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Abstract 7 

Transdermal drug delivery (TDD) is limited by the outer layer of the skin, i.e., the stratum 8 

corneum. Research on TDD has become very active in recent years and various technologies 9 

have been developed to overcome the resistance of the stratum corneum to molecular 10 

diffusion. In particular, researchers have started to consider the possibility of combining the 11 

TDD technologies in order to have further increase in drug permeability. Microneedles (MNs) 12 

and ultrasound are both promising technologies. They achieve enhancement in drug 13 

permeation via different mechanisms and therefore give a good potential for combining with 14 

each other. This review will focus on discussing the potential of this combinational technique 15 

along with other important issues, e.g., the mechanisms of ultrasound and MNs as it is these 16 

mechanisms which are coupled via the two systems (i.e. MNs and ultrasound). We discuss 17 

the possible ways to achieve this combination as well as how this combination would 18 

increase the permeability. Some of the undeveloped (weaker) research areas of MNs and 19 

sonophoresis are also discussed in order to understand the true potential of combining the two 20 

technologies when they are developed further in the future. We propose several hypothetical 21 

combinations based on the possible mechanisms involved in MNs and ultrasound. 22 

Furthermore, we carry out a cluster analysis by which we determine the significance of this 23 
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combinational method in comparison with some other selected combinational methods for 24 

TDD (e.g., MNs and iontophoresis). Using a time series analysis tool (ARIMA model), the 25 

current trend and the future development of combined MNs and ultrasound are also analysed. 26 

Overall, the review in this paper indicates that combining MNs and ultrasound is a promising 27 

TDD method for the future. 28 

Keywords: Transdermal drug delivery, sonophoresis, microneedles, iontophoresis, chemical 29 

enhancers, permeability, autoregressive integrated moving average, cluster analysis 30 

1. Introduction 31 

Transdermal drug delivery (TDD) methods intend to deliver drug molecules to the blood 32 

circulation at a controlled rate for which the molecules need to pass through different sub-33 

layers of the skin. TDD is developing fast and there are now many approved drugs for TDD, 34 

e.g., nineteen (19) drugs have been approved by the Food and Drug Administration, USA  [1]. 35 

The potential of TDD for treating human diseases is also huge. For example, TDD can 36 

provide prolonged treatment time in the cure of chronic diseases while maintaining the 37 

permeation of the active drug molecules at a controlled level [2]. The diseases may be either 38 

psychological or physiological, and may need TDD ranging from nicotine patch for smoking 39 

cessation to the treatment of eczema [3, 4]. However, the full potential of TDD is not fully 40 

exploited yet, which is evidenced by the fact that new questions continue to be asked on how 41 

to develop the TDD methods further, for example, to resolve specific issues and/or 42 

incorporate the latest technological advances. For instance, it has been asked if it is possible 43 

to make functionalised delivery system for vaccines that can be applied in a simple way such 44 

as topical administration [5]. To develop a TDD method for clinical purposes, one may 45 

require a significant amount of finances and many technical impediments would need to be 46 

resolved [6]. For example, it is evident that the market of TDD products has developed very 47 
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fast and they were worth a market value of US $21.5 billion in 2010 which accounts for more 48 

than 12% of global drug delivery market. The development of the TDD market is predicted to 49 

reach US $31.5 billion by 2015 in which US $3 billion belongs to transdermal patch market 50 

[7]. However, the diversity of the drugs that could be delivered and various applications of 51 

these TDD techniques for treating human diseases are still limited.  52 

 53 

Despite the commercial successes of the TDD methods, further development and success of 54 

these methods cannot solely depend on the transdermal patches. Improvement on the drug 55 

delivery efficiency and increment on the numbers of applicable drug molecules need to be 56 

achieved in the future by extending the TDD technology in multiple ways. In these regards, 57 

one of the main technical obstacles that should be overcome is the low efficiency on 58 

delivering large molecules such as proteins, vaccines, and micro-particles [8] using the TDD 59 

methods. Microneedles (MNs) [9] and ultrasound [10] are two TDD techniques which work 60 

using different principles/mechanisms but they have shown great potential to remove this 61 

obstacle either on their own or in combination with each other. There are a number of 62 

publications now which have reviewed these two technologies on their own [11, 12, 13, 14, 63 

15]. There are also some recent studies where MN and ultrasound have been combined to 64 

increase skin permeability of large molecule [16, 17]. However, there is a lack of systematic 65 

review which discusses thoroughly the potential of combining MNs with ultrasound for 66 

enhanced drug permeation. Therefore, this review will focus on discussing the possible ways 67 

by which these two technologies could be combined. The first section of this paper will focus 68 

on explaining why the combination of MNs and ultrasound is important for TDD. The second 69 

and third sections will review the mechanisms of ultrasound and MNs, respectively, as these 70 

are the keys in the success of a TDD method that combines MNs and ultrasound. The fourth 71 

section will discuss the possible ways of combination and try to suggest what combinations 72 
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one may be interested in the future with the help of a cluster analysis. The last section of the 73 

paper is the conclusion section of the paper. The scope of this paper is discussed further in 74 

detail later in this section.  75 

1.1 Roles of TDD 76 

In order to provide further context to this review paper, we discuss the roles of TDD method 77 

briefly in this section. Not until the 1940s, has the TDD been specialized as one of the most 78 

essential drug delivery methods including the parenteral delivery (hypodermic injections) and 79 

oral formulations (solutions, suspensions, tablets and capsules) [18]. The main advantages of 80 

TDD over drug delivery through other routes are that: (a) TDD is user friendly, so that it can 81 

prevent needle phobia and avoid the pain perceived during the parenteral delivery [19], (b) 82 

TDD can dodge the gastrointestinal and liver metabolisms which are the most common issues 83 

in oral drug delivery [20] and, (c) TDD can provide long-term treatment without causing 84 

significant inconvenience, e.g., patients do not need to carry bulky medical instruments 85 

during the intravenous therapy which usually takes many hours [21]. In the past, the TDD 86 

methods mostly involved the uses of skin ointments and creams until a great progress was 87 

made in the 1980s when a transdermal patch was first introduced for the treatment of space 88 

motion sickness aimed at delivering scopolamine by attaching the transdermal patch on the 89 

back of the ear [22]. In general, the transdermal patches can prevent evaporations during 90 

treatment as well as achieve control rates of drug delivery [23]. However, their mechanism 91 

for drug delivery is based on passive diffusion. For this reason, the outermost layer of the 92 

skin, i.e., the stratum corneum (SC), restricts the choice of the drug molecule that can be 93 

administrated. For example, the molecular weight (MW) cut off for these molecules is 94 

generally taken to be under 500 Da [24] while their partition coefficient Kow should be 95 

between 1 to 5 [25, 26].  96 
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1.2 Different TDD technologies 97 

It is a matter of fact that the transdermal patch is a low efficient method in terms of drug 98 

permeability and area of skin covered by drug transport. However, there are a number of 99 

other technologies which particularly aim to increase drug transport rate and they may extend 100 

the diversity of the drug molecules that may be used in TDD (e.g., microneedles [27], 101 

sonophoresis [28] and iontophoresis [29]). All of these technologies are non-invasive or 102 

minimally invasive and, thus they provide painless drug administrations.  103 

 104 

The technologies that aim to enhance the permeability of the drugs through the skin as 105 

compared to transdermal patches alone can be grouped broadly according to the following 106 

five classifications: (i) methods that adjust the physicochemical properties of the drug 107 

molecules or increase the chemical potential of the drug solution to acquire better delivery 108 

rate, e.g., prodrug [30]; (ii) methods that tentatively alter the skin structure or modify the 109 

drug/skin partition coefficient to reduce the resistance of stratum corneum, e.g., chemical 110 

enhancers [31, 32]; (iii) methods that deliver drugs or microparticles directly into skin with 111 

the help of particle accelerator, e.g., gene guns [33, 34, 35, 36]; (iv) methods that use a 112 

gradient field (e.g., pressure gradient, electrical charge, any others) to induce convective flow 113 

increasing drug delivery rate, e.g., iontophoresis [37] and sonophoresis [38]; and, (v) methods 114 

that  physically disrupt or damage the skin to create new pathways which allow the drug 115 

molecules to be delivered through the skin barrier, e.g., MNs [39]. These five approaches are 116 

shown in more detail in Fig. 1. From the figure we can see that some TDD techniques may 117 

increase the diffusion rate via multiple mechanisms (sonophoresis, electroporation, etc.) 118 

while others may work similarly under the same categories. The combination of more than 119 

two or more than two techniques under the same category may not be able to yield a 120 
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promising permeability increment due to the possible redundancy/suppression of a particular 121 

mechanism in presence of another, e.g., microneedles and SC removal methods are both 122 

under category (iv) that aiming to bypass SC layer physically, thereby combining these two 123 

methods will be unnecessary. On the contrary, some TDD approaches indicate more potential 124 

for combinational methods because there are improved possibilities for them working in a 125 

synergetic way with another approach. Because the categories in Fig. 1 are subjectively 126 

divided, they are not necessarily able to provide every possible patterns of combination.  127 

 128 

Fig. 1 Current TDD technologies can be presented in five broad branches 129 

As stated earlier, the existing work in the literature suggests that it is possible to combine 130 

more than one method for enhancing drug permeability and there is a significant amount of 131 

work on different combinational approaches [40, 41]. However, it needs to be pointed out 132 

that the researches on the development of individual technology are very important for the 133 

development of the combinational methods because the researches on the individual method 134 
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can provide better understandings and stronger bases for the applications of these 135 

technologies. These improvements are crucial factors to ensure diversity and quality of the 136 

combinations. 137 

 138 

The ultrasound and MNs combination has covered four branches (categories ii, iii, iv and v) 139 

in the Fig. 1 which suggests that there could be much more possible forms of combination in 140 

the future. To have better understanding on the possible combinations between ultrasound 141 

and MNs, a detailed review based on the mechanisms of both technologies are necessary 142 

which has been carried out on following sections. In order to discover more opportunities in 143 

the ultrasound and microneedles combination, the main mechanisms of these two techniques 144 

will be reviewed individually. However, there are also many other minor factors among those 145 

mechanisms which could be important in some circumstances or will become significant 146 

factors when accuracy of the TDD is taken into account. Therefore, these factors and their 147 

main mechanisms will be discussed (fourth section).  148 

2. Ultrasound applications in TDD  149 

The ultrasound participated applications cover many cross-cutting research areas which 150 

include physics, chemistry, biology, engineering, and others. One of the main areas where 151 

ultrasound has been employed is the medicine, as exemplified by a large number of 152 

publications between 1975 and 2013 (Fig. 2). During this period, approximately 210,540 153 

publications have appeared which relate to the use of ultrasound in medicine alone whilst the 154 

total numbers of papers relating to all areas of ultrasound applications are approximately 155 

283,430. The number of papers of ultrasound applications for medicine only was 941 in 1975 156 

and it reached 13,470 in 2013 which suggests an average 7.25% increment in the number of 157 

publications each year.  158 
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 159 

Fig. 2 The numbers of publications of ultrasound for both applications in medicine and all 160 

other areas (all results searched using Scopus [42]). 161 

Generally, the ultrasound applications in medicine depend on the power and frequency of the 162 

ultrasound output [43]. The intensity of the ultrasound is a crucial parameter which 163 

determines its usage for either diagnostic or therapeutic purpose. The diagnostic ultrasound 164 

must have a relatively low intensity to reduce any adverse effect to human body whilst high 165 

intensity ultrasound can damage tissues via cavitation and high temperature. The ultrasound 166 

applications classified according to their frequencies and intensities shown in Table 1.  167 
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Table 1. The applications of ultrasound sorted by different parameters 168 

Diagnostic 

ultrasound 

(real time medical 

imaging [44]) 

Physiotherapeutic 

ultrasound 

(bone healing [45]) 

Sonophoresis 

(transdermal drug 

delivery [46]) 

High intensity 

focused ultrasound 

(ultrasound blade 

[47]) 

Intensity:                    Low                                                                        High 

1-18MHz 1-3MHz 20kHz-3.5MHz 1-5MHz 

Non-cavitation Cavitation involved 

Thermal effect:          Low                                                                        High 

 169 

According to Table 1, sonophoresis (or phonophoresis) can be defined as an ultrasound 170 

application which has sufficient intensity to reduce the resistance of skin but keeps the 171 

temperature within a safe range. The first reported application of sonophoresis was used to 172 

treat polyarthritis by using hydrocortisone ointment combined with ultrasound in 1950 [48]. 173 

Since then this method has been widely used in the treatment of many other diseases 174 

including bone joint diseases and bursitis [49]. Although this approach is recognized by 175 

scientists, a number of issues (e.g., how to choose the parameters of ultrasound) continue to 176 

pose problems in sonophoresis.  177 

 178 

Besides the intensity and frequency of ultrasound, there are other parameters such as the duty 179 

cycles of the ultrasound, the treatment time and, the distance between ultrasound transducer 180 

and target, which also need to be considered for specific ultrasonic application [50]. Although 181 

they are often treated as minor factors [51], their importance cannot be underestimated and 182 

could become more useful in the future. 183 
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2.1 Impediments in the development of sonophoresis based TDD methods 184 

There a number of inherent mechanisms in the sonophoresis based TDD based methods 185 

which affect their performances. These methods have been involved in a lot of branches in 186 

TDD research as discussed earlier. However, it seems that the sonophoresis research is still 187 

not very active if compared with other TDD methods. To illustrate this point clearly, we have 188 

carried out a time series analysis based on an autoregressive integrated moving average 189 

(ARIMA) model. We apply this analysis to illustrate the development of sonophoresis 190 

research over time. ARIMA is a common approach used for time series analysis of 191 

quantitative data and it can be used to determine trends of the data by evaluating the 192 

projection from past patterns. This approach can be particularly useful to model trends where 193 

the data have non-linear and fluctuating trends (such as the data in this work). ARIMA has 194 

been widely applied in social science areas to help people for making informed decisions. For 195 

example, the approach can help one (i) to find opportunities by analysing the market trends 196 

[52], (ii) to set right deposit rates in a bank by studying the money transaction data [53], (iii) 197 

to predict the traffic flow to help people to avoid traffic congestion [54]. At the moment, 198 

there is no such time series analysis for the trend of sonophoresis or MNs research. ARIMA 199 

uses univariate Box-Jerkins models which imply that only the past values of the variables are 200 

involved in the analysis and it does not consider data from other series [55]. The model 201 

consists of two parts: autoregressive (AR) and moving average (MA) which can be chosen 202 

together or individually depending on the modelled situation. The model applied for the 203 

purpose of this paper is MA (1) which means no AR method is employed. The number in the 204 

brackets indicates an order of the algorithm.  205 

 206 
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For the time series analysis, the data acquired from scientific paper database are differentiated 207 

twice with respect to time to achieve a stable model, which provides a time series constant for 208 

the data. In the present case, the estimated time series constant was 2.029. MA (1) model is 209 

then employed to fit the trend of sonophoresis publications per year (Fig. 3). The fit and 210 

forecast results using the MA (1) model are shown in Fig. 3.  The predicted results on the 211 

number of publications in year 2020 are 60 which suggest a slight increment of 1.08% per 212 

year from the year 1970. Although the ultrasound technology is well understood, the results 213 

of this analysis shows that the development of sonophoresis is relatively slow and, there is no 214 

sudden increase or decrease in its interests as it may happen in many other methods or 215 

techniques. The number of publications on sonophoresis research has an averaged increment 216 

of 9.05% per year from 1970 to 2013. We believe there are two main reasons that have led to 217 

this slow growth as discussed below.   218 

 219 

Firstly, the sonophoresis based TDD methods are not supported by well-developed theory. 220 

For instance, the current theoretical description of the ultrasound assisted molecular diffusion 221 

and convection is simply an extension of the hindered diffusion theory as shown in Equation 222 

(1) [56]:  223 

log𝑃𝑑𝑑𝑑𝑑+𝑐𝑐𝑐𝑐𝑈𝑈 = log
𝑃𝑃

1 − exp (−𝑃𝑃)
+ log �

𝑘𝑘
2𝑧2𝐹𝑐𝑑𝑐𝑐𝑃0

𝐷𝑝∞𝐻(𝜆𝑝)
𝐷𝑑𝑐𝑐∞ 𝐻(𝜆𝑑𝑐𝑐)

� + log𝑅 

 

 

(1) 

Where P is the drug permeability [m/s], Pe is the Peclet number [-], k is Boltzmann constant 224 

[J/K], T is the absolute temperature [K], z is the electrolyte valence [-], F is the Faraday 225 

constant [C/mol], c is the electrolyte molar concentration [mol/m3], e is the electronic charge 226 

[C], D is the diffusion coefficient [m2/s], H(λ) is the hindrance factor [-] and R is the skin 227 

resistivity [Ω∙m]. The size and electrical properties of the molecules have been considered in 228 
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this model, but there is little or no theoretical development work on the effects of the 229 

modification to the skin due to cavitation effect which is the main factor that sonophoresis 230 

contributes to TDD. Well-developed theoretical descriptions of various mechanisms in 231 

sonophoresis based TDD are important not only for its further development and research but 232 

also for understanding the experimental data and combining ultrasound to other TDD 233 

methods.   234 

 235 

Fig. 3 Fit and forecast results of the trend of sonophoresis publications using MA (1) model 236 

developed in MATLAB (keywords for search: sonophoresis/phonophoresis using Scopus 237 

[42]).  238 

Secondly, it seems that the researches on sonophoresis experiments involving drug 239 

permeability are somewhat chaotic and lack consistency. For example, the skin samples used 240 

in the experiments may lack a consistent quality and standard. Factors such as imperfections 241 

in skin samples, skin thickness variations, different sampling areas of the skin, different skin 242 

types, etc. also affect the drug permeability especially in the transport of large molecules. 243 

Furthermore, the uncertainties in the ultrasound system may alter the diffusion results. These 244 

uncertainties are included in the performance of the ultrasound system which needs to be 245 
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acquired using a hydrophone or force balance, and other details of the ultrasound setup (e.g., 246 

parameters such as distance of the ultrasound horn to skin surface and localized transport 247 

regions measurement [57]). Additionally, the significance of different mechanisms is not well 248 

understood and they must be determined. As mentioned earlier, sonophoresis includes several 249 

different mechanisms, all of which contribute to the molecular diffusion. The same 250 

ultrasound output, drug molecules and skin samples under different experimental conditions 251 

may show different diffusion results for ignoring some minor factor [58, 59]. Thermal effect, 252 

acoustic streaming and other phenomena can be significantly magnified due to those 253 

unnoticed factors varying the diffusion results. However, these factors are impossible to 254 

quantify separately in practice. Therefore, the overall progress of the research which 255 

particularly employs experimental methods seems to be slow. An illustration of percutaneous 256 

delivery of common drug molecules (MW are arranged from low to high) enhanced by 257 

sonophoresis is shown in Table 2. The table presents different diffusion results of a number 258 

of drug molecules. Even though all the experimental results have shown permeability 259 

increases, the data need to be carefully used in the context of sonophoresis. Therefore, the 260 

researchers have to ignore the less significant mechanisms in order to combine the 261 

sonophoresis to other TDD methods. To extend the combination range of sonophoresis and to 262 

increase the quality of combinations, sonophoresis experiments must be regulated and more 263 

elaborative experiments in consideration of the minor mechanisms must be executed.  264 
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Table 2. Ultrasound enhanced diffusion experiment data of selected compounds (mannitol, sucrose, cortisol, calcein, inulin, and insulin). 

Solute 

property 

Main 

experimental 

apparatus 

used 

Skin 

type 

Frequ

ency  

(MH

z) 

Intensit

y 

(W/cm2

) 

Exposure 

conditions 

Composition 

of donor 

solution in 

experimental 

apparatus 

Receiving 

solution  in 

experimental 

apparatus 

Analytical 

apparatus 

Temp. 

(̊C) 

Data analysis Result summary 

Mannitol 

 

MW: 182 Da 

Log K o/w = -

3.10 

US 

transducer; 

Franz 

diffusion cell 

In vitro 

hairless 

male 

Wistar 

rats skin 

250-300g, 

aged 4-5 

months 

1.1 0.1 

 

2.0 

CW 

(5 min) 

pre-

treatment 

5% v/v [14C] 

mannitol 

dissolved in 

100ml 

ethanolic 

solution 

24-33ml distilled 

water, 1.1ml 

aliquots were 

withdrawn every 

30min within 5h 

Liquid 

scintillation 

counter, 

thermocouple, a 

camera attached 

to a microscope 

(×125) 

Receptor 

solution: 37 

Mean± S.D. 

over 5h 

Mean flux of radiolabeled [14C] mannitol under US 

treatment of 0/0.1/2 W/cm2 are: 90.51±19.51/not 

detectable/375.7±53.21 pmol/cm2/h respectively; 

Not detectable because mannitol is mainly 

mediated via transfollicular pathway, but under 0.1 

W/cm2 US the sebaceous sebum is released into 

hair follicle shaft. For histological results, see Fig. 

3 in the original paper [60] 

Drugs applied 

to test sites 

followed by 

ultrasonic gel 

In vivo on 

the upper 

back of 

hairless 

SD rat 

200-300g 

1.0 1.5 CW 

(3 min) 

pre-

treatment 

1µCi/µl D-

[3H]mannitol 

saturated with 

unlabelled D-

mannitol in 

20µl 90% 

ethanol and 

10% water 

Urine in bladder 

collected using 

catheterization 

every 15-30 min 

within 2h 

Liquid 

scintillation 

counter 

Room 

temperature 

Mean± S.E.M. 

and student’s t 

test, P<0.05 

over 5h 

Mean secretion rate of radiolabeled [3H] mannitol  

shows 20-fold higher in the US treated group (n=4) 

than in the controls (n=12); for detailed data see 

Fig. 1 in the original paper [61] 

Modified 

Franz 

Freshly 

excised 

1.1 1.5 CW 

(20 min) 

5µCi/ml 

[3H]mannitol 

15 ml 0.9% 

normal saline, 

Liquid 

scintillation 

Receptor 

solution: 29-

Mean± S.E.M. 

calculated over 

Mean flux with and without US are 0.4±0.15 (n=4) 

and 0.5±0.15 (n=4) pg/cm2/h, respectively.  For 
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diffusion cell; 

US transducer 

(90% 

efficiency) 

surgical 

human 

skin 

pre-

treatment 

saturated in 3 

ml 0.9% 

normal saline 

500µl samples 

retrieved 

regularly 

 

counter, light 

and electron 

microscopy 

31, 

circulation 

Jacket: 32 

24h 

 

histological results see Fig. 1 and 2 in the original 

paper [62] 

In vitro 

hairless 

mice aged 

6-7 weeks 

Mean flux with and without US are 44.0±10.6 

(n=5) and 27.1±5.5 (n=9) pg/cm2/h, respectively. 

For histological results see Fig. 1 and 2 in the 

original paper [62] 

Sucrose 

MW: 342 Da 

Log Ko/w = -

3.70 

Franz 

diffusion cell, 

sonicatortest 

by a 

hydrophone, 

nylon mesh 

Epidermis 

heat 

stripped 

from 

human 

cadaver 

skin 

0.02 0.125 DC:10 

Length 

100ms 

(60 min) 

pre-

treatment 

1µCi/ml 

radiolabelled 

sucrose in a 

mixed solution 

(PBS 

0.01mol/l, 

NaCl 0.137 

mol/l) 

15.8ml 0.01mol/l 

PBS mixed with 

0.137mol/l NaCl  

Thermocouple, 

scintillation 

counter, light 

microscope 

(×40) 

Room 

temperature, 

no 

significant 

increasing 

during 

experiment 

(<2 ̊C) 

One value 

calculated at 

steady-state 

The result is given by permeability P=VΔC/(ACdτ), 

where V is the volume of the receiver 

compartment, A is the skin area (3.14 cm2),  ΔC is 

the measured concentration increase of the solution 

in the receiver compartment over a time period τ 

and Cd is the concentration of the solution in the 

donor compartment. The passive and  sonophoretic 

permeability are 5.2×10-6 and 0.026 cm/hr, 

respectively. For histological results see Fig. 3 in 

the original paper [63] 

US 

transducer; 

Franz 

diffusion cell  

In vitro 

hairless 

male 

Wistar 

rats skin 

250-300g, 

aged 4-5 

months 

1.1 0.1 

 

2.0 

CW 

(5 min) 

pre-

treatment 

5% v/v 

[14C]sucrose 

dissolved in 

100ml 

ethanolic 

solution 

24-33ml distilled 

water, 1.1ml 

aliquots were 

withdrawn every 

30min within 5h 

Liquid 

scintillation 

counter; 

thermocouple; a 

camera attached 

to a microscope 

(×125) 

Receptor 

solution: 37 

Mean± S.D. 

over 5h 

Mean flux of radiolabeled [14C] sucrose under US 

treatment of 0/0.1/2 W/cm2 are 11.49±3.01/not 

detectable/51.36±2.62 pmol/cm2/h, respectively. 

For histological results see Fig. 3 in the original 

paper [60] 
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Cortisol 

(Hydrocortis

one) 

MW: 362 Da 

Log K o/w = 

1.61 

US transducer 

combined 

with 

iontophoresis 

devices (5mA 

pre-treatment 

for 20 min) 

In vivo 

patients 

with 

unilateral 

carpal 

tunnel 

syndrome 

1.0 0.5-0.8 DC: 20 

Length 

4ms 

(3-6min) 

pre-

treatment 

25 mg clinic 

use 

hydrocortisone 

acetate 

n/a Pain intensity 

rated on 10 

levels called 10 

points Visual 

Analog Scale 

(VAS) 

Room 

temperature 

Mean± S.D. 

Wilcoxon 

signed-ranks 

test, P<0.05 

Group 1 (early stage of the disease), VAS 

before/after treatment: 7.4±0.5/1.8±1.9; 

Group 2 (moderate stage), VAS before/after 

treatment: 8.1±1.1/1.8±1.5; 

Group 3 (advanced disease stage), VAS 

before/after treatment: 8.0±1.2/4.2±1.9 [64] 

A 23-gauge 

butterfly 

catheter into a 

cubital fossa 

vein; US 

transducer 

In vivo 16 

human, 

aged 

between 

18-33 

(𝑋�=25, 

SD=2.74 

) 

1.0 1.0 CW 

(5 min) 

30 ml 

aquasonic gel 

for control 

group; 30ml 

10% 

hydrocortisone 

gel for 

experimental 

group 

5 cc blood 

sample was 

drawn followed 

by 2 cc saline 

flush in different 

time point 

Centrifuge; 

cortisol assay 

(0.45 µg/l 

sensitivity) 

Body temp. 

& blood 

sample 

clotted at 

room temp. 

Two-way 

ANOVA, 

P<0.05 over 30 

min time 

period 

The serum cortisol levels between US alone and 

hydrocortisone phonophoresis are:  

1. 10 min before US treatment: 9.7±4.1&10.1±2.9 

µg/dl;  

2. Immediate after US treatment: 8.2±4.2&8.8±3.5 

µg/dl;  

3. 5 min after US treatment: 8.2±3.8&9.4±3.5 

µg/dl;  

4. 15min after US treatment: 7.6±3.6&8.0±.3 µg/dl. 

Four subjects reported intolerable heating [65] 

Modified 

Franz 

diffusion cell; 

US transducer 

(90% 

efficiency)  

Freshly 

excised 

surgical 

human 

skin 

1.1 

 

1.5 

 

CW  

(20 min) 

6µCi/ml 

[3H]hydrocorti

sone saturated 

in 3 ml 0.9% 

normal saline 

 

15 ml 60% saline 

solution, 20% 

PEG 400 and 

20% ethanol, 

500µl samples 

retrieved 

regularly with 

equal 

Liquid 

scintillation 

counter; light 

and electron 

microscopy 

Receptor 

solution: 29-

31, 

circulation 

Jacket: 32 

Mean± S.E.M. 

calculated over 

24h 

 

Mean flux with and without US are 3.5±1.3 (n=5) 

and 3.0±0.6 (n=5) pg/cm2/h, respectively.  For 

histological results see Fig. 1 and 2 in the original 

paper [62] 

In vitro 

hairless 

mice aged 

Mean flux over 24h with and without US are 

46.8±4.6 (n=5) and 40.4±7.2 (n=5) pg/cm2/h 

respectively. For histological results see Fig. 1 and 
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6-7 weeks compensation 2 in the original paper [62] 

Modified 

Franz 

diffusion cell; 

US transducer 

(10min 

recalibration 

/h);  

In vitro 

intact 

Wistar 

rats skin 

250-300g, 

aged 4-5 

months, 

frozen in  

-20̊C up 

to 1 

month 

1.1   

 

3.3 

2.25 

 

2.25 

CW 

switched 

off for 10 

min 

following 

each 50 

min  over 

4h period 

1µCi/µl [3H] 

hydrocortisone 

dissolved in 

100µl 5% 

ethanol 

solution, 1% 

v/v chemical 

enhancers (if 

needed) 

applied 1h 

before (azone 

or oleic acid) 

5% aqueous 

ethanol, 1.1ml 

samples 

retrieved every 

30min with 

equal 

compensation 

Hydrophone; 

radiation force 

meter; 

thermocouple; 

liquid 

scintillation 

counter 

Circulation 

Jacket: 28 

temp. of 

skin surface 

see Fig. 

3&4 in 

original 

paper 

Mean± S.E.M. 

derived from 

linear 

regression 

analysis 

between 150-

300 min 

Mean flux: control/1.1MHz/3.3MHz are 

0.0073±0.0105/0.0133±0.0016/0.0160±0.0052 

pmol/cm2/h respectively; Oleic acid/Oleic 

acid+1.1Mhz are 0.0494±0.0092/0.0583±0.0029 

pmol/cm2/h respectively; 

Azone/Azone+1.1MHz/Azone+3.3MHz are 

0.0407±0.0054/0.1021±0.0125/0.0953±0.0172 

pmol/cm2/h respectively [66] 

3.3 0.75 

 

2.25 

 

2.25 

CW or 

DC: 33.3 

(Length 

2ms 

interval as 

above 

over 4h 

period) 

Mean flux of Azone-pretreated skin: CW 

0.75W/CW 2.25W/pulsed 2.25W are 

0.0388±0.0105/0.0378±0.0766/0.0540±0.0124 

pmol/cm2/h respectively [66] 

US 

transducer; 

Franz 

diffusion cell;  

In vitro 

hairless 

male 

Wistar 

rats skin 

250-300g, 

aged 4-5 

months 

1.1 0.1 

 

2.0 

CW 

(5 min) 

5% v/v 

[3H]hydrocorti

sone dissolved 

in 100ml 

ethanolic 

solution 

24-33ml 5% v/v 

aqueous ethanol, 

1.1ml aliquots 

were withdrawn 

every 30min 

within 5h 

Liquid 

scintillation 

counter; 

thermocouple; a 

camera attached 

to a microscope 

(×125) 

Receptor 

solution: 37 

Mean±S.D. & t 

test, P<0.0208 

over 5h 

Mean flux of radiolabeled [3H]hydrocortisone 

under US treatment of 0/0.1/2 W/cm2 are: 

0.105±0.023/0.0478±0.006/0.81±0.14 pmol/cm2/h 

respectively. For histological results see Fig. 3 in 

the original paper [60] 
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Calcein 

MW: 623 Da 

Log K o/w= 

1.56 

Sonicator; 

Custom-made 

vertical glass 

diffusion cells 

In vitro 

full-

thickness 

skin from 

porcine 

ears 

0.02 15 DC:10 

(2 hours) 

200mg calcein 

in 11ml PBS 

at pH 7.4 

38 ml PBS at pH 

7.4 

Confocal 

microscope 

Room 

temperature 

n/a There is no quantitative data in this research. 

However, it is using cross-sectional view of the 

skin (confocal images) to show the permeation of 

calcein with/without ultrasound treatment for 2 

hours duration within a 20 µm depth. It suggests 

that some areas showed great increment of 

permeation of calcein after the ultrasound 

treatment while some areas did not [67] 

Three 

separate US 

Systems; 

diffusion cells 

In vitro 

back and 

flank skin 

of female 

Yorkshire 

pigs 

0.02 

 

0.04 

 

0.06 

 

 

7.5 DC:50 

(length 

5s) 

0.2% w/v 

calcein in 

2.5ml PBS 

12 ml PBS, 

sampled at 2 h 

intervals 

between 18 and 

26 h 

UV–visible 

spectrophotomet

er absorbance 

wavelength: 494 

nm 

Room 

temperature 

25°C 

Mean± 

S.D. over 8 

hours 

The ultrasound treatment time varies according to 

when the electrical currents reach 225/275/335 µA. 

The results show that permeability is not affected 

by either electrical resistance or frequency change. 

The scales of permeability for passive/LTRs/non-

LTRs/total are 1×10-6/10-2/10-5/10-3 cm/h, 

respectively [68] 

custom-built 

US 

transducer; 

diffusion cells 

In vitro 

male 

WBN/ILS

-Ht strain 

hairless 

rats 

0.041 0.06 

 

0.12 

 

0.3 

 

CW 

(2 hours) 

1mM calcein 

in 10ml PBS 

at pH 7.4 

22 ml PBS, 

Sampled at 30 

min intervals 

between 12 and 

14 h 

Spectrofluorome

try excitation 

wavelengths: 

488 nm 

Room 

temperature 

Mean± 

S.D. over 2 

hours 

After 12 hours of passive diffusion, ultrasound is in 

turn applied for 30min to each at 0.06, 0.12, 0.3, 

0.06 W/cm2 for a total 2 hours. The flux increments 

from a base 1.1×10-2 nmol/cm2/h are 120, 8900, 

23000,5100 folds, respectively [69] 

Inulin 

 

MW: 5.0k Da 

 

Drugs applied 

to test sites 

followed by 

ultrasonic gel;  

In vivo on 

the upper 

back of 

hairless 

1.0 3 

 

 

 

DC: 80 

(5 min) 

0.22µCi/µl 

[3H]inulin 

saturated with 

unlabelled 

Urine in bladder 

collected using 

catheterization 

every 15-30 min 

Liquid 

scintillation 

counter 

Room 

temperature 

Mean± S.E.M. 

& Student’s t 

test, P<0.05 

over 2 hours 

Mean secretion rate of radiolabeled [3H]inulin 

shows 5 times higher in the US treated group (n=4) 

than in the controls (n=4), for detailed data see 

Fig. 2 in the original paper [61] 
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SD rat 

200-300g 

 

 

 

 

 

inulin in warm 

water 

 

 

 

 

within 2h 

Flanged glass 

cylinder 

glued on the 

rat’s shaved 

lateral flank 

In vivo 

Sprague 

Dawley 

rat of 

either sex, 

PBS 

hydrated 

for 1 h 

0.02 7 DC: 50 

length 5s 

(2 min) 

10 µCi/mL 

radiolabeled 

inulin in 2ml 

PBS 

Urine in bladder 

measured every 

30min for 5h 

Means only, no 

SD data 

available, 5 

hours 

Mean secretion rate of radiolabeled inulin 

before/after the ultrasound treatment are 7.4×10-6 

cm/h and 1.5×10-4 cm/h, respectively [70] 

Insulin 

 

MW: 5.8k Da 

 

Flanged 

plastic 

cylinder was 

glued to 

animal’s 

abdomenand 

sonicator 

 

In vivo 

hairless 

rats 

280±20g, 

aged 8-10 

weeks 

0.02 2.5 

 

5.0 

 

10.0 

DC: 10 

length 

0.1s (60 

min) 

3ml of insulin 

solution at a 

concentration 

of 100 U/ml 

 

0.6ml blood 

samples from 

jugular vein 

were 

immediately 

centrifuged and 

the serum was 

collected  

 

Thermocouple;  
biochemistry 

analyser (using 

glucose oxidase 

method) 

Donor 

solution: 27, 

animals’ 

body 

temperature: 

38 

One-factor 

ANOVA 

analysis, 

P<0.05 over 60 

min 

Blood glucose level of control group is 12.60±2.07 

mmol/l, the initial and after US treatment for 2.5W, 

5.0W, 10.0W are: 

12.91±1.68&11.22±1.71/12.20±0.60&10.65±6.22/

12.33±0.67&7.46±2.95 mmol/l, respectively [71] 

2.5 DC: 

10/20/30 

length 

1.6s (60 

min) 

Blood glucose level of control group is 12.60±2.07 

mmol/l, the initial and after US treatment for 

DC=10/20/30 are: 

12.91±1.68&11.22±1.71/11.84±1.38&9.79±2.89/1

0.62±0.88&4.91±2.77 mmol/l respectively [71] 

2.5 DC: 40 One-factor Blood glucose level of control group is 12.60±2.07 
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Note: CW = continuous wave; DC = duty cycle; PBS = phosphate buffered saline; S.E.M. = standard error of the mean; SD = standard deviation.

length 

0.2/1.6/3.

2s (15 

min) 

ANOVA 

analysis, 

P<0.05 over 15 

min 

mmol/l, the initial and after US treatment for pulse 

length=0.2/1.6/3.2 are: 

12.46±0.63&11.56±1.95/12.38±0.67&6.43±3.16/1

3.41±1.23&5.11±1.45 mmol/l respectively [71] 

 

 

 

1 mm thick 

water 

tight standoff 

arranged 

between the 

axillary area 

of the pig and 

the array 

In vivo 

Yorkshire 

pigs 

(100–140 

lbs) 

0.1 DC: 20 

Length 

200ms 

(60 min) 

100 U/ml 

insulin filled 

in 1 mm thick 

water-tight 

standoff 

0.3 ml blood 

samples from 

the ear vein 

every 15 min 

for 90 min 

 

Blood glucose 

monitoring 

System 

Room 

temperature 

One-factor 

ANOVA 

analysis, 

P<0.05 

for both 60 and 

90 min 

Blood glucose level before experiment is 146±13 

mg/dl (n=6); Control group increased 31±21 mg/dl 

(n=3) after 90 min; US treatment group decreased 

71±5 mg/dl (n=3) from beginning at 60 min and 

decreased 91±23 mg/dl (n=3) from beginning at 90 

min [72] 



Page 21 of 54 
 

2.2 Thermal effect of sonophoresis 

The most obvious phenomenon during the sonophoresis treatment is the thermal effect and it 

is particularly relevant when using high frequency. The absorption of the sound in skin 

increases as the ultrasound frequency goes up, which means that the energy would be stored 

in skin rather than transmit through [73, 74]. The rise in the temperature of the skin increases 

the kinetic energy of the drug molecules which have a positive effect on the drug diffusion 

rate. However, the intensity in the application of sonophoresis is usually low; therefore, the 

thermal effects on the kinetics energy of the drug molecule and hence the drug permeability 

is not significant. For example, when 1.5 W/cm2 ultrasound was applied on hairless rat, the 

temperature change is found to be only around 1-2oC [61]. If the temperature increases 

significantly due to ultrasound treatment, it can cause skin injury. In particular, it has been 

reported that when the temperature reaches 43°C and maintains this temperature for 60 

minutes or longer, the cellular reproduction may be restrained [75]. Although the thermal 

effect generated by ultrasound is the most basic phenomenon due to energy gain/loss, it has 

the potential to increase and control the drug diffusion rate when combined with MNs, 

particularly, dissolving MNs. We discuss this point further in section 4.   

2.3 Convection in acoustic streaming 

Another ultrasound related phenomenon is termed as acoustic streaming which is a kind of 

fluid flow driven by the pressure gradient and generated by acoustic field [76]. The 

permeability enhancement due to acoustic streaming is hard to define but its importance is 

realized by the scientific community [77]. Different effects of the acoustic streaming can be 

identified by Reynolds number of the flow. With low Reynolds number, Lighthill [78] has 

described the relationship between the net force of unit volume Fj [N/m3] and forces that 

generated by the momentum flux ρ0uiuj (Reynolds stress) [N/m2], the pressure p [N/m2] and 

the viscosity µ [N∙s/m2]. The mathematical definition is given:  
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𝑭𝑗 = 𝜌0 �𝒖�𝑑
𝜕𝒖�𝑗
𝜕𝑥𝑑

� +
𝜕𝒑�
𝜕𝑥𝑗

− 𝜇∇2𝒖�𝑗 
 

(2) 

Where ρ0 is the density of the volume of the fluid [kg/m3], and u is the velocity vector [m/s]. 

As evident from the first two terms on the right hand side, the Reynolds stress and pressure 

gradient affect the net force in the tissue positively (the term in left hand side of the equation). 

But, as shown by the third term on the right hand side, higher fluid viscosity results in lower 

net force which indicates that the ultrasound field can apply higher forces on the flow in a 

less viscous solution. Tachibana [79] shows that the diffusion of lidocaine under the same 

ultrasound condition is higher when it is in the aqueous formulation instead of a gel. 

Therefore, the permeability enhancement caused by ultrasound generated force was 

experimentally proven. The phenomenon was successfully extended by applying this 

mechanism on highly aqueous tissues. Lewis [80] applied 1.58 MHz ultrasound on brain and 

avian muscle tissues, and report that the enhancements of Evans blue dye are 5.6 fold and 2.2 

folds, respectively. Using the experimental set up in Fig. 4, Cheung [81] has demonstrated 

that under 3 MHz ultrasound treatment the permeability of bovine serum albumin (BSA) 

increases 1.6 fold in intrascleral delivery.  

 

Although the researches on using acoustic streaming at low Reynolds numbers have shown 

increment on diffusion rate in soft tissues, the permeability enhancement on viable epidermis 

and dermis is still relatively unknown. As well known, viable epidermis and dermis of the 

skin are the most relevant skin layers for MN application as the MNs pierce the SC and 

deliver the drugs in the skin layers below the SC. However, it is logical to state that there are 

good potential for combining ultrasound with solid or hollow MNs because the MNs can 

create channels that reach viable epidermis. As such the ultrasound may reach the lower 

layers of the skin and help increase drug permeability in these skin layers. This combination 
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of TDD methods should be able to provide higher diffusion rate in comparison to sole MNs. 

There are some other mechanisms caused by acoustic streaming at high Reynolds numbers 

which are also important. These mechanisms will be discussed in sections 2.4-2.6. 

 

Fig. 4 The setup of ultrasound enhanced intrascleral delivery 

2.4 Acoustic cavitation in high frequency sonophoresis 

Acoustic streaming can produce different mechanisms in sonophoresis. The most important 

mechanism is acoustic cavitation (bubbles) which is generated in the liquid within or out of 

the skin. When ultrasound waves keep compressing and tensing the liquid in the tissue, the 

local pressure of liquid falls below vapour pressure, and therefore, the cavitation occurs. The 

cavitation can be divided into two types: stable and inertial discriminated by how long can 

the bubbles survive [82]. Frequency, intensity and duty cycles are used to control the 

cavitation types to achieve different applications. The cavitation generated during high 

frequency ultrasound treatment is much smaller in size as compared to those from the use of 

low frequency ultrasound. The relationships between the frequency and the bubble radius are 

presented by Gaertner [83]:  

Rabbit 
eyes 

4ml 0.1% FITC-
BSA solution 

0.05W/cm2, 3MHz 
continuous ultrasound 

     

Plastic 
container 
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𝑓(∅) = 1/ �sin3 ∅ [−(sin4 ∅ + sin2 ∅)(𝑝𝑅0 + 3𝛼) − 𝑝𝑅0]
1
2� 

 

 

(3) 

∅ = arcsin(𝑅0/𝑅)
1
2 

 

 

(4) 

Where f is the frequency of the ultrasound [Hz], R0 is the nucleus radius [m], α (surface 

tension) is a constant related to the medium [N/m] and R is the radius of the bubble [m] under 

pressure p [N/m2]. The equation indicates that the ultrasound frequency f is inversely related 

to the radius of the bubble R. The equation has also suggests that cavitation could be 

generated inside the skin or simply within the SC layer if the frequency is high enough  

2.5 Rectified diffusion 

Due to the relationship between frequency and bubble radius, the most important phenomena 

in high frequency sonophoresis, which is called rectified diffusion (Fig. 5), has been revealed 

by Blake [85]. The mechanism can be explained as follows. On the positive pressure half-

cycle (the local pressure increased under the ultrasound field) the gas in a small bubble will 

be compressed, the shell becomes thicker as a result the concentration gradient decreases 

because the bubble absorbs more drugs from surrounding environment. Some gas then 

diffuses outwards from the core of the bubble into the liquid. On the contrary, during the 

negative half-cycle of pressure, the surface of the bubble is expanded which makes it much 

larger than the compressed bubble. However, these two rates are not equal as the surface area 

of the bubble is greater during the negative (tension) half-cycle, and as diffusion rates are 

proportional to the exposed area, the bubble must gain some gas over a complete cycle [86].  
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Fig. 5 A schematic diagram of rectified diffusion [87]  

In the process of the rectified diffusion, the bubbles generated by cavitation are pushed by the 

Bjerknes force under acoustic pressure gradient to move downward [88]. The Bjerknes force 

is generated under the acoustic field which directly increases the diffusion rate of the drug 

molecules. It can then push the bubbles forward, thereby, increasing the diffusion rate. The 

basic expression of Bjerknes force is shown as: 

𝐹 = −〈𝑉∇𝑝〉 (5) 

Where < > denotes the average over one acoustic period, V is the volume of the bubble and p 

is the acoustic pressure. This equation can be further extended to define the Bjerknes force at 

any location r and time point t [89]: 

𝑭𝑩𝑑 = −𝐺𝑑(𝐫)
1
𝑘
� 𝑉(𝐫, 𝑡)cos[𝜔𝑡 + 𝜓𝑑(𝐫)]𝑑𝑡
𝑇

0
 

 (6) 

Where T is the acoustic period, V(r,t) is the instantaneous volume of the bubble, G(r) and 

ψ(r) are pressure and phase gradients, respectively. Because the rectified diffusion is the 

dominated effect in high frequency sonophoresis, the bubbles must be small enough to 

survive inside the skin. This means that the diffusion of molecules may not necessarily 

increase. Bommannan et al. [90] have reported that after 20 min ultrasound treatment (2 MHz, 

Compressed 
phase 

Expanded 
phase 

Liquid Shell 

Gas Gas Gas 

Equilibrium 
phase 
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0.2W/cm2), the diffusion of salicylic acid (138.12 Da) is not increased. However, the 

diffusion rate is 4 times higher at 10 MHz 0.2W/cm2 when the bubble size is small enough to 

move inside the skin. But, if the size of the bubbles is further reduced, the diffusion rate is 

dropped to 2.5 fold at frequency of 16 MHz and power of 0.2W/cm². Therefore, properly 

selected frequency will significantly increase the diffusion rate. This provides a great 

potential to deliver medium-sized or large molecules by using the microneedles and 

ultrasound combination. 

 

2.6 Acoustic cavitation in low frequency sonophoresis 

The low frequency sonophoresis generally refers to the ultrasound frequency between 20 and 

100 kHz. Unlike high frequency sonophoresis, the low frequency sonophoresis research has 

only been introduced over the last 10 years [50]. Researches showed that low frequency 

ultrasound have much better effect on drug delivery enhancement (both low and high 

molecule weight drugs) than high frequency ultrasound (beyond 1 MHz). Mitragotri et al. [63] 

have shown that the enhancement ratios induced by low-frequency ultrasound (20 KHz) is up 

to 1000-fold than that induced by therapeutic ultrasound (1 MHz) on butanol (74.12 Da) and 

sucrose (342.29 Da). This is due to the fact that inertial cavitation becomes the dominated 

mechanism and it can directly disrupt the SC layer to increase the permeability. The 

application of low-frequency ultrasound can be divided into two forms: simultaneous 

sonophoresis (decreased after ultrasound is turned off) and pre-treatment sonophoresis 

(remains in highly permeable state for several hours). The mechanisms of both of these two 

methods rely on inertial cavitation, i.e., bubbles generated within the coupling medium by 

ultrasound and would grow and collapse violently. The difference between them is the pre-

treatment sonophoresis and generates more bubbles to change the structure of the stratum 
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corneum (about 30% of the lipids layer is removed by micro-jet [91]) while the simultaneous 

sonophoresis only intends to increase the porosity.  

 

As mentioned before, the main type of cavitation which helps in permeability increment is 

the inertial cavitation [92]. It occurs due to pressure variations induced by ultrasound, 

resulting in rapid growth and collapse of bubbles formed in the coupling medium. The 

collapsing of the aforementioned bubbles in a spherically symmetric environment results in 

the release of a shockwave causing structural changes of the surrounding tissue. The suddenly 

raised pressure gradient conducted by the shockwave spreads evenly on the skin surface. 

Therefore, it can only produce limited damage. However, the skin surface will cause the 

bubbles involutes asymmetrically which results the bubbles collapse from the top surface [93]. 

Water is then forced into the bubbles and a high-speed micro-jet will be developed from the 

top surface. The power generated by the micro-jets transmits downward and is focused on a 

tiny spot of skin surface. These micro-jets can severely disrupt the SC layer and have been 

confirmed as the main contribution to the permeability increment [94]. The mechanism of 

forming micro-jets is shown in Fig. 6. 

 

Fig. 6 The mechanism of cavitation collapse near skin surface which creates a micro-jet.  
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Because of the huge bubble size in low frequency sonophoresis, the main effect is based on 

the microjet that occurs during bubbles collapse. The permeability can remain high for hours 

after a short ultrasound application. Therefore, a relatively high input power must be 

employed to create channels on the stratum corneum otherwise the permeability cannot be 

maintained. Fig. 7 indicates that insufficient power of inertial cavitation do not create 

significant pathway on the porcine stratum corneum by micro-jet. 

 

The inertial cavitation has been studied by many researchers. It shows excellent potential 

when combined with solid MNs (discussed in section 4). Solid MNs can provide 

opportunities for the inertial cavitation to physically contact the viable epidermis. It will 

greatly reduce the pretreatment time and keep the permeability increased for a longer period 

of time. These issues are discussed in detail in the following sections. 

2.7 Safety of ultrasound application 

The tolerant limit of skin to the ultrasound is an important issue for the applications of 

sonophoresis. However, only a few studies have been conducted in this area and it seems that 

this technology is still underdeveloped and has a long way to go before clinical trials. An in 

vitro study on human skin shows that at 2.5W/cm2, the skin structure modification can be 

identified under electron microscopy [70]. Although these is no in vivo study on human, 

ultrasound has been applied on canine subjects and urticarial reaction is found when the 

power reaches 16W [95]. Currently, the intensity of most sonophoresis applications are under 

3.5W/cm2 [96], so that the safety can be assured. 
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3. Microneedles (MNs) in TDD  

The MNs research has been carried out for over 40 years now and it is one of the most 

promising technologies among the TDD methods. MNs are a technology developed from 

transdermal patches and hypodermic needles, attempting to gain advantages and eliminate 

disadvantages from both. The idea of MNs comes from the patent of Gerstel and Place [97] in 

the early 1970s when they introduced the concept to make micropores in the skin. In the 

1990s, the microchip fabrication technology provided the new way to make longer three-

dimensional microstructures of silicon and mass production of microfabrication tools so that 

the experimental demonstrations can be made. The first study of using MNs to enhance TDD 

process was devoted in 1998 [98]. Following this work, MNs technology has been developed 

rapidly and greatly extended in pharmaceutical area. Compared to hypodermic needle, MNs 

are painless and can significantly reduce the pain depending on the length of the needle. Gill 

et al. [99] have  used different length of MNs from 480 µm to 1450 µm tested on human 

volunteers and found out that the needle length below 750 µm is painless and bloodless. 

However, the MNs that are less than 300 µm long have been shown not able to penetrate the 

skin [100]. The main development of the MNs technology which makes it distinct from other 

TDD methods is that it has greatly extended the range of drug molecular weight that can be 

delivered. Verbaan [101] used 700 µm MNs array to successfully deliver 

fluoresceinisothiocyanate coupled dextran which has molecular weight of 72 kDa. Influenza 

vaccine has also been delivered by using biodegradable MNs on mice [102].  



Page 30 of 54 
 

 

Fig. 7 The cavitation generated by micro-jet applied on the porcine stratum corneum. A) No 

ultrasound applied on the skin; B) 20 kHz, 2.4 W/cm2 ultrasound applied on the skin for 10 

min [103] 

The MN research has developed strong activities in the last decade as indicated by a large 

number of publications. The average increment rate of MNs publications is 77.9% per year 

for the past 10 years (2004-2013) while the overall increment rate is 14.9% since 1970. To 

have a better understanding on the developing future of MNs, an ARIMA model is employed 

again which provides a rough forecast on the trend of MNs research. The data for the number 

of publications have been differenced twice to acquire a relatively stable model. The 

algorithm orders that are suitable for this model are chosen by considering the trend of 

autocorrelation coefficient and partial autocorrelation coefficient calculated from the model. 

As a result, the AR (1) and MA (1) models have been confirmed as the optimum choice with 
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minimum deviation from the original data (mean absolute percent error 139.8%).  The trend 

of MNs research until 2020 is then forecasted. After recognizing the pattern of the past 40 

years, the ARIMA model suggests that the number of publications will reach 694 in 2020 in 

comparison to 446 in 2013 which gives a 99.2% increment rate per year. The observed, fitted 

model and forecasted data have been shown in Fig.8 which suggests that in comparison to the 

trend in the past 10 years, the research in the MN area will become more active in the coming 

years. 

Fig. 8 The observed, fitted model and forecasted trend of MNs research presents from 1970 

to 2020 using ARIMA model 

There are a number of review papers focused on MNs related areas other than the 

mechanisms of MNs, for example fabrication techniques of MNs [104], permeability 

enhancement of MNs [105] and ethical study of MNs [106] etc. However, this review paper 

intends to explore the potential of MNs combined with sonophoresis. Therefore only a brief 

discussion on MNs is presented. Conventionally, MNs is divided into two different types: 

solid MNs and hollow MNs and their main mechanisms are shown in Fig. 9. 
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This classification method can only present the basic idea of the delivery process. The real 

delivery efficiency depends on many other factors. Martanto et al. [107] performed 

experiment to reveal the relationship between the MNs insertion depth and force. They also 

found out the real insertion depth is much lesser than the length of the needles due to the skin 

buckling. Their histological results shows the real penetration is only 100-300 µm by 

applying 1080 µm length MNs.  

 

Fig. 9 Main mechanisms of applying MNs: A) Solid MNs using poke with patch method; B) 

Solid MNs using coat and poke method; C) The Dissolving MNs and D) Hollow MNs for 

liquid delivery [108] 

The geometry of MNs has been proved to be another important parameter that can directly 

affect the diffusion results [109]. Parameters such as tip radius, density, distance between 

needles etc. are all brought to the consideration for being the important factors in MNs patch 
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design [110]. Besides these factors, the main purpose of MNs enhanced TDD is to reduce the 

resistance of the skin. Therefore, high force has been applied to reduce the skin buckling 

effect so that it can increase the real insertion depth [111]. Super short MNs with 70-80 µm 

length are also introduced to increase the permeability [112]. This kind of MNs is not aimed 

at penetrating the skin but to scrape the skin surface in order to lessen the thickness of SC 

layer. 

 

3.1 Solid microneedls 

The solid MNs are stiff and steady in structure and deliver drug by coated drugs on their   

surface or micro conduits created on epidermis to let drugs go through it. The methods of 

solid MNs delivery can be done in four different ways:  

(1) The poke with patch approach was proposed by Henry et al [98] who used solid MNs to 

penetrate human cadaver skin and reported that the permeability of calcein increased by up to 

three orders of magnitude. The mechanism of poke with patch method involves the use of 

solid MNs to pierce the stratum corneum first and then put a patch during the insertion or 

immediately after removal of the needles. An image is shown in Fig. 10 to illustrate this point.  

 

Fig. 10 a) Solid MNs penetrated into the skin b) after the MNs are removed, the treated skin 

is ready for applying the drug loaded patch [101] 

a b 
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Research done by Wermeling et al [113] indicated that Naltrexone (used to treat opiate and 

alcohol addiction) only takes two hours to reach the steady state plasma concentration with 

MNs pre-treatment and last for 48 hours while the transdermal patch cannot give any 

detectable results over 72 hours. Martanto et al [114] compared the hypodermic needle with 

the solid MNs (105 needles) by injecting insulin to diabetic rats and reported positive results 

on delivering large MW proteins.  

(2) The coat and poke approach is used to coat the drug on the surface of the MNs which is 

then applied on the skin (Fig. 11). Large molecules such as human growth hormone (22 kDa) 

and ovalbumin (45 kDa) can be transported through skin [115, 116] in this way.  

 

Fig. 11 Solid MNs coated with human growth hormone [115] 

The main advantage of this method is that the MNs can retain its mechanical strength while 

delivering drugs. Therefore, the permeability loss during the skin recovery can be avoided 

[117]. However, the drug reloaded during the delivery process can be a problem. The most 

efficient way is to put the matrix of MNs on a roller with coating device on one side. So the 

MNs can maintain in inserting and coating rotation when rolling on the skin surface. But this 
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method cannot increase the diffusion rate after the drug is injected which makes it faces the 

same limitation with the poke with patch approach.  

 (3) The dip and scrape method employs the array of MNs coated with drugs to treat and then 

scrape multiple times across skin to create micro-abrasions. These micro-enhancers have 

proved that they can effectively breach the skin barrier and increase the permeability of the 

drug molecules [118].  

(4) The dissolving MNs are made from a polymeric material and will release drugs after the 

MNs dissolves within skin (see Fig. 12 for an example). The main problem in this kind of 

MNs is the drug mutations during the high temperature moulding and fabrication [119]. A 

novel dissolving MNs introduced silk fibroin as the base of the MNs because it is rigid in 

structure, friendly to donor permeates and dissolving very quickly [120]. More recently, 

biopolymers have been used in the fabrications of dissolving microneedles because they can 

reduce the cost of material and also increase the biocompatibility of the products [121]. 

3.2 Hollow MNs 

The hollow MNs have similar mechanism with hypodermic needles but they are much 

smaller in size (e.g., 500 µm in length). The drugs can continuously flow into the skin 

through the hollow capillaries but in a low transmission rate. If the pressure is high the drug 

would overflow through the bypass between needle and skin to the atmosphere. One 

significant advantage of the hollow MNs among other types is that it can extract a small 

amount of blood sample underneath the skin which enables monitoring on quantities of body 

fluid, for example, blood glucose level [122]. This technology is then further developed by 

optimising the geometry and arrangement of the patch so it can give reasonable extraction 

rate [123]. Due to the small size of the hollow MNs which increase the difficulty of the 

penetration and injection, works also have been done on how to optimise the  process of MNs 
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insertion and injection pressure during drug delivery. Martanto et al [107] demonstrated that a 

little retraction during injection process can significantly increase the fluid infusion because it 

releases the compaction of the skin. The flow rate inside the hollow needles is another 

parameter that has been studied and optimised [124]. Besides the above, the stiffness of the 

MNs, difficulties in fabrication and cost are very important issues in the development of 

hollow MNs [125]. 

 

Fig. 12 The process of dissolving fibroin MNs in the porcine skin after time a) 0s, b) 15s, c) 

30s and d) 60s [120] 

4. Potential of combining MNs and sonophoresis  

This review paper focuses on discussing the ultrasound and MNs combination as a TDD 

method for the future. Therefore, we devote this section of this paper to discuss this point in 

detail. As discussed in the paper before, research on MNs and ultrasound are both actively 
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pursued in recent years, which involve different mechanisms for drug delivery and transport. 

Therefore, the main point of discussion in this section is how to combine these mechanisms. 

In addressing this issue, we discuss the different possible ways and benefits of combining 

MNs and ultrasound.    

 

We can use hollow MNs to pierce the skin and apply ultrasound simultaneously, where the 

hollow MNs should be under the ultrasound field. The hollow MNs are able to provide 

certain permeability increment while the simultaneous ultrasound field can enhance the flow 

rate via convection (this combination can be referred to the categories (iv) and (v) in Fig. 1). 

In fact, there are already some attempts to combine these two mechanisms. For example, a 

Singaporean research group has attempted this combination to deliver calcein and BSA [126]. 

They have used 100 µm long hollow MNs (80 µm outer diameter at the base) to pierce the 

skin and have attached an ultrasound transducer at the back of the MNs patch. The ultrasound 

output parameters have consisted of 20 kHz frequency, 0.5W/cm2 intensity and 20% duty 

cycles (length 10µs) which can maintain the temperature stable at 37°C. The enhancement of 

this specific circumstance shows 9 times higher for calcein and 12 times higher for BSA in 

compare to passive diffusion, respectively, as shown in Fig. 13.  
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Fig. 13 BSA release profile using simultaneous ultrasound combined with hollow MNs [126] 

We can also use solid MNs combine with ultrasound cavitation. The solid MNs can create 

visible holes that will provide permeability increment. If we apply high intensity ultrasound 

on the MNs pretreated base, the ultrasound cavitation will be able to produce more significant 

enhancement than on its own. This is because the ultrasound cavitation can contact the 

underneath layers of the skin where these bubbles can release more potentials. This 

combination is especially efficient in the delivery of large molecules and it can be a good 

preparation for a long-term TDD (this combination can be referred to the categories (iii) and 

(iv) in Fig. 1). A recent paper which has used this kind of combination to delivery BSA 

through skin is reported by Han and Das [16]. Two sets of solid MNs with length 1.2 mm and 

1.5 mm were applied for 10 min to create pores and disrupt the skin surface. The 20 kHz, 9-

18W ultrasound is then mounted to create inertial cavitation for another 10min. The 

permeability increment results of the combination in comparison with passive diffusion, 

ultrasound only and MNs only are shown in Fig.14.  
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Fig. 14 BSA permeability results of passive diffusion, ultrasound only, MNs only and MNs 

combined with ultrasound. 

It may also be possible to use solid MNs to pretreat the skin and then apply ultrasound 

simultaneously. This combination can be specialized to deliver medium size molecules. The 

difficulty in the delivery of medium size molecules is the low diffusion rate after the 

molecules have entered the viable epidermis. Solid MNs are sufficient to deliver the medium 

size molecules to the underlying layer. The simultaneous ultrasound can then apply pressure 

gradient on the molecules and achieve diffusion increment via rectified diffusion (this 

combination can be referred to the categories (iv) and (v) in Fig. 1).   

 

Furthermore, we can use dissolving MNs to pierce the skin and then apply low intensity 

simultaneous ultrasound to active the maximum thermal effect. The dissolving MNs can 

pierce into skin and release drug at a constant rate according to the local temperature. 

Ultrasound is able to provide relatively accurate local temperature adjustment. It can provide 
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temperature modification thereby controlling the drug release rate. If this combination can be 

well developed, it will achieve both drug delivery rate increment and control (this 

combination can be referred to the categories (ii) and (v) in Fig. 1).   

 

We can use high intensity ultrasound to pretreat target area and then apply dip and scrape 

MNs or super short MNs to deliver drugs. The inertial cavitation can reduce the resistance of 

SC layer so it will be easier for the MNs to create micro-abrasions on skin surface. This 

combination can provide a simple way to apply drugs that need rapid onset at topical area. 

The thermal effect comes along with the high intensity can also increase drug absorption rate 

(this combination can be referred to the categories (iii), (iv) and (v) in Fig. 1). 

 

Although the MNs combined with sonophoresis methods show significant prospects, the 

consideration of MNs combined with other TDD technologies are also equally promising. 

Therefore, a cluster analysis has been employed in this work to reveal the current trends on 

these cooperating researches. The analysis is able to make suggestions on how these trends 

are likely to develop in the future.  

 

The cluster analysis is a common statistical method used to discover useful information from 

different data groups (unlike time series analysis which uses the same time series data). The 

criteria of cluster analysis are flexible which means that it does not have a specific statistical 

algorithm [127]. In our case, four groups of subjects, namely, journal papers according to a 

specific area, are used for the analysis with 10 observations per subject counting from 2004 to 

2013. The keywords used to acquire the data of the subjects (i.e., number of papers) are (i) 
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MNs, (ii) MNs and ultrasound and phono/sonophoresis, (iii) MNs and 

iontophoresis/electroporation, (iv) MNs and chemical enhancers.  

 

We have used two specific concepts to design the clusters: the research activity and level of 

contribution from each research activity. The research activity is indicated by the number of 

publications of each year divided by the mean of the total number of publications of that 

subject group. The contribution level for each subject is defined as the number of 

publications of each year divided by the total number of publications of MNs of the same 

year. As the MNs papers cannot compare to themselves, the values of the contribution level 

of MNs are stochastically spread across the x axis. The four subjects are then plotted as four 

clusters in different shapes and colours (Fig. 15). The k-mean clustering method [128] is 

adopted to calculate the centroid of each cluster by measuring their squared Euclidean 

distance. The results of the cluster analysis (Fig. 15) indicate that both ultrasound and 

iontophoresis have shown relatively high research activities and levels of contribution. 

Specifically, the ultrasound combined with MNs shows the highest potential for research 

activity which suggests that this combination is developing fast in the past 10 years and more 

researches will be conducted in the future if the current trend continues. The iontophoresis 

and electroporation combined with MNs shows the highest contribution level which indicates 

that this is the research activity where the most current combinational researches are focused 

on.  
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Fig. 15 Cluster analysis for determining the significance of current research on combined 

MNs with other TDD technologies  

5. Conclusion 

The TDD technologies are important drug delivery methods and they are developing fast as 

reviewed and forecasted in this paper. The idea of ultrasound and MNs combination is 

relatively new but shows a promising future. The forms and design of MNs patches will be 

more diverse in the future. Given that portable ultrasound instrument is a common medical 

device in hospitals, a patient friendly design of the combination are likely to be achieved at a 

reasonable cost when this concept is matured enough.  

In order to discuss the scope of combined MNs and ultrasound research, this review paper has 

introduced the relevant mechanisms of MNs and sonophoresis as well as pointed out the 

weak areas in the researches of these two technologies. By working on those weak areas, 

more combinational approaches can be developed, particularly when the ultrasound and MNs 

are more developed as methods. Although the combination of MNs and ultrasound seems to 
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make TDD more complicated, it is a necessary step to achieve both higher and controllable 

drug delivery rate. In conclusion, we must state that the MNs and ultrasound combination has 

a promising future to solve some of the current problems in TDD.  
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