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Abstract

Given the recent advancements in autonomous driving functions, one of the main challenges is
safe and efficient operation in complex traffic situations such as road junctions. There is a need
for comprehensive testing, either in virtual simulation environments or on real-world test tracks.
This paper presents a novel data analysis method including the preparation, analysis and visual-
ization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions
as a basis for testing the safety of automated driving systems. The presented method employs
k-medoids to cluster historical junction crash data into distinct partitions and then applies the
association rules algorithm to each cluster to specify the driving scenarios in more detail. The
dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth
“On-the-Spot” database. The study resulted in thirteen crash clusters for T-junctions, and six
crash clusters for crossroads. Association rules revealed common crash characteristics, which
were the basis for the scenario descriptions. The results support existing findings on road junc-
tion accidents and provide benchmark situations for safety performance tests in order to reduce
the possible number parameter combinations.
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1. Introduction1

Over the past few years, automation of road vehicles has gained an increasing presence on2

the agendas of companies and public authorities, which have started to push Automated Driving3

Systems (ADS) into the forefront of research. On spots in a road network, where traffic conflicts4

are likely to occur, e.g. intersections, it must be ensured that automated vehicles can operate5

safely and efficiently, and even more important, that conventional vehicles driven by humans will6

have at least the same safety level as they have now. The technical reliability of ADS depends7

on the functionality under varying road infrastructure and transnational differences as well as8

on a safe interplay with traditional vehicles and vulnerable road users. Consequently, testing9

and validation procedures for those systems are paramount. There is a need for comprehensive10

testing, either in virtual simulation environments or on real-world test tracks. This leads to11

a challenge, namely to find the key driving situations to be evaluated. Since it is unrealistic12
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to cover all possible combinations of traffic situations and environment conditions, the most13

representative “benchmark” scenarios must be known.14

As road intersections are locations, where the paths of multiple traffic participants are crossed,15

they are considered high-risk spots for safety researchers. For automated vehicles, road intersec-16

tions of whatever type constitute a major point of interest along their routes due to the increased17

likelihood of conflicts with other road users. This paper presents a method to identify such con-18

flict scenarios for the case of road junctions in the UK. It is important to note that the study19

excludes roundabouts and focuses on three-legged and four-legged intersections, both signalized20

and unsignalized. The study is based on 1056 junction crashes in the UK, which are initially21

partitioned by applying the k-medoids clustering method (Kaufman and Rousseeuw, 1990). As22

a second step, association rules (Agrawal et al., 1993) are computed to find associated crash23

attributes that ultimately build the scenario definition.24

This paper is structured as follows: Section 2 gives an overview on relevant literature on25

road junction safety as well as clustering techniques. The proposed methodology is explained26

in section 3, followed by a description of the crash data used in this study (see Section 4). The27

cluster algorithm and association rule technique are given in the Sections 5 and 6, respectively.28

Section 7 comprises the results, before they are compared to existing findings and related to29

limitations and future work in Section 8. Finally, the paper is concluded in Section 9.30

2. Background31

2.1. Motivation and research objectives32

Concerning road safety, it is still not clear what impact automated vehicles will have on crash33

risk, and what kinds of (new) risks they might cause. In particular, the safety risks coming with34

a mixed vehicle population, namely traffic with both driver-less and driver-operated vehicles35

are still subject to research. Although automated cars use sophisticated on-board sensors to36

recognize their environment, they have limitations, e.g. in challenging urban traffic situations,37

inclement weather conditions or when facing unexpected behaviour of traffic participants.38

In Nitsche et al. (2014), an expert survey was conducted including questions on the role39

of road infrastructure, market readiness as well as to which extent certain factors influence the40

performance of selected automated driving functions on public roads. In summary, the main41

challenges found for ADS are complex urban environments, temporary work zones and poor vis-42

ibility due to bad weather conditions. Road surface characteristics, road alignment and lighting43

were rated as minor influencing factors.44

Three-legged and four-legged junctions are high-risk areas, which future automated cars45

should be capable to pass safely. Therefore, intersections play a particularly important role in46

testing assisted and automated driving. Automated vehicles should be capable of safely manoeu-47

vring through an intersection and of avoiding or mitigating a collision. Intersection crash avoid-48

ance and mitigation systems (ICAMS) can be categorized into 1) infrastructure-only systems,49

such as active warning signs for drivers based on detected vehicles, 2) vehicle-based systems,50

including algorithms to predict and avoid collisions based on in-vehicle sensor data, 3) car-to-car51

systems based on vehicular communication and 4) cooperative infrastructure-to-vehicle com-52

munication systems (Mages, 2008). While the first system group is primarily made for human53
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drivers, automated vehicles mainly rely on vehicle-based systems, but may be assisted by coop-54

erative systems.55

The main research gap addressed by this work is that there are no standardized procedures56

for evaluating automated driving systems in junction environments. To this end, the research57

objective is to provide a set of pre-crash scenarios to understand typical high-risk situations at58

junctions. Due to a lack of accident data involving automated vehicles, a reasonable starting59

point is to analyse historical accidents with human drivers, assuming there is a certain overlap60

of crash risk. The study is preparatory research to a sub-microscopic simulation study, where61

virtual test drives will be conducted and ICAMS will be evaluated under varying conditions.62

The scenarios obtained in the underlying study will help to reduce the possible number of model63

parameter variations, such as vehicle trajectories, velocities, road and junction parameters etc.64

2.2. Safety at road junctions65

A query from the CARE crash database (ETSC, 2001) for the years 2003 to 2013 was anal-66

ysed to get a picture about the intersection accident situation in the European Union. In general, it67

was found that every third road accident occurs at a junction. Four-legged intersections have the68

highest amount of both fatal and serious injuries with 43.9 and 43.2 percent, respectively. How-69

ever, it must be noted that those percentages also depend on the exposure of different junction70

types, which has not been further analysed in this review. Due to the higher number of conflict71

points, four-legged junctions are generally unsafer than three-legged junctions (e.g. Bauer and72

Harwood, 1996; Harwood, 1995; David and Norman, 1975; Hanna et al., 1976). In this paper,73

safety-critical scenarios are obtained for three- and four-legged junctions, respectively, to further74

analyse this safety difference.75

According to the CARE analysis, persons on pedal cycles and motorcycles were more often76

fatally injured at junctions than persons using other modes of transport. Every fourth fatally77

injured bicyclist was killed at a junction, while only every tenth fatally injured car occupant died78

due to a junction crash.79

Van Maren (1980) reported that (multi-lane) unsignalized intersections have a lower number80

of crashes per million conflicts than signalized intersections. For signalized intersections, it was81

found that the dominant crash types are rear-end and head-on collisions (Polders et al., 2015;82

Obeng, 2007), however, Abdel-Aty et al. (2006) states that this also depends on the number of83

lanes and traffic volumes. In comparison to that, the majority of unsignalized intersection acci-84

dents are angle collisions (e.g. Molinero Martinez et al., 2008; Arndt, 2003; Layfield et al., 1996;85

Pickering and Hall, 1985). The most important variables affecting the safety of unsignalized in-86

tersections were studied by Haleem et al. (2010). Accordingly, these include the traffic volume87

on the major road and the existence of stop signs, and among the geometric characteristics, the88

configuration of the intersection, number of right and/or left turn lanes, median type on the major89

road, and left and right shoulder widths. In particular for angle crashes at unsignalized intersec-90

tions, the factors were found to be traffic volume on the major road, the upstream distance to91

the nearest signalized intersection, the distance between successive unsignalized intersections,92

median type on the major approach, percentage of trucks on the major approach, size of the93

intersection and the geographic location within the state (Abdel-Aty and Haleem, 2011).94

Several accident studies (Molinero Martinez et al., 2008; Lee et al., 2004; Najm et al., 2001)95

show that failure to yield right-of-way is the most dominant violation in crossing path scenarios.96
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This is followed by running a traffic signal or sign as one of the most frequent violations. Sandin97

(2009) concluded that the most common causation patterns include missed observation due to98

distraction or sight obstructions, which then led to no, late or premature action. Furthermore,99

a common causation was found to be incorrect prediction or faulty diagnosis, e.g. the drivers100

did not expect another vehicle to cross their path. Automated driving systems are expected to101

mostly solve the safety problems caused by those factors, e.g. through sensing and perception102

technologies. However, factors such as sight obstructions, unexpected road user behaviour and103

human error by other drivers still pose problems.104

The method presented in this paper analyses historical accident data to understand the critical105

situations and factors at road junctions. Similar research has been conducted (e.g. Polders et al.,106

2015; Plavsic, 2010; Molinero Martinez et al., 2008; INTERSAFE, 2005; Wiltschko, 2004),107

however, the usage of k-medoids clustering and association rules in this context is novel.108

2.3. Clustering accident data109

In most cases, accident data as used in this study is of categorical nature, i.e. described by110

qualitative attributes (also called nominal attributes) of mainly arbitrary order. Although the cat-111

egories can be coded as numbers, e.g. 1: female, 2: male, those numbers would not have math-112

ematical meaning (e.g. Han et al., 2011; Lourenco et al., 2004). Therefore, dedicated statistical113

methods are necessary to analyse categorical data. Common clustering methods for categorical114

data are SQEEZER (He et al., 2002), ROCK (Guha et al., 1999), LIMBO (Andritsos et al., 2004),115

STIRR (Gibson et al., 1998), Link Clustering (Zengyou et al., 2005) or CACTUS (Ganti et al.,116

1999). Also, conventional clustering algorithms were modified to deal with categorical data,117

such as k-modes (Huang and Ng, 1999; Huang, 1997), k-histograms (Zengyou et al., 2003), k-118

medoids (Kaufman and Rousseeuw, 1990) or Generalized Self-Organizing Maps (Hsu, 2006), all119

of which have their advantages for different applications. Basically not a clustering method, but a120

popular classification algorithm for categorical data is Latent Class Analysis (Goodman, 1974),121

which is a model-based approach, assuming that a mixture of underlying probability distribu-122

tions generates the data. Another approach is to use Multiple Correspondence Analysis (MCA,123

Lê et al., 2008) as a preprocessing step to transform the categorical variables to a continuous124

scale. Afterwards standard hierarchical or partitional clustering methods can be applied, usually125

only on the first principal components to reduce the dimensionality and stabilize the clustering126

by deleting the noise from the data.127

As a popular and simple data mining technique, various researchers used association rules128

to discover patterns in their data (e.g. Weng et al., 2016; Kumar and Toshniwal, 2015; Montella,129

2011; Mirabadi and Sharifian, 2010; Pande and Abdel-Aty, 2009). In this study, association130

rules are applied to clusters discovered by the k-medoids method to get more information on the131

underlying patterns of accident attributes, as explained in the following section.132

3. Overall methodology133

The methodology for evaluating the safety performance of assisted and automated driving134

systems is depicted in Figure 1. Depending on the objectives and contents of the test study,135

the target crash population and the safety performance indicators can be defined. This paper is136

devoted to the left half of the flow chart, with the objective to derive pre-crash scenarios for cars137
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at road junctions. Inspired by a study from Kumar and Toshniwal (2015), the idea was to initially138

partition the data by a clustering technique for categorical data, and then apply the association139

rule method on the data subsets to identify further parameters for the respective clusters.140

The follow-up study will cover the right half of the chart, by evaluating the safety perfor-141

mance in a virtual simulation environment. The simulation models can be structured into 1)142

road environment models (including pavement, roadside and environmental conditions such as143

weather), 2) vehicle models (including sensor and control systems) and 3) driving (behaviour)144

models. Each of these model groups has numerous parameters to set, leading to a high num-145

ber of possible combinations in the simulation runs. The method presented can aid engineers in146

parametrizing the models and to select the parameters that were found to be critical.147
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Figure 1: Overall methodology for evaluating the safety performance of assisted and automated driving systems

The crash data used and its processing steps are explained in Section 4, including the proce-148

dure of attribute selection, attribute coding and grouping into two levels. Level 1 is a reduced149

set of attributes describing the main collision parameters, for better partitioning and easier in-150

terpretation of the results, while Level 2 adds additional attributes describing the environment151

and causation factors. Level-1 data is used as input for the k-medoids clustering algorithm and152

level-2 data for finding association rules. The main reasons why this two-level approach was153

chosen are the following:154

1. The k-medoids method achieved good clustering results on a smaller set of attributes. No155

clear partitioning was achieved when using all available attributes.156

2. The results from applying the association rules on the whole dataset (without prior cluster-157

ing) would be hard to interpret due to the high number of obtained rules. It must be noted158

that depending on the sample size and attribute dimensionality, millions of rules might159

be computed. This requires post-processing by applying dedicated algorithms or pruning160

techniques.161
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4. Data collection and processing162

4.1. Background on the crash data used163

The data used for this study stems from a project called OTS (On-The-Spot), which was164

commissioned by the UK Department for Transport and the Highways Agency (HA). It aimed to165

establish an in-depth research database of a representative sample of road accidents in the UK, to166

better understand the cause of accidents and injuries (Hill et al., 2001). Two crash investigation167

teams collected data from the years 1999 to 2010. One team was located at Loughborough168

University covering the South Nottinghamshire area in the East Midlands, and the other at the169

Transport Research Laboratories (TRL) covering the Thames Valley region.170

The teams were responsible for collecting information at the scene of the accidents or, when171

the accidents already occurred, by liaison with emergency services, hospitals and local authori-172

ties. To arrive at the accident scene as quickly as possible, the teams had a direct link with the173

local police, and response vehicles driven by an OTS police officer were used (Cuerden et al.,174

2008). Data from both teams were collated into a single database that contains more than 2,000175

variables.176

4.2. Data collection177

OTS is part of the RAIDS (Road accident in-depth studies) project, whose data query and178

export tool was used to download all necessary data elements including collisions with the fol-179

lowing prerequisites:180

• Junction type = “T or staggered junction”, “Crossroads”, “Multiple junction”, “Other junc-181

tion” or “Using private drive or entrance”182

• Police Accident Severity = “Fatal”, “Serious” or “Slight”1
183

As mentioned before, roundabouts were excluded from this study. The junction types in-184

cluded comprise signalized and unsignalized junctions of different shapes. This query resulted185

in 1056 crash cases from the OTS database, including more than 400 variables. However, it was186

decided to analyze the data on the car driver level, i.e. every sample corresponds to one driver187

involved in a crash, regardless if he/she was injured or not. This also means that every sample188

contains a car driven by the respective driver. Consequently, if two or more vehicles are involved189

in the same crash, the underlying crash and environment data is simply duplicated. Furthermore,190

there should be at least one car (including car-derived VANs, minibuses and SUVs) involved.191

This required a second query from the exported database as follows:192

• Seating position of occupant = “Driver/Rider”193

• At least 1 vehicle = “Car”194

• Total number of vehicles ≥ 2195

1It is important to mention that although the police reported a certain injury level, this might have been adapted by
the crash investigation team based on more precise evidence.
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This additional query resulted in an increased sample size of 1540, i.e. car drivers. The re-196

quirement of more than one vehicle means that single-car accidents were intended to be excluded,197

because speeding, fatigue or other human causation for single vehicle accidents are not relevant198

for the study. Another reason for having one record per driver is given by the background of the199

analysis, which focuses on safety risks involving automated vehicles instead of drivers. To this200

end, it is necessary to know the critical situations to be handled by drivers nowadays, as they are201

likely to happen to automated vehicles as well. Each sample is thus associated with an ego car,202

later denoted as car A, which collides with a secondary vehicle or road user, later denoted as B.203

4.3. Attributes selection and coding204

The number of variables was further reduced according to the following steps:205

1. Include only variables that fit the scope of the study (see next section), e.g. not relevant206

were weekday or time of the crash, occupant data such as age or gender, vehicle damage207

or detailed injury data of different body parts.208

2. Exclude variables with low variance, because they would fail to make a positive impact on209

model performance. In this study, all observations with more than 95 percent same values210

were excluded.211

3. Group or combine highly correlated variables, e.g. OTS injury severity and police injury212

severity.213

4. Exclude variables having unknown values in more than 30 percent of all samples.214

Following this reduction process, the number of variables has been reduced to 41, which215

were grouped according to the original OTS data hierarchies “scene”, “vehicle” and “path”. The216

“scene” variables include general attributes about the crash, such as collision type and maximum217

injury of all involved persons. The “vehicle” variables are related to the pre-crash and collision218

circumstances from the perspective of the individual vehicle, i.e. driver, and includes for example219

the precipitating factor attributed to the vehicle, driver injury level or the pre-impact manoeuvre.220

The “path” variables describe the road environment, e.g. junction type, weather, traffic density221

or speed limit.222

The original data contains variables in the following format: “Maximum injury level = Se-223

rious” from the four possible values uninjured, slight, serious and fatal. For the further calcu-224

lations, all variables were converted to the binary-coded format. Consequently, this resulted in225

many more attributes, as each possible value was assigned to its own column, but it is a necessary226

step for applying most clustering algorithms.227

The high number of attributes of the pre-processed OTS dataset made it necessary to further228

prepare the data for clustering. Usually, fewer attributes make it easier to interpret the clusters.229

Initial experiments with a varying number of attributes as input showed that the performance of230

the k-medoid method suffers from a higher dimensionality. Therefore, all attributes were divided231

into two levels as follows:232

1. First level (5 variables, 25 attributes, see Table 1): This level of attributes was used as input233

for the k-medoids clustering. The idea is to derive clusters based on a set of main collision234

attributes first, before association rule mining is applied to each cluster with the second235

level attributes.236
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2. Second level (15 variables, 86 attributes, see Table 2): This level adds more detailed at-237

tributes on road infrastructure and accident causation to the level-1 attributes. They are238

intended to help tell a “story” describing each cluster by association rule mining.239

Category Short name Description Count Freq.

Max. injury MaxInj=Uninjured No person injured (OTS injury level) 196 14.8%
(of all persons MaxInj=Slight At least one person slightly injured (OTS injury level) 919 69.4%
involved in the crash) MaxInj=SeriousFatal At least one person seriously or fatally injured (OTS injury level) 210 15.8%

Junction shape JctShp=X-minJoin Road continues straight on with (minor) road joining from the left and right (crossroad) 224 16.9%
(attributed to the JctShp=X-brkMaj Road is temporarily broken by a (major) road passing across the vehicles path (Crossroad) 144 10.9%
vehicle’s path) JctShp=NoJct No junction present 20 1.5%

JctShp=Other Private drive, entrance or other junction type 7 0.5%
JctShp=T-minLeft Road continues straight on with (minor) road joining from the left 350 26.4%
JctShp=T-minRight Road continues straight on with an additional (minor) road joining from the right (T-Junction) 309 23.3%
JctShp=T-termMaj Road terminates with a (major) road passing across the vehicles path (T-Junction or accel. lane) 271 20.5%

First interaction 1stIntAct=Car Driver interacted with another car 987 74.5%
(Road user type or object 1stIntAct=LGV-HGV Driver interacted with a large or heavy goods vehicle 97 7.3%
which the vehicle first 1stIntAct=PTW Driver interacted with a powered two-wheeler (motorcycle or moped) 115 8.7%
interacted with) 1stIntAct=Other Driver interacted with another type of vehicle or object 37 2.8%

1stIntAct=Cycle Driver interacted with a bicyclist 50 3.8%
1stIntAct=Pedestrian Driver interacted with a pedestrian 39 2.9%

Manoeuvre Manvr=GoingAheadOther Driver was going straight ahead 781 58.9%
(Action of the vehicle Manvr=TurnL Driver was turning left 59 4.5%
immediately before crash) Manvr=TurnR Driver was turning right 79 6.0%

Manvr=WaitTurnR Driver was waiting to turn right 353 26.6%
Manvr=Other Driver was reversing, doing a u-turn, overtaking, undertaking, held up or waiting to turn left 53 4.0%

First point of impact 1stImpact=Back First point of the impact was the car’s back 126 9.5%
(First point to come into 1stImpact=Front First point of the impact was the car’s front 674 50.9%
contact with another vehicle, 1stImpact=Nearside First point of the impact was the car’s nearside 218 16.5%
pedestrian or other object) 1stImpact=Offside First point of the impact was the car’s offside 307 23.2%

Table 1: Crash attributes used for k-medoid clustering (level 1)

As described above, the second-level attributes deliver more information on the accident240

environment and causation. Most of the additional attribute groups in Table 2 are related to the241

vehicle’s path describing the road layout, e.g. road type, speed limit or curvature. The attribute242

groups “collision code”, “precipitating factor” and “driver injury” were added to the list to better243

understand the accident circumstances.244

4.4. Further removal of unknowns245

Samples with at least one unknown attribute value were removed as part of the data process-246

ing steps. This happened at two instances, namely 1) before computing the cluster with level-1247

data and 2) before computing the rules with level-2 attributes for the data in each cluster. The248

first removal of unknowns resulted in a final sample size of n = 1325 for clustering, including249

n = 930 for T-junctions, n = 368 for crossroads and n = 27 for other or no junctions. The250

frequencies of the attributes are given on the right-hand side in Table 1. The second removal251

of unknowns was done on the extended level-2 dataset. Therefore, the final overall sample size252

(n = 1070) of the dataset used for the association rules is different to the clustering dataset (see253

Table 2).254

5. Clustering of junction crashes255

Due to different principles of clustering algorithms, one method might produce different clus-256

ters to another method. Hence, one has to choose the most appropriate method for the underlying257

dataset, taking into account the sample size, the number of attributes, the attribute types as well258
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Category Short name Description Count Rel. frequency

Collision type Coll=D-Cornering Cornering (D) 16 1.5%
(The category letter of the UK Coll=H-CrossingNoTurns Crossing (no turns) (H) 202 18.9%
STATS-19 collision code) Coll=J-CrossingVehTurning Crossing (vehicle turning) (J) 236 22.1%

Coll=M-Manoeuvring Manoeuvring (M) 104 9.7%
Coll=Other Other collision code 11 1.0%
Coll=A-OvertakingLaneChange Overtaking and lane change (A) 30 2.8%
Coll=P-PedestrOther Pedestrians Other (P) 25 2.3%
Coll=F-RearEnd Rear end (F) 188 17.6%
Coll=L-RightTurnAgainst Right turn against (L) 204 19.1%
Coll=G-TurningVsSameDir Turning versus same direction (G) 54 5.0%

Precipitating factor Prec=FailAvoidDriver Driver failed to avoid object or vehicle on carriageway 64 6.0%
(The main cause of the crash, Prec=FailAvoidOther Other road user failed to avoid object or vehicle on carriageway 58 5.4%
attributed to the respective Prec=FailGiveWayDriver Driver failed to give way 266 24.9%
occupant) Prec=FailGiveWayOther Other road user failed to give way 217 20.3%

Prec=FailStopDriver Driver failed to stop 84 7.9%
Prec=FailStopOther Other road user failed to stop 95 8.9%
Prec=LossCntrDriver Driver lost control of vehicle 23 2.1%
Prec=LossCntrOther Other road user lost control of vehicle 17 1.6%
Prec=OtherDriver Other precipitation by driver 27 2.5%
Prec=OtherOther Other precipitation by another road user 29 2.7%
Prec=PedEnter Pedestrian entered road without due care (driver not to blame) 17 1.6%
Prec=PoorOvtkDriver Inappropriate overtake by driver 7 0.7%
Prec=PoorOvtkOther Inappropriate overtake by other driver or rider 23 2.1%
Prec=PoorMnvrDriver Inappropriate turn or manoeuvre by driver 80 7.5%
Prec=PoorMnvrOther Inappropriate turn or manoeuvre by other driver or rider 63 5.9%

Driver injury DrvInj=Uninjured Driver suffered no injury 576 53.8%
(OTS injury level of the DrvInj=Slight Driver was slightly injured 445 41.6%
respective driver) DrvInj=Serious Driver was seriously injured 42 3.9%

DrvInj=Fatal Driver was fatally injured 7 0.7%

Area Area=Rural Rural area (countryside, fields and only sparse housing) 368 34.4%
(around the crash location) Area=Urban Urban area (at least one side of the road built up) 702 65.6%

Horizontal geometry HorizGeom=Left Left curve 22 2.1%
(Qualitative assessment of HorizGeom=LeftSharp Left sharp curve 4 0.4%
curvature of road) HorizGeom=LeftSlight Left slight curve 51 4.8%

HorizGeom=Right Right curve 25 2.3%
HorizGeom=RightSharp Right sharp curve 9 0.8%
HorizGeom=RightSlight Right slight curve 77 7.2%
HorizGeom=Straight Straight (no curve) 882 82.4%

Lighting Light=DarkNSL Darkness: no street lighting 50 4.7%
(Light conditions at the time Light=DarkSLUnk Darkness: street lighting unknown 11 1.0%
of the crash) Light=DarkSL Darkness: street lights lit 188 17.6%

Light=DayNSL Daylight: no streetlighting present 571 53.4%
Light=DaySLUnk Daylight: streetlighting unknown 243 22.7%
Light=DaySL Daylight: streetlights present 7 0.7%

Road type RdType=DualCgw Dual carriageway 161 15.0%
(on which the crash occurred) RdType=OneWayStr One way street 26 2.4%

RdType=SingCgw Single carriageway 883 82.5%

Speed limit SpdLim ≤ 20mph 20mph and less 1 0.1%
(posted at the crash location) SpdLim=30mph 30mph 584 54.6%

SpdLim=40-50mph 40 or 50mph 270 25.2%
SpdLim=60mph 60mph 159 14.9%
SpdLim=70mph 70mph 56 5.2%

Surface Surf=Dry Dry surface 673 62.9%
(Road surface condition due Surf=Flood Flooded surface 9 0.8%
to weather at the crash Surf=Icy Icy surface 6 0.6%
location) Surf=Snowy Snowy surface 3 0.3%

Surf=Wet Wet surface 379 35.4%

Traffic control TrfCtrl=None No active or static yield instruction 582 54.4%
(Type of traffic control at the TrfCtrl=GW Static give-way instruction 245 22.9%
location of the crash) TrfCtrl=Stop Static stop instruction 14 1.3%

TrfCtrl=Light Traffic light control 229 21.4%

Table 2: Additional crash attributes used for association rule mining (level 2)
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as the desired output of the study. The following sections address the clustering method chosen,259

which parameters were chosen and how it was applied to the OTS dataset.260

5.1. The k-medoids method261

The k-medoids method was chosen for the clustering, because it can cope with categorical262

data and is robust against outliers. It uses objects called medoids instead of centroids, as the263

popular k-means method does. Instead of using the mean as centre of the cluster, a member of264

the cluster is chosen as centre, whose average dissimilarity to all the objects in the cluster is265

minimal. In other words, the medoid is the most centrally located point in the cluster. Thus it266

is more robust to outliers, because it does not minimize a sum of squared Euclidean distances,267

as k-means does. Furthermore, k-medoids allows clustering categorical data, where a mean is268

impossible to define. For this reason, alternative dissimilarity measures can be applied, such as269

the “Hamming distance” (Hamming, 1950; Wegner, 1960) or the “Jaccard coefficient” (Jaccard,270

1901).271

One of the most powerful and commonly used algorithm for k-medoids is PAM (Partitioning272

Around Medoids) proposed by Kaufman and Rousseeuw (1990). It proceeds in two steps as273

follows:274

Build step:275

1. Choose k objects to become the medoids, or in case these objects were provided use them276

as the medoids277

2. Calculate the dissimilarity matrix if it was not informed278

3. Assign every object to its closest medoid279

Swap step:280

4. Within each cluster, each object is tested as a potential medoid by checking if the sum of281

within-cluster distances gets smaller using that object as the medoid. If so, the object is282

defined as a new medoid.283

5. If at least one medoid has changed, go to (3), else end the algorithm.284

The PAM algorithm works effectively for relatively small datasets such as the underlying OTS285

dataset. For larger datasets, alternative k-medoids algorithms should be used, such as CLARA286

(Clustering Large Applications, Kaufman and Rousseeuw, 1990).287

5.2. Parameters used288

The PAM algorithm was used, because it is most appropriate for the given sample size. The289

algorithm can produce better solutions than other k-medoids algorithms in some situations, but290

the computation times can be longer. The Hamming distance, originally used for the detection of291

errors in information transmission, was chosen as distance measure. It simply gives the number292

of mismatches between two vectors, thus it does not prefer 1s over 0s.293

To study the separation of the resulting clusters, silhouette analysis (Rousseeuw, 1987) was294

used. Each cluster is represented by silhouette coefficients, which provide a measure of how close295

each point in one cluster is to points in the neighbouring clusters. Observations with silhouette296

coefficients near 1 are very well clustered. Small values indicate that the observation is close to297
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the decision boundary between to neighbouring clusters and observations with negative values298

are probably placed in the wrong cluster. The average silhouette width provides a measure for299

clustering validity, and is used to choose the most appropriate number of clusters.300

The best number of clusters k was achieved by iteratively stepping from kmin = 2 to kmax = 15301

clusters. Experiments with the dataset showed that a kmax greater than 15 does not result in302

any more change of the error function, as the curve flattens. The results from each k were303

compared to find the best k, i.e. the one with the lowest average silhouette value. Actually,304

finding the best k is one of the most debated problems in cluster analysis. In literature, various305

validity metrics can be found to compute the performance in partitioning, among which are the306

Akaikes Information Criterion (Akaike, 1974), the Bayesian Information Criterion (Schwarz,307

1978), Calinski-Harabasz (Calinski and Harabasz, 1974) or Davies Bouldin index (Davies and308

Bouldin, 1979). For the scope of this study, it was sufficient to compare the silhouette values309

for graphical display for validating clusters. The entire clustering is displayed by combining the310

silhouettes into a single plot, as seen in Figure 2 (right) and Figure 3 (right) in a later section.311

The height of the silhouette represents the cluster size. For evaluating the best k, the average312

silhouette value of all objects within a cluster is calculated and compared to the others.313

6. Specifying crash scenarios314

As explained in the methodology section, the obtained clusters are further analysed by as-315

sociation rule mining, which was implemented in R by using the arules package (Hahsler et al.,316

2017, 2005). This section gives an overview on the principle of association rules and how the317

rules help to derive scenario parameters.318

6.1. The association rules method319

Association rule mining is a method to discover associations between attributes, also called320

“frequent itemset mining”. A popular example of association rules is the market basket analysis,321

where retailers can get insights into which items are frequently purchased together so that mar-322

keting strategies and product shelving can be optimized. For example, if a customer buys “beer”,323

then he/she often buys “crisps”. This would be expressed as “beer → crisps”, where the item324

“beer” is called the antecedent and the item “crisps” the consequent. One itemset I can contain325

multiple items. Applying the association rules terminology to the OTS dataset, then each sample326

is called a transaction {t1, t2, . . . , tn} ∈ T , and each attribute is an item {i1, i2, . . . , im} ∈ I. An327

association rule can be written in the following mathematical form: X → Y where X ⊂ I, Y ⊂ I328

and X ∩ Y = ∅. Each rule is characterised by its support (see Equation 1) and its confidence (see329

Equation 2).330

supp(X) =
| {t ∈ T ; X ⊆ t} |

n
= P(X) (1)

For itemsets, the support value gives the proportion of transactions t in the dataset, which331

contains the itemset X. For rules, the support is defined as the support of all items in the rule, i.e.332

supp(X → Y) = supp(X ∪ Y) = P(X ∧ Y).333
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conf(X → Y) =
supp(X ∪ Y)

supp(X)
= P(Y |X) (2)

Equivalently, the confidence measures the strength of the rules and gives the conditional334

probability of the consequent Y given the antecendent X. In other words, it is the proportion of335

the transactions that contains X, which also contains Y . To explain the difference between the336

two measures, it is important to mention that two rules with flipped antecedent and consequent337

would both have the same support value. However, they would not have the same confidence,338

because the direction is taken into account.339

The most common implementation was proposed by Agrawal et al. (1993), who called their340

method the Apriori algorithm. Accordingly, finding association rules involves two steps: 1) Find341

all frequent itemsets and 2) generate association rules from the frequent itemsets. The algorithm342

necessitates two parameters, namely a minimum support threshold, and a minimum confidence.343

By definition, if an itemset is below the minimum support threshold, then it is not frequent. If so,344

all its subsets must also be infrequent and can be pruned. In contrary, any subset of a frequent345

itemset must be frequent. By following this principle iteratively, the number of possible itemset346

configurations can be reduced tremendously with a simple algorithm.347

The second step is to generate rules from the frequent itemsets found in Step 1. Here, the348

minimum confidence threshold comes into play: For each frequent itemset I, all nonempty sub-349

sets are generated. For every non-empty subset s of I, create the rule s→ (I − s) if the minimum350

confidence for this rule is given. Since the rules are generated from frequent itemsets, each one351

also satisfies the minimum support. In this way, strong association rules can be found.352

Depending on the data dimensionality, and on how low the minimum support and confidence353

thresholds have been set, the algorithm might produce millions of rules. Dedicated rule pruning354

and post-processing methods have been developed to find the rules of most interest. It was355

found that the confidence measure is a rather poor measure to discover the dependence of the356

consequent with respect to the antecedent (Guillaume et al., 1998; Silverstein et al., 1998). This357

paper uses a metric called lift (see Equation 3), also known as “interestingness”.358

lift(X → Y) = lift(Y → X) =
supp(X ∪ Y)

supp(X) · supp(Y)
=

P(X ∧ Y)
P(X)P(Y)

(3)

If the lift value is less than 1, then the occurrence of X is negatively correlated with the359

occurrence of Y , meaning that the occurrence of one likely leads to the absence of the other one.360

If the resulting value is greater than 1, then X and Y are positively correlated, meaning that the361

occurrence of one implies the occurrence of the other. If the lift equals 1, then X and Y are362

independent (Han et al., 2011). By setting an appropriate minimum lift value greater than 1, only363

high-lift rules can be extracted for interpretation.364

6.2. Parameters used365

The choice of the minimum support and confidence depends on the application and the ex-366

pected outcome of the study. In theory, it is desirable to obtain rules with high support, high367

confidence and a lift value much greater than 1. The idea of this paper implies the analysis of368

certain accident situations and characteristics, which can be very rare (Montella et al., 2012).369
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After experimenting with different values, a minimum support of 0.03 was chosen, so that all370

itemsets occurring in less than 3 percent of the samples are disregarded. Choosing a lower thresh-371

old results in an increase of computation time and rules, which would all have to be interpreted.372

Choosing a higher support value might disregard relevant information about the clusters. There373

are different approaches in literature on the choice of a minimum confidence value. For example,374

Montella (2011) chose a threshold with conf=0.1 for their powered two-wheeler (PTW) study,375

which is much lower than usual. However, in this paper it is preferred to obtain rules, where the376

probability of the consequent given the antecedent is higher than 75 percent. Additionally, only377

rules with a lift>1.25 are considered for the results.378

To further reduce the number of rules obtained, redundant rules were excluded according to379

the following procedure: A rule is redundant if a more general rule with the same or a higher lift380

exists. That is, a more specific rule is redundant if it is only equally or even less correlated than381

a more general rule. A rule is more general if it has the same consequent but one or more items382

removed from the antecedents. Formally, a rule X → Y is redundant if for X′ ⊂ X : lift(X′ →383

Y) ≥ lift(X → Y) (Hahsler et al., 2017).384

7. Results385

The crash dataset was divided into the two main junction types: 1) Three-legged T-junctions386

and 2) four-legged crossroads. For other types of junctions (e.g. private drives, pedestrian cross-387

ings), the sample size was too small (n=27) to compute clusters. This partitioning prior to cluster-388

ing was done due to the scope of the study, namely to provide targeted scenarios and parameter389

variations for virtual vehicle simulations. The goal was not to find clusters characterized by390

junction types, but by driving situations, manoeuvres and injury outcome (see level-1 attributes).391

Furthermore, the number of intersection legs was found to be a significant variable to model in-392

tersection crashes (Abdel-Aty et al., 2006) and was used to group intersection crashes in various393

studies (e.g. Abdel-Aty and Haleem, 2011; Arndt, 2003; Persaud and Nguyen, 1998; Vogt and394

Bared, 1998).395

7.1. Clusters found for T-junctions396

The silhouette plot in Figure 2 (left) shows the average silhouette values (cluster validity)397

for all ks. In general, the higher the number of clusters the higher the silhouette values get. A398

higher number of clusters might be over-fitting and a lower number of clusters might be under-399

fitting. To find the best k, a compromise between cluster size and cluster validity had to be400

found. Association rules, which are computed for each cluster in the next step, were originally401

made for large-scale data. Hence, the goal was to avoid very small clusters, i.e. results with402

clusters containing less than 30 samples are disregarded (k=14 and k=15). Since k=13 has the403

highest average silhouette value with 0.383, the lowest number of samples that were allocated to404

the wrong cluster, and overall, the lowest percentage of clusters with negative silhouette values,405

it was chosen as most valid k.406

Figure 2 (right) depicts the silhouette plot for each of the thirteen clusters, with one horizontal407

bar per sample within the cluster. Samples with a negative silhouette value might be assigned408

to the wrong cluster. However, the number of those samples is considerably low, expect for409
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cluster 4, where the average silhouette value suffers compared to the other clusters. Cluster 4410

must therefore be treated carefully when interpreting the results.411

Figure 2: Mean silhouette values for all k’s (left) and silhouette plot for k=13 (right) for T-junction clusters

The frequencies of each attribute within each cluster were compiled in a table to present the412

results at a glance (see Table 3). Cells shaded in grey indicate that the distribution of numbers413

for the given field is significantly different from the distribution in the whole population (χ2-test414

with significance α = 0.05) and that the particular number highlighted is over-represented. Due415

to values lower than 5 in the expected frequency table, the χ2-test could not be applied to all416

observations.417

Level-1 Attributes T-C1 T-C2 T-C3 T-C4 T-C5 T-C6 T-C7 T-C8 T-C9 T-C10 T-C11 T-C12 T-C13

Sample size 212 90 62 62 102 43 63 83 52 46 38 42 35

MaxInj=Uninjured 0 11 7 8 15 9 63 7 0 0 4 2 5
MaxInj=Slight 212 69 52 42 78 30 0 68 45 0 29 0 25
MaxInj=SeriousFatal 0 10 3 12 9 4 0 8 7 46 5 40 5

JctShp=T-minLeft 195 0 1 0 0 0 58 3 51 41 0 1 0
JctShp=T-minRight 0 0 58 62 102 0 0 0 0 0 38 14 35
JctShp=T-termMaj 17 90 3 0 0 43 5 80 1 5 0 27 0

1stIntAct=Car 183 60 53 40 81 24 53 60 37 33 27 0 23
1stIntAct=LGV-HGV 18 6 5 4 5 2 7 2 5 5 4 3 2
1stIntAct=PTW 3 10 3 10 6 4 0 14 3 2 3 35 6
1stIntAct=Other 4 4 1 3 4 2 2 2 4 2 1 1 0
1stIntAct=Cycle 1 8 0 5 2 10 0 5 2 1 1 2 1
1stIntAct=Pedestrian 3 2 0 0 4 1 1 0 1 3 2 1 3

Manvr=GoingAheadOther 201 0 17 6 97 0 50 7 45 43 27 1 0
Manvr=Other 8 11 1 4 5 0 4 2 2 3 11 2 0
Manvr=TurnL 2 0 0 1 0 43 7 0 4 0 0 2 0
Manvr=TurnR 1 75 5 51 0 0 1 69 0 0 0 36 35
Manvr=WaitTurnR 0 4 39 0 0 0 1 5 1 0 0 1 0

1stImpact=Back 25 9 55 0 0 5 10 0 0 4 0 1 0
1stImpact=Front 162 68 1 0 102 18 35 0 0 37 0 11 35
1stImpact=Nearside 0 13 1 48 0 6 10 0 52 0 0 1 0
1stImpact=Offside 25 0 5 14 0 14 8 83 0 5 38 29 0

Table 3: Cluster results for T-junctions (k=13, n=930)

Cluster T-C1 is the largest cluster with a size of 212 crashes, from which all resulted in418

slight injury. More than 90 percent of the accidents occurred at T-junctions with a minor road419
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joining from the left. “1stImpact=Front” and “1stImpact=Back” are over-represented as well as420

“Manvr=GoingAheadOther”. There is no clear indication on the collision type of this cluster,421

thus association rules are used for further analyses. The third largest cluster T-C2 clearly groups422

collisions while turning, with a highly significant representativeness of frontal and nearside im-423

pacts, all of which occurring at roads terminated by a major road. Powered two-wheelers (PTW)424

and bicyclists have relatively high frequencies, but the car is still the dominant crash partner.425

Cluster T-C3 with 62 samples represents car-to-car collisions at roads with minor roads joining426

from the right, mainly resulting in slight injury. Since there are mainly impacts on the back427

of the car, this cluster can be seen as rear-end crash group. Cluster T-C4 occurred on a road428

with a minor road joining from the right, with nearside impacts in 77 percent of the cases and429

high frequencies for “Manvr=TurnR” and “1stIntAct=Car”. The second largest cluster Clus-430

ter T-C5 indicates rectangular collisions with another car crossing the cars trajectory from the431

right, although this assumption will be validated by association rule mining. Cluster T-C6 is432

characterized by a left turn into a major road, which results in a collision mainly with another433

car. This cluster has a relatively high number of bicycle crashes (10). All 63 accidents in Clus-434

ter T-C7 resulted in no injury for any of the participants. This is clearly a minor risk cluster435

mainly with cars and goods vehicles involved, with “Manvr=GoingAheadOther” having a high436

frequency. Cluster T-C8 represents slight injury collisions with mainly other cars or PTW. Off-437

side impacts were found over-represented, while turning right into a major road. Cluster T-C9438

involves nearside collisions only, which happened on a T junction with a minor road joining439

from the left, while the car was going straight. Cluster T-C10 represents a group of high-risk440

collisions with serious or fatal injuries in all 46 cases. Front impacts are over-represented and441

“Manvr=GoingAheadOther” and “1stIntAct=Car” have high frequencies. Association rules will442

be used to analyse this cluster in more detail. In comparison to T-C9, cluster T-C11 involves443

offside collisions only, which happened on a T junction with a minor road joining from the right,444

while the car was going straight or made another manoeuvre. Five of the 38 cases resulted in445

serious or fatal injury. Cluster T-C12 is a PTW cluster, with 40 out of 42 collisions resulting in446

serious or fatal injury. In 85 percent of the cases, the car was turning right. Association rules will447

be used to analyse this cluster in more detail. The smallest cluster T-C13 is characterized by448

right-turns into a minor road, with “1stImpact=Front” in all cases. Five of the 35 cases resulted449

in serious or fatal injury, which is most likely due to the six cases involving PTW. Association450

rules will be used to analyse this cluster in more detail.451

7.2. Clusters found for four-legged junctions452

For the crossroads dataset with 368 samples, k=6 was found to be most valid for separating453

the clusters, because it has a high average mean silhouette value of 0.395. The silhouette plot454

in Figure 3 (left) shows the average silhouette values for all ks. Although larger values were455

computed for higher ks (10-15), they were disregarded due to their small cluster sizes (<30) and456

possible overfitting. Figure 3 (right) depicts the silhouette plot for each of the six clusters, with457

one horizontal bar per sample within the cluster. The total mean silhouette value is higher and the458

number of samples with a negative value is lower compared to the T-junction dataset. This means459

that for the attributes and for the k chosen, the crossroads dataset seems to be better separated.460

As for the T-junction dataset, the frequencies of each attribute within each cluster were com-461

piled in a table to present the results at a glance (see Table 4). Cells shaded in grey indicate that462

the distribution of numbers for the given field is significantly different from the distribution in the463
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Figure 3: Mean silhouette values for all ks (left) and silhouette plot for k=6 (right) for four-legged junction clusters

whole population (χ2-test with significance α = 0.05) and that the particular number highlighted464

is over-represented.465

Level-1 Attribute X-C1 X-C2 X-C3 X-C4 X-C5 X-C6

Sample size 142 60 48 49 35 34

MaxInj=Uninjured 22 13 8 10 4 4
MaxInj=Slight 98 39 35 29 28 24
MaxInj=SeriousFatal 22 8 5 10 3 6

JctShp=X-minJoin 142 0 48 0 0 34
JctShp=X-brkMaj 0 60 0 49 35 0

1stIntAct=Car 118 44 38 39 30 28
1stIntAct=LGV-HGV 9 4 4 6 2 4
1stIntAct=PTW 3 7 1 3 1 0
1stIntAct=Other 3 1 1 0 0 2
1stIntAct=Cycle 2 2 4 1 1 0
1stIntAct=Pedestrian 7 2 0 0 1 0

Manvr=GoingAheadOther 116 32 25 35 25 29
Manvr=Other 4 0 0 0 0 1
Manvr=TurnL 5 9 2 2 1 1
Manvr=TurnR 15 19 21 12 9 3
Manvr=WaitTurnR 2 0 0 0 0 0

1stImpact=Back 12 5 0 0 0 0
1stImpact=Front 130 55 0 0 0 0
1stImpact=Nearside 0 0 48 0 35 0
1stImpact=Offside 0 0 0 49 0 34

Table 4: Cluster results for four-legged junctions (k=6, n=368)

Table 4 shows that the four-legged junction dataset is mainly separated by the type of junction466

and first point of impact. Experiments with varying parameters, such as initial medoid configura-467

tion or including the missing values did not result in different partitions. Including more attribute468

groups resulted in a decrease of the average silhouette value. For all clusters, the χ2-test was not469

applied to the attribute groups “1stIntAct” and “Manvr” due to expected frequency values lower470

than 5. For the attribute group “1stImpact”, only cluster X-C1 had sufficient frequency values for471

a χ2-test. The distributions for injury level (“MaxInj”) do not significantly differ in any cluster472

from the total population in their attribute group.473

Cluster X-C1 is the largest cluster with 142 samples, which seems to mainly include rear-474
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end collisions, as the clusters X-C3 to X-C6 have no samples for “1stImpact=Back” and cluster475

2 has only 5. Cluster X-C2 groups situations on crossroads broken by a major road, with high476

numbers for turning left or right as well as “1stImpact=Front”. Cars and PTWs were mostly477

involved. All situations in Cluster X-C3 occurred on a road with minor roads joining from the478

left and right, and in all situations the car was hit on its nearside. All situations in Cluster X-C4479

occurred on a road broken by a major road passing the cars path, and in all situations the car480

was hit on its offside. All situations in Cluster X-C5 occurred on a road broken by a major481

road passing the cars path, and in all situations the car was hit on its nearside, mainly by another482

car. As for the previous clusters, there is no statistical significance given for the manoeuvre,483

interaction or injury level distribution. The smallest Cluster X-C6 represents collisions at roads484

with minor roads joining from left and right, where the car was hit on its offside, while going485

straight over the junction.486

7.3. High-injury scenarios derived from association rules487

For each identified cluster, association rules were computed using the parameters given in488

Section 6.2. In total, the analysis of each cluster resulted in 35 different crash scenarios com-489

prising various parameters. Due to the high number obtained, not all of the rules for each cluster490

can be given in this paper. Therefore, only high-risk scenarios, which resulted in serious or fatal491

injury, are presented in this section, as they provide a set of safety-critical situations. More pre-492

cisely, the further scenarios include crash situations from the T-junction clusters T-C4, T-C10,493

T-C12 and T-C13, and from the crossroads clusters X-C1, X-C2, X-C4 and X-C6. All rules494

obtained for each cluster are available as supplementary material to this paper.495

As an example, Cluster T-C10 is selected for further explanation. Given the distributions in496

Table 3, the cluster can be described as follows: The car hits another car with its front resulting497

in serious or fatal injury, while going straight on a road with a minor road joining from the left.498

A useful attribute to give a clearer indication about the crash circumstances is the collision499

type (indicated by letters A to Q in the OTS data specification, see Appendix A). For cluster500

T-C10, the collision types L (“Right Turn Against”) and J (“Crossing with Vehicle Turning”)501

were found to be the most frequent. Therefore, all rules containing those attributes within their502

items were further analysed to see which other attributes are associated with them.503

Table 5 gives the 2-item and 3-item rules for T-C10 and collision type L, sorted by the five504

highest support values. The rules are sorted by the support to obtain the attributes that are often505

associated with each other. It can be seen that this collision type is associated with single car-506

riageways (rule nr. 1) as well as with no traffic control (“TrfCtrl=None”, see rule nr. 2, 4 and 11)507

and going straight (“Manvr=GoingAheadOther”, see rule nr. 3). Another car as collision partner508

has already been defined by the cluster, but the rules reveal that “Coll=L RightTurnAgainst” and509

“FirstIntAct=Car” are associated with dry surface (see rule nr. 5), uninjured driver of the ego car510

(see rule nr. 10), a fail to give way by the other car driver (see rule nr. 12), daylight (see rule nr.511

13), 40-50 mph speed limit (see rule nr. 9) and urban area (see rule nr. 22).512

Table 6 gives the 2-item and 3-item rules for T-C10 and collision type J, sorted by the five513

highest support values. It can be seen that this collision type is associated with a fail to give514

way by the other driver (see rule nr. 1). This combination is further associated with another car515

as collision partner (see rule nr. 5), no traffic control (see rule nr. 6), wet surface (see rule nr.516

10), single carriageway (see rule nr. 11), rural area (see rule nr. 12), serious driver injury (see517
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Nr. Antecedent Consequent Supp Conf Lift

1 Coll=L RightTurnAgainst RdType=SingCgw 0.237 0.818 1.413
2 Coll=L RightTurnAgainst & TrfCtrl=None RdType=SingCgw 0.237 1.000 1.727
3 Coll=L RightTurnAgainst & Manvr=GoingAheadOther RdType=SingCgw 0.237 0.900 1.555
4 Coll=L RightTurnAgainst & RdType=SingCgw TrfCtrl=None 0.237 1.000 1.357
5 Coll=L RightTurnAgainst & Surf=Dry FirstIntAct=Car 0.184 1.000 1.357
6 Coll=L RightTurnAgainst & Surf=Dry RdType=SingCgw 0.158 0.857 1.481
7 Coll=L RightTurnAgainst & Area=Rural RdType=SingCgw 0.158 0.857 1.481
8 Coll=L RightTurnAgainst & DrvInj=Uninjured RdType=SingCgw 0.132 1.000 1.727
9 Coll=L RightTurnAgainst & SpdLim=40–50mph FirstIntAct=Car 0.132 1.000 1.357

10 Coll=L RightTurnAgainst & DrvInj=Uninjured FirstIntAct=Car 0.132 1.000 1.357
11 Coll=L RightTurnAgainst & DrvInj=Uninjured TrfCtrl=None 0.132 1.000 1.357
12 Coll=L RightTurnAgainst & Prec=FailGiveWayOther FirstIntAct=Car 0.132 1.000 1.357
13 Coll=L RightTurnAgainst & Light=DayNSL FirstIntAct=Car 0.132 1.000 1.357
14 Coll=L RightTurnAgainst & Light=DaySLUnk RdType=SingCgw 0.105 1.000 1.727
15 Coll=L RightTurnAgainst & SpdLim=40-50mph Surf=Dry 0.105 0.800 1.448
16 Coll=L RightTurnAgainst & DrvInj=Uninjured Surf=Dry 0.105 0.800 1.448
17 Coll=L RightTurnAgainst & Prec=FailGiveWayOther Surf=Dry 0.105 0.800 1.448
18 Coll=L RightTurnAgainst & Light=DayNSL Surf=Dry 0.105 0.800 1.448
19 Coll=L RightTurnAgainst & Light=DaySLUnk TrfCtrl=None 0.105 1.000 1.357
20 Coll=L RightTurnAgainst & Area=Urban FirstIntAct=Car 0.105 1.000 1.357
21 Coll=L RightTurnAgainst & Light=DaySLUnk HorizGeom=Straight 0.105 1.000 1.267
22 Coll=L RightTurnAgainst & Area=Urban HorizGeom=Straight 0.105 1.000 1.267
23 Coll=L RightTurnAgainst & Surf=Wet HorizGeom=Straight 0.105 1.000 1.267

Table 5: Rules obtained for T-C10 with collision type L, sorted by the five highest support values

rule nr. 20) and 40–50 mph speed limit (see rule nr. 35). Taking a deeper look into the serious518

driver injuries, it can be noted that they are further associated with 40–50 mph speed limit (see519

rule nr. 27/28), wet surface (rule nr. 29) and single carriageway (rule nr. 30). However, this520

set of rules show that there is no clear indication on some attributes, such as the road type, as521

“RdType=DualCgw” is among the frequent items (see rules 42 to 45). Also, the driver can be522

uninjured or seriously injured or the area can be urban or rural. Those varying attributes could523

be used as varying parameter in the virtual simulation, while the others constitute the “static”524

environment and situation.525

While the rules in the tables are relatively easy to interpret, this is no more the case with 4-,526

5- or 6-item rules, also due to the high number of obtained rules. Therefore, each set of rules527

(comprising 2- to 6-item rules) was further visualized by directed graphs that were created from528

adjacency matrices of the associations found between all attributes. The graph was then reduced529

to the edges that direct to a certain consequent, represented by edge tables including source,530

target and weight of the edges. In this case, the targets (or consequents) were the collision types531

L (see Figure 4) and J (see Figure 5) and the sources were all remaining attributes. The weight532

or thickness of each edge represents the amount of associations identified between the respective533

antecedent node and the given consequent in the centre. In other words, nodes with thick edges534

indicate dominant crash attributes and thus define the scenario. For antecedent nodes that are not535

present in the graph, there were no associations found in the rules, thus they can be considered536

negligible for the respective scenario. Note that the graph does not reflect support, confidence or537

lift.538

By visually inspecting the graphs and rules tables, the scenarios for this cluster can be de-539

scribed as follows (note that all crashes in the data occurred on UK roads with left-hand traffic):540

Scenario T-10.1 (related to collision type L): Car A goes straight on a major road and hits541

another car B with its front, which is coming from the opposing direction and is turning right into542

a minor road. This happens on a single carriageway with a speed limit of 40 mph or 50 mph at543

an unsignalized junction, and is caused by B failing to give way. The surface is dry and B suffers544

serious or fatal injury.545

Scenario T-10.2 (related to collision type J): Car A goes straight on a major road and hits546
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Nr. Antecedent Consequent Supp Conf Lift

1 Coll=J CrossingVehTurning Prec=FailGiveWayOther 0.211 0.800 2.338
2 Coll=J CrossingVehTurning Light=DayNSL 0.211 0.800 1.520
3 Coll=J CrossingVehTurning & Light=DayNSL HorizGeom=Straight 0.211 1.000 1.267
4 Coll=J CrossingVehTurning & HorizGeom=Straight Light=DayNSL 0.211 1.000 1.900
5 Coll=J CrossingVehTurning & FirstIntAct=Car Prec=FailGiveWayOther 0.184 0.875 2.558
6 Coll=J CrossingVehTurning & TrfCtrl=None Prec=FailGiveWayOther 0.184 0.875 2.558
7 Coll=J CrossingVehTurning & Area=Rural Light=DayNSL 0.184 1.000 1.900
8 Coll=J CrossingVehTurning & Area=Rural HorizGeom=Straight 0.184 1.000 1.267
9 Coll=J CrossingVehTurning & Prec=FailGiveWayOther Surf=Wet 0.158 0.750 1.781

10 Coll=J CrossingVehTurning & Surf=Wet Prec=FailGiveWayOther 0.158 1.000 2.923
11 Coll=J CrossingVehTurning & RdType=SingCgw Prec=FailGiveWayOther 0.158 0.857 2.505
12 Coll=J CrossingVehTurning & Area=Rural Prec=FailGiveWayOther 0.158 0.857 2.505
13 Coll=J CrossingVehTurning & Surf=Wet Light=DayNSL 0.158 1.000 1.900
14 Coll=J CrossingVehTurning & Light=DayNSL Surf=Wet 0.158 0.750 1.781
15 Coll=J CrossingVehTurning & Surf=Wet Area=Rural 0.158 1.000 1.407
16 Coll=J CrossingVehTurning & Area=Rural Surf=Wet 0.158 0.857 2.036
17 Coll=J CrossingVehTurning & Surf=Wet HorizGeom=Straight 0.158 1.000 1.267
18 Coll=J CrossingVehTurning & HorizGeom=Straight Surf=Wet 0.158 0.750 1.781
19 Coll=J CrossingVehTurning & TrfCtrl=None RdType=SingCgw 0.158 0.750 1.295
20 Coll=J CrossingVehTurning & DrvInj=Serious Prec=FailGiveWayOther 0.105 1.000 2.923
21 Coll=J CrossingVehTurning & SpdLim=30mph Area=Urban 0.079 1.000 3.455
22 Coll=J CrossingVehTurning & Area=Urban SpdLim=30mph 0.079 1.000 3.800
23 Coll=J CrossingVehTurning & SpdLim=30mph Surf=Dry 0.079 1.000 1.810
24 Coll=J CrossingVehTurning & Surf=Dry SpdLim=30mph 0.079 0.750 2.850
25 Coll=J CrossingVehTurning & SpdLim=30mph RdType=SingCgw 0.079 1.000 1.727
26 Coll=J CrossingVehTurning & SpdLim=30mph TrfCtrl=None 0.079 1.000 1.357
27 Coll=J CrossingVehTurning & DrvInj=Serious SpdLim=40–50mph 0.079 0.750 2.375
28 Coll=J CrossingVehTurning & SpdLim=40–50mph DrvInj=Serious 0.079 1.000 3.455
29 Coll=J CrossingVehTurning & DrvInj=Serious Surf=Wet 0.079 0.750 1.781
30 Coll=J CrossingVehTurning & DrvInj=Serious RdType=SingCgw 0.079 0.750 1.295
31 Coll=J CrossingVehTurning & Area=Urban Surf=Dry 0.079 1.000 1.810
32 Coll=J CrossingVehTurning & Surf=Dry Area=Urban 0.079 0.750 2.591
33 Coll=J CrossingVehTurning & Area=Urban RdType=SingCgw 0.079 1.000 1.727
34 Coll=J CrossingVehTurning & Area=Urban TrfCtrl=None 0.079 1.000 1.357
35 Coll=J CrossingVehTurning & SpdLim=40–50mph Prec=FailGiveWayOther 0.079 1.000 2.923
36 Coll=J CrossingVehTurning & SpdLim=40–50mph Surf=Wet 0.079 1.000 2.375
37 Coll=J CrossingVehTurning & SpdLim=40–50mph Light=DayNSL 0.079 1.000 1.900
38 Coll=J CrossingVehTurning & SpdLim=40–50mph Area=Rural 0.079 1.000 1.407
39 Coll=J CrossingVehTurning & SpdLim=40–50mph HorizGeom=Straight 0.079 1.000 1.267
40 Coll=J CrossingVehTurning & DrvInj=Uninjured Light=DayNSL 0.079 1.000 1.900
41 Coll=J CrossingVehTurning & DrvInj=Uninjured HorizGeom=Straight 0.079 1.000 1.267
42 Coll=J CrossingVehTurning & RdType=DualCgw Light=DayNSL 0.079 1.000 1.900
43 Coll=J CrossingVehTurning & RdType=DualCgw Area=Rural 0.079 1.000 1.407
44 Coll=J CrossingVehTurning & RdType=DualCgw FirstIntAct=Car 0.079 1.000 1.357
45 Coll=J CrossingVehTurning & RdType=DualCgw HorizGeom=Straight 0.079 1.000 1.267
46 Coll=J CrossingVehTurning & Surf=Dry RdType=SingCgw 0.079 0.750 1.295

Table 6: Rules obtained for T-C10 with collision type J, sorted by the five highest support values

another car B, which is emerging from a minor road on the left with the intention to turn right.547

This happens on a single carriageway in a rural area with a speed limit of 40 mph or 50 mph at548

an unsignalized junction, and is caused by B failing to give way. The surface is wet and A suffers549

serious injury.550

The same procedure was applied to the other clusters and their collision types. The Figures 6551

and 7 illustrate all high-injury scenarios identified in a simplified manner to better understand the552

descriptions in the text. The red dots in the figures are the points of impact (i.e. front, offside or553

nearside). Surface conditions, area (rural,urban), speed limits, vehicle types and injury levels are554

not shown, but described in the following from the perspective of car A, i.e. the ego car associated555

with each sample.556

Scenario T-4.1: Car A turns into a minor road and is hit by a PTW B on its nearside, which is557

going straight in the opposing direction. This happens on a single carriageway with 40–50 mph558

speed limit without active or static yield instruction and is caused by A failing to give way or559

manoeuvring inappropriately.560

Scenario T-12.1: Car A turns right into a major road and is hit by a PTW B on the offside,561

which is going straight on the crossing path. This happens on a rural single carriageway con-562

trolled by a static give-way sign and is caused by A failing to give way. The surface is wet and B563

suffers serious or fatal injury.564
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Figure 4: Weighted, directed graph obtained from all association rules for cluster T-C10 having collision type L as
consequent

Figure 5: Weighted, directed graph obtained from all association rules for cluster T-C10 having collision type J as
consequent

Scenario T-12.2: Car A turns right into a minor road and is hit on the offside by a PTW565

B, which is overtaking. This happens on an urban single carriageway with 30 mph speed limit566

without active or static yield instruction and is caused by an inappropriate overtake from B.567

Scenario T-12.3: Car A turns left into a major road and is hit by a PTW B on its offside, which568

is going straight on the major road from the right. This happens on an urban single carriageway569

with 30 mph speed limit controlled by give-way signs and is caused by A failing to give way. B570
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Figure 6: Simplified illustrations of all high-injury scenarios identified for three-legged junctions

suffers serious or fatal injury.571

Scenario T-13.1: Car A turns into a minor road and hits a PTW B with its front, which is572

going straight in the opposing direction. This happens on a rural single carriageway with 30 to573

50 mph speed limit without active or static yield instruction and is caused by A failing to give574

way or manoeuvring inappropriately. The surface is wet and B suffers serious or fatal injury.575

Figure 7: Simplified illustrations of all high-injury scenarios identified for four-legged junctions

Scenario X-1.1: Car A goes straight on a major road and hits another car B with its front,576

which is crossing the path from the left. This happens on a rural single carriageway with 60 mph577

speed limit without active or static yield instruction and is caused by B failing to give way.578

Scenario X-2.1: Car A comes from a minor road and goes straight over a four-legged junction579

and hits another car or PTW B with its front, which crosses the path from the right. This happens580

on a rural road with 40–50 mph speed limit controlled by static give-way signs and is caused by581

A failing to give way.582

Scenario X-4.1: Car A turns right into a major road and is hit by a car or LGV B on the583

offside, which is going straight on the major road from the right. This happens on a rural dual584

carriageway with 40–50 mph speed limit controlled by static give-way signs and is caused by A585

failing to give way. The surface is wet and A suffers serious or fatal injuries.586

Scenario X-6.1: Car A goes straight on a major road and is hit by car B on the offside,587
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which comes from a minor road and crosses the path from the right. This happens on a single588

carriageway road with 30 mph speed limit controlled by traffic lights and is caused by B failing589

to give way. The surface is wet and B suffers serious or fatal injuries.590

Scenario X-6.2: Car A goes straight on a major road and is hit by car B on its offside,591

which turns right from the opposing direction. This happens on a road with 60 mph speed limit592

controlled by traffic lights and is caused by B loosing control of the vehicle. B suffers serious or593

fatal injuries.594

7.4. Comparison with high-frequency scenarios595

This section compares the high-injury scenarios to the most frequent scenarios identified.596

Figure 8 and Figure 9 depict the top five high-frequency scenarios for three-legged and four-597

legged junctions, i.e. the scenarios with the highest number of crashes included. Table 7 shows598

the crash counts for each scenario including a short description. Some of the three-legged junc-599

tion scenarios were combined due to their similarities. For example, T-2.1 and T-8.1, which were600

derived from two different clusters, were grouped. This was also done for the second and third601

most frequent scenarios for three-legged junctions. The count column in the table gives the num-602

ber of crashes within the respective cluster that are allocated to the particular collision type. For603

example, the 44 samples for T-1.1 are the collisions of type F (rear-end) within cluster T-C1.604

Figure 8: Simplified illustrations of the five most frequent scenarios identified for three-legged junctions

Figure 9: Simplified illustrations of the five most frequent scenarios identified for four-legged junctions

It can be observed that the top five most frequent scenarios at four-legged junctions do not605

include rear-end collisions. This finding corresponds to the crossing-path scenarios identified606

by Najm et al. (2001), which are primarily angle crashes. Furthermore, there is no particular607

scenario involving car-pedestrian or car-bicycle collisions only. This can be explained by the608

low number of pedestrians (2.4%) and cyclists (3.6%) as collision partners, compared to other609

cars (71.8%), motorcycles (9.7%) or goods vehicles (7.8%).610
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The low number of vulnerable road users is also a reason why the high-frequency scenarios at611

three-legged junctions do not include any of the high-injury scenarios. However, the three-legged612

junction scenarios include two rear-end collisions (T-5.1/5.2 and T-1.1), which are not included613

in the high-injury scenarios. This is due to the fact that the injury outcome was found to be lower614

for rear-end collisions than for angle collisions, which was also reported by Beck (2015).615

Scenario Count Description

Three-legged junctions

T-2.1/8.1 99 A turns right into major road and hits another car coming from the right.
Road: Urban single carriageway. A fails to give way. Max. injury: Slight.

T-1.2/7.4/9.1 69 A goes straight and is hit by B turning right from a minor road on the left.
Road: Urban, low-speed single carriageway. Traffic control: None. Max. injury: Slight.

T-5.1/5.2 55 A hits the rear of car B, which is waiting to turn right into a minor road.
Road: Urban road. A fails to stop. Traffic control: None. Max. injury: Slight.

T-1.1 44 A hits the rear of car B travelling straight. Road: 70mph dual carriageway.
A fails to avoid or stop. Traffic control: None. Max. injury: Slight.

T-1.3 42 A goes straight and is hit by B turning right into a minor road. Road: Single carriageway.
Inappropriate manoeuvre from B. Light: Dark. Max. injury: Slight.

Four-legged junctions

X-1.1 47 A goes straight on a major road and hits another car B crossing from the left.
Road: Rural 60mph single carriageway.Traffic control: None. B fails to give way.

X-1.2 28 A turns right into a minor road and hits another car going straight in the opposing direction.
Road: Urban road. B violates red light. Traffic control: Light. Max. injury: Slight.

X-4.2 24 A goes straight crossing a major road and is hit by another car B crossing from the right.
Road: Urban single carriageway road. A violates the red light.

X-2.1 21 A goes straight and hits another car or PTW B crossing from the right.
Road: Rural, 40–50 mph. Traffic control: Give-way sign. A fails to give way.

X-5.1 21 A goes straight crossing a major road and is hit by another car B going straight from the left.
Road: 30mph single carriageway. A fails to give way. Traffic control: Give-way sign.

Table 7: High-frequency scenario descriptions

8. Discussion616

8.1. Relation to existing findings617

The pre-crash scenarios described above build the foundation for further research on testing618

assisted and automated vehicle technologies. This paper focussed on the scenarios with serious619

or fatal injury outcome, which were compared to the high-frequency scenarios. Although there620

is no doubt about the importance of vulnerable road user safety, neither the cluster analysis nor621

the association rule method resulted in a distinct pedestrian or cyclist scenario. Considering622

the frequency of certain crash types at junctions, car-pedestrian and car-cyclist collisions are623

discounted, which might not be true if injury frequencies were taken into account.624

The method of clustering intersection crashes into distinct groups, including such a high625

number of variables as used in this study, is novel. Abdel-Aty et al. (2006) analysed numerous626

parameters to identify crash profiles for 45 different intersection configurations in Florida, how-627

ever, this was made for different AADT values and numbers of lanes, which were not included628

in this study. Also, the objective of this study is different, because it aims at extracting rele-629

vant combinations of junction situations for simulation, while Abdel-Aty et al. (2006) provided630

crash profiles that assist in identifying intersections with specific problems. Therefore, the results631

cannot be directly compared.632

Most existing research on intersection scenarios focussed on the classification of pre-crash633

manoeuvres, not combined with parameters about the road environment, collision partners, points634

of impact, injury types, causation factors and traffic control. Compared to literature, this study635

can be seen as more detailed in terms of crash circumstances. In the European INTERSAFE636
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project (INTERSAFE, 2005), intersection accidents were classified according to the pre-crash637

driving manoeuvres (in right-hand traffic). Twenty intersection situations were identified, from638

which the top five were: 1) A crossing path, with B coming from the left or right (which corre-639

sponds to the high-injury scenarios X-1.1, X-2.1 and X-6.1), 2) A turning left into the path of640

B coming from the left (see X-4.1), 3) A turning across the path of B coming from the opposite641

direction (see X-6.2, T-4.1, T-13.1), 4) A turning right into the path of B coming from the left642

(see T-12.3) and 5) A hitting the rear of B waiting to turn left (see the high-frequency scenarios643

T-1.1, T-1.2, T5.1).644

The TRACE project identified six different scenarios at four-legged intersections from a sta-645

tistical analysis of crashes in the European Union (Molinero Martinez et al., 2008). The scenario646

where A crosses the road and the trajectory of the opponent vehicle B, which is turning or going647

straight, is more frequent and more severe than any other. 70% of all intersection accidents be-648

long to that scenario. This corresponds to the most frequent scenarios X-1.1, X-4.2, X-2.1 and649

X-5.1, from which X-1.1 was also found as one of the high-injury scenarios.650

Of all intersection-related crashes analysed by Choi (2010), about 96 percent had critical rea-651

sons attributed to drivers, while critical reasons related to vehicle or environment were assigned652

in less than three percent of these crashes. Wiltschko (2004) concludes that ICAMS must be653

particularly designed to avoid red-light violations and fails to give way. This is also confirmed654

by this paper, since fails to give way are a precipitating factor in most scenarios.655

8.2. Limitations and future work656

At the moment, there are limited regulations on validating the reliability of highly automated657

road vehicles at junctions. This paper will contribute to the development of automated driving658

systems at junctions by providing evaluation scenarios for testing, taking into account the road659

and junction environment as well as the interplay with non-automated vehicles. Certain inter-660

section layouts and design principles can facilitate a safe and reliable operation of automated661

vehicles, however, this study was done for the case where automated vehicles are expected to662

travel on existing roads without dedicated retrofitting.663

A main limitation of this work is that the scenarios identified are based on human-related664

crash situations and do not necessarily reflect critical situations that come with sensor failure665

or misinterpretation of the automated driving control. Imagining that the ego car A operates666

automated, some scenarios such as rear-end crashes might be avoided by reliable environment667

perception and motion planning. Other scenarios comprise situations where human errors by668

other drivers or riders cause collisions, e.g. inappropriate overtakes, fail to stop or fail to give669

way. Future automated vehicles must also cope with the latter group of situations and must670

therefore be thoroughly tested, both in virtual environments and on public roads. Certainly,671

there may be different key testing scenarios depending on which issue is targeted. For example,672

targeting at maximum casualty reduction for vulnerable road users will require different testing673

measures than targeting at the vehicles’ full functionality.674

This study will be followed up by sub-microscopic simulation experiments conducted for the675

scenarios obtained, to evaluate the safety performance of ICAMS under varying conditions. The676

research further leads to recommendations on testing and validation procedures, with focus on677

virtual vehicle testing as a pre-stage or parallel activity to field operational tests on public roads,678

including static (e.g. road design and layout) and dynamic content (e.g. involved road users and679
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vehicles, their trajectories and behaviour).680

9. Conclusions681

This paper presents a novel approach on how to extract key pre-crash scenarios from accident682

data, which has been applied to three-legged and four-legged road junctions in the UK. The683

clustering method k-medoids was found to be most appropriate for the given dataset, since it is684

robust against outliers and can cope with categorical data. The study resulted in thirteen crash685

clusters for T-junctions and six crash clusters for four-legged junctions. Association rules were686

computed for each cluster and revealed associated crash characteristics, which were the basis687

for the scenario descriptions. Considering the clusters with high injury outcome, twelve pre-688

crash scenarios were identified, which constitute the core population of driving situations to689

be evaluated in virtual vehicle simulation. Failure to give way and inappropriate manoeuvres690

are among the main precipitating factors in the given dataset. In summary, the results support691

existing findings about junction safety and add further definition to the clusters identified. For692

example, as indicated in literature, higher injury levels coincide with powered two-wheelers693

involved as well as higher speed limits. The study is preparatory research to a sub-microscopic694

simulation study, where virtual test drives will be conducted and automated collision avoidance695

and mitigation systems will be evaluated under varying conditions. The scenarios obtained will696

help to reduce the possible number of model parameter variations, such as vehicle trajectories,697

velocities as well as road and junction parameters.698
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