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Abstract 

Co-encapsulation of drugs in the same carrier, as well as the development of microencapsulation processes 

for biomolecules using mild operating conditions, and the production of particles with tailored size and 

uniformity are major challenges for encapsulation technologies. In the present work, a suitable method 

consisting of the combination of membrane emulsification with solvent diffusion is reported for the 

production of multi-core matrix particles with tailored size and potential application in multi-therapies. In the 

emulsification step, the production of a W/O/W emulsion was carried out using a batch Dispersion Cell for 

formulation testing and subsequently a continuous azimuthally oscillating membrane emulsification system 

for the scaling-up of the process to higher capacities. In both cases precise and gentle control of droplet size 

and uniformity of the W/O/W emulsion was achieved, preserving the encapsulation of the drug model within 

the droplet. Multi-core matrix particles were produced in a post emulsification step using solvent diffusion. 

The compartmentalized structure of the multicore-matrix particle combined with the different chemical 

properties of polycaprolactone (matrix material) and fish gelatin (core material) was tested for the 

simultaneous encapsulation of hydrophilic (copper ions) and hydrophobic (α-tocopherol) test components. 
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The best operating conditions for the solidification of the particles to achieve the highest encapsulation 

efficiency of copper ions and α-tocopherol of 99 (±4)% and 93 (±6)% respectively were found. The multi-

core matrix particle produced in this work demonstrates good potential as a co-loaded delivery system.  
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Highlights 

• Novel azimuthally oscillating membrane emulsification system has been used for the production of 

highly uniform W1/O/W2 emulsions  

• Emulsion dilution promoted the solvent removal allowing the polymer solidification  

•  Uniform solid multi-core poly-caprolactone particles were produced 

•  Particle morphology and encapsulation efficiency were controlled by the solidification step  

• Encapsulation efficiency of both copper ions  and α-tocopherol was achieved  
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Introduction 

Microencapsulation is defined as a process to entrap material in a coating which isolates and protects the 

material from the external environment. The design of appropriate micro and nanostructured encapsulation 

systems, such as W/O/W emulsions, spheres, beads and capsules, is of great interest in the pharmaceutical 

field for 1) the improvement of drug bioavailability, 2) protection of drug from environmental conditions, 3) 

controlled release, 4) reduction of side effects and frequency of administration [1]. Microcapsules (particle 

diameter in the range between 3 μm and 800 μm) consist of an inner core and a shell, or a matrix that covers 

and protects the core. On the basis of particle morphology microcapsules are classified as: i) reservoir type 

(core-shell capsule) which is composed of a single core surrounded by a continuous shell; ii) matrix type 

(poly- or multiple-core particle) which is characterized by the presence of several reservoir chambers 

dispersed in a polymer matrix [2].  

In this study, the combination of two biopolymers poly-caprolactone (PCL) and fish gelatin (FG), both FDA 

approved materials, with different chemical properties is proposed for the construction of novel multicore-

matrix particles for drug encapsulation. The polymer matrix is composed of poly-caprolactone (PCL) which 

is hydrophobic biodegradable polyester suitable for the encapsulation of poorly water soluble compounds. 

PCL is an advantageous material for drug encapsulation owing to its high permeability to small drug 

molecules and its negligible tendency to generate an acidic environment during the degradation process as 

compared to polylactids and polyglicolids, a problem that contributes to the generation of inflammatory 

reactions [3]. The multicore in the particle is composed of cold water fish gelatin (FG), which is a water 

soluble natural polymer widely used in various industries for the capsule manufacture. In this study, FG was 

used alternatively as core material owing to its solubility at ambient temperature which makes it suitable for 

the encapsulation of heat sensitive compounds. Moreover, it is also a good alternative to bovine or pig 

gelatin for oral formulations as it is acceptable to ethnic groups that do not consume pig or cow products [4].  

The compartmentalized structure of the multicore-matrix particle combined with the different chemical 

properties of PCL and FG was investigated to co-encapsulate compounds with different water solubility in 

the same carrier. This is potentiality of great interest for application in multi-therapies as co-administration 

of two or more drugs has been demonstrated to improve the therapeutic efficiency in clinical practice for the 
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treatment of complex diseases such as cancer, diabetes, immune-inflammatory disorders, bacterial and viral 

infections [5]. Co-encapsulation of multiple drugs has several potential advantages compared with single 

drug encapsulation, including i) synergistic effects, ii) suppressed drug resistance, and iii) the ability to tune 

the dosage of various drugs to the level of a single carrier [6]. Some examples of carriers at micro- and nano-

scale, such as liposomes, micelles, polymer-drug conjugates and core-shell capsules have been developed for 

co-delivery of multiple drugs [7–10]. Nevertheless, to date, combining drugs into a single carrier is still a 

challenge for encapsulation technologies. 

Various methodologies classified as physical: fluidized bed-coating; spray drying and spray cooling, or 

chemical: coacervation; interfacial polymerization and solvent diffusion/evaporation, are available for the 

encapsulation of core material [11]. Core-shell capsules are usually obtained from W/O or O/W emulsions by 

coacervation or interfacial polymerization [12, 13]. W/O/W emulsions are usually required for the co-

encapsulation of hydrophilic compounds within a hydrophobic polymer matrix, such as biodegradable 

polyesters, and multi-core matrix particles are obtained after removal of the solvent either by evaporation, or 

extraction [14, 15].  

The choice of the emulsification process is a key issue in the encapsulation as it influences directly the final 

size, and size distribution, of the solid particles. Some important challenges are required for the advancement 

of microencapsulation technologies in engineering microcapsules with improved functional and structured 

properties:  

i) achieving precise control of particle size and size distribution in the emulsification step while maintaining 

the incorporation of biomolecules without affecting their activity; the distribution in the body; the interaction 

with living cells as well as the drug release kinetics of the solid particles are greatly influenced by their size 

and uniformity [1], and 

ii) maintaining the performance of a good emulsification step when the process is transferred from the 

laboratory scale to a larger throughput scale [16].  

The commonly encountered emulsification devices such as: high pressure homogenizers, ultrasonication and 

rotor-stator systems, are often not suitable for these requirements. Therefore, modification of the laboratory 

method, or the development of new techniques, is necessary [16]. Membrane emulsification is an extremely 

effective technique to meet these requirements.The formation of highly uniform droplets [17] as well as the 
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low energy density of the process  compared to conventional mechanical methods [18], provides the 

encapsulation of labile molecules in particulate systems with controlled size keeping their quality and 

functionality. The mild conditions of membrane emulsification are especially useful when the 

microencapsulation process involves the preparation of a W/O/W emulsion as an initial liquid phase.This 

kind of emulsion is highly thermodynamically unstable and emulsion breakdown can occur easily in the high 

shear stress conditions. Another additional advantage of membrane emulsification is the easy process scale-

up which can be carried out, keeping the performance demonstrated at the laboratory scale [19]. So far, 

membrane emulsification has been investigated for microencapsulation of water soluble and lipophilic drugs 

within W/O/W emulsions such as: ethanol-oil-water E/O/W; and water-oil-water W/O/W [20,21] or within 

microspheres and capsules produced in most cases by coacervation, interfacial polymerization and solvent 

evaporation [22–25]. 

In the present work, an alternative strategy consisting of the combination of membrane emulsification 

followed by solvent diffusion is investigated for the production of a co-loaded delivery system with potential 

application in multi-therapies. The fast solidification of the polymer, which is correlated with the solvent 

diffusion rate, achieves high encapsulation efficiency of the multi-core matrix particle produced by the 

solidification of the W1/O/W2 emulsion. The emulsion production was initially investigated at a batch scale 

to determine the optimal conditions followed by the process scale using an azimuthal oscillating membrane 

emulsification system. The latter is a recently introduced continuous emulsification system which provides: 

i) achievement of high flux suitable for an industrial setting; ii) produces highly concentrated uniform 

emulsions in a continuous mode and short processing time; and iii) employs low shear conditions in the bulk 

of the product stream to preserve the activity of encapsulated labile molecules. In this study the potential 

benefits for the production of a fragile system, such as W1/O/W2 emulsions, keeping the uniformity of the 

droplets and high throughput, is demonstrated for the first time.  

 

Material and methods 

Chemicals 
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Poly-caprolactone (MW 14 kDa, 16-30% w/v, Sigma-Aldrich, UK) and α-tocopherol (vitamin E, Sigma 

Aldrich, MW 430.71 g mol-1, 5000 ppm) were dissolved in dichloromethane (DCM, Sigma-Aldrich, UK) 

and were used as organic phase (O) for the preparation of O/W2 and W1/O/W2 emulsion. Cold water-fish 

gelatin (MW 60 kDa, 5-20% wt/v) was used as stabilizer in the inner (W1) aqueous phase containing Cu(II) 

ions (MW 65 g/mol, 2000 ppm) in the form of copper sulphate (Fisher Scientific, UK). Ethanol (Sigma-

Aldrich, UK) was used for the extraction of α-tocopherol from the solid particles after the dissolution of the 

particles in DCM as previously reported by Byun et. al [26]. Poly-vinyl alcohol (PVA, MW 13-23 kDa, 1% 

wt/v) was used as emulsifier for the preparation of O/W2 and W1/O/W2 emulsion and the external aqueous 

phase was previously saturated with DCM to avoid the diffusion of the solvent during the emulsification 

process. Sodium dodecyl sulphate (SDS, MW 288 Da, 2% wt/v, Sigma-Aldrich, UK) or PVA (1 % wt/v) 

were used as stabilizers in the aqueous phase during the solvent diffusion process. All the aqueous solutions 

were prepared using ultrapure water.  

Experiments carried out and operating conditions 

The preparation of W1/O/W2 emulsion was carried out in two steps. The primary W1/O emulsion was 

prepared using a mechanical homogenizer (Ultra-Turrax®, model T10, IKA Works, USA) for 3 minutes at 

30000 rpm in order to obtain small and highly dispersed water droplets followed by injection through the 

porous membrane to produce a W1/O/W2 emulsion. The chemical composition of the double emulsion is 

reported in Figure 1. W1/O/W2 emulsion-solvent diffusion process was used for the production of the solid 

multi-core matrix. W1/O/W2 emulsion produced by membrane emulsification was mixed with higher volume 

of water (Vsd) compared with the theoretical volume (Vth) containing the stabilizer (2% wt/v SDS or 1% wt/v 

PVA). The latter is the volume of water required to ensure the complete diffusion (removal) of solvent 

contained within the dispersed phase (W1/O/W2 emulsion). Considering the percentage of the dispersed 

phase emulsified (6% v/v), the percentage of the inner aqueous phase (W1, 10% v/v) and the polymer 

concentration (30% w/v), DCM volume was 4.18 ml and the theoretical volume of water (Vth) was 278 ml. 

The latter was calculated from the solubility of dichloromethane in water (2%, w/v) as reported by Imbrogno 

A. et al. [27]. The produced solid particles were recovered by filtration washed with deionized water and 

freeze dried. 
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In order to identify the appropriate process parameters (injection flux of the dispersed phase and shear stress) 

during membrane emulsification, preliminary experiments were carried out using a Dispersion Cell for the 

preparation of O/W2 emulsion. The best operating conditions to produce the most uniform W1/O/W2 

emulsions  are reported in Figure 1. The influence of process parameters on droplet size and size distribution 

were evaluated for the scaling-up of the process using the azimuthally oscillating membrane emulsification 

system.  

Inorganic salts have been previously used as a marker to monitor encapsulation and release [28,29] and in 

this work copper ions (MW=63.5 g mol-1) were used as the hydrophilic marker to mimic a small hydrophilic 

drug molecule. Atomic Adsorption Septroscopy (AAS, SpectrAA 55B, Varian, UK, operating at wavelength 

of 324.8 nm) was used to accurately measure the copper concentrations. α-tocopherol (a fat-soluble vitamin, 

with negligible water solubility of 0.021 g L-1) [30] was used as hydrophobic drug model. 

Membrane emulsification equipment 

A flat sheet micro-sieve stainless steel membrane with 10 µm circular pore size of an emulsification active 

area of 1.85 cm2 and a surface porosity of 0.19% was used for the preparation of the emulsion using the 

Dispersion Cell. An illustration of the system is given in Figure 1A. The membrane was fitted under the 

paddle stirrer and the rotation speed of the stirrer is regulated by selecting the appropriate voltage in the 

range from 420 to 1550 rpm corresponding to a shear stress in the range from 2.2 to 11 Pa. The dispersed 

phase was injected through the membrane using a syringe pump (ALADDIN2-220, World Precision 

Instruments, UK) and the flow rate was varied from 0.7 ml min-1 to 2.5 ml min-1, corresponding to a 

dispersed phase flux between 216 and 810 L h-1 m-2. A tubular micro-sieve stainless steel membrane with a 

pore size of 15 µm distributed over a membrane area of 52 cm2 and with a surface porosity of 0.44 % was 

used for the preparation of the emulsions by an azimuthally oscillating membrane emulsification system. A 

schematic representation of this system is illustrated in Figure 1B. The shear stress is generated by twisting 

the membrane rather than by flowing the continuous phase, since the cross-flow velocity is negligible. The 

oscillation of the membrane is generated by a servo motor fitted to the membrane module. The amplitude 

and frequency of the oscillation can be regulated using a digital control panel. The dispersed phase was 

injected with the syringe pump radially through the porous membrane wall and droplets are formed by 
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moving into the continuous phase. The flow rate of the pump was varied between 2 and 18.3 ml min-1 

corresponding to a dispersed phase flux between 23 and 216 L h-1 m-2. The continuous phase was pumped 

using a peristaltic pump (Watson-Marlow-Bredel Pump 101U/R, UK) upwards into the annulus between the 

stationary vessel and the oscillating membrane and the emulsion was collected into a tank from the top of the 

vessel. The amplitude varied between 1.5 and 3.5 mm while the frequency of oscillation was between 15 and 

50 Hz, corresponding to shear stress in a range of 1 Pa to 6 Pa (Equation 3). The Dispersion Cell, 

azimuthally oscillating membrane emulsification device and the membranes were supplied by Micropore 

Technologies Ltd. (Derby, UK). 

 

Modelling of the droplet size 

The produced droplets diameter (x) can be predicted from a force balance and it was calculated as reported in 

the Equation 1 [31,32]: 

τ

γτττ

3

481218 2224422
ppp rrr

x
++

=  (1) 

where rp [m] is the pore radius, τ [Pa] is the shear stress and γ [N m-1] is the interfacial tension. In the 

Dispersion Cell the shear stress (τ) at the surface of the membrane depends on the angular velocity (ω) [s-1] 

of the stirrer and it was calculated using the Equation 2: 

δ
ωµτ 1825.0µax τransc r=  (2) 

where μc [Pa s] is the continuous phase viscosity, rtrans is the transitional radius and δ is the boundary layer 

thickness cc ωρµδ /= . 

In the case of the oscillating membrane emulsification system, the oscillation of the membrane was applied 

in a sinusoidal way, therefore the maximum shear (τmax)[Pa] was calculated using the Equation 3 [33]: 

5.05.1
max )()(2 ccfa ρmπτ =   (3) 

where ρc [kg m-3] the continuous phase density, f [s-1] is the frequency and a [m] is the amplitude of the 

membrane oscillation. 
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Particle size analysis and morphology 

Solid particle size and size distribution were measured using laser diffraction (Mastersizer 2000, Malvern 

Instruments, UK). To confirm the Mastersizer measurements images were taken using a Leitz Ergolux 

optical microscope with an attached Pulnix TM-6CN monochrome camera. The mean particle size was 

expressed as the volume median diameter D(v, 0.5) and the span value (span = (D (v, 0.9)×D (v, 0.1)) / D (v, 

0.5)) was used to express the degree of uniformity. Three samples were analyzed for each experiment and the 

reported results are the average of three different experiments. The morphology of the particles was observed 

by scanning electron microscopy operated at 2.6 kV (Cambridge Instruments, UK).  

Copper extraction and encapsulation efficiency 

The encapsulation of copper ions (Cu(II)) was investigated immediately after the emulsification process 

(EEWOW) and by an extraction method after particle disruption (EEp).  

According to the previous work of Dragosavac et al. [29], the encapsulation efficiency (EEWOW) of copper, 

Cu(II), into the W1/O/W2 emulsion was calculated using Equation 4: 
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where Ci is the initial Cu(II) concentration in the inner water phase, ФWO is the volume fraction of the inner 

aqueous phase emulsified in the primary W/O emulsion, ФWOW is the volume fraction of the primary W/O 

emulsion emulsified in the W/O/W emulsion and CO is the Cu(II) concentration in the outer water phase at t 

= 0 measured by AAS. In this study Ci was 2000 ppm, Фwo was changed in the range between 0.1 and 0.3 and 

ФWOW was 0.06. The maximum concentration of Cu(II) in the W1/O/W2 emulsion corresponding to infinitely 

long release time (C∞) was calculated from the Equation 4 as CO value for EEWOW=0 and it was in the range 

between 13 and 38 ppm. 

The encapsulation efficiency of the solidified particles was determined by copper extraction after particle 

disruption. In this case, 100 mg of powder were dissolved in 4 ml of DCM, after which 6 ml of water was 

added to the organic phase and the mixture was stirred gently over-night in order to extract the copper ions 



10 
 

into the aqueous phase. The sample was centrifuged at 3000 rpm and the concentration of copper ions in the 

aqueous phase was determined by AAS.  

The encapsulation efficiency of the particles (EEp) was calculated as the ratio between the mass of copper 

measured by AAS to the total mass of copper entrapped into the powder (Equation 5). The latter was 

calculated taking into account the maximum Cu(II) concentration in the W1/O/W2 emulsion immediately 

after the emulsification process (C∞). 

(%)
gaddedIICuofmass

gextractedIICuofmass
EE p 100

)()(

)()(
×=  (5) 

The drug loading (DL) was calculated as the ratio of the drug encapsulated to the total mass of powder: 

(%)
gpowderofmass

gextracteddrugofmass
DL 100

)(

)(
×=  (6) 

The theoretical drug loading was calculated considering the theoretical drug content into the mass of powder. 

α-tocopherol extraction and encapsulation efficiency 

Since α-tocopherol is not soluble in water, the encapsulation efficiency (EEWOW) was assumed to be 100% for 

the W1/O/W2 emulsion and it was measured only for the solidified particles. For the extraction of α-

tocopherol, 60 mg of powder was dissolved in 4 ml of DCM and the extraction of α-tocopherol was 

performed by adding a known volume of ethanol into DCM [26]. The latter was quickly removed by 

evaporation with a consequent precipitation of the PCL. The suspension was centrifuged at 3000 rpm and the 

vitamin content in the supernatant was analyzed by UV/VS spectroscopy (operating at the wavelength of 285 

nm). The encapsulation efficiency (EEp) of α-tocopherol was calculated using the Equation 5 where the mass 

of Cu(II) was substituted with the mass of α-tocopherol. 

 

Results and discussion 

Influence of process parameters on the production of O/W2 emulsion at batch scale 
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 The effect of the injection flux on droplet size and size distribution is reported in Figure 2A using 16% and 

30% of PCL dissolved in DCM. For the constant shear of 8Pa an increase of droplet size from 42 µm to 62 

µm as well as the increase of span from 0.30 to 0.45 was observed when the injection flux was increased 

from 216 to 810 L h-1 m-2. The increase of the dispersed phase flux is correlated with a faster increase of 

droplet growth at the pore level resulting in the formation of larger droplets before the detachment [34].  

Figure 2B reports the effect of shear stress at constant injection flux  (216 L h-1 m-2) on droplet size and size 

distribution. A decrease of droplet size in the range from 112 µm to 40 µm was observed with the increase of 

the shear stress in a range from 2.2 Pa to 11 Pa accompanied with span reduction from 0.38 to 0.30. The 

decrease of droplet size is correlated with an increase of the drag force acting on the droplets which were 

detached from the membrane sooner. This effect is more significant when shear stress lower than 6 Pa was 

applied while the median drop size was virtually independent on the drag force at shear stresses higher than 6 

Pa. The decrease of droplet size is in good accordance with the predicted model even though the 

experimental values were lower than the predicted values of the model. The latter can be affected by the 

empirical determination of the interfacial tension. The Du Noüy ring method was used [35]. The 

measurements were affected by the quick evaporation of DCM at the air/water interface and the experimental 

error of the measurements of the interfacial tension influence the fitting of the predicted droplet size of the 

model to the experimental data. The difference observed in terms of droplet size as a function of PCL 

concentration (Figure 2 A and B) is related to the increase of the interfacial tension from 3.4 ± 0.3 to 4.2 ± 

0.3 mN m-1 as the PCL concentration increased from 16% to 30%. Larger droplets were produced when 30% 

of PCL was used because the higher interfacial tension keeps the droplet adhesion at the edge of the pore 

retarding the detachment. The production of the W1/O/W2 emulsion was carried out using an injection flux of 

216 L h-1 m-2 and a shear stress of 11 Pa as the best uniformity was achieved in these conditions. Droplets 

with a mean size of 41 ± 2 μm and a span of 0.30 ± 0.02 were obtained.  

Influence of the chemical composition on the stability of the W1/O/W2 emulsion 

The composition of the W/O/W emulsion is of great importance since the type and concentration of 

surfactant, as well as the nature of the oil phase, affects the stability of the W1/O/W2 emulsion. PCL is not a 

good emulsifier as demonstrated by the high value of interfacial tension (20 ± 3 mN/m) measured at the 
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water/organic phase interface. The use of PCL without any other emulsifier leads to the quick separation of 

the two phases [36]. Cold water fish gelatin was added in the aqueous phase in order to retard the phase 

separation due to its surface active properties and viscosity. The addition of FG in the aqueous phase resulted 

in the reduction of the interfacial tension by almost 70% independent of the polymer concentration. The 

latter is due to the presence of hydrophobic chains responsible for interfacial adsorption at the water/oil 

interface. The increase of fish gelatin concentration in a range of 5% to 20% did not further reduce the 

interfacial tension which appeared to reach an equilibrium value at 6 (±0.3 mN/m). The same trend was 

observed by Surh et al. [37]. The increase of FG concentration did not increase the encapsulation efficiency 

of hydrophilic molecule or stability of inner water droplets but reduced the particle sphericity therefore in 

this study the concentration of FG in the inner aqueous phase was kept constant at 5%.The instability of a 

W1/O/W2 emulsion can be affected also by the composition of the organic phase, which acts as a separating 

film modulating the internal coalescence and diffusion of water [38]. In Figure 3 the microphotographs of the 

double emulsions produced with different PCL concentrations (16-30%) taken immediately after the 

production are reported.  Coalescence of the inner aqueous droplets occurred when  PCL concentration was 

16% and 20% as indicated by the size and the low concentration of the inner water droplets. However, stable 

concentrated droplets of inner aqueous phase were observed when 30% of PCL was used. The increase of 

PCL concentration increased the viscosity of the liquid film where the aqueous droplets are dispersed and, 

consequently, their coalescence was reduced. Taking into account these results, the W1/O/W2 emulsion 

containing 5% of FG in the inner aqueous phase (W1) and 30% of PCL in the organic phase (O) was used for 

the production of the solid particles. 

Scaling up of the emulsion production by oscillating membrane emulsification 

An important requirement for a particle manufacturing process is the possibility to produce particles with 

tailored size and uniformity at high throughput (possibly continuously), under low shear conditions and in an 

easy to scale way. Oscillating membrane emulsification achieves high flux suitable for an industrial setting 

preserving at the same time the uniformity of the emulsion and keeping low shear conditions in the bulk of 

the product stream. Figure 4 reports the droplet size of O/W2 emulsion as a function of the shear stress. The 

influence of the shear stress was studied at two injection flow rates (1 and 4 ml min-1 corresponding to 
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injection fluxes of 12 and 46 L h-1 m-2) in order to compare the droplet size with the predicted value of the 

model. Mean droplet size decreased from 90 μm to 49 μm and from 112 μm to 59 μm when shear stress was 

increased in a range between 1 Pa and 6 Pa and using the injection flux of 12 and 46 L h-1 m-2 respectively. 

The droplet size produced at low injection flux (12 L h-1 m-2) are closer to the predicted values of the model. 

This is because the increase of the flow rate is correlated with an increase of the dispersed phase flux and the 

contribution of this parameter to the formed droplet size is not considered in the calculation of the model 

[39]. A widening of size distribution was observed when the dispersed phase was injected at low flux (12 L 

h-1 m-2) keeping high shear stress (5-6 Pa). In Figure 4B the emulsion produced at a shear stress of 6 Pa and 

low injection flux appears to be bimodal and small droplets with a mean size of 12 μm were formed as well 

as larger droplets. The formation of a polydispersed emulsion when low dispersed phase flux is used in the 

combination with the high shear can be attributed to the membrane type used as previously seen by Holdich 

et.al [31]. The sieve membrane has straight through pores which means that it is easier for a pressure pulse to 

pass through the membrane from the receiving side where the continuous phase is present and into the side 

of the membrane where the dispersed phase is present. This may cause mixing around the pore on the 

dispersed phase side of the membrane leading to drop sizes that are much smaller than would be expected 

from the prevailing conditions of wall shear, a situation similar to what occurs during premix emulsification 

[31]. Increasing the flux of the dispersed phase to 46 L h-1 m-2 the mixing of the phases was avoided and 

uniform droplets with a span value in a range of 0.30 and 0.39 were produced in a range of shear stress of 1 

Pa to 6 Pa. At shear stress above 5 Pa the droplet size remained constant at 57 ± 2 μm. The same trend was 

observed at batch scale and the range of shear stresses is quite similar (i.e. above 6 Pa).  

Taking into account these results, the influence of the dispersed phase flux on droplet size and size 

distribution (Figure 5) of W1/O/W2 emulsion was investigated using a shear stress of 5 Pa and the dispersed 

phase flux was increased from 23 to 216 L h-1 m-2. This provided an increase of the dispersed phase volume 

concentration from 4% to 35% in a single pass of the continuous phase flowing inside the module at constant 

flow rate of 53 ml min-1. Uniform W1/O/W2 emulsion with a content of dispersed phase of 35 vol% were 

produced at the same fluid-dynamic conditions optimized at the batch scale (Jdp =216 L h-1 m-2; τ=5 Pa). 

Such finding suggests that future formulations and optimal conditions btained on the Dispersion Cell, where 

small volumes are required, can be translated successfully to the azimuthal oscillating membrane 
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emulsification system. Uniform droplets with a mean size of 59 µm (which corresponds to solid particles 

with a mean size of 47 µm) and a span value between 0.31 and 0.36 were produced in the range of flux 

studied. The results demonstrated that the “dripping” regime was dominant for the range of fluxes studied. In 

this regime, the drag force imparted by the oscillating movement of the membrane and the surface tension 

force are the dominant forces affecting the droplet size, therefore, the inertial contribution from the dispersed 

phase flux was negligible to the droplet size [40].  

Influence of process conditions used in the solidification step on particle morphology 

The solidification of the multicore-matrix particles was carried out using the solvent diffusion process. Solid 

particles with a mean size of 29 ± 1 μm and a span value of 0.30 ± 0.02 were produced after the solidification 

of the PCL and a particle shrinkage of 29% was observed. In the study the influence of: i) volume of water 

used for the solvent diffusion; ii) type of stabilizers used; iii) amount of inner aqueous phase (ФWO) in 

W/O/W emulsion on final particle morphology are reported. 

i) Effect of the volume of water used for solvent diffusion  

The solidification rate of the droplets can be controlled by changing the volume of water (containing 

stabilizer) used for solvent diffusion (Vsd) with respect to the theoretical volume (Vth). In Table 1(A) the 

experimental conditions used for the solidification of the multi-core matrix particles are reported. The 

particles were solidified using 2% SDS solution. Results demonstrate that increasing the volume of water 

used for the solvent diffusion by 8 times reduces the solidification time of the PCL within the droplet from 

approximately 1 hour to a few seconds, due to faster solvent removal. An instantaneous solidification of the 

droplets was observed when the volume of water was in high excess, 5 to 8 times the theoretical volume. The 

fast formation of the polymeric crust is of great importance to reduce the loss of the inner aqueous phase 

during the particle solidification as demonstrated by the analysis of particle morphology reported in Figure 6. 

Particles with a porous surface were produced when the lowest volume of water (Vsd/Vth=1) was used for the 

solidification. This structure was a consequence of the diffusion of water between the outer and inner 

aqueous phase which occurred when the organic phase was in a semi-solid state for long time. The increase 

of water volume (Vsd/Vth=2.5) allowed a reduction of the solidification time of the PCL and the formation of 
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pores and holes was avoided. However, some cracks and a slight roughness were observed on the surface of 

the particles because the formation of a polymeric crust at the water/droplet interface was not instantaneous. 

A further increase of the volume of water (Vsd/Vth≥5) provided the production of particles with a dense and 

smooth surface due to instantaneous solidification of the PCL at the interface which preserved the integrity 

of the particle avoiding the loss of the inner aqueous phase through the droplets.  

 

ii) Effect of the type of stabilizer 

The effect of the stabilizer type was investigated using different volumes of water (Vsd/Vth=1-2.5-5) in order 

to evaluate the effect of the stabilizer under different solidification rate conditions of the droplets. SDS (2%) 

or PVA (1%) were used due to their different chemical properties. SDS is an anionic emulsifier with a low 

molecular weight compared to PVA, which is a viscosity-enhancing stabilizer and a polymer colloid. In 

Figure 6 the particle morphology observed when the particles were solidified using PVA or SDS as stabilizer 

and different volumes of water is reported. The morphology of the particles solidified in presence of SDS 

was discussed previously. In this case, the solidification rate of the PCL was demonstrated to be a key 

parameter to control the particle morphology as well as to avoid the loss of the inner aqueous phase. The 

diffusion of the inner aqueous droplets at the water/oil droplet interface cannot be controlled in the presence 

of SDS and low volume of water (Vsd/Vth=1), due to the absence of a plasticizing layer around the oil droplet. 

The particles solidified using PVA as stabilizer are characterized by a dense surface without pores no matter 

what volume of aqueous phase is used for the solidification of the particles. PVA is a surface-active polymer 

which forms a protective film at the water/oil droplet interface [41]. Thus, the adsorbed PVA polymer layer 

can slow down the diffusion of water between the external and inner aqueous phase through the organic 

phase when the solidification of the PCL matrix was carried out in low volume of water (Vsd/Vth=1). This is 

of great importance for the scaling-up of the process as less volume of water can be used keeping the 

integrity of particle morphology. 

iii) Effect of the volume fraction of the inner aqueous phase (Фwo) 
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Variation of the multicore matrix particle morphology was observed when the volume fraction of the inner 

aqueous phase (Фwo) was increased from 0.10 to 0.15 (Figure 7). The loss of the inner aqueous phase did not 

occur under these conditions and particles are characterized by a dense polymer surface. However, a further 

increase of Фwo to 0.3 resulted in the formation of multi-core matrix particles with highly porous surface 

produced as a result of the water diffusion through the PCL film during the solidification step. Higher 

amounts of the aqueous phase added to the same volume of organic phase induces coalescence between the 

outer and inner aqueous phase during solidification of the PCL resulting in the formation of solid particles 

but with a porous surface. 

Encapsulation efficiency of the W1/O/W2 emulsion and solidified multi-core matrix particles 

The encapsulation efficiency of copper ions in W1/O/W2 emulsion (EEWOW) was initially measured in order 

to evaluate the amount of copper ions present in the emulsion prior to the particle formation 

(solidification).The encapsulation efficiency of copper ions in solid particles (EEp) was measured in order to 

investigate the influence of double W1/O/W2 emulsion composition (e.g. inner aqueous phase volume 

fraction) and the solidification conditions (e.g. volume of the aqueous phase and kind of stabilizer used for 

the emulsion dilution) on the final amount of copper ions present within the particles.  

Encapsulation efficiency of copper ions in W1/O/W2 emulsion (EEWOW) slightly decreased from 97.4 (±0.8)% 

to 93.4 (±0.2)% when the volume fraction of the inner aqueous phase (Фwo) increased from 0.1 to 0.3 (Table 

1B). Since more aqueous phase is added into the same volume of organic phase, a thinner organic film, 

acting as a barrier, between the inner and outer aqueous phase is produced and more copper is loss due to 

diffusion from the droplets.  

The increase of the volume fraction of the inner aqueous phase (Фwo) by three from 0.1 to 0.3 resulted in 

three times lower copper encapsulation within the particles (EEp) (Table 1B). The drug loading of the 

particles produced with Фwo in a range of 0.1 and 0.3 was almost constant in a range between 4 (±0.3)% and 

4.5 (±0.1)% even though the theoretical drug loading increased from 4.4% to 11.7%. Two mechanisms can 

be proposed for the reduction of the encapsulation efficiency and the measured drug loading within the solid 

particles when the volume fraction of the inner water phase is increased. The first is the increase of the 
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concentration gradient of the encapsulated copper ions which is the driving force to induce diffusion of ions 

into the external aqueous phase during the solidification process [42]. The second mechanism is the partial 

loss of the inner aqueous phase due to coalescence between the internal and external aqueous phase, which 

can occur during solidification of PCL. The analysis of the particle morphology discussed previously 

confirmed that the partial loss of the inner aqueous phase seems to be involved in the loss of copper ions 

from the particles produced with Фwo=0.3, as demonstrated by the porous surface of the particle. On the 

contrary, the lack of porous surface of the particles produced with Фwo=0.15 confirmed that the lower 

encapsulation efficiency is mainly due to the enhanced diffusion of copper caused by the higher 

concentration gradient rather than the loss of the inner aqueous phase.  

Table 1(A) reports the encapsulation efficiency (EEp) and drug loading (DL) of the solidified particles as a 

function of the volume of water used for the solvent diffusion and the kind of stabilizer (SDS or PVA). 

Results demonstrate that using SDS as stabilizer and increasing the volume of water by 8 times increases the 

encapsulation efficiency of copper ions 3 times while the drug loading increases 4 times. The low 

encapsulation efficiency observed when the solidification of PCL was slow (Vsd/Vth=1) is related to the loss 

of the inner aqueous phase due to coalescence of the inner and outer aqueous phase as demonstrated by the 

formation of particles with a porous surface discussed previously. Increasing Vsd to 5 and 8 times the 

theoretical volume achieves the highest encapsulation efficiency of copper ions, due to the instantaneous 

solidification of the PCL matrix. This is in accordance with the analysis of particle morphology, Figure 6. 

 Encapsulation efficiency of copper ions within the particles solidified using PVA as stabilizer was constant 

at 99 (±1)% no matter the volume of water used for the solidification (Table 1A). Particles had a smooth 

surface (Figure 6) and high encapsulation was in accordance with the previous findings. Rainer et al. [43] 

and Yang et al. [44] also observed an increase of the encapsulation efficiency of hydrophilic compounds with 

an increase of PVA concentration in the aqueous phase.  

The encapsulation efficiency of α-tocopherol in the solidified particles, was not influenced by the process 

conditions studied due to its insolubility in water. Thus, α-tocopherol could be entrapped efficiently into the 

hydrophobic PCL matrix with an encapsulation efficiency of 93 (±6.7)% and a drug loading of 1.5 (±0.2)% 

(Table 1A).  
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Conclusions 

The results obtained demonstrate that the method used to produce the W/O/W emulsion (membrane 

emulsification) followed by solvent diffusion can be successfully applied for the production of highly 

uniform multicore particles between 40 and 120 µm with a hydrophobic poly-caprolactone matrix. The 

process was scaled up using a novel azimuthal oscillating membrane emulsification system while the 

uniformity and the morphology of the particles were maintained. Simultaneous encapsulation of hydrophilic 

(copper ions up to 99%) and hydrophobic molecules (α-tocopherol up to 93%) was achieved. It was possible 

to increase the encapsulation of hydrophilic molecule either using the fast solidification of the PCL or using 

the PVA as stabilizer dissolved in the aqueous phase during the solidification step. Fish gelatin was used to 

stabilize the internal water droplets and prevent the coalescence. 

 The multicore-matrix particles produced in this study could be used for the encapsulation of practical drug 

systems, such as hydrophilic doxorubicin and hydrophobic paclitaxel for cancer treatment [45], hydrophilic 

folic acid and hydrophobic methotrexate for Rheumatoid Arthritis treatment [46], hydrophilic ampicillin and 

rosemary extract (containing hydrophobic carnosic acid and carnosol) as effective treatment of penicillin 

resistant Staphylococcus aureus bacteria [47] and our future work will be focused on the study of the such 

drug systems. 
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List of Figures 

Figure 1 Dispersion Cell equipment scheme. 1-syringe pump; 2-injection chamber; 3-glass cylinder; 
4-stainless steel stirrer with a blade at the bottom ending; 5-voltage regulator. Azimuthally 
oscillating system equipment scheme. 1-syringe pump containing the dispersed phase; 2-
continuous phase tank; 3- membrane module; 4-servo motor; 5-emulsion tank; 6-control 
panel. ɸWO: volume fraction of the inner aqueous phase; ɸWOW: volume fraction of the 
dispersed phase (W/O); JDP: injection flux;τ:shear stress.  

 
Figure 2  (A) Effect of injection flux on droplet size and size distribution of O/W emulsion at constant 

shear stress (8 Pa). (B) Effect of shear stress on droplet size and size distribution of O/W 
emulsion at constant injection flux of 216 L h-1 m-2. Produced using Dispersion Cell. (mean ± 
SD, n=3) 

 
Figure 3  Images of double W1/O/W2 emulsion with different concentration of PCL in the organic 

phase. (Double emulsion composition: W1=5% fish gelatin; O=PCL in DCM;  W2=1% PVA) 

Figure 4  (A) Mean droplet size and size distribution of simple O/W as a function of shear stress (1-6 
Pa) and injection flux of 12 and 46 L h-1 m-2 (mean ± SD, n=3).  (B) Photographs of O/W 
emulsion produced at different shear stress keeping the injection flux constant at 12 L h-1 m-2 
and produced using Azimuthally oscillating system. 

 
Figure 5 Mean droplet size and size distribution of double W1/O/W2 emulsion (W1=5% FG; O=30% 

PCL, W2=1% PVA, ɸWO=0.1) as a function of the dispersed phase flux keeping the shear 
stress at 5 Pa and increasing the injection flux in a range of 23 to 216 L h-1 m-2; % v/v is the 
content of the dispersed phase in the emulsion. (mean ± SD, n=3) 

Figure 6  SEM photographs of multi-core matrix particles produced with different ratio between the 
used (Vsd) and the theoretical volume (Vth) and different stabilizer (PVA and SDS).   

Figure 7  SEM photographs of multi-core matrix particles produced with different volume fraction of 
inner aqueous phase (ɸWO). Solidification conditions: Vsd/Vth=5 and 2% SDS.     
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Table 1. (A) Experimental conditions, encapsulation efficiency of double emulsion (Ewow), encapsulation 
efficiency (EEp),  and drug loading  (DL) of solid particles produced with different Vsd/Vth ratio. (B) Ewow, 
EEp and DL  at different volume fraction of aqueous phase(Фwo), Vsd-Volume used; Vth- theoretic volume; Ф-
volume fraction; (mean ± SD, n=3). 

 

(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vsd [L] 

 

Vsd/Vth 

 

Droplet 
solidification 

time 

(minutes) 

 

EEwow(%) 

Cu(II) 

(Φwo=0.1) 

SDS  PVA    EEp(%) 

α-
tocopherol 

DL(%) 

α-
tocopherol 

EEp(%) 

Cu(II) 

DL% 
Cu(II) 

 

EEp(%) 

Cu(II) 

DL% 
Cu(II) 

 

  

0.3 1 60 97.4 (±0.8) 29.6 (±5.3) 1.3 (±0.3) 99(±1) 4.4(±0.1) 97 (±2) 1.6 (± 0.2) 

0.75 2.5 15 97.4 (±0.8) 77.5 (±3.6) 3.5 (±0.2) 98(±2) 4.3 (±0.2) 85 (±5) 1.4 (± 0.3) 

1.5 5 instantaneous 97.4 (±0.8) 91.5 (±6) 4.4 (±0.2) 99(±1) 4.4 (±0.1) 90 (±7) 1.5 (± 0.3) 

2.4 8 instantaneous 97.4 (±0.8) 95.5 (±4) 4.4 (±0.2) 99(±1) 4.4 (±0.1) 98 (±1) 1.6 (± 0.2) 
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(B) 

 

 

 

 

Φwo 

 

Φwow 

 

Vsd/Vth 

 

EEwow(%) 

Cu(II) 

 

 

EEp(%) 

Cu(II) 

 

EEp(%) 

α-
tocopherol 

 

DL% 

Cu(II) 

 measured Theoretical 

0.1 0.06 5 

 

97.4 (±0.8) 95.5 (±4) 99 (±1) 4.4 (±0.2) 4.4 

0.15 0.06 5 

 

97.0 (±0.3) 65.3 (±1) 95.8 (±6) 4.3 (±0.2) 7 

0.3 0.06 5 93.4 (±0.2)  32 (±6) 99 (±1) 4.2 (±0.2) 11.7 
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