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Abstract—In this paper, we address a power-efficient resource
allocation problem in virtualized wireless networks (VWNs) using
non-orthogonal multiple access (NOMA). In this set-up, there-
sources of one base station (BS) are shared among different service
providers (slices), where the minimum reserved rate is considered
for each slice for guaranteeing their isolation. The formulated
resource allocation problem aiming to minimize the total transmit
power subject to the isolation constraints is non-convex and suffers
from high computational complexity. By applying complementary
geometric programming (CGP) to convert the non-convex problem
into the convex form, we develop an efficient iterative approach
with low computational complexity to solve the proposed problem.
Illustrative simulation results on the performance evaluation of
VWN using OFDMA and NOMA indicate significant performance
improvement in the VWN when NOMA is used.

Index Terms—Complementary geometric programming,
NOMA, 5G, next generation wireless network, resource
allocation, virtualized wireless networks.

I. I NTRODUCTION

The current trend of the increasing demand for higher data
rates has led to the crunch of the available spectrum in wireless
networks. Moreover, the wireless service providers face a
challenge in reducing the operational costs of the wireless
infrastructure. As such, various techniques such as massive
MIMO, virtualization, non-orthogonal multiple access have
been envisioned for the next generation of wireless networkin
order to address these challenge [1]. Virtualization of wireless
networks is a promising technique, in which the physical wire-
less infrastructure is shared among multiple service providers
(SPs), also called slices [2]. Aiming to increase the spectrum
and infrastructure efficiency, the main issue in a virtualized
wireless network (VWN) is to prevent the harmful effects
of users of one slice to the users of other slices, which is
captured by the concept of isolation among slices. To guarantee
the quality of service (QoS) requirements of users of each
slice, different forms of static and dynamic resource allocation
have been proposed [3] - [4], calling for an efficient resource
allocation algorithm.

For instance, in [5], interactions among slices, network
operator, and users are studied by an auction. A novel admission
control policy is proposed in [6] by considering the channel
state information (CSI) of users in each slice to support theQoS

of users. [7] proposes an opportunistic algorithm to allocate the
resources to virtual operators. [8] investigates the advantages of
full-duplex transmission relay in VWN. [9] studies the effects
of deploying a large number of antennas in VWN to improve
the total performance. However, more spectrum efficient ap-
proaches are required in a VWN due to the challenges in
providing the isolation among slices.

Non-orthogonal multiple access (NOMA) has been recently
introduced as an effective approach to increase spectrum effi-
ciency and provide massive connectivity [10], [11]. Compared
to the existing multiple access techniques such as OFDMA, via
NOMA, users share the entire spectrum and are rather allocated
different power allocation coefficients. Since the users share
the time and frequency resources, sophisticated techniques for
decoding the superimposed signal need to be implemented
at the receiver. By implementing successive interference can-
cellation (SIC), the receiver iteratively subtracts the strongest
signal from the superimposed signal and decodes the intended
signal [12]. In contrast, in OFDMA, the users are allocated
different sub-carriers, which effectively removes interference
among users by exclusive sub-carrier allocation within a cell.
The important question in this scenario is whether NOMA can
improve the spectrum efficiency compared to OFDMA. There
has been a significant research interest in this context. For
instance, [13] compares the system level performance of the
NOMA scheme with different mechanisms for power allocation
including the user grouping based on their channel gains and
equal power allocation to all users. The authors propose a
sub-optimal power allocation scheme called fractional transmit
power allocation (FTPA) that is similar to the transmission
power control mechanism in LTE. Similarly, [14] analyzes the
performance of NOMA compared to OFDMA for the cellular
up-link setup. The optimization problem of this work includes
the minimum required throughput of each user as a constraint.
It has been shown that the performance of the system in
the cell-edge is significantly improved in the case of NOMA
compared to OFDMA. Similarly, [15] proposes an enhanced
proportional fairness scheme based on NOMA and shows the
improvement of cell throughput by up to 28% compared to
OFDMA scheme. In [16], a power allocation problem for
the downlink transmission of NOMA system is formulated



and solved by applying difference of convex functions (DC)
programming. In order to develop the proposed algorithm, the
greedy user selection approach is used to assign users to sub-
carriers, and then, DC approximation is applied to allocate
power for each user.

In this paper, we investigate the use of NOMA in the VWN to
improve the network performance in terms of power efficiency.
The objective is to minimize the total transmit power in a VWN,
while maintaining the minimum required capacity for each
slice. Since the original problem is non-convex and computa-
tionally intractable, we use the approach of complementaryGe-
ometric programming (CGPA) and arithmetic-geometric mean
inequality (AGMA) to convert it into an efficient algorithm [17],
[18]. The simulation results demonstrate that NOMA is more
power-efficient than OFDMA in various scenarios. Specifically,
the power efficiency is improved by up to 45-54% with NOMA
as compared to OFDMA.

The rest of this paper is organized as follows. In Section II,
the system model and problem formulation are discussed. Sec-
tion III explains the proposed algorithm for both NOMA and
OFDMA. Section IV presents the simulation results followed
by the conclusion in Section V.

II. SYSTEM MODEL

Consider the downlink transmission of a VWN with a single
base station (BS) that serves a set of slices (i.e.,S), in
which each slices ∈ S has its own set of users denoted
by Ks. The total number of users in the system is given by
K =

∑
s∈S Ks. To provide the isolation among slices, the

VWN should preserve a minimum required rate per each slice
s, denoted byRrsv

s . We consider the following two transmission
modes for the VWN:

• Non-orthogonal multiple access (NOMA) where the whole
frequency band of interest is shared among users,

• Orthogonal frequency division multiple access (OFDMA)
where the specific bandwidth is divided into a set of
sub-carriers denoted byN and each sub-carrier can be
allocated to a maximum of one user at a time.

In this paper, our focus is to compare the power efficiency of
these two approaches for our system model. We assume that
the bandwidthB is divided into a set of sub-carriersN =
{1, · · ·N}, and the channel gain from the BS to the userks in
slice s and in sub-carriern is

hks,n = χks,nd
−λ
ks

, (1)

whereχks,n is the fading coefficient,dks
> 0 is the distance

of the userks ∈ Ks to the BS normalized to the cell radius
andλ is the path loss exponent.

A. NOMA

When the BS applies NOMA for downlink transmission
to users, first, all users are indexed based on their channel
gains in an increasing order such as|h1,n| < |h2,n| <
· · · < |hK,n|, ∀n ∈ N . By developing successive interference

cancellation (SIC), the userks, with index i, can successively
remove the interference of all usersj 6= i if j < i, at sub-
carriern. For the rest of the users, i.e., users with indicesj > i,
the interference cannot be removed. Consequently, the received
SINR at the userks, with indexi at the sub-channeln, is given
by

γNOMA
i,n =

βi,nhi,n

σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n

, (2)

whereβi,n is the power allocation coefficient for the user at the
ith index and sub-carriern. Moreover,σ2 is the noise power,
which is assumed to be equal for all users. The rate of userks,
with index i, at the sub-carriern is

RNOMA
ks,n

= Ri,n = log2(1 + γNOMA
i,n ) (3)

= log2

(
1 +

βi,nhi,n

σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n

)

Each slices ∈ S in the VWN has a minimum reserved rate
of Rrsv

s in order to support the QoS requirement of the users,
which can be expressed as

C1:
∑

ks∈KS

∑

n∈N

RNOMA
ks,n

≥ Rrsv
s , ∀s ∈ S.

B. OFDMA

We consider an OFDMA system where the total available
frequency is divided inton ∈ N sub-carriers and ifαks,n is
the sub-carrier allocation indicator for the sub-carriern and
userks in slice s ∈ S, then

αks,n =

{
1, if sub-carriern is allocated to userks,

0, otherwise.

Due to the OFDMA exclusive sub-carrier assignment, we have
a constraint onαks,n as

C2:
∑

∀s

∑

∀ks

αks,n ≤ 1, ∀n ∈ N .

The received SINR at the userks at sub-carriern ∈ N and in
slice s ∈ S is

γOFDMA
ks,n

=
Pks,nhks,n

σ2
, (4)

Hence, the rate of userks at sub-carriern is

ROFDMA
ks,n

= αks,n log2(1 + γOFDMA
ks,n

). (5)

In this case, the minimum reserved rate of each slice is
represented as

C3:
∑

ks∈KS

∑

n∈N

ROFDMA
ks,n

≥ Rrsv
s , ∀s ∈ S.

Considerβ = [β1, . . . ,βS ] as the vector of power alloca-
tion coefficients of all users in all slices in NOMA, where
βs = [βks

]Ks

ks=1 and βks
= [βks,1, · · · , βks,N ], respectively.

Similarly, for the OFDMA case, the power allocation vector of



the system can be represented asP = [P1, · · · ,PS ], where
Ps = [Pks

]Ks

ks=1 and Pks
= [Pks,1, · · · , Pks,N ]. Also, the

sub-carrier allocation vector of the system can be represented
as α = [α1, . . . ,αS ], whereαs = [αks

]Ks

ks=1 and αks
=

[αks,1, · · · , αks,N ].
Now, for the case of NOMA, the optimization problem to

minimize the total transmit power can be expressed as

min
β

∑
s∈S

∑
ks∈KS

∑
n∈N

βks,n, (6)

subject to : C1.

For the case of OFDMA, the corresponding resource allocation
problem is

min
P,α

∑
s∈S

∑
ks∈KS

∑
n∈N

αks,nPks,n, (7)

subject to : C2− C3.

The proposed algorithm to solve the optimization problem
is described in the subsequent section for both NOMA and
OFDMA schemes.

III. PROPOSEDALGORITHM

The formulated optimization problems for both cases of
NOMA and OFDMA in (6) and (7) are non-convex and solving
them is challenging. To develop an efficient algorithm to solve
(6), we deploy an iterative framework of successive convex ap-
proximation, in which the non-convex function is transformed
into a convex one in each iteration. For this transformation,
we apply the complementary geometric programming (CGP)
and variable relaxation to convert (6) into the geometric pro-
gramming (GP) formulation. We refer the interested readers
for the background of CGP to [19]–[21]. For (7), we apply the
relaxation technique to convert binary variables into continuous
ones. Then we use Lagrange dual function which has been
widely utilized for solving OFDMA-based resource allocation
problems [6], [22].

A. Iterative Algorithm for NOMA-based Resource Allocation

ConsideringRNOMA
ks,n

= log2(1 + γNOMA
i,n ) as

R̃NOMA
ks,n

= (8)

log2
(σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n + βi,nhi,n

σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n

)
.

From the above, C1 can be rewritten as

∏

i∈Ks

∏

n∈N

(
σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n

σ2 + hi,n

∑
s∈S

∑K

j=i+1 βj,n + βi,nhi,n

)
(9)

≤ 2(−Rrsv
s ), ∀s ∈ S.

To apply the CGP, considert1 as the iteration number. In each
iteration t1, the non-convex function should be approximated
to its convex counterpart. Based on the structure ofR̃NOMA

ks,n
,

we can apply AGMA approximation to propose the monomial
approximation of R̃NOMA

ks,n
. At iteration t1, R̃NOMA

ks,n
can be

Algorithm 1 : Iterative Algorithm Based on CGP for NOMA

Initialization: Set t1 = 1, β(t1) = [1], where1 is a vector
C1×K .
Repeat:

Step 1:Updatesi,n(t1), gj,n(t1), ri,n(t1), andzi,n(t1) from
(11)-(14),

Step 2: Find optimalβ∗(t1) from (15) via CVX [23],
Until: ||β∗(t1)− β∗(t1 − 1)|| ≤ ε1.

approximated as̃RNOMA
ks,n

= log2(x
−1
i,n(t1)) wherexi,n(t1), for

all i, is given by,

xi,n(t1) = (σ2 + hi,n

∑

s∈S

K∑

j=i+1

βj,n)(
σ2

si,n(t1)
)−si,n(t1)×

K∏

∀s,j=i+1

(
hi,nβj,n(t1)

gj,n(t1)

)−gj,n(t1)(βi,n(t1)hi,n

ri,n(t1)

)−ri,n(t1)

,

(10)

where for alli andn ∈ N ,

si,n(t1) =
σ2

zi,n(t1)
, (11)

gj,n(t1) =
βj,n(t1 − 1)hj,n

zi,n(t1)
, (12)

ri,n(t1) =
βi,n(t1 − 1)hi,n

zi,n(t1)
, (13)

zi,n(t1) = (14)

σ2 + hi,n

∑

s∈S

K∑

j=i+1

βj,n(t1 − 1) + hi,nβi,n(t1 − 1).

Considering (10)-(14), the optimization problem (6) at iter-
ation t1 is approximated to the following convex optimization
problem

min
β(t1)

K∑

i=1

N∑

n=1

βi,n(t1) (15)

subject to: (10)− (14)
∏

i∈S

∏

n∈N

xi,n(t1) ≤ 2(−Rrsv
s ), ∀s ∈ S.

The overall iterative algorithm to solve (6) based on the convex
function (15) is presented in Algorithm 1.

B. Dual Approach for OFDMA-based Resource Allocation

Since (7) involves binary variablesα, we first relaxαks,n ∈
[0, 1], ∀ks ∈ Ks, ∀s ∈ S, ∀n ∈ N . Now, by considering
yks,n = αks,nPks,n, the total rate of OFDMA can be rewritten
as [6], [22],

R̃OFDMA
ks,n

(α, y) = αks,n log2(1 +
yks,nhks,n

αks,nσ
2

). (16)

Note that the above expression belongs to a class of convex
functions with the format off(a, b) = a log(1 + b/a) [24].
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Fig. 1. Total transmit power versusRrsv

Therefore, C3 can be written as

C̃3 :
∑

ks∈KS

∑

n∈N

R̃OFDMA
ks,n

(α, y) ≥ Rrsv
s , ∀s ∈ S. (17)

Consequently, (7) can be written as

min
y,α

∑
s∈S

∑
ks∈KS

∑
n∈N

yks,n, (18)

subject to: C2, C̃3.

Proposition 1: Problem (18) is convex and can be solved
using the Lagrange dual method. [6]

Proof. See Appendix A.

To solve the convex problem (18), the iterative algorithm
based on the dual function can be applied with a low com-
putational complexity as demonstrated in [6], [22] which is
summarized in Algorithm 2.

IV. SIMULATION RESULTS

To study the performance of the proposed algorithm for
NOMA and compare it with the OFDMA scheme, we simulate
a scenario of a VWN with a single BS serving two slices each
with Ks = 8 users, whereK =

∑
s∈S

Ks and Rrsv = Rrsv
s

for all s ∈ S. The users are randomly located (from a uniform
distribution) within the whole area of interest unless otherwise
stated. The total number of sub-carriers is taken to beN = 64.
The channel gains are derived according to the Rayleigh fading
model. More specifically,hks,n = χks,nd

−λ
ks

whereλ = 3 is
the path loss exponent,dks

> 0 is the distance between the
BS and userks normalized to the cell radius, andχks

is the
exponential random variable with mean of1. The results are
taken over the average of 100 different channel realizations.

In Fig. 1, the total transmit power versusRrsv is depicted for
both NOMA and OFDMA schemes. From Fig. 1, it is clear
that the total transmit power increases with increasingRrsv for
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Fig. 3. Total transmit power versusK

both cases. It is because the BS needs to transmit at a higher
transmit power to satisfy the minimum reserved rate per slice.
However, the total transmit power in the case of OFDMA is
higher than that in the case of NOMA, indicating that NOMA
is more power efficient that OFDMA. Specifically, the total
transmit power has been decreased by almost 45% from 22
dB to almost 12 dB atRrsv = 1 bps/Hz and by 54% from 33
dB to 15 dB atRrsv = 5 bps/Hz, respectively, with NOMA as
compared to OFDMA.

In Fig. 2, the total transmit power versusS is plotted for both
NOMA and OFDMA forK = 12 andRrsv

s = 1 bps/Hz,∀s ∈ S.
As expected, the total transmit power increases with increasing
the number of slices due to the rate reservation constraint per
each slice. However, the total transmit power for OFDMA is
significantly higher than the NOMA which demonstrates the
power efficiency achieved via NOMA.
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Fig. 3 plots the total transmit power versusK for different
Rrsv. From Fig. 3 and as expected from the multi-user diversity
gain [25], it can be observed that the total transmit power
decreases with increasingK for a fixedRrsv. Also, similar to
Fig. 1, it is clear that the total transmit power is an increasing
function of Rrsv, while it is higher in the case of OFDMA as
compared to NOMA.

In Fig. 4, we study the effect of NOMA with non-uniform
user distribution over the VWN for two scenarios, where in
the first scenario, users are located close to the cell-center, i.e.,
the normalized distance,dks

∈ [0.1, 0.7] and in the second
scenario, the users are located close to the cell boundary, i.e.
dks

∈ [0.8, 1]. Fig. 4 shows the total transmit power versus
Rrsv

s for both OFDMA and NOMA. Based on the results in
Fig. 4, the total transmit power with OFDMA is more than in
the case of NOMA for both scenarios. Also, with increasing
Rrsv

s , the total transmit power sharply increases for OFDMA
as compared to that for NOMA, e.g., forRrsv

s > 3 bps/Hz.
More importantly, via OFDMA, for the cell-edge scenario,
there is no solution for the resource allocation problem for
Rrsv

s > 3 bps/Hz. However NOMA can reach the feasible
solution by increasing the transmit power. This indicates the
effectiveness of NOMA in achieving higher energy efficiency
while preserving the isolation based constraints of the slices in
the VWN.

V. CONCLUSION

In this paper, we investigated the power efficiency perfor-
mance of NOMA compared to OFDMA for a virtualized wire-
less network (VWN). In particular, we formulated an optimiza-
tion problem with the objective to minimize the transmit power,
while supporting the minimum reserved rate per each slice to
ensure effective isolation among users in the slices. Sincethe
resource allocation problem is non-convex and suffers from
high computational complexity, we developed the CGP and

AGMA approximation to propose the computationally tractable
iterative algorithm. Via simulation results, we investigated
the performance of the algorithm and compared it with the
OFDMA scheme. Simulation results reveal that the proposed
algorithm outperforms the OFDMA in terms of the required
transmit power, specifically when most of users are located
near the cell-edge and there is a diverse variation in the channel
conditions. In a practical VWN deployment, the coverage of an
area is provided by multiple BSs. Consequently, investigating
the power efficiency of NOMA in multi-cell scenario is of
interest, which remains as a future work of this paper.

APPENDIX

A. Proof of Proposition 1

In (16), R̃ks,n(α, y) is of the formf(a, b) = a log(1 + b/a)
which is a convex function and can be solved by the Lagrangian
method [24].

The corresponding Lagrange function for (18) is

L(φs, νn, y,α) =
∑

∀s,∀ks,∀n

yks,n +
∑

∀s

φs(R
rsv
s − (19)

∑

∀ks,n

R̃OFDMA
ks,n

) +
∑

∀n

νn(
∑

s

∑

ks

αks,n − 1),

whereφs, ∀s ∈ S andνn, ∀n ∈ N are the Lagrange variables
associated tõC1 and C2, respectively. Consideringφ and ν

as the vectors of the Lagrange variables forφs andνn, ∀s, ∀n,
respectively, the dual function for (19) is, [24]

D(φ, ν) = min
y,α

L(φ, ν, y,α). (20)

Thus, the dual problem can be written as

max
φ,ν

D(φ, ν) (21)

subject to:φ > 0 & ν > 0.

Since problem (18) is convex, the duality gap is zero and hence,
the solution of the dual problem is equal to the solution of the
primal problem [24]. Hence, by applying KKT conditions, the
optimal power allocation for userks in slice s and sub-carrier
n, i.e.,P ∗

ks,n
, is

P ∗
ks,n

=

[
φs

ln(2)
−

σ2

hks,n

]Pmax

0

, (22)

where,[x]ba = max{min{x, b}, a}. Also, the optimal sub-carrier
allocation,α∗

ks,n
, is

α∗
ks,n

=





0, ∂(L(φs,νn,y,α))
α∗

ks,n

< 0

∈ [0, 1], ∂(L(φs,νn,y,α))
α∗

ks,n

= 0

1, ∂(L(φs,νn,y,α))
α∗

ks,n

> 0,

(23)



Algorithm 2 : OFDMA

Initialization: Set t2 = 1, α(t2) = [1], where1 is a vector
C1×KN , pks,n(t2) = 1, ∀ks ∈ Ks, ∀s ∈ S, ∀n ∈ N , tmax

2 =
5000.
Repeat:
Step 1: Updateφs(t2 + 1) =

[
φs(t1) + δφs

∂L
∂φs

]+
, ∀s ∈ S.

Step 2: Repeat:Set inner loop iteration index ast3 = 1.
Step 2a:UpdateP ∗

ks,n
(t3), ∀ks ∈ Ks, ∀n ∈ N , from (22),

Step 2b: Find ρks,n(t3) from (24) and setαks,n(t3) =
1, if ρks,n(t3) = max[ρks,n], ∀ks ∈ Ks, ∀s ∈ S,

Until ||P(t3)− P(t3 − 1)|| ≪ ε2.
Until: ||φs(t2)− φs(t2 − 1)|| ≤ ε2, or t2 > tmax

2 .

where,

∂(L(φs, νn, y,α))

∂α∗
ks,n

=

νn − φs

(
log2(1 + γks,n)−

γks,n

(1 + γks,n)ln(2)

)
, ∀s ∈ S

and γks,n =
yks,nhks,n

αks,nσ
. Now, from the KKT conditions, we

have

ρks,n = φs

[
log2(1 + γks,n)−

γks,n

(1 + γks,n)ln(2)

]
, ∀s ∈ S.

(24)

To satisfy the OFDMA exclusive sub-carrier allocation,α∗
ks,n

is chosen such thatρks,n is maximum [26], mathematically
represented as

α∗
ks,n

=

{
1, k′s = max∀ks∈Ks,∀s∈S

∂(L(φs,νn,y,α))
∂α∗

ks,n

0, ks 6= k′s.
(25)

The overall algorithm is described in Algorithm 2.
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