity modelling by Cad-
demi and his associates. Indeed, by substituting the same ap-
proximate impulses of figures 3(a) and 4(a) into the bending
stiffness of Eq. (7), one may obtain meaningless negative val-
ues in the neighborhood of the abscissa of the crack. Figures
5(a) and 5(b) show that just for large values of the dispersion
parameter (i.e. p̃ = 0.1 and σ̃ = 0.1 for uniform and Gaussian
PDFs, respectively) the resultant bending stiffness ẼI(ζ) does
not take negative values. When smaller values of the dispersion
parameter are considered (dashed and solid lines in Fig. 5), in-
stead of having a closer approximation of concentrated cracks
(as it would be expected), the bending stiffness drops below
zero, which is unacceptable from a physical point of view.

5. Multi-cracked short Timoshenko beams

In the previous part of the paper, Dirac’s delta functions
(Section 3.2) and nascent deltas (Sections 4.1 and 4.2) have
been used to model concentrated and smeared cracks in slen-
der Euler-Bernoulli beams. Aim of this section is to extend the
proposed flexibility modelling of cracks through Dirac’s deltas
to cope with short Timoshenko beams. To do so, let us express
the transverse deflection as superposition of bending (̃ub(ζ)) and
shearing (̃us(ζ)) contributions:

ũ(ζ) = ũb(ζ) + ũs(ζ) . (34)

The first component, ũb(ζ), is formally ruled by the same
fourth-order differential equation considered for slender beams
(Eq. (5)): [

ẼI(ζ)ũb
′′(ζ)

]′′
= q̃(ζ), (35)

whose solution, in presence of n concentrated cracks, takes the
same form as Eq. (16):

ũb (ζ) = C4 +C3ζ +
1
2

C2 ζ
2 +

1
6

C1 ζ
3 + q̃[4](ζ)

+

n∑
j=1

α j

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j)

[
C2 +C1 ζ̄ j + q̃[2](ζ̄ j)

]
. (36)

Moreover, rotation φ (ζ), bending moment M̃(ζ) and shear
force Ṽ(ζ) are the same as in the Euler-Bernoulli beam (Eqs.
(17), (19) and (20)), respectively:

φ (ζ) = −ũ′ (ζ) = −C3 −C2 ζ −
1
2

C1 ζ
2 − q̃[3](ζ)

−
n∑

j=1

α jH(ζ − ζ̄ j)
[
C2 +C1ζ̄ j + q̃[2](ζ̄ j)

]
; (37)

M̃(ζ) =
M(ζ l) l

EI0
= −ẼI(ζ )̃u′′(ζ) = −C2 −C1 ζ − q̃[2](ζ); (38)

Ṽ(ζ) =
V(ζ l) l2

EI0
= −ẼI(ζ )̃u′′′(ζ) = −C1 − q̃[1](ζ) . (39)

The second component in the right-hand side of Eq. (34), ũs(ζ),
is ruled by:

G̃Asũs
′(ζ) = Ṽ(ζ), (40)

where G̃As is the dimensionless shearing stiffness of the beam,
which is assumed to be constant throughout the beam:

G̃As =
GA0 l2

EI0 κ
, (41)

in which G is the shear modulus, A0 is the uncracked cross-
sectional area and κ is the so-called shear correction factor.

Substitution of Eq. (39) into Eq. (40) leads to:

ũs
′(ζ) = −G̃As

−1 [
C1 + q̃[1](ζ)

]
, (42)

By integrating once and assuming ũs(0) = 0, without loss of
generality, one obtains:

ũs = −G̃As
−1 [

C1ζ + q̃[2](ζ)
]
, (43)

which represents the deflection of the beam due to pure shear-
ing deformations. Substituting Eqs. (36) and (43) into Eq. (34)
gives the dimensionless closed-form expression of transverse
deflections in multi-cracked Timoshenko beams:

ũ (ζ) = C4 +

(
C3 − G̃As

−1
)
ζ +

1
2

C2 ζ
2 +

1
6

C1 ζ
3+

q̃[4](ζ) − G̃As
−1

q̃[2](ζ)

+

n∑
j=1

α j

(
ζ − ζ̄ j

)
H(ζ − ζ̄ j)

[
C2 +C1 ζ̄ j + q̃[2](ζ̄ j)

]
. (44)

which depends once again on four integrations constants
C1,C2,C3 and C4. The solution for Euler-Bernoulli beams
(Eq. (16)) is recovered when the dimensionless shearing flex-
ibility G̃As

−1
goes to zero.

6. Numerical applications

Aim of this section is to validate the proposed flexibility ap-
proach by means of three numerical applications, which are
also useful to highlights specific aspects of the formulation.
In a first stage, a clamped-clamped slender beam with single
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Figure 4: Nascent delta as Gaussian PDF (a) and corresponding bending stiffness in the proposed flexibility modelling (b) for different values of the standard
deviation σ̃.

Figure 5: Bending stiffness when uniform (a) and Gaussian (b) nascent deltas are introduced in the rigidity modelling by Caddemi and his associates.

crack subjected to concentrated force and couple at the posi-
tion of the damage has been studied (Section 6.1). This ex-
ample has been suggested by the comment by Failla and San-
tini (2007) about a latent limitation of the rigidity modelling by
Biondi and Caddemi (2005, 2007) when discontinuities of ro-
tation and bending moment occur at the same location. It will
be shown that a proper definition of the Heaviside’s unit step
function (see Eq. (11)) allows overcoming this limitation. In a
second stage, a multi-supported multi-cracked Euler-Bernoulli
beam has been considered (Section 6.2), in which the case of a
crack located at one end of the beam has been addressed with
the general solution of Eq. (16). To the best of authors’ knowl-
edge, numerical applications for this second type of problems
are not available in the dedicated literature. In a third stage, the
closed-form solution of Eq. (44) has been used for a short (Tim-
oshenko) propped beam cracked at midspan. The results ob-
tained with the proposed flexibility modelling have been com-
pared with those of a standard FEM analysis carried out with
the commercial software SAP2000 (version 14.1.0), and a per-
fect agreement has been observed in all three cases; the rigidity
modelling by Biondi and Caddemi (2005, 2007) and the two
nascent deltas, i.e. uniform and Gaussian PDFs, have been also
considered for the first two slender beams.

In order to associate an appropriate value of the rotational
spring stiffness K j to the real depth of the j − th crack, the
expression suggested by Bilello (2001) for rectangular cross-

sections has been used:

K j =
EI0

h
0.9[(d j/h) − 1]2

(d j/h) [2 − (d j/h)]
, (45)

where h and d j are the depths of beam and crack, respec-
tively. In both examples, the beam is assumed to be made of
steel (Young’s modulus E = 210 GPa; G = 80.77 GPa) and
l = 150 cm long; In the first two cases (slender Euler-Bernolli
beam) the cross section is a square of sides h = b = 5 cm, while
in the third case (short Timoshenko beam) the cross section is a
rectangle h = 45 cm deep and b = 15 cm wide.

6.1. Clamped-clamped slender beam subjected to concentrated
force and couple

In the first application (Fig. 6), a single crack of depth d =
2.5 cm, is assumed at the abscissa z = l/5 = 30 cm, where a
concentrated couple M = 20 kN m and a point force F = 70 kN

Figure 6: Sketch of the cracked slender beam considered in example 1.

8



Figure 7: Bending flexibility (a) and rigidity (b) of the cracked beam of example 1 modelled with nascent deltas.

are also applied. Eq. (45) gives the value K1 = 656.25 kN m
for the equivalent stiffness of the discrete spring at the posi-
tion of the crack, while the dimensionless damage parameter
of Eq. (23) is α1 = 0.111. Bending flexibility and rigidity
along the beam are shown in the dimensionless Fig. 7(a) and
Fig. 7(b), for uniform (dashed) and Gaussian (dotted) type of
nascent delta, assuming dispersion parameters p̃ = 0.02 and
σ̃ = 0.02, respectively; in both cases, inconsistent negative val-
ues do not appear.

The results in terms of deflection and rotation at the posi-
tion of the crack are compared at the top of Tab. 1 for differ-
ent methods of analysis. Interestingly, rigidity and flexibility
modelling deliver the same exact results once the Heaviside’s
unit step function is defined as suggested in the right-hand side
of Eq. (11), in so overcoming the limitation claimed by Failla
and Santini (2007) for the applicability of the rigidity modelling
when bending moment and slope are discontinuous at the same
location. Rigidity and flexibility modelling are also in a very
good agreement with the approximate solutions obtained by in-
troducing nascent deltas in the bending flexibility, and with the
FEM model built in SAP2000 with a rotational spring for the
concentrated crack and two opposite forces with a small lever
arm (2 cm) for the concentrated couple.

Fig. 8(a) and Fig. 8(b) show deformed shape and slope func-
tion of the beam, respectively. Rigidity and flexibility mod-
elling match perfectly, since they give exact analytical so-
lutions; displacements and rotations computed with nascent
deltas compare also very well, although slightly larger deflec-
tions are predicted at the midspan of the beam. Dimensionless
curvature χ̃ and bending moment M̃ are offered in Fig. 9(a) and
Fig. 9(b), respectively. As expected, the use of nascent deltas
allow to graphically show the increased flexibility in the neigh-
borhood of the crack, with two opposite peaks in the curvature
(Fig. 9(a)), while Dirac’s deltas concentrate this effect at the ab-
scissa of the crack only, where a finite jump in the rotation oc-
curs (Fig. 8(b)). The localised differences between modellings
with nascent deltas (uniform and Gaussian) and Dirac’s deltas
(in terms of rigidity and flexibility) disappear in terms of bend-
ing moment (Fig. 9(b)), which virtually shows a perfect agree-
ments among the four formulations. This is also confirmed by
values of bending moment reported at the bottom of Tab. 1 for
significant locations along the beam. It is worth emphasising

here that, without a correct (i.e. physically-based) definition of
the Heaviside function H, the analytical solutions derived with
rigidity (Eq. (10)) and flexibility (Eq. (16)) modelling do not
provide the correct results for the problem in hand. To prove
the point, Fig. 10(a) shows the deflection ũ

(
ζ̄1

)
at the position

of the crack as a function of the dimensionless value θ assumed
for the Heaviside function at zero, i.e. H(0) = θ. In princi-
ple, θ can take any value from 0 to 1, and the picture demon-
strates that this may have a significant impact on the results (i.e.
the deflection at ζ = ζ̄1, may reverse sign). What is important
to note is that rigidity modelling (circles) and flexibility mod-
elling (solid line) are always in perfect agreement (i.e. these
two closed-form solutions are equivalent), but the correct value
of the deflection ũ

(
ζ̄1

)
is obtained for θ = 0.5 (as suggested

in Eq. (11)). This is clearly demonstrated by comparison with
the horizontal dashed line, which gives the exact value of ũ

(
ζ̄1

)
as computed with the stiffness matrix method. Same consider-
ations can be done looking at Fig. 10 (b), in which the finite
jump ∆φ1 experienced by the beam at the position of the crack
is plotted against the parameter θ: once again, θ = 0.5 pro-
vides the correct results. As discussed above, taking the value
θ = 0.5 for H(0) is fully consistent with the physical represen-
tation of the structural problem, although this aspect does not
emerge very strongly from the rigidity modelling; the proposed
flexibility modelling, on the contrary, has the additional merit
to allow clarifying this point.

6.2. Multi-supported multi-cracked slender beam subjected to
point load and support settlement

Similar trend of results can be observed for the second nu-
merical example (Fig. 11), in which the same slender beam as
in the previous application is restrained by a fixed support at
the left-hand side end (z = 0) and by two roller supports at ab-
scissas z = 2 l/5 = 60 cm and z = 4 l/5 = 120 cm. The beam
is subjected to a point force F = EI0/l2 = 48.61kN at the free
end (z = l = 150 cm) and to a settlement of the first internal
support by η = 15 mm. Three cracks are assumed at the posi-
tion of supports, having the same depth d = 2 cm, and hence
the same elastic stiffness K = 1107.42 kNm of the equivalent
discrete spring, as evaluated through Eq. (45). With respect to
the previous case, two main differences arise. First, the dimen-
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Figure 8: Displacements (a) and rotations (b) of the cracked beam of example 1.

Table 1: Numerical results for example 1
Proposed ≡ Cad-
demi et al.

Nascent Uni-
form

Nascent Gaussian FEM (SAP2000)

ũ (ζ = 0.5) -0.001648 -0.001700 -0.001723 -0.001648
φ (ζ = 0.75) 0.004740 0.004836 0.004874 0.04740
M̃ (ζ = 0) -0.1160 -0.1149 -0.1142 -0.1160
M̃

(
ζ = ζ̄+1

)
-0.07458 -0.07364 -0.07302 -0.07412

M̃
(
ζ = ζ̄−1

)
0.1997 0.2006 0.2013 0.1944

M̃ (ζ = 1) 0.03628 0.03656 0.03663 0.03628

Figure 9: Curvature (a) and bending moment (b) of the cracked beam of example 1.

Figure 10: Deflection and rotation’s finite jump at the position of the crack in example 1 as a function of the value of Heaviside’ unit step function at zero.
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Figure 11: Sketch of the multi-cracked Euler-Bernoulli beam considered in
example 2.

sionless load q̃(ζ) acting on the beam is given by the reactions
of the intermediate supports:

q̃(ζ) = −R1 δ(ζ − ζ̄2) − R2 δ(ζ − ζ̄3) , (46)

being ζ̄2 = 0.4 and ζ̄3 = 0.8 the dimensionless abscissas of sec-
ond and third cracks (whose positions coincide with those of the
internal supports), while R1 and R2 are unknown dimensionless
forces, which require the support conditions, ũ(ζ̄2) = η/l and
ũ(ζ̄3) = 0, in addition to the boundary conditions at ζ = 0 and
ζ = 1. Second, since the first crack occurs at the left-hand side
extreme of the beam, it follows that the associated increase in
the beam flexibility must be imposed just in the right-hand side
of the crack. This consideration justifies for the first crack a
value of the damage index (α1) twice that one given by Eq. (23);
that is: α1 = 0.1316, while α2 = α3 = 0.0658 = α1/2. Impor-
tantly, this example demonstrates how the physical soundness
of the proposed approach enables one to easily handle particu-
lar cases such as a crack at one of the boundaries of the beam.
Bending flexibility and bending rigidity of the beam so obtained
are depicted in Fig. 12, where the dimensionless standard devi-
ation of nascent deltas δ(G)

σ̃ (ζ) is σ̃ = 0.02. The validity of the
proposed representation of the crack at the fixed end (which
may also simulate a partial fixity imposed by an imperfect re-
straint) is confirmed by the excellent agreement between the
results delivered by proposed flexibility modelling and FEM
analysis with SAP2000, listed in Tab. 2 for some relevant loca-
tions. Very good are also the results obtained by using Gaussian
PDFs as nascent deltas instead of Dirac’s deltas, as confirmed
by Fig. 13, which shows in dimensionless form deflection ũ,
and slope φ along the beam.

Significant discrepancies are observed just at the free end of
the beam (ζ = 1), due to a relatively large value of the standard
deviation (σ̃ = 0.02) adopted for the Gaussian nascent deltas.
The convergence study reported in the log-log chart of Fig. 14
shows that, as expected, these discrepancies reduce monotoni-
cally with the standard deviation σ̃.

6.3. Propped short beam with single crack

The final numerical application is devoted to the short beam
depicted in Fig. 15, which is clamped at z = 0 and supported by
a roller at z = l = 150 cm; a crack of relative depth d/h = 0.5 is
assumed at midspan position (z̄1 = l/2 = 75 cm), and a uniform
load of q0 = 5 kN/cm is distributed on the right-hand half of
the beam:

q(z) = q0H
(
z − l

2

)
. (47)

Since the value of slenderness ration l/h = 3.33 is quite
small, the Timoshenko beam theory is appropriate. Fig. 16(a)
and Fig. 16(b) compare the results in terms of dimensionless
deflection ũ(ζ) and sectional rotation φ(ζ) = χ̃′(ζ), respec-
tively, when Euler-Bernoulli (Eq. (16), dashed lines) and Timo-
shenko (Eq. (44), solid lines) formulations are adopted. As ex-
pected, the Timoshenko beam theory predicts larger deflections
and a larger opening of the crack (measured by the finite jump
of φ(ζ) at ζ = 1/2), so that the Euler-Bernoulli beam theory
would be unconservative. More importantly, the results of the
proposed closed-form solution for multi-cracked Timoshenko
beams (Eq. (44)) are in perfect agreement with those provided
by the FEM code SAP2000: e.g., they both predict deflection
at midspan u = 0.0879 cm (̃u(0.5) = 0.000586, downward) and
rotation at the position of the roller support φ(1) = 0.00160 rad
(anticlockwise).

7. Concluding remarks

The paper offers a new insight into the linear analysis of
multi-cracked beams subjected to static transverse loads. By
adopting some common macro-scale simplifications, this study
assumes that cracks are always open, i.e. the flexibility due to a
localised damage does not change with time, and that their ef-
fects can be represented by means of equivalent internal springs
with linear moment-rotation constitutive law. Even though ap-
parently straightforward, solutions available in the literature for
this problem are not completely satisfactory, either in terms of
computational efficiency, when continuity conditions must be
enforced with auxiliary equations, or in terms of physical in-
consistency, when negative impulses are applied to the flexural
rigidity of the beam.

Aimed at overcoming these disadvantages, a novel flexibil-
ity modelling has been presented and numerically validated.
Unlike the rigidity modelling recently formulated by other in-
vestigators (Biondi and Caddemi, 2005, 2007), impulsive terms
with meaningful positive sign have been directly introduced in
the bending flexibility of the beam at the position of cracks.
When actual Dirac’s deltas are used, exact solutions are ob-
tained, which are equivalent to those derived by Biondi and
Caddemi (2007) for slender Euler-Bernoulli beams. The inade-
quacy of such analytical solutions in handling situations where
bending moment and rotation experience discontinuities at the
same abscissa (suggested by Failla and Santini (2007)) has been
rebutted with an example (Section 6.1), showing that a proper
definition of the Heaviside’s unit step function allows cater-
ing the exact solution also in this case. The proposed flexi-
bility modelling makes also possible to get approximate solu-
tions when nascent deltas (e.g. uniform and Gaussian proba-
bility density functions) are implemented, a feature which is
prevented in the rigidity modelling. A closed-form expres-
sion has been derived to link the rigidity of internal rotational
springs with the corresponding damage coefficients of the pro-
posed approach, which has been further extended to cope with
short Timoshenko beams with concentrated losses of flexural
stiffness. Numerical results have been presented for selected
cases, namely a clamped-clamped slender beam damaged at the
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Figure 12: Bending flexibility (a) and rigidity (b) of the multi-cracked beam of example 2 modelled with nascent deltas.

Table 2: Numerical Results for example 2
Proposed Nascent Gaussian FEM

(SAP2000)
ũ (ζ = 1) 0.002552 0.002003 0.002551
φ (ζ = 1) -0.01943 -0.01714 -0.01942
M̃ (ζ = 0) -0.2029 -0.2162 -0.2029
M̃

(
ζ = ζ̄1

)
0.2311 0.2412 0.2311

M̃
(
ζ = ζ̄2

)
-0.2000 -0.200 -0.2000

Ṽ
(
0 < ζ < ζ̄1

)
1.085 1.143 1.085

Ṽ
(
ζ̄1 < ζ < ζ̄2

)
-1.078 -1.103 -1.078

Figure 13: Displacements (a) and rotations (b) of the cracked beam of example 2.

Figure 14: Percentage inaccuracy of the Gaussian model in terms of tip deflection (solid line) and rotation (dashed line) as a function of the measure of the delta’s
height
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Figure 15: Sketch of the cracked Timoshenko beam considered in example 3.

Figure 16: Displacements (a) and rotations (b) of the cracked short beam of example 3.

discontinuity in the bending moment diagram (Section 6.1), a
multi-supported beam cracked at the fixed end (Section 6.2),
and a short propped beam damaged at midspan (Section 6.3),
in so proving the versatility of the proposed flexibility mod-
elling. Building on the results presented in this paper, a further
development currently pursued by the authors is the formula-
tions of a consistent two-node finite element for multi-cracked
slender/short beam, to be used in the static/dynamic analysis of
framed structures. If coupled with crack’s initiation and propa-
gation criteria, the proposed approach can be also used to study
onset and progressive developments of cracks in slender/short
beams, which is another promising extension of the proposed
strategy.
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Caddemi, S., Calió, I., 2009. Exact solution of the multi-cracked Euler-
Bernoulli column. Journal of Sound and Vibration 327, 473–489.
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