
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

____________ S,L~~j.:T9-~7---~--e--~---- ----- -- •

------ -------------------------- --- ----- - ---.----~
'ACCESSION/COPY NO,

________________ 9~_~~ _~_C: _~ ~_.L _______ --------
VOL. NO, CLASS MARK

--t JUl199lt

30 JUN 1995

30 JUN 1995

~ 8, JUtJ '~96
",fJ), ,. ,bS~

)

0360003370

111111111111111111111 111111

"

r---

Plethora:

A Framework for the Intelligent Control of Robotic

Assembly Systems.

By

I. P. W. SiIlitoe

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award

of Doctor of Philosophy of the Loughborough University of

Technology

February 1992

<C by I.P.W Sillitoe, 1992

\~r:~)f.)ro,,;~'1 1j;1::;~ of '1 C! '11 '.\ ,1.,,,Jf:!ry

__ e;;~'i:l.!'~=----I
;··....:...._----1
\ '," ()'1b c oc3.37 -"--~.. -

Contents

Synopsis 1
Publications 2

Structure of Thesis 3

Chapter 1 Introduction 5
Background 5

Manufacturing Equipment Flexibility 6
Summary 7

Objective 7
Current Programming Languages 8
Task Orientated Languages 9
Knowledge as a Solution 9
Traditional Expert System Architectures 11
Summary 12

Conclusion 12
References 15

Chapter 2 Control 17
Previous Work 17

Commercial 17
Thorn EMI 17
Flymo 18
Yet Another Manufacturing System 19

Laboratory 20
Hierarchical Control 21
~S 22
Subsumption Architecture 24

Current 25
Purdue 26
Problem Analysis and Operator Hierarchy 27
Opportunistic Scheduling 28

Discussion 28
Determination of Assembly Steps 28
Plan Execution 29
Error Detection 30
Error Correction 30

Summary 30
References 33

Chapter 3 Knowledge Based Control of Resources 35
Planning and Control 35

Why Incremental Opportunism? 36
The Mechanism of Incremental Opportunism 37

BBl Architecture 38
Knowledge Specialists 38
Blackboard Structure 40

Conflict Resolution 41
Strategies 41
Foci 42
Conflict Set Generation 42
Attention Focusing 43

Summary 44
Apparent Complexity 45

Plan Representations 45
Implementation 46
Summary 47

Plethora's Blackboard 47
Execution Plane 48

Event Level 49
Reason Level 49
Error Level 49
Solution Level 50
Chosen External Action 50

Confidence 51
Determining Confidence Values 52
Confidence Function 54

Pre-Condition Action 57
Groups of KS's 58
Implementation Level 59
Modes 59
Temporal Ordering and Dependence 59
Focusing Attention 59
Basic KS' s 62
BlackBoard Interface 62

Previous BlackBoard Architectures 63
Summary 64
References 65

Chapter 4 Communications 67
Message Passing 67

Why Use the message passing paradigm? 68
Issues in Message Passing Systems 68

Blocking or Non-Blocking 69
Addressing Mechanism 70
Message Format 70
Communication Failure 71
Requirements 72

Previous Message Passing Systems 72
General Distributed Programming 73
Message Passing Applied to Industrial Robotics 73

IMRS 73
MAP 74

Summary 75
Plethora's Message Passing System 76

Players, Prompters, Companies and Groups 76
Message Passing Primitives 79

Header Format 80
Message Address 80
Message Types 81

Requests and Reply 81
State Changes 81
Trigger, Precondition 82
Acknowledgement 82
Priority 82

Departure Expiry Times 83
Acknowledgements 83
Transactions 83

Primitives and Protocols 84
Sending Messages 84
Receiving Messages 84
Streams and Pipelines 86

Player Scheduler 87
Message Passing and Prompters 87
Network Interface 87
Network 88

Summary 90
References 91

Chapter 5 Objects and Rules 92
~~ n

Definition of an Object 92
ROOP 94

Vision Server 94
Representation 94
Garbage Collection 96
Language 99

Rules 103
Rule Interpreters 104

HC State Machine 104
Procedural Interpreter 106
Implementation 106

Summary 107
References 108

Chapter 6 World Modelling 109
Previous Work 109

SMGR 109
NBS 110
Purdue 110

Which Knowledge? 111
Relational and Geometric Information 112

Geometric Modelling 113
Solid Modelling 113

Swept Volumes 113
Boundary representation 113
Cellular/Spatial Occupancy Methods 113

Constructive Solid Geometry 113
GeoMod 114

Body Frames 114
Volume Frames 116

Volume Hierarchy 116
Interference Test 120
Chain Frames 122
Collision Detection 125
Solid in Motion 125

Swept Volume Representations 125
Incremental Motion 125
Algebraic Representation 126
Summary 126

Collision Detection in GeoMod 126
Relational Information 128

Descriptions of Spatial Constraints 129
Primitive Coordinate Frame Constraints 131
Assembly Descriptions 133

Previous Work 133
Assembly Descriptions in Plethora 135
Solve-Construction 136

Summary 139
References 141

Chapter 7 Object Recognition 143
Overview 143

Introduction 144
Previous Work 145
Methodology 145

Generation of the Volumetric Model 145
Outline of the algorithm 146
The Parallel Projection Approximation 151
Generating the Centralised Moment Matrix 152
Moment Invariants 153
Principle Axes 153

Results 154
Verification 154
Classification 155

Discussion 155
Illumination 156
Calibration 156

Conclusions 156
References 158

Chapter 8 Path Planning 159
Introduction 159
Method 161

Free Space Representation 161
Determination of the Initial Path 163
Modification of the Z coordinates 165

Experimental Results
Conclusions
References

Chapter 9 Experimentation
Introduction
The Problem

Description of the Work Cell
The Assembly

Planning the Task
Summary
Description of the Implementation goal

3D-Moment
RPplanner
2D-Moments
Approach and Unapproach
Mgrasp and Mungrasp

Execution
Summary
Execution with Events
Execution with an Error
Summary

Discussion
References

Chapter 10 Implementation
System Implementation
Dynamic Storage allocation
Rule Tables and Message Interpretation
Implementation of Objects
Server Architecture
Network
Compilation and Hardware
Summary
References

Chapter 11 Conclusions
Requirements

Control
Knowledge
Communications

Further Work and New Avenues
Partition and Mapping
Model based Recognition
Path Planner
Parallel Collision Detection
Parallel External Actions
Confidence
Planning and Acting

References

168
169
170

171
171
172
172
173
176
180
182
182
182
182
182
183
184
186
187
189
190
191
192

193
193
194
195
196
197
198
199
200
201

202
202
202
203
204
205
205
205
206
206
206
207
207
208

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Glossary

209
212
219
222
232
239
243

Synopsis

The thesis describes a distributed software environment designed for the

development, evaluation and comparison of new techniques in knowledge based

control of robot assembly work cells. It has characteristics which fulfil deficiencies

within previous systems and contains within it new techniques in task specification,

distributed control[1,2], object recognition[3,4] and path planning[5].

The control of the resources within the cell is based upon an extension of the

facilities of a classical blackboard architecture to include plan execution. Unlike

previous schemes, these additions allow Plethora to reason about the intent of an

action, the current state of the cell and asynchronous events within a single

framework. It is this seamless operation and extended representational adequacy that

allows Plethora to explore new techniques dealing with the uncertainty inherent in a

flexible work cell.

The task is specified in domain terms and interpreted to produce a partially

ordered set of goals. This new technique is based upon a two-stage ordering process

using constructional constraints and necessary collision avoidance.

Two new methods, one for object identification and the other for path

planning, have also been developed using the system. These have two advantages,

efficiency and the ability to operate on data from a vision system or Plethora's

geometric modeller. Both methods can be completed within the critical times typical

of an assembly work cell.

Finally, results of an experiment using the system on a laboratory work cell

illustrate how it encompasses previous techniques and can be used to develop new

techniques not possible with earlier architectures.

1

Publications

[l].Sillitoe,I.P.W.
"Towards Knowledge-Based Control of a Flexible Assembly Work cell",
lEE Colloquium on Knowledge Based Environments for Industrial Applications, Savoy Place
London,June 1989,pl-4. (see Appendix A)

[2].Sillitoe,I.P. W
"An Approach to the Programming of Distributed Shared Resources within an Experimental Robotic
Work cell", EuroFORML'90,Southampton,Oct. 1990. (see Appendix B)

[3].Sillitoe,I.P.W Edwards,I.
"A Multi-view Robotic Vision System for Efficient Object Recognition", Proc. Int.Conf. Systems
Science, Wroclaw,Poland 1989. (see Appendix D)

[4].Sillitoe,I.P.W. Edwards,J.
"The Design of a Real Time Three Dimensional Vision System for Object Identification",
Proceedings of the 12th Occam User Group, April,1990,p198-205 (see Appendix E)

[5].Sillitoe,I.P. W
"A Gross Motion Planner for Robot Path Generation", 6th International Conference on Systems
Engineering, Coventry, 1988,p499-504. (see Appendix F)

2

Structure of the Thesis

Figure 1. 0 shows the title of each chapter, followed by its chapter number and its

reliance upon information found in previous chapters.

Definition of the problem {1}
PreviouslWork {2}

______ 1---__
Communications{4} Control{3} Modelling {6}

Objects knd Rules {5} Object RkcognitiOn {7}

Path ~Ianning {8}

--------Experiments {9}
Impleme~tation {10}

ConcluSions {11}

Figure 1.0 Chapter Dependency

The first chapter initially describes the work within the wider context of flexible

manufacturing, it then proceeds to define a problem, which is a precursor to true

flexible manufacture, known as the Fitter Problem. The necessary requirements of a

solution to one aspect of the Fitter problem are then outlined. The following chapters

expand upon these requirements under the headings of communications, control and

modelling. Each chapter reviews previous techniques in the light of the requirements

specified in chapter 1 and then describes the approach taken in Plethora. Chapters 7

and 8 illustrate the use of Plethora as a tool for the development of new techniques.

Chapter 9 draws the individual aspects of Plethora together using a number

of small scale experiments. It illustrates the operation of Plethora as an entity and

allows a comparison to be made with other techniques. The penultimate chapter

3

discusses issues of implementation and Plethora's mapping on to different hardware

architectures. Chapter 11 addresses possible additions to Plethora and how it might

be used to tackle other facets of the Fitter Problem.

4

Background

Chapter 1

Introduction

In an attempt to adapt to competition within the market place, many industries

have recently moved away from large batch single product manufacture. Instead, such

industries have tended towards the manufacture of smaller batches of related products

and a corresponding frequent change in product line. The reasoning behind this

change in approach is two fold. Firstly, those manufactures which adapt to demand

most quickly will be the first into a new market and secondly, by tailoring its product

to a particular demand it is possible for the manufacturer to provide itself with a

niche in a particular market. The means by which this change in approach to

manufacture is achieved is the theme moving through flexible manufacture.

The cost of storage and investment in unsold product makes maintaining large

stocks of each product line uneconomic as an answer to the problem. However, with

the application of the "Just-in-Time"[l] (or Kanban) philosophy, successful attempts

have been made to solve some of the economic and managerial problems associated

with fluctuating demand, while still maintaining the necessary response time and

variation in product line. In such a system, the stock and flow of work within the

factory are controlled by the instantaneous demand for the product rather than the

predicted demand, so reducing the need for the maintenance of large stocks.

A similar argument can equally be applied to specialised manufacturing

equipment which has application to a single product, since such equipment when it

is not in use, also represents an additional cost of manufacture. Thus, in order that

the investment made in manufacturing equipment for a Just-In-Time system is most

effective, the equipment must be applicable or able to adapt to more than one

function[l]dictated by the demand for a particular product. A work cell which can

perform a number of related tasks is known loosely as a flexible work cell. In

practice, the creation of such a cell is very difficult to achieve and present day

flexible cells fall short of many of the attributes required of them by the rest of the

5

manufacturing system. Hence, the term flexible, when used within the literature,

often describes specific features of flexibility applied to particular aspects of the cell,

rather than the behaviour of the cell as a whole. Since this work is concerned with

the provision of flexible behaviour for the cell, the next section discusses the form

of flexibility which is required of the cell as an entity, in order that it might fit within

the wider framework of a flexible manufacturing system.

Manufacturing Equipment Flexibility

The flexibility of a work cell is ultimately dependent upon the answer to two

interrelated questions. Firstly, whether the equipment which constitutes the hardware

of the cell is capable of flexible operation (i.e can its jigs, grippers etc manipulate a

range of workpieces 7). Secondly, can the cell be made to change its behaviour

rapidly enough to adapt to the changes in external demand and the internal state of

the cell. The time taken to make these changes constitute the latencies of the cell.

Hence, the latencies of such a system can be regarded as being those formed from the

set-up times and those associated with the changes that take place in the cell at run

time. Set up time is the time taken to modify a machine prior to it beginning a new

operation. In conventional systems this would involve realignment of jigs and the

changing of tools. However, in a flexible system it will also include re-planning of

the operations, re-programming and perhaps a change in the sensors - a more

complex and time consuming task.

At run time the flexible system will also have new requirements over and

above those of the conventional system. Firstly, it must adapt to commands from the

overall factory scheduler. Secondly, it must adapt to local events outside the cell,

such as the variation in the arrival of parts, and thirdly, provide error/fault detection

and correction. This latter facility becomes a requirement because with the increased

flexibility of the manufacturing equipment, there will also be a greater uncertainty

associated with the state of the cell and its operation and hence a greater possibility

of error.

6 •

Summary

Ideally, a flexible assembly work cell should be able to assemble a large

number of different structures with differing work pieces and be able to change its

function with minimum latency. However, at present practical "flexible cells" (e.g

[2]) can only accommodate a few variations in structure and/or have large

latencies[l]. This is in part due to physical design of the work cell. Present work cells

are designed to minimise any uncertainty in the work piece's size, shape, type,

orientation and arrival, this in turn makes control of the cell a much simpler process

and reduces the cost of the software development to - 10% of the total cost of the

work cell[3]. However, this understandable striving for certainty, limits the

flexibility of the cell.

Thus as the cell hardware becomes less specific in order to allow flexible

behaviour, the complexity of the controller will radically increase, as one of its major

functions will include the reduction of the potentiallatencies within the system.

Objective
The objective of Plethora is to provide a framework in which the investigation

of methods to reduce the latencies can take place. More precisely the objective can

be reformulated in terms of the provision of the necessary requirements for the

solution of the Fitter problem. Where the Fitter problem is,

Given descriptions of,

The assembly to be carried out, in terms of the final
relationships between objects.

The effectors and sensors present in the work cell.

The initial state of the work cell.

dynamically schedule, control and monitor the assembly.

The solution of the Fitter problem is one of the precursors to a truly flexible assembly
cell.

7

The following section illustrates the deficiencies in present day commercial robotic

programming languages, task orientated languages and traditional expert system

architectures as a means of providing a basis for a solution to the Fitter problem.

Current Robot Programming Languages

Although current robot programming languages [e.g. 4-11], can be used to

deal with the procedural aspects of the cell (Le. to sequence and synchronise events

within the cell), they are for the most part based upon adapted general purpose

procedural languages (such as Basic and its derivative VAL [2]), and are as such

inappropriate tools for the solution of the Fitter problem, as [13]

They separate the control level from the user interface, so
that new algorithms cannot be easily tested.

They make communication with external devices difficult.

They emphasise the procedural component of programming,
making changes to the original system difficult and so
require all the error conditions. to be explicitly antiCipated.

They are not portable. between different work cells.

Many of them are not multi-tasking, which complicates the
synchronisation of actions within the cell. This often leads to a
sequential execution of a task which has a more natural parallel
solution.

There is no general way of handling sensor information.

They do not allow the user to specify the actions in
domain terms.

The fact that these apparent deficiencies are real, is borne out by the lack of use of

the controller language in most conventional industrial applications. In the majority

of industrial applications, actions are taught by guiding the end-effector through a

sequence of poses and storing them, the controller is then used to replay the motion

by continuously moving the robot between the sequence of stored poses. The teaching

process is usually completed without any recou'rse to the controllers language [13].

8

Task Orientated Languages

In the light of the previous list of deficiencies, it can be summarised that most

conventional robot language primitives do not correspond to the primitive actions of

the work cell and so make programming simple tasks overly complicated. For

example, picking up a workpiece from a pallet requires the calculation of the relative

transform between the gripper and pallet, which in turn requires the dimensions and

orientation to be known and programmed explicitly. A partial solution to this problem

is to specify the task in terms of the desired relationships between the parts, rather

than the robots action, so allowing the system to specify and calculate the necessary

transformations (i. e. a task level language).

Several attempts at task level languages have been made AL [14,15,16],

AUTOPASS [17], LAMA [18], RAPT [19] and LM-GEO [20]. In the main, the only

additional source of knowledge available to the controller was a 3D geometric

modeller, which modelled the position and shape of the objects within the cell. This

was used to save the user the inconvenience of calculating the relative frame

calculations required for point to point motion and for checking collision detection

off-line. LM-GEO used high level primitives to specify the final assembly and a set

of rewrite rules to produce the manipulator level program. LAMA, making most use

of the predictive aspect of its knowledge, exhaustively generated possible error

conditions and sensory states based upon the results of the 3D simulation and then

asked the user for corrective action.

However, such languages still share the major deficiencies of commercial

programming languages when coping with sensory data, extensibility and error

detection.

Knowledge as a Solution

The deficiencies highlighted by the previous section can be ameliorated by,

Increasing the amount of sensory information reported to the
controller.

9

Introducing knowledge of the cell's capabilities and
the assembly process to be undertaken into the controller. This
would allow the controller to make implicit use of sensor information
within the context of the task and specify the task in terms of the
required goals (i.e. domain terms).

Thus sensory information can be used to reduce the uncertainty of the physical

properties of the work cell. While knowledge of the assembly process and its

objectives allows planning, scheduling of action, error detection and correction in the

light of the state of the cell.

The production of reliable sensory information is notoriously difficult (see [21] for

an overview) and so while it will be necessary to improve the sensors there will also

be a need to make better use of the sensory information which is available. This can

once again be achieved if the sensory information is used in conjunction with

knowledge of the task. Such knowledge can be used in a number of ways,

To predict the likely form of the sensor data and use
previous data to refine the measurements made.

Predict the area of the sensor data required for the
accomplishment of a task and so reduce the processing time.
For example, picking the appropriate window of an image
which is predicted to hold the item required, rather than
processing the whole image plane.

Predict the form and value of the sensory data and so
automatically generate verification conditions for the completion
of the task.

Choose a processing strategy aimed at identifying a particular
feature for identification, rather than globally processing and
matching all the sensory data available.

Integrate diverse sensor data (i.e. using tactile, force
measurement and vision in order to validate a grasping operation)
so as to compensate for the deficiency in the individual sources.

Thus model based knowledge about the cell, sensors and task can be used to help

10

tackle the problems associated with the additional flexibility, unreliable or incomplete

sensory data and incomplete modelling which are to be found in a truly flexible cell.

Hence, prerequisites to a solution of the Fitter problem must include the answers to

the questions: What knowledge is to be introduced into the controller and how is the

controller to manage this knowledge?

Traditional Expert System Architectures

It has already been argued that if there is to be a solution to the Fitter

Problem, then more use of the available knowledge must be made (Le the

determination of verification strategies based upon the sensor information currently

available) and more knowledge sources will be required (Le. a data base which could

be used to determine the likely weight of an object and so help in the choice of

verification strategy). So the problem now becomes how to represent, manage and

utilize this increase in knowledge.

Many of the elements of the Fitter problem (i.e. piano movers path planning

problem discussed in Chapter 8) have general solutions which are NP-Complete as

well as having a number of more efficient partial solutions which only deal with a

particular case of the general problem. An efficient system, must therefore manage

a large number of techniques which each solve a particular case. The problem of

collation and selection of the most applicable technique is a well researched area in

expert system design and hence methods used within such systems could be suitable

for managing the knowledge within Plethora. However, some of the characteristics

of the Fitter problem are difficult to cope with within the structure of a conventional

expert system. These include, [22)

The problem has non-monotonic elements, making
retracting steps when planning and determining goals
in advance of execution very difficult.

The environment can only be partially predicted or known.
This is in part due to the lack of sensory data and partly
due to the incomplete modelling of the environment which
is inherent in any practical system.

11

Processing of sensory information can often produce
spurious results.

The processing of sensory information or the completion of
a physical action within the cell is often greater than the
time taken to specify the next action. Hence, errors in
selecting an action can dramatically reduce the efficiency
of the system.

The geographical separation makes it inherently distributed.

Possible changes in the structure and composition of the
cell during its lifetime.

Summary

It has been shown that neither procedural, task langauge or traditional expert

system architectures alone provide a basis for a solution to the Fitter problem. Rather

each has attributes which makes it applicable to some part of the problem and it is

these attributes which need to be included in a final solution. The procedural

languages provide for many of the real time needs of the cell, the task level languages

provides implicit task specification and techniques borrowed from expert system

. design, provide generalised techniques for management of the sources of knowledge

within the cell. However, these disparate techniques only provide partial answers and

still do not address the areas of distribution, planning, error recovery or the inclusion

of sensory data.

Conclusion

The necessary requirements for a solution to the Fitter problem cannot be

confined within a single existing framework. Many of the requirements have aspects

which straddle the boundaries of research areas which are usually regarded as distinct

(i.e. real-time control and knowledge based systems). However, if these requirements

are to be solved satisfactorily they need to be treated as an entity rather than forcing

parts of the problem into preconceived and artificial boundaries. This will require a

different architecture to those available at present, one centred upon the problem

requirements in context rather than conventional topic boundaries.

12

The general requirements of Plethora can be categorised under the following

headings.

Control
The selection and sequencing of both action and knowledge.

ctl. The ability to automatically generote and schedule, actions and plans.

et2. To automatically interpret sensory information within
the framework of the plan and actions.

ct3. To implicitly detect and cope with error conditions.

ct4. To provide a modular implementation which allows the
addition of knowledge sources and devices.

Knowledge
The type of knowledge and its form of representation.

knl. The provision of physical information about the contents of the cell.

kn2. The provision of relational information to plan and interpret the task.

kn3. The provision of information in a suitable form for its end use.

kn4. The provision of information rapidly enough to satisfy critical times.

Communication
The underlying mechanism by which the control is possible.

cm!. To be amenable to implementation in a distributed environment.

cm2. To have attributes which uniformly support both the real
time and knowledge based requirements of the system.

cm3. To adapt to changes in the structure of the cell.

Although these headings seem to form distinct categories, the solution for a particular

requirement cannot be seen in isolation and is dependent upon other chosen solutions

(Le. The choice of representation of relational information will effect the possible

choice of methods used to generate the plan).

13

What is Plethora?

Plethora is an experimental real time expert system shell consisting of loosely

coupled distributed agents. It is designed to assist in the achievement of the aims

above and thus endeavours to integrate knowledge based and real time techniques

within a single framework.

In common with other shells it provides many of the necessary resources for

the manipulation of the domain, and a method for introducing new user defined

techniques. In this case, Plethora provides a flexible control mechanism and

geometric modelling, relational modelling and vision preprocessing modules. Figure

1.0 illustrates the modules and their connection through a distributed message passing

system. The path planning and object recognition modules are examples of new user

defined techniques developed using Plethora.

User
r -~
c: ~
0
:0

E
.!!l -~ c

'" Qi
ij "C

0
CD :0 :0 0

2l :s
c CD

l'! E
CD 0

:5 CD
Cl

~
L--------1 £

~

-- 0
..!!! Cl)

Cl)

CD 2l "C
0 e
:0 Co

!'! iii
c a.
.2 c
OJ 0

CD
u;
;:;: a:

....................
Bi-directional Data

c:
~
c:

__ -IIo~-C) ..•..•..•..•..•.•..••• ~
8 Unl-directional Control

£
g
:c
O

Figure 1.0 Plethoras overall structure.

Plethora is an object based system and so new techniques or devices must only

conform to the simple message passing protoco!s in order that they may be added to

system.

14

Figure 1.0 also illustrates that the systems resources are controlled and

synchronised through a single centralised mechanism. However, Chapter 11 discusses

a method by which this may also be distributed providing a completely distributed

system.

The following chapters expand upon the requirements within the categories

above and describe the local solutions adopted and their influence upon the overall

design of Plethora.

15

References
[I) Lubben,R.T

"Just-In-Time Manufacturing: An Aggressive Manufacturing Strategy", McGraw-Hill,
ISBN 0-07-0389ll-X, 89.

(2) Williams,A.M. Walters,M. Reay,D.
, A Flexible Assembly Cell" and
'Commercially available flexible Assembly Cell',
AUTOMAN, May 85, Birmingham.

(3) Miles,B., Lucas Research Centre, Private Communication, Jan.85.
(4) Gruver,W.A Soroka,B.I. Craig,J.J. Turner,T.L.

'Evaluation of Commercially Available Robot Programming Languages', 13th ISIR, p12-58
12-68, 83.

(5) Wood,B.O., Fugelso,M.A.
"MCL : The Manufacturing Control Language' ,16th ISIR, p12-84, 86.

(6) Latombe,J.,Mazer,E.
"LM : A High Level Programming Language for Controlling Assembly Robots", II th ISIR,
p683-690, 81.

(7) Voltz,R.A. Mudge,T.N. Gal,D.A.
'Using ADA as a Robot System Programming Language', 16th ISIR, p12-42 12-57, 86.

[8) Haurat,A. Thomas,M.C.
"LMAC: A Language generator System for the Command of Industrial Robots", 16th ISIR,
p12-69 12-78, 86.

(9) Park,W.T
"The SRI Robot Programming System (RPS)", 16th ISIR, p12-21 12-41, 86.

(10) Hayward,V.,Paul,P.R.
"Robot Manipulator Control Under Unix", 16th ISIR, p20-32 20-44,86.

(11) Inoue,H. Ogasawara,T. Shiroshita,O. Natio,O.
'Design and Implementation Of High Level Robot Language", 16th ISIR,
p6-75 6-81, 86.

(12) VAL I User Manual, Unimation.
(13) Sorka,B.I.

"What Can't Robot Languages Do?", 15th ISIR, p12-1 12-8, 85.
(14) Goldman,R.

"Recent Work With the AL System", 5th IJCAI, vo!. 2, p733-735, 77.
[IS) Govindaraj,S. Doty,K,L.

"General Purpose Robot System and Task Development Facility", 16th ISIR,
p3-15 3-37, 86.

(16) Mujaba,M.S.
"Current Status of the AI Manipulator Programming System", 10th ISIR, p119-127, 80.

[17] Lieberman,L.I. Wesley,M.A.
"AUTOPASS: An Automatic Programming System for Computer Controlled Mechanical
Assembly" ,IBM Journal Of Research and Development, p321-333, July 77.

[18] Lozano-Perez,T. Winston,P.H.
"Lama: A Language For Automatic Mechanical Assembly", 5th IJCAI, p710-715, 77.

[19] Popplestone,R.J Ambler,A.P Bellos,I.M.
"An Interpreter for a Language for Describing Assemblies", Artificial Intelligence, vo!. 14,
p79-107,79.

(20) Mazer,E.
"LM-GEO: Geometric Programming of Assembly Robots", Advanced Software in Robotics,
Elsevier Science Publishers, 84.

[21] Coiffet,P.
"Interaction with the Environment", Robot Technology vol.2, Kogan Page,
ISBN 1-85091-402-8, 87.

[22] Building Expert Systems,
Edited by F.Hayes-Roth, D.A.Waterman and D.B Lenat, Addison-Wesley publications,
ISBN 0-201-10686-8,83.

16

Chapter 2

Control

This chapter describes how related work tackles control and scheduling

problems and then proceeds to discuss these architectures in the light of the Fitter

problem requirements.

Previous Work

The discussion draws upon work from both robotic assembly and related

domains which exhibit uncertainty (such as mobile robot and factory control) and

hence have requirements similar to those of the Fitter problem. However, as no single

piece of work directly addresses the Fitter problem (the closest being the work at

Purdue [1]), but all illustrate approaches to sub-problems of control within differing

architectures. A bald description of each approach is given followed by discussion of

the systems with respect to the requirements in Chapter 1.

The work has been categorised into three areas, that which has been

successfully applied to commercial work cells and factories, the approaches taken in

laboratory work cells and proposed approaches still under development.

Commercial

Thorn EMI

This work is applied to a commercial work cell [2] and broadly takes a

hierarchical approach to the control. The control [3] takes as its input a file

previously created by the user via a graphical simulation package, teach package

(used to teach the manipulator positions) and a task orientated program which enables

the user to create the final assembly sequence. The assembly sequence is interpreted

by the run time system to schedule the cells operations by communicating with the

cell's manipulator and PLC. The sequence is decomposed into Assembly, Component,

Task and Action levels, where the Action operations correspond to the possible

17

primitive functions within the cell and the Task level is described in terms of 3

primitives Pickup, Measure and Assemble (a full definition of what is meant by these

levels is not given). Errors are detected and recovered from using standard routines

developed for each of the levels, if the routine at one level cannot cope with an error

the error is passed up the hierarchy to be dealt with. The primary function of the

system is to allow the user to program the cell without the need to understand the

operation of its low level control, and so reduce the latencies associated with its re

programming.

FJymo

This work arose from the control of a commercial work cell producing

assemblies for Flymo lawn mowers [4]. Analysis of the errors in the cell showed that

for approximately 80% of the time the product was assembled correctly relying on

an operator to correct its operation for the remaining 20%. The assembly instructions

are described in terms of the following stages.

Component Feeding
Where a new component has to be brought within reach of the robot.

Component Transport
Once the new component has been fed into the cell, it has to be moved
from the feeding outlet to the point of assembly.

Component Mating
The joining of the components in an assembly.

The actions required to perform these operations are then formed into a library of

generic assembly actions. This library is implemented as a set of forward chaining

rules and include explicit error detection and correction strategies within the rule. The

problem solver uses these rules and the product file to control the assembly by

expanding each action in the assembly sequence in terms of the rules. The product

file created by the user contains explicit error detection-correction information, the

assembly sequence and expected sensor information associated with each action.

These expected values can be determined by taking the robot through the particular

action and recording the sensor data. During the execution of a task a History of the

18

progress of the plan is made by the rules on the History Stack. The History Stack is

a means of recording events, so that under error conditions not covered by the rules,

the operator can provide the correction strategy in the knowledge of the previous

actions undertaken by the cell. This procedure of adding error correction routines as

the error occurs is the means by which the system is said to "learn from its

mistakes".

Yet Another Manufacturing System (YAMS)

Unlike either of the previous approaches YAMS does not attempt to enumerate

what it understands to be all possibilities, but relies on negotiation between sources

of knowledge at run time to plan, execute and monitor, using current rather than

predicted information. Negotiation has been applied to a number of domains. The

protocol used by YAMS is a form of Contract Net[6], where the nodes in the net

represent the distributed computing resources to be managed (Le the machinery or

processes), and they communicate through messages, which are subject to fixed

protocols.

In any transaction there are 3 classes of node, the Manager, the Bidders and

the Contractor. The Manager is responsible for identifying the task to be done and

assigning the work to a particular node. The Bidders are the nodes which offer to

perform the task and the Contractor is the node which eventually succeeds in

obtaining the task. The protocol begins with the Manager broadcasting a

Task-Announcement, where upon the Bidders returns their Bids. The Manager then

evaluates the Bids and sends an Acknowledgement to the potential contractor, which

then Reports it acceptance.

Hence, rather than predicting the assignment of the task, a bidding process

takes place which makes use of the local knowledge available at run time. The system

uses pre-planned plan segments to decompose the task, "making the planning process

trivial" [6] and then uses negotiation to find nodes on which to process them. This

allows the system to adapt to external and unpredicted changes. For example, two

bidders volunteer themselves at the same time, however, if one of them is busy, the

19

Manager can then assign the task to the waiting node in preference to the busy one;

adapting the state of the system at run time. Modelling the whole system in order to

predict this state of affairs at a particular moment would have been a difficult and

uncertain process.

However, when this technique is applied in detail, modifications to the

protocol are needed in order to maintain an appropriate response time. This tends to

produce a complex and specific Managers which in turn makes it more difficult to

provide an integrated means of detecting and correcting errors. These problems are

due to three shortcomings referred to as [6] temporal, loading and spatial ignorance.

In general, it was concluded that the problems associated with the approach were the

result of a lack of global knowledge in scheduling decisions.

Laboratory

Hierarchical Control (HC)

HC is an approach to the control of large systems. It partitions the control into

hierarchical modules. Modules are only allowed to communicate with the modules

directly below or above them in the hierarchy. At each level of the hierarchy the

implementation of the strategy corresponds to an equivalent level of abstraction in the

problem domain. This should lead to a modular and so tractable solution, with all the

attendant advantages for design and maintenance of such a system.

Many systems call themselves hierarchical, however, to date only one has a

coherent methodology, defined levels and has been implemented in a number of

practical roles. This is the National Standards Bureau of America(NBS) approach [8-

14].

The NBS's theory of HC incorporates three parallel interconnected hierarchies

to model the 3 sources of information within such a system (see figure 2.0)

20

--

Feedback Proo&SSlng M_ Task Deoompolltlon

C

~
f f ,I ·1 I

le M ~
J
:S

Envlroment

Figure 2.0 NSB Computational Hierarchy.

A behaviour generating hierarchy, which decomposes
the task into sub-tasks

A sensory processing hierarchy, which extracts
information needed for the goal seeking behaviour.

A world modelling hierarchy, which generates
expectations and predictions for the sensory
processing modules at each level.

HC is defined as a task sharing or task decomposition technique and can be

represented as an AND/OR graph [8].

Each module's function is modelled as a state transition diagram and

implemented as a set of forward chaining condition-action rules. However, HC does

not allow more than one rule to be triggered for any particular set of input states.

This removes the need for any form of conflict resolution. The inputs to these rules

can be either the module above it in the hierarchy (i.e. that module's command), from

the sensory module at that level (i.e. feedback of the present state), from the module

21

,--- -

immediately below it in the hierarchy (i.e. status information of any initiated process)

or the present internal state of that particular module. The transfer function (H) of the

module, represented as a set of these forward chaining rules is regularly evoked

(every 20 msec in [10]), the action must be completed within a multiple of this

sampling period. This ensures a predictable and synchronised response. All results

are passed between modules via common memory and there is a unique location for

each transacted quantity.

HC provides a straight forward methodology and implementation for robot

control. However, the major limitation is inherent in the determination of the module

transfer function.

"H must provide a successful mapping of
StoP, even when there are small perturbations
in For C from previous modules· {8}

Small perturbations may be corrected by a low level feedback and may require

relatively little sensory information. Larger perturbations might overwhelm a

particular module and must be passed to a higher level in the hierarchy to be

resolved. This implies that not only explicit programming but explicit error recovery

be included in the state transition diagram [14]. For any complex system with

incomplete or inconsistent knowledge this will be the case and so leads to very large

and unwieldy state transition tables [14].

HC relies heavily on teaching the robot positions, and it's error recovery and

detection are provided by the programmer. The programmer monitors the robot's

performance of the task and modifies the state transition table accordingly. This is a

time consuming process and thus can be considered part of the setting up time.

Task Execution Modelling (NNS)

This project sets out to directly address the problems of on-line decision

making, action scheduling, execution monitoring and failure diagnosis and recovery.

It is a hierarchical system which for the sake of run time efficiency splits the problem

22

into off-line and on-line phases. In the off-line state it plans the task, and in doing so,

generates what it understands to be all possible evolutions of the on-line task. It

represents these as a directed graph of elementary actions. There is a one-to-one

correspondence between an elementary action and a NNS state transition. This

correspondence allows the system to restart after an error condition from a known and

enumerated state. States are described in terms of,

And
Sites- a place in the cell, intended to support a work piece.

Regions- a specific place in the work cell. which is
categon'sed by the type of effector motion that
is available within it.

The workpiece is related to a site using the transforms based upon posture, location

and accuracy.

On-line planning occurs either at the end of an elementary action, after a

failure or where explicitly stated in the off-line plan network. The planner is based

upon a set of plan heuristics which provide approximate solutions to a goal and

conflict resolution heuristics which select a path through the enumerated plan

network. A node in the network corresponds to a site and an arc corresponds to an

elementary action. Each arc has associated with it a set of constraints, which are used

to determine whether the action is feasible or relevant at run time. The precise

selection of actions is opportunistic, that is it is determined by the perceived state of

the world and chosen at run time by the monitor. If the run time system reports an

error predefined emergency actions are performed and the state of the system is sent

to the failure analysis modules. This module is to establish the likely cause of error

and to select corrective action from the plan network.

At present the failure analysis is not performed, so upon detection of an .error

all sensory information is requested and used to define the actual state within the plan

network.

23

Subsumption Architecture (SA)

This was developed as a means of the control for an autonomous mobile robot.

Instead of decomposing the problem of control hierarchical I y, the subsumption

architecture decomposes according to the required behavioural goals (see figure 2.1

Sensors -

Sensors -

c
~ l:I

c
o

5 C) u
·-c Cl Cl) 8 -a. == c: >< -'-0)'-

~ ~ ~ ~ ~
a.Ea.~E

(a)
reason about behaviour of objects
plan cl1anges to world
IdentifY objects
momtor changes
build maps
explore
wander
avoid objects

(b)

- Actuators

- Actuators

Figure 2.1 (a) Hierarchical Decomposition (b) Decomposition of mobile robot
control based upon task achieving behaviours.

for a comparison of the two forms). The lowest level is able to control the robot

alone but with restricted behavioural goals, the layer immediately above this modifies

the information flow within the first layer to produce more sophisticated behaviour

and so on until the required behaviour is produced. Hence, the goals are "hard-wired"

in the structure of such a system. A higher layer alters the behaviour of the lower

layer by inhibiting or replacing the data to and from modules within the lower layer.

The modules are implemented as state machines and the communication paths

between modules are fixed. If the higher layers do not produce a course of action

within the necessary critical time, this architecture has the advantage of being able

to react to an event safely even if that action is not the optimal one.

24

A modification to the means by which one layer effects another was

investigated in [17] using a simulated mobile robot and environment. In this

arrangement changes to the data flow were obtained by the upper layer altering a state

vector of the lower layer module. The intention of this simulation was to investigate

more rigorous means of designing such a system for given behaviours.

Current

Purdue

This is a continuing investigation into sensory systems and sensor-guided

motion within a knowledge based robotic assembly cell [1] and its objectives most

closely match those of the Fitter problem. The overall architecture of the system is

shown in figure 2.2, where the Supervisor coordinates and controls the system. It is

the Supervisor which receives the assembly instructions for the product, determines

the necessary sequence of operations, initiates and monitors them to complete the

task.

Sensory Subsystem

Global

Knowledge Base

Supervisor

Current World

Model

Figure 2.2 Purdue Architecture.

25

Motion Controller

The plan generation uses a slot-filler representation to expand the initial

product description by instantiating other frames with the contents of the Component

Plan slot to produce a hierarchical set of assembly instructions, the order of the

component plans in the slot reflects their execution order. Each frame has a Verify

field which verifies the correct completion of the plan and an Error slot which

provides an error handler if it fails. It is through these fields that sensory information

is used to guide the plan execution.

During the development of the plan, the planner SPAR [18] uses the modelled

uncertainty (the uncertainty calculations are based upon SUF/INF symbolic

manipulation [19]) to add sensing operations to the plan in order to reduce the

uncertainty, associated with an object after an operation, to an acceptable level.

Problem Analysis and Operator Hierarchy (PAOH)

The work focuses on efficient plan generation for assembly operations and

uses as an example the construction of a power supply [20]. The approach is to

decompose the assembly sequence using domain heuristics (known as Assembly

principles) to guide the sub-goal expansion and resolve conflicts by posting constraints

with the sub-goal with the intension of choosing the correct solution the first time[2l].

Constraints are conditions that must be satisfied before an operation sub-goal can be

executed. Constraints can either create new sub-goals or restrict existing operations

and are determined during plan generation (Note: these also include Scheduling

constraints). Each operation is named by the main goal it achieves, and the

representation explicitly expresses each abstract operation's refinement alternatives.

Thereby avoiding backtracking and eliminating the search for candidate operations.

A plan generator (see figure 2.3) follows the Structure analysis stage and uses

simple pattern matching to select the primitive assembly operations based upon the

component properties, constraints and the modelled status of the work cell. (Note:

The architecture uses a blackboard to hold its decisions and this aspect of the

approach is discussed further in Chapter 5).

26

Assembly Principles Workplece Structures

----Structure Analyser

~
Assembly Operations Assembly Sequence and Constraints

!
Plan Generator

~
Detailed Assembly Plan

Figure 2.3 PAOH Architecture.

Opportunistic Scheduling (OS)
The approach taken in [22] regards the planning of the assembly operations

and scheduling of those operations as two distinct stages. Planning is described using

a constraint language [23] which embodies the structural constraints of the system in

terms of clauses. The sequencing constraints are expressions composed from the

primitive ordering relationship X < Y (indicating that Y must be performed before X),

and the logical connectives AND ,OR and NOT. The scheduling of the actions uses the

constraints and the arrival of parts (which fulfil these constraints) to adapt the choice

of next action to the state of the cell and hence, the scheduling is opportunistic.

It was shown in simulation that this approach made more effective use of the

time available than traditional sequential scheduling techniques, since the scheduler

was able to perform tasks (such as sub-assembly construction or part buffering) when

it would otherwise be waiting for the arrival of parts. (Note: the scheduling

constraints are implicit and so require expansion during execution)

27

Discussion
In order that a coherent comparison of the different techniques can be made,

the discussion is couched in terms of the stages that are common to each (see figure

2.4) even if some of these are vestigial in a number of cases. However, the discussion

Determination of Assembly Sequence

J
Plan Execution

1
Error Detection

1
Error Correction

Figure 2.4 Common stages between approaches.

of SA is left until the summary since its architecture does not lend itself to the same

stages.

Determination of Assembly Sequences

In the case of the commercial systems a single detailed assembly sequence is

produced by the operator which contains predetermined predicted sensory information

to verify each action. This immediately limits the success of the assembly to that of

a single, but highly likely plan and when errors do occur, the option of graceful

termination requiring operator intervention. The plans are produced by decomposing

simple task orientated instructions into sequential Iow level control primitives and so

provide the potential for a limited degree of portabiIity.

28

NNS extends the previous approach by trying to automatically expand a

network of all possible sequences and events, to a point where the exact state of the

plan could be determined in terms of primitives state values. This provides added

flexibility and a means of reasoning about error correction, but begs the questions to

what degree of uncertainty and to what level of complexity can this approach be

taken. Fox [22] indicated that an exhaustive expansion would not have been feasible

in the case of his simple gearbox assembly consisting of 22 pieces.

The hierarchical approaches to sequence generation use hard coded expertise

in the form of state machines (HC) or contents of frame slots (Purdue) and so the

only means to deal with uncertainty is to increase the precision of its knowledge base.

In the case of the Purdue the alternatives are available to reason with in case of error,

whereas in He they are linked directly to the error recovery strategy via the model

and sensory modules of the hierarchy.

PAOH makes the knowledge used in the selection of sequence explicit in its

Assembly Principle heuristics and produces a constrained network of the most likely

assembly sequences. This is extensible and allows alternatives to be selected at run

time, although there is no method for error correction and detection reported. The use

of a precedence diagram by Fox has similar advantages.

Plan Execution

An evolution of sophistication is illustrated by the Thorn, Flymo, OS and

YAMS methods of plan execution. The method employed in the Thorn work simply

takes the next action from the sequence and executes it, while the Flymo execution

is under the control of rules which can be modified. Fox chooses the next action

based upon the validity of preconditions and fixed heuristics which allows the plan

execution to adapt to part availability. While YAMS delays planning until it is

required and hence, not only is the choice of actions influenced by the current state

of the world but so is the initial plan generation.

29

Error Detection

In all systems concerned with error detection the approach is to make use of

hard coded techniques attached to a particular level or frame and whose detection and

possible action is based upon local knowledge of that operation. Although, this is

successful when dealing with a limited degree of uncertainty the use of this technique

alone makes the detection of sub-goal interaction difficult to detect and identify

precisely, during plan execution.

Error Correction

The forms of error correction available to a system are closely allied to it's

representation and the generation of it's assembly sequence. Since in all but PAOH,

the reasoning behind the choice of a particular action is implicit and hidden at run

time (Note: In PAOH previous reasoning about the plan is not used during the

execution of the plan), the systems have only limited forms of dynamic replanning.

They are able to reason about sensory information in any other way than is specified

by the local error correction routine. For this reason, in the main, error correction

takes the form of a graceful termination.

Summary

When comparing these systems with the requirements given in Chapter 1, it

can seen that the Purdue and YAMS approaches come closest to achieving the control

requirements, since they both are able to generate and schedule plans (ctl) and to a

limited degree they interpret sensory information (ct2). However, they are less

successful when coping with errors (ct3) and do not address ct4. A direct comparison

with the knowledge attributes and knl-kn4 is not possible as each system was

designed to fulfil differing control requirements. YAMS as the only truly distributed

system and which had similar communications requirements, can be said to fulfil cml

and cm2, but as reported, had difficulty maintaining the flexibility of the original

design resulting in its failure to achieve ct4 and ct3.

30

The problems associated with control in the previous approaches derive from

the separation of the planning, execution and monitoring processes into discrete

stages. This results in useful information generated during one stage being hidden

from another (e.g. the intent of a particular action determined in the planning stage

is hidden from the monitoring stage, where it could be used to help determine error

detection/correction strategies). However, a number of important principles have been

highlighted,

Specialised planning techniques (e.g. PAOH) were shown to be more efficient
than those based upon domain independent applications and so are applicable
to Plethora.

The plan should be a network which includes the reasoning behind the
planning decisions, so that during execution more extensive error detection and
correction strategies can be performed.

Similarly, decisions taken during execution should be stated explicitly.

Because of imprecise knowledge there must also be a means of reasoning
about unexpected events and re planning in the context of the plan.

Selecting the action from the plan network needs to occur opportunistically.

SA has a number of inherent advantages which the other architectures find it

difficult to achieve. Firstly, the approach does away with the need for explicit

representation of the domain (Chapter 6 discusses the problems associated with such

representations) and instead relies upon sensory information and pre-coded simple

behaviours to achieve the overall goal. Secondly, its structure naturally allows it to

react to external events within the necessary critical times.

The disadvantages are that, at present, the design of such systems are ad hoc

and that it would be difficult to introduce the complex goal orientated behaviour

required to construct a number of differing assemblies. However, the advantages of

SA could be utilised, if it was used as an element in a sensor based strategy and

under the control of a goal orientated architecture.

31

The following chapter describes the approach to control taken in Plethora,

which maintains the advantageous characteristics of PAOH and OS while providing

a coherent approach to the area of error detection/correction. The approach is based

upon incremental opportunism, where a partial plan network, the background

reasoning for that plan and sensory information can be used to schedule and monitor

the execution of the task. It has the advantage of not enumerating all the possible

contingencies and provides a coherent/integrated approach to planning and error

recovery.

32

References
[I] Kak,A.C. Boyer,K.1. Chen,C.h. Safranek,R.j. Yang,H.s.

"A Knowledge-Based Robotic Assembly Cell", IEEE Expert, p63-83, Spring 86.
[2] WilIiams,A.M. Walters,M. Reay,D.

"A Flexible Assembly Cell", AUTOMAN, May, 85, Birmingham.
[3] WilIiams,A.M. Walters,M. Reay,D.

"Commercially Available Flexible Assembly CeW, AUTOMAN, May 85, Birmingham.
[4] Selke,K. Swift,G.E. Pugh,A, Davey,S.N. Deacon,G.E.

"Knowledge-Based Robotic Assembly- A Step Further Towards Flexibility", Computer-Aided
Engineering Journal, Feb. 87, p62-67.

[5] Selke,K. Shen,H.C. Deacon,G.E. Pugh,A.
'A Strategy for Sensors and Rules in Flexible Robotic Assembly', Internationalloumal of
Production Engineering, p100-1l8, July 88.

[6] Pamack, Van Dyke.
"Manufacturing Experience with Contract Net', Distributed Artificial Intelligence, Chap. 10,
ISBN 0-934613-38-9, 87.

[7] R.G. Smith,
'The Contract Net Protocol: High-level Communication and Control in a Distributed Problem
Solver", IEEE Trans. Computers, C-29:12, pll04-ll13, 80.

[8] Albus,J.S Barbera,A.l Nageal,R.N.
'Theory and Practice of Hierarchical Control', Proc. 23rd IEEE Comp. Soc. Int. Conf., 87,
pI8-39.

[9] Barbera,A.l. Albus,J.S Fitzgerald,M.L.
'Hierarchical Control of Robots Using Microcomputers", 15th ISIR, p405-22, 85.

[10] Albus,J.S. Barbera,J.A Fitzgerald,M.L.
"Programming A Hierarchical Robot control System', 12th ISIR, p505-517, 82.

[11] Albus,I.S. Barbera,A.l. Fitzgerald,M.L
"Hierarchical Control For sensory Interactive Robots', 11th ISIR, p497-505, 81.

[12] Shneier,M et al.
'Robot Sensing for Hierarchical Control System", 16th ISIR, pI450-1466, 86.

[13] Albus,J.S. McLean,C.R. Barbera,A.l. Fizgerald,M.L.
"Hierarchical Control For robots in an Automated Factory", 13th ISIR, p13-29 13-24, 83.

[14] Barbera,A.l. Fitzgerald,M.L. Albus,J.S. Haynes,L.S.
'RCS : The NBS Real-time Control System", 16th ISIR, p19-1 19-33, 86.

[IS] Chocon,H. R.,Almai
"NNS,A knowledge-Based On-line System For an Assembly CeW, Proc. IEEE Int. Conf.
Robotics and Automation, p603-609, 86.

[16] Brooks,R.A.
"A Robust layered Control System for a Mobile Robot" ,IEEE Journal of Robotics and
Automation, Vol. RA-2, No.I, p14-23, March 86.

[17] Booth,C.l.M. Mayhew,I.E.W
"A Sideways Look at Task Decomposition", lEE Colloquium Computing and Control,
Knowledge based Environments for Industrial Applications, p6/1-6/3, June 89.

[18] Kak,C.A Hutchinson,S.A
"SPAR: A planner that Satisfies Operational and Geometric Goals m Uncertain
Environments", Artificial Intelligence Magazine, vol. 11, no.I, p30-6I, 90.

[19] Brooks,R.A
"Symbolic Reasoning among 3D Models and 2D Images", Artificial Intelligence, vol.17,
p285-348, 80.

[20] Chang,K. Wee,W.G.
"A Knowledge-Based Planning System for Mechanical Assembly using Robots", IEEE Expert,
pI8-30, Spring 88.

33

l
I

[21) Chang,K. Wee,W.G.
"A Planning Model with Problem Analysis and Operator Hierarchy", IEEE PAMI, Vol.lO,
No.5, p672-675, Sept. 88.

[22) Fox,B.R Kempf,K.G
"Opportunistic Scheduling For Robotic Assembly", IEEE Int.Conf. Robotics and Automation,
p880-889, 85.

[23) Fox,B.R Kempf,K.G
"A Representation for Opportunistic Scheduling", IEEE Int. Conf. Robotics and Automation,
pl09-115, 86.

34

Chapter 3

Knowledge Based Control of Resources

This chapter addresses the questions highlighted in the previous chapter which

were concerned with the control and scheduling of resources within the system. The

chapter describes a knowledge based control technique which tackles many of these

problems directly. It proceeds to discuss the drawbacks associated with the technique

and the modifications to overcome these difficulties.

The control structure described does not provide a complete solution to the

control of resources, but provides a framework within which the requirements of such

a system can be met. Exactly how the system will perform depends upon the

knowledge and strategies provided by the user. Hence, this framework can be thought

of as a real time expert system, which defines the overall architecture and controls

the facilities which will be used to plan and execute the action of the cell. Chapter 9

illustrates the use of the framework.

Planning and Control

Planning is defined, by Hayes-Roth [1], as the predetermination of a course

of action aimed at achieving some goal. This is followed by a stage which maintains

and guides the plan execution to a successful conclusion. This stage Hayes-Roth refers

to as control (Fox[2] refers to the same stage as scheduling). Although these stages

are conceptually separate they are not necessarily monolithic, and within the domain

of the work cell it is advantageous if these stages are interwoven. It will be shown

that this helps the system to cope with unpredicted situations and sub-goal interactions

which only occur at execution.

Incremental opportunism [1] is a paradigm which can produce this form of

interleaving ,and is the one adopted as the basis for the system's architecture.

Incremental Opportunism assumes that planning comprises of the activities of a

variety of cognitive "specialists". Each specialist can suggest certain kinds of

decisions for incorporation into the plan. These include decisions about: (a) how to

35

approach the planning problem; (b) what knowledge bears on the problem; (c) what

kinds of actions to try to plan; and (d) how to allocate cognitive resources during

planning. The activities of the various specialists are not coordinated in any

systematic way. Instead the specialists operate opportunistically, suggesting decisions

whenever promising opportunities arise.

Why Incremental Opportunism?

Incremental Opportunism has the ability to schedule resources based upon past

planning action (both successful and unsuccessful), current knowledge and the intent

of the plan. Unlike NNS and He, the reasoning behind the choices made in the

planning stages is available to the scheduling mechanism at run time. Hence, these

two forms of knowledge which are not available in the previous schemes (Le. the

intent of the plan and original reasoning process) can be used, when selecting between

run time actions or modifying the plan during execution. Partially evolved alternatives

developed in the planning stage, may become more attractive than the pre-planned

course of events when a more complete knowledge of the state is available at run

time. The intent, is represented by a record of the reasoning which took place during

the plan's generation. This can be used to select the action at run time in the context

of the plan's global goals, reducing sub-goal interaction which often occurs when

local knowledge is the only basis for selection (as was the case with YAMS).

Thus, the architecture not only provides the system with the advantages of a

partial plan network which may be opportunistically executed, but in addition it also

has the capacity to incorporate global knowledge into the scheduling decisions.

Fox [2] has already shown that when a form of opportunistic scheduling, based

upon the availability of the parts at run time, is compared with simple deterministic

strategies (similar to the technique employed in HC) the opportunistic approach

results in a higher rate of construction.

The approach here is to extend the opportunistic paradigm to the planning and

execution stages and to do this within a single integrated framework, enabling

decisions generated at different stages to be incorporated within any other stage. The

additional knowledge available to the scheduler will make it possible to adapt to

36

circumstances other than just part availability. Since, by making use of the knowledge

of previous stages it may decide to, abandon the whole assembly based upon global

knowledge of the problem; try to patch up the problem by local reasoning about the

alternative solutions to a particular goal; or restart a separate assembly with the parts

already correctly assembled. These alternatives are not possible if the scheduling is

based upon local knowledge alone. In a later example, Fox's technique will be shown

to be encompassed as a sub-technique within Plethora's more comprehensive

architecture.

The Mechanism of an Incremental Opportunism System

There have been many systems based upon incremental opportunism (e.g.

speech recognition [3-5], signal processing [6]) these systems have culminated in the

BBI architecture [7]. BB! provides a more rigorous definition of its behavioural goals

and has been shown to encompass the features of previous systems (e.g meta

planning[8]). Since the aim of Plethora is to extend the traditional incremental

opportunism to include the execution of the plan, BBI is taken as the basis for

Plethora's blackboard. What follows is a brief description of the essential details of

BB!, how it fulfils its behavioural goals, the problems and limitations of the

architecture as a solution to the Fitter problem, and the extensions employed within

Plethora. The behavioural goals of BB! are

1. Make explicit the control decisions that solve the control problem.

2. Decide what actions to perform by reconciling independent decisions about
what actions are desirable and what actions are feasible.

3. Adopt variable grain-size control heuristics.

4. Adopt control heuristics that focus on whatever action attributes are useful
in the current problem-solving situation.

5. Adopt, retain and discard individual control heuristics in response to
problem solving situations.

6. Decide how to integrate multiple control heuristics of varying importance.

7. Dynamically plan strategic sequences of actions.

8. Reason about the relative priorities of domain and control actions.

37

BB! Architecture

Opportunistic planning is a co-operative scheme comprising of a number of

cognitive or Knowledge Specialists (KS), which suggest decisions to be incorporated

in to the plan, and a global data structure (known as the blackboard,BB) on which

these decisions are kept.

Knowledge specialists

KSs proffer what knowledge they have to the planning process, whenever they

recognise a goal or particular conjunction of goals and states. They do this by

returning a Knowledge Source Activation Record (KSAR) to a central selection

mechanism. This KSAR holds the context within which the KS volunteered its

resources. Each specialist suggests decisions at a specific level of abstraction within

BB1 KS
f--- Name : Identifying label.

1---Problem-Domain: Domain(s) of application.

f---- Description : Characteristic behaviour.

f--__ Condition : Situation of Interest.

f--_Trigger : Event based predicates.

f---- Pre-condition : State based predicates.

f--__ Condition-Vars : Specification of variables.

I-__ Scheduling-Vars : Specificiation of variables.

'--__ Action : Program blackboard changes.

Figure 3.0 BBI KS structure.

38

the plan, and they make their suggestions whenever the opportunity arises. KSs take

the form of modified pattern-directed condition-action rules (see figure 3.0) and

suggest such things as, what action to plan next and how to allocate resources. The

Trigger and Precondition must be true before the knowledge is applicable and the

Action defines the behaviour of the KS.

The system does not distinguish between the selection of planning or

scheduling decisions when choosing its next action. This makes it possible to swap

between planning and control stages as the plan progresses. It also makes it possible

for the planner to swap between search strategies during a particular stage. It could

initially apply a successive refinement (i.e. top down) strategy during the preliminary

stages of planning, by preferring gradually less abstract decisions and so allowing

constraints discovered in the planning process to guide the selection of the decisions.

And then apply bottom-up strategies during the scheduling phases, which allow low

level refinements of the previous plan or expansion of an alternative plan based upon

temporal constraints or sensory information. A decision in BB! has the fields shown

in figure 3.1.

Control Decision
Name : Identifying level and number.

Goal : Prescribed action.
Criterion: Expiration Condition.

Weight : Goal Importance.

Rationale: Reason for goal.
Creator : KSAR that created the decision.
Source : Triggering decision.
Type : Role in control plan.

Status : Function in the control plan.
First-Cycle: First operative cycle.

Last-Cycle: Last operative cycle.

Figure 3.1 The fields of a decision in the BB! system.

39

Blackboard Structure

Most opportunistic systems record the decisions on a common global data

structure, known as a blackboard. KSs communicate and interact with the blackboard,

and in most systems they cannot communicate with each other (unlike the Contract

Net in YAMS). The blackboard is partitioned into a number of planes, each of which

contains conceptually different categories of decisions. The planes are then further

partitioned into levels of abstraction. This serves two purposes. Firstly, it provides

a conceptual taxonomy of decisions. Secondly, it restricts the number of decisions that

a KS must examine before making a contribution. The BBl blackboard has two

planes, the Control and Domain planes, each of which is partitioned in a number of

levels shown in figures 3.2. The Control plane holds those decisions which control

the search, while the Domain plane holds those which directly solve the domain

objective of the system, known as the Outcome.

BB1

Control Plane

Conflict Set

Problem

Strategy

Focus

Policy

Domain Plane

1---- Outcome

Design

Procedure

Operation

t= Trigger-List

Invocable-List

Chosen-Action-List

Figure 3.2 BB! Blackboard Structure.

The categories of decisions contained within the levels of Control and Domain planes

are as follows,

40

--------------------------------- -

Problem decisions represent the problem the system has decided to solve and
guides the entire problem solving episode.

Strategy decisions establish general sequential plans for problem solving.

Focus decisions are used to rate KSARs and influence the final choice of
KSAR. They are volunteered by strategic KSs.

Policy decisions are long term and general scheduling criteria used to rate
KSARs.

Outcome decisions represent the domain task to be solved.

Design decisions determine the general partition or approach to the Outcomes
solution.

Procedure decisions are sequences of tasks, which are determined by the
design, to solve the Outcome.

Operation decisions describe the means by which a procedure decision is to
be achieved.

Under the control of an executive, the planning process proceeds through a

series of cycles during which, KSs execute their actions, record their changes on the

blackboard and in doing so, trigger new KSs for the next cycle. This continues

incrementally until a plan is generated which fulfils the evaluation criteria found in

the Problem and Outcome goals. The executive, which controls the problem solving

cycle, is itself a set of modified KSs known as the BASIC-KSs. Thus even the

operation of the basic inference mechanism can be modified in accordance with the

state of the plan.

Conflict Resolution

The selection of which KSARs action is to performed, is made through the

control decisions entered in the Strategy, Focus and Policy levels of Control plane of

the blackboard.

Strategies.

Strategies are used to control entries at the Focus level. A Strategy control

decision may encompass a sequence of Focus level decisions made as the strategy and

plan progress. The Strategy decisions therefore do not directly influence the

41

Figure 3.3 KSAR fields.

scheduling decisions, but influence them indirectly through the Focus decisions they

implement.

Foci

Focus decisions establish local problem solving objectives which prefer the

execution of KSARs with particular attributes. They are used to modify the ratings

of the KSARs at the beginning of each problem solving cycle. Focus decisions are

temporary and several complementary or competing Focus decisions may operate

simultaneously. Policy decisions establish global scheduling decisions, but in contrast

to Focus decisions, usually remain active throughout the life of the plan.

Conflict Set Generation

In BB! the set of all pending KSARs (see figure 3.3 for details of KSAR

fields) are held within the TO-DO-SET. This is formed of two lists, the Trigger-List

and the Invocable-List. The Trigger-List holds all KSARs that have been triggered by

blackboard activity. The Invocable-List holds those KSARs which have been triggered

and whose preconditions are true (i.e. whose original context is still valid and so the

42

KSs action is still appropriate). If during the problem solving process Invocable-List

KSARs are no longer invocable, they are transferred to the Trigger-List. Hence, the

precondition field allows the problem solving behaviour to adapt to the dynamic

effects of the plan and perceived state of the world, by continually changing the set

of viable actions from which the next action can be chosen.

Attention Focusing

Figure 3.4 illustrates how a simple depth first search strategy could be

implemented using the attention focusing technique in BBI (see [9] for a detailed

Problem pro(O)

Strategy so{2)

Focus f1 (3) 12(5) 13(7)

Policy pO(O),p1 (O)

Outcome 00(1)

Design d1(4)

Procedure pr1 (6),pr2(6},pr3(6)

Operation op1 (8},op2(8),op3(8)

_________________ '~ Cycles

Figure 3.4 BB! blackboard contents during depth first search.

description of the technique). Assume that initially Problem PRO and the Polices PO

and PI are already on the blackboard. After 00 is entered a number of design KSARs

volunteer to solve 00 and SO volunteers to solve the conjunction of PRO and 00.

43

However, SO becomes the Chosen-Action and is executed, since it has the highest

rating under the Polices on the blackboard. This results in a Focus entry preferring

KSARs which solve the Design level problems of 00. On the next cycle, the

previously volunteered Design KSARs are preferred and one of them, Dl, is selected

based upon its efficiency rating. This fulfils the Focus's criteria and a new Focus,

preferring KSARs with action levels at the procedure level, is volunteered by SO and

entered on the blackboard. This alternation between the selection of domain and

control decisions continues until the Strategy terminates. (Note: the numbers

contained in the braces in figure 3.4 indicate the blackboard cycle during which the

decision was entered).

At any time during this process SO could have been replaced or augmented by

another Strategy, if that Strategy had recognised a context within the blackboard for

which its knowledge would have been suitable. It is in this manner that the focus of

attention can be made to change in tune with each new decision.

Summary

Incremental opportunism appears to be a comprehensive and complex model

for planning, since not only can it reason about its outcome, but it can also reason

about the strategies and inference mechanisms which are to be used at different points

within the plan. The complexity accounts for the wide range of possible planning

styles it can accommodate (see [7] for illustrations), and the way it can be made to

adapt to the state of the plan.

The ability to swap between planning and scheduling within a single

framework is of particular importance in the work cell domain, since sensory data

could then be used to influence both the planning and scheduling decisions.

44

Apparent Complexity

The disadvantage of the adopting a blackboard approach to on-line reasoning

appears to be the increased time spent by the blackboard during its conflict resolution

scheme, when it is compared with simpler schemes. The following section shows that

this concern is more apparent than real. Firstly, by discussing the efficacy of other

planning representations and secondly, the mechanism by which incremental

opportunism is implemented.

Plan Representations

In simpler control schemes (see [10] for a overview) the state of the world and

plan are represented as lists which hold the domain state, changes are made by rules

, which add and delete states. These rules model the actions made on the world.

Selection of the applicable rules is made based upon the contents of the add states and

in its simplest form, implicit conflict resolution using fixed heuristics and a depth first

search are used to secure a solution. When backtracking to a previous point in the

plan, the effect of the rule must be retracted. This is done by adding the properties

in the delete list and deleting the properties in the add list of the rule. More

complicated control strategies employ general heuristics to guide the selection. These

are designed to reduce sub-goal interaction or leave goal ordering to the last

opportunity (known as the least-commitment strategy [11]).

However, since only the changes to the current state are recorded, in order to

follow a new line of reasoning the old line must be discarded by retracting each of

the actions it made on the world. There will be no trace of the reasoning which took

place, and the effort expended when solving a particular sub-problem might be

expended yet again in the new line.

When such a paradigm is applied to large state space, the cost of retraction

and backtracking becomes so significant that it dominates the systems response time

[10]. This'is the case for the Fitter problem during both planning and execution. Even

for the simplest practical assembly, there are a large number of alternative orders in

which the assembly may be constructed (see Fox [2] for a quantitative discussion of

this point). Also during execution, there is uncertainty associated with each action or

45

sensed event. Hence, the Fitter Problem is a large state space problem.

In blackboard schemes, the representation and generation of the conflict sets

are similar to those used in the simpler schemes, but the determination of the chosen

rule for execution is very much more sophisticated. The methods of selection are

explicitly represented as Strategies. which allows the system to reason about its own

reasoning and for this to be changed accordingly (i.e. meta-reasoning). The activity

of particular Strategies can be made dependent upon the state of the plan, external

events or the availability of operators. Since these control Strategies are contained

within the control plane of the blackboard as decisions, they also can be employed or

discarded in response to changes in the planning process or external events. The

adaptability of the control Strategies. and explicit representation of previous or

alternative planning, reduces the search time in large state space problems by tailoring

the search technique to the circumstances of the plan.

The blackboard structure also allows the system to make use of the results of

competing solutions. Once some item has been discovered and entered on the

blackboard it can be used by any KS, this reduces the likelihood of rediscovering or

re-evaluating the same piece of information over and over again. Hence, the

comparative response time between the blackboard and a simpler approach is not as

critical as first imagined. This is particularly so during execution, where the explicit

representation of previous reasoning can be used to reduce the computation necessary

at run time.

Implementation

It has been illustrated [12] that with a suitable choice of implementation the

absolute response of such a system can be improved in two ways. Firstly, if the ratio

of conflict resolution time to action execution time is kept to 1\10, then the action

time dominates the response of this system. (Note: this is not surprising, since this

is also the-rule of thumb used in the design of data flow machines [13]). So, the KSs

need to be large grained, which suits the domain characteristics.

46

Secondly, [12] showed how the elements within the basic inference cycle of

the blackboard can be made to run asynchronously, by overlapping the conflict set

generation, conflict resolution and execution of KS action, and that this resulted in

shorter response times.

The "pipelining" of the system's basic cycle can be extended further, given

that the system is partitioned so that KSs are distributed across a number of

processors, and that changes in the BB are broadcast to the processors. Since this

would now allow the generation of the KSARs (which takes place each cycle) to take

place in parallel, rather than sequentially as is the case in traditional systems (e.g.

BBl). Once again this suits the distributed nature of the domain.

Summary

It has been shown in [7] that the 8 inferential goals are achieved by the

blackboard architecture, and also that these goals are sufficient for the planning stages

of Plethora. However, the architecture does not deal with the additional problems of

execution of the plan in an uncertain environment, where errors and asynchronous

events not under the control of the architecture can occur. Thus, since it is argued in

Chapter 2 that many of these goals are also adequate for execution, Plethora makes

additions to the architecture which maintains them during execution. The following

section describes the additions to BB 1 found in Plethora.

Plethora's Blackboard

In BB I there is no means of representing the progress of the execution of the

plan, this will be necessary if any of the BB! behavioural goals are to be supported

during execution. Hence, Plethora has an additional plane within the blackboard on

which decisions and external events are reported. It uses this plane in conjunction

with a slightly modified blackboard execution cycle, to extend the mechanisms which

implement the behavioural goals found in the planning to the execution stage. Taking

this approach (rather than providing a separate control plane for the execution of the

plan) allows Plethora to operate on the decisions made in this area of the blackboard

in the same manner as in the other planes.

47

Thus decisions can be made between whether to reason about the plan or its

state, react to changing events, or instigate new actions, in the light of all the

knowledge contained on the Blackboard and current state of the external world. This

is also performed in a seamless fashion, since the same selection mechanism is used

for all phases of Plethora's operation. Hence, the full power of the blackboard

architecture found in planning can be applied to the execution phase (so maintaining

the behavioural goals during execution).

Execution Plane

The levels within the execution plane are Event, Reason, Error and Solution

Plethor BB

"'Me
Control

~
Problem
Strategy
Focus
Policy

Domain

~
g~;Tg:e
Procedure
Operation
~mlllsm0n~l!on

IElCElWlion

g Event
RSSloon
IEiror
S<o!ulioll

Conflict Set '= r .. Qo.Ust L InlOmol-Chooen-ACOIon
~

Figure 3.5 Plethora's BB Structure.

forming the overall BB structure shown in figure 3.5, where the additions to the

structure are outlined.

48

Event Level

The event level holds decisions which represent the occurrence of

asynchronous events (Le. external to those directly under the control of the

blackboard). They might be reported by the Chosen-Action KS during its execution

or by another KS which as a result of the Chosen-Action detects changing in the cell.

An example of two such KSs would be, a KS which controls a gripper and another

which monitors the state of proximity sensors attached to the jaws of the gripper. The

combined state of these sensors can be used to indicate the presence of an object

within the jaws (see [14] for a more detailed description of this technique). Hence,

given that the Chosen-Action is to grasp, the KS responds by closing the jaws and

reports an Event confirming this fact. The sensor KS will also report an Event based

upon the condition of it's sensors, and so may serve to confirm or deny that the

object was grasped. Once an Event has been entered on the Blackboard it is broadcast

in the same manner as other decisions.

The possibility of breaking the conventional feedback loop between sensor and

actuator, to include the blackboard has a two fold advantage. Firstly, it allows sensors

to be changed without modification to the grasp KS and secondly, allows the system

to apply all the knowledge available to Plethora if an error had occurred. (Note: It

is initially assumed by Plethora that an Event occurs as a result of the current chosen

action and so is linked to the Chosen-Action. Although, this can be modified by a KS

if it has specific knowledge to the contrary.)

Reason Level

These decisions allow KSs to postulate Reasons for an Event in the form of

a goal, which it thinks has been achieved and given rise to the Event (Le. the object

has slipped out of the jaws or was never there in the first place).

Error Level

These decisions indicate and describe a possible error which has occurred

during the execution of the chosen action. These can be, entered by the chosen action

KS itself, identified by other KSs as a result of knowledge of the goal which is to be

satisfied by the Chosen-Action, or as a result of Events and Reasons which have

49

occurred during its execution. A number of possible competing Error decisions can

be associated with an Event/Reason or a single Error might encompass a number of

Events. In the grasping example the proximity sensor KS might have reported an

Event indicating the gripper was empty, a Reason KS proffered that "the object has

slipped from the jaws", and an Error decision produced which indicates the violation

of the grasp goal (i. e. the gripper cannot be closed and be empty and still have

grasped an object).

Solution Level

Solutions proffer goals to correct those in Error decisions. and are used to

trigger Strategies in the Control plane to coordinate a solution. This allows the choice

of Solution and Strategy to be made in context of the complete plan rather than in

local isolation. As a result it becomes possible to base further action upon previous

execution history, the intent of a higher goal or a previously existing constraint (e.g.

a more important goal should be achieved, in preference to correcting this error).

Examples of solution KSs reasoning might include, all chosen actions associated with

the chosen solution to the Operative goal have had problems, so choose another

method of achieving the implementation goal; or relocate the object before trying

again.

Hence, the levels mirror the explicit reasoning for the execution of actions and

resolution of external events, found in the Domain plane when planning.

Chosen External Action

However, if this was the complete structure of the BB there would be no

means of reasoning during the execution of an action which had its effects within the

cell. Since the Chosen-Action level would hold the external action's KSAR until it's

completion. Hence, there would be no means for the blackboard to make use of the

Events which occur during the action, as this would require additions to the Chosen

Action level.

To this end the Chosen-Action level found in BBI is split into two further

levels within Plethora, the Chosen-Internal-Action and Chosen-External-Action. The

50

former holds the KSARs which only effect the contents of Plethora and the latter,

those which have external effects upon the cell (e.g. moving the manipulator).

Thus during the execution of an external action Plethora can still reason about

the progress of the task or plan further actions. Such decisions would be made using

the Chosen-Internal-Action level, while the external action KSAR would remain

undisturbed on the Chosen-External-Action level.

External actions can be of the order of seconds and so this pipelining can

contribute significantly to the efficiency of Plethora, especially when replanning an

action after an error. It also enables Plethora to react to errors before the completion

of the external action.

Confidence

In BBl each decision has associated with it a Weight. The Weight indicates the

importance of achieving a goal and is initially determined by the instigating KS during

planning. However, Plethora unlike BBl, reasons about the execution of the plan

based upon information provided by sensors. Sensory information is local knowledge

and its interpretation is prone to error, and often when determining the success of a

goal it may be required to integrate a number of such sources (A similar process

when applied to data is known in the literature as sensor or data fusion). Hence, there

is a need for a measure of achievement of a sensory goal, which is not found in BBl.

This is indicated in Plethora by the Confidence value of a decision. Confidence

represents the KSs percentage faith in the goal, based upon its model of

interpretation.

The Confidence measure, particular goal and the time of measurement, can be

used as criteria when choosing between conflicting sensor estimates of the same

property. The source of such measures on the BB comes via the Event or External

Chosen-Actions and are propagated to other decisions under the control of KSs and

the usual conflict resolution mechanism. A number of such propagation methods have

been proposed given the availability of a measure of Confidence, including the use

of error manifolds [15], heuristics [16] and probability theory [17].

51

Detennining Confidence Values.

Integrating sensor data from a number of sources to form a consistent

conclusion is a difficult process. This is due in part to the fact that sensory

information is always uncertain and usually partial, but also because it is often

geometrically or geographically incomparable with other sensory data.

A number of techniques (e.g. [18]) use detailed knowledge of individual

sensors and correlation between sensor characteristics, to derive heuristics which

guide the fusing of different sources of information. However, as successful as these

techniques have been for particular cases, they do not provide a general means of

integrating sensor data, which is necessary in Plethora. In order for this to be

achieved there needs to be a quantitative measure of sensor response so that data

from different sources can be processed within a single framework.

The work undertaken in [19] attempts to do this by determining for each

sensor, probability density functions which estimate that a feature in parameter space

corresponds to a sensed geometric object (where object here refers to straight lines,

planes etc). It uses these, the sensor data, a model of sensor noise and error, a model

of its dependence on the observations of other sensors in the system and its internal

state, to calculate estimates of geometric objects. It then goes on to use a metric,

known as the utility function, to order the likelihood of these decisions. A team of

such sensors pass this information between them and eventually arrive at an

agreement using Bayesian decision making and a bargaining technique [20].

A related technique [21] creates a distance matrix based upon the separation

between the probability density functions for particular sensors and features, from

which it then derives a distance measure which is used as the confidence value.

However, this approach has a number of problems when applied to different

forms of, sensors, rather than a large group of identical sensors. Firstly, the

determination of the necessary probability density functions is not trivial, especially

in the case of the one-to-many mapping found in the camera. Secondly, the decision

making within the team of sensors is based upon geometric features, and so requires

52

an additional mapping from feature space. Thirdly, since there will be different forms

and degrees of uncertainty associated with data derived form multiple sensors, there

is a need to know a-priori, the interrelationships between features of different sensor

data (making ct4 and cm3 difficult to achieve).

The method taken here does not use probability density functions as the basis

for decision making, but is based upon inequalities representing features, and a model

describing the sensory data and its processing. Figure 3.6 illustrates the typical

constituents and data flow within a sensory KS required to produce a COnfidence

value. Here it is assumed that the feature vector E, determined as a result of the

feature extraction process, is a vector of inequalities of the form

where each scalar value Xn is bounded by two limits (fnl' fn2) and that each vector

corresponds to a detected object. The predicted feature vector G is also assumed to

be of the same form, but is calculated from predicted data on the assumption that the

goal that it is to verify is correct. For each feature vector element Xn, a confidence

value is calculated against the corresponding predicted value, resulting in a vector of

confidence values. From this confidence vector an overall confidence value (C) for

the vector is calculated. The vector with the highest confidence is used to determine

the satisfaction of the goal and the KSs final confidence value.

In keeping with the goal directed behaviour of Plethora, integration of

information takes place on the BB in terms of goals and Confidence values. This has

a number of advantages. Firstly, inequalities representing possible variation are

readily determined from sensor data and a method to manipulate such information

already exists (see [22] which derives and manipulates such data for scene analysis

derived from camera photographs). Secondly, the use of a goal language and the

posting of the results on the BB, allows the use of other than purely statistical

techniques (see [23] for a simple and effective technique). Thirdly, it provides a

natural means of integrating information with other KSs in Plethora for which

inequality information already exists. Fourthly, it does not rely on a-priori knowledge

53

Sensor
Data

-

--=-Modelled

Data

Feature

Extraction

Predicted
Feature I-
Generation

f
{f,e}

Evaluate Evaluate
~ Vectors - Goal
,-

Confidence Confidence

9

Figure 3.6 Schematic of data flow in a typical sensory KS.

/I. 11
{f I c}

r

of the statistical correlations between sensor characteristics (maintaining the

modularity required by ct4 and cm3).

However, there still remains the requirement for a measure of the agreement

between an individual sensor scalar value and its predicted value.

Confidence Function

The derivation of the confidence function can be best explained by considering

single features generated by the feature extraction and feature generation processes

in figure 3.7. Where f\ and f2 indicate the range of the extracted feature, and fbat its

nominal value. Since there is no indication of the probability of the actual value, it

is assumed that any value within the range is equally likely. Thus an important

constituent of the Confidence value is the degree of overlap between actual and

predicted ranges. In order to cope with cases where the overlap is large but is a small

portion of either range, two quantities indic~ting the degree of overlap are used, the

overlap normalised to the predicted range and the overlap normalised to the feature

range. Since either case will reduce the Confidence in the match, these are equally

54


~~~~~~~~~~~~~~--~- -

weighted expressions in the final Confidence expression. 

A further distinction between cases is provided by an additional term, based 

upon the separation of the nominal values normalised to the predicted range. This 

leads to a maximum Confidence value of 1, which occurs when the ranges match 

exactly and the nominal values coincide, and a minimum value of 0 when there is no 

overlap and the nominal values are separated by a predicted range. The algorithm 

used to calculate the Confidence value is given below. 

Overlap: 
No overlap : Overlap=O 
G enveloped or equal to F 
f2 within G but not fl 
fl within G but not f2 
F enveloped within G 

: Overlap=g2-g1 
: Overlap=frgl 
: Overlap=g2-fl 
: Overlap=f2-fl 

Goal Nonnalised Overlap: 
g2-g1 =0 : Gno= 0 
g2-g1 < > 0: Gno = Overlap! (g2-gl) 

Feature Nonnalised Overlap: 
f2-fl =0 : Fno=O 
f2-fl < >0: Fno= Overlap!(f2-fl) 

Nominal Nonnalised Distance: 
g2-gl=0: Nnd=O 
grgl < >0: Nnd=min{ 1, (1-(abs(fhocgh • .)!g2-gl» } 

Confidence = { Gno + Fno + Nnd }!3 

Figures 3.9 and 3.10 illustrate how the value of the function varies for different 

degrees of separation and position of /hat within the range F (Le. a and b 

respectively, as shown in figure 3.8). 

The process of determining the overall Confidence value of a vector of 

Confidence values is similar to determining the overall reliability of a system which 

has a number of parallel elements each with individual probabilities of success. 

55 



f1 

1 

fhat 
I 

f2 

g1 I 
1 

Nominal value Separatfon 

I Ovel1ap 

ghat 
I 

g2 

1 

Figure 3.7 General case of overlapping ranges. 

o 
I 

a 

r 
b -.. 

11 I 

Ghat 
I 
50 

f1 !hat 12 

100 

1 

g2 

I 
eo 

Figure 3.8 Confidence variation with Feature parameters. 

Hence, the overall Confidence value (C) of a vector's individual confidence values 

{Cl .... cn} is defined to be 

C = { 1 - {(1-cl).(1-c2) .... {l-cn)}} 

The Confidence value of a vector can be used to distinguish between a number of 

features detected by the sensor. The feature vector with the largest Confidence 

corresponds to the best match and whose features will be used to determine the value 

for the final goal. Examples of its use are given in Chapter 9. 

56 



O"r--~-~-~-~-------------, 

O •• 

d 0.6 

ff O. 

ai 
"0 0.4 

"" <= o 0.3 o 
O. , 

O. , 

b-I1 "f:\ 
If , 
11 '" 

" " " Ir " " :: ',\ 
" 1~ 
If " /! \~ 

" " If " 
11 " 
11 " :: \\ 

11 " 
If " 
11 " ,i i, 

" I' t, " 
" " " It /' " " " !! 1\ 

" ~ • • 
11 " 

;'f " 

" " ;' 1/ " 
/1:" \~ 

;' N \~ 
/I/~' I" 

°0~~,70-~,~0~6.~0-~.70-~.~0--.~0~~.~0-~.~0--:,,· 
Distance,a. 

Figure 3.9 Variation of Confidence with range position and nominal value 
position. 

c 

b 

Figure 3.10 A mesh plot of Confidence variation with range position and 
nominal value position. 

Pre-Conditionl Action 

In the modified BB of Plethora, the preconditions are held within the KS itself 

and not transmitted to the blackboard along with the KSAR. This arrangement 

simplifies the communication between the blackboard and KS. It also allows all such 

tests to be carried out in parallel, and removes the need for an Invocable-List. Within 

Plethora's KSs, there is an extra predicate which is used at execution time, it 

57 



combines the operation of a precondition test and the action and is called 

Precondition+Action. This is used to ensure that the action is still valid immediately 

before its execution. Its use removes those problems which occur when there is a 

delay between proposing to execute an action and the actual time at which the action 

takes place (during which interval the state of the cell may have changed making the 

action invalid). 

Although the validity of the Action and Precondition fields must be checked 

dynamically, it is advantageous that the Trigger of a KS maintains a history of 

interested events. It can then use this as a context in which it can interpret each new 

changes of state when determining whether it should volunteer a KSAR. The use of 

this locally held information radically reduces its need for access to the BB, which 

would otherwise be necessary if the KS were to check the validity of states each time 

an interesting change of state occurred. Thus KSs in Plethora are more independent 

than those found in BB!, whose trigger evaluation can take in parallel. This is of 

particular advantage in a distributed environment where the amount of communication 

traffic plays a dominant role in the system's performance. 

The action variables of BBI are replaced with instantiated goal statements that 

are interpreted by the Action of the KS. 

Groups of KSs 

To increase the efficiency and provide a form of taxonomy for the KSs, each 

KS can belong to one or more groups. A group consists of KSs with related 

objectives or requirements. A broadcast to a group ensures only the interested KSs 

are informed of a particular event. An example in the use of a group is the Groups 

field in a KSAR. This field holds the groups of KSs which might be interested in the 

resulting changes to the blackboard. When its action is executed, the BB informs the 

members of these groups of the changes to the blackboard. Groups of KSs can also 

be associated with activity within particular levels of the blackboard. 

58 



bnplementation Level 

An extra level, below the operation level, has been added in the Domain plane 

of the blackboard. It holds the decisions which indicate exactly how an Operation 

goal is to be implemented within this cell (i.e. What particular method of 

identification is to be used?). Hence, the level is filled with KSARs extracted from 

the To-Do-List, as potential Extemal-Chosen-Actions to fulfil a particular Operational 

goal. 

Modes 

The modified version of the blackboard has Modes. These Modes indicate the 

form of present behaviour undertaken by the blackboard, and reflect the state of the 

Basic-KS state machine. Modes are changed by the Basic-KS which recognises the 

end of a particular phase. The mode of the system is used as a debugging aid and can 

be interrogated by Focus goals to adapt the behaviour of Strategies to the current 

Mode of operation (e.g. planning to scheduling). 

Temporal Ordering and Dependence 

Temporal ordering and goal/sub-goal dependence are indicated by separate 

fields in the decision, and are regarded as orthogonal sets of relationships. Temporal 

ordering is provided by unidirectional Before/After links between decisions and is 

used to indicate the set of Viable goals. 

A goal is said to be Viable if three conditions hold. Firstly, all the goals 

immediately Before it must be Completed (i.e. their status is Completed). Secondly, 

its parent goal is Viable and thirdly, the goal is not already Completed (see figure 

3.11). The viability of a goal is indicated in a separate field and updated by the BB 

whenever a decision changes status and dynamically changes with the state of the 

work cell. 

Dependency links describe which goals must be or might be used to satisfy a 

parent goal. The plans goal dependency is represented as a conventional AND/OR 

tree where the nodes of the tree are the decisions on the blackboard. Decisions are 

said to be Planned, if all dependent decisions within an OR branch are Planned or 

there is a complete tree from the decision with terminal nodes in the Implementation 

level. 

59 



------------------------------_. ---

Problem: Viable 

~ 
Strategy:Viable 

1 

E 
~ 
~L-_____________ -, 

Focus1 :Completed... Before Focus2:Viable 

Figure 3.11 A Viable decision. 

Focusing Attention 

The Strategy/Focus mechanism has also been modified in order to operate 

more efficiently within a distributed environment, and uses the Viability of goals to 

control the sequence of Foci in a Strategy. 

Each Focus and Strategy decision has a termination condition associated with 

its goal, at the beginning of every cycle these termination conditions are evaluated. 

If the Focus has terminated, the Basis-KS marks it Completed and updates the Viable 

decisions. If a Strategy has terminated, the Strategy and all its Foci have their status 

changed to Completed, and once again the Viability of decisions is updated. 

In the modified implementation of Attention Focusing, when a StraJegy is 

implemented it enters all the Foci that will be necessary for its fulfilment, onto the 

BB in one go. The order of these Foci is indicated by their Before/After links, the 

first Focus will have no Before links and so is Viable. Only Viable Foci are used to 

rate the KSARs, thus the others have no effect until the first Focus terminates, when 

it does so it makes the next focus Viable. 

60 



Additional Control Decision Fields 

Confidence 

Before/After 

Parent/Sibling 

Viability 

Additional KSAR Fields 

I- Results-Of 

LTime-Out 

Figure 3.12 Additional KSAR and CD fields. 

In BB! the next Focus decision is determined as the result of the evaluation 

of a function contained within the Strategy decision. When this method was tried in 

Plethora, it caused significant delays. The present approach reduces the time taken 

to implement attention focusing and provides a unified means of representing temporal 

constraints on the Control, Domain and Execution planes. 

The Focus goal and Strategy/Focus/Policy termination conditions are tokenised 

and evaluated by the Basic-KS locally during each cycle. The BB also recognises a 

number of tokenised values (e.g. Very-High, High), which are used in Foci and 

Policy goals and interpreted by BB as signed values when generating ratings. 

61 



For the sake of efficiency, unlike BBl, Plethora's BB does not apply an 

Integration-Rule to the individual ratings of the KSAR generated by the Foci and 

Polices. BBl maintained a list of separate ratings attached to each KSAR during 

conflict resolution, and allowed a user defined Integration-Rule to determine the most 

eligible KSAR based upon the contents of this list. The house-keeping, involved in 

maintaining this list and the interpretation of the Integration-Rule, was found to be 

time consuming. Since this occurred in each BB cycle, the added flexibility that it 

provided was considered to be out-weighed by the increase in the time taken to 

complete a BB cycle. 

Basic KSs 

The iterative problem solving process of the BB is controlled by the Basic-KS, 

which can be specified by the user, but unlike other KSs it does not appear on the 

blackboard. The default Basic-KS cyclically invokes the action of the chosen KSAR, 

checks for the termination conditions of any control decisions on the blackboard 

(including checking the time out of the current chosen action) and controls the conflict 

resolution; informing the rest of the system of each change of state. 

The default Basic-KS (Note: this is the one used in all experimentation) 

implements a synchronous agenda based control. It instigates the Chosen-Action by 

returning the Action goal to the KS, and marks the Chosen-Action's status Pending. 

During this time any KS may read information on the BB and Events can be entered. 

If the Chosen-Action is internal, only its KS is permitted to change the BB contents. 

This continues until the Status of the Chosen-Action changes (e.g. to Completed, 

Failed etc) or the time-out is exceeded. If the time-out is exceeded the Basic-KS 

instructs the KS to terminate the action, marks it Timed-out and the cycle begins 

again. 

Figure 3.12 summarises the differences between the control decisions and 

KSARs found in BBl and Plethora. 

62 



Blackboard User Interface 

Plethora 's BB has a user interface which helps in debugging and monitoring 

progress (see figure 3.13). It enables the user to display, edit and save any item on 

the blackboard and via the use of the Monitor window, describe each operation it 

performs. The output of the Monitor can be used to form a log file of the BB activity. 

The contents of the BB can also be displayed in a pseudo-graphical manner, where 

each item of the blackboard is represented by its level, its event number and where 

the colour of an item indicates its status. In this case, the chosen KSARs status is 

Completed, and during its action it had entered an Outcome, Problem and three 

Policies on the BB. The yellow lines indicate the contents of the Results-Of field 

within the KSAR. 

Figure 3.13 A photograph of the BB user interface. 

63 



Previous Blackboard Architectures 

The use .of BB architectures fer werk cell centrol is limited. A prepesed 

architecture [24], which mixed Centract Net and Hearsay [4], highlighted seme .of the 

advantages feund in Chapter 2 fer the use .of incremental eppertunism in werk cell 

centrel. Hewever, the propesal centained ne details .of exactly hew the problems .of 

errer recevery, critical times, blackbeard structure etc were te be tackled. Te the 

authers knewledge there has been no further published develepment .of the ideas. 

Mere recently, a multi-blackbeard appreach, Plate-Z [25], has been prepesed 

and develepment begun upen the initial ideas. Plato-Z has a separate blackbQard fer 

each .of the modes .of .operation feund in Plethera's BB (Le. Scheduling, Menitering 

and Errer handling), ne mentien is made .of the structure .of the blackbQards er 

metheds .of eperatien. Plate-Z is still under develepment, and se there are nQ results 

te allew a cemparisen with Plethora. Plate-Z is written in Lisp and runs en a 

Symbelics 3645 Lisp machine. Befere the date .of publicatien .of Plate-Z the auther 

published an .outline .of the Plethera in [26] (see Appendix A). 

Summary 

Plethera's BB extends the behavieural geals .of BBl te include executien .of 

the plan in an uncertain environment by a distributed system. It dees SQ by the 

additien .of the Execution plane, which allews the term "Actien" in the .original 

behavieural geals .of BBl, new te include external actions. The Event list and 

Extemal-Chosen-Action provide a means .of reasening abeut asynchronous events in 

terms .of time, Confidence and geal directed behavieur, during the executiQn .of an 

actien. The use .of the same cenflict reselutien scheme extends geal 8 .of BB!, te 

include the relative priorities .of executien actiens in a uniferm manner. 

The use .of independent agents te implement KS, rather than the procedural 

elements feund in BB!, allews Trigger evaluatien te take place in parallel reducing 

the cycle time .of the BB. 

64 



References 

[I) Hayes-Roth,B. Hayes-Roth,F., 
"A Cognitive Model of Planning", Cognitive Science, 3, p275-310, 79. 

(2) Fox,B.R. Kempf,K.G. 
"Opportunistic Scheduling For Robotic Assembly", IEEE Int. Conf. Robotics and Automation, 
p880-889, 85. 

(3) Lesser,V.R. Erman,L.D., 
"A Retrospective View of Hearsay-I! Architecture", 5th UCAI, p790-800, 77. 

(4) Balrer,R. Erman,L. London,P. Williams,C. 
"Hearsay-Ill: A Domain-Independent Framework for Expert Systems", Proc. 1st National 
Conf. on AI, p108-118, 80. 

(5) Erman,L.E London,P.E. Fickas,S.F. 
"The Design and an Example Use of Hearsay-m", 7th UCAI, p409-415, 81. 

[6) Nii et al 
"Signal to Symbol Transformation: HASP/SAIP case study", Artificial Intelligence Magazine, 
part 3, p23-35, 82. 

(7) Hayes-Roth.B, 
" A Blackboard Architecture For control" , Artificial Intelligence Journal,no.26, p251-32I, 85. 

[8) Stefik,M., 
"Planning and Meta-planning (MOLGEN: part 2)", Artificial Intelligence 16, p141-169, 81. 

[9) Hayes-Roth,F. Lesser,V.R. 
"Focus of Attention in Hearsay-I! Speech Understanding System", 5th UCAI, p27-35, 77. 

[10) Rich,E. 
Artificial Intelligence, Mc Graw-hill,ISBN-O-07-052261-8, 83. 

(11) Sacerdoti,E.D. 
"The Nature of Non-Linear Plans",UCAI 4, pS-IS, 75. 

(12) Fennell,R.D. Lesser,V.R. 
"Parallelism in Artificial Intelligence Problem Solving: A Case Study of Hearsay n", IEEE 
Trans. on Computers, vol.c-26, no.2, p99-11I, 77. 

(13) Tanenbaum,A.S 
"Computer Networks", Prentice-Hall, ISBN 0-13-164699-0, 81. 

(14) Coiffet,P. 
"Interaction with The Environment", Kogan-Page, ISBN 1-85091-402-8,83. 

[IS) Brooks,R. 
"Visual Map making for a mobile robot", IEEE Conf. Robotics and Automation, p824-829, 
85. 

[16) Crowley,J. 
"Navigation of an Intelligent Mobile Robot", IEEE Journal of Robotics and Automation, 
RA-I(I), p3-4I, 85. 

[17] Chatila,R. Laumond,J.P. 
"Position Referencing and consistent World Modelling for mobile Robots", IEEE Conf. 
Robotic and Automation, p138-145, 85. 

[18] AlIen,P.A. 
"Integrating Vision and Touch for Object Recognition Tasks", The International Journal of 
Robotics Research, vol. 7, no.6, p15-34, 88. 

(19) Durrant-Whyte,H.F. 
"Sensor Models and Multi-Sensor Integration", The International Journal of Robotics 
Research, vol.7, no.6, p114-138, 88. 

[20] Nash,J.F. 
"The Bargaining Problem", Econometric3,50. 

(21) Luo,R.C. Lin,M. Scherp,R.C. 
"Dynamic Multi-Sensor Data Fusion System for Intelligent Robots" , IEEE Journal of Robotics 
and Automation, vol.4, no.4, p386-396, 88. 

65 



[22) Brooks,R.A. 
"Model Based Computer Based Vision", UMI Research Press, ISBN 0-8357-1526-4, 81. 

[23) Harmon,S.Y. Bianchini,G.L. Pinz,B.E. 
"Sensor Data Fusion Through a Distributed Blackboard", IEEE Conf. Robotics and 
Automation, pI449-1454, 87. 

[24) Paul,R.P Durrant-Whyte,H.F. Mintz,M 
"A Robust, Distributed Sensor and Actuation Robot Control System" ,6th ICAR, p93-IOO, 85. 

[25) O'Grady.P. Lee,K.H. 
"A Hybrid Actor and Blackboard Approach to Manufacturing Cell Control", Journal of 
Intelligent and Robotic Systems, no.3, p67-7, 90. 

[26) Sillitoe,l.P.W. 
"Towards Knowledge Based Control of a Flexible Work Cell" , lEE Colloquium on Knowledge 
Based Environments for Industrial Applications, Savoy Place, London, pl-4, 89. 

66 



Chapter 4 

Communication 

The work cell is an inherently distributed domain. This chapter describes the 

design and implementation of a distributed communication mechanism based upon 

message passing. It's design provides a unified means of communication and 

coordination between all elements of Plethora. 

Message Passing 

The traditional view of software systems is that they are composed of data and 

procedures which describe how to manipulate the data. However, procedures make 

implicit assumptions about the form of the data on which they operate. In traditional 

systems, this natural functional inter-relationship between a particular set of data and 

its procedures is lost, and the binding of these two elements is left to the 

programmer. 

In a distributed message passing system, where in general the procedural 

element would be a parallel process, these elements are combined to form an agent 

and changes to the agent are made by sending it a message. A message embodies the 

semantic content of the manipulation. The encapsulation of data and procedures 

allows changes to be made within the agent, while the external action of the agent 

remains unchanged (see [1] for a more complete description of message passing and 

object orientated systems). 

67 



,------------------------------------------------------- .. --. 

Why use the message passing paradigm ? 

Message passing has four major advantages for robotic systems, 

An intelligent robotic system will be large and complex. 
The message passing approach makes design, testing and 
maintenance a modular and so a more manageable task [2]. 

Robotic systems are inherently distributed. Many 
techniques will need to be run in parallel in order 
to obtain the required response. Message passing 
provides a means of distributing such a system 
while maintaining a formal framework. 

Message passing can be used to explicitly synchronise 
tasks, be they physical or computational. Hence, the 
same approach can be used to synchronise co-operating 
KS's or physical resources. 

Message passing can be used to encapsulate all aspects of 
a device within an agent and provides a well defined 
interface between it and the rest of the system and a degree 
of portabiIity. 

Issues in Message passing systems 

Four design issues dominate the form of a message system [3] 

Are the primitives, which manipulate the messages, to 
automatically block processes? 
(Le. force the agent to wait for the next communication event) 

What addressing mechanism is to be used to specify the 
agents involved in communication? 

What is the format of a message? 

What is the approach to exception handling, such as 
communication failure? 

A brief discussion follows of the different solutions available to the problems above. 

68 



Blocking or Non-Blocking 

Blocking primitives provide an elegant means of synchronising agents. If a 

SEND blocks until the receiver is ready to receive, and the receiving agent also 

blocks until the message is available (Le. rendezvous [4]), then no other mechanism 

of synchronisation is required. This is simple to visualise and there is no need to 

buffer messages. 

However, a process blocked in sending cannot do useful work and when the 

communication concerns a number of agents this approach can inhibit the inherent 

parallelism that the technique was to promote. This is particularly so in large grained 

systems where such delays will be greater, and in real-time environments where 

unlimited blocking of an agent might be disastrous. 

Other options include, 

A queued send, which queues messages for the receiving 
process, but does not block. It is used with a blocking 
receive and allows the sending process to run arbitrarily 
ahead of the receiving process. However, it raises 
the possibility of unbounded message queues and deadlock. 

Conditional primitives, the send only transmits if the 
receiving process is blocked and waiting for the message, 
otherwise it returns failure. Likewise the receiving agent 
receives the message only if it is already waiting. 
This can lead to excess polling by the transmitting agent 
and possible bandwidth limitations in a common channel. 

The use of the reply [3] primitive. In this arrangement 
the transmitting agent remains blocked until it is sent 
a special message (Le.its Reply) to unblock it. The reply 
primitive is non-blocking. The use of a blocking send and 
receive and non-blocking reply removes the need for other 
non-blocking primitives and additional synchronisation 
schemes. 

69 



Addressing Mechanism 

The communicating agents could specify the message destination implicitly, 

through an input/output declaration or explicitly within the body of the message. 

However, if the communicating agents are specified explicitly it is possible to allow 

agents to accept a message from any sender. This has three major features useful to 

Plethora, 

Non-deterministic reception of messages from different sources. 

An agent can then be used as a shared data base 
(i.e. geometric information about the workpieces). 

It leads to a straightforward implementation of a broadcast mechanism. 

Message Format 

Two separate questions arise within this issue. Firstly, should the message size 

be limited in some manner. Secondly, whether the user section of the message be 

defined completely by the user or selected from a set of system defined possibilities. 

In practice, messages within the work cell and between modules, tend to be 

short and have a fixed maximum length. Messages with a maximum fixed length 

simplify and quicken message storage allocation. They also help in the prediction of 

the critical time for response of an agent to a transaction over the network. This is 

an important factor in the detection of exceptions and communication failures. 

System defined message formats and data types provide a formal framework 

for the basis of communication systems. However, they tend to be verbose and 

inflexible in complex systems, where there are a large number of agents acting in a 

non-deterministic manner [3]. Hence, while system defined messages may provide a 

possible solution to the real-time aspects of the problem, they do not provide an ideal 

solution to the communication between the knowledge based agents. 

70 



Communication Failure 

Causes of communication failure can be categorised as below 

Deadlock [4] between communicating agents. 

Untrustworthy correspondents, a process might violate the 
protocol in progress and block the transmitting process forever. 

Physical communication failure. 

Time-outs are a common form of solution for such potential failures. These 

techniques raise an exception, if after a specified time, the next communication event 

has not occurred. Two typical techniques are outlined below 

An assassin process is started at the beginning of a 
transaction, but its action is delayed for the time-out 
interval. If the transaction is completed within the 
interval the sending agent destroys the assassin otherwise 
the assassin destroys the sending agent. 

Administrator [3] form, the transmitting agent 
is blocked on a "receive-any-message" primitive, 
awaiting an input. A time manager sends it a message 
indicating that the last time interval has expired. 
The transmitting agent either decides to handle an 
exception or send a new time interval to the time agent. 

Both techniques rely upon a third agent, this is a disadvantage in a real-time 

heterogeneous network, where many of the simple control processors cannot afford 

the extra overhead that is required to support the third agent. 

71 



Requirements 

The requirements of the communication system can be obtained by analysing 

the data flow during a typical blackboard cycle, 

Remote invocation of the action part of a KS. 

Asynchronous reception of data (i. e. an agent reporting the status 
of an event). 

Access to globally shared sources of information 
(e.g. geometric modeller). 

A means of ensuring coherent responses from globally shared sources 
of information, given a number of competing requests. 

Synchronisation of two or more agents. 

Detect and process timing exceptions. 

Terminating an action prematurely, in response to an error condition. 

Broadcasting blackboard changes. 

Previous Message Passing Systems 

No distributed message passing system used in robotics (to the author's 

knowledge) has tried to satisfy real-time and knowledge-based requirements within 

a single system. The following describes two groups of related work, which employ 

the message passing paradigm to solve one half of these requirements. The first 

illustrates the concepts within systems which were designed to support general 

distributed programming. These are applicable to the knowledge-based requirements 

of Plethora. The second group describes systems that have been primarily designed 

to control the physical processes within the work cell. These have a direct bearing on 

the use of message passing for the coordination of real-time processes. 

72 



I 
\ 
\ 

! 
I 

\ 

General Distributed Programming 

PLITS [5] was a language which described a methodology for general purpose 

distributed programming based upon message passing. It introduced the notions of the 

MODULE and TRANSACTION KEY (known in other systems as a transaction 

identifier (TID». The ideas used in PLITS formed the basis for many other message 

passing systems (e.g. [6],[7]). 

In PLITS, a kernel maintains a single message queue for each module, which 

serves as the only means of communication with the module. A message (or A-set) 

comprises a set of name-value pairs called SLOTS. Unique transaction keys are 

included in the message to identify a particular message. These are used to solve the 

problems of selective reception, message validity and the implementation of 

mUltiplexed servers. 

The message passing primitives consist of a blocking send and receive, each 

of which has an associated local time-out period (the actual length of this time-out 

period seems to be a default value), The preservation of the send-transaction-receive 

sequence can be used to guarantee that the messages arrive in the same order as they 

were transmitted by the sender. 

The ability for a module to handle messages with unknown slots was said to 

allow several modules to take part in task sharing, while maintaining the integrity of 

the individual module structure. 

Message Passing Applied to Industrial Robotics 

IMRS 

IMRS [8] is a proposed set of application level primitives used to support a 

real-time distributed architecture. The problem, and hence control, is assumed to 

consist of the indivisible sub-processes, forming a hierarchical n-ary tree module 

structure. They foresee that it will use task-sharing as a means to synchronise the 

processes within the work cell, and as a means to resolve the interaction between the 

computational processes. The interaction between computational processes is 

categorised as follows, 

73 



Independent processes 
Where 2 robots exist on the same shop floor, but 
their work is independent. 

Loosely coupled processes 
Where the work of the robots is independent, but 
where the individual actions are not (e.g. tool sharing, 
collision avoidance). 

Tightly coupled processes 
Where 2 robots co-operate to perform the same task 
"Picking up a steel beam from a conveyor". 

Serialised motion processes 
Where the operations of one robot must be finished 
before the next can begin its work. 

Communication between modules is further categorised into vertical and 

horizontal communication. Vertical communication is between a module and its 

sibling processes, horizontal communication is between the children of a common 

parent. The basis for all inter-task communication is via pons. This logical structure 

is used to limit the communication primitives to the proposed set. A time-out 

exception can be raised if the communication is not completed by a designated time, 

on either the one-way message or two-way rendezvous. 

They concluded that remote procedure calls, message passing with a variety 

of non-blocking, blocking and interrupt forms, and signal/wait operations would be 

necessary to provide for the 4 types of interaction. 

MAP message specification 

Message passing appears at the application layer of the ISO standard. The 

MAP [9] application layer is to have 2 sets of facilities, file transfer (FT AM) or the 

manufacturing message communication (MMFS). 

GEC [10] have found problems when implementing systems using MMFS. 

"There has been considerable pressure from the user for simplified, 
rapid communications within an island of automation or process cell" [10J 

74 



Such in-cell data is often restricted to small amounts and needs to be transferred 

rapidly. This is better suited to a connectionless protocol, which does not contain the 

large overheads associated with virtual connections when transferring small amounts 

of data. This has led to the development of in-cell networks (known as 

mini-map/micro-map), while the full blown MAP is used for communication between 

islands of automation. 

A contender for the micro-MAP is ERA [11] which is based upon MIL-STD-

1553b, and is used for communication between sensor/actuator systems. This is a 

much simplified network, which was originally used to communicate between 

embedded computer systems in aircraft. Once again, it defines a message passing 

approach, but it is of a form which is more applicable to real-time control. Messages 

are of a fixed size, and there is a minimum acceptable delay between transmission 

and the reception of the answer for a given message. Allowable extensions within the 

proposed standard include, broadcasting a message and direct internode 

communication. 

Summary 

Each of the approaches have advantageous attributes, but fails to provide an 

overall solution to Plethora's communication requirements. The module and language 

structure ofPLITS could satisfy communication between knowledge based agents, but 

there is no means of making their behaviour dependent on the time constraints of the 

system. Similarly, MMFS's rigid internode language is suited to simple data exchange 

but less appropriate for a task or results sharing. 

MMFS and IMRS make a-priori assumptions about the structure of 

communication during the task, which in turn is predicated upon limited uncertainty 

within the cell. Whereas it has been argued that for the control of a truly flexible 

work cell, the structure of communications needs to be determined by its current 

state, so that it may adapt to unpredicted and unmodelled events which will 

undoubtedly occur. 

75 



Plethora's Message Passing System 

Players, Prompters, Companies and Groups 

Plethora is a distributed collection of autonomous Actor [12] like agents made 

up of Players and Prompters which communicate through a single mechanism, that 

of buffered message passing. 

Playerl--_Context Variables 

~ 
Instruction poInter 

Queue Variables 
f---

Parameter stack and poInter 

Return stack and poInter 

t= Front.Rear.message count 

Stream variables 

Current message variables 

I-_Window pointer. ___ WIndow 

L--unirectory pointer 

Figure 4.0 Groups of fields within a Player. 

Players are large data driven agents which are scheduled according to the 

attributes of the messages in their message queues. Hence, the Player which the 

scheduler regards as having the highest priority message is scheduled first. Players 

are used to form the knowledge sources within Plethora and have Entrance, Pan and 

Abon fields. The Entrance contains the initialisation code and is run each time the 

Player is restarted. The Pan constitutes the nominal activity, and the Abon that which 

needs to be undertaken to safely bring the Pan to a conclusion when a fatal fault 

occurs. Players are independent agents and hence have their own context. Figure 4.0 

shows the groups of fields within the con text of a Player. The context consists of 300 

76 



bytes of return stack, 500 bytes of parameter stack and 80 bytes for the remaining 

variables. 

Prompters are small, simple, event-driven agents which synchronously sink 

and source information in and out of Plethora with the occurrence of physical events. 

Since, they are event-driven and deal with the time critical operations of the Plethora, 

a Prompter will interrupt the action of a Player whenever its associated event occurs. 

More than one Prompter may be attached to an Event (see figure 4.1), such as a 

timer, and events can have differing priorities. An Event handler (one per processor) 

controls the activation of Events and their Prompters, and so hides the interrupt 

Event Handler 

H Event1 
I ~_-,---.-J ! I Iprompter -----~prompterl 

I 

'----+I Prompter ------..j Prompter I 

Figure 4.1 Event handler, Event and Prompters. 

details of a particular processor from the message passing system. The structure of 

a Prompter is similar to that of a Player, except that it does not have its own stacks 

but uses those of the Event, neither do they have queue variables but have instead 

State vectors (this is explained in greater detail in the section concerned with message 

primitives). Disregarding the memory space required for it's code, each Prompter 

77 



,-----------------------~-~ 

occupies 32 bytes and each Event, disregarding its stacks, 16 bytes. The depth of the 

Event stacks are chosen by the user. However, because of the simplicity of a 

Prompter's action these can be very much smaller than those necessary for a Player 

(typically 32 bytes each). Prompters form the real-time interface to the devices in the 

cell. 

Each agent can make Assumptions about the existence of other groups or 

agents. These Assumptions allow the agent to specify messages to the assumed agent 

or group without prior knowledge of it's address. 

Players and Prompters can be formed into Companies. Companies are 

functionally interdependent groupings of agents which collectively perform a single 

activity. Other agents in the system interact with a Company as if it were a single 

entity. 

Groups of agents allow the linking of independent agents with similar interests 

or functions (e.g. the group of all the players which can solve a particular type goal). 

An agent can belong to a number of groups. 

Plethora extends the concept of encapsulation, from that of program and data 

structure, to include the physical attributes of a mechanism and its function. Each 

Player representing a device, not only encapsulates all the computational attributes, 

but it also includes it's geometrical description (in terms of geometric primitives 

found in the geometrical modeller). Whenever Plethora is restarted the agents are 

interrogated and their attributes included in any shared data bases. In this way, as 

long as a device conforms to the message passing protocols, it can be added or 

removed without intervention by a programmer. (fulfilling requirement ct4) 

78 



r-------------------------------------~-

Message Passing Primitives 

As a result of the diversity of the requirements, it was decided that the choice 

of message passing primitives and message format should not be made so as to 

enforce a single solution (Le. such as the rendezvous). Rather, that they should be 

chosen in order to produce a flexible basis for the implementation of structures most 

appropriate for a given requirement. With this in mind, protocols based upon a 

combination of primitives which reflected the data flow within Plethora were 

developed, in this case a blocking Send and a number of blocking and non-blocking 

Receives. The agent's received messages are buffered and the Receive primitives 

selectively remove messages from the agents queue, based upon keys contained within 

the message. 

The message record is partitioned into two groups of fields, the message itself, 

which is user defined, and the header (see figure 4.2). The header contains all of the 

Message 
Network Header 

Message Header 

User Message 

Checksum 

Network Tail 

Figure 4.2 Message Structure. 

system information for the selective removal of the message from the queue and 

79 



consists of the fields shown in figure 4.3. What follows is a description of the use of 

the header fields and resulting protocols. A discussion of the user portion of the 

message is delayed until Chapter 5. 

Header Fonnat 

The header contains all the information required to send or broadcast a 

message, perform a form of time-out, provide various levels of acknowledgement and 

Message Header 
1--- Destination 
I---_Source 
1---Departure time 
1---Expiry time 
I----Transaction Identifier 
f-Message type 
1---_ Prioirity 
1---Acknowledge count 

'---User message length 

Figure 4.3 Header Structure. 

implement transaction protocols. 

Message Addresses 

The source and destination addresses are formed in two parts, the processor 

identifier and the agent identifier. Together they form a unique address for an agent 

within Plethora. A broadcast to a group is indicated by a processor identifier of zero 

80 



followed by the group identifier. 

The host processor translates from the system address to the local address with 

the use of a data structure known as the Agent-Directory. This is a table which 

contains the local addresses and forms of the resident agents. Entries for a Group are 

similar to those for an agent, except that they also contain a counted list pointing to 

the members of the group which reside on the particular processor. Groups form the 

basis of the interested groups of KSs described in Chapter 3. The address [0,0] is 

undefined and used by the System-Kernel when verifying the operation of the 

network. 

Message Types 

All messages within Plethora have types, these are used to simplify the 

interpretation of messages and ensure consistency within the various protocols. The 

message types used within Plethora are described below. 

Requests and Reply 

The Request type is similar to remote procedure calls [13], in that it allows 

an agent to access remote data structures and knowledge to which it is not privy. 

However, it differs from a remote procedure call in that it a part of an object 

orientated system and so manipulates messages. 

The Reply type is used to return the result of a Request. A Request transaction 

continues until a Termination message is sent or the end of the request is indicated 

in the user portion of the message. Chapter 5 expands upon Request-Reply transaction 

and the representation and management of objects within Plethora. 

State Changes 

The State Change message type differs from the Request in that it makes 

changes to the state of the agent, rather than changes within the scope of a local 

transaction. Changes within the scope of a local transaction are not permanent and so 

disappear at the ehd of the transaction, such as the request for sensory data. While 

state changes remain after the conclusion of the transaction and so affect the further 

81· 



operation of Plethora. State Changes include messages to actuators which will change 

the physical state of the cell, and messages which alter the contents of shared 

knowledge sources (e.g. the geometric modeller). Before a State Change message is 

accepted extra checks must be made based upon its TID and the source of the 

message. For example, whether the agent "sending" controls the chosen action on the 

blackboard and so has the right to make state changes. 

Trigger, Precondition, Action and Event 

These describe the task sharing activities within Plethora (as described in 

Chapter 3). Trigger messages inform the system of occurrences validated and entered 

on the blackboard, and are used by the KS to update the local trigger state. Action 

and Precondition hold the context of a particular action volunteered by the KS to the 

BB in a KSAR. 

Acknowledgement, Error and Abort 

These form the responses from the recipient to the sending agent indicating 

the validity of the contents of the received message. An Acknowledgement, Error or 

Abon message is made in response to every State Change, Action and Terminate 

message, depending on its validity. An Error differs from an Abon message in the 

severity of the fault that gave rise to it. An Error would occur if the syntax of a 

message is violated (since this is recoverable), while a robot control agent would 

report an Abon if it were asked to move its manipulator to a point which was outside 

its reachable work space. 

Priority 

The priority of the messages in a Player's queue, determines the priority 

assigned to it by the local player scheduler and hence, when the message is to be 

serviced. Messages with high priorities are sent over the network and attached to the 

destination agent's queue, in preference to lower priority messages. This ensures that 

high priority messages are serviced first wherever their destination in Plethora. Event 

messages usually have high priorities, since they indicate what is actually happening 

within the cell and so may require immediate action. The value of priority is assigned 

by the sending agent and so can be a function of it's state. 

82 



Departure and Expiry Times 

Time-outs can be enacted using the expiry time in the header of a message in 

conjunction with the group of Receive primitives. The expiry time interval 

corresponds to the time interval after which a response to the message will no longer 

be appropriate. The receiving agent can check if a time-out has occurred, if the 

current time is greater than the messages's departure time plus expiry time. The 

transmitting agent uses the same interval as the period required in the Receive's time

out, allowing it to independently detect a time-out and take the appropriate action. 

This mechanism removes out-dated messages from the system and provides a means 

to graceful recovery after a communication error. 

Acknowledgements 

The acknowledgement field within the header is an integer and can be used to 

indicate the number of agents which have responded to the message. This is 

particularly important when an agent is performing certain types of broadcast, since 

this field returns the actual number of replies the agent is to expect. 

Transactions 

The transaction identifier is an integer generated by the initiating agent and is 

used as the basis of all transaction protocols within the system. A transaction 

comprises of an atomic interaction by the agent with the rest of Plethora, and can 

include communication with a number of agents (e.g. initiating of a number of 

parallel actions). 

The TID can be used in a number of ways. For example, consider an agent 

which provides a service to the rest of Plethora (Le. the geometric modeller) and 

contains globally accessible information. At any particular time, it will have a number 

of pending Requests or State Changes. In order for it to return coherent responses to 

each Request, we need to ensure the "serializabilty" of each transaction (see [14] for 

a complete discussion of the point). The simplest means of achieving this is to 

complete the transaction under way before beginning the next. This can be 

accomplished by limiting the response of the service agent to only those messages 

which contain the current TlD and agents source address, delaying the other requests. 

More extensive protocols to control common resources are described in Chapter 5. 

83 



Primitives and Protocols 

Sending messages 

Co-Send <Message Type> 
<User Message I> 
< User Message 2 > 
................ 
<User Message n> 

End-Co-Send 
If 

< If all messages were successful> 
Else 

< If a message failed > 
Endlf 

Figure 4.4 Co-Send Structure. 

At the completion of any Send there is a context switch performed by the local 

player scheduler. For groups of related messages a Co-Send structure is available (see 

figure 4.4) in which there is no context switch between sends and each message sent 

has the same TID. The structure then waits for the reception of all the responses and 

returns either a false flag indicating a time-out or a true flag and a list of the 

responses. At present all messages must be of the same type. 

The Co-Send can be used to treat a number of related parallel operations as 

a single operation, synchronise the player to the completion of that operation and take 

coordinated action if it fails. 

Receiving Messages 

The receive primitives can be categorised into three groups, according to the 

effects they have upon the execution of the agent. The Wait group halts the operation 

of the agent (effectively removing it from the scheduling process), until it receives 

a message with the appropriate header field. The Polling group do not cause a context 

switch, but poll the message queue for an appropriate message once, and then return 

a flag and the message, if successful. And finally the Receives, which employ time-

84 



prjmitjyes Attribute 

TID ~nllr"A 

Cwait\creceive\cpoll 

Twait\Treceive\tpoll X 

Stwait\strecelve\Stpoll X X X 

Figure 4.5 Message Reception Primitives 

outs and cause a context switch if the appropriate message is not found in the message 

queue. 

Whenever there is a choice of acceptable messages in the queue, the message 

with the highest priority is selected; or if the acceptable messages are of equal 

priority, the message with the shortest deadline to expiry is removed. The three 

groups are summarised in figure 4.5. 

The Wait group make efficient use of the available processor time by forcing the 

agent to act in a message-driven manner and reduce the scheduling overhead. 

The Polling group allow a real-time or event-driven procedure to continue under the 

control of an external agent. Thus, the procedure once started can be terminated or 

its action modified, in the light of changes that occur during the time of the 

procedure.-

The Receive group implement a form of simple time-out which is only dependent 

upon those agents concerned with the communication, and allows each agent to take 

85 

---------------------------------------------------------------------~ 



independent action to correct the fault. This maintains a low overhead, in terms of 

the extra agents which would be required for other forms of time-out, and becomes 

important when mapping agents on to a simple processor. Such processors are often 

used for the control of real-time processes and require the use of time-outs, but 

cannot support the extra burden of a more sophisticated arrangement. 

Streams and Pipelines 

Pipelining is a method by which data is processed in a series of stages and 

where each stage is implemented as a parallel process. As the processed data is 

passed on to the next process in the pipeline, the current process begins to operate on 

the data passed to it. The flow of data is known as the data Stream [4]. 

Many fundamental problems in robotics can be formulated in this way (i.e. the 

process of generating feature vectors from raw sensor data) and so pipelining provides 

a natural means of introducing parallelism into Plethora. 

Plethora provides the following message passing primitives to support 

pipelining. 

Begin-Stream, End-Stream 
These initiate and terminate a pipeline. 

Generate-Stream 
Generate a stream of replies to an Initial Begin-stream request 
by application of the given function. The next item in the stream 
is sent once the acknowledgement has been received from the 
agent up-stream. The stream can also be terminated by the agent 
up-stream using a TRM message. 

Map-Stream 
This maps the incoming replies through a given function. 

Filter-Stream 
This applies a predicate to the stream. 

Merge-Streams 
Takes two sources and maps the pairs of messages through a 
function to produce a new Stream. 

86 



(Chapter 7 illustrates the use of a Stream within a Company when processing vision 

data) 

Player Scheduler 

The player scheduler is a Prompter attached to a timer. Context switching 

between players occurs when the timer expires or under the direction of one of the 

message passing primitives. The scheduler supports two lists of players those with 

messages with and those without zero priorities. When a switch takes place the agent 

with the highest priority message is started. If two messages have the same priority 

the agent is chosen which has the message with the shortest expiry time. Otherwise, 

an agent is chosen from the zero priority list using the shortest expiry criteria. At any 

time during this process Prompters may interrupt the Players, eventually returning 

control to the scheduler. 

Message passing and Prompters 

Prompters are designed to be small and fast and so cannot afford the overhead 

required of sophisticated message interpretation. Thus, the action of a Prompter to 

incoming messages is different to that exhibited by the Player. To simplify the 

operation of message passing the Prompter does not contain code to explicitly process 

incoming messages, but relies on the message passing system to recognise that the 

destination of the message is a Prompter and instead of attaching the message to a 

message queue, loads the contents of the message into the appropriate Prompter 

vector. 

The Prompter maintains three state vectors, its Command state, Internal state 

and External state. The command state is loaded with the user portion of a valid 

State-Change message, while the Internal state is copied to form the Reply to any 

Request. The External state is the sink or source of information which it controls and 

is periodically updated by the Prompter. The most usual role of a Prompter is to form 

a simple state machine. 

87 



Network Interface 

The message passing system is a connectionless architecture where the 

message passing primitives provide functions at the Transport layer in the ISO 

Reference model. The Network and Data link layers (below this) are implemented by 

three Players and two Prompters, copies of which reside on all processors which 

contain Players. They are, 

Network Layer 

Net> and >Net 
These and the Error-Handler form the Network layer of the 
network and so provide the network interface seen by the 
message passing primitives. Out-going messages are attached, 
by the Send primitive, to > Net's message queue. 

Error handler 
This logs and tries to repair system level errors. 
(i.e. one of its functions is to create and send an 
Error message to the instigator of a message which has 
used an unknown address) .. 

Data Link Layer 

(> Net) and (> Net) 
These are block oriented network device drivers created 
from two Prompters. Together they form the Data Link layer. 

A further single agent known as the System-Kernel completes Plethora's interface to 

the network. System-Kernel performs all management functions for the communication 

system within Plethora and it also provides a user interface, through which remote 

agents can be controlled via their local Kernels. During the initialisation stage of 

Plethora it also has the job of resolving the Assumptions. It does this by requesting 

from each of the local Kernel agents a list of their residents, addresses and 

Assumptions. Once the list is complete, it returns the necessary addresses for each of 

the unfulfilled Assumptions. 

88 



Network 

The experimental network of processors consisted of a number of IBM AT 

clones and 65F12 microcontroller boards. The physical layer was formed by 

connection of their RS232 serial lines, using a conventional asynchronous byte 

orientated protocol (at IlOK baud and 62.5K baud respectively). An odd parity bit 

was contained with each byte, and a vertical parity check-sum byte included after the 

user defined message (see figure 4.6).Two topologies were used, a star and a token 

ring [15]. The star had a central message switch created from another IBM AT which 

onzon a ar 
7 
~ .. - -1-·_·_·_·_--------------------------------------------j-I\i! -

.<: , , c..;~ 
~ i Message i IU 
2 i i f» 
, i i 
o 

Figure 4.6 Network Message structure. 

contained a message routing agent called Aether. Aether routes messages and provides 

a limited debugging and monitoring facility. The ring allowed more processors to be 

included into the network, but gave a slower response. Both topologies enforced 

deterministic access to the network using a naive protocol. Each processor could only 

receive and pass on messages around the ring until it had access to the network. In 

the case of the ring, this was indicated by the arrival of the token, and by a change 

in state of a status line in the case of the star. The processor had access to the 

network for one message transmission before it passed on control. Messages were 

acknowledged as they passed through by incrementing the Acknowledge-Count, by the 

number of agents in each processor which corresponded to the destination address 

(Le. piggyback fashion [15]). Failure to receive the return message caused a re-

89 



transmission, a further failure caused the Error-Handler to return an Abort message 

to the originator of the message. 

][:~ts .................... . 
Kernel erro etwork-Error-handler 

Internal 
External Error 

'1N~e~t~>F=~~~~ >Net ~ external 
" ..... , . . . . . ...... , . . . . . . . . . . . . . . . . . . . . . . . . . . ....................... , , .... : 

Ring(downstream) Ring(upstream) 

Figure 4.7 Network System Agents. 

Summary 

The structure of the message passing system fulfils a number of the 

requirements in Chapter 1 by providing, 

a uniform mechanism for control and communication for both 
knowledge and real-time agents. (cm2) 

in the Assumption mechanism and extension of the concept of 
encapsulation, a means by which devices can be added or removed 
without affecting other agents within the Plethora. (ct4) 

both data and event-driven agents of an appropriate form 
(Le size, speed and method of activation) for a real-time 
heterogeneous network. (cm2) 

a mechanism by which the data driven agents are scheduled 
according to real-time constraints (Le priority and expiry 
time). (cm2) 

90 



References 

[I] Ramamoorthy,C.V. Sheu,P.S. 
"Object-Oriented Systems", IEEE Expert Systems, p9·15, Fan 88. 

[2] Sommerville,I. 
"Software Engineering", Addison-Wesley, ISBN 0-201-14229-5, 85. 

[3] Gentleman,M. W 
"Message Passing Between Sequential Processes: The Reply Primitive and Administrator 
Concept", Software-Practice and Experience, vol.ll, p435-466, 8I. 

[4] Ben-Ari,M. 
"Principles of Concurrent Programming", PrenticetHall International, 
ISBN-013-701078-8, 82. 

[5] Feldman,A.J. 
"High Level Programming For Distributed Computing", Comm. ACM, vol.22, no.6, June 
79. 

[6] Cheriton,D.R 
"The V Kernel: A Software Base For Distributed Systems", IEEE Software, p19-42, April 
84 

[7] Boggs,P. Shoch,J.F. Taft,E.A. Metcalfe,E. 
"PUP: An Internetwork Architecture",IEEE Trans. Comm., vol.28, p624-631, April 80. 

[8] Shin.K.G. Epstein.M.E 
"Intertask Communications in an Integrated Multirobot System", IEEE Iournal of Robotics 
and Automation, vo1.RA-3, no.2, April 87 

[9] "Industrial Automation Systems - Systems Integration and Communications: Manufacturing 
Message Specification- part 2. - Protocol Specification", 2nd Draft Proposal, 1987-5-21, 
ISOITC 184sc5. 

[10] Platt.E. 
"MAP and GEC", GEC Review, vol.3, no.2, p6-Il, 87. 

[11] Burton,P. 
"A Proposed Industrial Field Bus For MAP Networks Using MIL-STD-1553B", ERA 
Technology, Cleeve Rd, Leatherhead, Surrey, England, 84. 

[12] Hewitt,C. 
"Viewing Control Structures as Patterns of Passing Messages", Artificial Intelligence, No.8, 
p323-364, 77. 

[13] Birrell,A.D. Nelson,B.I. 
"Implementation of Remote Procedure Calls", ACM Trans. on Computer Systems, vol.2, 
no.l, feb. 84. 

[14] Bernstien,P.A. Shipman,D.W. Wong,W.S., 
"Formal Aspects of Serializability in Database Concurrency Control" , IEEE Trans. Software 
Engineering, vo1.SE-5, p203-216, May 79. 

[IS] Tanenbaum,A.S 
"Computer Networks", Prentice-Hall, ISBN 0-13-164699-0, 81. 

91 



Chapter 5 

Objects, Rules and Inter-agent language. 

The previous chapter dealt with the communication mechanism and 

representation of the agents within Plethora. This chapter extends the description of 

Plethora to include the related questions of representation within agents, and the 

language of discourse between the agents. 

Objects 

The message passing system described in the previous chapter can be classified 

(using the classification given in [1]) as object based. This means the agents form 

encapsulated descriptions and communicate through messages, but there is no class 

structure or any form of inheritance between the agents. The concept of class, 

categorizes related objects together so that each member of the class automatically 

inherits the methods or procedures of that class (a discussion of inheritance, its 

various forms and uses is found in [2]). 

This has a number of advantages. Firstly, it allows much of the 

implementation detail to be hidden from the user of the object, in turn making 

creation and manipulation of objects simple. Secondly, such a system has the ability 

for two different objects to react differently to the same message. This leads to a 

compact form of language when specifying object manipulations (see [3] for a more 

detailed illustration of this point). 

Definition of an Object 

Objects can be modelled as automata whose state represents the object's and 

whose input symbols represent operations with their accompanying arguments. Figure 

5.0 illustrates an object with operations fJ,. ..... /J. An operation}'; with arguments x 

in state s, results in output}';(x,s) and state transition s '= g;(x,s). Thus, the operation 

symbols fi" are associated with symbols on the input tape, internal actions are 

associated with the state transition function g,(x,s) and outputs are associated with 

operations },;(x,s). 

92 



Objects can be described with a variant of the let notation 

let xl=al• x 2=a2 ...... in 

endlet 

f,JPl) = body offz 
fiptJ = body of J; 

where the variables {Xl ..•. xJ correspond to the instance variables. and (PI··· •. pJ 

Input 

fi.x r 

I State s I 
Operations: f1 ....•• fn 

Transitions: g1 •.••. gn 

Transition: s·-gi(x.s) 

Output 

.s) fi(xi 

Figure 5.0 Diagrammatic representation of an Object. 

correspond to parameters of the messages {fz .•.•• fJ. The semantics of the let clause 

differ from the let notation in functional programming [4] in that an operation can 

modify the instance variable. 

A system which supports class and inheritance is categorised as object

orientated. Plethora is object orientated within its agents and these objects are slot

based (Le. defined in terms of the contents of their instance variables) hence. agents 

communicate in a form of object orientated programming language. However, unlike 

conventional object orientated systems which are sequential, the objects within 

Plethora are distributed and their management is necessarily more sophisticated. The 

approach taken here was first described in a paper by the author [5] (a copy of which 

is found in Appendix B) and called ROOP, remote object orientated programming. 

93 



ROOP 
The following section describes ROOP and its application to the vision server KS. 

Vision Server 

The camera provides the necessary sensory data for a large number of KSs 

which can be used to identify objects and verify actions. During the problem solving 

cycle, a number of these KSs make concurrent access to the server in order to 

evaluate heuristics. These will be used to select the most suitable technique for the 

current state of the plan. Therefore the design of the vision server must not only be 

able to cope with the problems of large data sets (Image sizes range from 64-256 

kbytes) and those problems associated with the particular domain, but it must also 

maintain coherent responses under the influence of competing requests (see [6] for a 

full discussion of such problems) while minimising the housekeeping required of a KS 

to obtain a service. 

Representation 

The elements of a transaction are represented as polymorphic objects within 

the camera KS, that is the Class of a particular object may change during its lifetime. 

The polymorphic nature of the objects is necessary because of the size of the data 

structure involved and the limited memory available. All objects are held and 

managed within the server (see figure 5.1 for an illustration of the fields found within 

an object), reference to an object is made via it's object token which is supplied by 

the server. Objects are owned by the KS whose transaction created them, and they 

are protected from destructive operations by other KS' s. They form an inheritance 

hierarchy in the usual manner (see figure 5.2) via their Class slots, while the subclass 

field acts to modify the methods. Changes in this field made by the server, give the 

object its additional polymorphic characteristics. 

All objects are also part of a dependency hierarchy which is used by the 

implicit memory management and garbage collection (GC) of the server. The implicit 

nature of GC reduces the complexity required by a KS when requesting a service, 

while also endeavouring to make maximum use of the memory available to the server. 

At the top of this hierarchy is All-Objs (see figure 5.3) which is a permanent object 

94 



r--f~lass . 
I LSubc lass 

_Cpu 

_Sou~ce Object 

Fields--r----°wne~ -----------1 
_TID 

f-__ 80~n 

Pa~ent 

H~ibl ings 
st~uctu~e 

Extent 

,.Data 

:-Max. r-- I nstance Va~ i ab I es ____ --I 

Va lid Extent 
~ 

Object-change? 

Collect? 

Memo~y Management Flags 
'---- _ Empt ied? 

Si de- Effect? 

,. 

Figure 5.1 Object Fields. 

of class Scope of Scopes. A Scope holds the objects created within a particular 

transaction. A number of Scopes can exist at the same time, allowing separate KSs 

to carry out what seem to the KSs to be, concurrent operations. A new Scope is 

created or an existing Scope is made the current Scope, at the commencement of 

processing a new message. If an object makes reference to data outside it's Scope 

(such as where a number of objects share the same source image), and if the method 

to be used is destructive, a copy of the original object is made in the local Scope. 

The dependency hierarchy indicates which particular object was generated as 

a result of which parental data and is used to limit the possible interactions between 

competing kSs. The function of the GC is to maintain the truth of such relationships 

during the progress of a transaction, that is at any time, the same method should be 

able to be applied to the parental data and still produce the same siblings. 

95 



LUTs 
Any 

Tables Histogr"ams 

Chain-code _____ Di ff-cha in-code 

Run-length-code 

_ BI nary 
kr~s 1-9- L 

1 Grey 

Windows 8in~ry 

Sets-of ------------r-
LGrey 

: , 

Figure 5.2 Method Inheritance between object Classes. 

The local instance variables (see figure 5.1) are used to define the maximum 

dimensions of the object data structure, and the valid region of that structure on 

which the methods can operate. For example after the completion of a number of 

methods (e.g. convolution with a 3x3 mask), the extreme pixels of the processed 

image are no longer defined and so as a result the valid region of the image is smaller 

than the maximum extent of the data structure. The automatic adaptation of the valid 

region reduces the amount of house-keeping that is required to be undertaken by the 

requesting KS. 

Garbage Collection 

The server provides automatic garbage collection to simplify programming and 

ensure maximum usage of the memory available. Its action is triggered by a change 

in state of the memory management flags within an object. These flags are set by the 

methods and indicate the change in the objects data structure or subclass which may 

allow garbage collection to take place. Garbage collection takes place when, 

96 



---------------------------- ._---

All-Objects 

......... ~.~ ...................... . 
Scope . Scope 

~ .... ~: /~ .... ~ 
Obj ectO ObJ ectn .. :. : ObjectO Objectn , , , 
, , 

Transaction 1. Transaction n. 

Figure S.3 scopes and Transactions. 

1. A KS requests the contents of a particular object to be sent to it, indicating the end 
of the objects useful life. When this occurs the siblings are also no longer valid and 
so the object, all its siblings and their siblings are collected. This situation is 
indicated by the method setting the Collect? flag. 

2. A transaction is completed and the contents of the corresponding scope are 
removed. 

3. An object's subclass changes (say grey scale to binary image) the contents of the 
object remains valid, however, the validity of siblings is dependent upon the 
previous subclass of the object and so they are removed. (see figure 4) 

4. Under certain circumstances the data structure can be deleted by the action of the 
method (Le Certain forms of chain encoding algorithm), when this occurs it is 
indicated to GC by setting the Emptied? flag within the object. When the garbage 
collector is called it removes this object and moves its siblings to the parent of the 
emptied object (see figure 5.5). 

However, there are still opportunities during a transaction when garbage 

collection could be performed, but which are not detected by the rules above. These 

situations arise when objects are formed as side effects of the eventual goal object. 

Such is the case when enhancing the contrast of an image by the use of histogram 

97 



New 
Camera _~Camera 

t 
Image 
Grey 

Window 
__ -I.~camtra 

Image 

A 
/f "-

Thresho Id 
_______ ~camera 

, 
Wi ndow 
Grey 

Wi ndow 
Grey 

Wi ndow 
Grey 

Window 
Grey 

After Garbage Collection Camera 

t 
Image 
Binary 

Figure 5.4 Changes in object Class. 

equalisation. During this process a look-up table (LUT) and Histogram are generated 

which have no further relevance once the contrast of the image has been modified. 

Since the detection of these situations would require the server to have an 

understanding of the intention of the KS's action, these cases cannot be implicitly 

processed by the GC. 

Thus, in order to cope with these eventualities, there is a construction 

recognised by the message interpreter within the server known as FORM. FORM 

takes as its arguments an object and an expression, during the evaluation of the 

expression it marks all objects generated as side effects, except for the goal object 

specified in its arguments. When GC is called it removes all the objects and siblings 

marked as side effects, leaving only the goal object within the scope. In this way the 

calling KS can ensure that only necessary objects are maintained throughout a 

transaction; and the syntax of FORM underlines the intention of the transactions code. 

98 



Chain-Encode 

Camera 

Image 
Binary 

__ -I,,~Camera 

Chain-Codes 

After Garbage Collection 

Camera 

Chain-Codes 

Chain-Codes 

Figure 5.5 Emptying an Object. 

Language 

The main function of the language is to provide an efficient and flexible means 

by which combinations of methods can be specified, while keeping the message traffic 

to a minimum. The compromise solution employed within Plethora, uses a set 

theoretic approach to the language. This provides the unambiguity and flexibility that 

would be associated with the use of first predicate calculus but leads to a more 

efficient method of message interpretation (see [7] for a discussion of the equivalence 

of these two forms.) 

The reason for the increased efficiency of the approach is two fold. Firstly, 

the extensions of the most commonly used predicates already exist as the contents of 

the slots of objects. Secondly, the set theoretic notation can be simply interpreted 

using a stack architecture and without the need for the computationally expensive 

unification processes. 

99 



Operations within the language can be categorised as those which change or 

interrogate the state of an object and those which change or interrogate the 

relationships between objects. For the sake of interpretation effiCiency these are 

separately specified as Assertions and Make respectively. Both categories of 

operations can be applied to single object or sets of objects, referred to by an object 

token supplied by the host agent. Methods are also tokenised, in order to reduce the 

length and the time taken to interpret the message. The "tokenising" procedure treats 

the ascii name string of the method as a bit pattern {X' .... ;cD} and applies the generator 

polynomial [8) 

to produce a 16 bit token. This function is a built-in and allows reference to methods 

without the need to enumerate them, while still maintaining a suitable dispersion 

between the method tokens (The present system uses 100 methods and as yet there 

has been no duplication of method token values). An absolute value, rather than a 

token to be evaluated, is preceded by "%". 

The language also supports local variables which simplify the manipulation of 

the remote objects and so are used in those expressions applied to sets. The scope of 

the local variables and hence their contents, are valid for the duration of a 

transaction. General methods applied to sets include For_all_members and 

For_one_member as well as the more usual Include, Remove, Union, Difference, 

Equal etc. 

100 



Figure 5.6 shows the results of the vision server Request below. 

&y Fonn 
new " grey-scale-image $x Assert 
&x "rats 
&x "thin 
&x "Chain-encode $y Assert 

End-Fonn 
o $z Assert 
&y For_all_members 

&llength &z Gt 
*If 

*Then 
End-Forall 
&rRetum 
** 

&1 length $z Assert 
&1 $r Assert 

A new image is taken by the camera and thresholded to produce a binary image using 

a variable thresholder (based upon a technique known as RATS [9]). The image is 

thinned to produce an outline and then chain encoded. The blob with the largest chain 

code length is returned, the transaction is ended by **. 

When the results of a Request are to be returned they are packed into the 

Reply using an agent independent format, and then unpacked by the Requesting agent 

on receipt. The packing and unpacking are recursive procedures which rely on the 

common representation of a limited number of primitive data structures (which at 

present include single variable, double precision variable, one and two dimensional 

arrays, lists and counted strings). This procedure allows complex objects to be sent 

between agents and simplifies result sharing. The structure of the Blob Reply is 

indicated in figure 5.7. 

In a Prompter, where the Reply is formed by copying the state vector, the state 

vector acts as a message template (which contains the necessary object identifiers) and 

the Prompters action updates the contents slots of the message. 

101 



L __ 01_" ... 
'1'1_" 10: 

J 
b_.~y" .... e ..... I ..... 
_10, • 370 ------ ,-" ~ ~~~ 
, .. H'" 5~ 

J_"" I~~ 
.',01.... 10: 
.~ ... ~ 14(> .e.... .. I~I C"""".· "." c" ..... 

• 
.... ' f" .ti"v . . t .. I 

'" 

\ 
I ! 
\_01 

II:II=::I:::'::~~·' •• ·····~:~·····:··~~ ••• ~" :.~.~ •• : .• ::. ~ •• Z. : ••• :.. : •••• :.) .. : .• 
$ •••••• C •• } ••••••••••• :; •••• ·.·~.···a.~ 

________ ~ .... ~-----::::: ~::;,!!.! ~:;!:: ~; ~ ~ ~;, i:.:;: ~ ~: ~:::: ~ 
.". ....... , ""1,,1,, 1',,_: ,' ...... v .. c. 1 J,,: """, uu""(I(I(I(o",, 

O(>OOOOO'(I'O,OOO~(>OOOOOIOOOOQIOOOOOOOO .. 
00(170(176007". 00000 ... 0000000(100100000000 
700800000000101000001000070070007(10001 
07(>007(10000 
.. IH..., .... II ... 
(> _I I (I _! 0 Cl I _I 0 0 (> _I _I I _. (I 0 (I (I 0 (I (I (I I (I (I _I 0 (> (I 0 I -I 
-I (10 /) (I Q ", I I Q -I 1 -I .... I '·1 1<> _\ I _. (> I _I I _\ (I (I I -I I -I (, 

, ., • _I I _I (J ., : _I (10 C (> (Ion (I I -. 0" 0 .... (> (I (I (I .... -I I (I .... 0 "0" I (I ~, " t' .... " (0. (, , ... , .... " " 0) '0 ,,(I C .: ,. ,- .' ... (, I ., ..... 0 -I 
(> .. 0' .! ? '. ? ... (> " " ,. ,) ,. (I ... " ., I " ·1 1 ·1 I 1 '1 1 -I (. " ,. ol -I ~ 
(ol-.Olo-I,·.)(, .. ,,·· ......... (·,," .. -~ .n-f 1 I --I: -\ ... _1100 
.. 1 " -I ·1 1 .. "-I I (> .. 0) (> 0 0 " .... " ....... ., .. "', '" I -I I - •• -I (I 
o ...... (J 0) _I 1 .... 0) " -I 1 0 .. 0 00" 0 (J 0 , _. 0) (I 1 _I 0) • -I 0) ... 1 ., 
I(lOOOO(lOOOO(lOOOO~IOOOOOOOOOI~OOOOOOO~ 
-I I _I 1 0 0 0 0 -I , 0 0 0 , _I 0 1 _I 0 0 1 _I 0 0 0 -, I 0 0 , -I 0 0 I 

o 0 0 0 0 ._ ...... ., __ lOot 

Figure 5.6 Images illustrating the progress of the 
message above. 

102 

• 



Blob 

1D-Array 

<length> 

Name 

Data Description 

Description Variables 

Rules 

Xmoment J 
Variable ] 
<Value.> 

Chain-Code 

1D-Array 

<length> 
<value> ] 
<value> 

Contents 

Figure 5.7 Reply Format for Blob. 

An important class of object is the rule table. A rule table contains forward 

chaining production rules of the form, 

*Rule-Table* < name > 
*InitiaIisation* < code> 

*Rule* <optional name> <Predicate> *If* <Action> *Then* 

*Rule* <optional name> <Predicate> *If* <Action> *Then* 

*End-Rule-Table* 

a rule interpreter and local instance variables. They provide a formal means of 

specifying the procedural elements of an agent's behaviour and are used extensively 

to implement state machines and complex message interpretation mechanisms. A rule 

table in Plethora also has an initialisation section of user code, this is run prior to 

handing control of the table to the rule interpreter. The choice of rule interpreter 

determines the sequence of control through the rule table. 

103 



Rule Interpreters 

HC State Machine (HCSM) 

The simplest rule interpreter is the HCSM, which mirrors the implementation 

of the HC control found in [10]. It begins at the top of the table of rules and tests the 

predicate expression of each rule, the action of the first true predicate is executed and 

then the cycle begins again from the beginning of the table. This does not require 

conflict resolution, since only one predicate can be true at any time within the HC 

state machine. 

Typically these rule tables are under the control of a Prompter. Figure 5.9 

shows a part of the state transition diagram used to control an electrically actuated 

Figure 5.8 Photograph of experimental electrically 
actuated gripper. 

gripper using hybrid force-position control and proximity sensors (see figure 5.8 for 

photograph of the gripper). It implements a simple form of Bang-Bang control, which 

was found necessary to overcome the stiction of the screw thread used to drive the 

fingers . The Internal Slate of the Promprer contained, 

104 



-------------------- --- ----------

Error 
The Difference between the demand and actual value of Command attribute. 

PWM 
The current Pulse width demand to DC motor control circuitry. 
Full Reverse = 0 ; Full Forward = 255 ; Stop = 128; 

Position 
Jaws are either Fully open (fo), Fully closed (fc) or Midway 

Motion 
The jaws are either moving in a positive direction, moving in a negative 
direction or stopped. 

The Command State contains two variables the command attribute, either Distance or 

Force and the demand value of the command. In the example given in figure 5.9, 

state 1 represents fully open and stopped, state 4 fully closed and stopped, while 2 

and 3 are the Bang-Bang states between which it cycles. The final Prompter was able 

to control the gripper to perform the ubiquitous egg grasping exercise. 

condition 

FC FC 

Figure 5.9 state transition diagram for hybrid 
force/position control of the gripper. 

105 



Procedural Interpreter 

A less efficient rule interpreter, but one more suited to complex behaviours, 

such as message interpretation within a server agent, leaves the majority of the flow 

of control to the action of the rules themselves. This allows the rule table to 

recursively call itself, return from the current level of recursion, return from all 

levels of recursion or restart the cycle of rules from the beginning. 

Rule tables can call other rule tables from within their action fields and each 

table has its own local instance variables. These characteristics can be used to 

increase the efficiency of a rule based implementation. Firstly, it is possible to reduce 

the search time of a large rule table by partitioning its search space into smaller tables 

of related rules. The smaller tables then can be invoked from a master table. 

Secondly, the called and calling rule table do not have to have the same type of rule 

interpreter. Thus the most suitable form of interpreter can be chosen for each 

operation, increasing the overall efficiency. 

Implementation 

Rule tables are implemented as an array of pointers to segments of code (see 

figure 5.10). Each segment holds the predicate or action of a particular rule (in a 

similar manner to that of FORPS [11]) and so provides efficient access to the 

necessary parts of the rule. Each rule table also has a local context (i.e. its instance 

variables, such as a pointer to current message, current position within the message 

etc) which can be manipulated from within the rule table. 

106 



Rule Table Message Pointer 
*STATE* 

Summary 

Instance Variables 
Fired 
Completed 

Error 
Local Variables 

Rule Interpreter __ HC,Procedural. 

Rules ____ ----,_ Pointer to the First Rule 
Pointer to the Last Rule 
Trigger Code pointer 
Action Code pointer 

Figure 5.10 Rule table Attributes 

Given a suitable selection of rule interpreters, the ability for tables to call one 

another, their local contexts and the additional initialisation field, rule tables can be 

used to tackle large state space tasks more efficiently than is possible with FORPS, 

while still satisfying applications with short critical times. 

Rule tables provide a uniform means (given a suitable form of interpreter and 

agent) to represent the procedural element of both the real-time and knowledge based 

elements of Plethora. ROOP and the form of the inter-agent language, reduce the 

necessary housekeeping required of a KS and so contribute to the modu1arity of the 

system. 

Although, neither of these elements fulfil a requirement in Chapter I, they 

provide the underlying structure by which approaches to satisfy requirements in 

Chapter 1 are possible. 

107 



References 

[I] Wegner,P. 
'Learning the language', Byte, p24S-2S3, March 89. 

[2] Wegner,P. Zdonik,S. 
'Inheritance as an Incremental Modification Mechanism, or What Like is and Isn't Like', 
Proc. ECOOP 88, Springer-Veriag, LNCS No. 322. 

[3] Cardelli,L. Wegner,P. 
"On Understanding Type, Data Abstraction, and Polymorphism" , Computing Survey, p2-27, 
December 8S. 

[4] Henderson,P. 
"Functional Programming: Application and Implementation", Prentice-Hall 
ISBN 0-13-3331579-7, 80. 

[S] Sillitoe,I.P.W 
" An Approach to the Programming of Distributed Shared Resources within an Experimental 
Robotic Work Cell', EuroFORML'90, Southhampton, Oct. 90 

[6] Bemstein,P.A. Goodman,. 
"Concurrency Controlin Distributed Database Systems', Computing Surveys, VoI13., No.2, 
pI8S-221, 81. 

[7] Grey,P. 
"Logic, Algebra and Databases", Ellis Horwood ISBN 0-85312-803-0. 84. 

[8] Tanenbaum,A.S. 
"Computer Networks', Prentice-Hall, ISBN 0-13-164699-0,81. 

[9] Kiltler,J. IIIingworth,J. 
"Threshold Selection Based upon a Simple Image Statistic', Computer Vision Graphics and 
Image Processing, vol. 30, pl25-147, 8S. 

[10] Barbera,A.J. Fitzgerald,M.L. Albus,J.S. Haynes,L.S. 
"RCS: The NBS Real-Time Control System", 16th ISIR, p19-1 19-33, 86. 

[11] Matheus,C. 
"The Internals of FORPS: A Forth-Based Production System', The Journal of Forth 
Applications and Research,Vol 4,No.l, p7-27, 86. 

108 



Chapter 6 

World Modelling 

The contents of this chapter are concerned with the on-line modelling of 

physical objects within the work cell and representation of facts about the objects. 

The chapter begins with a look at previous work in the area. It then goes on to 

analyse a simple construction task, which is used to identify the form and types of 

information that will be required. This is followed by a detailed description of the 

knowledge and representation within the geometric and relational networks. 

Previous Work 

Very little work has been aimed directly at the problem of on-line robotic 

world modelling. In the main, specific sub-problems have been addressed such as 

modelling for visual verification [1], automatic solid modelling [2], off-line path 

generation [3] and geometric databases for inclusion within task level languages [4]. 

An exception is the work of SMGR [5] and to a lesser extent NBS [6] and Purdue 

[7]. 

SMGR 

SMGR splits the problem into two by employing separate geometric and 

relational models. The relational model is implemented as a semantic network, where 

nodes correspond to objects and the arcs represent constant relationships or physical 

transformations between objects. Multiple redundant structures are used to represent 

the object's relationships and are chosen to simplify the application of specific 

operators. A hierarchical organisation is employed to represent spatial relationships 

between objects, a tree structure to represent kinematic chains, and a graph of objects 

for the representation of rigid and permanent structures. 

Multiple representations are also used within the geometric portion of the 

modeller. Objects are represented as generalised cones for use in spatial decision 

making, spherical representations for rough collision avoidance and a boundary 

109 



representation for all other uses, such as surface intersections. It was reported that it 

has been successfuIly used in a number of experiments to model on-line assembly 

processes. Only limited details of the exact representations and operators used in 

SMGR are given. 

NBS 
The dominant concern of the work in [6) is the provision of information from 

a 3D modelling system, to verify and predict sensory data for predicted scenes. 

Multiple geometric representations are used to simplify particular operations but they 

are all based around a central boundary representation. These extra representations 

include explicit representation of quadratic surfaces, and the use of rational bicubic 

splines for more complex surfaces. 

Object representations are hierarchically organised in singly linked lists. Each 

element in the list can have an associated feature/value pair. The pair is chosen so as 

to best differentiate the object from the other objects in the system (given the set of 

extractable features available from the sensory system). 

Purdue 

Once again this work is concerned with sensory prediction, but rather than 

generating a 3D data base, it extracts an intermediate representation of the object 

features from a constructive solid geometry based modeIler. It generates attributed 

relational graphs in which both nodes and arcs have attributes, where nodes represent 

surfaces and arcs the relationships between surfaces. The attribute graph is referred 

to as sensor-tuned and forms an intermediate level of representation. It can be derived 

from model based or sensory information and is created to facilitate the matching of 

partial object descriptions with the "complete" object model. 

110 



Which Knowledge? 

In order to determine the necessary actions to complete the simplest of tasks, 

the system must have information about the shape and present position of the objects 

in the workspace. For the system to be able to plan that action it must also have 

information about the spatial constraints which must exist within such a construction. 

This information is contained within, what is known in the literature, as a world 

modeller. 

The requirements of a robotic world modeller differ from current 

conventional CAD modellers in a number of fundamental ways [8]. Most 

conventional modellers are concerned with single objects in static situations. In 

robotic applications the modeller must deal with multiple objects, moving objects, 

relationships between surfaces of different objects and uncertainty in the object's 

position and shape. (Note: At the end of this chapter and in chapter 10, the functions 

of a world modeller given in [8] are discussed in the light of Plethora's real time 

requirements. This leads to a slightly different formulation of necessary 

requirements). For example consider the problem "Place the peg in the hole", during 

the planning and execution of the goal the modeller will be called upon to provide 

information in order to, 

1. Determine the final positions of the pieces in the construction. 

2. Determine the expected freedom of movement of an object 
in a particular direction. 

3. Update the modeller using sensory information. 

4. Help predict sensory information based upon the physical properties of 
objects. 

5. Identify collisions and provide information for the generation of collision 
free manipulator paths. 

6. Determine physical properties. such as weight. 

7. Determine the pose of elements within kinematic chains. 

111 



Few of which can be derived from a conventional solid modeller. However, to 

achieve these efficiently, the information must also be in a form which is directly 

applicable to the function to which it is to be put. These characteristics are referred 

to as the Representational Adequacy (the ability to represent all the forms of 

knowledge that are needed in a domain) and Inferential Adequacy (the ability to 

manipulate the representational structures in such a way as to derive new knowledge 

inferred from old) of the modeller[8] respectively. They form part of the more 

general Frame problem in artificial intelligence[8]. 

Relational and Geometric Information 

From the list of requirements, it can be seen that the information in 1-7 can 

be partitioned into strictly relational and strictly geometric parts. (Le. I requires 

relational information to predict the constraints on the structure and geometric 

information to determine the parameters of those constraints). For the sake of 

efficiency these forms of knowledge are treated as two related planes of a frame 

network [9]. Hence the question of their representation is discussed separately. 

Geometric Modelling 

Geometric representation schemes can be broadly partitioned into wire-frame 

and solid representational schemes[IO]. Wire-frames are a collection of curve 

segments that represent the object's edges (see [11] for a rigorous definition). They 

have several disadvantages, namely 

The representation can be ambiguous. 

They cannot be used to compute mass properties 

They do not have an interference operator and so collision detection is not 
possible. 

112 



Solid Modelling 

Solid modellers overcome these disadvantages and are distinguished by their 

unambiguous representation of the object. In general, they model the object using the 

following techniques or combination of techniques. 

Swept volumes 
Where an object is represented by a 2D outline swept along an axis. The shape 
of the axis determines the complexity and practicality of the representation. 
This technique was employed in ACRONYM[l2) to represent it's volumetric 
primitives. 

Boundary 
An object is defined by a set of bounding polygons, which are themselves 
defined in terms of their edges, vertices, surfaces and normals[lO). 

Cellular/spatial occupancy methods 
These methods assume that all space can be divided up into a large numbers 
of discrete cells which are either occupied by an object or not. It can be 
implemented simply as a 3D array, or a more sophisticated k-tree, in which 
the space is hierarchically ordered (e.g. Octree[lO]). 

Constructive Solid Geometry 
Combines simple primitive volumes under set operations, in a hierarchical 
manner. These primitive volumes are themselves represented as anyone of the 
other forms. The result is a set of simultaneous inequalities which must be 
solved to determine physical properties[lO). 

Cellular methods have been used in a number of related techniques, but only 

to specify single stationary objects. They have the disadvantage that their storage 

requirements must be traded against the resolution of the representation. Tips-l[13) 

is based upon a cellular strategy, it uses an array to form a coarse mesh and has 

special techniques at the level of the cell, to overcome the resolution problem. 

Pure CSG schemes are not efficient when used to "pick an edge from" an 

object, and are inadequate for analysis of spatial interferences which require an 

intersection operator[ 1 0]. 

113 



Swept representations are a natural means of describing solid volumes and they 

have been applied to a restricted class of volumes in APT and ACRONYM. 

However, at present there are few algorithms for use in computing object properties. 

Growing object's, which is the basis of a number of path planning schemes, is also 

difficult. 

Hybrid scheme's, which use multiple representations, can exploit the particular 

advantages of a given representation for a particular function, and so provide a 

solution to the diverse requirements of the robotic world modeller. The following 

section describes the hybrid scheme used within the geometric portion of the world 

modeller (GeoMod). 

GeoMod 

The geometric plane of the network is linked to the relational via the 

geometric attributes of an INDV (through its physical-property slot). This points either 

to a CHAIN, BODY or COMPOUND-BODY frame. A BODY describes the 

volumetric and surface properties of the body which the INDV represents. A 

COMPOUND-BODY is used when a combination of bodies is necessary to describe 

an INDV's physical attributes. A CHAIN frame indicates that the INDV is an open 

linear kinematic chain and it forms the head of a list of BODY frames. 

BODY Frames 

The slots of a BODY frame are shown in figure 6.0. They can be partitioned 

in to those which represent the spatial relationships within the WORLD (Le. Parts and 

Subparts), those which describe it's variable ones (Le. the variable relationship group) 

and the fixed relationships between the component voll.1mes within the BODY or 

COMPOUND-BODY. The variable relationships indicate the BODY is part of a 

kinematic chain. 

The BODY frame forms a hierarchy of other COMPOUND-BODY/BODY 

frames through the PART-OF and PARTS list. It's position in the WORLD is defined 

with respect to the COMPOUND-BODY/BODY which it is a PART-OF, via that 

114 



II!ty .... "."'" -.Homooenou$tJansfcnn ___ Hcmagenous transform 

Part. ........ 8Cldy 
n.nolom1 ...--. Homogenous tJanolcnn 

Body 

F~t<! ---1""'-01 --..Body 
R.lalon~ 

_..of ........ Indv 

volum. ~ Volume 

VarIab~ PrevlouI Unk ~Body 

RellUon''*''l Next Ltl" ~Body 
Pall of Chain ,-..... Chain 
UI1C Nurd>er 

Figure 6.0 Body Frame. 

BODY's coordinate PART-TRANSFORM. At the top of the hierarchy is the WORLD, 

which is a PART-OF itself. The hierarchy terminates in BODY frames (i.e. frames 

with a single VOLUME). These VOLUME frames contain the quantitative information 

about the BODY. 

A COMPOUND-BODY is represented as a list of BODYs or other 

COMPOUND-BODYs, each of which belongs either to the sets of holes (HLES) or 

solids (SLDS). Hence, each separate piece of a BODY has an associated frame and a 

name. This makes referencing parts much easier and more efficient than referring to 

a group of surfaces within a single monolithic representation. 

The distinction between BODYs and COMPOUND-BODYs and the explicit 

separation of SLDS and HLES in the COMPOUND-BODY, although not absolutely 

necessary (e.g. Whether a BODY is a HLE or SLD could have been determined via 

the inheritance mechanism) increases the efficiency of the methods. It does so by 

115 



Compound-Body 
Mty .....ronn ..... Hcm09"O"u. lJan.forrn ,..... Homogenouo tranofonn 

pn "'+ Body 
T........ "'-'I Hcmooenous nnaforrn 

FIxed "",.QI ....... Body 
Rell'llon.~ 

VOl<lT1O -------I 

VeMblt PrtvioU$ Unk"""'" Body 

R.lado""""lNoxtU1k ~ Body 

panOlChlln ,.,...Chaln 
UI"Ic:Number 

sIds ....... Body ..... Body 

hIes ""4' Body ....... Body 

sphere ....... Sphere 

Figure 6.1 Compound-Body Frame. 

reducing the number of coordinate compound transformations and use of the 

inheritance mechanism (which would have been required by a more uniform 

representation). 

VOLUME Frames 

The VOLUME frames are a set of primitive volume descriptors (e.g. 

hemisphere, cone, rectangular parallelepiped and cylinder. See figure 6.2) or user 

defined descriptors which when used in conjunction, build up a description of a 

particular COMPOUND-BODY through its BODY frames. An example in composition 

of a COMPOUND-BODY is given in figure 6.3, which models the volume of a screw 

as two cylinders and a cone. 

VOLUME Hierarchy 

Each VOLUME (see figure 6.4) node is composed of a number of mUltiple 

representations which form a hierarchy. At the top are bounding volumetric 

approximations to the object, the first is a single sphere, beneath which there are a 

number of smaller overlapping spheres enclosed by the first sphere. Both 

116 



BOXl COHEl 

Viewing 1,,",101'11 Viewing TrMlsrorll 

ll!1!1!9 0 0 0 
0 -wal!9 0 0 
0 0 -WOgg 450 
0 0 0 !,IlaaO 

LB090 0 0 0 
0 -LBeeg 0 -m 
0 0 -LBaOe 2S9 
0 0 0 !,IlOe9 

xc : 161!99 ge: 16999 .. : -32ee9 ",gnilieilion: le9 : 11lS9 xe : 16999 ge: 16999 to: -32999 IQgnili"tion: lee : 161!9 

Figure 6.2 Screen dump of primitive volumes taken from GeoMod. 

~ 

Figure 6.3 Compound-Body Screw. 

representations are derived from an imaginary rectangular parallelepiped (RP) which 

bounds the boundary representation of the volume. Below these volumetric 

representations is a conventional boundary representation[ 4], comprising a hierarchy 

117 



Volume 

Sphere --.. Sphere 

Spheres ,..... Sphere .-.Sphere~Sphere 

Surfaces ,...... Ust-Of-Vertlces ..... Ust-ol-Vertlces 
Normal Normal 

Edges r-r Palr-ol-Vertlces ~Palr-ol-Vertlces 

Vertices ~ {x.y.z} ..... {x.y.z~{x.y.zr..tx.y.z} 

Figure 6.4 Volume Frame. 

of planar polygon surfaces, their normals, edges and vertices. Both forms of 

representation are specified with respect to the VOLUME's local frame of reference. 

There is necessarily a trade off between the number of smaller spheres used 

to bound the RP and the accuracy of this representation. The size and position of the 

spheres are chosen according to a minimum volume error criteria and they are 

positioned along the major axis of the RP. 

The procedure begins by splitting the RP into a number of smaller equally 

sized RPs along it's major axis and enclosing these with spheres of radius, a, which 

ensure minimum volume error (see figure 6.5). The derivation of the expression for 

a in terms of the RP's end face is given over the page, where E is the error in 

volume. 

The procedure continues by fitting at one end of the RP, a sphere at a distance 

a from the end face, the next sphere is placed at a distance of 2a from the centre of 

the previous sphere and so on until the final section of the RP. The final sphere is 

placed at a distance a from the far end face, so as to enclose the volume left over and 

118 



Let b = a' 

But a 2 > 0 

Since a> 0 

=> 

41trl 
E = -- - 6xya 

3 

41t 2. 
E = _ [x' + y' + a'l ' - 8xya 

3 

1 

dE = 41ta[x' + y' + a'l' - 8xy 
da 

=> a' + (x' + y2)a 2 -4(~)' = 0 

=> b = -~ (x' + y') ±~[ (x' + y')2 + 16(¥n~ 

=> b = ~[(X2+y2) 2 + 16( ¥)21~ _ ~ (x' + y2) 

=> a = [~[(X2 + y2)' + 16( ~)']~ - ~(x' + y2)1~ 

r. 1.\" . 1 : : : 
1 : : : ~ 

...... · ...... · .......... 1 .... •·· ........ ·· .. : .. · .......... · .. ·· .... : .... · .. ··· .... ·· .. · .. ·· ... : ............ _*-
1 : : : : 

~ ///~----i--~~~~-----~--~~~ ------
1 --· "./ .. ' :.~~ 

2a 

r----------2z--------~ 

Figure 6.5 Partition of the Bounding RP. 

still fulfil the minimum error criteria (see figure 6.5). 

A COMPOUND-BODY also contains a bounding sphere, however, these bound 

the single sphere volumetric representations of its component BODYs (see figure 6.6, 

where the dotted spheres represent the individual BOD Y spheres, solid ones the 

COMPOUND-BODY spheres and r, the radius of the final bounding sphere for the 

entire body). Here 

r = { «zm.x-zm;JI2)2 + «Ymox-Ymm)I2)2 + «xmox-x",;n)I2)2 }112 

c = { (xn"x-xm;n)/2, (Ymox-Ym;n)/2, (z,nox-Zm;.)I2} 

119 



The hierarchy formed by this representation provides a means of increasing the 

____ +-..,..--=-____ ~---Jmax 

., ...... . 

........ 
c· '. 

0"/ 

------4---.~. ~~ ____ +_----ymin 
xmin x ax 

Figure 6.6 Sphere bounding a Compound-Body. 

efficiency of many of the fundamental operations of the modeller. It allows the 

modeller to apply efficient tests based upon the volumetric representations, to prune 

the search before applying the more computationally expensive boundary operations. 

Interference Test 

Interference tests between objects are the basis of a number of methods 

employed within Geomod including collision detection. An interference test is usually 

computationally expensive and indicates whether two objects overlap or touch. The 

method employed within GeoMod takes advantage of the volumetric hierarchy to 

reduce the complexity of interference tests. It does so by allowing simple approximate 

tests to remove the obvious cases, before proceeding to make more detailed and 

complex tests on the more likely candidates. For example in figure 6.7, when 

determining whether a BODY(a) intersects with another BODY(b). the spheres at the 

top of COMPOUND-BODY hierarchy (or in the case of a BODY with only PARTs. 

120 



--------------------- -- -----

the PARTS list) are tested for intersection using the necessary intersection predicate, 

If there is an intersection, then the sphere BODY(b) is expanded and 

BODY(a)'s sphere is retested against the more detailed model of BODY(b). This 

sb1 

-----0 

sb1 

b 
A 

Figure 6.7 Hierarchical Intersection test. 

process continues in a breadth first fashion until the spheres which represent the 

primitive VOLUMEs are reached. If there remains an intersection then BODY(a) is 

expanded and the sphere tests are performed in the same manner until the bounding 

spheres of BODY(a) are reached. By this point the potentially interfering parts have 

been identified and it is now necessary to make the more expensive boundary 

interference tests. 

121 



These are wel1 known and are performed in the usual manner. Firstly, the 

groups of facing surfaces are determined using the cross product of their surface 

normals, then vertices/surface interference tests are performed (details are to be found 

in [14]). 

The steps below describe the order of the intersection tests between the 

spheres in figure 6.7, where n is used to indicate the intersection test and a starred 

expression, an intersection. 

2. ·S. n Sbl; S. n Sb2; 
3. ·S. n Sbl1; ·S. n Sb12; ·S. n Sb13; S. n Sb14; S. n SbIS; ...... 

4. ~So1 n Sbl1; ·Sal n Sb12; Sal n Sb13; 
Sa2 n Sbl1; Sa2 n Sb12; Sa2 n Sb13; 

5. S.l1 n Sbl1; S.12 n Sbl1;.......... S.16 n Sbll; ·Sa17 n Sbll; 
Sall n SbI2;· ...................... · ........ ·· ................ ; 

(Note: Other more efficient sphere intersection tests, based upon the sufficient D4 and 

Dg distances metrics, were investigated. However, the extra expansions required as 

a result of the approximate nature of the tests out-weighed the increase in their 

efficiency). 

CHAIN Frames 

Open kinematic chains are model1ed using the modified Denavit-Hartenberg 

formalism found in [15]. This encodes the coordinate transformations between joints, 

using four scalars Cii_l, ei' ai_1 and d,. For a prismatic joint the joint variable is d, for 

a revolute joint, e. The motion of the joint is limited to translation along or rotation 

about the z-axis, such that the coordinate transformation between two joints i and i-I 

is given by the compound transformation, 

i-I 
. T = ROTX(Cii_I).TRANSX(ai_I).ROTZ(ei).TRANSZ(di) 
1 

122 



or when expanded explicitly, 

cS, -s8, 0 a,_! 

sS,.cal_! cSI·ca,_! -sa,_! -sa,_!.d, 

sS,.sa,_! cS,.sa,_! ca,_! ca,_!.d, 

0 0 0 1 

where cS, is cos(8J etc. To allow for more complex arrangements (such as spherical 

joints) fictitious parts each with a common origin are used to perform the extra 

transformations. 

The formalism is implemented using CHAIN frames and the variable 

relationship slots of the BODY frames. A CHAIN (see figure 6.8) contains a pointer 

Chain 

Attribute-Of ..... Indv 
D/H-Table ..... Table 
First-LInk ..... Body 

~ 
End-Of-Chaln ... Expression 

1/ ........... 
First link I I 

Bodv1 

B0dy2/ Next 

Bodyn 

Next nil 

Prey nil 
... Prey Bodyn-1 

Chain Chaln1 ChaIn Chaln1 

No 1 No n 

Figure 6.8 Chain Frame. 

to the INDV whose physical properties it represents, the Denavit-Hartenberg (D/H) 

123 



parameter table and a pointer to the BOD Ys which constitute its links. The Link No. 

describes the forward relative coordinate transform to the Next-Link in terms of the 

entries in the D/H table. Pointers back along the chain (indicated by Previous-Link) 

are used to determine the position of a link with respect to the world coordinates. 

This is achieved by evaluating the inverse of the D/H transforms along the chain until 

it reaches the base (indicated by a Nil Previous-Link). 

An optional slot within the CHAIN descriptor holds an executable function 

which returns the position of the end of the chain. Often there is a simple geometric 

solution to the forward kinematics of a manipulator and its use reduces the cost of 

Figure 6.9 A screen dump of example Chain. 

what is otherwise a computationally expensive operation. However, the link list is still 

necessary for the determination of the manipulator limbs in collision avoidance. 

A CHAIN does not have a bounding sphere, since updating such a sphere 

would effectively require the re-calculation of the forward kinematics for each change 

124 



in joint variable. This is extremely computation ally expensive and so sphere 

representations of the chain are calculated when required. 

Collision Detection 

A KS will often need to determine whether a potential collision is about to 

take place (e.g. when planning a manipulator path). The description of GeoMod so 

far does not include any reference to the modelling of motion. This is still an area of 

current research and no conclusive technique has been found which has sufficient 

generality and the necessary efficiency. The following section discusses current 

approaches and indicates how limited modelling of motion is achieved within 

GeoMod. 

Solids In Motion 

Collision detection, and the more general area of modelling solids in motion, 

is difficult. There are three fundamental techniques used at present. The first 

determines the movement of the object as a swept volume and checks for intersections 

between it and other objects. The second incrementally changes the position of the 

object and after each interval checks for intersections. The third creates a model of 

the shape and motion of the object in four dimensions or higher, and looks for 

intersections in that space. 

Swept Volume Representation 
A swept volume technique has been proposed by Boyse[16]. This was 
restricted to single bodies moving under translation or under rotation only, and 
may be a practical solution to a number of work cell situations. The technique 
parameterises the equations for the paths and objects and tries to solve them 
simultaneously to determine a collision. Noname[17] uses a similar technique, 
but represents the path as a swept sphere which increases the speed of the 
process. However, these techniques do not include time as a variable and are 
limited to the movement of a single object. 

Incremental Motion 
Incremental techniques are computationally expensive but are simple to 
implement and also cope with a large class of problems.(Note: Although they 
have difficulty with modelling sliding contacts) Techniques exist to improve 
their efficiency over that of the most naive approach. They rely on looking 
ahead to a time when there might be a potential collision. Coarse steps are 
made up to that point, when higher resolution steps are made. However, great 
care has to be made in the choice of method when determining the point of 

125 



potential collision. Cameron[lS], used a divide+conquer technique which 
while increasing the response of the algorithm, he noticed that the 
determination of the potential collision point took five times as long as the 
interference test itself. 

Algebraic Representations 
Robomod[19] included a time dimension in the equation representing the 
normal to the surface of an object. 

ax + by + cz + dt + e = 0 
This was used to solve the collision problem for two objects in linear motion. 
This technique is not general and it is time consuming and difficult to 
represent[19]. 

Summary 

It is clear that modelling solids in motion is both difficult and time consuming. 

For this reason it must be restricted to the off-line sections of Plethora's behaviour. 

Techniques which rely on modelling motion during the on-line sections (such as many 

path planning techniques), need to be reformulated so as not to need this form of 

modelling. 

An alternative efficient path planning KS, which does not rely upon the direct 

modelling of motion is provided in Chapter S. However, for those occasions where 

modelling motion is necessary Geomod uses an incremental technique in conjunction 

with the hierarchical interference checker to provide a limited means of modelling 

solids in motion. 

Collision Detection in Geomod 

The teChnique uses a swept volume of the path of the object (where the object 

is modelled as a sphere), a simple prediction of where the likely collisions are to 

occur, and the use of the hierarchical interference test for the detection of collisions 

for a single object. The technique is limited to simple translational paths of solids, but 

could be extended to more complex paths using [15]. The prime purpose of the 

technique is modelling fine motion during the determination of assembly sequences 

(this is described later in the chapter). 

The workpiece is modelled using it's single bounding sphere and hence, it's 

path is modelled as a cylinder. The likely areas of collision between the path and 

126 



Top View 

Side View 

Figure 6.10 Simplified Collision test. 

other workpieces are highlighted by intersections in the x-y plane. These are between 

the cross section of the cylinder and the x-y circles of the pieces (see figure 6.10). 

The extent of the workpiece in the z direction, which forms the potential collision, 

is used to determine the zone over which the incremental interference tests will be 

performed. The workpiece is then moved in steps of 1 mm through the region of 

possible collision (Zl-~ in figure 6.10) and at each point the hierarchical interference 

test is performed to determine whether or not a collision has occurred. 

127 



Relational Information 

The relational plane of the world modeller is used to provide relational 

information about constructions and the relationship between physical objects and 

their functions. Three types of frame are used to accomplish this, they are the 

individual (INDV), the set (SE1) and the set descriptor (SEW). INDV's inherit all the 

attributes of the SET to which they belong. Each member of the SET provides a 

mutually exclusive alternative to its fellow members. SETs can have SETs as their 

members and so form a set-superset hierarchy. The attributes of a SET are described 

by it's SEW. This contains it's FUNCTION (i.e. the context in which the SET is 

used) and the Role it plays within that context. 

The possible forms of inheritance between frames are shown in figure 6.11(a). 

This precise structure and definition of inheritance avoids the problems of intuitive 

schemes. The structure of the frames interconnection is shown in figure 6.11(b), 

although SETs may also share a SEW and INDV may also have a number of 

EQUivalent INDV's. 

Relationship Function Roles Context Members 

Isajlsamemb J J J INDV·SET 

lr"ype{Tmemb J J J SET-SETD 

~peC/Spmeb J X X SETD·SET 

Sub/Smemb X J J SET-SET 

Figure 6.11(a) Forms of allowable Inheritance. 

The hierarchy culminates in the SET UNIVERSE, which is a member of itself. 

Immediately below the UNIVERSE the network is partitioned into INFORMATION 

and THINGS. THINGS take part in the construction process and may have INDV 

128 



~ 
Speclallsatlon/spmenb 

~m> Function 
/' Actors 

/_ Roles 

TYPE!-of/tmemb 

IsaJlsmemb 

8 e 
Figure 6.11(b) The inheritance mechanism within the relational network. 

terminal frames with physical properties. While INFORMATION frames terminate in 

descriptions of primitive relationships between SETs or in SETs themselves. A 

diagram showing part of the relational frame network is given in figure 6.12. (Note: 

Whenever a new item is added to the network its relationships are checked to ensure 

consistency with figures6.11(a,b». 

One of the important functions of the relational plane of the network is to 

describe assemblies and fixtures. The names of the frames provide the vocabulary for 

the system when discussing the construction (Le. goal and Role names etc). The next 

section describes how the network can be used to interpret declarative descriptions 

of assembly tasks (completely fulfilling requirement kn2 and partially fulfilling ctl ). 

Descriptions oC Spatial Constraints 

A major function of the INFORMATION branches of the network is to provide 

declarative descriptions of CONSTRUCTIONs. This information is analysed by KSs 

and used to enter the goals on the BB. A CONSTRUCTION is described in terms of 

ASSEMBLYs and SUB-ASSEMBLYs, which in turn are described by FIXTURES 

129 



between WORKPIECES or SETs of WORKPlECES. FIXTURES are domain terms 

which describe constraints between the WORKPIECES. The constraints are described 

in terms of the ACTOR and ROLE fields, ACTOR's describe the SET's of allowable 

participants in the construction and the ROLES the constraints between those 

participants. A FIXTURE's ROLESs are described in terms of PRIMITIVE 

relationships which hold between two coordinate frames. An ASSEMBLY's ROLes are 

a mixture of FIXTURES, PRIMITIVES and other SUB-ASSEMBLY nodes. In this way 

a hierarchical description of an assembly task can be built from other simpler 

descriptions. 

Each SETof WORKPIECES has a transform arity, which specifies the number 

of ordered coordinate frames which each member must have. The transforms 

ss· Subset 

sp - Specialisation 

tp- Type of 

Figure 6.12 An outline of the relational network. 

correspond to the position of the coordinate frames affixed to the WORKPIECE, each 

of which corresponds to it's use in a FIXTURE. 

130 



The PRIMITIVES within the FIXTURE specify relationships between these 

coordinate frames and so describe the constraints on a FIXTURE. The simultaneous 

ss ·Suoset 
sp - Specialisation 
tp • Type of 

Figure 6.13 An outline of the workpiece network. 

solution of the constraints for a particular WORKPlECE gives it's position within the 

construction. 

Primitive Coordinate Frame Constraints 

The PRIMITIVES are the same as those homogeneous transformation operators 

used in [20] for describing manipulation. They specify constraints in terms of 

coincident .origins and aligned axes. Given that a homogeneous transform can be 

expressed as, 

131 



[ m 
o 

n 
o 

where I, m, nand pare 3xl vectors, then the primitive relationships can be written 

in terms of homogeneous transforms as :-

[ ? ? 1J 0 0 
Star 

[ ? n 1J 0 0 
Hat 

Equal [ m n 1J 0 0 

where? represents a degree of freedom. 

Figure 6.14 illustrates diagrammatically the relationships specified by the 

PRIMITIVES. A Star relationship indicates that the frames should share the same 

origin, leaving all rotational degrees of freedom unspecified. A Hat holds between 

two frames with a common origin and who also share common z axis directions. 

Finally, for an Equal relationship to exist the frames must coincide. 

Groups of primitives which refer to the same workpiece can be solved using 

the solutions to the simultaneous equations found in [20]. (Note: there are a number 

of typographical errors in the original paper, and so for clarity an example proof is 

given in Appendix C). A solution exists for the position of a workpiece, if (a) there 

is an Equal relationship between a part and another whose position is known; (b) 

between a part and three others with which three Star relationships hold; (c) a part 

and two other parts where two Hat relationships hold; (d) a Star and a Hat 

132 



Star Hat Equal 

z z z 

x YX Yx Y 

Figure 6.14 PRIMITIVES. 

relationship exists between two parts. Figure 6.15 illustrates how a FIXTURE 

between a Screw and Hole can be described using the simultaneous relationships 

{Hat(hole[l] ,screw[l]) ; Hat(hole[2],screw[2])}. 

Assembly Descriptions 

This section describes how the representation can be used to determine the 

final position of a workpiece from a declarative description of the assembly. It 

discusses previous approaches, and then goes on to describe the approach taken in 

Plethora and the KS which implements it. 

Previous Work 

The work falls into two camps, one is exemplified by the robot programming 

language RAPT[21]. This is concerned with the specification of implicit motion and 

133 



· ....... , .. . 
". 

Screw(11 

\, 
\. 

\ 

\ Hat 
) 

/ 
! 

Sctew(2) 

..
.... ······z ,i ... 

,'" " 

-----+/---.,----,"'"":.,.;._ ... _, .. _------

Hat( l t I HoIe[11 

\ i I 
\ i i 
\, i I 

. i i 
····i i 

!...... ! 
'--''r----' 

Hole(2] 

Figure 6.15 Screw Fixture, 

leaves the assembly order to the programmer. The other [21,22] concentrates upon 

deriving assembly sequences, 

RAPT is a task orientated language which accepts descriptions of spatial 

relationships such as "against (bottom_ oLblock. table_top)", It interprets the 

descriptions in terms of the constraints which they imply, and then it solves these to 

produce a final position of the part. The relationships are expanded and analysed by 

a rule based program, which uses re-write rules to solve the constraints. Initially, the 

constraints were solved algebraically[lO]. However, this was found to be slow and 

could not be guaranteed to converge. A restriction in the class of problem and a 

modification to the inference mechanism (so that it produced groups of simultaneous 

equations with known numerical solutions) increased the efficiency of RAPT. but not 

by enough for it to be completed within the typical critical times of the work cell. 

The approach taken in [23] produces a complete representation of all possible 

assembly sequences for a given assembly in the form of an AND/OR graph (see [24] 

for a comparison with other forms of representation). It then [25] searches through 

134 



the graph using a AO' search to extract a tree which represents a single assembly 

sequence. The initial creation of the graph relies upon the availability of two 

predicates Connected-stable, which determines whether the resulting assembly step 

would be stable, and Task-Feasibility, which determines whether it is possible to 

make the assembly step based upon geometric constraints (e.g. is the path obstructed). 

Similarly, it is necessary to provide cost functions for the AO' searches and for the 

comparison of the possible assembly sequences. These latter cost functions it was said 

could be based upon part entropy, a measure of assembly complexity, paraIlelism in 

construction or multiple paths. However, due to the exhaustive nature of the graph 

generation and the complexity of the predicates, this is only ever likely to be an off

line process. 

Assembly Descriptions in Plethora 

The approach used within Plethora is not complete, but is extensible and 

efficient. The method expands a hierarchical description of the assembly (using the 

relational plane of the frame network) in to it's necessary PRIMITIVE constraints ( 

i.e. those which must hold between coordinate frames attached to workpieces in the 

completed assembly). Choosing an initial workpiece about which the construction is 

to be built, the list of constraints is searched to find groups of constraints related to 

a single part, which when solved specify all its degrees of freedom (Le. determine 

the position of that part in the assembly). Hence the techniques uses the necessary 

precondition, that a part must already exist within the assembly before another part, 

whose own stationary position relies upon it can be added, to order the series of 

solutions. 

However, this initial ordering is not sufficient to be used as the sequence of 

assembly actions. It is still possible for the current order of solutions to aIlow the path 

of a workpiece to be obstructed by another, whose position had been previously 

solved (e.g. it is necessary to put all the contents of a box into the box before placing 

the lid on the box, otherwise the lid will obstruct the addition of the contents). Hence, 

further ordering constraints based upon the geometrical properties of the workpiece 

and the possibility of obstruction by previous solutions, is necessary. 

135 



This further ordering is achieved by modeJling the approach path of the newly 

solved workpiece as it is added to the assembly (as described earlier). If a collision 

occurs with any workpiece already in the construction the workpiece causing the 

collision ought to be added after the workpiece test. Thus the initial order is re

ordered by the results of these tests, to produce the final precedence graph for the 

construction. 

Unlike [23] this is not based upon the decomposition of the completed 

assembly but upon it's construction, and so has a different constraint unavailable to 

it when ordering the assembly steps. (Le. Stationary relationships can only be solved 

if arguments of that relationship already have their position defined within the 

assembly). Hence, if initially only one WORKPIECE has a defined position the 

assembly will be built around it. 

What follows is a description of the details of a KS which produces the 

precedence graph. 

Solve-Construction 

A KS, called Solve-Construction, exists which implements the method above 

and can be used to produce assembly sequences. It can also be used to solve the 

spatial relationships specified in terms of FIXTUREs on the blackboard. This allows 

the goals on the blackboard to be specified in terms of a relationship with respect to 

the object and not in absolute coordinates. Hence, the position of an object (with 

which there will be an associated uncertainty) can be determined at run time by 

sensory information and only then the equations solved to produce the absolute 

coordinates. This allows the system to reason with up to date information rather than 

using less reliable predicted values. 

Solve-Construction operates in two stages, initially it stacks the goal 

FIXTURES and SUB-ASSEMBLIES and then recursively removes the expressions from 

the top of stack and replaces them with their component descriptions derived from the 

relational network. When Solve-Construction encounters a PRIMITIVE relationship 

on top of the stack it removes it and places it in the Primitive table. During each 

136 



expansion Solve-Construction substitutes the actual parameters from the original 

ASSEMBLY description, for the dummy FrxTURE parameters. 

Once the stack has been emptied it then begins to search the primitive table 

for stationary relationships between the BODYs, and solves for the position of a 

particular workpiece. It then marks that workpiece's position as KNOWN and copies 

the equation (e.g. Equal, 3 Stars etc) and bodies concerned with that stationary 

relationship into a Stationary relationship table. This process continues until all 

workpieces, which may form stationary relationships within the current state of the 

assembly, are KNOWN. 

The stationary relationships determined during a cycle are linked via 

BEFORE/AFTER relationships to those stationary relationships determined on the 

previous cycle, producing the initial partial ordering. 

At this stage the partial ordering takes no account of possible collisions during 

assembly. Solve-Construction now tests for collisions between the members of the 

group of stationary relationships found during this cycle. It assumes that all members 

apart from that under test are already part of the assembly. It also assumes that the 

approach path of the part under test, is directly above the KNOWN position and 

begins at the maximum height of the work space. Using the results of the collision 

test, it then re-orders the relationships between the group and the part under test. It 

does this by adding additional BEFORE/AFTER links between the stationary 

relationships. (Note: if during a test it is decided that the original workpiece, about 

which the assembly is to be built, must come after another. This indicates that the 

KNOWN position cannot be reached from above and the process is abandoned). 

Any relationships not used by this stage are used to check the consistency of 

the overall assembly description, by evaluating the relationships using the KNOWN 

position of the parts. (Note: most assembly descriptions formed this way are over 

specified). 

137 



0[11\ 

; Ha! 

B[l]..,-___ ....... ~~=~,:-··--~ B[2] 
, '. / B:Hole[l] ./ I 

B[4] \ Equal Equal~[3] 
" ,) '. 

.. hC=[4..,-;].------. ., .......... : '. 
C[3] 

{Equal Equal; 

\ .•. C[2] 
.. 

C[l] 
~-'--- ............. '------=-...:,. 

Equal: ,'A[3] 

..... A[2] 
A[4], ... ! Equal 

. \ A:Hole[2] 
A[1]1L/---············· 

Figure 6.16 Example Assembly. 

An example of the process is shown in figure 6.16 and 6.17. Figure 6.16 

shows the cross section of the assembly where the two halves of a box each with a 

hole, are to enclose C. C also has a hole to allow pillar D to be inserted through B,C 

Cycle 1 
A ~ Equal{B[4],A[4]) 

L-.., Equal{C[1],A[1]) 

A ~ Equal(8[4],A[4]) ~ 
~ Equal(C[1],A[1])J 

Cycle2 

A ~ Equal(8[41,A[4])~ : 
~ Equal(C[1],A[1])J _ } 

2Hat(0[1 ],8:Hole[1];D[2],A:Hole[2]) 

Figure 6.17 Resulting Precedence Graph. 

138 



and A. The dotted lines indicate the PRIMITIVE relationships between the frames 

attached to the workpieces in the final assembly. Figure 6.17 shows the initial After 

ordering produced by the solution order of the constraints (indicated by 

straight lines) and the addition constraints added by the colJision test (indicated by 

arcs). 

Summary 

GeoMod provides a new means by which declarative descriptions of an 

assembly can be interpreted as a partially ordered set of homogeneous transformation 

operations on coordinate frames attached to workpieces. It assumes a workpiece about 

which the assembly is to be built, but in comparison to exhaustive schemes (such as 

[23]) is relatively efficient. In so doing, GeoMod partially fulfils requirement etl and 

completely fulfils kn2. 

GeoMod achieves its representation and inferential adequacy in two ways. 

Firstly, where ever possible it maintains explicit representations of the geometric 

properties and relationships, and so trades memory size for speed of access. 

Secondly, the hierarchical nature of its data structures is used to reduce the need for 

exhaustive search techniques. 

In common with the previous work described in this chapter, GeoMod does 

not model the uncertainty in position associated with an object (as performed during 

the off-line operation of SPAR), but uses a single position which corresponds to the 

highest Confidence measurement. This is done because the propagation of the affects 

of uncertainty through GeoMod would dramatically increase the complexity of it's 

basic operations. 

Whichever approach is taken to the modelling of uncertainty, there will 

eventually he a limit placed on the modelling which can be under taken within the 

critical times required of GeoMod. Hence, the approach taken within Plethora is to 

model only those elements which can be modelled efficiently, and reduce the 

139 



requirements made of the predictive element of its representation. To compensate for 

this, emphasis is placed upon Plethora's ability to reason during the execution of the 

plan using sensory data. 

Although feature/value pairs could easily have been added to GeoMod, it is 

assumed that the KS which is responsible for matching (and/or generating) the 

features should maintain them itself. These could be linked to GeoMod by the name 

of the frame its uses to represent the features, so forming a distributed feature data 

base. This has two advantages, it maintains encapsulation and will allow matching to 

take place in parallel. 

140 



References 

[I] Koshikawa,K. Shirai,Y. 
'A 3-d Modeller for Vision Research' ,ICAR 85,pI85-190. 

[2] Boissant,J.D. 
'An Automatic Solid Modeller for Robotic Applications', Advanced Software in Robotics, 
Elsevier Science Publishers, p65-72, 80. 

[3] De Pennington,A. Bralila,M. 
'Geometric Modelling: A Contribution Towards Intelligent Robots' ,13th ISIR/Robots 7 
Conference, April 17-21, 1983. 

[4] Wesley,M.A. Lozano·Perez,T. Lieberman,L.I. Lavin,M.A. Grossman,D.D. 
'A Geometric Modelling System For Automated Mechanical Assembly', IBM J. Res. 
Devel., vol.24, no. I, p64·74 , 80. 

[5] Pertin· Troccaz,J. 
'S.M.G.R : A Geometric and Relational Modeller for Robotic Applications', ICAR 85, 
p23-31. 

[6] Lumia,R. 
'Representing solids for a Real Time Robot Sensory System', Software for Discrete 
Manufacturing, Elsevier Science Publishers, IFIP 86, p393-402. 

[7] Kak,A.C Vayda,A.J. Cromwell,R.L Kim,W.Y. Chen,C.H. 
'Knowledge Based Robotics', lntemational Journal of Production Research, vol.26, no.5, 
p707-734,88. 

[8] Ambler,A.P 
'Robotics and Solid Modelling: A Discussion of the Requirements', Advanced Software in 
Robotics, Elsevier Science Publishers, p361-367, 80. 

[9] Rich,E. 
Artificial Intelligence, Mc Graw-Hill, ISBN-0·07-05226I, 83. 

[10] Requicha,A.A.G. 
'Representations for Rigid Solids: Theory,Method and Systems', Computing Surveys, vol.12, 
0004, Dec.80. 

[11] Tilove,R.B. 
'Set Membership Classification: A Unified Approach To Geometric Intersection Problems', 
IEEE Trans. Comp., C-29, no.IO, p874-833, 80. 

[12] Brooks,A.R. 
'Model-based Computer Vision', UMI Research Press, ISBN 0·8357-1526·4, 81. 

[13] TIPS 
A commercial package available from Institute for Precision Engineering, Hokkaido 
University, Sapporo, Japan. 

[14] Heam,D. Baker,M.P. 
'Computer Graphics', Prentice-Hall, ISBN 0-13-165598-1, 86. 

[15] Craig,J. 
'Introduction to Robotics: Mechanics and Control, Addison-Wesley, ISBN-0·201-10326-5, 
89. 

[16] Boyse,I. W. 
'Interference Detection Among Solids and Surfaces', Comm. ACM, vol.22, no.I, p3-9, 79. 

[17] Pennington,A. Balia,M. 
'Geometric Modelling: A Contribution Towards Intelligent Robots', 13th ISIR, pl-19, 83. 

[18] Cameron,S. 
, A Study of Clash Detection Problem in Robotics' , IEEE Int. Conf. Robotics and Automation, 
p488-493, 85. 

[19] Carneron,S. 
'Modelling of Solids in Motion", PhD Thesis, Dept of Artificial Intelligence, University of 
Edinburgh. 

[20] Takase,K. Paul,R.P. Berg,E.I. 
'A Structured Approach to Robot Programming and Teaching", IEEE Trans. Sys. Man and 
Cyber., vol.smc-ll, noA, p275-289, 81. 

141 



[21] Popplestone,R.J Ambler,A.P. Bellos,I.M. 
"An Interpreter for a Language for Describing Assemblies", Artificial Intelligence, no.14, 
p79-107,80 

[22] Corpner,D.F. Ambler,A.P. Popplestone,R.J. 
"Reasoning about the Spatial relationships Derived from a Rapt Program for Describing 
Assembly by Robot", 8th IJCAI, p542-4, 83. 

[23] Homem de Mell,L.S. Saunderson,A.C. 
"AND/OR Graph Representation of Assembly Plans" ,IEEE Trans. Robotic and Automation, 
vol.6, no.2, p188-199, April 90. 

[24] Homem de Mell,L.S. Saunderson,A.C. 
"Representation of Mechanical Assembly Sequences", IEEE Trans. Robotic and Automation, 
vol.7, no.2, p211-288, April 91. 

[25] Homem de Mell,L.S. Saunderson,A.C. 
"A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences", 
IEEE Trans. Robotic and Automation, vol.7, no.2, p288-241, April 91. 

142 



Chapter 7 

Object Recognition 

This chapter describes the results of a new approach to real time object 

recognition. It was developed with the use of Plethora and is based upon 3D moment 

invariants ([he initial results were reported in [1], found in Appendix D). 

The method uses a tuplet generated from taught examples. The tuplet, 

consisting of a pseudo inertial tensor and volume, is used to identify and determine 

the orientation of single objects. 

The chapter begins by describing the advantages of 3D object recognition. 

This is followed by a description of a parallel implementation [2] (see Appendix E) 

of the sequential algorithm [3], which is used to derive the volumetric representation 

of a scene. It then introduces 3D moment invariants and explains their use in 

classifying volumetric representations of objects. Finally, the experimental results are 

discussed in terms of, the assumptions made during the generation process and the 

problems of camera calibration. 

Overview 

Object recognition is of particular importance in assembly operations, as it 

provides a means of identifying workpieces and determining their position and 

orientation. If a suitable model-based representation is employed it can also serve to 

verify the assembly actions, by modelling these changes in the workpiece and 

matching the predicted model against the scene. Before truly automated assembly is 

possible, it is essential to have a robust representational model and technique for 

determining the orientation and position of 3D objects, for a large class of industrial 

parts [4]. 

143 



Introduction 

Previous work [5] can be categorised as 2D recognition, where a single image 

is used, 2.5D where some depth information is available, such as in stereo vision[6], 

and 3D, where a number of views are combined to produce view-independent 

volumetric representations of the scene. The latter is often the preferred form for 

object identification[5], since it results in a single object centred representation, in 

contrast to the 2D systems in which a number of views must be represented. The 

design of 2D systems is further complicated, since the means by which the views are 

chosen and how they are to be represented, is not straightforward. The practical 

limitations placed upon these choices constrain the number of view points from which 

the object is recognisable. 

A 3D system not only reduces the difficulty associated with the interpretation 

of the one-to-many transformation involved in a 2D system, but it also overcomes the 

time constraints that are associated with the correlation of images in stereo vision 

systems. The choice of three orthogonal views provides a compromise between the 

simplicity of the hardware required and computational efficiency. 

Previous Work 

Much of the model based recognition work [7] uses a geometric model of the 

object to generate a 2D representation of the scene from a given view point. It then 

determines a set of features, and finally tries to match these against the feature vector 

of the image (e.g.[4]) 

A different approach [8] generates volumetric models from multiple views and 

uses a boundary representation (based upon bicubic parameter patches) to represent 

the object and scene. It then heuristically searches for overlapping segments to 

produce a description of the connected patches. This technique is applied iteratively 

until the whole scene has been covered. More recently, a relaxation technique based 

upon bipartite matching[9] has been described. The technique can be used to prune 

the search space when matching surfaces and has polynomial time complexity. 

144 



Surface orientated approaches, which by their nature utilise local feature 

recognition, tend to be computationally expensive. At present, these approaches have 

no obvious application in real time andlor do not yield features for suitably efficient 

object recognition. Although, they may be essential when analysing clustered or 

occluded scenes, where local features are the only means of recognition. 

In order to produce an efficient 3D model based recognition system, we must 

choose a compatible form of representation and method of identification. The 

approach described here attempts to do this by combining an efficient means of 

generating the volumetric representation and utilising a feature representation, which 

can be simply manipulated to provide a useful set of compact global features. The 

feature representation can be derived from both predicted geometric and sensory data. 

Methodology 

The calculation of the tuplet takes place in two stages. Firstly, the generation 

of the volumetric representation of the object in terms of a number of non

overlapping rectangular parallelepipeds (RPs) and secondly, the derivation of the 

tuplet from that set of RP's. It has been shown that RP coding is more efficient in 

terms of storage requirements and execution time required for its generation than 

present similar volumetric representations [3]. It provides simple and efficient 

intersection and merging operators, and can be readily inverted to produce a 

representation of the unoccupied space about the object (the process is described in 

Chapter 8). These characteristics make RP coding an especially attractive candidate 

for spatial representation in robotic applications. 

Generation of the Volumetric Model 

The RP's which represent the object are coded as in figure 7.1. They are 

derived in real time using a modified version of the method found in [3]. This method 

is implemented in parallel on a multi-transputer system and sequentially using of the 

vision server in Plethora. The parallel version takes - 1/2 second to generate the 

volumetric representation. 

145 



I Z 

(H,y,Z) 
1- _ ___ 

I H 
h 

I 

w 
y 

{H,y,z;w,h,d} 

,'I 

Figure 7.1 The coding scheme used to represent a RP. 

The system uses three orthogonal views of the object, which are assumed to 

represent parallel projections in each of the viewing directions. These views are coded 

as rectangles, which are then swept in their respective viewing directions to form 

rectangular parallelepipeds (RPs). The intersection and merging of these RPs produces 

the final list of RPs from which the tuplet is derived. The essential elements of this 

process are shown in figure 7.2. 

What follows is a more detailed description of the process and the parallel 

projection assumption on which it relies upon. 

Outline of the Algorithm 

The necessary stages of the algorithm found in [3] are outlined below in steps 

(a) to (e). 

a) Thresholding 
The three grey scale images were thresholded to produce binary 
images, using a variable thresholder based upon the simple image 
statistic technique [10]. 

b) Run Length Coding 
For each horizontal line of each image, the start and run length of all 
the black segments were found. 

146 



~--------------------------------------------- -- -

w"· ~ g~~!.w&y 
front Y 

Q~~ 
side Y 

IMAGES SWEPT UOlUMES INTERSECTION 

Figure 7.2 An overview of the method. 

c) Two Dimensional Rectangular Coding 

K 

From the run length codes of adjacent lines, rectangles of maximum 
area were grown to produce a 2D rectangular coding of each image. 
Figure 7.3 shows the method by which rectangles are grown and figure 
7.4 shows a typical result of this process. 

d) Sweeping 
3D RPs were generated from each rectangle by sweeping the 
rectangles along their respective viewing directions. 

e) Intersection and Merging 
The intersection of the 3 sets of RPs produced an 
intermediate set of RPs. This process was completed in two 
stages. Initially the top and front views were intersected and 
then each result of this intersection was then intersected with 
the side view (see figure 7.2). As this process can produce 
pairs of RPs with a common face, this intermediate set was 
then checked to see whether any of the parallelepipeds could be 
merged and so remove redundancy from the final 
representation. 

The initial experiments used compressed 128x128x8 bit grey scale images of the 

object. However, even with the intrinsic simplicity of RP representation, a sequential 

implementation using the vision server did not run fast enough for use in an industrial 

147 



CONDITIONS 
FOR 
GROWTH 

RESULTING 
GROWTH 

, .. 

line n 
line n + 1 

GROWTH 

~- Grown 
rectangle 

Figure 7.3 The condition required for the growth of a rectangle. 

w 
(0,0) • 

h 1 
HyZ whd 

I 1.( 220; 1 50 ) 
I 2.( 4 2 0; 2 10 ) 

1 ; 3 
I 3.( 330; 5 30 ) 
'---
I 4.( 360; 2 10 ) 

5.( 760; 1 30 ) 

6.(850; 1 30 ) 

, ' , .' 
,',; , ," j'- . 

Figure 7.4 The results of two dimensional RP growth. 

work cell (it took - 25 sec to complete the process which induded the initial 

convolutions required for filtering the image). Hence, a modified parallel version was 

developed using Streams and a Company of Players, to make use of the technique'S 

inherent geometric parallelism. A skeleton version of the code run on 3 PC's is 

shown below in figure 7.5. 

This modified version took - 20 seconds to complete. However, most of the 

time was spent in communication and the potential speed-up was hidden by the slow 

response of the prototype network (This was determined as a result of timing 

148 



Rpx: 
{ 
new grey-scale-image $x Assert ... Take a picture 

&x .. Smooth .•• 3x3 averaging filter 
&x .. rats ... Calculate and perform thresholding 
&x .. run-code $y Assert ... Produce Run length code version of 

binary image 
&y Generate-Stream 

} 
Vision-Server Begin-Stream ... Get the vision server to produce the 

Run length codes 
• Grow-2D-Rectangles Intersect-XY Map-Stream ... Grow Rectangle and pass them on 

to Intersect-XY 

Vision-Server End-Stream 

Intersect-XY: 
Rpx Rpy Intersect Intersect-XYZ Merge-Stream 

Intersect-XYZ: 
Rpz Intersect-XY Intersect Merge-RPs Merge-Stream 

Figure 7.S Skeleton code of the parallel 
implementation. 

calculations made by the message passing system). Finally, the system was 

implemented on a dedicated network of 3 transputers with a similar form of partition 

and mapping (see figure 7.6 and Appendix E for a copy of the paper reporting the 

detailed design of the network). The generation of RPs, using the Transputer 

Thresholded 

fRO 
IMRGE 

lOP 
IMRGE 

SIDE find run 
IMRGE 2D RP, 

" , 

Figure 7.6 The overall partition of the system. 

149 



network, took between 0.25 and 0.5 seconds, well within the critical times of most 

processes within an assembly work cell. Figures 7.7 and 7.8 illustrate the result of 

the technique on two of the more complex shapes. 

Figure 7.8 Illustrative examples of the coding scheme for cup and pencil 
sharpener. 

Figure 7.7 Photograph of cup and pencil sharpener. 

1 50 



The Parallel Projection Approximation 

The implicit approximation made by this technique can be best seen in figure 

7.9. In figure 7.9 there is a single ideal camera with focal length f, a line at x2 

b 
.... " 

.:::::: .... 

Camerax Image 
Plane 

p4 
p3 

" .:'::' .. 
. . . . . : . . . . ''''':~:~:~::::::.~. p1 

p2 
.~. 

a a 
.. , 

x1 x2 o 

Figure 7.9 Parallel projection approximation. 

representing the front of a box in view and x I representing the plane used to calibrate 

the camera pixel separation. Because the front of the box is closer to the camera it 

will appear larger than it ought in the image plane. Hence the generation process will 

always overestimate the size of the object by the ratio xllx2. After the intersection 

stages, the RPs will have the minimum of the two commonly perceived dimensions, 

resulting in an overalI expression for the volume, as below. 

Using similar triangles, 

pl/j = b/xl .. p2/j = b/x2 .. p3/j = a/xl .. p4/j = a/x2 

Defining the error in length relative to the correct length for camera, to be YE,. 

YE, = (p3+pl)/(p4+p2) = xl/x2 

and similarly for 'E, etc. 

151 



However. the error in the dimension after intersection will be. 

E, = min{"E,/EJ 

Ex = min("Ex.'e.J 

E, = min{"Ey.'e,J 

giving a final error in volume of, 

The expression can be used to scale the estimate of the true volume. However, it will 

still be an upper bound, as the values on which it is based, are approximations to the 

actual dimensions of the box. 

Generating the Centralised Moment Matrix 

If we assume that RPs have a uniform density of 1, then the sum of the RP 

volumes will result in a pseudo mass for the object. If the individual pseudo masses 

are taken to act at the mid-point of the RPs, we can generate moments and centralised 

moments of order p +q +r as below. 

k 

Mpqr = 1: 
i-l 

and the centralised moments 

k 

Ilpqr = 1: (Xi - :K)P. (Yi - y)q. (Zi - z)I.vol i ») 
i-1 

where 
[x,y,z] are the coordinates of the midpoint of the individual RP volumes. 
K is the number of RP's. 
vol; is the volume of the ith RP. 

This gives rise to the matrix U, of second order centralised moments, required 

for the tuplet representation and which is used to derive the 3D moment invariants [7] 

and principal axes. 

152 



11200 Illl0 ll, 01 

II = Illl0 11020 1l0ll 

1l'0' 1l0ll 11002 

The volume is simply found by summing all the individual RP volumes used to 

represent the object. 

Moment Invariants 

Sadjadi and Hall [11] have generalised the results of 2D moment invariants 

[12] by linking 3D moments to ternary quantics and produced a set of 3D moment 

invariants. These are invariant under scale, orientation and translation and are shown 

below, 

where 

11, = /1-200 + /1-020 + /1-002 

12, = /1-020·/1-002 -/l-01l2+ P-2oo·/l-002 - /1-101
2 

+ /1-200·/1-020 - /l-ll0
2 

.602, = det llil 
The invariants can be readily obtained from U and are used as features when 

identifying the object. 

Principal Axes 

Given that the object's reference frame origin is at the centre of mass, when 

this frame is aligned with the principal axes the matrix U becomes diagonal, an. 
The elements of U' correspond to the principal moments of the object. The direction 

of the principal axes are given by the eigenvalues of the matrix U. Hence.. the 

rotational matrix <ID which is required to align the object with its principal axes can 

be determined from, 

R = U' .U-I 

Where U represents the objects' present position and R represents the orientation of 

the object with respect to principal axes. 

153 



--------------------------------------------------_. --_. 

Results 

The initial experimentation performs two functions. Firstly, to verify the 

operation of the system and secondly, to determine the effectiveness of the tuplet for 

use in object recognition. 

Volume/(voxels) A2/J1
3
• J/./J2• 

2369 3.23 x 10-3 3.9 

2492 2.75 x 10-3 3.6 

2390 2.5 x 10-3 3.6 

2394 3.89 x 10-3 4.0 

2296 2.08 x 10-3 3.3 

2420 2.94 x 10-3 3.6 

Table 1. Feature values tor () po sltlons ot the ball. 

Volumel A2/J1
3
• J1

2/J2• Measured Calculated 

(Voxels) Rotation Rotation 

5054 3.11 x 10-2 3.5 0° 5° 

5881 3.88 x 10-2 3.78 45° 53° 

5039 4.80 x 10-2 3.48 90° 93° 

5095 4.Olxl0-2 3.01 142° 142° 

Table 2. Feature values for the first 4 rotatIOns of the box. 

Verification 

Two experiments were used to verify the operation of the system. Firstly, a 

white ball was placed at differing positions within the working volume of the system 

(this consisted of a 15 cm cube at the intersection of the camera's viewing space) and 

the tuplets calculated. Secondly, a white box, placed at the centre of the working 

volume, was rotated at multiples of 45°, and the tuplets calculated. Together, these 

were used to independently test the system's invariance under translation and rotation. 

The results are shown in tables 1 and 2. 

154 



Classification 

The effectiveness of the tuplet as a means of object recognition was illustrated 

by comparing a set of chess pieces and set of randomly selected assembly parts. The 

tuplet was used to form a three element feature space, consisting of the volume and 

the two moment invariants. The chess pieces were of similar shape and had no holes, 

while the assembly pieces were irregular and had both holes and reflective surfaces. 

These sets were used to separately evaluate, the ability of the system to distinguish 

between similar objects, and to cope with the problems associated with typical 

workpieces. It was found that the chess and assembly pieces could be identified using 

a simple minimum distance classifier. However, it was also noticed that at certain 

orientations that the holes in the assembly parts were hidden from the view of all 

three cameras, and so were not constructed in the volumetric representation. This 

gave rise to a greater variation in the position of the workpieces within feature space 

than occurred with the chess pieces. Although, they still remained linearly separable. 

Similar effects due to variations in the illumination resulted from bright spots on 

reflective surfaces. 

Discussion 

In general, the variation of the feature vectors for a single object were due to 

three factors. Firstly, the loss of gross features which were hidden from the cameras. 

Secondly, the effects of illumination and finally, a combination of the effects of 

quantisation and camera axes misalignment. 

Obscured features are a common problem in most vision systems. The 

problem is often overcome by associating a number of areas in feature space with a 

particular object (Le. one for each of the systems blind spots). These could be 

represented by Plethora as EQU's of a INDV in GeoMod. 

155 



Illumination 

The lack of control over the illumination of the object usually results in a loss 

of local detail. However, since the method of classification is based upon an analysis 

of global features, and distortions due to illumination must be correlated in all three 

images if they are to appear in the final volumetric representation. The technique 

tends to be tolerant of the effect of minor variations for the limited range of objects 

tested. 

Calibration 

During experimentation it was found that the system is particularly sensitive 

to misalignment of camera axes and this was aggravated by the low image resolution 

used in the initial experiments. A number of calibration techniques were investigated 

including [13]. However, it was observed that whichever technique was employed 

they resulted in large parameter ranges (the uncertainty in the position of the origin 

of the focal axis was - 8% of full frame resolution, using [13]). These fluctuations 

have been observed in [14] and attributed to timing mismatch between the camera and 

frame grabber hardware. In this case the cameras were 3 CCD Punix TM-760 with 

756x581 square pixels, the frame grabber was a Data Translation DT2851 and was 

connected to the cameras via a standard Iv Composite video interface. The images 

were initially digitised as 512x512x8 bits. 

Eventually, a very rough calibration procedure was used which provided 

similar accuracy to the more sophisticated technique in the presence of the jitter. A 

white 15 cm frame work cube was placed at the centre of the viewing volume and the 

cameras focused until the face of the cube filled the image. The relative displacement 

between the camera planes was measured using the orthogonal views of a white ball. 

The centroid of the ball was used as a reference between adjacent image planes and 

the displacements required to align the reference coordinates, were used as offsets 

between the individual image plane coordinates. 

The error in calibration overshadowed the variation in the feature vectors due 

to the other effects. Further experiments with images of 256x256x8 bits, showed an 

amelioration in the problem and improved the correlation between the measured and 

calculated rotations. However, this was not sufficient to improve on the volume 

measurements. 

156 



Conclusions 

The initial experiments illustrate the use of Plethora as a proto-typing tool and 

can be used to develop new techniques. The technique was used to successfully 

recognise single objects from a given set and less successfully determine their 

orientations. The time taken to perform this process took between 0.25 and 0.5 

seconds (Note: This could be further reduced if TSOO's were used rather than the 

original T414's) within most work cell critical times. 

Recently, new 3D invariants based on second and third order complex 

moments have been discovered [15] (12 in all) and they allow a unique determination 

of the principal axes. Extending the system to include these extra features would 

increase the robustness of the technique at little extra computational cost. 

However, it is apparent that the jitter must be removed before any further 

development can take place. The most obvious method would be to remove the 

processes of generation and decoding the composite video signal, by providing a 

direct serial interface between the CCD chip and processor memory. This would also 

have a useful side effect, in that the full resolution of the camera could now be used 

at increased frame update rates. 

157 



References 

[I] Sillitoe,I.P. W Edwards,J. 
"A Multi-View Robotic Vision System for Efficient Object Recognition", Proc. Int. Conf 
Systems Science, Wroclaw, Poland 89. 

[2] Sillitoe,I.P.W Edwards,J. Falkner,A.H. 
"The Design of a Real Time Three Dimensional Vision System for Object Identification", 
Proc. 12th Occam User Group, p198-205, April, 90. 

[3] Kim, Y.C. Aggarwal, J.K. 
"Rectangular Parallelepiped coding: A volumetric representation of three dimensional objects", 
IEEE Journal of Robotics and Automation, vol.7, no. 6, Nov. 83. 

[4] Bhanu,B. Henderson,T. 
"CAGD Based 3-D Vision", Proc. IEEE Int. Conf. on Robotics and Control, p41l-417 
March, 1985. 

[5] Marr, D. 
"Representing Visual Information", Computer Vision Systems, A.R. Hanson and E.M. 
Rieseman, Academic Press, Orlando, Fl. p61-88. 

[6] Wildes,R.P. 
"Direct Recovery of Three Dimensional Scene Geometry from Binocular Stereo Disparity", 
IEEE PAMI, vol.13, no.8, p761-774, August 91. 

[7] Chin, R.T., Dyer, C.R. 
"Model Based Recognition in Robot Vision", Computing Surveys, p67-108, March 86. 

[8] Potmesil, M. 
"Generating Models of Solid Objects by Matching 3D Surface Segments", 8th JJCAI, p1089-
1093, August 83. 

[9] Kim,W.Y. Kak,A.C. 
"3D Object Recognition Using Bipartite Matching Embedded in Discrete Relaxation", IEEE 
PAMI vol.13, no.3, p244-251, March 91. 

[10] Kittler, J. and Illingworth, J. 
"Threshold Selection Based upon a Simple Image Statistic", Computer Vision, Graphics and 
Image Processing, vol. 30, p125-147, 85. 

[11] Sadjadi, F.A. Hall 
"Three Dimensional Moment Invariants", IEEE PAMI-2 no.2, p127-135, March 80. 

[12] HU,M.K. 
"Visual Pattern Recognition by Moment Invariants", IEEE Trans. Information Theory, vol.8, 
pI70-187,62. 

[13] Liu,Y. Huang,T.S. Faugeraus,O.D. 
"Determination of Camera Location from 2D to 3D line and Point Correspondences", IEEE 
PAMI, vol.12, no.I, p28-37, March 90. 

[14] Tsai,R. Y. 
"A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology 
using Off-The-Shelf TV Cameras and Lenses', IEEE Journal of Robotics and Automation, 
vol Ra-3, no.4, p323-344, August 87. 

[IS] Lo,H.C Don,H,S 
"3-D Moment Forms: Their Construction and Application to Object identification and 
Positioning', IEEE PAMI, voUl, no.IO, p1053-1064, October 89. 

158 



Chapter 8 

Path Planning 

An important component of automatic planning for robot assembly operations 

is the gross motion planner. This chapter describes an on-line gross motion planner 

for a restricted class of problems applicable to assembly operations. The approach has 

been implemented on two revolute manipulators, executing straight line paths. The 

relative speed of the algorithm makes it a desirable candidate for use in on-line error 

correction strategies. It also will be shown that the technique can either use sensory 

data from a vision system or predicted information from the geometric modeller, as 

the basis for its path generation. 

Introduction 

Motion with reorientation of the workpiece can be split into four phases, initial 

gross motion, reorientation of the workpiece and the final gross motion preceding the 

fine motion control[l]. Given sufficient open volume for manoeuvrability, 

reorientation may be accomplished with a special purpose planner[2]. However, due 

to the non-decomposability of the problem, algorithms that determine general 

collision-free paths for payload and manipulator in highly cluttered work spaces, are 

often impractical owing to their implementation complexity. (The general solution to 

the related Piano-Movers problem has been shown to be NP-complete [3]). 

Previous work [1-2,4-9] has considered off-line solutions, using geometric 

modellers as their source of information about the work cell. Whilst at the same time 

noting that they provide "good" paths, most are not efficient enough for inclusion in 

on-line techniques, such as would be required for error correction strategies. 

159 



However, if we consider the assembly work cell sub-problem, practical 

assumptions can be made which allow the efficient implementation of a gross motion 

path planner, which still produces suitable paths. These assumptions include that the 

workpiece and gripper should be of comparable size and less so in shape, that there 

should be sufficient volume above the manipulator so as not to limit its 

manoeuvrability and that manipulations do not take place at the extremes of the 

manipulators work volume (Le. All manipulations take place within it dextrous work 

space). 

Given these assumptions a number of techniques [9,10,11] have been designed 

to provide "fast" collision free path planning. (Note: the term "fast" is difficult to 

define as little timing information is provided and there is no analysis of the 

complexity of the path to be planned. The term is justified by the order of complexity 

given for each of their component operations. However, without absolute timing 

information it is not possible to make comparisons). 

The Hierarchical Orthogonal Space (HOS) approach [9] uses an Octree 

representation of the work space derived from boundary representations, in which 

each of the objects has been grown by the dimensions of the payload. This growing 

process allows the payload to be modelled as a point and simplifies the search through 

the Octree for a collision free path. The search is made in each of the 3 orthogonal 

2D sub-spaces, this is shown to be more efficient than a single search through the 

representation of 3D space. 

A similar approach is taken in [10], once again it uses an Octree but 

recursively decomposes the free space of the work space to find a collision free path. 

It models the payload as a "stick", constructed from a cylinder and two spheres, and 

checks for collisions when directing the decomposition process. It also mentions that 

a suitable Octree could be derived from a vision system using a technique described 

in [12]. 

160 



The approach taken at NBS [11] models the swept path of the manipulator 

using primitive volumes and searches through an Octree representing the work space. 

The Octree is derived from a geometric modeller. The search technique uses a 

combination of methods (hypothesis and test, hill climbing and A") at different points 

in the search to increase its efficiency. The time consuming elements of these methods 

is the initial transformation from boundary to Octree and the complexity in modelling 

rotations of the work piece with an Octree. 

The approach taken here uses rectangular parallelepipeds as the basis for its 

representation of space. It plans the path through the free space around the objects, 

rather than using an interference operator and the object space itself. 

Method 

Free Space Representation 

The work space and objects in a work cell can be modelled in terms of the 

space occupied by the objects or in terms of the free-space between them[1]. A 

free-space representation is used here, as it obviates the need for an interference 

operator (providing the advantages described in Chapter 6). Further, knowledge of 

the free-space generated by this method can be used by other modules concerned with 

aspects of on-line planning (i.e. determining where to place an object on the assembly 

table). 

However, all free space schemes have the disadvantage, that after each 

movement the free space representation must be updated (This is also the case in 

[9,10,11]). So, ideally the free-space generation should be efficient and be readily 

updated from sensory information. A rectangular parallelepiped code(RP) fulfils both 

these criteria. RP representations can be determined from vision systems using 

multiple views (as described in Chapter 7), easily generated from geometric modellers 

and can be efficiently manipulated. The RP representation used in the path planner 

is shown iOn figure 8.1. It is chosen to maximise the efficiency of the operations 

within the path planner, however, it differs from that used in the vision system and 

so a simple conversion is necessary. 

161 



y .. 
......-_______ ..,,(X2,y2,Z2) 

(X1,Y1,Z1)1L-----------""'--- X 

Rp = (x1,y1 ,z1 ;x2,y2,z2) 

Figure 8.1 RP representation. 

An operator, ###, similar to the Sharp[3], (an operator used in the 

determination of prime implicant sets) is used to efficiently invert the object space to 

produce a free-space. The free space is represented as a set of maximal overlapping 

rectangular parallelepiped. A graphical representation of the operator is shown in 

figure 8.2. 

!ill Object 

o Free space 

3 5 

2 
Z I~,,' -------

U::~' 
Figure 8.2 Graphical illustration of ###. 

FS = Un ### s 

where FS is the set of overlapping RP's, representing free space. Un is the RP 

representing the work space. s is the RP representing the object 

16;? 



A HHH B, performs the function (A n (not B» (Le what belongs to A that 

does not exist in B). However, unlike Sharp, HHH operates on continuous variables 

with a maximum of 3 degrees of freedom. 

For a number of objects the FS is defined to be 

FS =( ( Un HHH s1 ) HHH s2 ) •••• 

Where S = (s1 ,s2 ••••• sn) is the set of all objects within the work space. 

The path is determined in three stages. Firstly, the derivation of the FS using 

HHN and a model of the objects in the world. Secondly, an initial path in two 

dimensions with nominal z coordinates is then found. Finally, this initial path has the 

nominal z coordinates of it's via points modified, in such a way as to avoid limb 

collisions (Note: limb collisions are not considered in [9,10]). 

Detennination Of the Initial Path 

Once the free-space has been determined, the maximal RP covering the start 

position, ST, and goal position, G, are found. A search is made through FS via 

overlapping RP's from ST to G. Only the RP's that would allow the passage of the 

payload are expanded. The payload is modelled as sphere of radius, Vr, this includes 

both the workpiece and gripper. This choice of representation makes the predicate for 

expansion efficient, but limits the forms of paths available to those which do not 

employ reorientation of the payload as a means enabling the payload to pass between 

objects. 

The search is based upon a heuristically guided best first search. At present 

two equally weighted cost functions are used, the distance from the proposed RP to 

G, (using the mid-points of the RP's as point volumes) and the distance from the 

present position to the point volume of the proposed RP. The search is similar to an 

A· search and the path is encoded within the parent links of the expanded nodes. 

However, the cost of testing for previously expanded nodes and modifying their cost 

fields (as is required in the A· search), was found to outweigh the cost of maintaining 

163 



multiple paths to duplicate nodes and so no such tests are made during the search. 

The initial via points for the manipulator, are generated using the point volume 

coordinates of the intersecting RP's (figure 8.3). These then have their z coordinates 

modified to be 

min(vnin+vr, vnin+vnax/2) 

where vnin and vnax are the extent of the free space RP in the z direction (see figure 

8.4). This reduces the need for unnecessary variations in the z direction, as a 

manipulator moves from RP to RP. 

ln1sected 
volume 

Initial 
Via 

FSn 

f Illo°int 
LI~me 

FSn+1 

point volume 

Figure 8.3 Via point determination. 

Optimisation of the path length was considered and a simple technique 

implemented. The technique was a look-ahead strategy, which ensured the payload 

crossed into the next intersected volume at the optimal point to approach the next RP. 

However, when the cost of the extra manipulator movement was compared with the 

time required to perform the procedure, it was not considered necessary. Further, 

since the technique is to be supplied by data derived from sensory devices (with 

which there will be an associated uncertainty), the process of optimisation may not 

produce a better path in practice. It was also noted that a suitable choice of Un, by 

considering ST and G, produced a similar improvement in path length to that found 

when using the optimisation technique. A suitable technique was found to be, to 

bound the X·Y dimensions of Un by 3Vr about ST and G, this provided enough 

164 



Transistion 

, 

L. 
Figure 8.4 Modification of z component at Via point. 

Modified Un 
3Vr 

G 3Vr 

3Vr ST 
3Vr 

Figure 8.5 Modified Un. 

manoeuvrability while restricting the operation of path planner to volume of interest 

(see figure 8.5). 

Modification of the Z Coordinates 

The procedure stated so far, would provide a suitable path for a cartesian 

manipulator without further adaption. However, when applied to a revolute 

manipulator, the form of manipulator introduces the possibility of collisions with 

forearm as it stretches over an obstacle (figure 8.6). Hence, the inverse kinematics 

165 



must be calculated in order to determine the manipulator limb positions and so modify 

the path. 

11 
Upper ann 

" } 
(x.y.z) 

Z h Post 

t 11-,(.....,0,0,....0)7-r"/7...,....., ...... 

~~x 

Figure 8.7 Schematic of manipulator. 

The manipulator used in the initial experiments was a Puma 560, which has 

6 degrees of freedom. In order to simplify and quicken the inverse kinematic 

calculations joint 4 (the upper wrist of the manipulator) was fixed. This reduced the 

manipulator to 4 degrees of freedom, which allows for a less complex geometric form 

of solution to the inverse kinematics[l], figure 8.7. This is quicker to calculate, while 

the 4 degrees of freedom still allows enough flexibility to complete assembly 

operations[l,13]. The geometric solution for the Puma is shown below, 

w;= Z + P - h 

e;= r + f _d2 

r;= el12 

C ;= (e+ W - 1/ -1/)12/112 

s;= -(1- c2yn 
a ;= 11 +lze 

<p ;= atan(y,x) + atan(d,r) 

Cl ;= atan(aw-1zSr,ar+lzSz) 

(J ; = atan(s,c) 

166 



------------------------- --- --

z 

bx 
• ~or.arm !~ Payload 

Lx 
Figure 8.6 Side swiping. 

To avoid "side swiping" and "stretching" col1isions, a simple heuristic was 

applied to modify the z-coordinates of the via-points. This involved ensuring that 

along any path segment, the via points were chosen so that lowest point on the 

forearm of the Puma was always above the footprint of the manipulator. The footprint 

was defined as an RP, whose x and y dimensions were determined by the maximum 

and minimum X-Y coordinates (Le. xmax,ymax,xmin,ymin) which were swept out 

along the path segment by the manipulator limb (see figure 8.8). The z coordinate 

was set equal to the maximum height of the obstacle contained within this x-y 

rectangle. 

(xmln'~!'!L_-7:-------1 (xmax.ymax) 
! .. 

Foot prints ! 1 Payload 
i i 

~_______ I ____________ ~ ~ 

1 1 ;(-1" (xmax ymln) 
(xrhln n)'------------, ---I • 

I I I I 
I i j 

i i . : : ..... _________________ ... I 

Figure 8.8 Foot prints. 

167 

i 
i 
i 
i 
! 
! 

I , 

/ 



The footprint is determined in two stages. Firstly, the extreme X-Y 

coordinates were calculated from the geometry of the manipulator, using the inverse 

kinematics, and the foot print in the X-Y plane determined. The z coordinates are set 

to the maximum and minimum extent of the work space in z. Secondly, these initial 

forms of footprint RP are tested for intersection with the object RP's. The 

intersections are used to determine the maximum height of objects within the path 

segment. The z coordinate of tallest object contained within the path, is then used to 

fix the final height of the footprint. 

Experimental Results 

A number of paths were planned (using a 12MHz AT computer running the 

planner implemented in Forth), based upon those actions determined in [13] and using 

information derived from GeoMod. The RP's, whose axes needed to be aligned with 

those of the WORLD, were created from the spheres which bounded the boundary 

representations of the BODY's. The Puma was controlled via its parallel interface and 

a resident V AL-l program, which allowed the planner to move the end effector in 

steps of 5 or 10 mm. It was found that the generation of free space took between .2 

and 1.5 seconds and the determination of the via points took between 2 and 5 

seconds, depending on the complexity of the path and number of via points. 

Later experiments, using the Mini-Mover manipulator and RP's derived from 

the 3D vision system, took 3-4 times as long for similar paths. This was due to the 

superfluous detail provided by a more exact model of the scene, and as a result the 

planner spent the majority of its time creating free space which was too small to be 

of use during the planning stage. The Mini-Mover was controlled by a server KS, 

which provided the usual features of a commercial controller (Le. straight line motion 

etc), as well as interactive control of the path during motion (Note: this feature is not 

available under VAL-l). 

168 



The planning times, in the experiments which derived their information about 

the work space from the geometric modeller, were comparable with the time taken 

for the manipulator to execute the path. This makes it possible to pipeline the 

execution of a movement and the planning of the next movement. The code has not 

been optimised, and it is expected a factor of improvement could be made after 

optimisation. 

Conclusion 
A new technique for on-line collision free path generation for assembly 

operations has been developed, and demonstrated under Plethora. It is efficient and 

might be used as a part of an on-line adaptive path planner. Importantly, it makes no 

requirement on Geomod to model solids in motion. Further work is required in order 

that it might cope with paths which require reorientation of the work piece 

169 



References 

[l] Brooks,R.A. 
"Planning collision-free motions for pick and place operations", The International Journal of 
Robotics Research, vol.2, no.4, 83. 

[2] Lozano-Perez,T. 
" Automatic planning of manipulator transfer movements", IEEE Trans. on Sys. ,Man, Cyber., 
vol.SMC-ll, no. 10, 81. 

[3] Schwartz,J.T. Sharir,M. 
"On the piano movers problem I1:General properties for computing topological 
properties of real algebraic manifolds", Rept. 41, New York University Dept. of Computer 
Science. 

[4] Davis,R.H. Camacho,M. 
"The application of logic programming to the generation of paths for robots" 
Robotica, vol.2, 83. 

[5] Grechanovsky,E. Pinsku,1. 
" An algorithm for moving a computer-<:ontrolled manipulator while avoiding 
objects", 8th IJCAI, p806-813, 83. 

[6] Kuntze,H.B. Schill,W. 
"Methods for Collision Avoidance in Computer-Controlled Industrial Robots", 15th ISIR , 
p519-529, 85. 

[7] Lozano-Perez,T. 
"Spatial-planning: A Configuration Space Approach", IEEE Trans. on Computing, C-32, 
p108-120, 83. 

[8] Udupa,S.M. 
"Collision Detection and Avoidance in Computer Controlled Manipulators", 5th IJCAI, 
p737-748, 77. 

[9] Wong,E.K. FU,K.S. 
"A Hierarchical Orthogonal Space Approach to Three-Dimensional Path Planning", IEEE 
Journal of Robotics and Automation, vol. RA-2, no.1, 86. 

[10] Hayward,V. 
"Fast Collision Detection Scheme by Recursive Decompositionofa ManipulatorWork Space", 
IEEE Int. Conf Robotics and Automation, p1044-1049, 86. 

[11] Herman,M. 
"Fast, Three Dimensional Collision-Free Motion Planning", IEEE Int. Conf. Robotics and 
Automation, p1056-1063, 86. 

[12] Connolly,C.1. 
"Cumulative Generation of Octree Models from Range Data", IEEE Int. Conf. Robotics and 
Automation, p25-32, 84. 

[13] Roth,J.P 
"Algebraic topological methods for the synthesis of switching systems", INT.Trans. America 
Maths Soc., July, p301-6, 58. 

[14] Nevins,J. Whitney,D. 
"Computer-<:ontrolled assembly", Scientific American, no. 238, p63-74, 78. 

170 



Chapter 9 

Experimentation 

The function of this chapter is to illustrate some of Plethora's unique features 

and its operation as an entity. The chapter describes a contrived task, performed 

under the control of Plethora, in an experimental "toy" work cell. The examples also 

highlight a number of implementation issues which are then discussed in Chapter 10. 

The intention of each experiment is to illustrate a particular feature of 

Plethora, and not to propose solutions to the Fitter problem. 

Introduction 

The difficulty in assessing a framework is to demonstrate the validity of its 

approach, without producing a number of large scale examples which exhaustively 

exercise it's facilities. This is particularly evident in the case of Plethora. It's function 

is to enable the development and comparison of new techniques, and so the effort 

required to produce comprehensive examples, would rival that originally expended 

in its development. (This was brought home forcibly, during the development of the 

path planner and object recognition KSs) 

The examples in this chapter arrive at a compromise. Firstly, by performing 

an assembly task which illustrates that Plethora can incorporate as sub-techniques, a 

number of the techniques found in Chapter 2. Secondly, introducing an error into one 

part of this assembly sequence, to induce an error correcting behaviour which is not 

possible using the techniques in Chapter 2. In so doing, it is hoped to demonstrate the 

flexibility of Plethora without the need to generate a number of complete systems. 

171 



The Problem 

Description of the Work cell 

The work cell comprises a MiniMover-5 robot under the control of an IBM 

Figure 9.0 Photograph of Toy Work cell. 

PC, and 3 cameras, focused on the work space along three orthogonal axes (see 

figure 9.0 for a photograph of a partial reconstruction of the work cell). The Mini

mover 's gripper is equipped with infra red binary proximity sensors, controlled by 

a 65F 12 processor. The frame grabber, special purpose image processor board and 

camera multiplexer (Data Translation boards DT2851 , DT2859, DT2858) are hosted 

172 



within another IBM PC. They are connected to the rest of the network via a PC 

containing the message passing switch Aether (see figure 9.1). 

Robot Sever 

Blackboard ~ 
Vision Server ~ 

Aether 

KSs 
GeoMod 

KSs 

RS232 Serial Lines 

Figure 9.1 Network connection and resident KS's. 

The Assembly 

The assembly was constrained by three attributes. Firstly, the choice of the 

assembly was severely curtailed by the equipment available. Secondly, the task should 

contain at least one Pick-and-Place operation, since they are found in the 

overwhelming majority of assembly tasks[l]. Thirdly, it should minimise the planning 

detail (since the adequacy of planning with a similar architecture, has already been 

demonstrated in [2]), while still providing suitable features to explore the use of 

Plethora during execution. 

The task set Plethora was to assemble the structure in figure 9.2. The work 

pieces were constructed from Lego (see figure 9.3), whose characteristics were 

entered into the geometric modeller. The accuracy of the Mini-Mover, within the 

work space of the assembly and under the control of the manipulator server KS, was 

bounded by +/- 4mm. Hence, to compensate for the misalignment, owing to the 

limited accuracy of the manipulator, the holes in the lid of the box were 25 % larger 

173 



Pillar1 gripping post Pillar2 

z 

~X~1L-------------~~ 
Box 

Ud 

Figure 9.2 Schematic of the experimental assembly. 

than necessary. The square cross section of the pillars and additional gripping post 

on the lid, were added to ease gasping by the Mini-Mover. 

The description of the assembly, its expansion and final set of PRIMITIVE 

goals are shown below. 

Original description 

Lego-Construction(box, wl, w2,lid): 

AjJix-lid{(box[5],lid[l]) (box[6],lid[2] (box[7],lid[3]) (box[8],lid[4])) 

Against{(box[l], wl[l]) (box[4], wI[4])} 

Against{ (box[2], wl[2]) (box[2], wl[2])} 

Around{pillarl[l],holel[l]} 

Around{pillar2[1],hole2[1]} 

174 



Original description expanded into Primitive relationships 

Equal(box[5},lid[1)) 

Equal(box[6},lid[2}) 

Equal(box[7},lid[3}) 

Equal(box[8},lid[4)) 

Equal(box[l}, wl[l}) 

Equal(box[4}, wl[4)) 

Equal(box[2}, w2(2)) 

Equal(box[3}, w2[3)) 

Star(pillar 1 [l},holel [1]) 

Star(pillar2[1},ho/e2[1)) 

Selected necessary Primitive relationships. 

Equal(box[l}, wl[l}) 

Equa/(box[2}, w2(2)) 

Equal(box[5},lid[1)) 

Black backgrounds with white workpieces were. used to maximise the image 

contrast and simplify the image processing. In an attempt to reduce the effect of 

leading and trailing shadows, each camera had two light sources one on either side 

(see [3]). 

The following is a paraphrased description of the log file produced by the BB, 

during the planning and execution of the task. Absolute timings are not included, as 

the BB was in single step operation in order that screen dumps could be taken and 

errors introduced. Plethora ran using the Default Basic-KS. 

175 



Figure 9.3 Photograph of the Lego pieces . 

Planning the Task 

Initially, the BB is devoid of decisions and it's mode is Awaiting-Problem. During 

Awaiting-Problem, the BB will only respond to the System-Kernel. It changes it ' s 

mode to Planning at the end of a System-Kernel transaction containing a Problem 

decision entry. Once the mode is Planning, the normal problem solving behaviour 

begins. During this initial period the Outcome, Policy and Problem shown below, are 

added to the BB. 

Policy: Prefer-Control-Decisions 

This ensures a general top down approach to the planning 
by rating KSARs, which produce decisions in the Control plane, 
higher than others by adding Very-High to their ratings . 

Problem: Plan a single solution to the current Outcome 

The Problem goal and its status are checked by the Basic-KS 
during each cycle of the plann ing process. It checks to see 
whether the Outcome is Planned (as defined in Chapter 3) 
and the Problem Completed. 

1 76 



Outcome: Assemble Lego construction 

Before the experiment began the construction details were entered 
in to the relational data base and geometric details of the 
workpieces into geometric data base. Hence, the Outcome's goal 
could be interpreted by the Solve-Construction KS. 

* Problem 

pi 

* Policy 

* Outcome 

To-Do-List: Refine,Assemble 
Figure 9.4 Initial contents of BB. 

The entry of the Problem, the Outcome and the resulting change in BB mode, elicits 

broadcasts of the internal events (figure 9.4 shows the contents of the BB prior to 

Planning. P indicates a parental dependency relationship, b a Before/After relationship 

and a star indicates a Viable decision). As a result, the new Problem, Policy and 

Outcome goals are send to those KS's in the KSAR Group slot. The change in BB 

mode is sent to all KS's which have their action in the control plane of the BB. 

In this limited population ofKS's, this triggers the Assemble-Approach KS and 

Refine KS (described in Chapter 3). The Assemble-Approach KS is triggered by the 

entry of an Outcome, which it thinks it can help to design (i.e. it is an Assemble 

goal). The Refine is triggered in response to the single solution goal in the Problem. 

However, on the basis of its higher action level the Strategy Refine, is made the 

Internal-Chosen-Action. It replies with a State-Change message, entering the Refine 

Strategy onto the BB (see figure 9.5). 

177 



* Problem 

r 
p 
* i 

Refine 

* . Policy 

* Outcome 

To-Do-List: Assemble,lmplement-Refine 

Figure 9.5 Refine strategy decision. 

This once gain triggers the Refine-KS, but this time it's aim is to implement 

the Strategy decision. (Note: In Plethora, unlike BBI, different KSs can compete to 

implement a Strategy. However, for the sake of simplicity Refine volunteers and 

implements its own Strategy). This becomes the preferred KSAR, and the Foci 

(shown in figure 9.6) are entered. Each Focus (Pdg, Pprc, Pop and Pimp) prefers 

KSARS with actions at different levels in Outcome plane, beginning with the Design 

level e.g. 

Focus: Prefer KSARs with actions at the Design level. 

This adds High to each KSAR rating which has its action at the Design 
level. It terminates when all Outcomes have decisions in the Design level. 

178 



* Problem 

r Refine ~~!::==;::=p =;-_1 
pi~ p 

* Pdg" b Prc ~ b Pop~ Pimp 
* Policy 

* Outcome 

To-Do-list: Assemble 

Figure 9.6 Foci of Refine strategy. 

During the next cycle Pdsg has it's effect (since it is the only Viable Focus), 

and a Design decision with a Least-Comminnent-Assembly-Sequence goal (Note: this 

was originally triggered by the Assemble goal), is entered. This in turn triggers the 

Solve-Construction KS (described in Chapter 6). 

However, the entry of the Least-Commitment-Assembly Design decision 

satisfies Pdsg' s termination condition and so it Completes. The next Focus in the 

Before order (Le. Pprc, which prefers decisions at the Procedure level) now becomes 

Viable. Hence, the Solve-Construction KSAR is preferred in the next cycle and the 

KS expands the Outcome goal. In doing so, it forms a network of Equal goals within 

the Procedure level (see figure 9.7). This process continues until Implementation level 

decisions are made, which simultaneously Completes the Refine Strategy and the 

Problem. 

The population of KSs was deliberately restricted so that each Equal goal 

would be "implemented" in the same manner. The intention was that this operation 

could be investigated separately from the rest of the plan, during the error correction 

179 



* Problem 

.j' Refine ~ .. ===:::;:::=P =::;-_1 
pt~ p * 

Pdg'" b Prc" b Pop"'" Pimp 
* Policy 

*Qutcome 
~p 

* Least-Corn ~~,===D::::p:p ==:;---1 
*~ cqJal(bO~[1)) I . 
Equal(box.pos b Equal(box[51.hd[1)) 

qUal(boxtil.!2[2]) 

Figure 9.7 Operational Plan. 

portion of the experiment. (see figure 9.8, The decisions in brackets are the 

Implementation decisions chosen for that operation. The dotted parent links point to 

the Equal goal). 

In this example there were no competing KSARs left in the To-Do-Set, which 

had an Implementation KSAR Failed during execution, would have provided a source 

of alternative actions at run time. 

Summary 

This simple example illustrates how a technique, which has all the efficiency 

advantages of a PAOH-like approach (i.e. directly expands a partially ordered set of 

goals), can be implemented using the Solve-Construction and Refine KSs. However, 

unlike PAOH, Solve-Construction generates the partially ordered set directly without 

the intervention of ordering heuristics. 

180 



Equal(box[1 ],w1 [1]) 

b 
pi ,pi j, pi ~ 

Identify(w1)~ Appraoch(w1)- grasp(w1)'-- Unappraoch(w1)<4) 41---

(3dmOmMIJ I~ I_I ~ 

... 
Pt b pi b pi b 

Identify(box) _ Appraoch(Equal(box[1),w1 [1 I))4--Ungrasp(Equal(box[1),w1 [1 1)).-
{36monNnII (RpI- I_I 

~ ... 
PI b PI 

___ Unapprach(Equal(box[1),w1 [1]))04- Verlfy(Equal(box[1),w1 [1])) 
(RpInonnMj _I 

Figure 9.8 single Equal Plan. 

More sophisticated strategies might have provided a number of alternative 

Implementation decisions for each Operation goal (e.g. in the style of Spar). This 

could have been achieved with a simple modification to Refine, however, for the sake 

of simplicity this was not done. 

181 



Description of the Implementation KSs 

3D-Moment 

This uses the technique described in Chapter 7. The KS was shown separately 

each stage of construction, and used 10 views of each stage to build up a range of 

feature values. The nominal feature value was taken to be the mean of the measured 

values. 

The use of teaching is not consistent with the aims of Plethora, since the 

teaching process increases the latency of system. Ideally, the features should be 

generated from predicted scenes using GeoMod, however, due to the jitter problem, 

such values are not easily derived. Chapter 11 proposes a technique by which this 

may be achieved, given suitable hardware to reduce the jitter problem. 

Rpplanner 

This is a KS based upon the method given in Chapter 8. It initially solves the 

transformation described in its Action goal, by requesting the position of the robot 

from the robot server, and then plans the path, based upon the information found in 

GeoMod. Once planned, it send State-Chan.ge messages to the robot server to move 

the robot and updates GeoMod with the new robot position. The motion is halted by 

the BB sending an Abort or Halt message to Rpplanner, which it then sends on to the 

server. 

In order to cope with the inaccuracy of the robot, the sphere representing the 

gripper and payload, was set 20% larger than given in Chapter 8. 

2D-Moment 

This bases its recognition procedure on the 2D moment invariants found in 

[4]. These are calculated from the chain code of the blob with the longest chain code 

sequence, using the technique given in [5]. Its feature values were calculated in the 

same manner as 3D-Moment. 

182 



Approach and Unapproach 

These are extremely simple. Approach evaluates the transformation in the 

Action goal and determines the height of the highest RP presently part of the 

construction. It then moves, under the control of the RPplanner, to the x-y position 

determined by the solution of the transformation. The z coordinate of this position is 

given by the z coordinate of the highest RP plus 2Vr (see figure 9.9). Similarly, 

Approach 
Position 

\. 
2vr t • 

.... ~ ...... ~ ......... . maxZ 

t;va,ua",'u Transform Position 

st 

Figure 9.9 Calculation of approach positions. 

Unapproach moves the manipulator from it current position directly "upwards" (i.e. 

in the positive z direction), using the same form of calculation. These make the 

assumption that all positions in the assembly can be reached from above (Note: this 

holds for both of the practical assemblies given in the Flymo and Fox examples). 

Mgrasp and Mungrasp 

Because of the 4 DOF restriction made by the RPplanner, the possible 

grasping positions are limited to grasps from above. Mgrasp finds its grasping point, 

by first interrogating the relational plane of the modeller, to determine whether the 

object contains any elements which belong to the SET of Gripping-Posts (i.e 

specifically designed additions to the object). If the object has a Gripping-Post, then 

this will be grasped otherwise, it uses the highest element of the object. In either 

case, once the element of the object to be grasped has been determined, the centre of 

183 



the central bounding sphere in the x-y plane, is chosen as the grasping point. This is 

a simplified form of the technique given in [6]. 

Execution 

A second problem, Complete-Outcome, was now sent to the BB to execute the 

plan, this triggered a Strategy (Least-Commitment-Execution) and two Policies. 

Together they implement a form of opportunistic scheduling, similar to Fox's method. 

Least-Commitment-Execution 

Terminate Strategy: 
Outcome Completed with a Confidence > 75 % 

FocusO Goal: 
Prefer Viable decisions at the Implementation level which 
have no Before links. 
Terminate Focus: 
A single Completed goal, as described in the focus, which has 
a Confidence> 75% 

Focusl Goal: 
Prefer Viable decisions at the Implementation level with the 
greatest number of After links. 
Terminate Focus: 
Outcome Completed with Confidence > 75 % 

This is not identical to the method used in [7], since it's equivalent of Viable actions 

were implicit in the constraint equations. It had a method which distinguished between 

competing actions based on the time taken to expand the equations and determine the 

next action. However in Plethora, the planned actions are explicit and so Least

Commitment-Execution finds a starting point in the plan (using FocusO), and then 

prefers Implementation decisions which enable the maximum possible number of 

actions (using Focusl). This as its name implies, effectively extends the least 

commitment strategy used in planning, to the execution stage. The Policies below are 

used to decide between equally rated KSARs. 

184 



Prefer-Most-Efflcient-KSARs 
This increases the rating of a KSAR in direct proportion to 
its efficiency. 

Prefer-Most-ConCulent-Predecessors 
This increases the rating of a KSAR by an amount proportional 
to the average Confidence of the Completed decisions in the Before 
links, of the decision the KSAR is to fulfil. 

Initially, there is only one Viable Implementation decision and so it's solution KSAR 

is chosen as the Extemal-Chosen-Action. This executes successfully, returning a 

Confidence value and the position of box, the KS transmits the position to the 

geometric modeller as a State-Change. 

This makes the "Pick-and-Place" actions (Equal(box[l],wl[l}) and 

Equal(box[2], w212])), and their initial Operational and Implementation decisions, 

Viable. However, as their Implementation decisions have no predecessors and so no 

Confidence values to differentiate between them, the Implementation decision with the 

most efficient KSAR is chosen. In this case, the goal Equal(boxll], wIll}) is preferred 

as it's KSAR has the higher efficiency. This sequence was left to continue 

unperturbed, eventually Completing the Problem goal. 

In the next experiment, the illumination used by camera. was turned off prior 

to the identification of wl. The identification procedure continued, but only elicited 

a Confidence of 10% from 3D-Moment, Failing the Implementation goal. This had 

the effect of retaining the identification goal as the only Viable goal in that sequence. 

The presence of the Least-Commitment-Execution Strategy, forced the BB to pick out 

another KSAR to solve the Viable goal. As a result of the broadcast of the failure of 

the identification goal, a KSAR volunteering 2D-Moment using camera., was selected 

as an alternative solution to the Viable goal. This produced a Confidence value of 

80 % and allowed the plan to proceed as before. The experiment illustrates how a 

limited degree of fault tolerance can be achieved with the use of Plethora. 

185 



Summary 
The previous example shows how a primitive form of adaptive behaviour 

might be produced by Plethora. However, this carefully contrived experiment was 

performed without the use of the proximity sensor Prompter, and so contained no 

Events. The following section illustrates how Events can be used to alter the predicted 

order of execution or reinforce the Confidence of Extemal-Chosen-Actions, extending 

the range of adaptive behaviours. The example concentrates the pick and place 

operation described by the Equal(box[l}, wl[l]) goal. 

186 



Execution With Events 
In the modified scenario, the first of two events proffered by the proximity 

sensor Prompter occurs during the execution of grasp(wl). The first indicating the 

grippers transition from empty to full, and the second from full to empty. Both Events 

trigger the Reconcile-Event Strategy, focusing the attention of the BB on the 

reconciliation of the Event (see figure 9.10). 

Reconcile-Event 
Strategy Trigger: 

A new Event during Execution. 
Terminate Strategy 

Event is reconciled. 

FocusO 
Prefer most credible decisions in Execution Plane 
concerned with the Event. 

Terminate FocusO 
Event has a Solution decision (Le. is reconciled). 

Strategy 

Operational 

Implementatio 

Ex. Action 

Event list 

Reason 

Solution 

grasp(w1) 

h 
mgrasp(w1) 

mgrasp(w1) 

p 

Reconcile(full(gripper» 

full(gripper) 

t p 
grippI1g(w1) I p 

Reinforce-Confidence 

Figure 9.10 Reinforcement of confidence. 

187 



The first Event triggers a KSAR with action at the Reason level, which is preferred 

by the BB rather than further execution. The KS notes that the current Extemal

Chosen-Actions function is to fulfil the Implementation goal to "grasp". As a result 

of this information and the contents of the Event's goal, it decides that the Reason for 

the Event is that gripping(wl) is taking place (see figure 9.10). A KS, Reinforce

Confidence, which acts as a execution critic (similar to the plan critics in [8]) and has 

its action at the Solution level, is then triggered and chosen as the internal action. It 

recognises that the Reason reenforces the Extemal-Chosen-Action. and so then 

transfers the Confidence value from the Event to the Extemal-Chosen-Action. changes 

the Status of the Event to Reconciled, thus Completing the Focus and Strategy. 

The next action is selected and successfully Completes and so wl begins to 

move. However, during Approach(Equal(box[IJ.wl[I])), wl is removed from the 

gripper introducing an error. 

188 



Execution With an Error 

The removal of the block elicits a full to empty Event from the proximity 

sensor Prompter, which in turn triggers Reconcile-Event. However, this Event also 

results in a not....8ripping(wl) Reason decision, in a similar manner in the previous 

experiment. The execution critic then Requests the BB for previous Operational goals 

which have been fulfilled, and recognises a contradiction between not....8ripping(wl) 

and grasp(wl). It enters an Error decision, Dropped(wl), the Confidence of which 

is calculated from the original Events Confidence. The Error decision triggers a 

Solution, "Replan]arent _Goal" (referring here to the Equal goal), which Reconciles 

the Event. The External-Chosen-Action's Confidence is made equal to that of the 

Event empty(gripper) and it's status set to Error. This forces the blackboard to 

Strategy Reconcile Replan 

Operational grasp(w1 )<4' .. appra~chp(EqUal(bOX[l],W1 (1))) 

Implementatio Rpplanner(Equal(box[l],w1 (1))) 

Ext. Action 

Event list 

Reason 

Error 

Solution 

Rpplanner(Equal(box[l],w1 [1))) 

empty(gripj9r) p 

tp nocgripPing(W1)~ 
Dropped(w1 ) 

.t p 
Replan_Parent 

Figure 9.11 Reconciling an Error. 

terminate the RPplanner's action, inhibit all the Implementation goals which belong 

to the parent goal, and change the mode to Planning. 

189 



The "Replan_Parent" goal triggers a Strategy (ReplanJ which prefers decisions 

concerned with the solution of grasp (wJJ until it is Planned. Once it is replanned (in 

the same manner as before, in this case), execution recommences with the re

identification of wl. 

Summary 

This example illustrates the incremental nature of Plethora's error 

detection/correction behaviour. In comparison, if the error detection and correction 

were explicitly predicted (Le. in the style of SPAR), an error not contained in the 

enumerated list or an error occurring after the time of the test, would go undetected. 

However, the incremental nature of the process in Plethora, its separation into 

detailed stages (indicated by the Reason. Error and Solution Levels), and the ability 

to reason during an Extemal-Chosen-Action, allows it to react to unexpected Events 

at any time during the execution of the plan. 

The system would have reacted in the same way, if different sensors had been 

used but which sensed the same type of Events. Hence, the attributes above also help 

to fulfil the modular behaviour required in ct2.ct4. 

During execution, the critic KS made use of previous goals which indicated 

the intent of the current action (Le. Grasping), and used these to determine the course 

of actions to follow. Although, the example is a simple one, it illustrates a technique 

unavailable to the other systems. (Note: The approach could have been extended and 

used to investigate learning techniques, such as is discussed in [9]). 

190 



Discussion 
The author is the first to agree that the experiments, with all their limitations 

and assumptions, do not demonstrate Plethoras use as a practical solution to the Fitter 

problem. However, they do illustrate how it can fulfil goals given in Chapter 1 

(which were argued to be necessary for such a solution). It also demonstrates that 

Plethora can exhibit advantageous characteristics not found in the work in Chapter 2. 

Namely, 

The example moves between planning and execution using information from 
both phases, to guide its action. 

Sensors can be added without modification to the original planning. 
Fulfilling et4 

Plethora has been shown to be able to opportunistica1ly schedule execution and 
planning operations. In Chapter 2, this was highlighted as a means of 
achieving etl and et3. However, Plethora has the additional advantage that it 
is able to base its opportunism on events other than part availability. 

Plethora can adapt it's behaviour to un modelled and unexpected events as they 
occur. It also can reason about the progress of any action it undertakes. 
Partially fulfilling et2 and et4 

Plethora's error correction strategy is incremental and can take into account 
the intent of a particular action 

However, the examples do not illustrate how a YAMS type of behaviour (where it is 

possible for the initial planning stages to be guided by sensory data) could be 

exhibited by Plethora. A method whereby this might be achieved is discussed Chapter 

11. 

191 



References 

[I) Nevins,I. Whitney,D. 
"Computer Controlled Assembly", Scientific American, no. 238, p63-74, 78. 

[2) Hayes-Roth,B. 
'A Blackboard Architecture for Control", Artificial Intelligence, no.26, p251-32I, 85. 

[3) Schroeder,H.E. 
"Practical Illumination Concept and Technique for Machine Vision Applications', 
Robot Sensors, Edited by A. Pugh, IFS Publications Ltd, ISBN 0-948507-01-2, p289-244, 86. 

[4) Hu,M.K. 
"Visual Pattern Recognition by Moment Invariants", IEEE Trans. Information Theory, 
vol.8, p179-187, 62. 

[5) Pugh,A. 
"Processing Binary Images", Robot Sensors, Edited by A. Pugh, IFS Publications Ltd, 
ISBN 0-948507-01-2, p63-87, 86. 

[6) Kak,A.C. Vayda,A.I. Cromwell,R.L. Kim,W.Y. Chen,C.H. 
"Knowledge-Based Robotics", International 10urnal of Production Research, vol.26, no.5, 
p707-734,88. 

[7) Fox,B.R. Kempf,K.G 
"Opportunistic Scheduling For Robotic Assembly", IEEE Conf. Robotics and Automation, 
p880-889, 85. 

[8) Wilkins,D.E. 
"Practical Planning Extending the Classical AI Planning Paradigm", Morgan Kaufmann 
ISBN 0-934613-94. 

[9) Hayes-Roth,B Hewitt,M. 
"Learning Control Heuristic in BB I", Technical Report, ST AN-CS-85-1036, Stanford 
University. 

192 



Chapter 10 

Implementation 

It is intended that Plethora's response should satisfy the critical times of a real 

work cell. While, in the main, it is able to do this for the "toy" work cell, there are 

implementation bottlenecks which cause the present version to be too slow for use 

with a practical work cell. Similar delays would arise in the toy work cell, if Plethora 

were used to investigate techniques which required very many more KS's than in 

Chapter 9. 

This chapter begins by describing Plethora's underlying programming structure 

and then proceeds to discuss separately, those sources of delay inherent in Plethora's 

architecture, and those which are a function of the implementation alone. It also 

describes modifications which can be employed to overcome these inefficiencies, and 

gives timing details for the effects of the modifications. 

System Implementation 

It has been pointed out in similar earlier studies, that significant difficulty is 

encountered when integrating programs from different sources or levels of abstraction 

(e.g. in [1] the linking of a planner to a CAD modeller took approximately one 

quarter of the time for the project). It was decided to use Forth as the system 

implementation language, in the hope that it would reduce the degree of the problem. 

Forth [2] is an extensible and interactive language, it can accommodate a 

range of programming styles (e.g logic [3,4], functional [5], object orientated [7], 

procedural [2] programming) and implement these techniques on a range of 

processors. (e.g. the processors used so far include the single chip Rockwell 65Fl2 

and Intel 80286). Using Forth, it was hoped that programs could be developed using 

the appropriate paradigm, and yet be readily integrated - this was shown to be the 

case. 

193 



Forth confers advantages in terms of its flexibility and system integration. 

However, when run on conventional hardware with conventional interpreters, it can 

be too inefficient to run complex tasks in real-time. In order to find those elements 

of Plethora which could be most effectively modified to reduce the overall execution 

time, a profile for each routine in Plethora was calculated. The profile (using a 

technique similar to that found in [7]) produced a pair of numbers which represented 

the number of times the word ran, and the worst-case time taken for execution. 

The following section details the elements of Plethora with significantly large 

profile products (where this is the product of the profile pair numbers), and then 

discusses the changes (or proposed changes). 

Dynamic Storage Allocation 

Dynamic storage allocation is used extensively within the message passing 

system, and was initially implemented using the MSDOS allocation routines. 

However, this was found to consist of approximately 10% of the total message 

passing product. An alternative arrangement, in which space for all messages was 

pre-allocated during initialisation and routines written to implement a simplified 

dynamic allocation strategy, reduced the allocation\de-allocation element of the 

product to approximately 2 %. 

Two forms of storage are used to support the basic features of the message 

passing system, chunks (128 bytes) which hold the message and links (8 bytes), which 

are used in the link lists of the message passing system. This space is hidden from 

the rest of the system and Players requiring dynamic storage declare their own 

separately (using storage allocation system routines provided by Plethora). 

194 



Rule Tables and Message Interpretation 

During the development of Plethora, rule tables (using the procedural 

interpreter) were used to parse and evaluate messages. Figure 10.0 shows the 

extensive use made of rule tables in the implementation of the BB. In the BB, a single 

rule table extracts messages from the message queue and passes them on to the 

relevant rule table to implement the necessary operation. 

Although, this was useful during experimentation, it became apparent that it 

was too slow for use in all but the simplest system. This is epitomised by the KSAR 

message interpreter, this has 50 rules and takes 0.25-0.5 seconds to complete. Given 

I Event 
IRR 
coordnatM BB ---' KSAR .Evalu.t, Event 

.... - Request --..- CD .Evaluate KSAR 
.Evaluate 

• Evaluate CD R ..... " 
• mab WON _.Ie 

Basic-Ks 
Debug --. Maintenance P ........... 

c:ydo • 

• ~ngIe "'" · ChedI: focus goals 
• log · ~a. 'liable QOIas 
• monlt« • Check lime out ... " .Ie ... 

Figure 10.0 The structure of rule tables used to implement the BB. 

that message interpretation takes place many times during one BB cycle, it can be 

seen that the time taken to interpret a message is a dominant factor in the response 

of Plethora. 

195 



The time consuming element of this method of message interpretation, is the 

association of the method token in the message with it's appropriate function. 

However, if the commonly used method tokens were not hashed, but were each given 

a value in the sequence 0 to n-l (where n is the number of such methods). The 

association process could be implemented as a simple look-up operation in a table of 

addresses. In such a table, the l('h function address would implement the Kth method. 

The remaining methods could be hashed in the normal manner. If there were a large 

number of remaining methods, the association could be performed using a binary 

search technique [8] (reducing the complexity of the search to {log2(n) -I}). The two 

types of method could be distinguished using the most significant bit of the method 

token. 

hnplementation of Objects 

Intuitively, it is clear that the implementation of the retrieval and inheritance 

mechanisms will have a profound effect upon the overall efficiency of the servers 

(e.g. GeoMod etc). From the profile calculations, it can be seen that although the 

absolute times taken for these operations is relatively short, they are used so 

frequently that any increase in their efficiency would be welcome. 

This could be achieved by re-designing the servers and/or by suitable hardware 

or compilation techniques. Since the latter approaches could be also applied to the 

other parts of the system, compilation and hardware changes are discussed separately. 

The following section describes a programming technique which is specifically aimed 

at increasing the effiCiency of server objects. 

At present objects are implemented in a naive fashion, where during the 

evaluation of a method a sequential search is made of the object's method slots using 

a case like structure. If the method is not found then the Class hierarchy is followed, 

where once again a sequential search is performed. This has the advantage of 

maintaining "late-binding", which is a feature of the flexibility of object orientated 

systems. However, when performing predefined operations (Note: many types of 

service request fall into this category), large portions of the bindings do not change 

and the enforcement of a late binding strategy becomes an unnecessary overhead. 

196 



These problems have been addressed in [9], where the use of late and early 

binding is controlled by the programmer and the association of the method with it's 

operation is performed using a jump table. Together these techniques have been 

shown to reduce some of the overheads associated with object orientated 

programming. 

Server Architecture 

When an event occurs and is broadcast, the KSs evaluate their triggers and 

during this time many will require access to external information held in servers. The 

servicing of these requests forms a significant delay in the operation of Plethora. 

The present approach (described in Chapter 5) uses a single Player, which 

extracts messages and then evaluates the Request. The scope mechanism gives each 

KS the illusion that it has the complete attention of the server, but in essence it is a 

set of interleaved sequential operations. However, the distribution of the 

computational effort when evaluating a Request, can be used to direct a possible 

parallel solution. 

During many requests, the dominant portion of the time spent is in the 

evaluation of the methods, rather than in the time taken to access data base. (This is 

particularly noticeable in GeoMod when it evaluates compound transforms). Hence, 

if a number of identical Players were created to evaluate the requests, and another 

coordinated the messages to and from a Company message queue to the slaves. It 

would be possible to evaluate the Requests in parallel. This architecture is sometimes 

known as a Farm (see figure 10.1) and protocols already exist to implement this form 

of parallelism in message passing systems (e.g. Administrator [l0]). 

However, the scenario assumes the slave players reside on different processors 

and that they all have access to the data base. How this access is to be best achieved, 

depends upon the ratio of time of message communication to message evaluation. If 

the ratio is high, then a common memory solution [11] would be suitable and would 

require no software mutual exclusion mechanisms (since the data base is only read by 

197 



Worker 1 

Message Queue 

Administrator 

Worker 2 Worker 3 

Data base Monitor 

Data Base 

Figure 10.1 A farm implementation of a server. 

Worker n 

the slave Players). Iflow, a dedicated local network between master and slaves would 

suffice. 

Network 

Two points are not properly addressed in the experimental network described 

in Chapter 4. Firstly, a factory is an electrically "noisy" environment and so networks 

will be prone to communication errors. This is well understood (see [12]) and 

protocols and dedicated chips exist to implement real-time deterministic networks. 

Changing Plethora to operate with a more practical network would only require 

modifications to the network Prompters. 

Secondly, the present network imposes delays on the transmission of high 

priority messages. They must wait for the completion of the message currently under 

transmission, before they can be sent. This problem has been addressed in 

INSTANET [13], and a similar approach could be used in a practical work cell. 

198 



INSTANET uses a commercially available network (IEEE 802.5 token ring) 

with additional hardware to implement a distributed interrupt. This mechanism allows 

messages to compete for access to the network and halt the transmission of the 

current message. If the current message has a lower priority than the waiting 

message, it halts the current message transmission and the higher priority message is 

allowed access to the network. Once completed, it resumes the transmission of the 

original message. 

Compilation and Hardware 

Plethora is written in a number of Forth's (FF,F83 and RSC-Forth), all of 

which are interpreted versions of the language. The majority of Plethora runs on Intel 

processors, these have restricted addressing modes (when compared with the Motorola 

68000) and a segmented memory architecture. As a result, interpreted Forth 

implementations of large programs are slow when compared to other machines. Two 

options are available, either to compile the Forth or choose more powerful and 

appropriate hardware. Both approaches were investigated for critical pieces of code, 

using FEC [14] and a RTX2000 [15] development system. 

FEC is a Forth compiler developed at Tartu University, and implemented in 

CFORTH. It was used to translate, test and compile selected pieces of code, to give 

an indication of the advantages of compiling Plethora. This was not a trivial task, as 

there are significant differences between CFORTH and FF. The code was run on an 

Intel 80286 at 12Mhz. 

One of the most cost-effective and appropriate forms of hardware 

commercially available (at the time of writing), is the Harris RTX2000 family of 

processors. These execute Forth primitives directly, and because of the simplicity of 

the stack orientated nature of Forth, are able to run a number of primitives in 

parallel. The examples used a RTX2000 running at 20Mhz with a single wait state, 

and so not running at full speed. 

199 



The particular pieces of code chosen for the tests, implemented the 

homogeneous compound transformation, sphere intersection test and 3x3 image 

convolution. The choice of function was made based upon it's size of profile product. 

It can be seen that the functions are all similar, in that they are concerned with 

arithmetic manipulation. This similarity in operation led to a similar reduction in 

relative execution time for each of the functions. 

Between the compiled CFORTH and interpreted CFORTH implementations 

of each function, there was an increase in speed of 4-5. However, this was only 

reflected as a factor of 2-3 over the original interpreted FF implementation. The 

apparent discrepancy between these two results lies in the fact that, CFORTH (a 32 

bit FORTH running on a 16 bit machine) uses slower addressing modes than are used 

in FF, to implement many of its 32 bit operations. FF (a Forth with a 16 bit wide 

stack and running on a 16 bit machine) makes selective use of the segmented 

architecture of the Intel-80286, producing a more efficient implementation. The 

increase in speed of the unoptimised RTX2000 version over the FF version, varied 

between 12-15 times. 

Summary 

It is intended that Plethora should work with a practical work cell, and it is 

expected that the critical times will be shorter than those in the "toy" work cell. The 

exact length of these times is difficult to predict, as they will depend upon the cell's 

constituents and function. 

However, a timing analysis of Plethora has isolated a number of programming 

techniques, which would increase it's efficiency. Preliminary timing results for 

compilation and appropriate hardware, indicate radical improvements could be 

possible with these approaches. In addition, there are also opportunities to increase 

the response of Plethora by capitalising on it's inherent parallelism. 

200 



References 

[I) Fahlman,S.E. 
"A Planning System for Robot Construction Tasks", Artificial Intelligence, no.5, pl-49, 74. 

[2] Brodie,L. 
"Thinking Forth: A langauge and Philosophy for Solving Problems", Prentice-Han, ISBN 0-
13-917568-7,84. 

(3) Odette,L.L. Dress,W.B. 
"Engineering Intelligence into Real-Time Applications", IEEE Expert Systems,voI.4, no.4, 
p228-239, November 87. 

(4) Odette,L.L. 
"Compiling Prolog to Forth", Journal of Forth Applications and Research, Vol.4, no.4, 
p487-533, 87. 

(5) Hoffmann,U. 
"A Lisp-Kernel for the NC4000", Euro'FORML 87. 

(6) Pountain,D. 
"Object-Oriented Forth", Academic Press, ISBN 0-12-563570-2, 87. 

(7) Pountain,D. 
MPE-Forth, User Manual, MPE Southampton, UK. 

(8) Pfaltz,J.L. 
"Computer Data Structures", McGraw-Hill, ISBN 0-07-49743-5, 77. 

(9) Raybum,T. 
"Methods> Object-Oriented Extensions Redux", Euro'FORML 87, pl-13. 

(10) Gentleman,M.W. 
"Message Passing Between Sequential Processes: The Reply Primitive and Administrator 
Concept", Software, Practice and Experience, vol.ll, p435-466, 81. 

(11) Hwang,K. Briggs,F.A. 
"Computer Architecture and Paranel Processing", McGraw-Hill,ISBN 0-07-031556-6,85. 

(12) Tanenbaum,A.S. 
"Computer Networks", Prentice-Han, ISBN 0-13-164699-0, 81. 

(13) Charkassky,V. Lari-Najafi,H. Lawrie,N.L. Masson,D Pritty,D.W 
"The Performance of Real-Time LAN Architecture for Sensor Fusion Applications", IEEE 
Int. Conf. Robotic and Automation, p120-128, 88 

(14) Saarsen,T. 
"FEC-Forth Environment Compiler", Euro'FORML 90. 

(15) Harris RTX2000, Data Sheet 5DS-0219, May 88. 

201 



Chapter 11 

Conclusions 

This chapter is divided into 2 sections. The first recaps the original 

requirements of Chapter I and discusses by what means and to what degree, Plethora 

fulfils them. The second section describes possible further work. 

Control 

ell The ability to automatically generate and schedule, actions and plans. 
This is achieved in three ways. Firstly, through the use of a declarative 

description for the assembly, which is specified in terms of the domain description 
found in the relational plane of the modeller. Secondly, through Solve-Constrnction, 
which expands the declarative description into procedural goals, and finally the 
uniform extension of BBI's planning structure to encompass execution. 

ct2 To automatically interpret sensory infonnation within theframe work of the 
plan and actions. 
This is achieved in two ways. Firstly, through the use of Events with their 

associated Confidence values and secondly, via the explicit representation of reasoning 
on the BB. 

ct3 To implicitly detect and cope with error conditions. 
The method used by Plethora is based upon the explicit representation of 

reasoning, Events and the extension of BB control to include execution. The 
opportunistic nature of Plethora has been shown to provide a degree of fault tolerance 
(when a failure was induced by the change in illumination, described in Chapter 9) 
and an ability to resolve Events during execution (illustrated by the proximity sensor 
examples in Chapter 9). 

ct4 To provide a modular implementation which allows the addition of 
knowledge and devices. 
This is achieved in two ways. Firstly, by encapsulating the procedural and 

geometric context of a technique/sensor/actuator within the structure of a KS, and so 
only storing centrally that information which is essential. Secondly, by employing a 
uniform message passing mechanism through which the incremental action of the 
conflict resolution scheme can operate. 

202 



Knowledge 

knl The provision of physical information about the contents of the cell. 
This is partially achieved through GeoMod. However, it does not model 

uncertainty in object position or multiple moving objects. These limitations arise from 
the need to maintain the efficiency of GeoMod. 

kn2 The provision of relational information to plan and intetpret the task. 
This is provided by the contents of the relational plane of the modeller and the 

representation of the intent of an action on the BB. 

kn3 The provision of information in a form suitable for its end use. 
It has been shown (via the development of the path planning and object 

recognition techniques) that the information provided by GeoMod, copes with the 
typical requirements of geometrically based techniques. However, it is not possible 
to predict all the forms of feature information which might be required in the future. 
Hence, the approach taken in Plethora, is that recognition KSs and GeoMod should 
form a distributed and extensible data base. In such a system, the features/value pairs 
and the method of feature generation should reside within the KS, but be referred to 
through the common language of the GeoMod frame names. 

kn4 The provision of information rapidly enough to satisfy critical times. 
This is closely related to the satisfaction of knl and kn3 and relies to some 

extent on the function of the KS requesting information. However, putting this to one 
side, attempts have been made to reduce possible delays. As a result, geometric 
information is explicitly represented (e.g. there is a unique boundary representation 
for each VOLUME) and it is of a restricted form. Both geometric and relational 
representations have been designed to increase the efficiency of a limited number of 
operations. 

However, it is still expected that GeoMod will limit the overall response of 
Plethora. Techniques to reduce some of these delays are described in Chapter 10. 

203 



Communications 

cml To be amenable to implementation in a distributed environment. 
It has been demonstrated, through the use of encapsulation and simple 

experiments in Chapter 9, that Plethora can operate within a distributed environment. 

cm2 To have attributes which unifonnly support both the real-time and knowledge 
based requirements of the system. 
The same language and message passing mechanism is used throughout 

Plethora, whatever the form of communication. The necessary response can be 
tailored through suitable choices of Prompters/Players and message priority. (Note: 
It has not been possible to demonstrate this point completely, owing to the simplicity 
and limitations of the available hardware) 

cm3 To adapt to changes in the structure of work cell. 
This is achieved through the use of encapsulation, a uniform message passing 

system and the incremental nature of the BB operation. An illustrative example is the 
addition of the proximity sensors in Chapter 9. 

204 



Further Work and New Avenues 

However, there are a number of questions which arise out of the development 

of Plethora. These, and the questions left unaddressed, form the basis for further 

investigation. 

Partition and Mapping 

What is the most efficient partition of the blackboard structure and mapping 

of Plethora? An inherent restriction on the performance of Plethora is the use of a 

central conflict resolution scheme, where all KSs return their KSARs to the BB to be 

evaluated. However, if each processor in the network maintained a list of the Foci 

and Policies in their own local levels, then locally generated KSARs could be 

evaluated locally. This would result in a partial To-Do-list within each processor. The 

function of the BB during Conflict resolution would now be, to interrogate each 

processor for the highest rated local KSAR, determine the KSAR with the highest 

overall rating and make it the chosen action. 

Model Based Recognition 

The initial hope for the 3D recognition technique was that it would lead to a 

model based recognition scheme, which could be used to verify the results of 

predicted assembly actions. The position of the object in the assembly could be 

determined from the solution of it's PRIMITIVE relationships. The moments could be 

derived from a volumetric representation of the assembly, using RPs fitted about the 

bounding spheres and modified according to the expression for parallel projection 

error. However, before this can be investigated the jitter problem must be removed. 

205 



Path Planner 

Further analysis of the path planner needs to be undertaken before it could be 

employed within a commercial work cell. This would include, 

1. Quantitative investigation of the performance and "quality" of paths 
produced by the planner. This might also be done using varying degrees of 
approximation to the scene. A further possibility, would be an investigation 
into the generation of the free space representation by the 3D vision system 
directly. 

2. Modification to the path control used at via points and removing the need 
for the straight line trajectories. Straight line trajectories at the via points 
require rapid changes in velocity, and have the disadvantage of increasing 
wear within the manipulator. A suitable approach might be to use parabolic 
blend [1] or cubic functions [1] at the via points (given an appropriate increase 
in Vr). 

3. Increasing the accuracy of the model of the payload, by regarding it as 
being represented as a number of bounding spheres, rather than a single 
sphere. 

Parallel ColJision Detection 

It has already been determined that collision detection is computationally 

expensive. However, a simple approach, which would allow collision detection to 

take place in parallel, could be constructed from a Farm architecture. A supervisor 

process could be used to determine the areas of possible collision (based upon rough 

sphere intersection tests) and sub-divide these (or parts of these) between the workers 

of the processor farm (in a similar fashion to that described in Chapter 10 for the 

implementation of GeoMod server interface). 

Parallel External Actions 

The structure of the chosen action lists and the concept of Viable actions, 

allows the investigation of techniques which execute a number of actions in parallel 

(e.g. Viable complementary verification KSs or the Viable actions of KSs which are 

known not to interfere). Although, this would be expected to be a feature of such 

systems, this is not discussed in the literature of Chapter 2. 

206 



Confidence 

At present, Confidence values are an equally weighted sum of 3 elements. 

Since, Confidence values affect the behaviour of the blackboard, and through this the 

behaviour of Plethora. It would be useful to investigate differences in the relative 

weights of the overlap values and the nominal separation value. It is the relative 

weight of the nominal element, which determines the behaviour of the function for 

values oflow Confidence. Hence, successful goals but with low Confidences, may be 

represented as unsuccessful, given an inappropriate choice of weights. 

Planning and Acting 

A theory of domain independent problem solving known as "Planning and 

Acting" was developed by McDermott [2]. It regarded an action simply as a planning 

goal, which required to be evaluated in order that it might be solved. Although, the 

original work ran into difficulties (and to the authors knowledge never been expanded 

upon), the approach has significant advantages when applied to uncertain domains 

where sensed information is available. 

The technique reduces the plan network to a pure AND tree, so that each 

problem has just one reduction, this is expanded via its various sub-problems until 

they can be executed. It executes each sub-problem's solution until it encounters an 

error. 

Each sub-goal is expanded and executed before the next is attempted. Hence, 

the choice of which sub-goal is to be solved next, and how this is to be done, can be 

made a function of previous experience (as is possible with YAMS). It has the further 

advantage of reducing the system's reliance upon the modelling of the environment, 

which is known to be computationally difficult [3]. 

However, it was reported in the original work, that when using this technique 

the system- encountered problems with error correction, since it did not maintain a 

record of its previous reasoning. Plethora, because of its seamless control, explicit 

reasoning and its ability to reason about the task during execution, has the necessary 

prerequisites for the further investigation of this technique. It is not expected that the 

207 



technique could be used without modification and yet again, not as a general 

approach. However, it could provide a useful alternative strategy, when an error has 

been detected and the modelled information is in doubt. 

The technique would also have advantages in the determination of a plan 

network, prior to it's adoption for continuous operation by the cell. The plan network 

developed by Solve-Construction (which is constrained by structural requirements 

alone), would be executed under the control of this technique, but would recover 

from errors in the fashion described in Chapter 9. The resulting network, which 

finally led to a successful completion, could be used as the final plan network. In this 

way, the effect of actual parameters of the cell would be learnt rather than modelled. 

This should simplify the modelling problem and hopefully increase the portability of 

the assembly descriptions between differently structured work cells. 

References 
[I] Craig,J. 

"An Introduction to Robotics: Mechanics and Control", Addison-Wesley, 
ISBN 0-210-10326-5, 89. 

[2] McDermott,M. 
"Planning and Acting", Cognitive Science, vol.2, p71-109, 78. 

[3] Brooks,R.A. 
"Intelligence Without Representation", Artificial Intelligence, vol.47, p139-159, 91. 

208 



• 

Appendix A 

209 



COMPUTING AND CONTROL DIVISION 

COLlOOU I UM Orl 

"KNOWLEDGE BASED ENVIROIi1'1ENTS fOR 
INDUSTRIAL APPLICATIONS INCLUDING 
CO-OPERATING EXPERT SYSTEMS IH 
CONTROL" 

ORGANISED BY 

PROFESSIONAL GROUP C13 
(AUTOMATION AND COtHROL SYSTEMS) 

Orl FRIDAY. 9 JUNE 1989 

DIGEST No: 1989/96 

TOW'i\RDS KHOWLEDGE BASED CONTROL OF A FLEXIDlLE ASSEMBLY ROBOTIC WORKCELL 

'l'his paper describes the work in pr09ress in the developlllene of an environment 
for a distributed opportunistic knowledge based control o~ an assembly workcell. 
It describes a centralised blackboard based upon a modified fo~ of the archi
tecture in {11, a relational and geometric modeller. and a message based 
communication mechanism. 

Blackboard 

There are few general and efficient solutions to problems in the robotic domain. 
in practice solutions tends to very specific and heuristic in nature (e.g. 
collision free path planning schemes). A blackboard (BB) architecture allows 
such partial solutions to be incorporated in a single framework under a knowledge 
based control. which itself can be made to adapt to the state of the plan or 
execution (I}. It also provides a s~ple large grained means of partitioning a 
systeta on to a distributed envirorullent. .1ore significantly, it allo .... s at each 
stage of the planning/scheduling/error correction cycle the use of both local 
and global information generated during any of the other earlier stages. This 
.... as seen as a weakness in the approach taken in {2J. 

There are a number of modifications made to the original architecture in Ill. 
TlJ,ese include the addition of blackboard modes ,,",hich state explicitly the BB's 
proqress through the planning cycle and influence the action of basic Kno .... ledge 
Specialists (KS). The basic !S's control the fora of the inference ~echanism ~ 
which is to be undertaken by the BB and hence, with the use of the· DB modes this N 
too can be chosen to be of a form. which DOst appropriate to the current state 
of the planning process. The evaluation of the KS's precondition no .... takes 
place within the KS itself, removing the need for the invocable list in (11. 
There has also been a change made to the structure of Focus level decisions. 
They no .... each include a termination condition which allo .... s a more efficient 
~thod of implementing distributed Strategies and attention focusing (3). Each 
of these modifications is directed towards increasing the efficiency of the 
blackboard's inference mechanisms in a -real time- distributed environment. 

An extra level, below the Operation level, i. included in the domain pbne of 
the blackboard and. i. known as the Implementation level. This is used to hold 
those decisions which control the individual devices in the workcell, rather 
than the Operation level which is used to hold the generic ~ipulation goals. 

The plan solution is held in the form of an AND/OR qraph of decisions which 
have their tenninal nodes in the Implementation level. Control of external 
events is lII&intained with the use of <It, new structure within the BB. the Event
list.. This is used by the Scheduling ba5ic XS during the scheduling stage 
to hold aessages .... hich represent the status of external events. 

Knowledge Representation 

.Iuch of the procedural and specialised kno .... ledge is conained witl,in the KS' s 

I.P.W. Sillitoe is a lecture in the Departcent of Electronic anc Electrical 
Engineering, Loughborough University. 

1/1 



of such a system, the shared declarative knowledge is held with the geo~etric 
modeller and relational network. Each foras a plane of a hierarchical frame 
network. 

The frame types in the geometric modeller consist of BODY, CHAIN and VOLUME. 
A CHAIN describes a doubly linked structure of BODY frames, which represents an 
open linear kine~tic chain. The BODY frames form a part/sub-part hierarchy. 
which is used to represent various parts of a riqid structure and terminate 
in single VOLUME fr~es. VOLUME frames describe those vol~tric and surface 
characteristics of pri~itive volu.es attributed to the BODY. They also are 
organised in a hierarchical fashion. initially by a bounding sphere then by a 
bounding rectangular parallelpiped and finally a set of polygon surface patches. 
their edges and vertices. The hierarchy of part/sub-part and multiple volume 
representations increase the efficiency of many of the basic geometric operations 
(.e.g. intersection operationsl. The relational pla~e of the network provides 
access to the global information in the syste~ and is fo~d from INDIVidual. 
SET and SET Descriptor frames in an inheritance hierarchy. In particular, 
it is used to describe the relationships between parts in a given construction. 
their functions and the primitive relationships used within the assemblies. 
The network allows the user to specify a declarative description of the assembly 
which the system can decompose into a table of primitive constrain.s. These 
are solved nUDerically by a KS to produce the final positions of parts for 
certain classes of practical constructions. 

Communication 

A message passing system is used to co~unicate between the knowledge based 
parts of the system and control workcell devices. It utilises a non-blocking 
SEllD, blocking R£CEIVE. polling RECEIVE which together with a queued letter 
box structure produce an actor (4) based environment. Tbe SEND and blocking 
RECEIVE allow the creation of co-begin structures and so capitalise on the 
large grained parallelism within the system while the polling R£CElVE is used 
to implement a method of timeout when communicating with untrustworthy 
correspondents. The message headers include transaction identifiers and a 
n~r of transaction protocols have been evaluated. 

The complete system has been implemented in Forth on a ring a PC's. A vision 
preprocessor, a oollision free path planner and machine sequencing XS's have' 
been developed ana-tested within the system. Although, the system does allow 
the evaluaticn of many new techniques and experimentation with their use within 
an inteqrated system, the hardware on which it runs is not powerful enough to 
produce a real time response. Rence, present work is directed towards building 
and parting it,to more sympathetiC hardware. 

References 

1. HAYES-ROTH, B. ~A Blackboard Architecture For Control~, Artificial 
Intellige.~ no.26, p2S1-321, 1985 

2. VAN DYKE PARUNAK, H. -Manufacturing Experience with the Contract Net-, 
Distributed Artificial Intelligence. Research Notes in Artificial Intell
igence. Pitman, ISBN 0-273-087789 

3. HAYES-ROTH, F. LESSER, V.R. -Focus of Attention in Hearsay-II Speech 
Understanding System-, Proc IJCAI 5, 1977. 

1/2 

4. HEWITT. C. -Viewing Control Structures as Patterns of Passing Messages R 

Artificial Intelligence. vel.8. no.3. p323·364. 1977. 

1/3 



Appendix B 

212 



An Approach to the programming of Distributed Shared Resources 

within an Experimental Robotic Workcell. 

LP.W sillitoe, 
Dept. Electronic and Electrical Engineering, 
Lougborough University, Loughborough, Leicestershire. LE11 3TU. 

Abstract 

This paper describes the implementation of programming 

techniques applied to one form of inter-node communication within the 

distributed system[l]. The aim of the techniques is to maintain as 

many of the properties of integration and flexibility found within a 

single Forth environment, across a set of distributed asynchronous 

communicating, FORTH processes. The approach can be thought of as a 

variant of Remote Procedure Calls[2] and object orientated programming 

and is derived from the pragmatic considerations encountered when 

providing flexible knowledge based services within a distributed 

system. 

Introduction 

The programming of robotic systems to act in a flexible manner 

is complex. This complexity can be regarded as having two distinct 

roots. The first owing to its physical properties. Such systems are 

usually distributed, heterogeneous and have timing constraints which 

must be upheld. The second is concerned with the representation, 

integration and flexible control of the facilities within the cell. 

It is with the question of flexible control and integration of a 

knowledge based service that the paper is concerned. 

The system in [1] represents the facilities of the robotic work 

1 

cell as a set of asynchronous knowledge sources(KS) whose overall 

control is through a blackboard structure[3]. The knowledge sources 

are implemented as actor(4] like forms and communicate via a buffered 

message passing system. The type of knowledge encapsulated within a 

source defines the form of interaction which the source can undertake 

within the community of sources. The knowledge sources which 

encapsulate the physical facilities (i.e control the motion of the 

manipulator) of the cell can be regarded as providing a shared 

resource to those knowledge sources which contain the techniques 

represented within the system (l.e How to identify an object or how 

to carry out a pick and place operation). What follows is an 

explanation and illustration of a number of techniques, using the 

implementation details of the camera control knowledge source [1] , 

which highlight many of the problems encountered when managing a 

shared resource within such systems. 

vision Server 

The camera provides the necessary sensory data for a large number 

of technique 1<5s which can be used to identify objects and verify 

actions. DUring the problem solving cycle, a number of these technique 

KSs make concurrent access to the camera KS in order to evaluate 

heuristics which will be used to select the most suitable technique 

for the current state of the plan. Therefor~ the design of the vision 

server must not only be able to cope with the problems of data 

sets (Image sizes range from 64-256 Jcbytes) and those problems 

associated with domain, but it must also maintain coherent responses 

under the influence of competing requests (see [5] for a full 

discussion of such problems) and minimise the programming complexity 

2 



required of a KS to obtain a service. 

Representation 

The elements of a transaction are represented as polymorphic 

objects within the camera KS, that is the class of a particular object 

may change during its lifetime. The polymorphic nature of the objects 

is necessary because of the size of the data structure involved and 

the limited memory available. All objects are held and managed within 

the server (see figure 1 for an illustration of the fields found 

within an object) and reference to any particular object is made via. 

its object token supplied by the server. Objects are owned by the KS 

whose transaction created them and they protected from destructive 

Object 

Fields 

class Cpu 

SUbCla=-ts 
Source 

owner 
TID 

Born 

Parent 

Siblings 
Data structure 

Instance var~ables ~Max. Extent ----L Val.id Extent 

~MemOrY Management Flags 

Figure 1, Object fiel.ds. 

3 

... Object·change? 

i
COllect? 

Emptied? 

side·Effect? 

operations by other KS's. They form an inheritance hierarchy in the 

usual manner (see figure 2) via their class fields while the subclass 

field acts to modify the methods action and it is the change in this 

field which gives the object its polymorphic characteristics. 

LUTs 
Any 

Tables Histograms 

Chain· code ______ Dir.f·chain~code 

Run·l.ength·code 

Binary 
Arrays Images ~ 

1 Grey 

Windows L ::~:ry 
Sets·of 

Figure 2.,Method Inheritance between Object Cl.asses. 

All objects are also part of a dependency hierarchy which is 

used by the implicit memory management and garbage collection(GC) of 

the server. The implicit nature of GC reduces the complexity required 

by a KS when requesting a service, while also endeavouring to make 

maximum use of the memory ava~lable to the server. At the top of this 

hierarchy is A1I-Objs (see figure 3) which is a permanent Object of 

class scope of scopes. A scope holds the objects created within a 

particular transaction. A number of scopes can exist at the same time 

allowing separate KSs to carry out what seem to the KSs to be I 

4 



All-Objects 

ObjectO Objectn .. ~ i ObjectO Objectn 

• , ! ! 
I ! 
I 

t I t T T 

Transaction 1.. Transaction n. 

Figure 3.,Scopes and Transactions. 

concurrent operations. A new scope is created or an existing scope is 

made the current scope, at the commencement of the processing a new 

message. If an object makes reference to data outside its scope (such 

as where a number of objects share the same source image), and if the 

method to be used is destructive, a copy of the original object is 

made in the local scope. The dependency hierarchy is used to indicate 

which particular object was generated as a result of which parental 

data and is used to limit the possible interactions between competing 

KSs. The fUnction of the GC is to maintain the truth of such 

relationships during the progress of a transaction, that is the same 

method should be able to be applied to any parental data and still 

produce the same siblings. 

The local instance variables (see figure 1) are used to define 

5 

the maximum dimensions of the object data structure and the valid 

region of that structure on which the methods can operate. For example 

after some methods, such as convolution with a 3x3 mask, the extreme 

pixels are nolonger defined in the processed image and so as a result 

the valid region is smaller than the maximum extent of the data 

structures. This reduces the amount of house keeping required t 0 

be undertaken by the requesting KS. 

Garbage Collection 

The server provides automatic garbage collection to simplify 

programming and ensure maximum usage of the memory available. Its 

action is triggered by a change in state in the memory management 

flags within an object. These flags are set by the methods and 

indicate the change in the objects data structure or subclass which 

may allow garbage collection to take place. Garbage collection takes ~ 

place when, 

1. A KS requests the contents of a particular object to be sent to 

it, indicating the end of the objects useful life. When this 

occurs the siblings are also nolonger valid and so the object, 

all its siblings and their siblings are collected. This 

situation is indicated by the method setting the Collect? flag. 

2. A transaction is completed the contents of the corresponding 

scope are removed. 

3. An objects subclass changes (say grey scale to binary image) the 

contents of the object remains valid, however, the validity of 

6 

.-< 
N 



siblings is dependent upon the previous subclass of ~he object 

and so they are removed. 

New 
Camera ~camera 

t 
Image 

Grey 

Window 
______ --I .... Camera 

t 
Image 
Grey 

A\ 

Threshold 
________ -I .. ~camera 

1 

Window Window 
Grey Grey Grey 

After Garbage Collection Camera 

t 
Image 
Binary 

Figure 4 •• Changes in Object Subclass. 

4. Under certain circumstances the data structure can be deleted by 

the action of the method (i.e certain forms of chain encoding 

algorithm), when this occurs it is indicated to GC by setting 

the Emptied? flag within the object. When the garbage collector 

is called it removes this object and moves its siblings to the 

parent of the emptied object (see figure 5). 

However, there are still opportunities during a transaction when 

garbage collection could be performed but which are not detected by 

the rules above. These situations arise when objects are formed as 

7 

Chain~Encode 

Camera 

I 
Image 
Binary 

__ --I .. ~camera 

Chain-Codes 

After Garbage Collection 

Camera 

Chain-codes 

Chain-Codes 

Chain-Codes 

Figure s •• Empting an Object. 

side effects of the eventual goal object. Such is the case when 

enhancing the contrast of an image by the use of histogram 

equalisation, where during this process a LUT and Histogram are 

generated and have no further relevance once the contrast of the image 

has been modified. Since the detection of these situations would 

require an understanding of the intention of the KSs action they 

cannot be implicitly processed by the GC. In order to cope with these 

eventualities there is a construction recognised by the message 

interpreter within the server known as FORM. FORM takes as its 

arguments an object and an expression, during the evaluation of the 

expression it marks all objects generated as side effects ,except for 

the goal object specified in its arguments. When GC is called it 

removes all the objects and siblings marked as side effects leaving 

8 

'" .... 
N 



---------------------------------------------------------------------------------------------------------------

only the goal object within the scope. In this way the calling KS can 

ensure that only necessary objects are maintained throughout a 

transaction and the syntax of FORM underlines the intention of the 

transactions code. 

Message Interpreter 

The function of the message interpreter is to remove the messages 

from the servers message queue, interpret the user portion of the 

message, determine the validity of the request, apply the relevant 

sequence of methods and finally return the appropriate response. The 

message interpreter maintains a coherent server response by forcing 

the execution of an individual message is be serial and within the 

scope of the transaction[5]. However, it also allows message requests 

from competing transactions to be processed in any order and so still 

provides a degree of concurrency. 

The message interpreter is implemented as a set of forward 

chaining rules similar in construction to FORPS[6] but where the flow 

of execution is specified within the body of the rule. The main bulk 

of the rules implement an efficient form of recursive descent 

interpretation which defines the syntax and performs general error 

management. Rules for individual methods are simply added to the 

existing table of rules for them to be included in the server's 

repertoire of actions. 

The inter node language used to communicate between the KS's has 

a LISP like syntax and specifies the required action in terms of 

assertions and goals in a similar way to PROLOG. This was chosen in 

preference to'less restricted FORTH form in order that more precise 

syntax checks could be made on the message requests and so reduce 

ambiguity. These were found to be significant problems in earlier 

versions which simply copied the contents of the message to TIB and 

evoked the FORTH interpreter. 

Implementation 

The server is written in FF on a IBM AT with image frame grabber 

and uses the MS DOS BIOS routines to allocate/deallocate the data 

structures. The object tokens are dynamically allocated within FF from 

a stack of pointers, which point to preallocated dictionary areas. 

The message passing services are provided by MP (a program written by 

the author) and communications are via point to point serial contacts 

through a message switch. 

summary 

The problem domain outlined above highlights a number of problems 

which do not normally arise in a single FORTH environment (memory 

management, garbage collection and multi agent access to shared 

resources) but which are endemic in large scale and multiprocessor 

applications. At present there is no support within the core 

definitions of FORTH which could be used to address such problems ( 

Note: even basic multitasking which appears in most implementations, 

is undefined within a standard). This. paper describes novel 

techniques, written in FORTH, which have been used to solve these 

problems in a distributed environment and so might provide a 

discussion point for further extensions to FORTH for use 

multiprocessor environments. 

9 10 



References 

[1) Sillitoe,I.P.W. 
Towards Knowledge Based control of a Flexible Assembly 
Robotic workcell.,IEE Colloquium Knowledge Based Environments 

For Industrial Applications,June 1989. 

[2] Birrell,A.D. Nelson,B.J. 
Implementing Remote Procedure Calls.,ACK Trans. on computer 
Systems,Vol.2,No.l,February 1984. 

[3] Englemore,R. Morgan,T. 
Blackboard System,Addison-Wesley,ISBN 0-021-17431-6. 

[4) 

[5) 

Hewitt,C. 
Viewing Control structures as Patterns of Passing Messages, 
Artificial Intelligence,No. 8,p323-364. 

Bernstien,P.A. Goodman,N. 
Concurrency Control in Distributed Database systems, 
computing Surveys,Vol 13.,No.2,p185-221. 

[6] Matheus,C. 
The Internals of FORPS: An Forth-Based Production System, 
The Journal of Forth Applications and Research,Vol 4,No.1, 
p7-27. 

11 

ro 
M 
N 



Appendix C 

219 



The solutions of all the stationary position relationships take the same form, and so 
for brevity only the derivation of the simultaneous solution of three Star equations is 
given. 

I PI3 

~ 
»'""--

~P12 
x 

Pr3 

Figure c.O The Transformation X for 3 Star relationships. 

Simultaneous Solution of Three Star Relationships 

Given the abbreviated form of the homogeneous transform in Chapter 6, we can write 
T ri the initial position, T fi the final position and X the required transformation as 

X = I ~ ~ ~ U; Tli = IT ~ ~ pa; Tri = G ~ ~ pa 
and the three star relationships as 

u~~~ = 

\b~~~ = 

G~ ~~u\= 

fl"mnpl. j"???p:l 
~Oo~ ~00!J 

TlmnPl. f???PaI 
~OOJJ 1000~ 

1I m n P1 . G?? ~I 
~ OlJ l2..0 0 iJ 

1 

2 

3 

where PlI ,PU,P13 and P,,,P r2'P,) are the triangle of points in the 3 Star relationships. 



Subtracting equation 1 from 2 

f? 17 PI2-PJ = Tl m n;l . 
LQ. 0 0 1 ~ LQ. 0 OlJ 

n? ? p r2-Prl \ 
000 1 

Therefore 

This can be normalised as 

nl = [ I m n ].nr 

where nl = unit( P12 - Pu ). nr = unit( P r2 -Pr! ). 

By subtracting 1 from 3 

By forming the cross product of 5 and 6 

nl x [ P13 - Pu ] = [ I m n ].(n,. x [Pr3 - Pr.]) 

which can be normalised as 

ml = [ I m n ].rn,. 

where ml = unit (nl x (P13 - Pu»; m, = unit (n, x (PrrPrl» 

by combining 6 and 7 

[ I .. ml• nl ] = [ I m n ] . [ ~ m, n, ] 

where I1 = ml x nl ; I, = m, x n, 

from 1 and 8 

n;mlnl~= 
~O 0 ~ 

1T m n -PllT. m, n,PJ 
~OO.u~00.!J 

Hence the solution for X is 

X = n;-ml nl ~. 
~O O~ 

-1 
~ m, n,'P.l 
~O O~ 

4 

5 

6 

7 

8 



Appendix D 

222 



A Hultlvlew Robotic Vision, System For EfficIent Object 

Recognition. 

I.P.V.Slllltoe 

Loughborough University, Dept. of Electronic' Electrical 

Engineering, u.~. 

J. Ed..,ards 

Loughborough University. Dept. of Computer Studies, U.K. 

A.H. Falkner 

Coventry Polytechnic. Dept. of Electrical Electronic' Systems 

Engineering. U.~. 

0.1 Abstract 

This paper describes an experimental model based vision 

object recognition system designed for use In real time 

robotic assembly. The system utilises three orthogonal views 

to generate a volumetric representatIon of the object, from 

whIch It determines the equivalent of the object's Inertial 

tensor and volume. The matrix and volume form a tuplet which 

Is used to Identify and determine the orientation of objects. 

The tuplet provides a compact and flexible representation for 

the object and Is efficiently derived frolll the rectangular 

parallelepiped (RP) representation generated by the vision 

system. 

0.2 Overview 

Object recognItion Is of particular importance In 

assembly operations as· It provides IS lIeans of Identifying 

workpleces and determining 8 part's position and orientation. 

If a suitable _odel based representation is employed. It can 

also serve to verify the assembly actions by modelling these 

changes In the \lorkplece and matching the predicted model 

against the scene. Before true automated assembly Is possible 

It Is essential to have a robust representational model and 

general purpose technique for determining the orientatIon and 

position of 3D objects for a large class of IndustrIal parts 

[1 ). 

0.3 Introduction 

Previous work (2) can be categorised as 2D recognition, 

where a single Image Is used, 2.50 where some depth 

Infor.atlon Is available such as In stereo vl.lon and 3D where 

a number of views are combined to produce view-Independent 

volumetric representations of the scene. The latter Is the 

preferred form for object Identification {3]. since It results 

In a single Object centre representation, In contrast to the 

20 systems In which a number of views must be represented. 

The design of 20 systems Is further complicated since the 

means by which the views for. a 20 system are chosen and how 

they are to be represented. are not straightforward and the 

practical lllRltatlons made upon these choices constrain the 

number of view points tro~ whIch the object Is recognisable. 

A multiple view system not only reduces the difficulty 

associated with the Interpretation of the one to .any 

transformat10n Involved In a 20 system, but It also overcomes 

M 
N 
N 



the time constraints that are often associated with the 

convolution of Images In stereo vision systems. The choice of 

three orthogonal views provides a compromise between 

slmpllcl ty In tenlls of hardware requirements and the 

cOlllputatIonaI effIciency of the generation of th~ volumetric 

represen ta t I on. 

0.4 Previous York 

Much of the model.based recognition work uses a geometriC 

model of the object to generate a 20 representation of the 

scene from a given view point, then determines a set of 

features and finally tries to match these against the feature 

vector of the hage (e.g. (1 J) 

A different approach described by Potmesl (4) generates 

volumetrIc models from multiple views and uses a boundary 

representation, based upon blcublc parameter patches, to 

represent the object and fon a 3D representation of the 

scene. It then heurlstlcally searches for overlapping 

segments In the representation to produce a description of the 

connected patches. This technique Is applIed Iteratively 

until the yhole scene has been covered. 

These approaches tend to be computatlonally expensive and 

so have lImited application in real time and/or do not yield 

features suitable for an efficient means of object 

recognition. In order to produce an efficient 3D model based 

recognitIon system ye must choose a form of representation and 

compatible method of Identification. The method described 

here atte.pts to do this by combining an efflcient means of 

generating a volumetric representation and utilising a 

representatlon which can be ShlpJy lIanlpulated to provide a 

useful set of compact global features. 

0.5 Methodology 

The calculation of the tuplet takes place in two stages. 

Flrstly. the generation of the volumetric representation of 

the object In terms of a number of non-overlapping rectangular 

parallelepipeds and secondly. the derivation of the tuplet 

froa the set of RP's. 

0.5.1. Generation of the VolUmetric Model 

The RP's which represent the object are coded as In 

figure 1. They are der hed I n rea I t1 me us 1 ng a mod If 1 ed 

version of the .ethod found In [5], which Is implemented In 

parallel on a aultl-transputer system. The system uses three 

orthogonal views of the object (see figure 2), which are 

assumed to represent parallel projections In each of the 

vle.lng direction.. These vie •• are then coded as rectangle. 

and then swept In the respective viewing directIon to form 

RP·s. The Intersection and merging of these codes produces 

the final Ilst of RP codes froa which the tuplet will be 

derived. 

The Inltlal experiments used 128x128 8 bit grey scale 

'" N 
N 



Images of the object. These \lere thresholded using a variable 

thresholdlng technique based upon (6). The generation of RP's 

took bet\leen 0.25 and 0.5 seconds, \lell within the critical 

times of most processes \llthln an assembly \lorkcell. (see 

figure 3. for an example). 

0.5.2 Generating the Centralised Moment Matrix 

If \le assume that RP's have a uniform density of 1, then 

the sum of the RP volumes will result In a psuedo mass for the 

object. If the IndivIdual psuedo masses are taken to act at 

the mid-poknt of the RPs \le can generate the moments and 

centralised ~oments of order p+q+r as beloy. 

K 

Hpqr - 2 g. y~ .<.VOIIJ 

1-1 
centralised moments 

K 

Ilpqr • 2 
I-I 

[ 
-p -q -r J 

(XI - x) .(yt - y) ,(zl - z) .voll 

where 

[x,y,z] corresponds to the coordinates of the midpoint of 

the IndIvidual RP volumes. 

K Is the number of RP's representing the volUme. 

voll Is the volume corresponding to the Ith RP. 

This gives rIse to the matrix Y. the second order 

centralIsed moments required for the tuplet representation, 

which Is used to derive 3D moment InvarIants [7] and It's 

principal axes. 

~200 ~1l0 

11020 

The voluae Is sllllply found by sUlllllng all the Individual RP 

volumes used to represent the object. 

0.5.3 Homent Invariants 

SadJal and Hall (7) have generalised the resul ts of 20 

moment Invariants [8] by llnklng the 3D moments to ternary 

quantlcs and so produce a set of 3D moment invariants. These 

are Invariant under size, orIentation and positIon and are 

shown below. 

where 

A2. - det [ll) 

The InvarIants can be readily obtained from y and are used as 

features yhen Identifying the object. 

0.5.4 Principal Axes 

Given that object's reference frame origIn is at the 

U') 

N 
N , 



centre of mass, when this (rame Is aligned with the principal 

axes the tensor a becomes diagonal matrix. <y." whose 

elements correspond to the principal moments of the object. 

The value of the principal lIoments are given by the 

elgenvalues of the original tensor. Hence. the rotational 

matrix QV which Is required to .119n the object with Its 

principal axes can be deter.lned from, 

R _ g* .y-1 

where y represents the objects present position and R 
represents the orientation of the object with respect to 

principal axes. 

0.6 Results 

The initial experimentation performs two functions, 

firstly to verify the operation of the system and secondly, to 

determine the effectIveness of the tuplet for use In the 

recognition of objects. 

0.6.1 Verlflcatlon 

Two experl~ents were used to verify the operation of the 

system. Firstly, a white ball was placed at differing 

positions within the working volume of the system (thiS 

consisted of a ,5 cm cube at the Intersection of the camera's 

viewIng space), and It's tuplets and 1I0ment InvarIants 

calculated. The second determined the tuplets and invarIants 

of a white box rotated, at multiples of 45·, about a fixed 

point. Together, these were used to test Independently the 

system under translatIon and rotation. The results are shown 

In table 1 and 2. 

0.6.2 Classification 

The effectiveness of the tuplet In object recognition was 

lllustrated by comparing a set of chess pieces and set of 

randolly selected assembly parts. The tuplet for each of the 

elements was used to form a three element feature space 

consisting of the volume and the two moment Invariants. The 

chess pieces were of similar shape and had no holes while the 

assembly pieces were Irregular. had holes and reflective 

surfaces. These sets were used to evaluate the ablllty for 

the system to distinguish between Similar objects and 

separately to cope with problems associated with typclal 

workpleces. It was found that the chess and assembly pieces 

could be identified using a s lIIIp le minimum distance 

class I fler. Hovever. It was also noticed at certain 

orientatlons that the holes In the asse~bly parts were hidden 

from the view of all three cameras and so not constructed In 

the volullletrlc representation. This gave rise to a greater 

variation In the posItion of the workpIeces wIthin feature 

space than occurred vI th t~e chess pieces. A I though, they 

stIll remained linearly separable. Similar effects due to 

varIatIons In the Illumination resulted froll bright spots on 

reflective surfaces and shadows. 

a.' Discussion 

In general, the varIation of the feature vectors for a 

'" N 
N 



· ' 

single object were due to three factors firstly. the loss of 

gross features vh Ich were hidden frolll the cameras. second! y. 

the effects of illumination and finally a cOlllblnatlon of the 

effects of quantlsatlon and camera a~es lIIisallgnment. 

Obscured features are a common problem In most vision 

systems and Is often overcome by associating a number of areas 

in feature space ~lth a particular object, one for each blind 

spot. 

The lack of control over the llluminatlon of the object 

usually results In a loss of local detall. This Is 

IllUstrated by the variation In the magnitude of the features 

In the ball and box experiments sho~n In table 1 and 2. and 

the form of the typical throsholdod Imagos sho"n In figure 4. 

Ho~ever. since the method of classification Is based upon an 

analysis of global features, and distortions due to 

IllumInation must be correlated In all three Image If they are 

to appear In the final volumetric representation, the 

technique tends to be tolerant of the effect of minor 

variations. 

During experimentation It was found, not unsurprlslngly, 

that the system is particularly sensitive to misallgnment of 

camera axes and this Is aggravated by the low Image resolution 

used in the initial experiments. The relative displacement 

between the camera planes was measured using the orthogonal 

views of a white ball. The centre of the ball was used as a 

reference between adjacent image planes and the dlsplacements, 

required to align the reference coordinates, offset the 1118g8 

plane coordinates and so compensated for the .Isallgnment. An 

error In this callbratlon overshadowed the variation In the 

feature vectors due to the other effects. Further experiments 

with llages of 256x256 showed an amelioration of this problem 

and Improved the correlation between the measured and 

calculated rotations. 

0.8 Conclusions 

The Initial experiments Illustrate that the system can 

successfully recognise single objects from a given set and at 

present less successfully determine their orientatlons. The 

time taken to perform this process takes between 0.25 and 0.5 

second and Is w1thln Ilost workcell critical times and the 

technique tolerates minor variation In llghtlng conditions. 

However, It Is apparent frolll limited experiments that the 

performance of the systelll can be Improved by increasing the 

resolution of the original Images. For further work Into the 

Identlflc.tlon of multiple object scenes this "Ill be 

essential and will Incur a corresponding Increase In the 

processIng time. 

" N 
N 



0.1 

0.2 

Abstract 

Overview 

Table of Contents 

0.3 Introduction 

0.4 

0.5 

0.6 

previous York 

Methodology 

0.5.1 Generation of the Volumetric Model 

0.5.2 Generating the Centralised Moment Hatrlx 

0.5.3 Principal Axes 

Results 

0.6.1 VerIfication 

0.6.2 Classification 

0.7 DiscussIon 

0.8 

0.9 

Conclusions 

References 

Figure 1. The COding Scheme used to represent a RP. 

Figure 2. The generation process of the volumetric 

representation 

Figure 3. Illustrative examples of volumetric representation's 

generated by the system 

(a) pencil sharpner (b) Hug 

figure 4. Typical thresholded Images froa the box experiment. 

(a) top view (b) side view (c) front view 

Table 1. Feature values for 6 positions of the Ball 

Table 2 Feature values for the fIrst 4 rotatIons of the Box. 

00 
N 
N 



0.9 References 

(lJ Sir Bhanu and Thomas Henderson, "CAGO Based 3-D 

VIsion", Proc. IEEE lnt. Cont. on Robotics and 

Control, March, 1985, p411-417. 

[2] Harr. O. "Representing Visual InformatIon", Computer 

Vision Systems. ',. A.R. Hanson and E.H. Rleselllan, 

AcademiC Press. Orlando, FI. p61-88. 

[3] Chin, R.T., Oyer, C.R., ·Hodel Based Recognition In 

Robot Vision", COlllputing Surveys, Harch 1986, 

pp67-108. 

(4J Potmesll, M. "GeneratIng Models of SolId Objects by 

Hatching 3D Surface Segments", Proc. 8th IJCAI, Aug. 

1983, pl089-1093. 

(5) Kl., Y.C. Aggarwal, J .K. "Rectangular parallelepIped 

codlng' A volumetric representation of three 

dimensional objects". IEEE Journal of Robotics and 

Automation, vol. PAHI-7, no. 6, Nov. 83. 

(6J KltUer, J. and. Illlngworth, J. "Threshold SelectIon 

Based upon a Simple IlIIage Statistic", Computer Vision, 

Graphics and Image Processing, vol.lO, 1985, p125-147. 

(7) SadJadl, F.A. "Three Dimensional Homent 

Invarlatlons", IEEE PAHI-2 No.2, March 1980, pI27-135. 

(B) Kt_, Y.C. and Aggarwal. J.C. "Rectangular Coding tor 

Binary 1l8ges·, Proc. IEEE Cont. COmputer Vision and 

Pattern recognItIon, 19B3, plOB-113. 

'" N 
N 



Volume!(voxels) 62.IJ? J~",J2. 

5054 3.11X10-2 3.5 

5881 3.88X10-2 3.78 

5039 4.80x10-2 3.48 

5095 4.01x10-2 3.01 

Heasured 
Rotation 

O' 

45' 

90' 

135· 

Calculated 
Rotation 

5' 

53' 

93' 

142· 

o 
M 
N 



IV 
W 
I-' 

Volume! (voxel s) 

2369 

2492 

2390 

2394 

2296 

2420 

~2/Jl" Jf/J2" 
3.23 x 10-3 3.9 

2.75 x 10-3 3.6 

2.5 x 10-3 3.6 

3.89 x 10-3 4.0 

2.08 X 10-3 3.3 

2.94 X 10-3 3.6 



Appendix E 

232 



THE DESIGN OF A REAL TIME THREE DIMENSIONAL VISION SYSTEM FOR 
OBJECT IDENTIFICATION 

Ms ]anet Edwards 
Oept of Computer Studies 

ABSTRACT 

and Mr lan SiIlitoe 
Oept of Electronic and Electrical Engineering 

University of Technology 
Loughborough 

LEII 3TU 

The paper describes the design and analysis of a transputer based application, written in 
Occam-2 and implemented on a network of transputers. The system generates volumetric 
representations of industrial objects in real time from a set of multiple views and forms a 
testbed for the investigation of various identification techniques to be used within an 
experimental industrial robotic workcell. 

The paper outlines the algorithm, its implementation and the efficacy of various design 
techniques used to increase the response of the system. It also makes recommendations for 
further work and useful tools to assist in writing efficient Qccam code more effectively. 

!. INTRODUCTION TO THE POMAIN 

Three dimensional representations of work pieces are an essential part of many robotic 
applications and boundary representations are often used with robotic geometric modellers. 
However, when using three dimensional representations for model based identification of 
objects from camera images, it is more appropriate to use volume representations wherever 
possible. Such representations vastly reduce the complexity of determining the inverse of 
the one to many transform associated with 20 representation of a 30 scene since they are 
view-independent [1]. 

Rectangular parallelepiped (RP) coding is a form of volumetric representation. It has a 
single primitive, the rectangular parallelepiped (x.y.z;w,h,d), which can be represented as 
in figure I. 

I 

(H,y,Z) '---.-1 ___ --1 

h 
/ 

I 

H 

W 
y 

(H,y,z;w,h,d) 
Figure 1 The coded rectangular parallelepiped 

It has been shown that RP coding is more efficient in terms of storage requirements and 
execution time required for its generation than present similar volumetric representations [1]. 
lt provides simple and efficient intersection and merging operators and can readily be 
inverted to produce a representation of the unoccupied space about the object {2]. These 
characteristics make RP coding an especiaUy attractive candidate for spatial representation 
in robotic applications and in object identification [3]. 

However, even with the intrinsic simplicity of RP representation, sequential implementations 
do not run fast enough for use in an industrial workceU. Hence, a modified version of the 
original sequential algorithm [4] was implemented on a dedicated network of transputers in 
order to achieve the necessary response. 



2 ClITUNE OF THE ALGORITHM 

The modified version of the original algorithm contains extra preprocessing stages (linear and 
non-linear filtering) and detailed changes to the individual stages, however, the necessary 
stages are outlined below, in steps (a) to (e) and summarised diagrammatically in figure 2. 

J~~~ 
front Y 

Q~~ 
side Y 

Y 

IMRGES SWEPT UOLUMES INTERSECTION 

Figure 2 An overview of the method 

a) Thresholding 
The three grey scale images were thresholded to produce black and white 
images, using a variable thresholder based upon the simple image statistic 
technique (5). 

b) Run Length Coding 

c) 

For each horizontal line of each image the start and run length of all the black 
segments were found. 

Two Dimensional Rectangular Coding 
From the run length codes of adjacent lines rectangles of maximum area were 
grown to produce a 20 rectangular coding of each image. Figure 3 shows the 
method by which rectangles are grown and figure 4 shows a typical result of 
this process. 

CONDITIONS 
fOR 
GROWTH 

RESULTING 
GROWTH 

(0,0) 

" 1 

g//M MW. 
t t 

M~ 
line n 
line n + 1 

t GROWTH 

~- Grown 
reetannle 

Figure 3 The conditions for the growth of rectangles 

w - H yz whd 
I 1.(220j 1 50 ) 
I 

2.( 4 2 Dj 2 10 ) , : 3 
I 3.(330j530 ) L __ 

I 4.( 36 Dj 2 '0 ) 

5.(76 Dj 1 30 ) 

6.(850j , 30 ) 

Figure 4 The result of two dimensional RP growth 



d) Sweeping 
3D RPs were generated from each rectangle by sweeping the 20 RPs along 
their respective viewing directions. 

e) Intersection and Merging 
The intersection of the 3 sets of 3D RPs produced an intermediate set of 3D 
RPs. This process was completed in two stages; initially the top and front 
views were intersected and then each result of this intersection was then 
intersected with the side view (see figure 5). As this process can produce 
pairs of RPs with a common face, this intermediate set was then checked to 
see whether any of the parallelepipeds could be merged and so remove 
redundancy from the final representation. 

H 

Figure 5 Intersection of swept volumes resulting in RP, with a common face 

3.1MPLEMENTATlON 

The final subdivision of the algorithm was made in such a way that it exhibited both geometric and 
algorithmic parallelism. The same initial operations needed to be made on the three independent 
data structures (Le. the images) and so they could be implemented in parallel. These stages 
constituted the processes up to and inCluding the generation of the 20 RPs. In so doing this 
exploited the application's inherent geometric parallelism. The latter stages of the method were more 
suitably partitioned using algorithmic parallelism. Figure 6 shows how the whole system was 
partitioned. 

lOP 

SIDE 
IMAGE 

lhretholded 

Figure 6 The overall partitioning of the system 

The detailed partition and mapping of the processes was undertaken as a resuh of the analysis of the 
initial process timings, see figure 7a. An idle time monitor. (obtained from the transputer centre 
at Soulhampton) producod much of the informalion which idenlifiod the botllenecks wilhin Ihe 
system and as a result a number of techniques were investigated to reduce their effects. ~ 

These techniques included:-

a) 
b) 

c) 

4. RESULTS 

Buffering between the algorithmically decomposed stages. 
Prioritisation of all processes which use links so that processors are not forced to wait 
for data. 
The transfer of large data packets over the links. 

The results and timings of the system were based on the use of 128* 128 images of a desk pencil 
sharpener, a cup and a hole punch of similar complexity to those found in the original paper [4]. 
which describes the sequential method. Figure 8 shows the reconstructed representations of the 
pencil sharpener and the cup from the generated RPs. 

The execution profiles are shown in figure 7 and illustrate the effect of the changes which were 
made to increase the performance. These are augmented by a comparison with a single transputer 
implementation and the final transputer network, the results of which are summarised in Table 1. 

Note 
As the idle time monitor had to be the only process to be run at a high priority it was not possible 
to use it when communication between the transputers was also at a high priority. Hence the 
diagram shown in figure 7b contains no figures for the oercenta2e utilisation. 

o 



Similar comparisons are shown in Table 2 but in this case they illustrate the effects of the use of 
on-chip memory. Table 3 shows the differences in execution times when using and not using the 
PRI PAR construct to overlap communication and computation. All timings are in seconds and 
where efficiency is said to be. 

Efficiency = crime taken on one transputerl 
(Time taken on n transputers )*n 

'lOO 

It was found that there was only a slight difference when using link transfers of a row or a complete 
image at a time and these were 34 % and 33 % of the total time taken to send a complete image a 
pixel at a time. 

11 

T2 

Tl 

1-0 

TI 

12 

Tl 

1-0 

6raw20 hurlle llId nu IlIerlledllle" IP'I h 12 

Brr etc, hI ht.fn.n rUmlOf! umlltk •• lIS 

rOlll2 
hUlllt n .. 13D If'I II~ lue 11 Htrll I. n 

8P', etc, hree.tlll .lllnIlOl' '1\ 

He1it IP'. 

8r'1 etc. 1u41111 hlml1tt lUUIlIIoI' U\ Send 

oul 

figure 71 [1I!ttltioa profile before eng modirlcDliol'l$ 

'row 2D 
Cmllle III lud IIIIUlIIl'lll, 51 VI 1012 

RP', etc, ht fill fIlII n 

5ucnle rillol3D"''I uf len~ tD Hugt un , 
IP'rett. '" M 

MilieU'. 
N 

lP's ett. 1nU.tl Send 
oul 

ligun 7b [lIecotion profile efter modificationt 

Note: TIle diagrams arc dnlwn to the same time scale 

Figure 7 Execution Profiles 



Pencil Cup 
Sharpener 

One Transputer 0.B1 sec 0.10 sec:: 
3 Transputers 0.47 sec 0.25 sec:: 
UOclency 631. 54" 

Table 1 Where on·chip memory was used. 

Pencil CuP 
Sharpener 

One Transputer 1.21 sec 0.56 sec:: 
3 Trenspulers 0.1S sec 0.36 sec 
Efficiency 54". 52" 

Table 2 Where no on·chip memory was used. 

Pencil Cup 
Sharpener 

3 Trcnsputers PRI PAR 0.41 set 0.25 set 
3 Transputers 1.92 sec 1.36 sec 

Hole Pu nth 

0.61 se 
0.33 se 
61" 

t 

t 

Hole Pu nth 

0.86 se 
0.s2 se 
SS" 

t 
t 

Hole Pu nth 

0.33 se 
1.26 se 

t 
t 

Table 3 A comparison of the use orthe PRI PAR construct. 

5 DISCUSSION 

5. 1. Buffering 

The results shown in figure 7a illustrate the response of the system with no buffering. It was found 
not balanced. 
t images, was 

ocessor or vice 
e Tl processor 
this processor 

from these results that the algorithmic decomposition stages of the application were 
In particular, processor Tl, which determined the intersection of the top and the fron 
only used for 11 % of the time available. In order to avoid the links waiting on the pr 
versa, link communication needs to be decoupJed from computation. In the case of th 
it was necessary to provide a buffer which would contain enough RPs to ensure that 
never had to wait, while communication of an intermediate RP took place. 

In the case of the other processors each process was embedded between a pair of bu ffers. 
Experiments were performed to vary the size of these buffers and it was found tha t the optimum 

he response of performance was obtained when each buffer would hold one RP. Figure 7b shows t 
the system after,addition of the buffers. 

5.2. Overlapping communication and computation 

Once buffering has been introduced between processes running on different processors it was 
necessary to use a PRI PAR construct which gave priority to the communication. This ensures that 
whenever communication is needed it takes place directly and so the data can be sent immediately. 
If a PRI PAR construct is not used, the application time is increased by a factor of four, so in 
distributed systems it is essential that the correct prioritisation is used for the processes which 
communicate via links. 

5.3. Link transfers 

To minimise the time spent in transferring the initial data down a link, experiments were undertaken 
using various sized packets. A complete image, a row and a pixeJ were the sizes chosen. The 
figures show that it is slightly quicker to send the complete image down a link in onc transfer than 
a row at a time. 

5.4. Compiler options 

Due to the limited amount of onMchip memory (in this case the transputer used was a T414 which 
has 2K bytes) the performance of the system is dramatically affected by which sections of data or 
code reside in this faster memory. In the version of the compiler used an option could be selected 
to use vector space. The compiler places what is to be onMchip in the order M code, scalars and 
vectors. So the programmer can use the option and then by trial and error put certain variables 
offMchip. This, however, is time consuming may not provide enough control to design a system 
which gives optimum performance. A better solution is initially to use only off~chip memory and~ 
then the difference in speed between two implementations is due to the algorithm and not the resuitN 
of the code or data moving onM or off--chip as the program is altered. Then the programmer can 
selectively place data or code onMchip and see how performance is affected. By using this method 
the effects on performance of the interMrelationship between the algorithmic changes and code or data 
movement can be avoided. 

6 CONCLUSION 

A cost effective multiMtransputer system has been implemented which converts three orthogonal 
images of an object into a rectangular parallelepiped volumetric representation of the object. The 
system has execution times which are very much shoner than those associated with the simplest 
manipulator movements used in typical assembly operations and so provides a practical testbed for 
the evaluation of identification techniques which would be suitable for industrial applications. 

The application highlights a number of difficulties associated with parallel implementations which 
are required to process data in real time. A characteristic of the application is that each element of 
the data through the pipeline of the system requires different and unpredictable amounts of 
computational power and so make the exact balancing of the pipeline difficult. Since this was the 
most gross defect the use of buffers and the PRI PAR construct was the most effective means to 
reduce the delay associated with the synchronisation between processes running on different 
transputers. 

Future work will initially involve the use of 256 by 256 pixei images, which are a more realistic size 



for a practical application, and will then concentrate on connecting the frame grabbers directly to 
the transputer system. This will also allow the movement of the convolution processes, required in 
the preprocessing of the image, to special purpose hardware and so reduce the overall processing 
time further. 

As the idle time monitor used does not show exactly where the time is spent in each process and 
cannot be used at all when there is a high priority process running, more work needs to be done to 
design a tool to assist the programmer to write efficient code. Similarly the experiments performed 
on buffer size were undertaken by trial and error and were time consuming. The facilities which 
would be usefully included in a future tool would allow the programmer:· 

a) To identify well used pieces of code (ie how the time is actually spent on each processor) and 
how much time is spent waiting for data. The latter would help with )he optimisation of 
buffer requirements. 

b) To alter the monitored process at run time. 
c) To identify the data and code which are on·chip. 
d) To identify the number of times a particular variable is accessed. This would make it easier 

to decide whether it should be placed on- or off-chip. 

REFERENCES 

[I) CHIN, R T and DYER, C R 'Model-based Recognition in Robotic Vision' Computing 
Surveys Vol 18 No I (March 1986) 

[2] SILLITOE, 1 'A Gross Motion Planner for Robot Path Generation' VIth International 
Conference on Systems Engineering (1988) pp 499-504 

[3) SILLlTOE, I and EDWARDS, J 'A Multiview Robotic System for Efficient Object 
Recognition' International Conference on System Science, Wroclaw Poland (September 1989) 

[4) KIM, Y C and AGGARWAL, J C 'Rectangular Parallelepiped Coding: A Volumetric 
Representation of Three· Dimensional Objects'lEEE Journal of Robotics and Automation Vol 
RA-2 No 3 (September 1986) 

[5) KITTLER, J and ILLINGWORTH, J 'Threshold selection Based on a Simple Image 
Statistic' Computer Vision, Graphics and Image Processing Vol 30 (1985) pp 125-147 

CD ,., 
N 



Appendix F 

239 



- 499 -

A GROSS MOTION PLANNER FOR ROBOT PATH GENERATION 

Ian P. w. Sillitoe 

Department of Electronic and Electrical Engineering. 
Loughborough University of Technology 

ABSTRACT 

An i~portant co~ponent of automatic pl~nning for robot asse~ly oper~
tions is the gross -otion planner. In thlS paper, an on-line gross ~tlon 
planner is proposed for a restricted class of proble~s. which are applic
able to asse~ly operations. The approach is iMple.ented using a revolute 
-anipulator. executing straight line paths. The relative speed of the 
algorithm .akes it a desirable candidate for use in on-line error correc
tion strategies. 

INTRODUCTION 

Hotion with reorientation of the workpiece can be split into four 
phases, initial gross ~tion, reorientation of the workpiece and ~h~ final 
gross motion preceeding the fine .otion control (1). Given sufflclent 
open vol~ for aanouverability, reorientation .ay be accomplished with a 
special purpose planner (21. However, due to the non-de=posability of 
the problelll, algorithms that detendne general collision-free paths for 
payload and .anipulator in highly cluttered workspaces, are often impract
ical. This is owing to their iJlplelllCntation caRplexity and best mown 
ti.e bounds (3). Previous work (1-2, 4-9) has considered off-line solu
tions to the probl_. whilst at the Sallle time it is noted that although 
these provide -goo4- paths, they have not been efficient enough for inclu
sion in on-line techniques, such as would be required for error correction 
strategies. 

However. if we consider the asselllbly workcell sub-probleal, practical 
assUalptions can be .. de that allow efficient impleJ:lenta~ion of a 9ross 
motion path planner which produces suitable paths. These include that the 
worJcpiece and gripper be of comparable size and. less &0 shape, that there 
be sufficient volUale above the ~nipulator so as not to It.dt its I114nouver
ability and. that -.anipulations do not take place at the extreIDCs of the 
lIIoI.Ripulators work volume. 

FREE SPACE REPRESENTATION 

The workspace and objects in a workc:ell can be modelled in teras of the 
space occupied by the objects or in teras of the free-space between the •• 
A free-space representation is used here, as it allows direct reasoning 
about the configuration space of the robot. FUrther. knowledge of the 
free-space C4n be used by DOdules concerned with other aspects of on-line 
planning. i:e. deteraining where to place an object on the assembly table. 

However, all free space schemes have the disadvantage, that after each 
\I'IOVe.Emt the free space representation must be updated. So, ideally the 
free-space generation should be efficient and be readily updated frolll sen
sory information. A rectangular parallelpiped code (RP) fulfills both 
these criteria. RP representations can be deterlllined from vision using 
Multiple views (10,111, easily qenerated from geometric modellers and are 
efficiently ~anipulated. The RP code chosen is shown in figure 1. 

- 500 -

y 

~--------~-----, 
(x, 'i,~,) 

An operator, .~~, siMilar to the Sharp(12J. operator used in the deter
~ination of prime implicant sets, is used to efficiently invert the object 
space to produce a free-space. The free space is represented as a set of 
.axi.al overlapping rectangular parallelepipeds. A graphical representa-
tion of the operator is shown in figurr.e~'; ... ____ ,-__ .. 

,~tii ~-al 
rLb~ ~LJ lb:~ 'I I 

fiq.%. 

o -~R« SI"'Ie£ 

~- oelEc.T 

FS • Un 11 .. s where FS is the set of overlapping RP's, 
representing free space. 

Un is the RP representing the workspace 
s is the RP representing the object 

A If' B, performs the function A f\ B i.e. what belongs to A that does 
not exist in B. However. unlike Sharp, tt. operates on continuous vari
ables with & maximum of 3 degrees of freedOlll. 

For a number of objects the FS Is defined to be 

FS • ( (Un.II 51 ) If. s2 ) •••• 

Where S - (sl. s2 ••••• sn1 is the set of all objects within the workspace. 

The path is detemined in two stages, an initial path in two diaensions 
with nOlDinal z coordinates is fOWld, which is then followed by " process 
that modifies the nOlllinal z coordinates of the via points, in such a way 
as to avoid limb_collisions. 

DETERMINATION OF THE INITIAL PATH 

Once the free-space has been determined, the ",aximal RP covering the 
start position, ST, and goal position, G, are found. A search is then 
made through FS via overlapping RP's from ST to G. Only the RP's that 
would allow the passage of the payload are expanded. The payload is 
.adelled as sphere of radius, Vr, this includes both the workpiece and 
gripper. This choice of representation I114kes the predicate for expansion 
efficient, but limits the forms of paths available to those without reori-

o 
'"' N 



- 501 -
entation of the payload. 

The sea~eh is based upon a heuristica11y guided 'best first search. At 
p~esent two equally weighted cost functions a~e used, the distance from 
proposed RP to G, using the mid-points as point volWl\es and the distance 
from the present position to the point volume of the proposed RP. The 
search is similar to an A· search and the path is encoded within the parent 
links of the expanded RP's. However, the cost of testing for previously 
expanded nodes and .odifying their cost fields, as required in the A· 
search. was found to outweight the cost of ~intainin9 mUltiple paths to 
duplicate ncXIes .nd so no such tests are _de in the search procedure. The 
initial via points for the manipulator, are qenerated using the point vol
ume coordinates of the intersecting RP's (figure 31. These then have their 
~ coordinates modified to be min ( ~min+vr, ~min+zmax/2I, This reduces the 
need for unnecessary variations in the z direction as a manipulator .oves 
from RP to RP. 

OptitDisation of the path length was considered and a simple technique 
1mpleme.nted. The technique wu a look-ahead strategy. that ensured the 
payload crossed into the next intersected volume at the optimal point to 
approach the next RP. However, when the cost of the extra ..anipulator 
..ave~nt vas co=pared with the time required to perfora the procedure, it 
_. not considered necessary. Further, sinee the technique is to be 
supplied by·data derived from sensory devices, with which there will be an 
associated uncertainty. the process of optt.isation may not produce a 
better path in practice. It was also noted that a suitable choice of Un, 
when considering Sf and G, produced a similar improvement in path length, 
to that of the optimisation technique. 

MODIFICATION o~ THE Z COORDINATES 

The procedure stated so far, would provide a suitable path for a car
tesian manipulator without further adaption. However, when applied to a 
revolute manipulator the form of ~nipulator introduces the possibility of 
collisions with forearm. as it stretches over an obstacle (fiqure 41. 
Hence. the inverse kine~tics must be calculated in order to determine the 
manipulator lilllb positions and so modify the path, 

- 502 -

., 
-~-

The Manipulator used for the experiements was a Puma 560. which has 6 
degrees of freedom. In order to simplify the inverse kine~tic calcula-
tions joint 4, the upper wrist of the manipulator, vas fixed. This reduced 
the .aRipulator to 4 deqrees of freedom, which allows for a less complex . 
geometric forlll. of soiution to the inverse kinematicsl1l, figure 5. This 
is simpler to calculate. while the 4 degrees of freedom still allows enough 
flexibility to complete assembly operationslll). 

TO avoid ·side swiping" and "stretchinq" collisions. a simple heuristic 
was applied to modify the z-coordinates of the via-points. This involved 
ensuring that along any path segment. the via points were chosen so that 
lowest point on the forearm of the Puma was always above the footprint of 
the manipulator. The footprint was as those RP's. whose x and y dimensions 
were determined by the maximal X and Y coordinates which were swept out 
along the path segment, fiqure 6, and whose z coordinate was equal to the 
~imum height of the obstacle contained within this x-y rectangle. 



- 503 -

,, 
I 

The footprint is determined in two stages, firstly the extreme X,Y 
coordinates, using the inverse kinematics, were calculated fr01ll the geQlIIe
try of the Manipulator. The z coordinates are set to the ~~ value 
of Z. Secondly. these initial forms of footprint's RP's are tested for 
intersection with the object RP's. The intersections are used to deter
~ne the =ax~~ height of objects within the path segment and hence the 
height of the individual footprints. 

EXPERIMENTAL RESULTS 

A n~r of paths were planned, based upon those actions determined in 
1111. It was found that the generation of free space took between .2 and 
1.5 seconds and the determination of the via points took between 2 and 5 
seconds, depending on the complexity of the path and nu.ber of via points. 
The planner wa~ written in Forth running on a IBM AT clone. The code has 
not been optimised and it is expected a factor of I.provement, of at least 
two could be III&de on the times, after optimisation. Hence, the planninq 
times were colllparable with the time taken for the .a.nipulator to execute 
the path. This would make it possible to pipeline the execution of a 
movement and planninq of the next lDOVement and 80 subsume the cost of the 
planning. 

CONCLUSION 

A new technique for on-line collision free path qeneration for assembly 
operations has demonstrated.. It is efficient and it'8 properties ulce it 
a candidate as a cOlllponent part of an on-line adaptive path generator. 
FUrther work is required in order that such a technique can cope with 
paths requiring reorientation. 

- 504 -

REFERENCES 

(11 BROOKS, R. A. 
·Planning collision-free motions fo~ pick and place operations~ 
The International Journal of Robotics Resea~ch, vOl.2, no.4, 83. 

(21 LOZANQ-PEREZ, T. 
"Automatic planning of .anipulator transfer movements" 
IEEETrans. on Sys •• Han, Cyber., vol.SHe-H, no. la, 81. 

(3) SCHWARTZ, J. T., SHARIR, H. 
-On the piano movers problea 11 ; General properties for computing 
topological properties of real algebraic ~nifolds" 
Rept. 41, New York university Dept. of Computer Science. 

141 DAVIS, R. H., CAMACHO, M. 

, (51 

"The application of logic programming to the generation of 
paths for robots" Robotica, vol. 2, 83. 

GRECHANOVSKY, E., PINSKU, I. 
·An algorit~ for moving a computer-controlled manipulator 
while avoiding objects", IJCAI 83, p806-8l3. 

16J KUNTZ£, H.8., SCHILL, W. 
"Methods for collision avoidance in computer-controlled 
industrial robots·, ISIR 85, p519-529. 

17 J LOZANo-P£F.£Z, T. 
"Spatial-planning:A configuration space approach" 
IEEE Trans. on Computing, C-32, p10a-120, 83. 

161 UOUPA# S. H. 
-Collision ~etection and avoi~ance in computer-controlle~ 
manipulators", Proc. 5th IJCAI, p737-746. 

(91 WONG, E.K., FU# K. S. 
"A hierachical orthognal space approach to three-dimensional 
path plannin9" 
IEEE Journal of Robotics and Automation, vol. RA-2, no.l, 66. 

(lO) KlK .. Y. C •• ACCARWAL, J. X. 
-Rectangular parallelepiped coding I A volumetric representation 
of three dimensional objecta-, IEEE Journal of Robotics and 
Automation, vol RA-2, no.3, 5ept 86. 

Ull HONG, T., SCHIENER, K. O. 
·Describing a robot's workspace using a 8equence of views fro~ 
a moving camera", IEEE PAHI; Vol. PAHI-7. no.6, Nav 83. 

(12) ROTH, J. P. 
-Algebraic toploqical methods for the syntheseis of switching 
systems-, INT. Trans. America Maths Soc., July p301-6. 56. 

113) NEVINS, J., WHITNEY, D. 
·COmputer-controlled assembly·, Scientific American, p63-74, 23B. 7B. 

N 

'" N 



, , 

Selected Glossary of Terms 

Backtracking 
This occurs in most classical search techniques. It requires the algorithm to restore 
the previous context of the search procedure, when encountering a failed or unwanted 
node in the search path. 

Conflict Resolution 
This is an important issue in those systems constructed from Condition-Action rules. 
During each cycle more that predicate may be true and so there is a need to select 
between the possible actions, this process is known as Conflict Resolution. 

Extensions 
Predicates are defined over a set of values known as the universe of discourse W. If 
we only concerned with unary predicates (Le. predicates with a single argument), 
then we can represent each predicate by the set of values of its arguments for which 
it is true. This is called the extension of the predicate and the set will be a subset of 
W. 

Meta-Planning 
A technique for reasoning not just about the problem being solved but also about the 
planning process itself. A detailed description of the technique is found in "Planning 
and Meta-Planning (MOLOGEN part2) , Artificial Intelligence, vo1.16, no.2, p141-
169, 81. 

Non-Linear Plan 
This is the plan of a problem which cannot be decomposed into a linear sequence of 
independent sub-plans. 

NP-Cornplete 
Used to describe an algorithm which cannot be completed in polynomial time. In 
other words the expression describing its time complexity is exponential in form. 

Pattern Directed Condition-Action Rules 
These take the form of 

IF < Circumstances> Then < do action or conclude something> 

where the predicate is a pattern matching function. The exact form varies from 
system to system. A survey of the different forms and methods of operation is found 
in Pattern Directed Inference Systems, Academic Press, ISBN 0-12-7377550,71. 




