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Abstract 
Accident prediction models (APMs) have been extensively used in site ranking with the 
objective of identifying accident hotspots. Previously this has been achieved by using a 
univariate count data or a multivariate count data model (e.g. multivariate Poisson-
lognormal) for modelling the number of accidents at different severity levels 
simultaneously. This paper proposes an alternative method to estimate accident frequency 
at different severity levels, namely the two-stage mixed multivariate model which combines 
both accident frequency and severity models. The accident, traffic and road characteristics 
data from the M25 motorway and surrounding major roads in England have been collected 
to demonstrate the use of the two-stage model. A Bayesian spatial model and a mixed logit 
model have been employed at each stage for accident frequency and severity analysis 
respectively, and the results combined to produce estimation of the number of accidents at 
different severity levels. Based on the results from the two-stage model, the accident 
hotspots on the M25 and surround have been identified. The ranking result using the two-
stage model has also been compared with other ranking methods, such as the naïve ranking 
method, multivariate Poisson-lognormal and fixed proportion method. Compared to the 
traditional frequency based analysis, the two-stage model has the advantage in that it 
utilises more detailed individual accident level data and is able to predict low frequency 
accidents (such as fatal accidents). Therefore, the two-stage mixed multivariate model is a 
promising tool in predicting accident frequency according to their severity levels and site 
ranking. 
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1 Introduction 
Accident prediction models (APMs) are widely used to estimate the frequency of accidents 
for a given spatial unit over a certain period of time. One of the important practical 
applications of APMs is site ranking which aims to identify hazardous sites or locations with 
underlying safety problems. Site ranking is essential in designing engineering programmes 
to improve safety of a road network. After identification of accident hotspots, necessary 
engineering improvements could be applied to the selected sites with limited highway 
funds. This improves road safety and ensures cost-effectiveness in resource allocation. 
APMs are required in site ranking given the regression-to-the-mean problem as accidents 
are rare and random events (Elvik, 2007; Persaud and Lyon, 2007). Site ranking is also 
referred to as network screening (Persaud et al., 2010); and the sites with potential for 
safety treatments are also known as sites with promise, accident black-spots or hotspots in 
the literature (Hauer et al., 2004; Maher and Mountain, 1988; Elvik, 2007; Cheng and 
Washington, 2005; Huang et al., 2009). The terms “site ranking” and “accident hotspots” are 
used in this paper for consistency.  

Accident data are often provided with classification according to the accident types (e.g. 
head-on; rear-end) or severities (e.g. fatal, serious and slight). It is particularly important to 
take into account accident severities in site ranking, because the cost of accidents could be 
hugely different at different severity levels. This means that, for instance, a road segment 
with higher frequency of fatal accidents may be considered more hazardous than a road 
segment with fewer fatal accidents but more serious or slight injury accidents, therefore it is 
necessary to estimate accident frequency for each severity category. A straightforward and 
traditional approach to this problem is to apply an accident frequency model on different 
types of accidents separately (i.e. a univariate modelling approach). For example, Noland 
and Quddus (2005) disaggregated road casualties into three categories by their severity 
levels – i.e. fatalities, serious injuries and slight injuries, and they applied negative binomial 
(NB) models on each category of road casualties separately, resulting in three independent 
univariate models. 

Recently researchers have explored the multivariate modelling approach which can model 
the number of different types of accidents simultaneously (instead of separately). Several 
multivariate models have been employed such as multivariate spatial models (Song, 2004; 
Song et al., 2006), multivariate Poisson (MVP) models (Ma and Kockelman, 2006), and 
multivariate Poisson-lognormal (MVPLN) models (Park and Lord, 2007; Ma et al., 2008; 
Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009). Compared to the 
univariate modelling approach, the multivariate models (i.e. MVP or MVPLN) are argued to 
be superior since multivariate models can take account of correlation between different 
types of accidents, or in other words to “borrow strength” from similar sources (Song et al., 
2006). However, as pointed out by Ma et al. (2008), the superiority of the multivariate 
models compared to univariate models is not “theoretical” but rather “empirical”. By 
comparing several Poisson based models using both the multivariate and univariate 
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approach, Lan and Persaud (2010) found that univariate models fit the data better and 
outperform the multivariate models, and thus univariate models were recommended. 
Another limitation of the classical multivariate regression is that the same set of explanatory 
variables is required for each type of response (Frees, 2004). This is a concern as factors 
affecting one type of accidents may have no effect on the other. Accident data also suffers 
from an under-reporting problem, especially for less serious accidents such as slight injury 
accidents. This means that the data qualities of different types of accident vary, and thus 
different types of accident may more suitably be modelled separately. 

This paper proposes an alternative method to estimate accident frequency at different 
severity levels. Accidents are, essentially mutually exclusive and collectively exhaustive 
events. In other words, an accident is in, and can only be in, one category of different 
severities (i.e. either fatal or serious or slight). Such data involving two types of discrete 
outcomes (i.e. count and discrete choice) can be modelled using a mixed multivariate model 
(Cameron and Trivedi, 1998). There are several approaches for estimating a mixed 
multivariate model, for instance a mixed multinomial (logit) Poisson model, or alternatively 
simply estimating the Poisson based models for each category of events independently. 
These two approaches are equivalent (Cameron and Trivedi, 1998). Another approach of 
estimating a mixed multivariate model is using a two-stage model, in which count data 
models (e.g., a NB regression) and discrete choice models (e.g., a multinomial logit 
regression) are estimated in two stages (Cameron and Trivedi, 1998). While this modelling 
approach appears to be less used by safety researchers, it has been employed by Hausman 
et al. (1995) in modelling the number of trips to alternative recreational sites, in which the 
model was referred to as a “combined discrete choice and count data model”. 

This paper develops and presents the two-stage mixed multivariate model in accident 
prediction and its application to site ranking. It should be noted that several road safety 
researchers have proposed a similar approach. For instance, Milton et al. (2008) used a 
mixed logit model to assess severity distribution of accidents on road segment and pointed 
out the possibility of combining the severity model with the frequency model. Geedipally et 
al. (2010) employed a multinomial logit (MNL) model to estimate the proportions of 
different types of accidents and a NB model to estimate the total number of accidents on a 
road segment. As such, the counts of various types of accidents could be determined. Both 
the studies by Milton et al. (2008) and Geedipally et al. (2010) were however based on the 
road segment level. In other words, the proportions of types of accidents on a road segment 
were directly estimated in their studies. This paper differs in the sense that the proportions 
of accidents on a road segment were estimated using a model at an individual accident 
level. This approach has certain advantages over the road segment level estimation which is 
discussed below. 

The paper is organised as follows:  firstly the methodology employed in this paper is 
described. This includes both accident frequency and severity models that are used in the 
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two-stage model and site ranking. It is then followed by the description of the data and the 
results of the two-stage model and site ranking. Discussion is then provided and finally 
conclusions are drawn. 

 

2 Methodology 
As discussed above, accident data involving two types of discrete outcomes (i.e. count of 
accident and discrete choice of accident severity) are analysed using a two-stage mixed 
multivariate model. In the two-stage model, a count (accident frequency) model is used to 
estimate the total number of events (accidents); and then a discrete choice (accident 
severity) model is used to “allocate” these events (accidents) into different categories 
(severities) (Cameron and Trivedi, 1998). The accident frequency and severity models used 
in each of the stages are discussed below. 

 

2.1 Accident frequency model 
Several models that are suitable for count data have been considered. Negative binomial 
(NB) models are among those popular types of models employed to estimate accident 
frequency (see Lord, 2000, Ivan et al., 2000; Graham and Glaister, 2003; Noland and 
Quddus, 2005). Empirical Bayes (EB) method which utilises NB models has been successfully 
used in identifying accident hotspots (Elvik, 2007). The EB method however is allegedly 
using the data twice and inadequate to account for all uncertainties associated with road 
accidents and their contributing factors (Huang et al., 2009). Recently more advanced 
models have been developed such as full Bayesian spatial models (Miaou et al., 2003; 
Aguero-Valverde and Jovanis, 2006; Quddus, 2008b; Wang et al., 2009). The full Bayesian 
method has also been used in site ranking (e.g. Miaou and Song, 2005) and it has been 
shown to outperform the EB method (Huang et al., 2009). This paper adopts full Bayesian 
spatial models that controls for spatial correlation. The model can be expressed as follows: 

( )~ Poissonit itY µ                                                           (1) 

( )log it it i i t itv u eµ α δ= + + + + +βX                                          (2) 

where Yit is the annual number of observed accidents that occurred on a road segment i at 
year t; μit is the expected accident count on a road segment i at year t; α is the intercept; Xit 
is the vector of explanatory variables for a road segment i at year t; β is the vector of 
coefficients to be estimated; vi is a random term which captures the heterogeneity effects 
for road segment i; ui is a random term which captures the spatially correlated effects for 
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neighbouring road segment i and assumed a conditional autoregressive (CAR) prior1

Models can be estimated using the Markov chain Monte Carlo (MCMC) method under the 
full hierarchical Bayesian framework using the software – WinBUGS (Spiegelhalter et al., 
2003)

; δt is 
the term representing time effects (i.e. year-to-year effects); eit is a random term for extra 
space-time interaction effects. 

2

2.2 Accident severity model 

. The deviance information criterion (DIC), which can be thought of as a 
generalisation of the Akaike information criterion (AIC), can be used to compare goodness-
of-fit and complexity of different models estimated under a Bayesian framework 
(Spiegelhalter et al., 2002).  As with AIC, in terms of model fit and complexity, the lower the 
DIC the better the model. 

Accident severity is often measured categorically, for instance, the severity level of an 
accident can be classified as fatal, serious injury, slight injury or no injury (property damage 
only). As such, statistical models that are suitable for categorical data, such as logistic and 
probit models, have been used to analyse accident severities.  

Since the accident severity is ordered in nature (ranging from non-injury to fatality), it seems 
natural to choose discrete ordered response models (such as ordered logit and probit 
models) for analysing accident severity data. Examples of previous studies utilising ordered 
response models include O'Donnell and Connor (1996); Eluru et al. (2008); Quddus et al. 
(2010). However, as discussed in Kim et al. (2007), Savolainen and Mannering (2007) and 
Yamamoto et al. (2008), ordered response models have two limitations which are related to 
the constraint on the variable influence (e.g. a variable would either increase or decrease 
accident severity) and under-reporting, especially for low severity levels in accident data. 
This led to the use of alternative and more flexible unordered nominal response models 
such as multinomial logit (MNL) models. Compared to ordered response models, unordered 
nominal response models offer more flexibility in terms of the functional form and 
consistent coefficient estimates with under-reporting data (Kim et al., 2007; Savolainen and 
Mannering, 2007). 

This paper adopts the unordered nominal response models for analysing accident severity. 
Two types of such models were considered: a standard MNL model and a mixed logit model. 

                                                      
1 This random term controls for the potential spatial correlation which may be due to unobserved similar 
traffic, infrastructure or environment conditions among neighbouring road segments. As detailed by Quddus 

(2008) and Wang et al. (2009), 
2
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uτ  is a scale parameter assumed as a gamma prior. 

2 Readers who are interested in the details of the model specification (e.g. prior distributions) are directed to 
Wang et al. (in press). Generally non-informative priors were used. 
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The MNL model has been widely used in previous research (e.g. Shankar and Mannering, 
1996; Kim et al., 2007). The MNL model can be written as (Long and Freese, 2006): 

( ) ( )
( )
|

|1

exp
Pr

exp
j b n

n M
m b nm

y j
=

= =
∑

β X

β X
,   j=1,2,3M                         (3) 

where Xn is a vector of explanatory variables related to accident n; b is the base outcome 
that other severity outcomes (j) are compared with; βj|b is a vector of injury-specific 
coefficients and βb|b=0; m indicates a certain category of accident severity. In this paper, the 
observed accident severity y is coded as follows: 1 = slight injury accident; 2 = serious injury 
accident; and 3 = fatal accident. 

One potential problem of a MNL model is that it assumes that the unobserved components 
(effects) associated with each accident severity category are independent, which is referred 
to as the independence of irrelevant alternatives (IIA) property (Train, 2003). If the IIA 
assumption is violated, i.e. different accident severity categories share unobserved effects, 
the model estimation results would be incorrect. Previous research has shown that accident 
severity types may be correlated (i.e. sharing unobserved effects) (Milton et al., 2008). To 
circumvent this limitation, a more generalised modelling approach has been proposed by 
adding a more general mixing distribution of error component to the model. This model, 
which is referred to as the mixed logit model, is flexible and powerful. It can accommodate 
complex patterns of correlation among accident severity outcomes and unobserved 
heterogeneity (Train, 2003; Milton et al., 2008). The mixed logit can be expressed as follows: 

( ) ( )
( )

( )|

|1

exp
Pr

exp
j b n

n M
m b nm

y j f d
=

= = ∫ ∑
β X

β β
β X

,        j=1,2,3M                     (4) 

where f(β) is a density function. 

The mixed logit probability is then a weighted average with weights given by f(β). Some 
parameters of the vector β may be fixed or randomly distributed. The standard MNL model 
is a special case of the mixed logit model when β are fixed parameters. For random 
parameters, the coefficients β are allowed to vary over different accidents and assumed 
randomly distributed. In this paper the random coefficients are specified to be normally 

distributed, e.g. ( )1 ~ ,N b Wβ  where b is the mean and W is the variance. 

The MNL model can be estimated using the standard maximum likelihood method. The 
estimation of mixed logit models however is difficult as the probability function is involved 
with integration and hence is not in a closed form. One solution is to use the maximum 
simulated likelihood (MSL) method in which Halton draws3

                                                      
3 Halton draws are generated from number theory to create a sequence of quasi-random numbers, which is 
generally more efficient to compute integrals compared to a purely random sequence (see Train, 2003).   

 can be used to achieve 
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convergence more efficiently (Bhat, 2003; Train, 2003). MSL is also shown to be more 
efficient to achieve the same degree of accuracy than other estimation methods such as the 
classical Gauss-Hermite quadrature or adaptive quadrature (Haan and Uhlendorff, 2006). In 
this paper the mixed logit model is estimated using a user written Stata program (-

mixlogit-) developed by Hole (2007). The Akaike information criterion (AIC) are used to 
compare goodness-of-fit and complexity of MNL and mixed logit model. 

2.3 Predicting accident frequency at different severity levels and site 
ranking 

The two stage model combines results from both the accident frequency model and 
accident severity model described above. At the first stage, the total number of accidents on 
a road segment for a given year is estimated using an accident frequency model (the full 
Bayesian spatial model in this paper). Then at the second stage, the expected proportions of 
accidents at different severity levels on a road segment for a given year is estimated using 
an accident severity model (the MNL and mixed logit models in this paper), which then 
‘allocates’ the number of accidents to different severity levels. Finally, the number of 
accidents at different severity levels can be obtained. The proportions of each accident 
category can be obtained by aggregating the predicted probabilities for each severity 
category across all individual accidents on a road segment for a given year. Suppose there 
are a number of N accidents on a road segment for a given year, and Pnj is the predicted 
probability of accident n at severity level j, then the proportion of accidents for severity j on 
this road segment for the given year is: 

( )
1

1ˆ
N

nj
n

S j P
N =

= ∑                                                            (5) 

where ( )Ŝ j  is the predicted proportion of accident for severity j. 

Note that as mentioned by Geedipally et al. (2010), proportions of different types of 
accidents can also be assumed fixed and directly calculated from the observed data, rather 
than estimated from an accident severity model. This method is referred to as the “fixed 
proportion method” (Geedipally et al., 2010) and will be compared with the two-stage 
mixed multivariate model described in this study. 

The results from both the accident frequency and severity models can then be combined to 
estimate the number of accidents at each severity level. The accuracy of the two-stage 
model through goodness-of-fit can be determined by a number of statistics such as mean 
absolute deviation (MAD), and mean squared error (MSE). For example, Oh et al. (2003) and 
Xie et al. (2007) employed the MAD statistics and indicated that a lower MAD characterises 
a better model in term of predicting accuracy. After obtaining the expected number of 
accidents at each severity level, road segments can then be ranked by an appropriate 
decision parameter (Θ) for further engineering examination and treatment. The choice of 
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decision parameter (Θ) depends on the context under which the rank is to be used, 
especially the range of safety treatments to be implemented (Miaou and Song, 2005). 
Therefore, inputs from decision makers can be useful, for their interests can be taken into 
consideration for ranking. Since accident data used in this paper are classified into different 
categories according to their severity levels, monetary costs of accidents are used as an 
illustration. The decision parameter Θi in this paper is defined as the total accident cost per 
vehicle-kilometre for road segment i: 

ˆcost

365
j ijtt j

i
i itt

length AADT

µ
Θ =

× ×
∑ ∑

∑
                                                     (6) 

where costj is the monetary cost of an accident at severity level j; ˆijtµ  is the posterior 

estimate of count of accidents at severity level j on road segment i at time (year) t, 
estimated from the two-stage model; lengthi is the length of road segment i; AADTit is the 
annual average daily traffic on road segment i at time (year) t. 

The decision parameter (Θi) above provides a direct measurement of expected accident cost 
rate for the time period of interest. A road segment with higher expected accident cost per 
vehicle-kilometre is considered more hazardous, and thus is ranked higher as an accident 
hotspot for further safety treatment. 

3 Data description 
To demonstrate the applicability of the two-stage model, relevant data have been collected 
from the M25 motorway and its surrounding major roads (other motorways and A roads). 
The M25 motorway is an orbital motorway that encircles London, England. 

Traffic and road infrastructure data were obtained from the UK Highways Agency (HA). The 
HA collects hourly traffic characteristics and road infrastructure data for major motorways 
and A roads at the road segment level (a road segment is a stretch of road that starts or 
ends at a junction and has one direction4) in the UK. The data obtained include the hourly 
traffic characteristics data for road segments on the M25 and surround during the years 
2003-2007, including traffic flow, average travel time, and total vehicle delay5

                                                      
4 The primary reason for employing variable segments (i.e. between two consecutive junctions) is that traffic 
data (e.g. traffic flow) are only available for such segmentation.  The advantage of such segmentation is that 
the traffic is homogeneous. Similar segmentation method was used in the literature (Tanaru, 2002; Aguero-
Valverde and Jovanis, 2009). Other segmentation methods may be arguably better and can be used in safety 
analysis such as dynamic segmentation, if the required data are available (Ogle et al., 2011). This seems not a 
serious issue in this study however, as suggested by El-Basyouny and Sayed (2009), the use of a spatial model 
(i.e. controlling for spatial correlation) could ease the issues relevant to segment selection. 

. Road 

5 Delay is defined as the difference between the actual travel time and the travel time at a reference speed 
(often free flow speed). See DfT (2009) and Wang et al. (in press). 
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infrastructure data such as segment length, number of lanes, radius of curvature and 
gradient6

Accident data for the years 2003-2007 were derived from the STATS19 UK national road 
accident database. The database contains information on the direction of the vehicles just 
before an accident, and this information has been used to match the accidents onto the 
correct road segments using the method described in Wang et al. (2009). Only accidents 
recorded as occurring on the M25 motorway and surround are retained. Accidents coded as 
junction accidents (around 30% of total accidents within the study area) in the STATS19 
database were excluded from the analysis. This is because major road junctions are 
complicated in terms of road design (such as fly-overs and slip roads) compared to road 
segments and it is also difficult to obtain a single measure of traffic flow at fly-over and/or 
slip roads merging to and diverging from the main roads. One road segment with a 
minimum radius of 4.94m is viewed as an outlier and has been excluded from the dataset. 
Three road segments with speed limits of less than 64.4km/h (i.e. 40mph) have also been 
excluded from the dataset since these road segments are also viewed as outliers in the 
context of the major road network.  As such, the analysis is based on 262 road segments.  

 for each road segment have also been obtained. 

For the accident frequency analysis, counts of accidents and traffic characteristics data were 
aggregated at a road segment level (e.g. total traffic volume per segment per year) and 
eventually a panel dataset containing 262 cross-sectional observations for all road segments 
during a five year period was created (2003-2007) 7

Table 1 is about here 

. Summary statistics of the accident, 
traffic characteristics and road infrastructure data on the M25 motorway and surround for 
the accident frequency models are presented in Table 1. 

                                                      
6 The minimum radius and the maximum gradient for a road segment were used in the model. While this or 
similar measurement was used in previous studies (such as Shanker et al., 1995), this measurement has a 
limitation in that it cannot take into account overall curvature of a road segment. Other curvature 
measurements used in the literature include: number of sharp horizontal curves, sharp curve indicator (1 if 
curve radius is less than 868 m, 0 otherwise), bend density, detour ratio, straightness index, cumulative angle, 
mean angle (see Milton and Mannering, 1998; Miaou et al., 2003; Haynes et al., 2007). Another alternative 

measurement has also been suggested by an anonymous reviewer: 1

1

502 sin
k

p
segment

p p

l
DC

L R
−

=

 
=   

 
∑ , where 

DC is the degree of curvature of a road segment, lp is the length of a curved section p on the road segment, L is 
the total length of the road segment, Rp is the radius of the curved section p on the road segment and k is the 
number of total curved sections on the road segment. 
 
Generally speaking, using one single measurement alone may not be sufficient as each measurement has its 
limitations. As suggested by Haynes et al., (2007), “a single measure of road curvature does not capture all the 
properties that might be of interest”. Since the purpose of this paper is not to re-investigate the effect of 
various measurements of curvature on road safety, minimum radius and maximum gradient were used. 
7 Due to missing values (e.g. traffic flow) for some road segments at a certain year, some road segments were 
removed from the original data, resulting in 262 road segments. 
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The total number of observations is 1,310. Motorway indicator is a dummy variable with 1 
representing motorway or A roads with motorway standard such as A1(M); and 0 
representing other major A roads.   

For the accident severity analysis, the analysis was conducted at an individual accident level 
rather than at a segment level. In addition to accident location and severity information, 
other relevant data have been derived from the STATS19 database. This includes date, time, 
lighting, weather conditions, number of vehicles and number of causalities for each 
accident. The accident data have also been integrated into traffic and road geometry data 
based on the information of the accident (location, time and date); and the corresponding 
segment-based characteristics for an accident have been obtained. As a result, traffic and 
road geometry data such as traffic flow, traffic delay and road curvature for each accident 
has been determined. In order to avoid the impact of an accident itself on traffic conditions, 
hourly traffic data corresponding to a time period that is 30 minutes prior to the occurrence 
of an accident are used. For example, if an accident happened at 15:20 then hourly traffic 
data for 14:00 – 15:00 were used. 

Finally, a dataset containing various traffic, road and environment information for each 
accident record on the M25 and surround during 2003-2007 was established. The summary 
statistics of the variables for the accident severity analysis are presented in Table 2: 

Table 2 is about here 

As can be seen from Table 2 there were a total number of 12,254accidents on the M25 and 
surround, over the period 2003-2007 with approximately 2,450 accident records each year. 
The mean value of the accident severity variable is 1.14, meaning that the majority of 
accidents are slight injury accidents. To be more precise, 87.71% (10,748) of total accidents 
were slight injury accidents; 10.55% (1,293) were serious injury accidents; and only 1.74% 
(213) were fatal accidents.  

The monetary costs of accidents at each severity level for a given year are obtained from the 
UK Department for Transport (DfT, 2008)8

Table 3 is about here 

, which are presented in Table 3. 

It is interesting to note from Table 3 that the cost of accidents increased gradually from 
2003 to 2007, for all severity levels. This may reflect inflation over the years in question. 

 

                                                      
8 According to the DfT (2008) the cost of an accident, or in other words the value of preventing an accident 
includes: the human costs (e.g., willingness to pay to avoid pain, grief and suffering); the direct economic costs 
of lost output; the medical costs associated with road accident injuries; costs of damage to vehicles and 
property; police costs; and administrative costs of accident insurance. 
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4 Results 

4.1 Accident frequency analysis 
A spatio-temporal Bayesian hierarchical count model that controls for spatially correlated 
effects has been developed to model the total number of accidents on road segments. First-
order contiguity based neighbouring structures and fixed-time effects are used (see Wang et 
al., in press). Two MCMC chains were used to ensure convergence. The initial 180,000 
iterations were discarded as burn-ins to achieve convergence and a further 30,000 iterations 
for each chain were performed and kept to calculate the posterior estimates of interested 
parameters. The Monte Carlo (MC) errors (i.e. the Monte Carlo standard error of the mean) 
were also monitored, and they were less than 0.005 for most parameters. Using the guide 
from the WinBUGS user manual (Spiegelhalter et al., 2003), MC errors less than 0.05 
indicate that convergence may have been achieved. The Gelman–Rubin statistics are also 
generally below 1.2 which indicates convergence (Brooks and Gelman, 1998). The model 
estimation results are presented in Table 4. 

Table 4 is about here 

It can be seen from Table 4 that the effects of various variables are generally found to be 
consistent with previous studies (Milton and Mannering, 1998; Kononov et al., 2008). The 
model estimation results indicate that there is significant spatially correlated effects (u). As 
expected, both AADT and road segment length are statistically significant and positively 
associated with accidents. The coefficient of log(segment length in metre) is approximately 
1 suggesting that the elasticity of road segment length with respect to accidents is about 1. 
This means a 1% increase in road segment length would increase accident frequency by 1%. 
Traffic delay per km is positively (at the 90% confidence level) associated with the number 
of accidents, which may be due to the higher speed variance among vehicles within and 
between lanes and erratic driving behaviour in the presence of congestion (Wang et al., in 
press). This result is consistent with the study undertaken by Kononov et al. (2008) who also 
found that fatal and injury accidents increase with the increase in traffic congestion.  
Number of lanes is positive and statistically significant, suggesting more accidents would 
occur on roads with more lanes, which may be due to increased chance of lane-changing 
related conflicts on roads with more lanes. Speed limit is positively associated with the 
number of accidents, which suggests that segments with higher speed limits would result in 
more accidents. Motorway, minimum radius of horizontal curvature and maximum gradient 
however are statistically insignificant which means that they have little impact on the 
frequency of road accidents. 

4.2 Accident severity analysis 
A standard multinomial logit (MNL) model and a mixed logit model have been developed to 
model accident severity. For the mixed logit model, generally coefficients are considered to 
be random parameters if they produce statistically significant standard deviations for their 
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assumed normal distributions (Milton et al., 2008). In this study, the results have been 
obtained from 150 Halton draws9

Table 5 is about here 

. Slight injury accidents were used as the base outcome. A 
two-level mixed logit model (accident and road segment levels) has also been tested and 
produced similar results to the normal mixed logit model in terms of the signs of the 
coefficients and AIC values (the difference of AIC values is less than 4.5), which means the 
two-level model does not significantly improve the goodness-of-fit. Therefore the results 
from the two-level model are not presented in this paper for brevity. Model estimation 
results for the MNL and mixed logit model are presented in Table 5. 

As can be seen from Table 5, the estimation results from the MNL and mixed logit models 
are similar in terms of the set of statistically significant variables and the signs of their 
coefficients. As suggested by Haque and Chin (2010), a likelihood ratio (LR) test can be 
performed to compare the mixed logit model with MNL. The test result indicates that the 
inclusion of the random parameters in the mixed logit model significantly improves the 
model fit (LR test statistic=22.57). This is also confirmed by the lower AIC values obtained by 
the mixed logit model. Considering that the mixed logit model provides a lower AIC value 
(i.e. better model performance) and the fact that the mixed logit model can control for the 
unobserved correlated effects and heterogeneity, it is believed that the mixed logit model is 
more accurate and fits the data better than the MNL model. Therefore, the results from the 
mixed logit model are preferred. 

The coefficient of log(Traffic flow) has been modelled as a fixed parameter, and it has been 
found to be negative and statistically significant for both serious injury accidents and fatal 
accidents. This indicates that an increase in traffic flow would decrease the probability of 
serious injury and fatal accidents. This finding is in line with the previous study by Quddus et 
al. (2010) who employed ordered response models to analyse accident severity. With regard 
to the results of road infrastructure factors, minimum radius is positive and significant (at 
the 90% confidence level) for the case of serious injury accidents in the mixed logit model, 
suggesting that horizontally straighter roads tend to increase accident severity. This may be 
due to the lower speed and increased driver vigilance in the presence of a horizontal curve 
(Haynes et al., 2007). Increased vertical gradient however is found to increase the likelihood 
of serious injury accidents compared to slight injury accidents. It has been found that 
motorways tend to decrease the accident severity compared to A roads, which may be due 
to the higher engineering standard and better road designs on motorways. This finding is 

                                                      
9 Train (2003) suggested that the parameter estimation would be more consistent in the MSL if a high number 
of Halton draws could be used.  Our initial test has shown that the number of draws above 100 would produce 
reasonably stable estimations and the results are generally consistent between 100 and 150 draws in terms of 
the set of significant estimators. Haan and Uhlendorff (2006) also showed that 100-150 Halton draws may be 
sufficient for stable results. Also as discussed below, the mixed logit model produced a significantly better 
statistical fit than the standard MNL model. Since the main purpose of this paper is accident prediction, the 
specification of the mixed logit model used seems appropriate. 
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consistent with the previous study by Chang and Mannering (1999) who found that 
interstate highways are more likely to result in property damage only accidents instead of 
possible injury or injury/fatal accidents. Raining weather has been found to decrease the 
probability of serious injury and fatal accidents and increase the probability of slight injury 
accidents, which may be due to lower driving speed in rainy weather. This finding is 
consistent with the study by Savolainen and Mannering (2007) who found that accidents on 
wet pavements are more likely to be “no injury” accidents. Single vehicle accident has been 
found to be statistically significant and positively associated with both serious injury and fatal 

accidents, suggesting that a single vehicle accident is more likely to be serious or fatal. The 
effects of other variables have also generally been found to be consistent with previous 
research (e.g., Shankar et al., 1996; Chang and Mannering, 1999; Quddus et al., 2010). 

An interesting finding from the mixed logit model is the effect of traffic congestion (i.e. 
traffic delay). The coefficient of the traffic delay has been taken as a random parameter 
(assuming a normal distribution) for serious injury accidents in the mixed logit model. The 
estimated mean values of the coefficients associated with serious injury accidents are 
statistically significant (at the 90% confidence level). This means that overall traffic 
congestion tends to decrease the severity of an accident given that the accident has 
occurred.. The standard deviation of the coefficient for the case of serious injury accidents is 
statistically significant at the 95% confidence level, which means that the effect of 
congestion varies across different accidents. From the estimated parameters (mean -0.02 
and standard deviation 0.036), it can be seen that for  71% of the accidents, an increased 
level of congestion decreases the probability of a serious injury accident occurring 
(compared to the probability of a slight injury accident occurring); and for 29% of the 
accidents, an increased level of congestion increases the likelihood of a serious injury 
accident occurring. The results suggest the complexity of the effect of traffic congestion on 
accident severity. 

4.3 Two-stage model 
The two-stage model combines both accident frequency and severity models and their 
estimation results have been presented above. In the two-stage process, two types of data 
are computed: 1) the total expected number of accidents and 2) the expected proportions 
of accidents for different severity levels (i.e. fatal, serious and slight). 

Based on the total number of accidents and the proportions for each severity level, it is 
straightforward to calculate the predicted number of accidents at different severity levels 
on a road segment. Based on the segment-level observed and predicted number of 
accidents, the MAD values are calculated for different categories of severity and presented 
in Table 6. For comparison, the traditional multivariate Poisson-lognormal (MVPLN) model 
(with fixed-time effects) and fixed proportion method have also been tested and the 
corresponding MAD values are also reported in Table 6. 

Table 6 is about here 
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As can be seen from Table 6, all three methods produced comparable results in terms of 
MAD values. Both two-stage and MVPLN models outperform the fixed proportion method, 
while the MVPLN model seems to be slightly better than the two-stage model though the 
difference is marginal. 

4.4 Site ranking 
After obtaining the expected number of accidents per segment at each severity level using 
the two-stage model, monetary costs can then be applied to the accidents to calculate the 
total costs of accidents on road segments for the purpose of site ranking. Sites (road 
segments) can then be ranked by the total accident cost rate for the period 2003-2007. The 
higher accident cost rate of a road segment, the more hazardous it is considered to be. The 
top 20 most hazardous road segments ranked by the accident cost rate are listed in Table 7. 
For comparison, naïve ranking using pure observed accident count data and ranking using 
the multivariate Poisson-lognormal (MVPLN) model and the fixed proportion method have 
also been produced and presented. 

Table 7 is about here 

As can be seen from Table 7, the two-stage model produces significantly different rankings 
from the naïve ranking method. 15 out of the top 20 road segments in the model based 
ranking are not in the top 20 in the naïve ranking. The differences between the ranking 
using the two-stage model and naïve ranking are significant. Accident cost rates for the 
majority of the top 20 road segments ranked by the two-stage models are higher than the 
naïve estimates. This implies that the naïve ranking method underestimated the accident 
costs for road segments. 

On the other hand, ranking results among the two-stage model, MVPLN model and fixed 
proportion method are more comparable. Comparison of different model based rankings for 
the top 20 road segments is presented in Figure 1.  As can be seen, only 7 out of the top 20 
road segments in the two-stage model ranking are not in the top 20 in the MVPLN model 
ranking; and 9 out of the top 20 road segments in the two-stage model ranking are not in 
the top 20 in the fixed proportion method ranking. A total number of 10 road segments are 
ranked in the top 20 in all three model based rankings. This means that the model based 
rankings are generally consistent to each other, compared to the naïve ranking. 

Figure 1 is about here 

The differences between the ranking using the two-stage model and other ranking methods 
are presented in Figure 2. It is clear that there are significant differences between the two-
stage model and naïve ranking method (Figure 2(a)). This result is consistent with previous 
studies (e.g. see Miaou and Song, 2005; Huang et al., 2009 for the comparison between 
model based ranking and naïve ranking). The differences between the two ranking methods 
are mainly due to the high stochastic and sporadic nature of accidents, and the fact that 
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considerably higher costs are given to fatal accidents than the other two types of accidents 
(Miaou and Song, 2005). As discussed, due to the regression-to-the-mean problem, the 
ranking results using the naïve method may be biased and inaccurate, and as such the 
model based ranking method is preferred. As can be seen in Figure 2(b) and 2(c), model 
based ranking using the two-stage model, MVPLN model and fixed proportion method are 
more consistent compared to the naïve ranking. This confirms that a model based ranking 
should be used instead of naïve ranking to obtain consistent ranking results. It should be 
noted that, although all model based methods have similar goodness-of-fit performance in 
terms of MAD values as presented above, there are still notable differences in the ranking 
results as suggested in Figure 2(b) and 2(c). Thus more information (e.g. inputs from policy 
makers) may be useful in selecting the sites for further safety examination and remedial 
treatment. 

Figure 2 is about here 

Based on the ranking results using the two-stage model, the locations of the top 20 most 
hazardous road segments listed in Table 7 are highlighted in Figure 3, in which the rank, 
road number and direction information is shown. It can be seen that the top ranked 
segments are found scattered throughout the road network. 

Figure 3 is about here 

After identifying the hazardous road segments, further safety examination and treatment 
can be applied on these road segments. The higher ranked segments can be given higher 
priorities for safety treatment with a limited budget. A cost-benefit analysis of potential 
safety treatment can also be performed by policy makers based on the predicted accident 
costs on the road segments (Miaou and Song, 2005). 

5 Discussion and conclusions 
This paper proposed a two-stage mixed multivariate model which combines both accident 
frequency and severity models to predict the number of accidents in different categories 
(e.g., severities). The practical application of the two-stage model is illustrated in site 
ranking, which aims to identify hazardous road segments (i.e. accident hotspots) on a road 
network (i.e. M25 and surround). Based on the accident prediction results from the two-
stage model, road segments on the M25 and surround were ranked by their monetary cost 
rate (£ per 100 vehicle km) of accidents. The ranking using the two-stage model was also 
compared with the naïve rankings using observed accident data and two other model based 
rankings (i.e. MVPLN model and fixed proportion method). It was found that there were 
significant differences in terms of ranking results between the naïve ranking and model 
based rankings. Naïve ranking method tends to underestimate the cost of accidents on road 
segments. The two-stage model is generally comparable to the MVPLN model and fixed 
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proportion method. Top ranked hazardous road segments were also identified and located 
based on the results from the two-stage model. 

Compared to the traditional road safety analysis using only accident frequency models, the 
two-stage model has several distinct advantages: 

First, detailed data associated with individual accidents are normally available and can be 
incorporated into accident severity models to accurately estimate the proportions of 
accidents at different severity levels, in addition to the aggregated segment level data. In 
the case of the data used in this paper, as shown in the data description section, only traffic 
and road characteristics data are available at the aggregated road segment level for 
accident frequency models. On the other hand, in addition to the aggregated traffic and 
road characteristics data (e.g. road geometry), more detailed data are available at the 
individual accident level for accident severity models such as lighting and weather 
conditions, time when the accident occurred, the number of vehicles involved in an accident 
and hourly traffic flow just before an accident. It is expected that the additional data in 
accident severity analysis would allow a better understanding of the severity outcome of an 
accident, and subsequently the distribution (proportion) of accidents at different severity 
levels on a given road segment. This is also the benefit of this method (individual accident 
level severity analysis) compared to road segment level severity analysis by Milton et al. 
(2008) and Geedipally et al. (2010). In addition, this method avoids the potential 
aggregation bias (Davis, 2004) in an accident severity analysis. 

Individual accident level data can be conveniently obtained from the STATS19 database in 
the UK, which enables researchers to develop an insight into the severity distribution of 
accidents. This paper has shown how results from an accident severity model at a 
disaggregate individual accident level can be aggregated to predict the proportions of types 
of accidents on a road segment in the two-stage modelling process. 

Second, there are cases that some categories of accident severities, due to many zero or low 
accident counts at an aggregated road segment (or an area) level, cannot be analysed using 
accident frequency models (e.g. MVPLN) directly. This is particularly an issue for high 
severity level accidents (such as fatal accidents). This issue can be addressed using the 
accident severity models as there may be enough observations for each category of 
severities at a disaggregate individual accident level. The two-stage model may still be 
possible to predict the expected number of accidents at different severity levels even when 
there are many zero or low accident counts at an aggregated road segment (or area) level. 
In the case of this paper, there are only 213 fatal accidents on the 262 road segments during 
2003-2007, resulting in many zero (more than 85% cases) and low count of fatal accidents 
(per road segment per year). Therefore, it may not always be statistically feasible to use 
accident frequency models to directly predict the number of fatal accidents. Traditionally a 
researcher avoids this problem by combining two or several categories of accidents, for 
instance combining fatal accidents with injury accidents (e.g., El-Basyouny and Sayed, 2009). 
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This issue however can be addressed using the two-stage model, as there are enough cases 
of fatal accidents to develop an accident severity model which can predict the expected 
proportion of fatal accidents on a road segment. 

Finally, the two-stage model is flexible in terms of the model specification and estimation. A 
researcher is not constrained to one type of model, but can choose the appropriate 
modelling method at each stage. For example, when sample size is relatively small, which is 
often the case for an accident frequency analysis, a Bayesian approach may be used to 
obtain robust estimates; when sample size is very large, which is often the case for severity 
analysis (12,613 observations in the severity analysis in this paper), a frequentist inference 
can be chosen as its estimation results are equivalent to the Bayesian approach (Train, 
2003)10

Therefore in the scenarios that disaggregate individual accident level data are available and 
it is required to predict a certain type of low frequency accident, the two-stage mixed 
multivariate model can be recommended. As such the two-stage model is a promising 
alternative to accident frequency models in predicting counts of accidents in different 
categories and site ranking. Future research may focus on validating this method with other 
data samples or models. 

. In fact, it is not essential for a researcher to employ a regression model at all in any 
of the two stages. For instance, one can use a neural network model in the accident 
frequency analysis (Xie et al., 2007; Lord and Mannering, 2010) and a data mining technique 
such as the classification and regression tree approach in the severity analysis (Chang and 
Wang, 2006).  This may also benefit the practitioners in that two teams are able to work on 
the frequency and severity analyses separately and the results can then be combined. 
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10 The Bayesian theorem indicates that the posterior distribution is proportional to the prior distribution times 
the likelihood of the observed data. For large sample size, the prior becomes irrelevant and the maximum of 
the likelihood function becomes the same as the maximum and also the mean of the posterior. It can be 
shown that the resulting estimator under Bayesian inference is asymptotically equivalent to the classical 
maximum likelihood estimator when large sample size is used: the mean of the posterior distribution of a 
parameter can be seen as the classical point estimate; and the standard deviation of the posterior distribution 
can be seen as the standard error of the estimate (for more details see Train, 2003). 
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Table 1 Summary statistics of the variables for accident frequency analysis 

Variable Mean Standard Deviation Min Max Sum* 
Annual number of accidents 9.062 10.022 0 97 11871 
  

    
 

Traffic characteristics 
    

 
Annual average daily traffic (AADT) 46167.1 20616.280 5.918 98394.83 6.05E+07 
Annual total vehicle delay (sec per km) 196036.7 241008.100 622.865 1900374 2.57E+08 
  

    
 

Road segment characteristics (same 
direction) 

    

 

Segment length (km) 5.065 3.675 0.32 22.08 6635.7 
Minimum radius (m) 681.084 364.541 20.38 2000 - 
Maximum gradient (%) 3.169 1.326 0.6 8 - 
Number of lanes 2.909 0.709 1 6 - 
Speed limit (km/h) 110.015 6.704 77 112 - 
 
Dummy variables 
Motorway indicator 1=motorway (count=915); 0=otherwise (count=395) 

 

* This includes 5 years’ (2003-2007) data 
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Table 2 Summary statistics of the variables for accident severity analysis 

Variable Obs Mean 
Standard 
deviation Min Max 

Level of accident severity* 12254 1.140 0.394 1 3 
  

     Traffic characteristics 
     Traffic flow (veh/h) 11722 3222.276 1672.409 0 8116 

Traffic delay (min per 10km) 11936 8.374 22.252 0 751.935 
  

     Road segment infrastructure 
     Minimum radius (m) 12254 729.709 292.151 20.38 2000 

Maximum gradient (%) 12254 3.221 1.113 0.6 8 
Speed limit (km/h) 12254 110.457 6.532 80 112 
 
Number of casualties per accident 12254 1.606 1.187 1 42 
Dummy variables 
Road segment infrastructure 
Number of lanes ≤ 3 indicator 1=3 lanes or less (count= 9,768); 0=otherwise (count=2,486) 
Number of lanes = 4 indicator (reference case) 1=4 lanes (count=2,090); 0=otherwise (count= 10,164) 
Number of lanes ≥ 5 indicator  1=5 lanes or more (count=310); 0=otherwise (count=11,944) 
Motorway indicator 1=motorway (count=10,261); 0=A road(count=1,993) 
            
Environment indicators           
Lighting condition (darkness)  1=darkness (count=3,950); 0=daylight(count=8,304) 
Weather (fine, reference case) 1=fine (count=10,048); 0=otherwise (count=2,206) 
Weather (raining) 1=raining (count=1,742); 0=otherwise (count=10,512) 
Weather (snowing) 1=snowing (count=58); 0=otherwise(count=12,196) 
Other weather conditions (e.g. fog/mist) 1=others (count=406); 0=otherwise(count=11,848) 
            
Other factors           
Weekday indicator 1=weekday (count=9,213); 0=otherwise (count=3,041) 
Single vehicle accident indicator 1=single vehicle (count=2,374); 0=otherwise (count=9,880) 

* 1=slight injury accident (count=10,748), 2=serious injury accident (count=1,293), 3=fatal accident (count=213) 
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Table 3 Average values of prevention of road accidents (£ per accident) 

  Fatal Serious Slight 
2003 1,492,910 174,520 17,540 
2004 1,573,220 184,270 18,500 
2005 1,645,110 188,960 19,250 
2006 1,690,370 196,020 20,120 
2007 1,876,830 215,170 22,230 

Source: UK Department for Transport 
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Table 4 Accident frequency model 

Variables Mean 
Standard 

deviation (S.D.) 95% credible sets 
log(AADT) 0.124** 0.036 (0.064, 0.209) 
log(segment length in m) 0.958** 0.065 (0.831, 1.084) 
log(delay in sec per km) 0.043* 0.026 (-0.005, 0.097) 
log(minimum radius) 0.126 0.067 (-0.032, 0.240) 
Maximum gradient (%) 0.065 0.043 (-0.022, 0.142) 
Number of lanes 0.436** 0.073 (0.291, 0.565) 
Speed limit (km/h) 0.009** 0.004 (0.002, 0.018) 
Motorway 0.221 0.141 (-0.068, 0.499) 
Year 2003 0 - 

 Year 2004 0.075** 0.035 (0.007, 0.144) 
Year 2005 0.044 0.036 (-0.026, 0.113) 
Year 2006 -0.020 0.036 (-0.091, 0.052) 
Year 2007 -0.079** 0.037 (-0.152, -0.005) 
Intercept -11.450** 0.718 (-12.820, -10.030) 
S.D. (u) 0.229** 0.060 (0.110, 0.351) 
S.D. (e) 0.178** 0.016 (0.145, 0.210) 
S.D. (v) 0.492** 0.045 (0.406, 0.583) 
DIC 6275.02 

  N 1310     
* Statistically significant from zero (90% credible sets show the same sign) 
** Statistically significant from zero (95% credible sets show the same sign) 
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Table 5 Estimation results for MNL and mixed logit models 
  MNL Mixed logit † 
Variables Coefficient z value Coefficient z value 
Serious injury accident         
log(Traffic flow in veh/h) -0.246** -4.48 -0.244** -4.18 
Traffic delay (min per 10km) 0.0002 0.15 -0.020* (0.036**) -1.65 (2.42) 
log(minimum radius) 0.101 1.64 0.120* 1.81 
Maximum gradient (%) 0.066** 2.22 0.071** 2.24 
Number of lanes ≤ 3 indicator 0.189** 2.08 0.214** 2.20 
Number of lanes ≥ 5 indicator 0.181 0.76 0.134 0.50 
Motorway indicator -0.195** -2.22 -0.211** -2.25 
Speed limit (km/h) 0.001 0.27 0.002 0.37 
Lighting condition (darkness) -0.160** -1.99 -0.174** -2.03 
Weather (raining) -0.329** -3.42 -0.328** -3.21 
Weather (snowing) -0.250 -0.52 -0.256 -0.51 
Other weather conditions (e.g. fog/mist) -0.319 -1.62 -0.332 -1.59 
Peak time indicator -0.255** -2.14 -0.262** -2.08 
Weekday indicator -0.022 -0.31 -0.0004 -0.01 
Single vehicle accident indicator 0.474** 6.19 0.484** 5.96 
Number of casualties per accident 0.315** 13.52 0.270** (0.261**) 4.65 (2.31) 
Year 2004 -0.261** -2.81 -0.271** -2.74 
Year 2005 -0.300** -3.2 -0.320** -3.2 
Year 2006 -0.367** -3.78 -0.392** -3.76 
Year 2007 -0.198** -2.00 -0.210** -2.00 
Intercept -1.338* -1.78 -1.548* -1.9 
Fatal accident         
log(Traffic flow in veh/h) -0.560** -5.96 -0.576** -5.88 
Traffic delay (min per 10km) -0.003 -0.68 -0.003 -0.75 
log(minimum radius) 0.117 0.79 0.129 0.85 
Maximum gradient (%) -0.102 -1.49 -0.106 -1.51 
Number of lanes ≤ 3 indicator 0.042 0.19 0.043 0.19 
Number of lanes ≥ 5 indicator -0.475 -0.63 -0.555 -0.71 
Motorway indicator -0.252 -1.32 -0.277 -1.40 
Speed limit (km/h) 0.025 1.52 0.025 1.52 
Lighting condition (darkness) 0.232 1.24 0.26 1.34 
Weather (raining) -0.490** -2.10 -0.510** -2.12 
Weather (snowing) -12.795 -0.03 -18.551 -0.00 
Other weather conditions (e.g. fog/mist) -1.258* -1.84 -1.275* -1.78 
Peak time indicator -0.279 -1.15 -0.247 -0.98 
Weekday indicator 0.201 1.22 0.22 1.28 
Single vehicle accident indicator 0.725** 4.36 0.772** 4.44 
Number of casualties per accident 0.424** 11.51 0.352** (0.256**) 4.79 (3.1) 
Year 2004 -0.428* -1.79 -0.440* -1.78 
Year 2005 -0.074 -0.34 -0.048 -0.21 
Year 2006 -0.137 -0.60 -0.125 -0.53 
Year 2007 0.012 0.05 0.007 0.03 
Intercept -3.467* -1.66 -3.522* -1.65 
Statistics         
Log likelihood -4553.108 -4541.825 
AIC 9190.216 9173.65 
N 11501 11501 

Slight injury accident is the base outcome; * p<0.1, ** p<0.05 
† Standard deviations and their associated z values of random parameters in parentheses  
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Table 6 Mean absolute deviation (MAD) values 

  
Two-stage 

model 
MVPLN 

model 
Fixed proportion 

method 
Fatal 0.249 0.247 0.261 
Serious 0.755 0.718 0.794 
Slight 1.688 1.633 1.716 
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Table 7 Ranking of segments 

    
Ranking using 

two-stage model Naïve ranking 
Ranking using 
MVPLN model 

Ranking using fixed 
proportion method 

Road number Segment description Rank Cost rate* Rank Cost rate* Rank Cost rate* Rank Cost rate* 
M1 M1 J10 to M1 J9 1 3.62 6 2.48 1 2.76 1 4.38 
A3 A3100 to A3100 2 2.61 5 2.49 6 1.70 15 1.31 
M1 M1 J8 to M1 J9 3 2.48 24 1.48 4 1.82 2 2.84 
A1 A5135 to M25 J23 4 2.35 8 2.27 2 2.07 4 1.77 
M25 M25 J19 to A41 5 2.19 135 0.53 8 1.52 6 1.73 
M25 M25 J21 to M25 J21A 6 1.97 25 1.46 5 1.77 7 1.65 
M1 M1 J9 to M1 J8 7 1.64 22 1.51 10 1.41 3 1.78 
M25 A41 to M25 J19 8 1.58 125 0.58 87 0.79 29 1.10 
A3 A320 to A322 9 1.55 95 0.73 9 1.48 11 1.38 
A1M A1(M) J8 to A1(M) J7 10 1.54 4 2.66 7 1.59 10 1.38 
A3 A247 to A3100 11 1.50 9 2.25 12 1.30 61 0.89 
A20 A20 to M25 J3 12 1.48 176 0.37 22 1.10 52 0.92 
M23 M23 J8 to M23 J7 13 1.47 68 0.89 25 1.07 28 1.11 
A13 M25 J30 to A1306 14 1.45 65 0.90 18 1.16 34 1.07 
A30 M25 J13 to A3044 15 1.44 54 1.02 15 1.28 44 0.99 
M23 M23 J7 to M23 J8 16 1.42 179 0.37 30 1.05 19 1.22 
M10 M10 J1 to M1 J7 17 1.40 92 0.75 44 0.99 35 1.07 
A3 A244 to A309 18 1.40 37 1.25 29 1.06 51 0.93 
M25 M25 J26 to M25 J25 19 1.35 41 1.15 40 1.00 27 1.13 
A2 A2018 to A2 20 1.32 60 0.94 14 1.29 20 1.20 

* Cost rate is in £ per 100 vehicle-kilometres travelled in 2003 – 2007 
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Figure 1 Comparison of different models based rankings for the top 20 road segments 
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Figure 2(a) Comparison of ranking results: two-stage model vs. naïve method 

  



32 
 

 
Figure 2(b) Comparison of ranking results: two-stage model vs. multivariate Poisson-lognormal (MVPLN) model 
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Figure 2(c) Comparison of ranking results: two-stage model vs. fixed proportion method 

Figure 2 Comparison of ranking results 
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Figure 3 Top ranked 20 most hazardous road segments using the two-stage model 
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