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Abstract

For a narrowband, instantaneous mixing multi-input, multi-output (MIMO) communications system,

the channel is represented as a scalar matrix. In this scenario, singular value decomposition (SVD)

provides a number of independent spatial subchannels which can be used to enhance data rates or

to increase diversity. Alternatively, a QR decomposition can be used to reduce the MIMO channel

equalization problem to a set of single channel equalization problems.

In the case of a frequency selective MIMO system, the multipath channel is represented as a

polynomial matrix. Thus conventional matrix decomposition techniques can no longer be applied.

The traditional solution to this broadband problem is to reduce it to narrowband form by using a

discrete Fourier transform (DFT) to split the broadband channel into N narrow uniformly spaced

frequency bands and applying scalar decomposition techniques within each band. This describes an

orthogonal frequency division multiplexing (OFDM) based system.

However, a novel algorithm has been developed for calculating the eigenvalue decomposition of a

para-Hermitian polynomial matrix, known as the sequential best rotation (SBR2) algorithm. SBR2

and its QR based derivatives allow a true polynomial singular value and QR decomposition to be

formulated. The application of these algorithms within frequency selective MIMO systems results in

a fundamentally new approach to exploiting spatial diversity.

Polynomial matrix decomposition and OFDM based solutions are compared for a wide variety of

broadband MIMO communication systems. SVD is used to create a robust, high gain communications

channel for ultra low signal-to-noise ratio (SNR) environments. Due to the frequency selective nature

of the channels produced by polynomial matrix decomposition, additional processing is required at the

receiver resulting in two distinct equalization techniques based around turbo and Viterbi equalization.

The proposed approach is found to provide identical performance to that of an existing OFDM scheme

while supporting a wider range of access schemes. This work is then extended to QR decomposition

based communications systems, where the proposed polynomial approach is found to not only pro-

vide superior bit-error-rate (BER) performance but significantly reduce the complexity of transmitter

design. Finally both techniques are combined to create a multi-user MIMO system that provides

superior BER performance over an OFDM based scheme. Throughout the work the robustness of

the proposed scheme to channel state information (CSI) error is considered, resulting in a rigorous

demonstration of the capabilities of the polynomial approach.
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Contributions

• Application of the sequential best rotation (SBR2) algorithm to obtain spatial di-

versity techniques in frequency selective MIMO channels.

For a frequency flat multi-input multi-output (MIMO) system the singular value decomposition

has the ability to provide multiple spatial channels for data transmission. In a frequency selective

MIMO scenario the problem is represented as a polynomial matrix and the SVD can no longer

be applied. To obtain spatial diversity techniques for this scenario, repeated applications of the

SBR2 algorithm have been used to perform a polynomial matrix singular value decomposition.

Two types of receiver processing are proposed to overcome the delay spread in the subchannels,

Viterbi equalization for exponentially decaying channels, and Turbo equalization for constant

profile channels. The diversity performance of the dominant channel provided by the SBR2

based broadband decomposition is evaluated against transmit antenna selection and conventional

MIMO-OFDM approaches. The SBR2 approach is shown to provide equal or superior bit-error-

rate (BER) performance while also providing a range of benefits applicable to time domain

multiple access schemes.

• Application of polynomial matrix QR decomposition for iterative decoding of fre-

quency selective MIMO channels.

Using the turbo equalization strategy developed previously, polynomial matrix QR decompo-

sition is used to reduce the MIMO channel equalization problem to a set of single channel

equalization problems for a wide range of Bell Laboratories Layered Space Time (BLAST) ar-

chitecture wireless communication systems. The proposed approach is again evaluated against

an identical MIMO-OFDM solution. The work is shown to have significant advantages, both in

terms of superior BER performance and reduced amplifier complexity within the transmitter.

• Polynomial matrix decomposition for downlink spatial multiplexing in frequency

selective MIMO channels.

Combining beamforming at the transmitter using the SBR2 algorithm and channel equalization

using polynomial matrix QR decomposition at the receiver, an entirely time domain multi-user

MIMO system is created. By designing independent orthogonal spatial transmit vectors for each

user at the transmitter, multiple users are able to operate within the same shared spectrum with

iv



minimal cross-user interference. The proposed approach is evaluated against an identical MU-

MIMO OFDM solution and found to provide superior BER performance due to the exploitation

of the frequency selective fading properties of the MU-MIMO channel in the receiver.
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Chapter 1

Introduction

Motivation

The date of the invention of the radio and to whom it should be credited is frequently debated. It is

widely accepted that it should be attributed to Marconi, who in the spring of 1895 transmitted the

first signal using a free propagating electromagnetic (EM) wave as a carrier [1]. Using Branly’s coherer

to detect EM waves, essentially loose iron fillings in a tube connected in a circuit with a battery and

a galvanometer [2] and a spark gap transmitter invented by Hertz [3], Marconi was able to receive

signals up to a distance of one mile from his laboratory in Bolgona, Italy. In 1896 Marconi moved to

England and would go onto perform several ground breaking experiments. In particular in May 1897

messages were exchanged between Lavernock Point and Flat Holm island, in the Bristol Channel, at

a distance of nine miles [1]. In December 1901 Marconi successfully completed the first transatlantic

transmission and the radio age was born.

Radio would revolutionize the shipping industry, which even in 1900 was still reasonably danger-

ous [4]. Previous methods of communication largely relied on flares or lamps for signaling, and ships

rarely sank in situations involving perfect visibility. Radio would also become a staple technology for

the military, and the first world war would drive the development of smaller, lightweight units for use

in aircraft, in turn leading to vacuum tubes with improved performance and reliability [5].

The first electronic computers appeared around the time of the second world war to quickly and

accurately develop firing tables for guns used by the military [6]. The invention of the transistor in

1947 and subsequent fabrication of the first practical integrated circuit in 1959 [7] lead to digital signal

processing (DSP) becoming a major area of interest in the mid 1960’s [8]. Rapid advances in DSP

and computing, in particular the advent of the fast Fourier transform (FFT) in 1965 [9] have led to

the wide range of speech and image processing techniques available today.

The first real merging of radio and computing was in 1971. ALOHANET, the first computer

network based on packet radio was developed at the University of Hawaii and enabled computer sites

at seven campuses spread out over four islands to communicate with a central computer via radio
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transmission [10]. However the high cost and low speed of wireless networking compared to wired

Ethernet cabling prevented any commercial success. With the introduction of the wireless local area

networking standard (WLAN) IEEE 802.11[11] in 1997, interest in wireless networking has renewed.

Although data rates are still significantly lower than cable and coverage is limited to a few tens of

meters, WLAN’s are becoming the preferred Internet access method in many homes, offices, and

campus environments due to their convenience and freedom from wires [10].

Conversely, cellular phones have experienced continued explosive growth since their introduction

in the 1980’s. Almost absurdly, in November 2007 worldwide cellular phone subscriptions reached 3.3

billion, equivalent to half the global population [12]. This statistic is slightly out of context, as several

countries (including Britain) have a mobile penetration of over 100%, i.e. some owners have multiple

phones, however the untapped commerical potential is vast.

Rapid progress in radio technology is continuously creating new and improved services at lower

costs, resulting in the increase of air-time usage and subscribers. Around the turn of the century

wireless service revenues were growing at approximately 40% per year. As a consequence wireless

system designers are faced with an ever growing number of challenges. In particular the diminish-

ing availability of radio spectrum versus the continuing increase in subscribers, demand for higher

data rates and coverage by base stations and lower infrastructure and operating costs [13]. Wireless

multiple-input, multiple-output (MIMO) systems have the potential to solve all these problems.

MIMO systems utilize multiple antennas at the transmitter and receiver to exploit the spatial

properties of the propagating environment and offer several key benefits over conventional single-

input, single-output (SISO) systems, in particular the ability to exploit the spatial properties of the

wireless channel.

Diversity Gain

When the received signal power in a wireless SISO system drops significantly, the channel is said to

be in a fade which is predominantly caused by two mechanisms, macroscopic and microscopic fading.

Macroscopic or slow fading is attributed to the disappearance of noticeably strong contributing paths

between transmitter and receiver due to intrusion of propagation environment features such as build-

ings [14]. Microscopic or fast fading refers to the rapid fluctuations of the received signal in space,

time and frequency, and is caused by the signal scattering off objects between the transmitter and

receiver [13]. For a wireless MIMO channel, the signal path between any single transmit antenna and

any single receive antenna can be considered independent, providing the transmit antennas are spaced

a suitable distance apart from each other and also the receive antennas are spaced likewise. As inde-
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pendent signal paths have a low probability of experiencing deep fades simultaneously [10], by sending

data over multiple independent paths the effects of fading can be mitigated, and is termed spatial

diversity. Spatial diversity is highly desirable, as unlike frequency or temporal diversity techniques, it

does not require additional signal bandwidth or transmission time.

Array Gain

The received signal power in a MIMO system can also be increased by coherent combining of

signals. For example signals arriving at the receive antennas have different amplitudes and phases.

The receiver can combine the signals coherently so that the resulting signal-to-noise ratio (SNR) is

enhanced [3]. This is termed array gain.

Spatial Multiplexing

Spatial multiplexing (SM) refers to the linear increase in capacity of a MIMO system with the

number of antenna transmit-receive pairs over a SISO system for the same bandwidth and with no

additional power expenditure [3]. Encoding architectures such as Bell Laboratories Layered Space

Time (BLAST) [15] transmit an independent symbol at each transmit antenna at each symbol period,

and a MIMO system consisting of eight transmit and eight receive antennas has been shown to have a

capacity of more than forty times that of a SISO system with identical total radiated transmit power

and bandwidth [15]. Spatial multiplexing can only be exploited in MIMO channels.

Interference Reduction

CCI or co-channel interference arises due to frequency reuse in wireless channels. If the desired

signal and interferers occupy the same temporal frequency band, then temporal filtering cannot be

used to separate signal from interference [16]. However, as the desired and interference signals originate

from different spatial locations, spatial separation can be used to separate signal from interference.

Processing signals at an antenna array is termed beamforming, and allows pencil beams to be formed

to radiate or receive energy from a specific spatial location.

Aside from increasing frequency reuse and improving network capacity, beamforming forms the

centrepiece of cognitive radio [17, 18]. When portions of the electromagnetic spectrum are scanned it

is found that there exist frequency bands that are largely unoccupied most of the time or only partially

occupied. This is termed a spectrum hole [17] - i.e. a band of frequencies assigned to a primary user,

but at a particular time and specific geographical location, the band is not being utilized by that user.

Cognitive radio is an enabling technology that allows a secondary user to access a spectrum hole.

The benefit of this is twofold, firstly it allows the primary user to lease spectrum holes and maximise
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their investment and potentially lower the cost of their spectrum licence. Secondly, it allows efficient

utilization of the precious electromagnetic spectrum.

Polynomial Matrix Decompositions

For a narrowband, instantaneous mixing scenario the MIMO channel matrix can be viewed as a

matrix of complex scalar elements. Matrix decomposition techniques such as singular value decompo-

sition (SVD) and QR decomposition (QRD) are fundamental components of techniques used to obtain

spatial diversity. However in the broadband case where the signals are convolutively mixed, the prob-

lem is represented as a matrix consisting of complex polynomial elements. The matrix therefore is

essentially three-dimensional and existing matrix decomposition techniques can no longer be applied.

Typically this polynomial matrix time domain problem is solved in the frequency domain [19, 20],

known as a MIMO orthogonal frequency division multiplexing (OFDM) scheme. This separates the

broadband problem into multiple narrowband problems, where conventional scalar matrix decompo-

sition techniques can be applied.

However an entirely novel algorithm for calculating polynomial matrix eigenvalue decomposition

(PMEVD) has been developed in [21]. Known as the sequential best rotation algorithm (SBR2) its

application allows a polynomial matrix singular value decomposition (PMSVD) to be applied directly

to the polynomial channel matrix. Continuing research into the operation of the SBR2 algorithm has

also led to the development of an algorithm for calculating a polynomial matrix QR decomposition

(PMQRD) [22].

The motivation therefore is to analyse polynomial matrix decomposition techniques and apply

them to the broadband, convolutive mixing MIMO problem to create novel MIMO communications

systems which operate entirely in the time domain. Although the work presented in this thesis is

focused predominantly on wireless MIMO channels, the matrix decompositions are generic and can

be applied to any MIMO channel.

Problem Statement and Aims of Thesis

The SBR2 algorithm allows the eigenvalue decomposition of a para-Hermitian polynomial matrix

to be calculated [21]. It was developed initially for solving convolutive blind source separation (BSS)

and can be used to enforce strong decorrelation upon a set of convolutively mixed signals. Additionally,

SBR2 research has yielded an algorithm for calculating polynomial matrix QR decomposition [22].

These algorithms provide the foundations for the research presented in this thesis. The main aims of

this thesis are now described below:
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1. In a narrowband MIMO scenario where the received signals are instantaneously mixed, a scalar

matrix is sufficient to describe the mixing. Paulraj, Nabar and Gore [3] have shown that for

this scenario, performing the SVD would provide a number of independent spatial subchannels

(commonly referred to as modes) which can be used to enhance the data rates or to obtain

increased diversity. The motivation therefore is to apply the SBR2 algorithm to frequency

selective MIMO channels to calculate PMSVD, extending the decomposition presented in [3] to

a broadband MIMO scenario. As the proposed scheme operates using spatio-temporal filters in

the time domain, further processing is required at the receiver to overcome delay spread in the

modes. Therefore efficient channel equalization is also a key design issue.

2. Secondly, using a technique for PMQRD, based on applying the same elementary paraunitary

operations used in the SBR2 algorithm, this thesis aims to continue to exploit spatial diversity

in frequency selective MIMO channels. This decomposition reduces the MIMO channel equal-

ization problem to a set of decision feedback based single channel equalization problems [23, 24].

However unlike PMSVD, PMQRD only requires channel knowledge at the receiver, hence it is

highly suitable for broadcast applications.

3. Finally the work is extended to a multi-user MIMO scenario. Application of the SBR2 algorithm

at the transmitter enables transmission of signals between the transmitting base station and a

desired user within the null space between the transmitter and all other users [25]. To equalize

the resulting frequency selective MIMO channel between transmitter and receiver, PMQRD is

utilized at the receiver to reduce transmitter complexity.

Organization of Thesis

This thesis is organized as follows. Chapter two provides a review of space-time wireless com-

munications techniques for both instantaneous mixing and convolutive mixing MIMO scenarios. The

use of the SVD and QRD to obtain spatial diversity in frequency flat MIMO channels are explored,

as well as existing techniques for calculating polynomial matrix decomposition. Finally, at the end

of this chapter the estimation of the frequency selective MIMO channel using training sequences is

discussed.

The third chapter details the operation of the SBR2 algorithm, which can be used to calculate

the PMEVD of a para-Hermitian polynomial matrix. SBR2 makes use of “elementary paraunitary

transformations” and constitutes a generalization of the classical Jacobi algorithm for conventional
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Hermitian matrix diagonalization [21]. It is shown how the PMSVD of a polynomial matrix can be cal-

culated by independently post and pre multiplying the polynomial matrix with its paraconjugate and

applying the SBR2 algorithm to the resulting para-Hermitian matrix. This rotation matrix approach

to polynomial matrix decomposition is then extended to an algorithm for calculating PMQRD [26],

which no longer requires the input matrix to possess the para-Hermitian property. Finally it is shown

how PMSVD can be performed using the PMQRD algorithm, resulting in a higher quality decompo-

sition.

Throughout this thesis, frequency selective MIMO channels with both exponentially power delay

and constant power profile are investigated. Channels with exponential power delay are used to model

the channel properties applicable to outdoor cellular environments and channels with constant power

profile are used to model the channel properties applicable to indoor wireless local area networks. The

distribution of energy within the frequency selective MIMO channel directly affects the distribution of

energy within the spatial-temporal channels produced by polynomial matrix decomposition, resulting

in two fundamentally different equalization approaches. The fourth chapter focuses on exploiting

the high gain properties of the dominant mode produced by PMSVD for both these scenarios. The

performance of the SBR2 based scheme is evaluated against a transmitter antenna selection (TAS)

based scheme, providing a time domain multiple access (TDMA) comparison. The SBR2 based

scheme is also evaluated against a frequency domain MIMO orthogonal frequency division multiplexing

(OFDM) SVD scheme.

The fifth chapter demonstrates how spatial diversity can be obtained in frequency selective MIMO

channels using PMQRD. In particular this chapter focuses on the time domain solution to the MIMO

channel equalization problem provided by PMQRD versus the frequency domain solution provided

by MIMO-OFDM QRD. The fundamental difference between these two approaches is that PMQRD

spreads the information within each transmitted symbol across the entire channel bandwidth, whereas

OFDM constrains the information in each transmitted symbol to a single narrowband tone is explored.

Individual tones may have low gain, due to the frequency selective nature of the channel, and conse-

quently the PMQRD approach provides significant performance benefits. Throughout this chapter a

wide range of transmitter architectures based on Bell Laboratories Layered Space Time (BLAST) [15]

are explored.

The sixth chapter extends the work to a multi-user MIMO scenario. A downlink MIMO-MU

scenario is considered consisting of a transmitting base station equipped with multiple antennas,

and multiple receiving users also equipped with multiple antennas. Filter banks designed using the

SBR2 algorithm are used to transmit spatially propagating data streams and reduce CCI. Building on
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the work in chapter five, PMQRD is used to recover the individual streams. Again this time domain

polynomial matrix approach is evaluated against a conventional frequency domain MIMO-MU OFDM

approach.

The final chapter concludes this thesis and discusses further continuation of this work in the future.

Appendices are included to provide additional simulation results that are not included in the main

body of the text.

Notation

Throughout this thesis, matrices are denoted by upper case bold characters and vectors by lower

case bold characters. Regular upper or lower case characters denote scalar quantities. [·]kl denotes

the (k, l)-th element of the matrix in the square brackets. The superscripts T and H denote the

matrix transpose and Hermitian conjugate, respectively. Ip is used to denote the p × p identity

matrix. Polynomial matrices and vectors are denoted respectively by underscored bold upper and

lower case characters. The use of an underscore with scalar quantities denotes a polynomial with scalar

coefficients. Any polynomial (matrix, vector, or scalar) with the qualifier (z) denotes a polynomial

in the indeterminate variable z−1. The ∗, used as a subscript, denotes complex conjugation of the

coefficients in a polynomial matrix or vector. The use of ~ above a polynomial matrix or vector

denotes the paraconjugate, i.e. for a given polynomial matrix A(z), Ã(z) = AT
∗ (z

−1). ‖·‖F will be

used to denote the Frobenius norm (F-norm) of a polynomial matrix, which is simply the square root

of sum of the squared F-norms for all coefficient matrices.
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Chapter 2

Background to Space-Time

Wireless Communications

2.1 Introduction

In this chapter the instantaneous mixing model is discussed and its subsequent exploitation in

frequency flat MIMO systems. Firstly the application of scalar matrix decompositions to narrowband

MIMO channels is considered. The singular value decomposition is used to create multiple parallel

spatial sub-channels and the average bit-error-rate (BER) performance of the dominant sub-channel

is shown to be far superior to that of a SISO channel with equal total radiated transmit power and

bandwidth. As the multiple spatial sub-channels provided by SVD are orthogonal, they may be used

simultaneously to increase system capacity. A waterpouring scheme [27] is used to find the optimum

allocation of transmit energy over the sub-channels and theoretical capacity results are presented.

SVD requires knowledge of the wireless channel at both the transmitter and receiver. For a MIMO

system where no feedback path exists between the receiver and transmitter, channel knowledge is only

obtainable at the receiver. The transmitter will repeatedly transmit a training sequence, allowing

for estimation of the channel by the receiver followed by a data sequence. For this scenario, QR

decomposition is shown to reduce the MIMO channel equalization problem to a set of decision feedback

based single channel equalization problems. BER results are presented to show the substantial increase

in capacity obtained by QRD over a SISO channel with equal total radiated transmit power and

bandwidth.

The main topic of this thesis, the convolutive mixing model for MIMO channels is then presented,

alongside a review of existing techniques for solving the broadband MIMO problem, in particular the

well known frequency domain based MIMO-OFDM approach as well as novel transceiver techniques

based on convex optimization. Following on from this the operation of a wide range of techniques

for polynomial matrix decomposition are presented, and their suitability for implementation within

a MIMO communications system is discussed. This includes well known approaches to polynomial

matrix decomposition such as Smith-McMillan decomposition and an FIR lossless decomposition based

approach pioneered by Vaidyanathan [28].
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The chapter concludes with channel estimation techniques applicable to frequency selective MIMO

channels. Estimation of the channel state information (CSI) will become a significant component of

simulations in subsequent chapters, allowing accurate representation of a real-world MIMO commu-

nications system.

2.2 Instantaneous Mixing

In an instantaneous mixing model, the wireless channel between a single transmit-receive antenna

pair is represented as a single complex coefficient. This represents a scaling in amplitude due to

attenuation by the propagating environment, and a phase shift that accounts for the propagation

delay [21].

For a MIMO system consisting of Mt transmit and Mr receive antennas operating in an instanta-

neous mixing environment, the noise free channel can be represented as an Mr ×Mt mixing matrix,

H . The element hji represents the channel between the ith transmit antenna and jth receive antenna,

for i = 1, 2, . . . ,Mt and j = 1, 2, . . . ,Mr. Hence a complex scalar matrix is sufficient to describe the

mixing. This is termed a frequency flat system, as the bandwidth of the signal transmitted is less than

the coherence bandwidth of the channel. Coherence bandwidth represents the maximum bandwidth

over which two frequencies of a signal are likely to experience correlated amplitude fading [3]. For

this reason it is also frequently refered to as a narrowband MIMO system.

Considering a set of source signals of length T, s(t) ∈ CMt×1, for t ∈ {0, 1, . . . , T − 1} that

are propagated through the MIMO channel, H . The set of received signals, y(t) ∈ CMr×1 can be

expressed as:

y = H s+ n (2.1)

where n(t) denotes anMr×1 vector representing an additive Gaussian noise process with variance

σ2. Figure 2.1 shows the basic MIMO communications system structure.

sMt
(t)

s2(t)

s1(t)

H

?e

n1(t)

6
e

n2(t) ?e

nMr
(t)

yMr
(t)

y2(t)

y1(t)

Figure 2.1: Basic MIMO communications structure.
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2.2.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of the MIMO channel H is given in (2.2) where U and

V are unitary matrices, such that UUH = UHU = IMr
and V V H = V HV = IMt

and Λ is a

diagonal scalar matrix [29].

H = UΛV H (2.2)

The process of using the ith column of V , vi = [v1i, v2i, . . . , vMti]
T
as a transmit beamformer and

the ith row of UH , i.e. uHi =
[
uHi1 , u

H
i2, . . . , u

H
iMr

]
as a receive beamformer, is identical to passing the

ith signal through the ith diagonal element of Λ, i.e.

yi(t) = uHi H vi si(t) + uHi n(t)

yi(t) = λii si(t) + n′(t) (2.3)

where n′(t) = uHi n(t). Figure 2.2 shows the MIMO communications system structure for the ith

transmitted signal. Due to the unitary property of U the statistical properties of the noise will be

unchanged by filtering it with uHi . For an Mr × Mt MIMO system, Λ will be a diagonal matrix

containing r = min {Mr,Mt} orthogonal channels, ordered in terms of power. Hence λ11 > λ22 >

. . . > λrr. SVD can therefore be used to provide a number of independent spatial subchannels which

can be used to enhance the data rates or to increase diversity [3].

si(t) vi H

?e

n1(t)

6
e

n2(t) ?e

nMr
(t)

uHi yi(t)

Figure 2.2: SVD MIMO communications structure for the ith transmitted signal.

Figure 2.3 shows the bit error rate (BER) performance when using the dominant mode, λ11

exclusively for transmission for a range of MIMO orders. The total transmission power budget is

identical in each MIMO scheme. The modulation scheme used is BPSK. BER results have been

computed for 1000Monte Carlo simulations. Diversity gain manifests itself in increasing the magnitude

of the slope of the BER curve [3], clearly visible in the dramatic improvement in BER performance

in a 2 × 2 MIMO system over a SISO system, for example a 12dB gain in SNR is observed at BER

10
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Figure 2.3: Average BER curves for dominant mode SVD instantaneous mixing channels.

MIMO Channel Capacity

Shannon introduced the concept of channel capacity, C, as the maximum rate at which information

can be transmitted over a noisy channel [30, 31]. The channel capacity of any SISO channel is given

by

C = log2

(
1 +

Es
σ2

|h|2
)
bits/sec (2.4)

where Es denotes the total average energy available at the transmitter over a symbol period. As

the channels provided by the SVD are orthogonal they may be used simultaneously for spatial mul-

tiplexing. The capacity of the MIMO channel is the sum of the individual parallel SISO channel

capacities [3] and is given by

C =

r∑

i=1

log2

(
1 +

Esγi
Mtσ2

|λii|2
)

(2.5)

where γi denotes the transmit energy in the ith sub-channel and
∑r

i=1 γi = Mt. The optimal en-

ergy allocation of transmit energy over the sub-channels is found iteratively using the waterpouring

algorithm [32].

11
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Waterpouring Algorithm

The waterpouring algorithm for MIMO SVD is analogous to the waterpouring solutions for parallel

Gaussian channels [27]. It takes p iterations up to a maximum of p = r iterations. For the pth iteration

the constant µ is calculated as

µ =
Mt

(r − p+ 1)

[
1 +

σ2

Es

r−p+1∑

i=1

1

|λii|2

]
(2.6)

Using this value of µ, the power allocated to the ith sub-channel is calculated using

γi =

(
µ− Mtσ

2

Es |λii|2

)
, i = 1, 2, . . . , r − p+ 1 (2.7)

If the energy allocated to γr−p+1 < 0 this channel is discarded and γr−p+1 = 0. The algorithm is

then re-run with p incremented by 1. The optimal waterpouring power allocation strategy is found

when the power allocated to each spatial subchannel is non-negative [3].

Figure 2.4 shows the total capacity when using waterpouring in an SVD based system for a range

of MIMO orders. The total transmission power budget is identical in each MIMO scheme. Results

have been computed for 1000 Monte Carlo simulations. A wide sense stationary (WSS) situation has

been considered where the channel coefficients have been assumed to be unchanged within each data

block, but allowed to change between data blocks according to a zero mean complex circular Gaussian

distribution. The tremendous increase in capacity afforded by MIMO is clearly visible, for example

the capacity of a 4 × 4 MIMO system is almost four times greater than that of the equivalent SISO

system at an SNR of 10dB.

2.2.2 QR Decomposition

SVD requires both the transmitter and receiver to have prior knowledge of the MIMO channel,

H . However in applications such as digital video broadcasting (DVB) the transmitter has no prior

channel knowledge. For this scenario, QR decomposition can be applied at the receiver to exploit the

diversity gain afforded by the MIMO channel. The QR decomposition of the Mr×Mt complex scalar

channel matrix, H is given as:

H = Q R (2.8)

where Q is a Mr ×Mr unitary matrix, so that QQH = QHQ = IMr
and R is a Mr ×Mt upper

triangular matrix. A set of source signals of length N , s(t) ∈ C
Mt×1 are propagated through the

12
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Figure 2.4: Average capacity curves for MIMO SVD instantaneous mixing channels.

sMt
(t)

s2(t)

s1(t)

H σ2IMr

?e

n1(t)

6
e

n2(t) ?e

nMr
(t) QH

yMr
(t)

y2(t)

y1(t)

Figure 2.5: QR MIMO communications structure.

MIMO channel, received and filtered with QH as shown in Figure 2.5

The set of received signals, y is then expressed as:

y = QH H s+QH n

y = R s+ n′ (2.9)

where n′ = QH n. Again, due to the unitary property of Q the statistical properties of the noise will

be unchanged by filtering it with QH . The upper triangular property of the matrix R can now be

exploited to transform the MIMO channel equalization problem into a set ofMr equalization problems

13
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using back substitution. The M th
t source signal is expressed as (2.10)

yMr
= rMrMr

sMt
+ n′

Mr
(2.10)

Once sMt
is retrieved, it can be used to cancel its contribution to yMr−1 as follows

yMr−1 − rMr−1Mr
sMt

= rMr−1Mr−1 sMt−1 + n′
Mr−1 (2.11)

which again is a single channel equalization problem. Therefore the ith single channel equalization

problem can be formulated as

yi −
Mr∑

j=i+1

rij sj = rii si + n′
i (2.12)

providing the streams si+1 . . .sMt
have been previously recovered.

As the transmitter has no knowledge of H , an adaptive power transmission scheme cannot be

implemented. Hence the total transmission power budget is allocated equally between the streams.

For an Mr = Mt MIMO QR system, assuming perfect interference cancellation between substreams

the total system capacity can be expressed as

C =

Mt∑

i=1

log2

(
1 +

Es
Mtσ2

|rii|2
)

(2.13)

Figure 2.6 shows the theoretical maximum throughput of a QR based system for a range of MIMO

orders calculated using (2.13). The total transmission power budget is identical in each MIMO scheme.

Results have been computed for 1000 Monte Carlo simulations. Once again the increase in throughput

afforded by MIMO is clearly visible, for example the data rate of a 4× 4 MIMO system is over three

times greater than that of the equivalent SISO system at an SNR of 10dB.

2.3 Convolutive Mixing

In a convolutive mixing model, the bandwidth of the signal transmitted is greater than the co-

herence bandwidth of the channel. Hence the transmitted signal will experience frequency selective

fading. The wireless channel between a single transmit-receive pair is therefore finite impulse response

(FIR) in nature. This is due to the transmitted signal arriving at the receiver over multiple paths and

with different time delays. Therefore, in the case of a frequency selective MIMO system, the noise
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Figure 2.6: Average capacity curves for MIMO QR instantaneous mixing channels.

free multipath channel matrix can be expressed as a polynomial matrix, H(z).

H(z) =

L−1∑

i=0

Hiz
−i (2.14)

where Hi ∈ CMr×Mt is the ith matrix tap of the MIMO channel of length L, and z−1 is the

unit delay operator. Thus its singular value and QR decomposition cannot be directly formulated

and spatial diversity can no longer be exploited. A number of solutions for this frequency selective

problem are now presented.

2.3.1 Space Time Vector Coding

Considering a set of source signals of length T , s(t) ∈ CMt×1 for t ∈ {0, 1, . . . , T − 1} that are

propagated through the MIMO channel, H(z), the received signals y(t) may be expressed as

y(z) = H(z) s(z) (2.15)
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where s(z) and y(z) denote the algebraic power series

s(z) =

∞∑

t=−∞

s(t)z−t

y(z) =

∞∑

t=−∞

y(t)z−t (2.16)

Raleigh and Cioffi [33] have shown that rewriting s as an Mt × N column vector, src the input-

output equation for a limited data block may be expressed as

yrc = Hrc src (2.17)

where Hrc is anMr (N + L− 1)×Mt (N) matrix composed ofMr×Mt single-input single-output

(SISO) subblocks.

Hrc =




Hrc 1,1 . . . Hrc 1,Mt

...
. . .

...

Hrc Mr ,1 . . . Hrc Mr ,Mt




(2.18)

with each subblock representing the channel convolution matrix for a single transmit-receive pair

and possessing the well-known Toeplitz form. The structure of the subblock for the ith transmit

and jth receive antenna is shown in (2.19). The SVD can then be applied to Hrc. Raleigh and

Cioffi term this approach Space-Time Vector Coding (STVC). The caveat of STVC is the associated

computational complexity. The SVD of anMr (N + L− 1)×Mt (N) matrix must be computed which

is unfeasible for even modest block lengths.

Hrc j,i =




hji(0) 0 . . . . . . . . . . . . . . . 0

hji(1) hji(0) 0 . . . . . . . . . . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 hji(L− 1) . . . hji(1) hji(0) 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 hji(L − 1) . . . hji(1) hji(0) 0




(2.19)

Although STVC structure is suggested as a theoretical means for achieving capacity [33], a reduced-

complexity discrete matrix multitone (DMMT) technique is implemented by the authors to exploit the

frequency selective MIMO channel. It is based on discrete multitone (DMT) [34] which is a technique

that uses the discrete Fourier transform (DFT) to implement frequency-division multiplexing (FDM)
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in SISO communications channels, this digital approach pioneered in the 70’s is significantly less

expensive and complex than its analogue counterpart. DMMT is essentially analogous to the OFDM

approach presented below so it is not discussed in further detail.

2.3.2 Orthogonal Frequency Division Multiplexing

A typical solution to the frequency selective channel problem is to reduce it to a narrowband

form by using a DFT to decompose the otherwise frequency selective channel of bandwidth B into

N orthogonal frequency flat MIMO channels, each with bandwidth B/N [3]. Consider first a SISO

frequency selective channel, h(z), with polynomial length L. The transmitter first performs an inverse

fast Fourier transform (IFFT) operation on the source signal of length T, s(t) ∈ C1×1, for t ∈

{0, 1, . . . , T − 1} to be transmitted. A cyclic prefix (CP) of length (L − 1) is then added prior to

transmission. At the receiver the cyclic prefix is stripped off and an FFT is applied to the received

signal, as shown in Figure 2.7.

s- IFFT -̃s CP
s′

h(z)
y′

CP��@@
-̃y FFT - y

Figure 2.7: SISO OFDM communications structure.

The purpose of the cyclic prefix is that it renders the matrix for the block input-output description,

Hc as circulant. Therefore the sequence ỹ may be expressed as

ỹ = Hc s̃ (2.20)

where

Hc =




h(0) 0 . . . 0 0 h(L− 1) . . . h(1)

h(1) h(0) 0 . . . 0 0
. . .

...

... h(1) h(0) 0 0
. . . 0 h(L− 1)

h(L− 1)
... h(1)

. . . 0
. . . 0 0

0 h(L− 1)
...

. . . h(0)
. . .

. . . 0

. . . 0 h(L− 1)
. . . h(1) h(0) 0 0

. . .
. . . 0

. . .
...

. . .
. . . 0

0 0 . . . 0 h(L− 1) . . . h(1) h(0)




(2.21)

The eigenvalues of a circulant matrix comprise the DFT of the first row of the circulant matrix,
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and conversely the first row of a circulant matrix is the inverse DFT of the eigenvalues [35]. Hence

the eigendecomposition of Hc may be expressed as

Hc = DH Σ D (2.22)

Where D denotes the discrete Fourier transform matrix of order n defined by [29]

Dn =
1√
N

(djk), djk = ωjkn (2.23)

where

ωn = exp(−2π
√
−1/n) = cos(2π/n)−

√
−1 · sin(2π/n) (2.24)

and Σ = diag {σ(0), σ(1), . . . , σ(N − 1)}, with

σ(k) =

L−1∑

i=0

h(l) exp−
j2πki

N , k = 0, 1, 2, . . . , N − 1 (2.25)

σ(k) for k = 0, 1, . . . , N − 1 is the sampled frequency response of the channel, where k represents

the tone index. Using 1/
√
N as the normalization factor in (2.23) conveniently ensures that the

resulting DFT matrix, D is unitary. As the IFFT of the transmitted signal, s̃ = DHs and the FFT

of the received signal, y = Dỹ, and exploiting the unitary property of the normalized DFT matrix

(DDH = I), the received signal becomes

y = D DH Σ DDHs

y = Σ s (2.26)

The frequency selective SISO channel has therefore been decoupled into N parallel flat fading

channels. OFDM is readily extended to MIMO frequency selective channels. For the MIMO scenario

the IFFT and CP operation is carried out individually on the data stream to be transmitted on each

antenna, prior to propagation. At the receiver the removal of the CP and FFT is carried out on each

individual received stream as shown in Figure 2.8. Where si denotes the ith transmitted stream of

length N symbols for i = 1, 2, . . . ,Mt and yj denotes the j
th received stream of length N symbols for

j = 1, 2, . . . ,Mr.

The matrix H [k] is the frequency response of the narrowband MIMO channel corresponding to

18
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sMt
- IFFT - CP

H(z)

CP��@@
- FFT - yMr

s2
- IFFT - CP CP��@@

- FFT - y2

s1
- IFFT - CP CP��@@

- FFT - y1

Figure 2.8: MIMO OFDM communications structure.

the kth tone and is related to the MIMO channel matrix H(z) by

H [k] =

L−1∑

i=0

Hi exp
− j2πki

N (2.27)

The standard scalar SVD and QRD may then be applied within each narrowband tone to provide

multiple spatial subchannels. Typically for efficient implementation of the FFT, N is chosen to be a

power of 2 [36]. It is important to note that MIMO-OFDM is a block based communications system,

with each transmitter or receiver operating on data N blocks in length. It therefore requires significant

storage for DFT’s and is unsuitable for decoding continuous streams of data.

2.3.3 Transceiver Optimization

Vucic and Boche have proposed a novel technique for transceiver optimization for frequency selec-

tive MIMO channels [37]. The transmitter and receiver are equipped with linear, causal FIR filters

G(z) and F (z), respectively as shown in Figure 2.9. The system operates under the assumption that

the receiver has perfect channel state information (CSI) and that the transmitter has imperfect CSI.

s(t) G(z) H(z) σ2IMr
F (z) ŝ(t)

Figure 2.9: Transceiver optimization communications structure.

The mean square error (MSE) between the transmitted signal, s(n) and estimate of the received

signal, ŝ(n), (2.28) is used as a performance measure. Using a minimax approach to transceiver

optimization, the authors have developed an iterative framework capable of providing a robust solution
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for a broad range of MIMO scenarios. Critically however, due to the intricacy of the problems,

convergence to the global optimum is not guaranteed [37].

E
{
‖s(n)− ŝ(n)‖22

}
(2.28)

Due to the uniqueness of this approach and the associated computational complexity, this work has

not been considered as it is an optimization problem and therefore distinctly different to the matrix

decomposition approach presented in this thesis. For this same reason, similar methods such as the

redundant FIR precoder approach proposed by Mertins [38] have also not been considered. As with

Vucic and Boche, Mertins does not discuss the associated computational complexity of his approach

or the performance of his system in terms of BER and therefore does not provide sufficient motivation

for a direct comparison between transceiver optimization and matrix decomposition approaches.

2.3.4 Polynomial Matrix Decomposition Techniques

A handful of numerical procedures currently exist for calculating polynomial matrix decomposition

or factorization. Perhaps the most well known is Smith-McMillan decomposition [28], however there

is little work on polynomial matrix techniques equivalent to the EVD, SVD and QRD for scalar

matrices. Vaidyanathan [28] has shown that any finite degree polynomial matrix can be factorized

into a series of paraunitary matrices consisting of rotation and delay matrices. Regalia and Huang [39]

have further extended this work to compute the EVD of a 2×2 paraunitary polynomial matrix. Finally

Lambert [40, 41] has developed a distinct technique for calculating the EVD of polynomial matrices

using the DFT.

Smith Form of a Polynomial Matrix

For a generic p × q polynomial matrix, P (z), simpler forms such as triangular and diagonal can

be obtained by performing elementary operations on the matrix [42]. There exist three types of

elementary row operations that may be carried out on P (z):

• Interchange two rows.

• Multiply a row by a non-zero constant.

• Add a polynomial multiple of a row to another row.

They are performed by pre-multiplying P (z) with an appropriate square matrix, termed an elemen-

tary matrix. Additionally there exist three types of elementary column operations, defined identically.

Elementary matrices are unimodular, in that the ith matrix tap, Piz
−i is a square polynomial matrix
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with determinant ±1. The product of any two unimodular matrices is also unimodular and the inverse

of a unimodular matrix is unimodular. Repeated applications of various row operations amount to

pre-multiplication of P (z) with a p×p unimodular matrix. Similarly, repeated applications of various

column operations amount to post-multiplication of P (z) by a q × q unimodular matrix [28].

Smith-McMillan Form

The Smith-McMillan form of the frequency selective MIMO channel matrix, H(z) is defined as

H(z) = W (z) Λ(z) V (z) (2.29)

where W (z) and V (z) are Mr ×Mr and Mt ×Mt unimodular matrix polynomials in z respectively

and Λ(z) is an Mr ×Mt diagonal matrix.

So far it appears that the problem of polynomial matrix diagonalization is already solved. Smith-

McMillan decomposition can be used to design polynomial filter banks at the transmitter and receiver

to create multiple spatial sub-channels and waterpouring can then be applied to maximize channel

capacity. Critically however the transmit and receive filter banks do not posses the para-unitary

property obtained through polynomial matrix singular value decomposition. i.e. V (z) Ṽ (z) 6= IMt

and W (z) W̃ (z) 6= IMr
. Therefore when using W (z) as a receive filter bank the noise power is no

longer preserved and consequently the gain of the spatial sub-channels no longer accurately reflect a

gain in SNR. Additionally the statistical properties of the noise will no longer be preserved which may

present further problems for equalization and decoding schemes. For example the Viterbi algorithm

assumes that the received sequence is corrupted by an additive white Gaussian noise process [31].

Therefore Smith decomposition has not been considered in this thesis, as it does not constitute an

extension of the scalar matrix decomposition techniques to polynomial matrices and is an independent

problem in its own right.

FIR Lossless Decomposition

If H(z) denotes the MIMO channel matrix of a causal system, then it is said to be lossless if

the FIR filter representing the multipath between each transmit-receive pair is stable. Additionally

the channel matrix must possess the paraunitary property, i.e. H̃(z) H(z) = H(z) H̃(z) = I.

Vaidyanathan [28] has shown that any lossless polynomial matrix can be factorised into a series of

paraunitary matrices comprised of rotation and delay matrices. At each step in the process, a rotation

and delay matrix are factored out of the lossless polynomial matrix, HN (z), resulting in a lossless

polynomial matrix where the degree of the system, N has been reduced by unity [43].
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The following example details the factorization for a 2 × 2 lossless system and Vaidyanathan has

subsequently generalized this work to paraunitary polynomial matrices of any dimension, provided it

is of fixed degree. For a 2× 2 lossless system, the polynomial channel matrix may be written as

HN (z) =

L∑

n=0

H(n)z−n, H(L) 6= 0 (2.30)

Where N denotes the degree of the determinant of H(z). The determinant of HN (z) is equal to a

single delay, i.e. of the form |HN (z)| = χz−N where χ 6= 0. For the trivial scalar matrix case, L = 0

then h(0) is a real unitary matrix and can always be represented as

h(0) = α




cos(θ0) − sin(θ0)

sin(θ0) cos(θ0)







1 0

0 ±1


 (2.31)

where α =
√
|χ|. Assuming L > 0, then the first step of factorization is to formulate a Givens

rotation [29] matrix, QN and a delay matrix, Λ(z) such that when they are applied to another

polynomial matrix, HN−1(z) results in

HN (z) =




cos(θN ) − sin(θN )

sin(θN ) cos(θN )




︸ ︷︷ ︸
QN




1 0

0 z−1




︸ ︷︷ ︸
Λ(z)

HN−1(z) (2.32)

whereHN−1(z) is also a lossless polynomial matrix. ThereforeHN (z) is expressed in terms of another

2 × 2 lossless polynomial matrix, HN−1(z), whose degree of the determinant has been reduced by

unity, and therefore the degree of the overall system has been reduced. Essentially a lossless degree-

one building block has been extracted to obtain a reduced remainder, HN−1(z). This process can

then be repeated, with HN−1(z) expressed in terms of HN−2(z) and so forth until the matrix H0(z)

is obtained, with determinant |H0(z)| = χ. Therefore HN(z) can be expressed as

HN (z) = QN Λ(z) QN−1 Λ(z) . . .Q1 Λ(z) α Q0




1 0

0 ±1


 (2.33)

The ability to factorize any paraunitary polynomial matrix in this manner provided the original

motivation for McWhirter to develop his EVD algorithm for para-Hermitian polynomial matrices [21].

The caveat of Vaidyanathan’s approach (and a problem not present with the SBR2 algorithm and its

derivatives) is that FIR lossless decomposition only ever implements a unit delay in one step. Consider
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a paraunitary polynomial matrix of degree 100, but containing only two non-zero coefficient matrices

(H0 and H100). This decomposition would require 100 stages and is computationally inefficient.

Two-channel FIR Lossless Decomposition

Regalia and Huang [39] have considered the problem of adaptively optimizing a two-channel lossless

FIR filter bank using eigenstructure algorithms. Using the fixed degree parametrization proposed by

Vaidyanathan [28] they re-formulate the problem as a state-space approach and propose an iterative

solution that avoids the problems of local minima associated with gradient descent techniques while

also reducing the computational complexity by an order of magnitude when compared to gradient

descent techniques. However their solution is only applicable to the 2 × 2 case and also suffers from

the unit delay step component of FIR lossless decomposition.

Lambert’s Approach to Multichannel Blind Deconvolution

The problem of broadband blind signal separation in the context of convolutive mixing has been

addressed by Lambert [41, 40]. By adapting standard eigenvalue routines, factorizations, decompo-

sitions and matrix algorithms and using abstract algebra/group theoretic concepts and information

theoretic principles, he has developed an EVD for polynomial matrices. Using a DFT to represent the

mixing in the frequency domain, Householder reflections are used to obtain the eigenvalues. Lambert’s

routine focuses on 2 × 2 polynomial matrices. However it can be readily extended to large matrices,

by applying the routine to a series of 2×2 sub-matrices of the matrix to obtain a diagonal matrix [43].

As Lambert’s approach involves the approximate inversion of FIR filters in the frequency domain, it

is fundamentally different from SBR2 and its derivatives presented in this thesis.

2.4 Channel Estimation

Accurate estimation of the frequency selective MIMO channel is critical to the performance of

wireless communications systems. Inaccuracies in the CSI will result in sub-optimum performance

and often system failure. To estimate H(z) a training sequence known to both transmitter and/or

receiver is used [44]. A training sequence of length Nt, st(n) ∈ CMt×1 for n ∈ {0, 1, . . . , Nt − 1}

is propagated through the MIMO wireless channel, H(z). The received training sequence, Yt is

expressed as an (Nt + L− 1)×Mr matrix, i.e.

Yt = St Ht + n (2.34)

where St is an (Nt+L− 1)× (Mt L) matrix comprised of (Nt+L− 1)×L subblocks, with each sub-
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block representing the convolution matrix of the training sequence transmitted from a given transmit

antenna and possessing the well-known Toeplitz form and Ht is an (Mt L) ×Mr matrix containing

the channel coefficients in column vector form, i.e.

Ht =




h11(0) . . . hMt1(0)

h11(1) . . . hMt1(1)

...
...

h11(L − 1) hMt1(L− 1)

...
...

h1Mr
(0) . . . hMtMr(0)

h1Mr
(1) . . . hMtMr(1)

...
...

h1Mr
(L− 1) . . . hMtMr(L−1)




(2.35)

2.4.1 Zero-Forcing Channel Estimation

A simple zero-forcing solution can be implemented by calculating the pseudo-inverse of St. Pseudo-

inversion is so called as it allows for the calculation of the inverse of non-square matrices. Defining

the scalar matrix A ∈ IR
m×n, the pseudo-inverse of A, denoted X of dimensions n×m is defined to

be the unique matrix that satisfies the four Moore-Penrose conditions [29]:

A X A = A

X A X = X

(A X)T = A X

(X A)T = X A

(2.36)

The estimate of the channel, Ĥt can now simply be calculated by

Ĥt = pinv(St) Yt (2.37)

where pinv(St) denotes the pseudoinverse of the matrix St. In practice this zero forcing approach

is rarely implemented, and instead the least squared error (LSE) discussed below is used, due to its
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increased performance at low signal to noise ratios. As the LSE solution minimizes the summation of

the squared error in the presence of channel noise it becomes the zero-forcing solution when no noise

is present.

2.4.2 Least Squares Error Channel Estimation

Defining the error between the received signal, Yt and the transmitted signal, St as

E = (Yt − StĤt) (2.38)

where Ĥt denotes the estimate of the channel matrix, Ht. The LSE approach seeks to minimize the

summation of the square error, i.e.

J = trace(EHE)

= (Yt − StĤt)
H(Yt − StĤt)

= Y H
t Yt − Y H

t StĤt − ĤH
t SHt Yt + ĤH

t SHt StĤt (2.39)

where trace(EHE) denotes the sum of the elements on the main diagaonal of EHE. Differentiating

with respect to ĤH
t results in

δJ

δĤt

= SHt Yt + SHt StĤt = 0 (2.40)

Re-arranging in terms of Ĥt simply results in

Ĥt = (SHt St)
−1 SHt Yt (2.41)

It should be noted, that typically if the rank of the matrix St is Mt(L), then typically pinv(St) =

(SHt St)
−1SHt . For this scenario the zero forcing solution (2.37) is identical to the LSE equation,

(2.41).

2.4.3 Implementation

In practice it is desirable that the training sequence, St is uncorrelated, so that E
{
SHt St

}
≈

Mt(L)×IMt(L). This ensures that the channel for each transmit-receive pair is estimated independently

and prevents (SHt St)
−1 becoming singular. Increasing the length of Nt increases the accuracy of the

decomposition, at the cost of spectral efficiency. The relative error for the estimate of the channel,
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H(z) is defined as

Erel =

∥∥∥H(z)− Ĥ(z)
∥∥∥
F

‖H(z)‖F
(2.42)

where Ĥ(z) denotes the polynomial estimate of the MIMO frequency selective channel. Figure 2.10

shows the average relative error in LSE channel estimation for a range of training sequences.
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Figure 2.10: Average relative error in channel estimation for a 3× 3 MIMO channel with polynomial
length L = 5 and training sequences of lengths Nt averaged over 1000 Monte Carlo simulations.

Even with a relatively low SNR it is possible to obtain a reasonably accurate estimation of the

channel, for example a relative error of 0.27 at an SNR of 2dB for a training sequence of length

Nt = 50. This can be considered as accurate as performing a polynomial matrix decomposition on a

known channel matrix and recalculating the channel matrix from the polynomial matrices produced by

the decomposition results in a relative error between the reconstituted matrix and the known channel

matrix of a similar magnitude. Hence at SNR’s of greater than 2dB relative errors introduced by

polynomial matrix decomposition dominate the effects of those produced by inaccurate channel state

information. This is discussed in greater depth in the next chapter.

Recently there has been a great deal of research for MMSE channel estimation in MIMO-OFDM

systems, namely due to MIMO-OFDM based 4G broadband wireless technology [45]. In particular

the exploitation of spatial and frequency correlations within the MIMO channel[46, 47]. Blind-channel

estimation, whereby channel state information (CSI) is obtained by using the statistical properties
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of transmitted signals [48], and thus avoids sending any pilot symbols or training sequences is also a

topic of current research interest, as it maximizes spectral efficiency. However only the simple LSE

channel estimator demonstrated here has been implemented throughout this thesis, as it is only needed

to quantify the effects of channel estimation error on the performance of MIMO systems based on

PMSVD and PMQRD.

2.5 Conclusion

In this chapter the benefits of singular value and QR decomposition for MIMO flat fading channels

have been clearly demonstrated. In particular how spatial diversity can be exploited to increase

overall system capacity. The frequency selective MIMO problem has been introduced, in the form of

convolutive mixing and an overview of existing solutions to the broadband problem has been presented.

The treatment of MIMO-OFDM is of special importance, as this will become the performance yard-

stick for which the techniques proposed in this thesis are measured against in subsequent chapters.

Existing techniques and numerical procedures for operating on polynomial matrices have been

reviewed. It is important to note that there are no existing techniques for achieving the polynomial

matrix singular value and QR decompositions presented in this thesis. Finally the estimation of

channel state information has been covered, which will become integral to accurate simulation of the

performance of a real-world frequency selective MIMO system.

The scene therefore is now set, and the focus of this thesis will now be on the application and

analysis of polynomial matrix decomposition to frequency selective channels to obtain performance

benefits identical to those observed in frequency flat MIMO channels, while providing an entirely time

domain based solution.
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Chapter 3

Polynomial Matrix Decomposition

Techniques

3.1 Introduction

In the previous chapter the significant performance benefits of performing singular value and QR

decomposition for instantaneous mixing MIMO channels were shown. In this chapter the operation

of the algorithms that allow for the singular value and QR decomposition of polynomial matrices are

introduced, allowing for the generalization of the previous work to frequency selective MIMO channels.

The chapter begins by showing how the Eigenvalue decomposition (EVD) of a real symmetric

scalar matrix can be formulated using Jacobi rotation matrices [29]. This work is then extended to the

polynomial matrix eigenvalue decomposition (PMEVD) of a para-Hermitian polynomial matrix, which

is performed using the sequential best rotation (SBR2) method [21]. SBR2 was initially developed for

the blind separation of signals that have been mixed in a convolutive manner [49]. For this scenario

SBR2 forms the first stage in a multi-stage blind source separation (BSS) algorithm and is used to

decorrelate the convolutively mixed signals. A second stage uses 4th order statistics and allows the

calculation of a hidden rotation matrix [49], allowing for further separation of the source signals.

SBR2’s operation and efficient implementation is discussed prior to the work being extended to show

how multiple applications of the SBR2 algorithm can be used to calculate the polynomial matrix

singular value decomposition (PMSVD) of a generic complex polynomial matrix.

The underlying Jacobi rotation approach of the SBR2 algorithm is then applied within a polyno-

mial matrix QR decomposition (PMQRD) algorithm to calculate the PMQRD of a generic complex

polynomial matrix. Finally it is shown how PMSVD can be performed entirely with the PMQRD

algorithm, and how the SBR2 approach is no longer necessary for future implementations.

3.2 SBR2 Operation for PMEVD

The EVD of a complex symmetric scalar matrix R is given in (3.1) where V is a unitary matrix,
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such that V V H = V HV = Ip and D is a diagonal matrix consisting of eigenvalues.

V R V H = D (3.1)

This diagonalization of R is achieved using Jacobi rotation matrices [29]. Initially, the largest in

magnitude off-diagonal element of R is located, assumed to be the p, qth element, i.e. rpq = [R]pq.

This search can either be restricted to the upper triangular or lower triangular part of R due to its

Hermitian property. The rotation angle θ which is used to annihilate the off-diagonal element rpq of

matrix R is chosen such that:

cot 2θ =
rqq − rpp

2rpq
(3.2)

The corresponding Jacobi rotation matrix, Qpq is then given by

Qpq ≡




1 . . . 0 . . . 0 . . . 0

...
. . .

...
...

...

0 . . . cpp . . . spq . . . 0

...
...

. . .
...

...

0 . . . −sqp . . . cqq . . . 0

...
...

...
. . .

...

0 . . . 0 . . . 0 . . . 1




(3.3)

where c = cos(θ) and s = sin(θ), and their subscripts denote the element location in the matrix.

This matrix is orthogonal by construction. To diagonalize matrix R using Jacobi rotation matrices a

sequence of such orthogonal (similarity) transformations are applied of the form:

R′ = QT
pq R Qpq (3.4)

Each application of rotation matrices Qpq and QT
pq will zero two elements of R and the sequence of

such matrices is chosen so as to eliminate the dominant off-diagonal elements at each step. Successive

transformations will partially undo previously zeroed elements, but off diagonal terms will eventually

tend to zero, resulting in a diagonal matrix D, to within some target precision whose elements

correspond to the eigenvalues of R:

D = QT
β . . .Q

T
1 R Q1 . . .Qβ (3.5)
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where β is an unspecified number of iterations. Therefore by performing a sequence of orthogonal

similarity updates, R is diagonalized.

3.2.1 SBR2 Algorithm

Similar to the scalar EVD, the input to the SBR2 algorithm [21] is a para-Hermitian polynomial

matrix, which may be expressed as

R(z) =

τmax∑

τ=−τmax

z−τR(τ) (3.6)

where R(τ) ∈ Cp×p and τ represents the polynomial index.

[R(τ)]kl = rkl(τ) = r∗lk(−τ)

= [R(−τ)]∗lk , k, l ∈ {1, 2, . . . , p} (3.7)

The SBR2 algorithm will calculate the PMEVD of R(z) as in (3.8) where D(z) is a diagonal

polynomial matrix and P (z) is a paraunitary polynomial matrix and P̃ (z) is its paraconjugate.

P (z) R(z) P̃ (z) = D(z) (3.8)

3.2.2 Extension to Polynomial Matrices

SBR2 expands the Jacobi rotation matrix approach to para-Hermitian polynomial matrices. Ini-

tially the dominant off-diagonal coefficient of the input polynomial matrix R(z) is located, i.e. the

off-diagonal coefficient whose magnitude is greatest. Once again this search can be restricted to either

the upper triangular or lower triangular part of R(z) due to its para-Hermitian property. B(z), a

delay matrix is constructed to shift the dominant off-diagonal coefficient to the zero delay lag, z−0.

A Jacobi rotation matrix Q is then designed to drive the dominant coefficient to zero resulting in a

new polynomial matrix, R′(z).

If we denote G(z) the product of the rotation matrix Q and the delay matrix B(z) then R′(z) is

given explicitly by:

R′(z) = G(z) R(z) G̃(z) (3.9)

The delay matrix B(z) is defined as a p× p polynomial identity matrix with the exception of the
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kth diagonal element, which is z−t, i.e.

B(k,t)(z) =




Ik−1 0 0

0 z−t 0

0 0 Ip−k




(3.10)

This process can be repeated iteratively until the magnitude of the maximum off-diagonal coeffi-

cient is approximately zero, to within some target precision. This is determined by the ratio, denoted

ε of the maximum off-diagonal element to the sum of the Frobenius norms of the coefficients of the

diagonalized matrix, i.e. ‖diag (D(z))‖F , see [21], in which a proof of convergence of the algorithm is

given.

The paraunitary matrix, P̃ β(z) is defined as:

P̃ β(z) = G̃1(z) G̃2(z) . . . G̃β(z) (3.11)

where β represents an unspecified number of iterations. After β iterations (3.9) results in:

Dβ(z) = P β(z) R(z) P̃ β(z) (3.12)

which is clearly the PMEVD of R(z).

3.2.3 Preliminary Results

Figures 3.1 and 3.2 show a 5 × 5 para-Hermitian polynomial matrix of polynomial length 9 and

its subsequent diagonalization using the SBR2 algorithm. Each figure depicts the impulse response

of the corresponding channel transfer function. From Figure 3.2 it is observed that SBR2 success-

fully diagonalizes the input para-Hermitian matrix. By recalculating the initial input para-Hermitian

matrix R(z) from D(z) and P (z) calculated by SBR2, and comparing it with the original R(z), the

relative error for the decomposition can be calculated, i.e.

Erel =

∥∥∥R(z)−
(
P̃ (z) D(z) P (z)

)∥∥∥
F

‖R(z)‖F
(3.13)

For the example shown Erel = 7.987× 10−3, which is reasonably small, confirming the validity of

the approach taken of generalizing the Jacobi method for calculating the EVD of scalar matrices to

polynomial form. However with each delay step, at each iteration of the algorithm, the order of the
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Figure 3.1: Input para-Hermitian matrix, R(z) of polynomial length 9.
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Figure 3.2: Diagonalized output matrix D(z) calculated using SBR2. Stopping criteria of maximum
polynomial order of 501 for both D(z) and P (z).

polynomial matrix being diagonalized increases, often after a series of iterations becoming unnecessar-

ily large [50]. This is a natural consequence of using an FIR filter to compute the PMEVD. At every
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iteration new coefficient matrices are created at both ends of the matrix to accommodate the shifted

coefficients. Hence the order of the polynomial Di+1(z) is greater than Di(z) for i = 1, 2, . . . , β − 1.

In the example shown in Figure 3.2, the maximum polynomial order of the diagonalized matrix cal-

culated by SBR2 has been limited to 501. In the original SBR2 algorithm [21], additional stopping

criteria are implemented such as a limit on the maximum number of iterations and a convergence

criteria, ε. If the smallest off-diagonal element is less than the product of ε and the reference value

given in (3.14), then the input para-Hermitian matrix R(z) is deemed sufficiently diagonalized.

∥∥∥R(z)R̃(z)
∥∥∥
F

p
(3.14)

As the polynomial order of the diagonalized matrix increases at every iteration, the computational

cost of the algorithm quickly becomes a limiting factor. Hence in the example shown, maximal

polynomial order has been used a stopping criteria as opposed to a limit on the maximum number of

iterations or convergence criteria. Critically, this maximum polynomial limit is reached prior to the

magnitude of the maximum off-diagonal coefficient becoming approximately zero and therefore limits

the quality of the decomposition.

3.2.4 Limiting Polynomial Matrices Order Within SBR2

Polynomial matrix growth within the SBR2 algorithm has a significant impact on performance

with storage requirements becoming excessively large and the subsequent increase in the process

of searching for the largest in magnitude off-diagonal coefficient through an ever increasing matrix.

New coefficient matrices constructed at every iteration typically consist entirely of zeros except for

coefficients in the lth row or column of the matrix. Further delays applied to the matrix in subsequent

iterations often result in outer coefficient matrices containing a small fraction of the total Frobenius

norm of the input matrix, R(z) and occasionally outer coefficient matrices consisting entirely of zeros.

Therefore to reduce computational complexity, Foster, et al [50] have proposed that a small proportion

of the Frobenius norm of R(z) is allowed to be lost at each iteration of the algorithm. By truncating

R(z) in this way the order of the resulting diagonalized matrix D(z) is significantly reduced. Ta, et

al [51] have also proposed a similar method for shortening the order of polynomial matrices produced

by the SBR2 algorithm. Their approach reduces the order of the paraunitary matrix, P (z) while

containing the loss in paraunitary property under a given upper bound.

The approach of Foster [50] introduces an additional stopping criteria, the total maximal amount

of the Frobenius norm of R(z) which can be lost over all iterations may also be introduced to prevent
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the small faction in energy lost become excessive over a large number of iterations. Figure 3.3 repeats

the diagonalization of the matrix shown in Figure 3.1 but allows a maximal fraction of 1× 10−6 of the

F-Norm ofR(z) to be lost per iteration. For comparative purposes, Figure 3.4 shows the corresponding

element, R11(z) of the input para-Hermitian polynomial matrix to the SBR2 algorithm. Note the

significant increase in magnitude of the zero lag element in Figure 3.3 post diagonalization.
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Figure 3.3: Dominant mode of the diagonalized output matrix D(z) calculated using SBR2 with
truncation parameters µ = 1× 10−6 and ε = 1× 10−4.

As can be clearly seen, the polynomial order of the resulting diagonal matrix has been reduced to

41, at a marginal cost of increasing the relative error of the decomposition to Erel = 17.0469× 10−3.

Critically the stopping criteria of ε = 1 × 10−4 has been reached, and polynomial matrix size is no

longer a limiting factor. The number of iterations required was 932 1.

Table 3.1 compares the computational complexity of SBR2 diagonalizing the matrix in Figure 3.1

with and without the trimming function. Numerical values have been taken directly from the MAT-

LAB profiler. Only the results for the key SBR2 functions are presented 2. Self time is the time spent

in a function excluding the time spent in it’s child functions. The key functions are as follows:

1The computational cost of an iteration of the SBR2 algorithm depends on the order of the matrix being diagonalized,

and hence the time required for locating the maximum off-diagonal element and addressing the amount of memory

required for the bulk delay matrix. Therefore the number of iterations has little significance on actual computational

cost and should not be considered as such.
2The SBR2 algorithm has been implemented entirely within the MATLAB environment. Code has been written

efficiently as possible but there has been no attempt to increase speed by implementing code in C++ and compiling

them as .mex functions.
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Figure 3.4: R11(z) of the input para-Hermitian polynomial matrix to the SBR2 algorithm.

• SBR2 Main - The main SBR2 function.

• Max Element - Locates the maximum off-diagonal element. In this implementation the search

is restricted to the upper triangular component.

• Left Rotate - Applies the rotation matrix from the left hand side. This function will be called

twice, for calculating the updated R′(z) and the updated paraunitary matrix P (z).

• Left Shift - Applies the bulk delay matrix from the left hand side. Again this function will be

called twice, for calculating the updated R′(z) and the updated paraunitary matrix P (z)

• Right Rotate - Applies the rotation matrix from the right hand side.

• Right Shift - Applies the bulk delay matrix from the right hand side.

P̃ (z) is calculated directly from P (z) once matrix diagonalization is complete to reduce the number

of calls to Right Rotate and Right Shift.

As can be clearly seen from Table 3.1 the overall computational time of the algorithm has been

reduced by over 95%. As the focus of this thesis is the application of polynomial matrix decompo-

sition to frequency selective MIMO channels and not the development of computationally efficient

algorithms, there will be little further discussion on computational complexity. However as we shall

see in Chapter 4, other key components of the MIMO communications system, in particular the turbo
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SBR2 - no trimming SBR2 - with trimming
Function Calls Total Time (s) Self Time (s) Calls Total Time (s) Self Time (s)

SBR2 Main 1 173.3 152.9 1 4 2.2
Max Element 2307 9.6 9.6 933 0.8 2
Left Rotate 4612 4.2 4.2 1864 0.3 0.3
Left Shift 4612 1.9 1.9 1864 0.1 0.1
Right Rotate 2306 1.8 1.8 932 0.1 0.1
Right Shift 2306 0.7 0.7 932 0.1 0.1

Table 3.1: Computational complexity analysis for SBR2 with and without trimming functions, for a
5× 5 MIMO channel with polynomial length 5.

decoder are far higher in computational complexitity. As turbo decoding is already part of the third

generation partnership project (3GPP) standards for mobile networking [52] it is reasonable to assume

SBR2 and its derivatives could easily be implemented in hardware for real-time communications.

3.3 Polynomial Matrix Singular Value Decomposition

The PMSVD of the polynomial channel, H(z), is shown in (3.15) where U(z) and Ṽ (z) are

paraunitary polynomial matrices, so that Ũ(z) U(z) = I and Ṽ (z) V (z) = I and Λ(z) is a diagonal

polynomial matrix.

H(z) = U(z) Λ(z) Ṽ (z) (3.15)

U(z) and Ṽ (z) are obtained from the polynomial decomposition of H(z) H̃(z) and H̃(z) H(z).

By separately post and pre multiplying the channel matrix with its paraconjugate and re-arranging

in terms of Λ(z) we obtain the pair of equations in (3.16).

Λ(z) Λ̃(z) = Ũ(z) H(z) H̃(z) U(z)

Λ̃(z) Λ(z) = Ṽ (z) H̃(z) H(z) V (z) (3.16)

Forming the para-Hermitian input to SBR2 by post multiplying the polynomial channel matrix

with its paraconjugate, i.e. R(z) = H(z) H̃(z) and comparing the first equation in (3.16) and (3.8)

shows that the paraunitary diagonalizing matrix calculated by the SBR2 algorithm, P̃ (z) ≡ U(z)

Repeating this operation with the para-Hermitian input to SBR2 formed from the pre multiplica-

tion of the paraconjugate of the polynomial channel matrix and the polynomial channel matrix itself,

i.e. R(z) = H̃(z) H(z) yields the paraunitary matrix, V (z) as P̃ (z) ≡ V (z).

Finally, Λ(z) is calculated from (3.15) as Ũ(z)H(z) V (z). Λ(z) has been calculated in this manner

as computing Λ(z) directly from the diagonal output of SBR2 (3.8), D(z) is a complex mathematical

problem in its own right and outside the scope of this thesis. Therefore a true PMSVD has been
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performed on H(z) by applying the SBR2 algorithm twice.

3.3.1 Simulation Results

Figure 3.5 shows a MIMO system with five antennas at the transmitter and receiver. The temporal

length of the channel between each transmitter and receiver is five and the channel has a constant power

delay profile with equal average gain for each tap. Figure 3.6 shows its subsequent diagonalization

using multiple applications of the SBR2 algorithm. The relative error of this decomposition, i.e.

Erel =

∥∥∥H(z)−
(
U(z) Λ(z) Ṽ (z)

)∥∥∥
F

‖H(z)‖F
(3.17)
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Figure 3.5: Input polynomial matrix, H(z) of polynomial length 5.

was 63.6× 10−3. As a comparison, Figure 3.7 shows the relative error in channel estimation of H(z)

for a training sequence of length Nt = 50, averaged over 1000 Monte Carlo simulations using an

MMSE channel estimator. PMSVD is then performed on the MMSE estimate, Ĥ(z) and then H(z)

is reconstructed from (3.15) and its relative error calculated. As can be seen the additional relative

error introduced from PMSVD does not significantly increase the relative error already present in the

channel estimator.
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Figure 3.6: Output diagonalized polynomial matrix produced by PMSVD, µ = 1×10−6, ε = 1×10−4.
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Figure 3.7: Average relative error in channel estimation for H(z), with training sequence of length
Nt = 50 averaged over 1000 Monte Carlo simulations.

3.3.2 Alternate PMSVD Approaches

This approach to PMSVD is often criticized, as perfect channel knowledge is unobtainable in the
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real world. Hence the presence of channel estimation errors in H(z) is exasipated when forming the

para-Hermitian input to SBR2. Although unfavourable, for the majority of this PhD this was the

only algorithm available to calculate the PMSVD of a polynomial matrix.

McWhirter has proposed a method for directly calculating the PMSVD of H(z) operating directly

on H(z). Golub [29] has shown that the SVD of a scalar matrix can be calculated directly using

Givens rotations and McWhirter’s solution is a generalization of this to polynomial matrices using

the bulk delay and rotation approach developed in the SBR2 algorithm. Due to the para-Hermitian

property of the input polynomial matrix to the SBR2 algorithm, at each iteration the effect of the

bulk delay component of G(z) will be counter-acted by that of G̃(z). However this will not be the case

when operating directly on H(z) and hence independent rotations applied from the left and right may

cause energy to leave the zero lag diagonal elements, resulting in the development of a significantly

different approach to that of SBR2. This algorithm is currently still in development and no work has

been currently published on its operation.

It is also possible to calculate the PMSVD directly on H(z) using the PMQRD algorithm. This

PMQRD approach to PMSVD results in a highly efficient implementation and is discussed on page 42.

Due to its recent conception it has been implemented in this thesis but not in the detail afforded to

the SBR2 based evaluation. As will be seen it significantly further improves the computational time

of calculating a PMSVD.

3.4 Polynomial Matrix QR Decomposition

The QR decomposition of a p× q scalar matrix A is defined as:

A = Q R (3.18)

whereQ is a p×p unitary matrix, so that QQH = QHQ = Ip andR is a p×q upper triangular matrix.

One method for computing the unitary matrix Q is by calculating a series of Givens3 rotations, where

each rotation will drive one of the elements beneath the diagonal of the matrix A to zero [29]. The

elements ofA below the diagonal are zeroed in a particular order to ensure that successive rotations do

not undo previously zeroed elements. There are several different orderings that can be implemented,

however for the purposes of this thesis the elements are eliminated starting with the uppermost left

element and then moving across elements beneath the diagonal in each row from left to right, before

3It is important to note that Givens rotations are no different from Jacobi rotations. In the context of Jacobi methods

for the symmetric eigenvalue problem, Jacobi rotations form the core operation. Therefore it is commonplace to refer to

Jacobi rotations in the context of eigenvalue decomposition and Givens rotations in the context of QR decomposition.
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moving to the next row down.

3.4.1 Polynomial Matrix QR Decomposition

The p× q polynomial matrix A(z) is defined as

A(z) =

t2∑

i=t1

Aiz
−i (3.19)

Where Ai ∈ Cp×q is the ith matrix tap of the polynomial matrix, i ∈ Z, t1 < t2 and z−1 is the

unit delay operator. The polynomial QR decomposition of A(z) is shown in (3.20) where Q(z) is a

paraunitary polynomial matrix, so that Q(z)Q̃(z) = Ip and R(z) is an upper triangular polynomial

matrix.

A(z) = Q(z) R(z) (3.20)

Elementary Polynomial Givens Rotation

An elementary polynomial Givens rotation (EPGR) [22] is a Givens rotation preceded by an

elementary time shift matrix as follows:

G(α,θ,φ,t)(z) =




ejα cos θ ejφ sin θ

−e−jφ sin θ e−jα cos θ







1 0

0 zt




=




ejα cos θ ztejφ sin θ

−e−jφ sin θ zte−jα cos θ


 (3.21)

where j denotes the imaginary constant and θ the rotation angle. In the simplest case, defining a

2× 1 polynomial vector as a(z) ∈ C2×1, the object of the EPGR is to drive a specific coefficient from

the polynomial element a2(z) to zero.




ejα cos θ ztejφ sin θ

−e−jφ sin θ zte−jα cos θ






a1(z)

a2(z)


 =



a′1(z)

a′2(z)


 (3.22)

For example, to zero the coefficient a2(i) then the lag parameter in the EPGR matrix is set as

t = i and the rotation angles are chosen [26] such that

tan θ =
|a2(t)|
|a1(0)|

, φ = − arg(a2(t)), α = − arg(a1(0)) (3.23)

resulting in a′2(0) = 0. The application of the EPGR renders a′1(0) real. Note that if |a1(0)| = 0
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in (3.23), then set θ = π/2 [43]. An EPGR is paraunitary by construction as each component of the

matrix, i.e. the Givens rotation and the elementary time shift matrix are both paraunitary.

Complete Polynomial Givens Rotation

Successive EPGR’s can be applied iteratively to the 2 × 1 polynomial vector a(z) to drive all

coefficients of the polynomial element a2(z) arbitrarily close to zero. The coefficients of a2(z) are

zeroed in order of maximum magnitude. At each iteration, the coefficient of maximum amplitude is

zeroed and the complete series of EPGR’s required constitutes a complete polynomial Givens rotation

(CPGR) [22, 26], denoted by the matrix G(2,1)(z), where the superscripts denote the position of the

polynomial element that the matrix is attempting to annihilate. A matrix of this form can be applied

to a(z) resulting in

G(2,1)(z)



a1(z)

a2(z)


 ∼=



a′1(z)

0


 (3.24)

3.4.2 PMQRD Algorithm

A CPGR can be applied to the polynomial matrix A(z) to drive one of the polynomial elements

to zero, e.g.

A′(z) = G(j,k)(z) A(z) (3.25)

where G(j,k)(z) is the CPGR matrix designed to drive all coefficients of aj,k(z) sufficiently small,

resulting in a new polynomial matrix, A′(z) [22, 26]. The CPGR applies an iterative sequence of

EPGR matrices. Each EPGR is formulated as a p× p identity matrix with the exception of the four

elements positioned at the intersection of rows j and k with columns j and k. These elements are

given by the 2× 2 sub-matrix, G(α,θ,φ,t)(z) as in (3.22), where for example if the dominant coefficient

is aj,k(i), then the lag parameter is set as t = i and the coefficients required for calculating the rotation

angles are a2(t) = ajk(i) and a1(0) = ak,k(0).

Zeroing the polynomial elements of A(z) beneath the diagonal in the order previously described is

now a simple case of applying successive CPGR matrices. Defining the paraunitary matrix Q
β
(z) as:

Q̃
β
(z) = Gβ(z) . . .G2(z) G1(z) (3.26)

where β represents an unspecified number of iterations. After β iterations (3.25) results in:

R(z) = Q̃
β
(z) A(z) (3.27)
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3.5 Simulation Results

Figure 3.8 shows the upper triangular polynomial matrix produced from the PMQRD of the

polynomial matrix previously used in the PMSVD example, H(z) shown in Figure 3.5. As with

SBR2, outer coefficient matrices can be trimmed at each iteration if they contain only a small fraction

of the Frobenius norm of the input matrix, to restrict polynomial growth and reduce computational

complexity.
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Figure 3.8: Output upper-triangular polynomial matrix produced by PMQRD, µ = 1 × 10−6, ε =
1× 10−4.

The relative error of this decomposition was 10.6 × 10−3, again an order of magnitude less than

that typically present from MMSE channel estimation, confirming its suitability for practical imple-

mentation.

3.6 PMSVD using PMQRD Algorithm

A novel algorithm for calculating the PMSVD using the PMQRD has been proposed by Foster [53],

allowing for direct calculation of the PMSVD without the need to form an input para-Hermitian

matrix. Initially the PMQRD of the input matrix, A(z) ∈ Cp×q is calculated, such that

Ũ1(z) A(z) = R1(z) (3.28)
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where Ũ1(z) is a p × p paraunitary matrix and R1(z) is a q × q upper-triangular polynomial

matrix. The PMQRD of A
′

(z) = R̃1(z) is now calculated, essential calculating the PMQRD of a

lower-triangular polynomial matrix.

Ṽ 1(z) A
′

(z) = R2(z) (3.29)

where Ṽ 1(z) is a Mt ×Mt paraunitary matrix. This completes one iteration of the PMSVD by

PMQRD algorithm, resulting in

Ṽ 1(z) Ã(z) U1(z) = R2(z) (3.30)

This process is repeated until all off-diagonal coefficients are deemed sufficiently small. After β

iterations resulting in

U(z) A(z) Ṽ (z) = Λ(z) (3.31)

where U(z) = U1(z) . . .Uβ(z) and Ṽ (z) = Ṽ 1(z) . . . Ṽ β(z). Both of these matrices are parau-

nitary by construction. Λ(z) is a diagonal matrix containing r = min(p, q) orthogonal channels. As

with SBR2 the PMSVD by PMQRD algorithm will order the channels in order of power spectral

density [28, 10], hence λ11(z) will be the strongest channel and λrr(z) the weakest. Hence a PMSVD

has been calculated with repeated applications of the PMQRD algorithm.

Applications of the PMQRD in this manner will result in a PMSVD, as throughout all operations

of the PMSVD by PMQRD algorithm, the quantity |a11(0)|2 is monotonically increasing. This is a

direct consequence of driving the off-diagonal polynomial elements in the first row or column of the

matrix to zero, and cannot be affected by subsequent rotations applied to off-diagonal coefficients in

any other column or row of the matrix. As the quantity is bounded by the total energy in the matrix,

i.e. ‖A(z)‖2F it cannot increase indefinitely. Hence a point exists where the off-diagonal elements of

the matrix are less than ε or some other stopping criteria in magnitude. A concise proof of convergence

is available in [43].

Performing the PMSVD in this manner has several significant benefits over the SBR2 based ap-

proach. Aside from operating directly on the frequency selective MIMO channel matrix, it is com-

putationally quicker. Moreover the paraunitary filter banks obtained from the PMSVD by PMQRD

approach are significantly smaller than those obtained via SBR2. This significantly reduces the com-

putational cost of channel equalization, which will become apparent in Chapter 4.
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3.7 Conclusions

This chapter has introduced two polynomial matrix decomposition algorithms, one for calculating

PMSVD and one for PMQRD. Subsequent chapters and the basis of this thesis will focus on the appli-

cation and analysis of these algorithms to frequency selective MIMO channels. The operation of the

SBR2 algorithm for PMEVD has been discussed and how computational complexity and performance

can be significantly increased with only a minor cost to quality of matrix decomposition. This has

been assessed against errors introduced by MMSE estimation of the CSI and found to be insignificant.

It has then been demonstrated how a true PMSVD can be performed on any polynomial matrix by

applying the SBR2 algorithm twice.

The natural extension of this Jacobi rotation matrix to polynomial matrix decomposition, PMQRD

has then been demonstrated, using the computational efficient approach developed for SBR2. Finally

this work has been taken one step further, and PMSVD by PMQRD has been introduced, which

although only developed recently has the potential to significantly improve the performance of the

MIMO systems pioneered in this thesis.

In the next chapter the PMSVD will be applied to various frequency selective MIMO channels and

evaluated against existing time domain and frequency domain based solutions.
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Chapter 4

Dominant Mode PMSVD

Performance

4.1 Introduction

In Chapter 3 it was shown that the PMSVD of a polynomial MIMO channel matrix, H(z) can

be performed with two applications of the SBR2 algorithm. In this chapter, the application of the

dominant mode of PMSVD to MIMO communications is discussed. Without loss of generality, only

frequency selective MIMO systems consisting of equal number of transmit and receive antennas, i.e.

Mt = Mr have been considered. Generality is not lost as for a MIMO system where Mt 6= Mr, the

PMSVD and the channel equalization techniques presented in this chapter are still readily applicable.

The only caveat is the number of orthogonal channels provided by PMSVD will be reduced. However

as this chapter focuses solely on exploiting the spatial properties of the dominant PMSVD mode, this

is not an issue. The dominant mode, λ(z)11 will provide the spatial sub-channel with the highest gain.

Using only this mode results in a PMSVD system that does not exploit the full spatial capacity of the

MIMO channel. Instead the focus in this chapter is to exploit the superior BER rate performance of

the dominant mode, for low SNR environments.

Two different MIMO scenarios are considered in this chapter. A frequency selective MIMO channel

with exponential power delay profile, and a frequency selective MIMO channel with constant power

delay profile. Exponential power delay profile channels are commonly found in outdoor macro-cellular

environments, due to the significant attenuation in non Line-of-Sight (LOS) paths. For an indoor

micro-cellular environment, typically a LOS path between transmitter and receiver does not exist

and the channel between each transmit-receive antenna pair is a scattering channel. Due to the rich

multi-path propagating environment this results in a MIMO channel with constant power delay profile.

When using the SBR2 algorithm to calculate the PMSVD of the channel, this energy distribution

has a direct effect on computational time and energy distribution within the matrices produced by

the decomposition. Forming the para-Hermitian input to SBR2 as either H̃(z)H(z) or H(z)H̃(z)

from a frequency selective MIMO channel with exponential power delay profile typically results in a
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Figure 4.1: Input para-Hermitian matrix to SBR2 algorithm formed from an exponential power delay
profile 5× 5 MIMO channel with polynomial length L = 5.

input matrix that is not too dissimilar from the identity matrix, I as shown in Figure 4.1.

Hence only a small number of iterations of the SBR2 algorithm are required to fully diagonalize

the input matrix, resulting in a diagonal matrix, Λ(z) produced by PMSVD with a relatively low

polynomial order. This allows a low complexity equalization strategy to be used to equalize the

frequency selective channels produced by PMSVD. When forming the para-Hermitian input using

a channel with constant power profile as shown in Figure 4.2 the percentage of the total energy

distribution within the off-diagonal elements is significantly increased. Hence a larger number of

iterations of the SBR2 algorithm are required, resulting in a diagonal matrix, Λ(z) with a larger

polynomial order and requiring a different equalization strategy.

4.2 PMSVD Architecture

Initially the PMSVD of the broadband MIMO channel, H(z) is calculated using multiple applica-

tions of the SBR2 algorithm, as described in Chapter 3. By analogy with a conventional narrowband

SVD beamformer, the process of using the ith column vector of V (z) as a transmit filter bank, vi(z) =
[
v1i(z), v2i(z), . . . , vMti

(z)
]T

and the ith row vector of Ũ(z), i.e. ũi(z) =
[
ũi1(z), ũi2(z), . . . , ũiMr

(z)
]
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Figure 4.2: Input para-Hermitian matrix to SBR2 algorithm formed from an constant power profile
5× 5 MIMO channel with polynomial length L = 5.

as a receive filter bank, is identical to passing the signal through the ith diagonal element of Λ(z), i.e.

λii(z) = ũi(z) H(z) vi(z) (4.1)

For anMr,Mt MIMO system, Λ(z) will be a diagonal matrix containing r = min(Mr,Mt) orthog-

onal channels. The SBR2 algorithm will order the channels in order of power spectral density, hence

λ11(z) will be the strongest channel and λrr(z) the weakest. The decomposition of the polynomial

channel matrix H(z) into r parallel frequency selective channels (spatial-temporal modes), is depicted

in Figure 4.3.

As the subchannels produced by PMSVD are FIR in nature and therefore frequency selective, fur-

ther processing is required at the receiver to equalize each subchannel. As previously mentioned the

distribution of energy within H(z) directly affects the distribution of energy within Λ(z) resulting in

two different equalization approaches which are now discussed. Ta et al [54, 55] have proposed a joint

optimal precoding and block decision feedback equalization (BDFE) based solution to PMSVD chan-

nel subchannel equalization. However, their approach focuses on joint optimal transmitter-receiver

filterbank design to minimize the mean square error (MSE) between input and output symbols, anal-

ogous to the transceiver optimization proposed by Vucic and Boche [37]. Their approach is distinctly
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Figure 4.3: PMSVD system diagram representing decomposition of a frequency selective MIMO chan-
nel into r spatial-temporal modes.

different to the approach proposed in this chapter, as the focus is on reducing the redundancy intro-

duced in block based MIMO-OFDM transmission schemes to cancel interbin interference. Hence it

has not been considered.

4.3 Exponential Channels

A MIMO channel with an exponential power delay profile and an exponential decaying factor of

ψ = 0.8 is considered, i.e.

hij(k) = α exp−ψ(k−1) w(k) , i, j ∈ {1, 2, . . . , 5}

, k = 1, . . . , L (4.2)

where hij(k) is the k
th multipath coefficient, between the ith transmit antenna and jth receive antenna,

w(k) is a zero-mean complex Gaussian random variable, and the parameter α is chosen to normalize

the average channel gain to unity.

Figure 4.4 shows a typical subchannel impulse response sequence for the dominant subchannel,

λ11(z) derived from a polynomial channel matrix, H(z) with an exponential power delay profile.

Notice that for the dominant subchannel, most of the energy is concentrated in five significant taps

(19-23). A Viterbi equalizer at the receiver is used to equalize the spatial-temporal subchannel [56].

Therefore, as in commonplace in wireless communications the significant five taps are extracted and
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Figure 4.4: Typical λ11(z) plot showing a polynomial channel produced by SBR2 for a 5 × 5 MIMO
channel, L = 5. with exponentially decaying elements.

passed to the Viterbi equalizer.

4.3.1 Viterbi Equalization

Recent mobile radio systems such as GSM already employ Viterbi equalization at the receiver to

combat intersymbol interference (ISI) due to fast fading and the multipath propagation environment.

The number of states in the Viterbi algorithm [56], and hence its complexity, increases exponentially

with the length of the channel impulse response. To limit the hardware complexity, the channel

impulse response (CIR) is often truncated to a manageable length [57]. In the case of GSM the CIR

is generally truncated to five taps. This ensures the delay introduced in the equalization stage is

acceptable for real-time voice communications, and this five tap approach has been carried over to

the PMSVD implementation.

An overview of the Viterbi algorithm operation follows. Viterbi algorithm performs estimation of

the input sequence of a discrete time finite-state Markov process. As the multipath wireless channel

acts as Markov process it can be readily applied to FIR channel equalization. The algorithm runs from

time instant t = 0 to t = τ , and the state sequence is represented as S = (S0, S1, . . . , Sτ−1, Sτ ) [31].

The multistep evolution of the path through the underlying Markov graph is viewed as a multistage

replication, i.e. a trellis diagram [58].
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At each branch at time t on the path x in the trellis, the Euclidean distance or branch metric,

denoted by vxt is calculated. The path metric, corresponding to path x denoted by µ
(x)
t is given by

µ
(x)
t = µ

(x)
t−1+v

x
t . It is assumed that noise terms corrupting the received sequence are independent [59].

Algorithm 4.1 provides a summary of the operation of the Viterbi Algorithm.

Algorithm 4.1 Summary of the Viterbi algorithm

Set initial values
t = 0, S0 = 0, µ

(x)
0 (S0 = 0) = 0, µ

(x)
0 (S0 6= 0) = ∞

for t = 1 to t = τ do
Compute branch metrics for all branches entering a node at time t.
Compute path metrics for all paths entering a node at time t.
Compute path metrics for all paths entering a node and find the survivor path for each node.
Store the survivor path and path metric for each node.
t = t++

end for
The survivor at node Sτ is the maximum likelihood path.

Computational Cost

The Viterbi algorithm was considered hopelessly complex in 1967 when it was initially pub-

lished [58], due to its significant memory storage requirements. During the late 1970’s when com-

puting power caught back up it was used for error correction on the Voyager space probes and has

since found its way into virtually every communication system. The computational cost of the Viterbi

equalizer for BPSK modulated symbols is of the order 2k operations, where k denotes the polynomial

order of the SISO channel to be equalized. As all second generation cellular phones and above use

the Viterbi algorithm (over a billion users) a significant amount of research has been carried out into

reducing computational cost. The A* algorithm [60] combines the reliability and performance of the

Viterbi algorithm while running efficiently as a sequential decoder when the SNR is high. The lazy

Viterbi algorithm [61] builds upon this further, reducing complexity and also enabling application to

continuous streams of data.

Despite this it is still impractical for mobile devices, limited by computational power and memory

storage to operate on channel with k > 8, therefore an alternative approach is required for channels

with large delay spread.

4.4 Constant Profile Channels

A MIMO channel with constant power delay profile with equal average gain for each tap, i.e.

ψ = 0 in (4.2) is now considered. This channel model is applicable to indoor wireless local area

networks [62, 63]. Figure 4.5 shows a typical subchannel impulse response for the dominant subchannel,
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λ11(z) derived from such a polynomial channel matrix, H(z) with constant power profiles. Subchannel

length is typically between 70-90 taps but significant coefficients are clustered in the middle. However

the Viterbi equalizer can no longer be used due to its high computational cost. Hence a coded approach

is used to allow the inclusion of a low complexity iterative (turbo) equalizer at the receiver.
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Figure 4.5: Typical λ11(z) plot showing a polynomial channel produced by SBR2 for a 5 × 5 MIMO
channel, L = 5, with constant power profile.

4.4.1 Turbo Equalization

Turbo Equalization [64] is an iterative equalization and decoding technique that can achieve im-

pressive performance gains for coded data transmission over intersymbol interference (ISI) channels.

Repeating the equalization and decoding tasks on the same set of data and incorporating soft feed-

back from the decoder into the equalization process generally yields significant improvements in the

BER [65]. This joint equalization and decoding technique requires the data stream to be encoded.

Transmitter Architecture

A binary data sequence, sn of length N to be transmitted is convolutionally encoded, to produce a

coded output, cn. Typically throughout this thesis the code formatting polynomials in (4.3) are used
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as per the global system for mobile (GSM) CS1-CS3 [52].

G0 = 1 +D3 +D4

G1 = 1 +D1 +D3 +D4

(4.3)

To ensure that errors appear random and to avoid long error bursts, an interleaver is used to

randomize the encoded bits, xn prior to transmission. The combination of the convolutional encoder,

interleaver and channel represents a serial concatenated encoder as shown in Figure 4.6.

sn - Encoder -
cn

Interleaver -
xn

σ2
n

h(z) - ?i- yn

Figure 4.6: Transmitter section of the SBR2 system forming a serial concatenated encoder.

Receiver Architecture

The receiver structure is shown in Figure 4.7. It is assumed the channel coefficients λii(z) are

known to the receiver and do not vary in time within each block.

MMSE
Equalizer

-
LE(x̂n)

x̂n
Deinterleaver -

L(cn)
MAP

Decoder

yn -

�Interleaver

data
estimate

L(x̄n) , x̄n LD(cn)

-

-

Figure 4.7: Receiver section of the SBR2 system.

The L operator L(x) is applied to quantities x ∈ {+1,−1} and is given by

L(x) ≡ ln (P (x = +1) /P (x = −1)) (4.4)

i.e. the log likelihood ratio (LLR).
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MMSE Equalizer using A Priori Information

The MMSE equalizer computes estimates x̂n of the transmitted symbols xn from the received

symbols yn by minimizing the cost function E
{
|xn − x̂n|2

}
[64] where x̂n represents the soft output

from the MMSE equalizer, and E {·} denotes the statistical expectation operator.

For a particular subchannel λii(z) the channel is denoted as h0 + h1z
−1, . . . , hL−1z

−(L−1) where

L represents the channel length. We only consider taps of λii(z) that are greater than σ2/(MrMt)

where σ2 represents the noise variance. We set the length of the equalizer, M , to capture these taps

of interest. The channel convolution matrix, Hc of dimensions M × (M + L− 1) takes the form:

Hc =




h0 h1 . . . hL−1 0 . . . 0

0 h0 h1 . . . hL−1 . . . 0

. . .
. . .

. . .
. . .

0 . . . 0 h0 h1 . . . hL−1




(4.5)

Let hcM denote the M th column of Hc containing the most energy. For a single input MMSE

equalizer this will always be the middle column. Assuming symbols are temporally uncorrelated, we

write E
{
(xn − x̄n)(xn − x̄n)

H
}
as a diagonal matrix diag(v) where the nth element of v is vn = 1−x̄2n

and x̄n denotes the interleaved soft estimates of the transmitted symbol from the MAP decoder output.

The MMSE weight vector, wn is given by [65] [64]:

wn = (Hc × diag(vn)×HH
c + σ2I)−1hcM (4.6)

The MMSE equalizer output x̂n is used to obtain the difference between the posteriori and a prior

LLR as follows:

LE(x̂n) = ln
p {xn = +1|x̂n

}
p {xn = −1|x̂n

} − ln
p {xn = +1}
p {xn = −1}

= ln
p {x̂n|sn=+1}
p {x̂n|sn=−1}

=
4<{x̂n}

1− hTcMwn

(4.7)

where <{x̂n} denotes the real component of the quantity {x̂n}.

Unlike the Viterbi equalizer, the computational cost of the MMSE equalizer grows linearly with

tap length, rather than exponentially. As a consequence, equalization of channels with 100 taps or

greater of interest is entirely feasible, hence it perfectly suited for solving the delay spread introduced
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in constant profile channels.

MAP Decoder

The maximum a posteriori (MAP) algorithm [66] computes the posteriori probability of symbols

from Markov sources transmitted through discrete memoryless channels1. Since the output of a con-

volutional coder passed through the equalized frequency selective channel forms a Markov source the

MAP algorithm can be used for maximum a posteriori probability decoding of convolutionally en-

coded code [67]. Unlike the Viterbi algorithm which minimizes the probability of selecting an incorrect

path through the trellis, the MAP algorithm is optimal in terms minimizing the decoded BER [68].

For each transmitted symbol the MAP decoder generates a hard estimate (using thresholding) and a

soft output, L(cn) in the form of the a posteriori probability of the received sequence [31]. A short

overview of the MAP algorithm now follows:

As with the Viterbi algorithm, the MAP algorithm covers the time period from time instant t = 0

to t = τ , and the state sequence during is represented as S = (S0, S1, . . . , Sτ−1, Sτ ). The number of

possible states is Ms. Given a received symbol sequence, y the MAP algorithm calculates for each

decoded bit, ut the probability that this bit was 1 or −1, equivalent to finding the a posteriori LLR

L(ut|y), given by

L(ut|y) = ln

(
P (ut = +1|y)
P (ut = −1|y)

)
(4.8)

Assuming the previous state, denoted St−1 = s′ and the present state, denoted St = s are known

in the trellis then ut, i.e. the input bit that triggered the state transition can be determined. The

received sequence y can be broken down into three constituent parts:

• α - probability of starting in the current state, St−1.

• γ - probability of a transition from state St−1 to St.

• β - probability of ending in the state St.

Initially γit(s
′, s) is calculated for t = 1, 2, . . . , τ , i = 0, 1 and for s = 0, 1, . . . ,Ms. i corresponds to

the binary input triggering the transition. γit(s
′, s) is given by

γit(s
′, s) = exp

(
|xt − yt|2

2σ2

)
(4.9)

where xt denotes the modulated symbol in the trellis and σ2 is the noise variance. It assumed

that the start and end state of the sequence are known. This is achieved by flushing the state of the

1Also commonly referred to as the BCJR algorithm after its authors, Bahl, Cocke, Jelinek, and Raviv
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convolutional encoder in the transmitter with either zeros or ones prior and post transmission. In this

thesis, zeros have been used for flushing, hence α0(0) = 1 and α0(s) = 0 for s 6= 0 and βτ (0) = 1

and βτ (s) = 0 for s 6= 0. Although sub-optimum, prior knowledge of the start and end state of the

sequence is not required for the MAP decoder to function. For this scenario the probability of all

possible start and end states is equal, i.e. α0(s) = βτ (s) =
1
Ms

for s = 0, 1, . . . ,Ms − 1.

It is now possible to iteratively calculate the values of α for t = 1, 2, . . . , τ , known as the forward

recursion:

αt(s) =

Ms∑

s′=0

i=1∑

i=0

αt−1(s
′)γit(s

′, s) (4.10)

Similarly the backward recursion iteratively calculate the values of β for t = τ − 1, . . . , 1, 0.

βt(s) =

Ms∑

s′=0

i=1∑

i=0

βt+1(s
′)γit+1(s, s

′) (4.11)

Equations (4.10) and (4.11) can be calculated independently in parallel to reduce overall compu-

tational time. The LLR L(ut|y) is given as [68, 31]:

L(ut|y) = ln

(∑
(s′,s)⇒ut+1 αt−1(s

′) γ1t (s
′, s) βt(s)∑

(s′,s)⇒ut−1 αt−1(s′) γ0t (s
′, s) βt(s)

)
(4.12)

A full description of the operation of the MAP algorithm is available in [66].

Algorithm 4.2 Summary of the MAP algorithm

Set initial values for α0 and βτ .

t = 0, S0 = 0, µ
(x)
0 (S0 = 0) = 0, µ

(x)
0 (S0 6= 0) = ∞

for t = 1 to t = τ , s = 0 to Ms − 1 and i = 0, 1 do

γit(s
′, s) = exp

(
|xt−yt|

2

2σ2

)

end for
Calculate Forward Recursion
for t = 1 to t = τ and s = 0 to Ms − 1 do
αt(s) =

∑Ms

s′=0

∑i=1
i=0 αt−1(s

′)γit(s
′, s)

end for
Calculate Backward Recursion
for t = τ − 1 to 0 and s = 0 to Ms − 1 do
βt(s) =

∑Ms

s′=0

∑i=1
i=0 βt+1(s

′)γit+1(s, s
′)

end for
Calculate Log-Likelihood Ratios
for t < τ do

L(ut|y) = ln

(∑
(s′,s)⇒ut+1 αt−1(s

′) γ1
t (s

′,s) βt(s)
∑

(s′,s)⇒ut−1 αt−1(s′) γ0
t (s

′,s) βt(s)

)

end for
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Interleaver Design

When processing soft information as an input to the MMSE equalizer or the MAP decoder, it is

assumed that the soft information about a given bit is an independent piece of information [65]. This

allows sub-optimal algorithms to be used reducing computational complexity in both the equalizer and

decoder. If the decoder formulates its soft information about a given bit, based on soft information

provided to it from the equalizer about exactly the same bit, then the equalizer cannot consider this

information to be independent of its channel observations [65]. This in effect creates a feedback loop

between the two constituent parts of the turbo equalizer, with the MMSE equalizer informing the

MAP decoder about a given bit, and then the MAP decoder simply re-informing the MMSE equalizer

with information it already knows.

In a practical sense this can lead to the turbo equalizer becoming stuck in local minima. Inter-

leaving prevents this from occurring, such that a large number of iterations can be carried out before

cyclic behavior becomes apparent. By increasing the number of iterations in the joint equalization

and decoding process, BER performance can be significantly improved with the obtainable capacity

of the channel becoming close to that of the channels Shannon limit [31].

To this end a Pseudo-Random or S-Random interleaver [69] has been used. The S-Random inter-

leaver interleaves a block of bits while ensuring that the minimum depth, i.e. the distance between

two bits after interleaving that were adjacent prior to interleaving is of a specified value. The greater

the depth, the greater the performance of the turbo equalizer. However depth is limited by both the

number of bits in each block to be interleaved and computational time for interleaver design. To this

end in the subsequent simulations an S-Random interleaver with a depth of 28 bits has been used to

gain maximum performance. The interleaver has been designed using an algorithm available in the

Coded Modulated Library [70].

4.5 Dominant Mode Performance

We are now in a position to assess the performance of the dominant mode, λ11(z) in a PMSVD

MIMO system. A wide sense stationary (WSS) situation where the channel coefficients have been

assumed to be unchanged within each data block, but allowed to change between data blocks according

to a zero mean complex circular Gaussian distribution has been considered. WSS implies that the

second-order time statistics of the channel are stationary and is justified in wireless channels over

short periods [3]. The number of time slots of the channel, N = 1024. The bit error rate has been

computed for 1000 Monte Carlo simulations.
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4.5.1 Exponentially Decaying Channels

A transmitter antenna selection (TAS) scheme has been used as a TDMA benchmark. TAS

operates by transmitting exclusively through the best antenna that results in the highest possible

SNR at the receiver, creating a single-input multi-output (SIMO) subset of the MIMO system. The

received signal at each antenna is then fed into a multiple-input Viterbi equalizer. Identical channels

have been used for SBR2 and TAS. The modulation scheme used is BPSK for evaluation purposes

but extension to larger constellations is straightforward. The total transmission power budgets for

SBR2 and TAS are identical. Figures 4.8 and 4.9 show the BER performance of the TAS and SBR2

schemes for a range of MIMO orders. Diversity gain manifests itself in increasing the magnitude of

the slope of the BER curve [3], clearly visible in the dramatic improvement in BER performance in

a 2 × 2 MIMO system over a SISO system for both schemes. For example a 10dB gain in SNR is

observed at BER 10−3 for the SBR2 scheme.

−10 −5 0 5 10 15

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

SISO
TAS 2x2
TAS 3x3
TAS 4x4
TAS 5x5

Figure 4.8: Average BER results for TAS scheme for a range of MIMO orders, L = 5, with exponen-
tially decaying elements.

Figure 4.10 directly compares TAS and dominant mode SBR2 BER performance for a range of

MIMO channels and clearly shows the benefit of the SBR2 algorithm. BER performance is far superior

to the TAS scheme, for example a 4dB gain in SNR is observed at BER 10−3 for a 5×5 MIMO channel,

making SBR2 potentially highly suitable for TDMA based MIMO wireless systems where decoding

continuous streams of data is required. Note the very low SNR range is due to the diversity gain of
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Figure 4.9: Average BER results for dominant mode SBR2 scheme for a range of MIMO orders, L = 5,
with exponentially decaying elements.

the 5× 5 MIMO system.

The proposed SBR2 scheme has also been compared with an MIMO-OFDM SVD scheme. The

number of bits sent in each block, N = 1024. The total transmission power budgets for SBR2

and MIMO-OFDM SVD are identical. The MIMO-OFDM scheme operates almost identically to

the MIMO-OFDM scheme described in Chapter 2, with the addition of the SVD operation being

carried out within each individual narrowband tone. Hence for Hn [k], the frequency response of

the narrowband MIMO channel corresponding to the kth tone of the MIMO channel matrix H(z),

the SVD of Hn [k] is calculated. As with the SBR2 scheme only the dominant mode within each

narrowband will be chosen for transmission.

Figure 4.11 shows that both the SBR2 and MIMO-OFDM SVD methods perform identically.

OFDM transmission incurs on average a loss in spectral efficiency of (L− 1)/(N + L− 1) on account

of the cyclic prefix. If N � L, this loss is negligible [3] so this has not been considered. Figure 4.12

shows the frequency response of the dominant SBR2 and MIMO-OFDM SVD mode for one of the

channels used. As can be seen both systems have a virtually identical frequency response. The only

slight difference in performance is due to the trimming of the polynomial matrices within the SBR2

algorithm [50]. This does not occur within the MIMO-OFDM SVD system as the DFT and SVD

operations and inherently lossless. Therefore the proposed time domain SBR2 approach provides a
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Figure 4.10: Average BER results for dominant mode SBR2 and TAS schemes for a range of MIMO
orders, L = 5, with exponentially decaying elements.
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Figure 4.11: Average BER results for dominant mode SBR2 and MIMO-OFDM SVD schemes for a
5× 5 MIMO channel, L = 5, with exponentially decaying elements.

similar performance as the discrete frequency domain based MIMO-OFDM system. The proposed

approach however is more generic so that MIMO wireless systems based on TDMA could also benefit.
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Additionally, unlike DFT based decompositions (which require storage of data and also incur the

associated block delay at the receiver), the proposed scheme operates using spatial-temporal filters in

the time domain, hence it is more suitable for decoding continuous streams of data without requiring

storage of signals for DFTs and unnecessary block delays.
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Figure 4.12: Frequency response of the dominant mode for SBR2 and MIMO-OFDM SVD for a 5× 5
MIMO channel, L = 5,with exponentially decaying elements.

4.5.2 Constant Profile Channels

The BER performance of SBR2 for constant power delay profile channels is now shown. Again the

dominant mode of SBR2 has been compared with a TAS scheme as a TDMA benchmark. For TAS

the received signal at each antenna is fed into a multiple-input iterative MMSE equalizer and the

equalization and decoding scheme is identical to the SBR2 system. The modulation scheme is BPSK.

The number of time slots of the channel, N = 2048. The bit error rate has been computed for 1000

Monte Carlo simulations. Figures 4.13 and 4.14 show the BER performance of the TAS and SBR2

schemes for a range of MIMO orders.

Again the dramatic improvement in BER performance in a 2×2 MIMO system over a SISO system

is clearly visible for both schemes, with a 10dB gain in SNR observed at BER 10−3 for the SBR2

scheme. Figure 4.15 directly compares TAS and dominant mode SBR2 BER performance for a 5× 5

MIMO channel and clearly shows the benefit of the SBR2 scheme. BER performance is far superior
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Figure 4.13: Average BER results for TAS scheme for a range of MIMO orders, L = 5, with constant
power profile.
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Figure 4.14: Average BER results for dominant mode SBR2 scheme for a range of MIMO orders,
L = 5, with constant power profile.

to the TAS scheme, again with a 4dB gain in SNR at BER 10−3.
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Figure 4.15: Average BER results for dominant mode SBR2 and TAS schemes for a 5 × 5 MIMO
channel, L = 5, with constant power profile.

4.6 Dominant Mode Performance with Channel Estimation

Error

The scenario is now considered where the receiver has imperfect channel knowledge. H(z) has

been estimated using an LSE channel estimator with a training sequence of length Nt = 50. Only an

Mr = Mt = 5 frequency selective MIMO system has been considered. Again, the MIMO channel is

assumed to be WSS. The bit error rate has been computed for 1000 Monte Carlo simulations. CSI

error in the PMSVD implementation will result in Λ(z) being only approximately diagonal. Therefore

if multiple modes of Λ(z) are used simultaneously for transmission, orthogonality between modes will

be lost and they will interfere with each other. As we are only using the dominant for transmission

in this scenario, CSI error will cause the transmit and receive beams to be misaligned. This results

in an overall reduced gain of the dominant spatial subchanel used. For an OFDM system, CSI will

result in co-channel interference between all subcarriers leading to decreased system

4.6.1 Exponentially Decaying Channels with Channel Estimation Error

Figure 4.16 compares the proposed SBR2 based PMSVD scheme with a TAS scheme as a TDMA

benchmark. Again PMSVD provides a significant improvement in BER performance, with a 2dB gain
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Figure 4.16: Average BER results for dominant mode SBR2 and TAS schemes for a 5 × 5 MIMO
channel, L = 5, with exponentially decaying elements and training sequence of length Nt = 50.

in SNR observed at BER 10−3 for the SBR2 scheme.

Figure 4.17 compares the BER performance of the dominant mode of the SBR2 scheme with that

of a MIMO-OFDM system. Forming the input para-Hermitian matrix to the SBR2 algorithm from an

inaccurate estimate of the channel and its paraconjugate effectively results in squaring the errors in the

channel estimate. Hence the performance of the SBR2 scheme is degraded and is now outperformed

by the MIMO-OFDM scheme. For example at BER 10−3 the MIMO-OFDM scheme has a 1.5dB gain

in SNR.

Figure 4.18 compares the BER performance of the dominant MIMO-OFDM SVD scheme against

PMSVD calculated by PMQRD. As PMSVD by PMQRD operates directly on the channel matrix it is

more robust to errors in the CSI than the SBR2 approach. Hence the performance of the PMQRD by

PMSVD scheme is identical to that of MIMO-OFDM. Therefore the proposed time domain PMSVD

approach still provides a similar performance to that of the discrete frequency domain based MIMO-

OFDM system, even in the presence of incorrect CSI. This validates the robustness of the proposed

PMSVD approaches.

4.6.2 Constant Profile Channels with Channel Estimation Error

Again this work is repeated for BER performance of SBR2 for constant power delay profile random
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Figure 4.17: Average BER results for dominant mode SBR2 and MIMO-OFDM SVD schemes for a
5 × 5 MIMO channel, L = 5, with exponentially decaying elements and training sequence of length
Nt = 50.
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Figure 4.18: Average BER results for dominant mode MIMO-OFDM SVD and PMSVD by PMQRD
schemes for a 5×5 MIMO channel, L = 5, with exponentially decaying elements and training sequence
of length Nt = 50.
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channels with CSI error. The dominant mode of SBR2 has been compared with a TAS scheme as a

TDMA benchmark. Once again a multiple-input iterative MMSE equalizer is used and the equalization

and decoding scheme is identical to that of the SBR2 system. Figure 4.19 compares the TAS, SBR2

and PMSVD by PMQRD schemes. As expected the BER performance of the PMSVD schemes is

significantly greater than that of TAS, for example a gain in SNR of 3dB at BER 10−3. Although the

PMSVD by PMQRD is more robust to CSI error, both PMSVD schemes perform near identically. This

is due to the robustness of the turbo equalization approach, and the introduction of error correction

coding within the MIMO system.
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Figure 4.19: Average coded BER results for TAS, dominant mode SBR2 and PMSVD by PMQRD
schemes for a 5×5 MIMO channel, L = 5, with constant power profile and training sequence of length
Nt = 50.

4.6.3 Computational Complexity Analysis

Previously in Chapter 3 it was stated that the computational complexity of the SBR2 algorithm

was significantly less than that of the operation of the equalization and decoding schemes used and was

therefore suitable for use in a MIMO communications system. Key results from the MATLAB profiler

are now presented to backup this claim. As the turbo equalization approach for constant profile chan-

nels is significantly more complex than that of the Viterbi approach for exponential power delay profile

channels only constant profile channels have been considered. Table 4.1 shows the computational time

of the SBR2, PMSVD by PMQRD, MAP Decoder and MMSE Equalizer components of the MIMO
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communications simulation for a range of SNR’s, averaged over 50 Monte Carlo simulations.

SNR - 6dB SNR - 4dB SNR - 2dB
Function Total Time (s) Total Time (s) Total Time (s)

PMSVD by SBR2 19.46 19.00 21.98
MAP Decoder 6.58 6.59 6.55
PMSVD by PMQRD 4.50 4.59 4.06
MMSE Equalizer 0.90 1.02 1.21

Table 4.1: Computational complexity analysis for 5 × 5 MIMO channel with constant power profile
and polynomial length L = 5.

As expected the SBR2, PMSVD by PMQRD and MAP Decoder elements’ computational time is

independent of SNR. In this scenario imperfect CSI has simulated, again with a training sequence of

length Nt = 50. Hence as the CSI is dependent on the SNR the time required for PMSVD fluctuates.

The MMSE equalizer is of a minimum length of 10 taps, and only considers taps with an absolute value

greater than σ2

Mr×Mt
. Therefore increasing SNR also increases MMSE equalizer complexity, resulting

in the steady increase in computational time.

From table 4.1 it is clear that PMSVD by SBR2 is the most computationally complex operation.

As PMSVD by PMQRD outperforms the SBR2 approach to PMSVD in terms of BER and is more

robust to CSI error, this result is inconsequential. The key result is that the MAP Decoding operation

takes longer than that of PMSVD by PMQRD, and that MAP Decoders of comparable complexity

are already implemented in existing communication systems. Again the key point to emphasize is

that the computational complexity of the MAP Decoder is independent of SNR and that at -2dB

the PMSVD by PMQRD system provides both an acceptable level of BER performance and reduced

computational time than the MAP Decoder. Therefore it is not unreasonable to assume that the

PMSVD by PMQRD approach could be implemented in real-time with the current generation of

hardware in mobile devices.

Is is also important to remind ourselves that both PMSVD algorithms are still currently in the

research stage. A MATLAB implementation is highly suited for creating a proof of concept reference

model, as the MATLAB language enables rapid code development and testing, with the caveat of

the trade-off in efficiency of the code generated. The computational speed can be significantly in-

creased by implementing the algorithm in a lower level language, such as C++. Furthermore with a

fixed application and clearly defined hardware constraints a tailor made efficient implementation of

the PMSVD would be possible. For example, currently in MATLAB the results presented are sim-

ulated using default double-precision floating point numerical presentation. In the real world, with

limited accuracy in the CSI, single-precision representation could be used without decreasing system
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performance, but significantly reducing computational time and memory storage requirements.

4.7 Conclusions

In this chapter the PMSVD has been applied to frequency selective MIMO channels. The proposed

technique decomposes a MIMO frequency selective channel into a number of SISO frequency selective

channels yielding multiple spatial modes for spatial multiplexing. The performance of the dominant

mode has been compared with that of a conventional transmit antenna selection scheme and found to

provide superior diversity performance. Comparing the system to a conventional MIMO-OFDM SVD

approach results in identical system BER performance.

The robustness of the PMSVD approach has been validated with the inclusion of results demon-

strating system performance in the presence of the CSI error. For this scenario the numerical operation

of the SBR2 algorithm, i.e. operating on a para-Hermitian input matrix limits the accuracy of the

PMSVD approach. This problem is mitigated using the PMSVD by PMQRD algorithm. Therefore

the work of Pauraj, Nabar and Gore [3] has been successfully extended to the frequency selective

broadband scenario, confirming the benefits of PMSVD for MIMO communications.

The proposed PMSVD scheme is most suitable for TDMA based systems and enables a wider range

of access schemes not possible with a MIMO-OFDM SVD approach, where the broadband channel

can be split into a set of narrow bands. In particular for frequency selective channels with exponential

power delay profile, a sliding window Viterbi algorithm can be used for channel equalization. Sliding

window Viterbi computes the maximum likelihood path based on a set number of previous samples,

and can operate on continuous streams of data. The PMSVD approach therefore is more suitable

for decoding continuous streams of data without requiring storage of signals for DFT’s and incurring

block delays inherent in a MIMO-OFDM scheme.

In the next chapter the equalization approaches are applied to a PMQRD based MIMO communi-

cations system, where significant benefits of the time domain PMQRD approach are found to provide

superior BER performance over a MIMO-OFDM QR based system.
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Chapter 5

Diversity Techniques using

PMQRD

5.1 Introduction

As demonstrated in Chapter 2, for a frequency flat MIMO channel the QR decomposition can be

applied at the receiver to reduce the MIMO channel equalization problem to a set of decision feedback

based single channel equalization problems. In this chapter, the PMQRD from Chapter 3 is applied to

frequency selective MIMO channels to exploit the benefits of QR decomposition in a doubly selective

scenario. Recalling from 3, the PMQRD of the noise free multipath MIMO channel H(z) is given as:

H(z) = Q(z) R(z) (5.1)

Propagating a set of source signals through H(z) and filtering them with Q̃(z) at the receiver

allows exploitation of the upper triangular structure ofR(z) to reduce the MIMO channel equalization

problem to a set of single channel equalization problems. As with PMSVD, the single channels

produced by PMQRD are FIR in nature and additional processing is required at the receiver to

overcome the delay spread. To this end the turbo equalization approach used in the previous chapter

is applied once again. To further exploit the spatial multiplexing provided by PMQRD and maximize

the diversity gain afforded by the MIMO channel, three types of encoder architecture based on Bell

Laboratories Layered Space Time (BLAST) encoding have been implemented. Each BLAST based

scheme is evaluated against an identical MIMO-OFDM QR based scheme.

The robustness of the proposed scheme to CSI error is again considered and finally a single carrier

based MIMO-OFDM scheme is implemented in an attempt to match the performance benefits of the

proposed PMQRD scheme using a frequency domain equalization approach.

5.2 The Application of PMQRD to MIMO Channel

Equalization

Without loss of generality a frequency selective MIMO system is considered of equal number

transmit and receive antennas, i.e. Mr = Mt. A set of source signals of length N , s(t) ∈ CMt×1 for
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t ∈ {0, 1, . . . , T − 1} are propagated through the MIMO wireless channel, H(z), received and filtered

with Q̃(z), as shown in Figure 5.1.

sMt
(t)

s2(t)

s1(t)

H(z) Q̃(z)

yMr
(t)

y2(t)

y1(t)

Figure 5.1: PMQRD system diagram.

The set of received signals, y(t) are expressed as (5.2) where n denotes an additive Gaussian noise

process with variance σ2IMr
.

y(z) = Q̃(z) H(z) s(z) + Q̃(z) n(z) (5.2)

From (5.1), the convolutive mixing model can be rewritten as (5.3), where n′(z) = Q̃(z) n(z).

y(z) = R(z) s(z) + n′(z) (5.3)

5.2.1 Iterative Interference Cancellation

As with QR decomposition for flat fading channels, by exploiting the upper triangular structure

of the polynomial matrix R(z), the MIMO channel problem can now be transformed into a set of Mr

equalization problems using back substitution. The M th
t source signal is expressed as (5.4)

y
Mr

(z) = rMrMr
(z) sMt

(z) + n′
Mr

(z) (5.4)

Once sMr
is retrieved its contribution to yMr−1 is canceled as follows

y
Mr−1

(z)− rMr−1Mr
(z) sMt

(z) = rMr−1Mr−1(z) sMt−1(z) + n′
Mr−1(z) (5.5)

which again is a single channel equalization problem. Therefore the ith single channel equalization
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problem can be formulated as

y
i
(z)−

Mr∑

j=i+1

rij(z) sj(z) = rii(z) si(z) + n′
i(z) (5.6)

providing the streams si+1(z), . . . , sMt
(z) have been previously recovered.

5.3 Channel Model

In these simulations a MIMO system with three antennas at the transmitter and receiver has been

considered. The temporal length, L of the channel between each transmitter and receiver is five.

The channel has a constant power delay profile with equal average gain for each tap. Channels with

exponential power delay profile have also been simulated and similar performance results for these

channels as presented here can be found in appendix B.

5.4 Horizontal BLAST Encoding

Horizontal Bell Laboratories Layered Space Time (H-BLAST) [15] is a sub-optimal encoding ar-

chitecture used to simplify receiver design and attains a maximum diversity order of Mr as any given

substream is transmitted from only one transmit antenna and received by Mr antennas [3]. The

transmitter architecture is shown in Figure 5.2.

data
stream

- Demultiplexer -

-

-

s3

s1

s2
Encoder -

-

-

c3

c1

c2

Encoder

Encoder

Interleaver

Interleaver

Interleaver
x3

x1

x2

Figure 5.2: H-BLAST transmitter architecture.

The data stream is first demultiplexed into three substreams, s1, s2, s3. Each substream is then

independently convolutionally encoded, interleaved and symbol mapped prior to transmission. Once

again the code formatting polynomials in (4.3) as per GSM CS1-CS3 [52] have been used.

To ensure that errors appear random and to avoid long error bursts, an interleaver is used to

randomize the encoded bits prior to transmission. An S-Random interleaver with a depth of 28 bits

has been used to gain maximum performance [70].
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5.4.1 H-BLAST Receiver Design

The received signals are filtered with Q̃(z) as shown in Figure 5.1, yielding the received substreams,

y1, y2, y3. Each substream is turbo equalized prior to the application of the iterative interference

cancellation scheme previously described.

Algorithm 5.1 Summary of the H-BLAST receiver.

Receive and filter streams with Q(z).
for i =Mr : −1 : 1 do
Formulate channel equalization problem
yi −

∑Mr

j=i+1 rij(z) xj = rii(z) xi + n′
i

for Turbo equalize ith stream do
Calculate soft estimate of transmitted signal, xi via MMSE equalizer.
De-interleave and calculate ci.
Calculate hard estimate of transmitted signal, si and updated soft estimate of ci via MAP
decoder.
Interleave ci to form xi.

end for
end for
Multiplex streams to obtain original data stream.

5.4.2 H-BLAST Results

A wide-sense quasi stationary (WSQS) situation has been considered. The bit error rate has been

computed for 1000 Monte Carlo simulations. The modulation scheme used is BPSK for evaluation

purposes but extension to large constellations is straightforward. The number of time slots of the

channel, N = 2048. Initially it is assumed the receiver has perfect channel knowledge.

A MIMO-OFDM QR scheme has been used as a benchmark. As with MIMO-OFDM SVD, the

frequency selective channel is decomposed into N orthogonal frequency flat MIMO channels. The

data stream undergoes the same H-BLAST encoding process as the PMQRD based scheme prior to

application of OFDM. The standard QR decomposition is then applied with each narrowband tone.

The iterative cancellation within the receiver is performed on each tone individually and finally a

Viterbi decoder is used to remove the error correction coding. Again as N � L the negligible loss in

spectral efficiency has not been considered.

Figure 5.3 directly compares the proposed PMQRD and MIMO-OFDM QR schemes. BER per-

formance of PMQRD is far superior to the MIMO-OFDM QR scheme, for example a 5dB gain in

SNR is observed at BER 10−3. For a MIMO-OFDM QR scheme, the information in each individual

transmitted symbol is constrained to a single narrowband tone. Figure 5.4 shows the typical frequency

response for the SISO channel R33(z). Individual tones may have poor gains due to the frequency

selective nature of the MIMO channel, resulting in degraded system performance. However in the
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Figure 5.3: Average coded BER results for H-BLAST PMQRD and MIMO-OFDM QR schemes for a
3× 3 MIMO channel, L = 5, with constant power profile.

PMQRD based system the information in each symbol is spread across the entire frequency band-

width, making the system more robust to frequency selectivity, resulting in superior performance.

This makes PMQRD highly suitable for MIMO-QR based applications where the transmitter has no

prior channel knowledge, for example digital video broadcasting.

5.4.3 H-BLAST Optimal Detection Ordering

The performance of the iterative interference cancellation scheme is affected significantly by the

order in which the components of x are detected. An optimal detection ordering (ODO) scheme can

significantly improve system performance. This is achieved by swapping the columns of H(z) and

performing the PMQRD. A permutation of the columns of H(z) exists such that ‖r3,3‖F is maximal.

Wolniansky et al have shown [71] that for a frequency flat channel H , the column permutation of

H where maximizing ‖ri+1,i+1‖ given that ‖ri,i‖ is already maximal yields the order of optimum

detection.

For a frequency selective MIMO scenario this amounts to finding the column permutation of H(z)

where maximizing ‖ri+1,i+1‖F given that ‖ri,i‖F is already maximal. This ensures that for the M th
r

equalized stream, the best possible estimate of theM th
t transmitted signal is obtained (assumingMr =

Mt). Any errors present in the estimate of sMt
will lead to sub-optimum iterative cancellation of the
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Figure 5.4: Typical frequency response of the SISO channel R33(z) obtained by MIMO-OFDM QR
for a 3× 3 MIMO channel, L = 5 with constant power profile.

subsequent substreams. Even for a modest order MIMO system this propagation of errors will lead to

significant performance degradation. Hence maximizing the Frobenius norms in this manner minimizes

the likelihood of error propagation within the iterative cancellation scheme. Wolninansky et al simply

use a brute force approach to compute the optimum column permutation of H(z) [71]. Calculating

every possible column permutation is only possible for a low order MIMO system where the additional

computational cost is relatively inexpensive, even if it must be carried out individually within each

narrowband tone, as per a MIMO-OFDM QR ODO scheme. However this quickly becomes infeasible

for modest order MIMO systems. Wubben et al [72] have developed a sorted QR decomposition that

not only calculates the QR decomposition of a scalar matrix but attempts to optimally order the

upper triangular matrix, R. This results in a system with a small degradation in BER performance

over the optimum brute force approach, but with a significant reduced computational cost. However

as this approach is based on the Gram-Schmidt algorithm for computing QR decomposition and not

readily applicable to PMQRD, a brute force approach has been applied here.

Implementation of the ODO scheme requires no modification of the transmitter architecture, and

the entire process is carried out at the receiver. The modified receiver design is summarized in

algorithm 5.2.
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Algorithm 5.2 Summary of the H-BLAST ODO receiver.

Calculate Q(z) and R(z) for optimum permutation of columns of H(z).
Receive and filter streams with Q(z).
for i =Mr : −1 : 1 do
Formulate channel equalization problem
yi −

∑Mr

j=i+1 rij(z) xj = rii(z) xi + n′
i

for Turbo equalize ith stream do
Calculate soft estimate of transmitted signal, xi via MMSE equalizer.
De-interleave and calculate ci.
Calculate hard estimate of transmitted signal, si and updated soft estimate of ci via MAP
decoder.
Interleave ci to form xi.

end for
end for
Permute equalized signals to obtain original streams s1, s2, s3.
Multiplex streams to obtain original data stream.

5.4.4 H-BLAST Optimal Detection Ordering Results

Again a MIMO-OFDM QR scheme has been used as a benchmark. For the OFDM scheme, optimal

detection ordering has been applied separately to each narrowband MIMO channel. Figure 5.5 directly

compares the proposed PMQRD ODO and MIMO-OFDM QR ODO schemes.

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

H−BLAST PMQRD
H−BLAST MIMO−OFDM
H−BLAST PMQRD ODO
H−BLAST MIMO−OFDM ODO

Figure 5.5: Average coded BER results for H-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with constant power profile.

Again PMQRD significantly outperforms MIMO-OFDM QR for an ODO implementation, for

example a 2.5dB gain in SNR is observed at BER 10−4. Also note the significant performance in
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both schemes incorporating ODO, for example a 2dB gain in SNR at BER 10−4 in the PMQRD

scheme incorporating ODO and a substantial 8dB gain in SNR at BER 10−3 for the MIMO-OFDM

QR scheme incorporating ODO. This significant increase in MIMO-OFDM QR performance is due to

the fact that ODO affectively mitigates the problems of individual tones having low gain. However

the optimum permutation of the columns in each narrowband tone is unique to each tone and must

be calculated individually, significantly increasing the computational cost.

5.5 Vertical BLAST Encoding

Vertical-BLAST [71] or V-BLAST encoding architecture is shown in Figure 5.6. The data stream

undergoes convolutional encoding, interleaving and symbol mapping prior to demultiplexing into Mt

sub-streams. This form of encoding is potentially optimal since each information bit is spread across

multiple antennas. The full spatial diversity of Mr,Mt however can only be obtained if the codeword

used is of length MrMt [10] which is highly unlikely for most reasonable order MIMO systems.

data
stream

-Encoder
s - Interleaver

c - Demultiplexer

x3

x1

x2

Figure 5.6: V-BLAST transmitter architecture.

5.5.1 V-BLAST Receiver Design

V-BLAST significantly increases the computational complexity of the receiver. As the streams

can no longer be MAP decoded independently, the memory storage requirements for calculating all

the states in the trellis are increased by a factor of Mt. Increasing the codeword length for optimum

diversity exploitation increases MAP decoding complexity exponentially [10]. Hence realizing the full

benefits of the V-BLAST architecture is impractical in most situations.

5.5.2 V-BLAST Results

Figure 5.7 shows results for both PMQRD and MIMO-OFDM QR for a V-BLAST architecture.

Additional results have been included for ODO implementations. Again PMQRD provides supe-

rior performance, with a gain in SNR of 4 and 5dB for MIMO-OFDM QR and MIMO-OFDM QR

implementations at a BER of 10−3 respectively.

Note that there is no significant difference in performance between the PMQRD and PMQRD

ODO implementations. In an H-BLAST implementation, if rMrMr
has poor gain, than independent
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Algorithm 5.3 Summary of the V-BLAST receiver.

Receive and filter streams with Q(z).
for Turbo-equalization loop do
for i =Mr : −1 : 1 do
Formulate channel equalization problem
yi −

∑Mr

j=i+1 rij(z) xj = rii(z) xi + n′
i

Calculate soft estimate of transmitted signal, xi via MMSE equalizer.
end for
Multiplex streams
De-interleave and calculate c.
Calculate hard estimate of transmitted signal, s and updated soft estimate of c via MAP decoder.
Interleave c to form x.
De-multiplex into transmitted streams.

end for
Obtain final estimate of transmitted data stream.
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Figure 5.7: Average coded BER results for V-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with constant power profile.

MMSE equalization and MAP decoding of the M th
r stream will result in the likelihood of the entire

recovered signal sMt
being corrupt. This incorrect estimate of sMt

will then back propagate through

the iterative cancellation scheme causing further corruption in all recovered streams. ODO for H-

BLAST negates this providing a significant performance boost. In a V-BLAST implementation the

entire iterative cancellation process is carried out prior to MAP decoding. As there is a de-interleaving

operation prior to the MAP operation, these errors will become significantly spread out and the ECC

present is able to correct for these errors. Additionally the soft feedback to the MMSE equalizer will

76



CHAPTER 5. DIVERSITY TECHNIQUES USING PMQRD

make the equalization step robust to back propagation of errors in the iterative cancellation scheme.

Therefore the V-BLAST architecture inherently provides the benefits of ODO, and the performance

of the two schemes is identical.

Note the PMQRD approach still provides the additional robustness of spreading the information

in each transmitted symbol across the entire frequency bandwidth, making it robust to deep fading.

For MIMO-OFDM QR subsequent tones may all be in deep fade and hence ODO in this scenario

provides a significant performance boost.

5.6 Diagonal BLAST Encoding

Diagonal-BLAST or D-BLAST encoding is an encoding architecture that combines the simplicity

of H-BLAST encoding with the performance benefits of V-BLAST encoding [71]. The data stream is

first demultiplexed into three substreams, s1, s2, s3. Each substream is then independently convolu-

tionally encoded and interleaved, again using the code formatting polynomials in (4.3). An S-random

interleaver with a depth of 28 bits is again used to randomize the encoded bits prior to transmis-

sion. The data streams are then rotated, so that the bit stream-antenna association is periodically

cycled [3]. This allows a diversity gain of MrMt while maintaining a low computational complexity

at the receiver. The D-BLAST architecture is shown in Figure 5.8.
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Interleaver

Interleaver -
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Stream
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x3
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Figure 5.8: D-BLAST transmitter architecture.

5.6.1 D-BLAST Receiver Design

D-BLAST receiver design is more akin to an H-BLAST receiver. The computational cost of the

MAP algorithm remains the same as that of the H-BLAST implementation, yet provides equal perfor-

mance to that in the V-BLAST implementation. Note that the individual MAP decoding operations

for each stream can be performed simultaneously. When implemented on hardware supporting parallel

processing the D-BLAST algorithm therefore is the fastest of the all the BLAST algorithms. Assum-

ing that the number of simultaneous MAP decoding operations supported in parallel is the same as
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the number of receive antennas then D-BLAST will take approximately 1/Mr of the time required for

an H-BLAST implementation.

Algorithm 5.4 Summary of the D-BLAST receiver.

Receive and filter streams with Q(z).
for Turbo-equalization loop do
for i =Mr : −1 : 1 do
Formulate channel equalization problem
yi −

∑Mr

j=i+1 rij(z) xj = rii(z) xi + n′
i

Calculate soft estimate of transmitted signal, xi via MMSE equalizer.
end for
De-rotate the streams.
De-interleave each stream.
Calculate hard estimate of transmitted signals, S and updated soft estimates of C via MAP
decoder.
Interleave coded streams.
Rotate streams to form X

end for
Multiplex streams to obtain original data stream.

5.6.2 D-BLAST Results

Figure 5.9 compares both PMQRD and MIMO-OFDM QR D-BLAST implementations and in-

cludes ODO results. As with V-BLAST, both PMQRD implementations perform identically due to

the performance increase from exploiting the full diversity gain of the channel. Note the significant

performance benefits of a gain in 5dB in SNR at BER 10−4 over the MIMO-OFDM QR ODO imple-

mentation. This is again due to the information in each individual transmitted symbol being spread

across the entire frequency bandwidth in the PMQRD based system, providing robustness to deep

channel fading not possible by constraining the information in each individual transmitted symbol to

a single narrowband tone as found in the MIMO-OFDM QR D-BLAST implementations.

Figure 5.10 compares the performance of all PMQRD ODO BLAST schemes. As expected as the

H-BLAST scheme only attains a diversity gain of Mr it has the weakest performance. As V-BLAST

and D-BLAST effectively attain the full diversity gain of MrMt they have identical performance with

a increase in SNR of 3dB at BER 10−3.

5.7 Channel Estimation Error

The scenario where the receiver has imperfect channel knowledge is now considered. Again a least

squares channel estimator as described in Chapter 2 has been implemented. Figure 5.11 shows the

average relative error in channel estimation for 1000 Monte Carlo simulations. Even with a relatively

low SNR it is possible to obtain a reasonably accurate estimation of the channel, for example a relative
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Figure 5.9: Average coded BER results for D-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with constant power profile.
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Figure 5.10: Average coded BER results for BLAST PMQRD ODO for a 3×3 MIMO channel, L = 5,
with constant power profile.

error of 0.27 at an SNR of 2dB.

Figure 5.12 shows the impact of channel estimation error on BER performance. The BER rate
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Figure 5.11: Average relative error in channel estimation for a 3 × 3 MIMO channel, L = 5 with
constant power profile and training sequence of length Nt = 50.

has been computed for 1000 Monte Carlo simulations. The modulation scheme used is BPSK. The

number of time slots of the channel, N = 2048. The length of the training sequence, Nt = 50.

Simulations have been performed for both D-BLAST PMQRD ODO and D-BLAST MIMO-OFDM

QR ODO schemes. Again the clear benefit of PMQRD is visible, with a gain in SNR of 4dB at BER

10−3.

So far in this chapter three types of BLAST architecture have been evaluated. It has been found

in every simulation that the PMQRD approach significantly outperforms MIMO-OFDM QR. The

algorithm has also been shown to be robust to CSI error, confirming its suitability for real world

applications. The PMQRD approach has significant performance benefits. Spreading the information

in each transmitted symbol across the entire frequency bandwidth automatically makes the system

robust to deep channel fading.

A key design constraint in realizing wireless communications systems is the peak-to-average power

ratio (PAPR). For an OFDM based scheme, the IFFT operation at each transmit antenna results in

a relatively high PAPR. Therefore, nonlinearities may get overloaded by high signal peaks, causing

intermodulation distortion in the transmitted signal [73], and undesired out-of-band radiation. If radio

frequency (RF) power amplifiers are operated without large power back-offs, it is impossible to keep

the out-of-band power below specified limits, leading to very inefficient amplification and expensive
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Figure 5.12: Average coded BER results for D-BLAST PMQRD and MIMO-OFDM QR schemes for
a 3× 3 MIMO channel, L = 5, with constant power profile with channel estimation error.

transmitters [74]. In addition, signal components originating from bins other than the considered

one give rise to interbin interference (IBI) [75]. In the presence of channel estimation error IBI is

significantly increased, leading to degraded performance of a MIMO-OFDM based scheme.

In a PMQRD implementation the PAPR is dictated by the modulation scheme used, not the

DFT. Hence for modulation schemes with constant transmit energy per symbol the PAPR will be

unity. This significantly reduces the cost and design of the amplifier stage and allows for more

power efficient amplifier design. For modulation schemes with variable transmit energy per symbol,

the PAPR of PMQRD system will still be significantly less than that of OFDM, reducing transmitter

complexity and cost. Although the PMQRD scheme is also susceptible to channel estimation error, its

BER performance is still significantly greater, demonstrating the robustness of the proposed PMQRD

scheme.

5.8 Single Carrier OFDM

Although the proposed PMQRD has been show to significantly outperform MIMO-OFDM QR

in every scenario, the greatest advantage of the PMQRD approach is the reduction in PAPR at the

transmitter. Increased BER performance is always welcomed, but the ability to operate power efficient

amplifiers at mobile base stations is paramount. With the current global focus on reducing carbon
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emissions in all industries and formation of new international groups to provide green solutions, such as

the International Partnership for Energy Efficiency Cooperation (IPEEC), the mobile cellular industry

must significantly change its environmental model to meet global standards. Energy costs account for

as much as half of a mobile operators operating expenses, so improving energy-efficiency is not only

beneficial for the environment but also makes commercial sense for operators [76]. This is highlighted

by the fact that in the UK most mobile operators will switch of the third generation (3G) Enhanced

Data rates for GSM Evolution (EDGE) component of their mobile networks to save electricity and

running costs in the early hours of the morning and rely entirely on the previous second generation

(2G) General Packet Radio Service (GPRS). GPRS is a 2G technology compatible with both 2G and

3G cellular systems and although the data rates are significantly slower than EDGE this is offset by

the lack of demand for the EDGE service during in the early hours [77].

A single carrier OFDM system, like the PMQRD approach allows the modulation scheme to dictate

the PAPR and has an identical PAPR to the proposed PMQRD scheme. A basic SISO implementation

of a single carrier OFDM system is shown in Figure 5.13. Essentially the IFFT operation at the

transmitter has been shifted to the receiver. The only operation carried out at the transmitter is

the addition of the cyclic prefix, hence the modulation scheme dictates the PAPR. Recalling from

Chapter 2, the cyclic prefix renders the channel impulse response circulant. The impulse response of

the resulting circulant channel, Hc may be expressed again as

Hc = DH Σ D (5.7)

Where D denotes the discrete Fourier transform matrix, normalized by a factor of 1/
√
N (2.23).

For Figure 5.13, y′′ is simply expressed as

y′′ = DH Σ D s (5.8)

The FFT operation cancels out the discrete Fourier transform matrix, DH , allowing ŷ to be

reduced to

ŷ = D DH Σ D s

ŷ = Σ D s (5.9)

For this SISO scenario, the channel equalizer is simply Σ−1. Combined with the final IFFT
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operation which cancels out D, y becomes the transmitted signal s

y = DH Σ−1 Σ D s

ŷ = DH D s

ŷ = s (5.10)

s- CP
s′

H(z)
y′

CP��@@
y′′
- FFT

ŷ- EQ -y IFFT - y

Figure 5.13: SISO single carrier OFDM architecture.

Extending this to approach to the MIMO scenario, Figure 5.14 shows the complete system up to

the equalization stage.

s2
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y′′
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ŷ2-
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Figure 5.14: MIMO single carrier OFDM architecture.

The received signal ŷ is can be written in vector form as




ŷ1

ŷ2


 =



diag(Σ11) diag(Σ12)

diag(Σ21) diag(Σ22)







D s1

D s2


 (5.11)

and for the nth symbol of the received signal ŷ




ŷ1(n)

ŷ2(n)


 =




Σ11(n) Σ12(n)

Σ21(n) Σ22(n)







D(n, :) s1

D(n, :) s2


 (5.12)

Calculating the QR decomposition of the nth tone and using QH as filterbank reduces the MIMO

equalization problem to upper triangular form as before. Once again it is a simple decision feedback

process to iteratively cancel the transmitted signals from the received signals. Eq 5.13 shows the

equalization problem for the nth tone. Assuming QR decomposition has been properly carried out,
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R21(n) = 0. 


ŷ1(n)

ŷ2(n)


 =




R11(n) R12(n)

R21(n) R22(n)







D(n, :) s1

D(n, :) s2


 (5.13)

Eq 5.13 clearly shows the critical problem with this approach. Unlike the MIMO-OFDM QR

approach described previously we are no longer recovering the nth transmitted symbol from each

antenna, S(n), we are recovering the nth symbol of the FFT of the transmitted symbol sequence from

each antenna. Denoting the FFT of the ith symbol stream as ξi = D si, if the n
th element of ξi

is significantly corrupted, due to the nth tone of the MIMO frequency selective channel undergoing

deep fade, performing the IFFT will no longer corrupt only the estimate of si(n), but the entire

estimate of the symbol sequence si. When this occurs, in particular for a V-BLAST and D-BLAST

implementation exploiting the full diversity gain of the channel not only is the ith symbol sequence

lost, but the received streams can no longer be iteratively canceled from eachother and the entire

packet is lost. Figure 5.15 shows the average coded BER for a single carrier MIMO-OFDM system,

averaged over 1000 Monte Carlo simulations and compared with MIMO-OFDM QR. A D-BLAST

architecture system has been implemented identical to those previously described in this chapter. As

can be clearly seen the single carrier implementation cannot provide any real performance, even at

the relatively high SNR of 10dB.
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Figure 5.15: Average coded BER results for D-BLAST MIMO-OFDM QR schemes incorporating
ODO for a 3× 3 MIMO channel, L = 5, with constant power profile.
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However, Figure 5.15 does not provide the full picture. Focusing on the 1000 Monte Carlo simu-

lations carried out at an SNR of 10dB, Figure 5.16 shows a histogram of the BER obtained in each

simulation run. As can be seen for a significant percentage, around 75% of the Monte Carlo simu-

lations operate as expected and although not obtainable from the histogram, 657 of the 1000 Monte

Carlo simulations had a coded BER of less than 9.7× 10−4, i.e. they recovered the transmitted signal

in its entirety free from errors. As previously shown in Figure 5.4, the frequency selective nature of

the MIMO channel can cause certain tones to be in deep fade, when this occurs the BER performance

is degraded to such an extent that the entire packet is unrecoverable. This is clearly visible in the

results as there are packets with a BER rate between 0.4 and 0.5, i.e. the receiver has had a 50%

chance of correctly estimating each transmited bit. Note for the equivalent standard MIMO-OFDM

QR approach over 1000 Monte Carlo simulations, no packets produced a BER higher than 1× 10−3.
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Figure 5.16: Histogram of coded BER results for 1000 Monte Carlo simulations of a D-BLAST SC
MIMO-OFDM QR scheme incorporating ODO for a 3×3 MIMO channel, L = 5, with constant power
profile at an SNR of 10dB.

The typical solution to this problem is to use an adaptive modulation scheme at the transmitter [78]

to adapt the constellations for the subchannels according to their respective channel gains and avoid

using tones in deep fade [79], known as bit loading [80, 81]. This technique however only applies to

a bidirectional transmission system where the channel transfer function estimated at the receiver can

be fed back to the transmitter. Hence it is not suitable for implementation in a QR based system
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where no feedback path exists.

5.9 Conclusion

In this chapter the PMQRD has been applied and analyzed to frequency selective MIMO channels.

Application of the proposed PMQRD technique reduces the MIMO channel equalization problem to a

set of decision feedback based single channel equalization problems. The performance of the PMQRD

system has been evaluated for BLAST architecture communications systems incorporating either

horizontal, vertical or diagonal encoding. Comparing the proposed PMQRD time domain solution to

an identical MIMO-OFDM QR frequency domain solution has yielded several important results. In

an OFDM system, receiver decisions are made carrier by carrier, which makes some decisions highly

unreliable, whereas the decision reliability in single-carrier systems is dictated by the SNR averaged

over the entire channel bandwidth [82]. This has been shown clearly in the results with the superior

BER performance of the PMQRD based scheme over MIMO-OFDM QR in every scenario. The

robustness of the proposed approach has again been verified for system performance in the presence

of CSI error.

Furthermore, the PAPR of the PMQRD scheme is dictated by the modulation scheme used at the

transmitter. Hence for low complexity PSK modulation schemes such as BPSK and QPSK, the PAPR

is unity. This allows for optimal power amplifier design within the transmitter, minimizing operating

and design costs while maximizing energy efficiency. Although a single carrier OFDM approach is

capable of providing the same benefit, it has been shown that without a feedback path between

receiver and transmitter to mitigate the effect of individual tones being in deep fade, such a system

is unworkable for a BLAST architecture communications system.

In the next chapter we combine PMSVD at the transmitter and PMQRD at the receiver to create

a MIMO multiuser (MIMO-MU) system, capable of true time domain broadband beamforming for

the MIMO-MU downlink channel.
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Chapter 6

Downlink Multi-User MIMO for

Frequency Selective Channels

6.1 Introduction

In the preceding chapters the individual application of PMSVD and PMQRD to frequency selective

MIMO channels has been discussed. In this chapter the benefits of both techniques are combined for a

downlink multi-user MIMO (MU-MIMO) scenario (often also commonly referred to as spatial division

multiple access (SDMA) [83, 84]). For applications such as wireless LAN’s and cellular telephony,

MIMO systems will likely be deployed in environments where a single base station must communicate

with multiple users simultaneously. MU-MIMO systems have the potential to combine the high

capacity achievable with MIMO processing with the benefits of space-division multiple access [85].

For this scenario there are two communications problems to consider, the uplink, whereby multiple

users transmit data simultaneously to the base station, and the downlink, whereby the base station

transmits data simultaneously to multiple users. Typically for the uplink channel, users are unable to

coordinate with each other and therefore the challenge is for the base station to separate the users. For

the downlink channel the challenge is for the base station to design transmit vectors while considering

the co-channel interference of other users [25]. The primary benefit of MU-MIMO to wireless systems

is not the multiple access capability, but the additional channel reuse within a cell to increase spectral

efficiency [3].

MU-MIMO is particularly well suited to satellite applications. As users on the ground have a

direct LOS path to the satellite with no scattering component, the signals received at the satellite

have no angular spread [3]. Assuming the multiple users are at well separated angles it is relatively

straightforward to direct co-channel pencil beams with minimum cross interference [86]. Conversely

a terrestrial MU-MIMO cellular system is significantly more complex due to the multipath scattering

environment and typically the high mobility of mobile users [87].

In this chapter a downlink MU-MIMO scenario has been considered, consisting of a single trans-

mitter base station equipped with multiple antennas communicating with multiple users. Initially the

application and implementation of an instantaneous MU-MIMO mixing channel is discussed. SVD is
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used at the transmitter to design orthogonal transmit vectors for each user. Each user is equipped

with multiple receive antennas and the transmitter is capable of transmitting multiple independent

data streams to each user, therefore QR decomposition is used at the receiver side to equalize the

MU-MIMO channel and recover the transmitted data streams. This work is then generalized to con-

volutive MU-MIMO mixing channels, where the PMSVD using SBR2 [21] is used to design orthogonal

transmit vectors at the base station and PMQRD to equalize the resulting channel at the receiver.

Throughout this work an identical MU-MIMO OFDM scheme is used as a benchmark. Finally the ro-

bustness of the proposed scheme to CSI is considered and the benefits of the time-domain polynomial

approach discussed.

6.2 Instantaneous Mixing MIMO-MU Transmission

Consider initially an instantaneous mixing scenario whereby a base-station communicates with K

wireless users. The base-station is equipped with Mt transmit antennas, and the jth user is equipped

with Mrj receive antennas. It is assumed that the base station has perfect CSI of the channel between

itself and each user, furthermore it assumed that each user has perfect CSI of the channel between

itself and the base station. The total number of antennas over all the receivers, Mr is defined as

Mr =
∑K
i=1Mri . The noise free channel matrix from the base station to the jth user is denoted as

Hj ∈ C
Mrj

,Mt , and the associated transmit filter bank by Mj ∈ C
Mt×Mrj . A set of source signals

of length T for the jth user, sj(t) ∈ C
Mrj

×1, for t ∈ {0, 1, . . . , T − 1} are propagated through Hj .

Therefore the set of received signals at the jth receiver, yj(t) ∈ C
Mrj

×1 is

yj(t) =

K∑

i=1

Hj Mi si(t) + nj(t) (6.1)

where nj(t) denotes an additive Gaussian noise process with variance σ2IMrj
and Mi denotes the

transmit filter bank for the ith user. To reduce interference between users the goal therefore is to

design a transmit filter such that Hi Mj = 0 for i = 1, 2, . . . ,K and i 6= j.

6.2.1 Singular Value Decomposition

The design of the transmit filter for the jth user, Mj is obtained via the SVD. Extending the

MIMO-MU notation, Ĥj is used to denote the channel matrix for all users other than the jth user
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combined, i.e.

Ĥj =




H1

...

Hj−1

Hj+1

...

HK




(6.2)

The SVD of Ĥj is shown in (6.3). As Ĥj is a tall matrix of dimensions (Mr −Mrj ,Mt), Λ̂j will

be a fat diagonal matrix containing r = min(Mr −Mrj ,Mt) orthogonal channels.

Ĥj = Ûj Λ̂j V̂ H
j (6.3)

where Λ̂j takes the form

Λ̂j =




λ11 0 . . . . . . . . . . . . 0

0 λ22 0 . . . . . . . . . 0

...
. . .

. . .
...

0 . . . 0 λrr 0 . . . 0




(6.4)

The SVD of Ĥj can therefore be expressed as

Ĥj = Ûj Λ̂j

[
V̂

(1)
j V̂

(0)
j

]H
(6.5)

where V̂
(1)
j holds the first r right singular vectors and V̂

(0)
j holds the lastMt−r right singular vectors.

Thus V̂
(0)
j forms an orthogonal basis for the null space of Ĥj [25]. Setting Mj = V̂

(0)
j therefore fulfills

the design criteria of

Hi Mj = 0 (6.6)

for i = 1, 2, . . . ,K and i 6= j.

6.2.2 Receiver Design

Assuming perfect interference cancellation between users, the signal received by the jth user will

89



CHAPTER 6. DOWNLINK MULTI-USER MIMO FOR FREQUENCY SELECTIVE CHANNELS

be

yj(t) = Hj Mj sj(t) + nj(t) (6.7)

QR decomposition can therefore be applied at the receiver to exploit the diversity gain afforded

by the MU-MIMO channel and to simplify MU-MIMO channel equalization. Formulating the QR

decomposition of the product of the modulation matrix and channel and using QH
j as a receive filter

bank results in

yj(t) = QH
j Hj Mj sj(t) + nj(t)

yj(t) = Rj sj(t) + nj(t) (6.8)

where QjRj = Hj Mj . As discussed in Chapter 2 the upper triangular property of the matrix Rj

can now be exploited to transform the MIMO channel equalization problem into a set of Mrj single

channel equalization problems using back substitution and solved accordingly.

6.2.3 Results

Figure 6.1 shows the average BER for the first user in a narrowband MU-MIMO system consisting

of three users, each equipped with two antennas and a transmitter base station equipped with six

antennas. The three curves represent the average BER rate when the base station is transmitting to

only the first user, the first and second user and finally all three users. QR decomposition is used at

the receiver to equalize the MU-MIMO channel, but no BLAST scheme or error correction coding is

implemented. The total transmission power budget is identical for each user and is independent of

the number of users of the MU-MIMO system. The modulation scheme used is BPSK. BER results

have been computed for 1000 Monte Carlo simulations. As can be seen from the results, the average

BER rate for the first user at a given SNR remains constant regardless whether the base station is

transmitting to the other users or not. This confirms that the transmitter is correctly designing the

filter bank for each user such that the signals intended for any single user are transmitted in the null

space of all other users.

6.3 Convolutive Mixing MIMO-MU Transmission

We now extend this work to the frequency selective MU-MIMO scenario. Once again the trans-

mitter base station contains Mt transmit antennas and the jth user is equipped with Mrj receive

antennas. The noise free multipath channel matrix from the base station to the jth user is denoted

as Hj(z) ∈ C
Mrj

,Mt , and the associated filterbank by M j(z) ∈ C
Mt×Mrj .
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Figure 6.1: Average BER results for User 1 when the base station is transmitting to User 1, Users 1
& 2 and Users 1,2 & 3 simultaneously.

6.3.1 PMSVD at the Transmitter

Extending the MIMO-MU notation developed previously, Ĥj(z) denotes the multipath MIMO

channel matrix for all users other than the jth user combined, i.e.

Ĥj(z) =




H1(z)

...

Hj−1(z)

Hj+1(z)

...

HK(z)




(6.9)

The PMSVD of Ĥj(z) can now be formulated using the SBR2 algorithm. Recalling from Chapter 3

the input to the SBR2 algorithm must possess the para-Hermitian property. Forming the para-

Hermitian matrix, R(z) as R(z) =
˜̂
Hj(z)Ĥj(z) and performing a PMEVD yields the paraunitary

matrix, V (z) as per (3.16). The PMSVD of Ĥj(z) is shown in (6.10). Again due to Ĥj(z) being a

tall matrix, performing PMSVD will result in Λ̂j(z) as a fat diagonal polynomial matrix containing
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r = min(Mr −Mrj ,Mt) orthogonal channels.

Ĥj(z) = Û j(z) Λ̂j(z) V̂
H

j (z)

= Û j(z) Λ̂j(z)

[
V̂

(1)

j (z) V̂
(0)

j (z)

]H

(6.10)

V̂
(0)

j (z) now forms an orthogonal basis vector for the null space of Ĥj(z). SettingM j(z) = V̂
(0)

j (z)

again fulfills the design criteria of

H i(z) M j(z) = 0 (6.11)

for i = 1, 2, . . . ,K and i 6= j.

6.3.2 PMQRD at the Receiver

To equalize the resulting frequency selective MIMO channel between transmitter base station

and the jth user, PMQRD is used at the receiver. Again, assuming perfect interference cancellation

between users, calculating the PMQRD of Hj(z) M j(z) and using QH

j
(z) as a receive filter bank

reduces the MIMO channel equalization problem to a set of single channel equalization problems.

y
j
(z) = QH

j
(z) Hj(z) M j(z) sj(z) + nj(z)

y
j
(z) = Rj(z) sj(z) + nj(z) (6.12)

To fully exploit the diversity gain afforded by the multipath channel, a D-BLAST encoding scheme

has been implemented as shown in Figure 6.2. Prior to transmission the data stream for the jth user is

demultiplexed into Mrj substreams which are independently convolutionally encoded and interleaved

and finally stream rotated to obtain the maximum spatial diversity afforded by the MU-MIMO channel.

data
stream

- Demux -

-

-

sjMrj

sj1

sj2
Encoder -

-

-

cjMrj

cj1

cj2

Encoder

Encoder

Interleaver

Interleaver

Interleaver-

-

-

Stream
Rotator

xjMrj

xj1

xj2-

-

-

M j(z)

Figure 6.2: D-BLAST MU-MIMO transmitter architecture.

Note the flexibility provided by the encoder in the D-BLAST architecture. A potential problem in
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MU-MIMO systems is the near-far problem [88], where one user is significantly closer to the transmitter

base station than an other, resulting in the far user operating in a more strongly attenuated channel.

Although the transmitter can allocate transmit power independently to different users, maximizing

achievable throughput of the entire MU-MIMO using a waterpouring technique typically results in

a solution at the expense of the user with the most attenuated channel [85]. Using the D-BLAST

encoding architecture the transmitter can use a generator polynomial with a code rate appropriate

to the channel capacity [67] and provides a simple method for solving this problem while maintaining

quality of service for other users.

6.4 Channel Model

Without loss of generality a downlink MU-MIMO scenario has been modeled, consisting of a base

station transmitting to multiple users. The number of antennas at the basestation, Mt is six. The

number of users,K is three and the number of antennas at each user,Mrj is two. The temporal length,

L of the channel between each transmitter and receiver is five. Frequency selective MIMO channels

with both an exponential power delay profile and a constant power delay profile have been considered

to model both outdoor macro-cellular environments and indoor micro-cellular environments. As per

Chapter 4, the MIMO channel with an exponential power delay profile has an exponential decaying

factor of ψ = 0.8 as in (4.2).

6.5 Results

A WSQS situation has been considered. The bit error rate has been computed for 1000 Monte

Carlo simulations. The modulation scheme used is BPSK for evaluation purposes but extension to

large constellations is straightforward. The number of time slots of the channel, N = 2048. Initially

it is assumed the receiver has perfect channel knowledge. The code formatting polynomials in (4.3)

as per GSM CS1-CS3 [52] have been used for each user.

A MU-MIMO OFDM scheme has been used as a benchmark. As with previous MIMO-OFDM

incarnations, the frequency selective channel is decomposed into N orthogonal frequency flat MU-

MIMO channels. For the jth user, the SVD operation at the transmitter is carried out within each

narrowband tone of Ĥj(z). Hence for Ĥj [k], the frequency response of the narrowband MU-MIMO

channel corresponding to the kth tone of the MU-MIMO channel matrix Ĥj(z), the SVD of Ĥj [k] is

calculated, as with the MIMO-OFDM SVD technique demonstrated in Chapter 4. The data stream

undergoes the same D-BLAST encoding process as the PMQRD based scheme prior to application of

OFDM. At the receiver the standard QR decomposition is applied within each narrowband tone and
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the iterative cancellation within the receiver is performed on each tone individually.

6.5.1 Constant Power Profile

Figure 6.3 shows the average coded BER performance for the first user in a MU-MIMO system

with a constant power profile. The three curves represent the average BER rate when the base station

is transmitting to only the first user, the first and second user and finally all three users. The proposed

polynomial matrix based scheme has been denoted PM and the benchmark MU-MIMO OFDM scheme

as OFDM. As can be clearly seen the narrowband SVD approach to MU-MIMO has been successfully

generalized to frequency selective channels. The average coded BER performance of the first user does

not change when additional users are operating within the MU-MIMO channel. Also note this result

is successfully repeated in the MU-MIMO OFDM scheme, the BER performance of the first user is

independent of the number of other users using the channel.
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Figure 6.3: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with constant power profile.

However the PM system significantly outperforms the OFDM scheme, with a gain in SNR of 3dB

at a BER of 1× 10−4. This is entirely due to the benefits in the PMQRD approach over the MIMO-

OFDM QR approach discussed in Chapter 5. Spreading the information in each transmitted symbol

across the entire frequency bandwidth automatically makes the PM system robust to deep channel

fading effects which significantly effect system performance in the OFDM based implementation.
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6.5.2 Exponential Power Delay Profile

Figure 6.4 repeats the experiment for a MU-MIMO system with exponential power delay profile.

Again the three curves represent the average BER rate when the base station is transmitting to only

the first user, the first and second user and finally all three users. PM and OFDM based implemen-

tations have been considered. Again we see both MU-MIMO are successful and BER performance is

independent of users of the channel. The proposed PM system outperforms the OFDM scheme, with

a gain in SNR of 4dB at a BER of 1× 10−3.

−4 −2 0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

PM User 1 Only
PM Users 1 & 2
PM Users 1 2 & 3
OFDM User 1 Only
OFDM Users 1 & 2
OFDM Users 1 2 & 3

Figure 6.4: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with exponential power delay
profile.

6.6 Channel Estimation Error

The scenario where both the transmitter and receiver have imperfect channel knowledge is now

considered. For a MU-MIMO scenario imperfect CSI will have a significant impact on the performance

of all users. Imperfect CSI at the transmitter will destroy the orthogonality of the transmitted streams

for each user and result in interference between transmitted streams. Hence the signals received by

each user will contain not only background noise but additional noise proportional to the number of

additional users operating in the MU-MIMO channel. Furthermore CSI error will result in degradation

in the performance of the iterative cancellation scheme within the receiver, as previously demonstrated
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in Chapter 5. The length of the training signal used, Nt = 50.

6.6.1 Constant Power Profile

Figure 6.5 shows the average coded BER performance for the first user when the base station is

transmitting to only the first user, the first and second user and finally all three users. As can be

seen, the BER performance degrades with the addition of other users with a loss in SNR of 3dB for

a BER of 1× 10−4 when all three users are operating simultaneously. This is mirrored in the results

for the OFDM implementation, shown in Figure 6.6 with a loss in SNR of 2dB for a BER of 1× 10−3

when all three users are operating simultaneously.
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Figure 6.5: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with constant power profile.

Figure 6.7 shows the average coded BER for each individual user when each all three users are

transmitting simultaneously. Note the BER for any user when using a given scheme is identical at

any SNR. Again the proposed PM approach significantly outperforms OFDM with a gain in SNR of

4dB at BER 1× 10−3.

6.6.2 Exponential Power Delay Profile

Figures 6.8 and 6.9 repeat the previous results for exponential power delay profile channels. The

figures show the average coded BER performance for the first user when the base station transmits

to only the first user, the first and second user and all three users. As expected the BER performance
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Figure 6.6: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with constant power profile.

degrades with the addition of other users, with a loss in SNR of 2dB at BER 1 × 10−3 for the first

user when all three users are transmitting simultaneously. OFDM suffers a similar loss in SNR of 2dB

at a BER of 1× 10−3 for the first user when all three users are operating simultaneously.

Finally Figure 6.10 shows the average coded BER for each individual user when all three users are

transmitting simultaneously for the proposed PM and OFDM approaches. Once again the proposed

PM approach outperforms OFDM with a gain in SNR of 6dB at BER 1× 10−3.

6.7 Conclusion

The SVD approach to downlink MU-MIMO has been successfully generalized to frequency selective

MU-MIMO channels using the PMSVD. The proposed PM technique is robust to CSI error and

outperforms a conventional OFDM based implementation for every scenario. The SBR2 algorithm

has been used to design the transmit filter banks at the transmitter for each user. As shown in

Chapter 4, operating on
˜̂
Hj(z)Ĥj(z) rather than directly on Ĥj(z) will square the effect of CSI

error, resulting in degraded system performance. A solution to this is already available in the form

of the PMSVD by PMQRD algorithm, detailed in the same chapter. However this algorithm was not

available at the time of implementation and hence the now redundant SBR2 approach was used. The

performance of the proposed PM scheme therefore can be further improved by replacing the SBR2
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Figure 6.7: Average coded BER results for all users transmitting simultaneously, for a MU-MIMO
channel with constant power profile.

algorithm with the PMSVD by PMQRD algorithm.

A significant advantage of the proposed PM technique is carried over from the dominant mode

PMSVD work of Chapter 4. As the proposed scheme is entirely time domain based it does not

require the storage of signals for DFTs and incur the block delays inherent in a MU-MIMO OFDM

scheme. The benefits of using PQMRD at the receiver are also apparent, as with the PMQRD

work of Chapter 5, spreading the information in each transmitted symbol across the entire frequency

bandwidth makes the system robust to deep channel fading. This results in the dramatic performance

increase over a MU-MIMO OFDM scheme. For a MU-MIMO OFDM scheme to provide a similar level

of BER performance, an adaptive bit loading scheme must be implemented at the transmitter [79],

resulting in a significant computational overhead.
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Figure 6.8: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with exponential power delay
profile.
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Figure 6.9: Average coded BER results for User 1 when the base station is transmitting to User 1,
Users 1 & 2 and Users 1,2 & 3 simultaneously, for a MU-MIMO channel with exponential power delay
profile.
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Figure 6.10: Average coded BER results for all users transmitting simultaneously, for a MU-MIMO
channel with exponential power delay profile.
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Conclusions

The original problem with applying the SBR2 algorithm to frequency selective MIMO channels

was the inability to satisfactorily process the large polynomial channel length produced by PMSVD.

Initially the only polynomial matrix channels considered were those with a constant power profile.

This automatically eliminated using Viterbi algorithm to equalize the channel response, due to the

computational cost. A number of different approaches were tried, namely attempting to reduce the

channel impulse response using channel shortening techniques. Capitalizing on the considerable expe-

rience available within the engineering department [89, 90], two distinct approaches were attempted.

Firstly the shortening of the paraunitary filter banks, U(z) and V (z) produced by PMSVD was con-

sidered. It was hoped that this would produce a diagonal polynomial matrix, Λ(z) with not only a

reduced polynomial length, but that also the energy distribution within would be concentrated in a

small number of significant taps, enabling the application of Viterbi equalization.

This approach was unsuccessful as the frequency response of U(z) and V (z) were found to be

too complex to replicate accurately with shorter filter banks. As a consequence the product of

Ũ(z) H(z) V (z) was no longer sufficiently diagonal. A more direct solution was to use the filter

banks generated by PMSVD intact, and focus on shortening Λ(z) directly. The paraunitary filter

banks created by PMSVD would be used directly and channel shortening used to represent Λ(z) ac-

curately by a smaller number of taps, again allowing Viterbi equalization to be applied. This approach

was also found to be unsuccessful. The errors introduced by inaccurately representing the channel

degraded overall system performance such that a MIMO-OFDM SVD approach was outperforming

the PMSVD system typically by 15-20 dB.

It was only until the PMSVD was applied to MIMO channels with exponential power delay profile,

where the energy is concentrated in a few significant taps as a natural effect of the properties of the

channel and enabling the use of the Viterbi algorithm were the benefits first realized. Encouraged by

this result, a turbo equalization based solution was subsequently implemented to mitigate the effects

of constant power profile channels. This work is illustrated in the fourth chapter, where the dominant

mode of the PMSVD is exploited to obtain a SISO frequency selective channel with far superior

BER performance to existing time domain based access schemes. The performance of the proposed
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scheme was also evaluated against a frequency domain based OFDM solution. Although the BER

performance of both schemes was found to be identical, the PMSVD approach enables a wider range

of access schemes and is operable on continuous streams of data, providing a more flexible solution.

The turbo equalization strategy was subsequently applied to BLAST architecture schemes utilizing

PMQRD at the receiver to reduce the MIMO channel equalization problem to a set of decision feedback

based single channel problems. The fifth chapter provides a comprehensive review of every conceivable

BLAST architecture system and showcases the significant benefits of PMQRD. PMQRD is shown

to not only provide superior BER performance over a conventional OFDM based solution, but to

additionally reduce power consumption and design costs at the transmitter.

Finally in chapter six both PMSVD and PMQRD were combined in a MU-MIMO downlink sce-

nario. Application of the PMSVD at the transmitter base station enables the transmission of signals

between the transmitter and a desired user within other systems users null space. Hence multiple users

may share spectrum simultaneously, creating a true spatial access scheme. A D-BLAST architecture

encoding scheme was used in conjunction with PMQRD at each receiver to create a MU-MIMO system

resistant to deep channel fading. Again, this was compared to an existing frequency domain based

OFDM solution and found to provide superior BER performance.

The main contributions of this thesis are the successful application of polynomial matrix decom-

position techniques based on polynomial QR and polynomial eigenvalue decomposition to frequency

selective MIMO communications. All polynomial based implementations have been shown to be ro-

bust to CSI error and demonstrate the maturity of this approach. The significant benefits over existing

schemes have been discussed and documented.

7.1 Suggestions for Future Work

This section presents suggested developments to the work in this thesis and future applications of

polynomial matrix decomposition techniques within the field of MIMO communications.

7.1.1 Developments in Thesis Material

Due to recent development of the PMSVD by PMQRD algorithm, and the predictable BER per-

formance increase it brings due to operating directly on H(z), shown in Chapter 4, there is no further

need to apply the SBR2 algorithm to frequency selective MIMO communications as it has been su-

perseded. Due to the computational complexity and number of Monte Carlo simulations required,

time did not permit the replacement of the SBR2 algorithm with the PMSVD by PMQRD in the

MU-MIMO scenario. Doing so however would further mitigate the effects of CSI and provide a small,
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yet significant performance boost and should be investigated.

Chapter 4 only exploits the performance of the dominant mode provided by PMSVD. This research

could be extended further with the use of a frequency selective waterpouring scheme to utilize multiple

modes of the PMSVD simultaneously and increase system capacity. A MIMO-OFDM scheme utilizing

a bit loading scheme would provide a suitable benchmark [91, 92]. A comparison of the robustness of

the schemes to CSI error would yield interesting results. When exploiting only the dominant mode in

a PMSVD or MIMO-OFDM SVD scheme, CSI error does not significantly effect system performance.

Although the beam pattern at the transmitter and receiver will be sub-optimum, resulting in a re-

duction in the gain of the signal received and increased noise, system performance is still acceptable,

as shown in Chapter 4. However CSI error will destroy the orthogonality between the modes in a

PMSVD or MIMO-OFDM SVD scheme, leading to a significant performance decrease when multiple

spatial modes are used simultaneously due to cross mode interference.

As the significant benefits of PMQRD using optimum detection ordering have been shown in

Chapter 5, there is now sufficient motivation to develop a PMQRD algorithm that can operate on any

channel matrix and calculate both the optimum decomposition and relevant permutation of the channel

matrix simultaneously. This would be of significant value for high order MIMO systems where the

calculation of the QR decomposition for every possible permutation of the channel matrix is infeasible.

An algorithm that operates directly on a given scalar channel matrix, without the need for the brute

force approach used in Chapter 5 already exists [72], often referred to as the Sorted QR Algorithm.

Sorted QR Algorithm however does not use a Givens rotation based approach to QR decomposition,

and instead operates using a modified Gram-Schmidt algorithm. Therefore this approach cannot be

easily generalized for the PMQRD givens rotation based approach. Further research is clearly needed

in this matter.

Finally, the PMQRD algorithm is at a mature enough state to be taken out of the MATLAB

simulation environment and implemented on a real-world development testbed. Given the robustness

of the PMQRD approach to CSI error, it is now time to examine the robustness of the algorithm

when implemented on the limited hardware found in mobile cellular systems, in particular the limited

floating point accuracy available. Given the hardware constraints of a real world system a compre-

hensive analysis can be carried out to see if it is possible to implement a PMQRD based scheme while

maintaining the performance edge over a MIMO-OFDM QR scheme.

7.1.2 Application to Cognitive Radios

The electromagnetic radio spectrum is a tightly regulated natural resource and every wireless sys-
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tem requires an exclusive license from the government [93]. As spectrum availability has decreased,

the cost of spectrum licenses has sky-rocketed. For example at the turn of the century, Orange,

Vodafone and many other mobile operators each paid upwards of 4 billion for a twenty year 3G li-

cense [94]. However, when portions of the spectrum are scanned it is found that there exist a large

number of spectrum holes [17]. In a cognitive radio application the first step at either the transmitter

or receiver antenna array is to detect spectrum holes, i.e. absence of licensed users. In a narrow-

band, instantaneous mixing scenario there are several well established techniques for decorrelating

the received signals and estimating their angle-of-arrival (AOA), based on eigenvalue decomposition,

such as multiple signal classification (MUSIC) [95] and estimation of signal parameters by rotational

invariance techniques (ESPRIT) [96]. Standard MUSIC and ESPRIT operate by collecting a num-

ber of samples of the signals received at each individual antenna within the array and forming their

covariance matrix. Eigendecomposition is carried out on this covariance matrix to determine which

eigenvectors span the signal subspace and their AOA and which eigenvectors span the noise subspace.

Again however for the broadband, convolutive mixing scenario the problem requires the eigenvalue

decomposition of a polynomial matrix. As with the work presented in this thesis, a typical solution to

this broadband problem is to use the DFT and apply spatial spectrum estimation techniques within

each narrowband. However, this ignores the relatively small but important correlations that may

exist between different bands. This independent frequency bin (IFB) [97] approach limits the degree

to which strong decorrelation can be achieved. It can also lead to a lack of temporal (phase) coherence

across the bands, [21].

Application of the SBR2 algorithm would allow blind source separation (BSS) techniques to be

directly applied to the broadband channel, and hence the accuracy of BSS can be significantly improved

by operating entirely within the time domain. The additional computational complexity needed to

correlate data obtained in each frequency band in a DFT based system, and the questionable accuracy

of the correlation is entirely removed in an SBR2 based system. Additionally, alongside providing

accurate spectrum hole location SBR2 is able to provide an entirely time domain based broadband

beamformer, resulting in a complete time domain based solution to the broadband cognitive radio

problem. Given the considerable benefits of operating within the time domain shown in this thesis

coupled with the industrial interest in spectrum hole exploitation this would be an ideal environment

for the application of polynomial matrix decomposition techniques.
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Appendix A

Recursive Convolutional Encoding

for PMSVD Channels

A.1 Introduction

Throughout this thesis the non-recursive convolutional encoder used in GSM CS1-CS3 [52] shown

in Figure A.1 has been implemented in all turbo equalization based schemes. D blocks represent

1-bit storage devices, or D flip-flops. The two output streams, C1 and C2 are interleaved together to

produce the coded stream C. Thus for every bit of input, there are two coded output bits, resulting

in a rate R = 1/2 code [67]. It is convention to assume that all memory elements are initialized to

zeros prior to transmission, so that the initial starting state of the encoder can be predetermined.

S(n) - D - D - D - D

HHHHY

HHHHj
�����

- �

- �

i

- C1(n)

i

- C2(n)

Figure A.1: GSM CS1-CS3 convolutional encoder.

For the input stream S = [0, 1, 1, 0, 1, 0, 1] the resulting outputs are C1 = [0, 1, 1, 0, 0, 0, 0] and

C2 = [0, 1, 0, 1, 0, 1, 0]. Hence the encoded interleaved stream is C [00, 11, 10, 01, 00, 01, 00]. Com-

mas separate the pairs of outputs at a single input time. This encoding architecture is known as

a non-recursive, feedforward or FIR encoder, as the transfer function 4.3 contains only polynomial

entries [67]. Each bit of the input stream S will influence the subsequent 5 bits of the output streams
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C1 and C2 as it traverses the shift register. In this appendix the performance of recursive convolu-

tional encoders are considered. A recursive encoder utilizes a feedback or IIR element to produce a

convolutional encoder where each bit of the input stream will influence every subsequent coded output

bit. Tuchler et al [65] have shown the performance of a turbo equalization scheme can be significantly

improved using a recursive encoder. Assuming perfect channel equalization the performance of the

turbo equalization scheme is lower bounded by the underlying 1/2 rate code used over an ISI-free

channel at the same SNR. Well designed recursive encoders typically outperform their FIR counter-

parts, hence the aim of this appendix is to mirror the results presented by Tuchler textitet al [65] for

the dominant mode PMSVD scenario presented in chapter 4.

A.2 Recursive Encoder Design

Two types of recursive encoder are implemented in this appendix. The first is based on a simple

suggestion by Tuchler et al [65], which is to convert an existing non-recursive encoder to a recur-

sive with the simple addition of a single one-tap IIR element. The second is a specific recursive

convolutional encoder, designed for for concatenated channel encoding.

A.2.1 IIR GSM CS1-CS3

The GSM CS1-CS3 encoder can be easily modified to become recursive with the addition of the

feedback path shown in Figure A.2, as suggested in [64]. Note that the addition of this feedback

path will not cause a significant complexity overhead, since the required number of delay elements

has remained constant.

A.2.2 High-Rate Recursive Encoder

Daneshgaran et al [98] have investigated a wide range of recursive convolutional encoders for

concatenated channel coding. The minimum metric of a path diverging from and then remerging to

the all zero path is termed the free distance, or dfree of a convolutional code. As encoder performance is

directly proportional to dfree, Daneshgaran et al have searched for a number of recursive convolutional

encoders whose distance spectra is maximal for a given number of conditions. Thus the 1/2 rate

recursive generating polynomial (A.1) has been selected, due to its high value of dfree = 7. Figure A.3

shows the structure of the encoder.

G(D) =

[
1,

23

35

]
(A.1)
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Figure A.2: GSM CS1-CS3 recursive convolutional encoder.
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Figure A.3: High-rate Daneshgaran recursive convolutional encoder.

A.2.3 MAP Decoder Design

It is important to note that due to the IIR properties of the recursive encoders it can be difficult

to flush the encoder to a known end state with only a small number of flushbits. Therefore to avoid
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wasting bandwidth transmitting excessive flushbits it is necessary to set all the ending probabilities

to have an equal probability, i.e. the values of βτ (i) = 1/Ms for i = 0, 1, . . . ,Ms−1 whereMs denotes

the number of states.

A.3 Channel Model

A MIMO channel with constant power delay profile and equal average gain for each tap has been

considered. The number of antennas at the transmitter and receiver is five, i.e. Mt = Mr = 5. The

polynomial length of the channel, L is five. It is assumed both the transmitter and receiver have

perfect channel knowledge.

A.4 Results

A PMSVD scheme identical to that used in chapter 4 has been implemented and the PMSVD

has been calculated using the SBR2 algorithm. Again, only the BER performance of the dominant

mode has been considered. The standard non-recursive GSM CS1-CS3 generating polynomial has

been used as a benchmark. The bit error rate has been computed for 1000 Monte Carlo simulations.

The modulation scheme used is BPSK for evaluation purposes but extension to large constellations is

straightforward. The number of time slots of the channel, N = 2048.

Figure A.4 compares the coded BER performance of all three schemes. As can be seen, all three

convolutional encoders provide a similar level of average coded BER performance. Surprisingly, both

recursive encoders are outperformed by the standard non-recursive GSM CS1-CS3 encoder. For

example at a BER of 1 × 10−4, GSM CS1-CS3 outperforms both recursive encoders with a gain

in SNR of 0.2 dB.

A.5 Conclusion

Recursive encoders degrade coded BER performance when applied to the dominant mode PMSVD

scenario described in Chapter 4. This is due to the excessive length of the polynomial channel

generated by PMSVD and the MMSE equalization strategy employed to overcome it. Recalling from

Chapter 4, to reduce the computational complexity of the MMSE equalizer, the MMSE equalizer

is of a minimum length of 10 taps, and only considers taps of the resulting channel λ11(z) with an

absolute value greater than σ2

Mr×Mt
. This provides an acceptable trade-off between computational

complexity and performance. Typically the MMSE equalizer length is around 30-50 taps and hence

behaves similarly to a constraint-length 30-50 convolutional codec. Since the minimum distance of the

legitimate codewords is huge, once an error is made the resulting decision is a high distance codeword
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Figure A.4: Average coded BER results for dominant mode PMSVD scheme with a range of encoding
schemes for a 5× 5 MIMO channel, L = 5, with constant power profile.

that can inflict a far greater number of errors the originally existed. This effect, coupled with the

sub-optimum performance of the MMSE equalizer results in error propagation between the MMSE

equalizer and MAP decoder. Given the extended bit influence of the recursive architecture, this results

in degraded system performance when using a recursive encoding strategy.

Although the proposed recursive encoders degrade system performance, the GSM CS1-CS3 encoder

is by no means the definitive encoder to use when exploiting the dominant mode performance of the

PMSVD. As the aim of Chapter 4 was to successfully implement a dominant mode PMSVD based

communications system, GSM CS1-CS3 was deemed appropriate due to its use in cellular systems.

However the GSM implementation does not utilize a turbo equalization strategy and hence more

appropriate generating polynomials may be found for PMSVD applications. This work however is

outside the scope of this thesis.
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Appendix B

Diversity Techniques using

PMQRD for Channels with

Exponentially Decaying Power

Profile

B.1 Introduction

In Chapter 5 the application of PMQRD to frequency selective MIMO channels with constant

power profile was discussed. In this appendix identical techniques are applied to frequency selective

MIMO channels with exponential power delay profile to demonstrate the flexibility of the proposed

approach. The exponential channel model is identical to that presented in Chapter 4. Again the

exponential decaying factor, ψ = 0.8 (in keeping with the PMSVD experiments). A MIMO system

consisting of Mr = Mt = 3 antennas has been considered, but extension to MIMO systems with

Mr 6=Mt is trivial.

Application of PMSVD to MIMO channels with exponential power delay results in a frequency

selective channel where the energy distribution is concentrated in a few consecutive taps, allowing a

low complexity Viterbi equalizer to be applied. However this does not occur when applying PMQRD to

exponential power delay MIMO channels. As a consequence the turbo equalization approach discussed

in Chapter 5 for constant power profile channels is simply re-applied here.

B.2 Results

Again, a wide-sense quasi stationary (WSQS) situation has been considered. The bit error rate

has been computed for 1000 Monte Carlo simulations. The modulation scheme used is BPSK for

evaluation purposes but extension to large constellations is straightforward. The number of time slots

of the channel, N = 2048. Initially it is assumed the receiver has perfect channel knowledge. Results

have been simulated with and without ODO and again an equivalent MIMO-OFDM QR scheme has

been used as a benchmark.
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EXPONENTIALLY DECAYING POWER PROFILE

B.2.1 H-BLAST

Figure B.1 directly compares the proposed PMQRD and MIMO-OFDM QR schemes for a H-

Blast architecture wireless system. Additional results have been included for ODO implementations.

PMQRD provides superior BER performance, with a gain of 3dB in SNR at BER 10−3 over a MIMO-

OFDM approach. ODO further increases the performance of the PMQRD scheme, with a 3dB gain

in SNR over standard PMQRD and 1dB gain over MIMO-OFDM ODO at BER 10−3 respectively.

As with constant power profile channels, ODO mitigates the effects of individual tones having poor

gain in the MIMO-OFDM approach, providing the significant performance boost.
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Figure B.1: Average uncoded BER results for H-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with exponentially decaying elements.

B.2.2 V-BLAST

Figure B.2 repeats the previous results for a V-BLAST architecture implementation. When using

channels with constant power profile the maximum diversity obtainable is MrMtL, where L denotes

the polynomial length of the channel. As the V-BLAST architecture approximately provides this the

benefits of ODO are negated and no-performance gain is seen with its inclusion in PMQRD based

schemes. The PMQRD approach retains its superior performance over MIMO-OFDM QR due to the

spreading of information in each transmitted symbol across the entire frequency bandwidth, providing
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Figure B.2: Average uncoded BER results for V-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with exponentially decaying elements.

additional robustness against deep fading, with a small gain of 4dB in SNR at BER 10−3.

B.2.3 D-BLAST

Figure B.3 again repeats the previous simulation for a D-Blast architecture scenario. Combining

the performance benefits of V-BLAST with the computational benefits of H-BLAST, once again

PMQRD outperforms MIMO-OFDM QR with a gain in SNR of 3dB at BER 10−3.

B.2.4 Channel Estimation Error

Finally the scenario where the receiver has imperfect channel knowledge has once again been

considered. The BER rate has been computed for 1000 Monte Carlo simulations. The modulation

scheme used is BPSK. The number of time slots of the channel, N = 2048. The length of the training

sequence, Nt = 50. Simulations have been performed for both D-BLAST PMQRD ODO and D-

BLAST MIMO-OFDM QR ODO schemes. Figure B.4 again shows the clear performance benefits

of the PMQRD approach, with a gain in SNR of 2dB at BER 10−3. The algorithm has again been

shown to be robust to CSI error, confirming its suitability for real world applications.

B.3 Conclusion

In this short appendix the results of Chapter 5 have been confirmed for MIMO frequency selective
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Figure B.3: Average uncoded BER results for D-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3× 3 MIMO channel, L = 5, with exponentially decaying elements.
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Figure B.4: Average uncoded BER results for D-BLAST PMQRD and MIMO-OFDM QR schemes
incorporating ODO for a 3 × 3 MIMO channel, L = 5, with exponentially decaying elements with
channel estimation error.
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channels with exponential power delay profile. The key benefits of the PMQRD approach, i.e. the

robustness to deep fading and reduction in peak-to-average power ratio over MIMO-OFDM QR all

still apply.
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