
 

 

 

 

PREDICTION OF DRIVERS’ 

PERFORMANCE IN HIGHLY AUTOMATED 

VEHICLES 
 

 

 

 

 

By 
 

MOHAMED TAHER ALREFAIE 

 

 

School of Business and 
Economics  

LOUGHBOROUGH UNIVERSITY 

 

A thesis submitted to Loughborough University in accordance with the 

requirements of the degree of  

DOCTOR OF PHILOSOPHY. 

March 2019 



 

 

 

 



 

 

 

iii 

 

  



 

 

 

iv 

 

ABSTRACT 

 

 

Purpose:  The aim of this research was to assess the predictability of driver’s response 

to critical hazards during the transition from automated to manual driving in highly 

automated vehicles using their physiological data. 

Method: A driving simulator experiment was conducted to collect drivers’ physiological 

data before, during and after the transition from automated to manual driving. A total 

of 33 participants between 20 and 30 years old were recruited. Participants went 

through a driving scenario under the influence of different non-driving related tasks. 

The repeated measures approach was used to assess the effect of repeatability on the 

driver’s physiological data. Statistical and machine learning methods were used to 

assess the predictability of drivers’ response quality based on their physiological data 

collected before responding to a critical hazard.  

Findings: - The results showed that the observed physiological data that was gathered 

before the transition formed strong indicators of the drivers’ ability to respond 

successfully to a potential hazard after the transition. In addition, physiological 

behaviour was influenced by driver’s secondary tasks engagement and correlated with 

the driver’s subjective measures to the difficulty of the task. The study proposes new 

quality measures to assess the driver’s response to critical hazards in highly 

automated driving. Machine learning results showed that response time is predictable 

using regression methods. In addition, the classification methods were able to classify 

drivers into low, medium and high-risk groups based on their quality measures 

values.   

Research Implications: Proposed models help increase the safety of automated driving 

systems by providing insights into the drivers’ ability to respond to future critical 

hazards. More research is required to find the influence of age, drivers’ experience of 

the automated vehicles and traffic density on the stability of the proposed models.  

Originality: The main contribution to knowledge of this study is the feasibility of 

predicting drivers’ ability to respond to critical hazards using the physiological 

behavioural data collected before the transition from automated to manual driving. 

With the findings, automation systems could change the transition time based on the 

driver’s physiological state to allow for the safest transition possible. In addition, it 

provides an insight into driver’s readiness and therefore, allows the automated system 

to adopt the correct driving strategy and plan to enhance drivers experience and make 

the transition phase safer for everyone.   
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Introduction 
 
A “man in freedom” as Aristotle defined is the ultimate peak of human existence. The 

person in freedom is a person that has a complete personal agency but wholly 

liberated from any concern for the necessities of life. With the promise of artificial 

intelligence (AI) replacing humans’ repetitive work, humanity comes  a step closer to 

Aristotle’s vision (Wolcott, 2018).  

 In the past few decades, vehicle automation has gained substantial traction in both 

industry and automotive research (Lu and Winter, 2015; Merat et al., 2012; NHTSA, 

2013). In a race to achieve full automation, several manufacturers, technology start-

ups and automotive leaders introduced different automation systems to handle 

several driving tasks — for example, Tesla Motors’ lateral and longitudinal control of 

their vehicles (Ingle and Phute, 2016). Several other manufacturers introduced 

technologies such as motorway steering wheel assistance (Volvo, 2013) in addition to 

other companies committing to bringing the first fully automated vehicles to the mass 

market (Welch and Behrmann, 2018). 

Vehicle automation’s main benefits go further than just freeing humans from driving. 

The full potential of vehicle automation unlocks the possibilities to a new world of 

mobility. For example, it enables the optimisation of the road network which will 

maximise the traffic flow and capacity (Papageorgiou et al., 2015). The outcome of 

the automation opens new possibilities for disrupting the future of mobility and 
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transportation. This automation, in turn, will have a substantial economic and 

environmental impact by increasing number of shared vehicles (Fagnant and 

Kockelman, 2013), reduction in carbon dioxide footprint and reduction in energy 

consumption (Anderson et al., 2016). In addition, full automation will reduce 

fatalities by eliminating the human error that contributes to almost 93% of road 

accidents (Sabey and Taylor, 1980). However, there are many challenges imposed by 

automation. First, full driving automation will not take place immediately. Instead, 

it will take a gradual increment until fully autonomous vehicles are achieved 

(Anderson et al., 2016). 

During this period, some argue that fatalities may be caused by semi-automated 

vehicles (Louw, 2017). Initially, human errors arise due to poor human-system 

interaction (Reason, 1990). Semi-automated vehicles, in turn, are characterised as a 

joint cognitive system between the human and the machine (Bibby et al., 1975) and 

the interaction between the two entities may expand problems rather than solve them 

(Bainbridge, 1983). Primarily, the transition from automated to manual driving is 

thought to be the most critical point of human-machine interaction (Anderson et al., 

2016; Merat et al., 2012). This could be due to poorly designed interfaces 

(Reuschenbach et al., 2010), lack of understanding between the system and the 

machine (Koo et al., 2015) and human inability to handle critical hazards due to their 

lack of situational awareness (Merat et al., 2012). Though, as mentioned earlier, one 

of the primary motivations for full automation is the reduction of fatalities. The 

paradox, however, is that in order to achieve full automation, more accidents may 

happen until the full automation is achieved (Louw, 2017). 

With such concern, human factors of automated driving have gained substantial 

traction to help identify the detrimental effects of semi-automated vehicles (Hs, 2014; 

Saffarian et al., 2012). To manage the aforementioned issues, several studies 
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proposed solutions to manage the human-machine interaction. For example, 

interfaces were designed to communicate the automated system’s state (Bazilinskyy 

et al., 2018), provide shared haptic control (Abbink et al., 2012) and multimodal 

warning alerts (Bazilinskyy et al., 2018). Even though an enhanced level of 

communication was observed, those studies focused primarily on one side of the 

interaction; the machine.  

For a successful human-machine interaction, the machine (i.e., the automated 

system) will need to understand the human’s mental state and its potential effect on 

their driving performance. This includes the driver’s ability to identify and handle 

critical incidents during the transition from automation to manual driving. With the 

automated system’s ability to understand human’s state, systems could plan to 

ensure a safer transition based on driver’s readiness.  

1.1 Automation 

The Human Condition, written by historian and philosopher Hannah Arendt, 

introduced a comprehensive framework for understanding human work in western 

history (Arendt and Canovan, 1998). The Vita Activa, as defined by her, consists of 

three levels; Labour, Work and Action.  

“Labour generates metabolic necessities — the inputs, such as food, that sustain 

human life. Work creates the physical artefacts and infrastructure that define our 

world, and often outlast us — from homes and goods to works of art. Action 

encompasses interactive, communicative activities between human beings — the 

public sphere. In action, we explore and assert our distinctiveness as human beings 

and seek immortality.”, (Wolcott, 2018) 
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Reflecting Vita Activa on driving, automation helps eliminate the driving labour, 

freeing humans to focus on long-lasting activities of both Work and Action. Full 

automation means, vehicles will perform sensing, reasoning and control. However, 

current automated systems require human’s collaboration to achieve their primary 

aim of driving. This form of reliance requires transparency (Lyons, 2013) and open 

communication between the two major entities of the driving process; the human and 

the machine to form a shared distributed situation awareness (Stanton et al., 2006). 

 

Figure 1: Impact of automation on driver’s activities of the driving task. (Ibañez-

Guzmán et al., 2012) 

This collaboration is seen by drivers as a supervisory role where they can 

communicate their main goals or instructions which in turn are executed by the 

automated systems (Flemisch et al., 2012). This form of perception encourages 

drivers to be reliant on the automated system. However, the ‘reliance’ level of drivers 

is highly dependent on the intelligence degree of the automated system, the driver’s 

experience (Larsson et al., 2014) and complacency (Parasuraman and Manzey, 2010). 

Figure 1 shows the driver's intervention decreasing as the automated system’s 

abilities increase. The intersecting point between the two lines is identified as the 
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collaborative driving that defines the point when drivers become more operator than 

an interactive driver of the vehicle. In the following section, automated driving and 

its impact on drivers are discussed, and the levels of automation are explained in 

detail.  

1.2 Automated Driving 

The concept of automated vehicles was first introduced in experiments in the early 

1920s (Sentinel, 1926). New York Times article brought the light to the concept (New 

York Times, 1925) and since then, several manufacturers vision was directed towards 

the idea. Japan's Tsukuba Mechanical Engineering Laboratory developed the first 

concept that uses signal processing on an analogue computer to direct the vehicle to 

direct itself based on the white street markings (Weber, 2014). Old prototypes were 

heavily dependent on pre-existing infrastructure for guidance and navigation. Later 

in the 1980s and afterwards, vehicles were thought to operate independently of any 

infrastructure by relying on sensing hardware and software (Weber, 2014).  

The United States Defence Advanced Research Projects Agency (DARPA) triggered 

the race among manufacturers and researchers to take self-driving vehicles from 

concept to realisation (Weber, 2014). This was done through a series of competitions 

called Grand Challenge 2004 and 2005 (Buehler et al., 2007) in addition to Urban 

Challenge in 2007 (Buehler et al., 2009). Several vehicles raced through suburban 

and urban areas using automated driving systems. Soon after, several autonomous 

vehicles were tested on roads such as Google Car (Poczter, SL & Jankovic, 2014). 

Since then, the race among top tech companies and start-ups started to create safe 

and reliable self-driving vehicles (Welch and Behrmann, 2018).  
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Researchers, regulators and policymakers put significant efforts in creating the 

necessary taxonomies to manage the degrees of vehicle automation. Two 

organisations, National Highway Traffic Safety Administration (NHTSA, 2013) and 

Society of Automotive Engineers (SAE International, 2018, 2016, 2014) developed 

two frameworks independently for classifying different levels of driving automation 

based on the tasks performed by humans and the automated systems. Both 

frameworks are similar; however, SAE's framework assumes the system is capable 

of monitoring the driving environment without necessarily being activated (SAE 

International, 2018). Both frameworks were highly criticised for establishing 

discretised levels of automation which in reality will not be the case since the systems 

will evolve naturally and gradually (Inagaki and Sheridan, 2018). Additionally, 

SAE’s model is the most widely cited model in the literature and has been revised 

twice since the SAE’s first report. Therefore, the SAE framework is defined and 

discussed in this study. 

1.3 Different Levels of Automated Driving 

As these systems evolve, different levels of automation have been characterised based 

on the system’s ability to intervene in longitudinal and lateral control of the vehicle 

(SAE International, 2018) as illustrated in Figure 2. Automation levels 1 and 2 have 

been achieved by several car manufacturers as a function of their advanced driving 

systems. In both levels, drivers are the primary agents of the driving task. However, 

the automated system is the central controller of the driving in Level 3 and above 

while drivers are not forced to monitor the driving environment (SAE International, 

2018). Though, the driver’s duty is still to monitor the process while these systems 

have longitudinal and lateral control over the vehicle.  
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Figure 2: Illustrations are describing different levels of automation. SAE 

taxonomies focus on four aspects of driving (columns) to distinguish levels of 

automation. Levels 0 to 2 describe the levels where the driver is the principal 

acting agent of driving. Levels 3 to 5 describe the levels where the automated 

systems are the principal acting agent in driving.  
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For example, Level 3 of automation is identified as the Conditional Automated 

Driving System. It will provide full control of all safety-critical functions with 

occasional cases for the driver to intervene (SAE International, 2018). Vehicles at this 

level of automation enable the driver to cede full control of all safety-critical functions 

under specific traffic or environmental conditions and in those conditions to rely 

heavily on the vehicle to monitor for changes in those conditions requiring transition 

back to driver control. The driver is expected to be available for occasional control, but 

with a sufficiently comfortable transition time. Therefore, Level 3 systems would 

benefit from understanding driver's mental state and ability to handle an anticipated 

incident to plan the handover process by estimating driver's ability to respond to 

critical incidents. 

While full automation is in action, drivers may direct their attention away from 

driving to engage in secondary tasks as seen in some studies (Merat et al., 2012). 

Nevertheless, Level-3 systems are still limited and will require the driver to re-

engage within a predefined period of time  in driving to handle a critical latent hazard 

(SAE International, 2018). This could be due to either  sensory or decision-making 

limitations (Zeeb et al., 2015). Another scenario for the takeover is when a driver 

decides to switch the vehicle back to the manual system to enjoy driving. Though, 

drivers may not be ready for the transition due to their lack of situational awareness 

(Wright et al., 2016b). This transition of control (from automated to manual) is the 

critical bottleneck in the human-machine interaction. In the following section, the 

limitations and challenges of the transition of the control process are considered. 
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1.4 The Transition to Manual Driving 

The term ‘transition’ has been widely used in the literature along with other terms 

such as ‘handover’ to refer to the transition process from automated to manual 

driving. A clear definition to the term ‘transition’ is: “The process and period of 

transferring responsibility of, and control over, some or all aspects of a driving task, 

between a human driver and an automated driving system”, (Louw, 2017). This 

definition aligns with Merat et al., (2014) as the transfer of responsibility, or as the 

period taken to change from one vehicle state control to another (Flemisch et al., 

2012).  

 

Figure 3: An illustration of all transitions possible between the human driver and 

the automated system (Flemisch et al., 2008). 

 

Flemisch et al., (2008) introduced a few principles to shape the definition of the 

transition process. The first principle defining the transition is the flow of control 

between the driver and the different levels of automation. For example, the system 

could go from Level-3 automation to Level-1. This principle defines the transition 

based on the transfer of control between the human and the machine. Figure 3 shows 

all possible transitions among the five levels of automation.   

The second principle of Flemisch et al., (2008) shapes the transition’s definition by 

who has the control at the start of the transition and who is the recipient of control 
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at the end of the transition. As illustrated in Figure 3, the transition may be given 

from one level of automated to another without necessarily involving the human 

driver in the process and for example, switching from Level-3 to Level-4.  

The third principle of transition as defined by Flemisch et al., (2008) is the initiator 

of the transition. The initiation is triggered by one of the two agents involved in the 

‘transition’, i.e., the automated system or the human driver. There’s a distinctive 

difference between the two transitions because the human driver’s readiness may be 

inconsistent. For example, a transition initiated by a human driver entails that the 

driver may be aware of the system limitation or is in full situational awareness 

(Larsson et al., 2014). However, a transition initiated by the automated system is 

often referred to as a ‘mandatory transition’ and is usually initiated due to a system 

limitation that may lead to a critical incident (Saffarian et al., 2012). This limitation 

could be due to the lack of driver’s situational awareness or their mental capacity to 

handle a system limitation or critical hazard (Endsley and Kiris, 1995; Merat et al., 

2012).   

Several studies have discussed the issues of the ‘mandatory transition’, (De Winter 

et al., 2014). First known study to discuss this issue was Endsley and Kiris's, (1995). 

The main recommendations of Endsley and Kiris's, (1995) study was that the 

automated system has to put the driver’s mental state into consideration before 

initiating the transition of control. In the past decade, several studies identified a 

substantial number of variables influencing the driver’s performance during the 

transition phase (De Winter et al., 2014). A well-cited study argued that the driver's 

situational awareness is the main challenge to the performance of drivers (Merat et 

al., 2012).  

Moreover, (Louw, 2017) recommended that “Should the system be equipped with a 

driver monitoring system, the decision to relinquish driving control would have to be 
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based on some empirical data of drivers’ capacity and behaviour, in such conditions. 

For example, if the pattern of drivers’ visual attention in the lead up to a transition 

shows that they were completely disengaged from the driving task, then a take-over-

request could be delayed until drivers’ attention is back on the driving task.  

Otherwise, the vehicle may initiate a minimum risk manoeuvre, bringing the vehicle 

to a safe position on the road. At present, this data does not exist. Therefore, it is 

further motivation to investigate drivers' capabilities and limitations in research”. 

This highlights one of the research gaps in the literature which is further explored in 

the literature review chapter. 

Both situation awareness and mental workload levels are attainable through several 

physiological data measures. De Winter et al., (2014) performed a comprehensive 

review of the partially controlled and highly automated vehicles. Their results 

identified physiological measures such as heart rate, eye movements, blinking and 

other features as reliable indicators to driver's mental workload and situational 

awareness. A drawback to their review is that it is out of date since the field has 

accelerated since 2014 in addition to their focus on partially controlled studies 

because there were not enough studies about highly automated driving. A 

comprehensive literature review is required to validate their findings and update 

them with the latest research in the past years.  

1.5 Aim 

The main aim of the study is to assess the correlation between the drivers’ 

physiological behaviour and the quality of their performance during a transition from 

highly automated driving to manual driving. The following questions formed the 

basis of the conducted research: 
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1. What physiological data that could be collected in a highly automated driving 

environment to provide an assessment of the driver’s response to critical 

incidents? 

2. How does automation affect the collected physiological patterns of drivers in 

highly automated driving scenarios? 

3. How do secondary tasks reflect on the driver’s physiological patterns pre-

transition, during transition and post-transition period? 

4. What are the suitable driver performance measures to assess their responses 

during the ‘mandatory’ transition period? 

5. What’s the relationship between physiological data and driver’s performance 

during the transition?  

6. What features could be extracted from physiological data that could support 

the predictability of driver’s performance? 

7. How could physiological data be used to assess the predictability of the driver’s 

performance? 

1.6 Objectives 

The research aim is achieved through the following objectives:  

1. To conduct a critical review of existing literature to study different approaches 

for assessing drivers’ physiological behaviour and its effect of their 

performance during the ‘transition’ phase. The objective is broken into the 

following stages: 
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• To review highly automated driving studies to identify the research gap 

and assess the different literature approaches used for data collection, 

analysis, and their data analysis methods 

• To review different factors affecting driver’s response quality in 

highly automated driving studies. 

2. To design a driving scenario to assess driver’s response quality during both 

manual and highly automated driving. The driving scenario involves the 

transition from highly automated to manual driving to understand 

driver’s physiological behaviour pre- during and post-transition. 

• To write all the necessary code and acquire essential equipment to 

conduct the study designed on objective 2. The demographics of those 

participants are determined based on the outcomes of the literature 

review produced on objective 1 and on their suitability for the case study. 

3. To conduct the study, produced on objective 3, on recruited participants. 

4. To define an evaluation framework that assesses the efficiency of the 

prediction model produced by objective 6. 

5. To assess the correlation between physiological patterns and driver’s 

performance.  

6. To develop a system that will take data collected from objective 4 to determine 

the outcome of the takeover done by the driver. The system includes a model 

capable of predicting drivers' response concerning time and quality before a 

takeover request. The efficiency of the model is further assessed using the 

evaluation framework developed on objective 5. 
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1.7 Thesis Overview 

 

Figure 4: Thesis Structure. 

 

• Chapter two reports a comprehensive literature review of automated driving 

to establish a clear understanding of the transition from automated to manual 

driving. Other studies from the manual driving field are reviewed to project 

missing research points in the highly automated driving field. Detection 

methods of driver’s inattention are surveyed. In addition, physiological 

behaviour of drivers in highly automated driving (HAD) is surveyed and 

summarised. Finally, the research gap is defined.  

•General introduction

•Define research questions, aim and 
objectives

Chapter 1

•Literature review

•Define Research Gap
Chapter 2

•Research methods

•Data collection, preparation and analysis 
methods

Chapter 3

•Results of the driving simulator 
experiment

Chapter 4

•Results of the machine learning 
experiment

Chapter 5

•General discussion of results from 
Chapters 4 and 5

Chapter 6

•State conclusions

•Summarise reflections on the methods and 
identify further work

Chapter 7
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• Chapter three details the research methods used in this study. Research 

philosophy, approach, data collection and analysis are explained and justified.   

• Chapter four presents the results of the driving simulator study during the 

automation and the transition. Physiological behaviour of drivers is studied 

and correlated to their performance during the transition period.  

• Chapter five presents the analysis of a machine learning-based approach in 

predicting the driver’s performance.  Results of regression and classification 

methods are explained.  

• Chapter six presents the analysis of the results in Chapters four and five, 

correlated to each other and to other studies in the field. The physiological 

behaviour of drivers is analysed and correlated to their subjective and 

objective measures.   

• Chapter seven summarises the results and discussions reported in Chapter 

four, five and six. A reflection on the methodology, data collection and analysis 

are reported. Finally, further work suggestions are provided.   
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Literature Review: Highly 

Automated Driving Studies 
 

Research studies proved that drivers tend to get ‘out-of-the-loop’ when using the 

level-3 automated driving systems (e.g. Endsley and Kiris, 1995; Merat et al., 2012; 

Gold, Damböck, et al., 2013; Körber and Bengler, 2014; Merat and de Waard, 2014; 

Radlmayr et al., 2014; C. Gold et al., 2016; Körber et al., 2016; Louw et al., 2016). The 

out-of-the-loop phenomenon is defined as a complete distraction from the driving 

environment, i.e., losing situational awareness. Loss of the situational awareness 

causes drivers to make poor decisions, especially when handling a critical handover 

caused by a system failure or limitation (Brookhuis and de Waard, 2001). Therefore, 

several studies focused on understanding what determines the handover time and 

the assessment of a driver's decision-making during the handover process. 

In this chapter, issues of Level-3 automated systems are critically reviewed with a 

specific focus on the ones arising during the handover process. Generally, studies 

reviewed here focussed on the handover phase from an automated level-3 to manual 

driving (Level- 1 and 2). Each study focussed on an individual condition and how it 

impacted performance. Examples of such conditions are traffic density, secondary 

task, weather, and driver background measures (Merat and de Waard, 2014). 
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2.1 Differences among Transition, Handover and 

Takeover 

Several studies tend to use handover, ‘transition of control’ and takeover terms 

interchangeably. A critical distinction between handover and takeover is identified in 

Merat's and de Waard, (2014) that defines handover as the process of transferring 

control from the vehicle to the driver starting with the takeover request until the 

driver has full control of the vehicle. The ‘transition of control’ has a similar 

definition; however, it refers to the transition between the human driver and the 

automated driving system in both directions (Louw, 2017).  

 

Figure 5: Model of the handover process showing when take-over time starts and 

ends (Zeeb et al., 2015) 

 

Moreover, Merat and de Waard, (2014) defined the takeover as the specific time when 

the driver is in control of the vehicle. The main difference is that handover is a 

generalised term that covers the takeover request, transfer of control, and the time 

taken until the driver has gained full situational awareness. Conversely, the 

‘takeover’ is a specific term that refers to the time a driver takes to regain control of 

the vehicle only.  

In Figure 5, handover and takeover are illustrated on a timeline indicating the start 

and end of the takeover process during the overall handover process. As seen in Figure 

5, the takeover is a subset of the handover process starting at the takeover request 
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and ending at the time in which the drivers gain full control of the vehicle. To 

summarise, the study uses the term ‘transition of control’ to refer to the process of 

transferring some or all aspects of control between the human driver and the vehicle 

in both directions. The handover is the process of the automated driving system 

delegating some or all the driving task to the human driver.  

2.2 Understanding Highly Automated Driving 

Studies 

Studies in the literature utilised driving simulator technology to test simulated 

events or incidents safely on human participants. Each study has a driving scenario 

that ranged between 15 to 90 minutes in urban and suburban areas (Gold et al., 2016, 

2013a; Jamson et al., 2013; Louw et al., 2016; Merat et al., 2012; Merat and de Waard, 

2014). Short scenarios include a practice driving session before the study is taken 

(Merat et al., 2012; Neubauer et al., 2012). This is due to an observed learning curve 

to both the simulator and the automated systems (Körber and Bengler, 2014; Larsson 

et al., 2014; Wright et al., 2016a). Most studies recruited participants based on 

specific criteria such as years of driving experience, high annual mileage driven, and 

experience with Adaptive Cruise Control systems to satisfy the aim of their studies 

(Larsson et al., 2014; Wright et al., 2016a). 

Experimenters in the reviewed studies in this chapter usually asked drivers to 

perform both manual and automated driving to allow for comparing different driving 

behaviours. One or more incidents or hazards are introduced in the middle or near 

the end of the study, to study driver’s ability to handle the critical incident. The 

experimental design varies environmental parameters to study their influence on 

driver’s performance. The parameters manipulated in those experiments could be 

weather based such as light or heavy fog (Louw et al., 2016), automated system 
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design based such as time budget (Gold et al., 2013a), or driver based variables such 

as the influence of distraction (Zeeb et al., 2016). During some experiments, drivers 

are asked to perform a non-driving related (NDR) task to allow for a quantifiable 

distraction during the automated period of the scenario.  

The NDR task could be a cognitive performance task such as the n-back task or 

Twenty-Questions Task (Radlmayr et al., 2014), a visually demanding task such as 

Surrogate Reference Task (Gold et al., 2013a), a simulated phone conversation 

(Körber et al., 2016) or naturalistic tasks such as watching a video, reading news or 

writing an email (Zeeb et al., 2016). Based on the collected data, experimenters 

evaluate how drivers responded to these critical incidents based on several factors 

affecting their decision making performance (Larsson et al., 2014; Merat et al., 2012; 

Radlmayr et al., 2014), age influence (Körber et al., 2016), or variables correlating 

with their cognitive workload load such a blink frequency (Merat et al., 2012), NDR 

tasks performance (Gold et al., 2016), and gaze behaviour (Louw et al., 2016; Zeeb et 

al., 2015). 

Studies also look for other factors such as mental workload (Zeeb et al., 2016), 

situational awareness and driver opinion towards the system after conducting the 

experiment (Merat and de Waard, 2014) to have a broad understanding of drivers’ 

behaviour and find the reasoning behind their performance. Finally, some studies 

investigated the influence of external conditions on drivers’ performance during the 

handover process such as different traffic density levels (Körber et al., 2016; Radlmayr 

et al., 2014) and simulated weather conditions (Louw et al., 2016).  

The study performed by (Merat et al., 2012) is a good example of the standard 

methodology used by most studies in the field. The main objective of the study was to 

compare the differences in the mental workload of drivers between Level-1 and Level-3 

driving. The driver’s performance was evaluated based on their blinking patterns. The 
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blinking pattern performance measure was chosen due to its ease of use and non-

intrusiveness nature in detecting the driver’s workload, fatigue, and stress 

(Neumann and Lipp, 2002). The blinking frequency was collected using a FaceLab 

eye tracker (faceLAB, 2016). The scenario of the study was to ask participants to 

drive on the same road both in Level-1 and in Level-3 modes. In Level-3 mode, some 

drivers were asked to perform an NDR task to elevate their cognitive workload. The 

NDR task used in the study was the Twenty-Questions Task (TQT); explained in 

detail in section 2.3.1.2. Drivers were also expected to drive manually on the same 

road to compare their blinking patterns in Level-1 and Level-3 modes. The study 

recruited 50 participants to perform on a driving simulator. Each participant had a 

45 minutes’ practice session to get familiar with the simulator on manual and Level-

3 automation levels. In between the two sessions, drivers had a break in between to 

alleviate fatigue potentially caused by the long sessions.  

Half of the participants of Merat et al., (2012) started the Level-1 session first while 

the other half started the Level-3 session first to minimise the order effect. During 

the Level-3 mode, participants were asked to perform the TQT, i.e., guess a specific 

object by asking the experimenter a maximum of twenty yes-no questions. This TQT 

lasted for 3 minutes and was performed twice. One of those times, the TQT was 

followed by a critical incident that required driver’s intervention. Collected data 

showed that blinking frequency patterns were much lower during the high workload 

periods. Also, the blinking frequency was more consistent during Level-1 in 

comparison to Level-3 mode which had a much higher inconsistency in blinking 

frequency. Therefore, the study concluded that driver's performances had no 

significant differences in both modes; however, when a secondary task is introduced, 

the performance of drivers is highly degraded during the takeover process.  
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To conclude, this section introduced an overall summary of the literature of highly 

automated driving. The key questions faced by the researchers in the field were 

briefly discussed and their findings were reviewed briefly. The structure of 

experiments in the highly automated driving field was introduced in detail based on 

Merat's et al., (2012)  study. Several factors affecting driver’s performance were 

introduced briefly. More details will be provided in section 2.3. 

2.3 What Affects Driver’s Response? 

In the following section, several studies that investigated different aspects affecting 

the takeover time and performance are critically reviewed. The reviewed studies are 

divided into six categories. The first category discusses the time budget given to drivers 

to responds after the takeover request and its effect on the quality of driver’s responses. 

The second category is named ‘driver distraction’, and it includes all studies inducing 

distraction on drivers using NDR tasks. It is grouped by the NDR tasks performed prior 

to the Takeover Request (TOR) which could influence the handover process. In this 

category, several NDR tasks were introduced to affect the driver’s cognitive and 

visual workload. The third category is named ‘stress and fatigue’, and it includes all 

studies inducing fatigue or stress on participants in the highly automated driving 

environment. The fourth and fifth categories include the manipulation of traffic 

situation and road conditions. The reviewed studies of the two categories investigated 

the influence of road and traffic conditions on the driver's performance during the 

handover process. The sixth category is named human machine interfaces, and it 

discusses the impact of the communication design between the automated system 

and the driver. Finally, the seventh category is named ‘driver background’ which 

include studies focusing on driver’s global factors such as age, driving experience in 
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addition to their individual differences in handling acceleration and braking. In the 

following sections, each one of them is critically reviewed. A quick summary of the 

definitions is laid out on Table 1. Then, highlights of the main studies reviewed are 

summarised in Table 2.  

Table 1: Summary of the six categories of factors affecting driver’s responses in highly 

automated driving studies. 

Category name Summary 

Time budget Time budget is the time between the takeover request and the 

time a critical incident occurs if the driver doesn’t apply any 

changes to the vehicle’s lateral or longitudinal speed. 

Driver distraction The  driver distraction category is defined through the type of 

tasks the driver is distracted with before the takeover request. 

Fatigue and stress The stress level and fatigue of drivers influence their responses 

during the takeover process. Stress or fatigue could be caused 

by driving- or externally-imposed (pre-driving condition). 

Traffic situation The traffic situation category is concerned with any factors 

influenced by nearby traffic, whether it’s traffic density or 

emergency vehicles such as police cars, etc. 

Road conditions The road conditions category is concerned with any factors 

influenced by the weather, road shape or visibility,  

Human machine 

interfaces 

The human machine interfaces category is concerned with the 

factors affected by the design of the vehicle’s cockpit and its 

communication channels with the driver such as 

communicating uncertainties, etc. 

Driver’s 

background 

measure 

The driver’s background measure are the driver’s personal 

factors such as age, driving experience and personal driving 

style.  

2.3.1 Time Budget 

Many studies varied the time budget given to drivers to handle the takeover situation 

in order to understand the driver’s ability to gain full control after a takeover request 

(Eriksson and Stanton, 2017). The time budget or the time-to-collision is the time 

between the takeover request and the time the vehicle collides with another vehicle 

or object if the driver doesn’t interfere. Most studies focused on near-crash scenarios 

on a motorway while varying different variables such as traffic density, drivers 
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experience and other factors (Eriksson and Stanton, 2017). The first known study to 

vary the time budget was Damböck et al., (2012) who evaluated 4, 5, 6 and 8 second 

time budgets. The study reported a significant crashing rate in groups that were in 

the range of 4-6 seconds in comparison to the 8 seconds group. More studies 

investigated the time budget in depth.  

The driver’s response time differs significantly among studies (e.g., Gold et al., 

2016, 2013; Zeeb et al., 2015). Literature showed that response time is influenced 

by NDR tasks (Merat et al., 2012), drivers’ background measures (Körber et al., 

2016), driving experience (Wright et al., 2016b),  and road conditions (Gold et al., 

2016; Radlmayr et al., 2014). Among those, NDR tasks are the most dynamic 

factors influencing response time. Several studies reported seven (Gold et al., 

2013a), eight (Wandtner et al., 2018), ten (Melcher et al., 2015) and 12 seconds 

(Zeeb et al., 2015) as a safe time budget to be given to drivers to respond.  

Intriguingly, studies reported that drivers take a longer time to respond if they 

were given a more extended time budget (Gold et al., 2013a). An explanation to 

this could be due to drivers investing time in restoring situational awareness 

before taking an action; hence, they had a safer response as measured by the 

objective measures in comparison to the group who were given a shorter time to 

respond (Gold et al., 2013a; Radlmayr et al., 2014; Zeeb et al., 2016).  

Moreover, studies recommended that shorter time budgets increase the probability 

of crashing. For example, van den Beukel and van der Voort, (2013) reported that 

shorter time periods increased the crashing probabilities significantly. Their study 

found that 47% of drivers with a time budget of 1.8 seconds were unable to avoid a 

collision in comparison to 12.5% of drivers with 2.8 seconds. The findings of van den 

Beukel and van der Voort, (2013) aligns with Zeeb, Buchner and Schrauf, (2015) 

where they reported 45% and 15% of drivers crashing when given a time budget of 
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4.9 and 6.6 seconds respectively. The findings of the two studies suggest that human 

drivers perform very poorly in a time-restricted take-over scenario.  

 

Figure 6: Illustration of how drivers allocated their time budget to respond to a 

critical hazard Gold, Damböck, et al., (2013). 

 

The findings of Zeeb, Buchner and Schrauf, (2015) and van den Beukel and van der 

Voort, (2013) attempted to extend and challenge previous findings of  Gold, Damböck, 

et al., (2013). The study conducted by Gold, Damböck, et al., (2013) examined 5 or 7 

seconds time budget until a collision occurs with a broken vehicle in the ego-lane. 

Their study’s baseline was a group of drivers performing the same task in manual 

driving. Gold, Damböck, et al., (2013) crafted a detailed understanding of driver’s 

behavioural response to a critical hazard with significant details to the spending of 
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their time budget as illustrated in Figure 6.  The study found out that drivers were 

given 5 seconds to respond reacted faster to the hazard, but they were much more 

likely to skip critical safety checks such as glancing at the rear and side mirrors 

before their lane change manoeuvre. The study concluded that a 7 seconds budget is 

adequate for drivers to respond to critical hazards in highly automated driving. 

Subsequently, the results from Gold, Damböck, et al., (2013)  have been adopted in 

recommendations by the NHTSA as a standard for manufacturers to design their 

automated system’s transitions (Campbell et al., 2018).  

2.3.2 Driver Distraction 

Driver distraction is the process of disconnecting from driving and is categorised as 

visual, cognitive (Lee et al., 2001) or manual (Craye and Karray, 2015) distraction. 

Visual distraction is identified as the loss of visual concentration on the road for a 

quantified period. Visual distraction is quantified in driving studies as the eyes-off-

road time such as watching a video or reading a document (Craye and Karray, 2015). 

Visual distraction is caused by either cognitive or visual causes. Visual causes are a 

result of onboard presence and multimedia devices and salient visual notifications of 

driving-related activities. For example, an entertainment system, a petrol level 

warning light or over-speed notification on the dashboard might cause spontaneous 

off-road glances (Haigney and Westerman, 2001). 

Cognitive distraction is another factor which is identified as the insufficient 

concentration of a driver on a critical driving task. It concerns cognitive processes 

and has been described in a few studies as the mind-off-road (Liang and Lee, 2010; 

Victor, 2005). For example, it may occur when the driver is talking to other 

passengers, on the phone or during texting (Craye and Karray, 2015). The symptoms 
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of cognitive distraction are less apparent and harder to detect or quantify in 

comparison to visual distraction. Therefore, they require more sophisticated 

techniques and long-term detection of the driver’s patterns (Recarte and Nunes, 2003; 

Zhang et al., 2004). 

Manual distraction involves hand activities such as holding a cup or a phone. Even 

when eyes are still on-road, the driver’s response time is longer in comparison to a 

situation without manual distraction. This delay is thought to be caused by the 

additional mental and manual effort to get rid of the manual distraction before 

engaging in the driving task (Craye and Karray, 2015). 

With level-3 automated driving systems, drivers may engage in distracting tasks 

that will acquire their visual and cognitive attention (Cantin et al., 2009; 

Hancock et al., 2009). The distraction of drivers raises several safety concerns 

when the automated systems signal a takeover request (TOR) to drivers to handle 

a system limitation or a latent hazard. To understand the consequences, studies 

assessed how different tasks might affect driver’s situational awareness before the 

takeover request, their readiness for the transfer of control, and the restoration of 

situational awareness starting from the TOR until the end of handover process 

(Merat and de Waard, 2014). Such situational awareness involves perception, 

comprehension of the conditions and projection of the latent hazard (Endsley, 1995). 

During a takeover, drivers responses to critical incidents were comparable to their 

driving behaviour in manual driving when they are not performing any NDR tasks 

(Merat et al., 2012). Once an NDR task is introduced, drivers’ responses degraded 

significantly (Gold et al., 2016, 2013b; Healey et al., 2012; Merat et al., 2012; Merat 

and de Waard, 2014; Radlmayr et al., 2014). 
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At an abstract level, drivers are usually distracted by a task that possesses most of 

their cognitive, visual or manual attention. The NDR tasks make it more difficult for 

a driver to regain the situational awareness due to the high workload demanded by 

the secondary task (Baumann et al., 2007; Blanco et al., 2006; Kass et al., 2007).  

Similarly, response quality is impacted by the NDR tasks due to their visual or 

visuo-cognitive distraction from the driving environment (Zeeb et al., 2016). To 

respond to a take-over situation, drivers require a cognitive processing time to 

restore situational awareness and respond accordingly (Endsley, 1995; Endsley 

et al., 1997).  

In the automated driving literature, studies investigated several NDR tasks that 

induce cognitive workload such as n-back task (Radlmayr et al., 2014), Twenty 

Questions Task (Merat et al., 2012), visuo-cognitive tasks such as reading news 

(Zeeb et al., 2016), internet search (Zeeb et al., 2016), vehicle’s multimedia 

systems (Zeeb et al., 2015) and IQ questions (Louw et al., 2016).  

Gold et al., (2015) reported a significant decrease in performance for tasks 

including manual versus cognitive workload. Such results concur with the 

findings of Petermann-Stock et al., (2013) that the worst performance decrements 

were caused by quizzes requiring a combined visual, cognitive and manual 

workload in comparison to quizzes requiring one or two of those workloads. Their 

findings contradict Gold et al.'s, (2015b) findings that reported cognitive and 

manual tasks had the same detrimental effect. The contradiction provides the 

necessary motivation to study the physiological differences caused by cognitive 

and visuo-cognitive tasks in order to provide a better understanding of the 

differences among those studies. As mentioned earlier, critically reviewed studies 

in this section used several techniques to simulate visual and mental workload with 
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NDR tasks. The adopted NDR tasks are explained and discussed in the following 

sections, with selections that include cognitive and visuo-cognitive tasks. 

2.3.2.1 N-back Recall Task 

The N-back Task is a continuous performance task used to assess and challenge the 

capacity of the working memory (Bruce Mehler et al., 2011; Kirchner, 1958). "The 

auditory attention and memory components of the task draw on many of the same 

cognitive resources utilised when engaging in an externally paced task such as 

responding to a cell phone call or interacting with an in-vehicle device that uses 

audible prompts or control commands. Similarly, it draws on cognitive resources that 

are utilised for less structured interactions such as attending to and maintaining a 

conversation with a passenger", ( Mehler et al., 2011). 

The n-back task is performed by asking the participant to listen to a set of digits and 

then asked to say aloud the nth digit from last digit (Mehler et al., 2011). For example, 

Louw et al. (2016) used the 1-back task to induce a cognitive workload on drivers in 

a typical driving environment. Participants were asked to repeat aloud the last single 

digit number they heard in a series of numbers. 2-Back Task was used by Radlmayr 

et al. (2014) to compare the visual (caused by the Surrogate Reference Task) and 

cognitive distractions caused by the 2-back task to assess the quality of driver’s 

takeover. The Radlmayr et al. (2014) study has shown the same influence of both 

tasks on dense traffic scenarios. In summary, the N-Back task is considered in studies 

that analyse the cognitive workload effect on drivers without necessarily engaging 

them visually. 

2.3.2.2 Twenty-Questions Task 

The TQT is used to stimulate cognitive reasoning and creativity by asking 

participants a series of questions that require reasoning and memory recall to reach 
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a specific answer or make an informed estimation (Walsorth, 1882). In driving 

studies, it is used to induce the driver's mental workload to stimulate cognitive 

distraction. For example, Gold et al. (2016) and Körber et al. (2016) used the TQT to 

make their participants guess an animal by asking the experimenter a series of polar 

(yes-no) questions; when the animal is guessed correctly, the participant is asked to 

guess a new one to continue the same level of mental workload.  

A study by Strayer, Drews and Johnson, (2003) compared the mental workload of the 

TQT of drivers in highly automated driving environment and a manual driving group. 

They reported that the mental workload imposed by the TQT on HAD drivers was 

comparable to the mental workload imposed by manual driving. It also reduced 

situational awareness. As a result, it prolonged driver's reaction time because the 

driver required an additional time to gain a full understanding of their surroundings 

(Strayer et al., 2006). The study of Gold et al. (2016) reassured that the TQT has an 

adverse effect when merged with high traffic density. The Gold et al. (2016) study 

concluded that drivers who are distracted by the TQT take longer to react because 

they require a longer time to regain full situational awareness during the takeover 

manoeuvre. They also performed poorly with a higher number of collisions and near 

collisions in comparison to participants who were not distracted by the TQT task on 

the same experiment. 

2.3.2.3 Simulated Hands-free Phone Call 

Some studies merge the TQT with simulated hands-free phone calls (HFPC) to make 

it more naturalistic for drivers. The literature showed that HFPC has no significant 

effect on increasing chances of safety-critical incidents (Fitch et al., 2013); however, 

accompanying it with the TQT raises those chances (Heenan et al., 2014). Merat et 

al. (2012) used a simulated hands-free phone call with the TQT for verbally guessing 

questions. Results showed that the worst performance of the takeover process was 
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when drivers were not allowed to interrupt the task during the handover process. The 

HFPC and N-Back Tasks were used on elderly groups to challenge their mental 

allocation, pausing, and resuming of driving and NDR task  ((Körber et al., 2016; 

Radlmayr et al., 2014). Radlmayr et al., (2014) used the N-Back task and reported 

that age is a strong influence of driver’s performance while Körber et al., (2016) used 

the TQT and reported that age had no influence. These conflicting outcomes are 

probably influenced by the researcher’s choices of the NDR tasks. It’s likely that the 

N-Back Task posed a stronger cognitive demand in comparison to the simulated phone 

call. Therefore, a study in this field might consider the consequences of the choice of 

their NDR tasks. More details about Körber et al., (2016) and Radlmayr et al., (2014) 

are provided in 2.3.7.1 section. 

2.3.2.4 Surrogate Reference Task 

The Surrogate Reference Task is a visually demanding task that involves searching 

and responding; for example, participants are presented with a group of circles 

(typically on display) and are asked to identify the biggest one (Jamson and Merat, 

2005). Gold, Damböck, Lorenz and Bengler (2013) used SuRT as a secondary task to 

visually distracting drivers to determine their response time when the automated 

system issues a TOR. The task was enhanced with a score graph to engage drivers in 

it. Based on Radlmayr et al. (2014), SuRT has a similar effect to n-back task in heavy 

traffic scenarios. 

2.3.2.5 Naturalistic Tasks 

Naturalistic tasks simulate the most common scenarios that may occur naturally 

during the automated driving; hence they were common among HAD studies. Some 

studies used naturalistic tasks to simulate distraction in driving scenarios. Reading 

(Wright et al., 2016b; Zeeb et al., 2016), writing an email, watching a video (Zeeb et 
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al., 2016), Internet searching and texting (Zeeb et al., 2015) were examples used in 

the reviewed literature. Naturalistic tasks were explored in manual driving studies. 

For example, the effects of eating, drinking and grooming were studied (Sayer et al., 

2005). The aforementioned tasks are yet to be explored in the highly automated 

driving studies.  

A major drawback to naturalistic tasks is their inconsistent level of distraction on 

participants. For example, in-vehicle entertainment (sweets, hand-held games, 

magazines, and films) was used in Jamson et al. (2013) to encourage drivers to get 

distracted. They reported that experienced drivers spent less time distracted by the 

entertainment system in heavy fog in comparison to light fog environment which was 

due to a sense of responsibility towards their safety. However, experienced drivers 

were more distracted generally in comparison to their state in manual driving.  

Some other studies explored IQ-based questions. Louw et al. (2016) challenged 

drivers cognitively with a quiz based on IQ questions to assess shape matching, 

general knowledge, and moderate mathematical problems. Drivers were going 

through a simulated fog environment, and the quiz was used to induce their 

cognitive workload. While this is a relatively new approach, the paper has 

provided neither the questions nor the selection criteria used to pick out those 

questions. Therefore, replicating the study would be very difficult. 

2.3.2.6 Tactile Detection Response Task 

Tactile Detection Response Task (TDRT) is another recently developed response task 

to assess driver’s response time.  A vibration signals drivers to touch a tactile surface 

to acknowledge the signal within a time limit (Young et al., 2013). The time taken 

from the signal to the touch gives a cue on the alertness of the driver and their 

response time. 



 

 

33 
 

HAD studies have not used TDRT in their studies. However, some performed a 

similar approach to detect the driver’s motor readiness. For example, participants of 

Zeeb, Buchner and Schrauf, (2016) pressed a button in the steering wheel at the start 

of a takeover to gain back full control of the vehicle; hence, measuring the motor 

readiness time of drivers. In practice, Zeeb, Buchner and Schrauf, (2016) used the 

TDRT approach implicitly.  

2.3.2.7 Summary of Driver Distractions 

In summary, HAD studies focused on using TQT as a secondary task especially in 

scenarios that required adding a cognitive workload on drivers without imposing any 

visual distraction. SuRT was used in scenarios that required visual distractions while 

the n-back task was used to induce a strong cognitive distraction. Naturalistic tasks 

were used but not as frequently because of their inconsistency in inducing visual or 

cognitive workload in comparison to TQT and SuRT.  

To satisfy the main aim of this study, driver’s behaviour under the influence of visual 

and cognitive distractions separately should be collected and analysed to train and 

evaluate the performance of the prediction model in both scenarios. To conclude, each 

secondary task affects the driver's attention cognitively and visually, and the 

selection should be based on the scenario and hypothesis of the study, please check 

section 3.3.5 for more details on the study’s approach in selecting the suitable NDR tasks 

for the experiment. 

2.3.3 Fatigue and Stress 

Fatigue is a result of physical, physiological, or psychological causes as it is correlated 

to drowsiness. Its symptoms could be drowsiness and frequent nodding, and it is 
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caused by either external factors such as the driver's preconditional state before 

driving or due to long periods of driving (Liang and Lee, 2014). 

Fatigue and stress are key factors impairing driver’s performance in automated 

driving (Morgan et al., 2016) and such automation may exacerbate drivers’ fatigue 

which in turn impairs their safety-critical performance to handle immediate hazards 

(Saxby et al., 2013). Rauch et al. (2009) highlighted the importance of a drowsiness 

and fatigue detection system in HAD vehicles. The study also identified fatigue as a 

hindering factor against the driver's ability to get back-in-the-loop during the 

handover process. 

To detect fatigue, Percentage of Eyes Closed (PERCLOS) is considered an accurate 

measure of drowsiness and fatigue in driving situations. It measures the 

percentage of time when eyes are closed and based on a threshold; it detects fatigue 

(Wierwille et al., 1994). Jamson et al. (2013) used PERCLOS to prove that driver’s 

fatigue rises from 1.8% in manual driving to 3.8% in automated driving. The observed 

increase indicated a decline in driver’s arousal caused by the automation. However, 

the same phenomenon was not observed in heavy traffic conditions during the 

experiment. Drivers were expected to drive for 35-minutes following a 40-minute 

practice in a simulator. Even though long experiments allow for more data, drivers 

seem to reach a drowsiness level after 90-minutes of a HAD study  (Alford, 2009; 

Morgan et al., 2016); it is not known whether the drowsiness is caused by the driving 

routine or by the experiment effect itself. 

Therefore, a road study should be done to understand how long driving in HAD 

vehicles affects drowsiness level in drivers. Moreover, the effect of fatigue during 

extended driving sessions beyond 90 minutes is still to be explored. Finally, the effect 

of sleepiness and drowsiness should also be investigated during the handover process 

for both short and long driving sessions.  
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2.3.4 Traffic Situation 

Traffic density has shown a strong influence on takeover time and performance. Gold 

et al. (2016) found out that traffic state has a significant impact on takeover 

performance during an emergency handover. This aligns with findings of Radlmayr 

et al., (2014). The study of Gold et al. (2016) explained that the traffic density has 

a ’ceiling effect’ in which the performance degradation reaches a peak when the 

density is around 15 cars per kilometre and remains the same as the number grows. 

The degradation could be explained by the driver's extended visual scanning and 

longer decision-making process. The study suggested further exploration of the 

relationship between traffic density (between 1 and 15 cars per kilometre) and 

handover performance. Gold et al. (2016) conducted the study on 72 participants from 

a younger [ Mean (M) = 23.3, Standard Deviation (SD) = 2.6] and older [M = 66.7, SD 

= 4.56] and suggests that age was not a factor in the handling of traffic density. The 

study has not considered middle age participants [M=35-40] who may perform 

differently from the two age groups that were used. 

2.3.5 Road Conditions 

Road conditions were found to be another effective factor during the handover 

process. A study found a strong negative correlation between road visibility (i.e., fog 

heaviness) and the number of crashes. Those who performed a takeover in heavy fog 

were 46% more likely to crash in comparison to 33% in no fog scenario in the same 

experimental design. During the transfer of control in a heavy fog environment, 

erratic eye movements were identified in those who were more likely to crash in 

comparison to those with smoother eye pattern movement who were less likely to 

crash (Louw et al., 2016). This is because those drivers were able to identify the 
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potential hazard earlier and therefore avoid it. However, it could be due to two 

reasons as stated by Louw et al., (2016). First, it could be an increase in cognitive 

demand on the participants which was caused by an ‘automation surprise’ (Hollnagel 

and Woods, 2005). Automation surprise is defined as an action made by the 

automated system and wasn’t expected by the user (Hollnagel and Woods, 2005).  The 

second reason could be due to driver’s over-trusting the system to handle the hazard 

(Lee and See, 2009). The literature has not yet explored other road conditions such 

as heavy rain and storms. 

2.3.6 Human Machine Interfaces  

The literature has explored several approaches to identifying optimal communication 

channels between drivers and automated driving systems (Helldin et al., 2013; Kunze 

et al., 2018a; Louw, 2017; Zhang et al., 2018). Studies also explored communicating 

the uncertainties of the system through visual cues (Kunze et al., 2018a) and light 

feedback (Kunze et al., 2018b) to keep drivers in the loop. This, in turn, improved 

trust and driver’s allocation of attention (Kunze et al., 2018a). Kunze et al., (2018) 

introduced a new method to communicate the automated driving system’s 

uncertainties using a displayed graphics simulating heart rate frequency on the 

dashboard. The high frequencies represented a high uncertainty of the driving 

environment. The results of  Kunze et al., (2018) showed an improved response time, 

driver’s performance and minimum time to collision. Results aligned with the 

findings of similar studies (Beller et al., 2013a; Helldin et al., 2013). A main drawback 

to the Kunze et al., (2018) is the use of a simple NDR task (SuRT) which may not 

have imposed a strong visuo-cognitive distraction on drivers.  To summarise, the 

communication of the automated driving system’s uncertainty improved driver’s 

vigilance during the pre-TOR period which in turn improved their performance 
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handling a critical incident. Human-machine interfaces were considered as  out of 

the scope of the study; refer to section 1.5 for aim and objectives. Thus, advanced 

human-machine interfaces were not investigated.  

2.3.7 Driver Background Measures 

Several studies identified driver specific variables that had an influence on drivers’ 

responses such as trust, mental capacity influenced by age (Körber et al., 2016) or 

driving experience (Larsson et al., 2014). In the next sections, the influence of driver’s 

background variables is reviewed and discussed.   

2.3.7.1 Age 

Driving complexity, in addition to the complexity of the handover process, is 

challenging for older drivers (Anstey et al., 2005) and research regarding age is 

motivated by several reasons. Age causes a decline in cognitive processing (Salthouse, 

2009), reduces adhered focus, lowers divided attention (Siu et al., 2008) and task 

switching (Kray et al., 2004). Due to those, ageing causes a slower response time 

when the participant is interrupted (Monk et al., 2004). Therefore, switching from 

Level-3 to Level-1 driving mode could be a challenge for older drivers. To explore this, 

several studies investigated ageing influence in both manual and handover process 

in automated driving. 

Petermann-Stock et al. (2013) carried out a comparison study between a younger [25-

35 years old] group and an older group [50-70 years old] during a high cognitive 

workload experiment. The study concluded a difference of up to 1200 milliseconds in 

reaction time. A limitation of the study is the lack of immediate hazard or condition 

required to demand a quick reaction time. Such limitations biased their results 
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because participants were not prompted to take immediate action; hence, the 

observed difference between the two age groups. 

Following up on this, Körber et al. (2016) carried out a more elaborate study with 

varying conditions during the handover process that overcame such limitations. 

Körber et al. (2016) also took into consideration the studies concluding that high 

traffic density causes a longer reaction time (Trick et al., 2010), especially for older 

drivers (Cantin et al., 2009; Horberry et al., 2006). Thus, Körber et al. (2016) used 

different variants of traffic density to assess whether it would influence 

participant’s takeover time in comparison to a younger group. The study used 72 

participants in two groups; a younger group with an average age of 36 years old and 

an older group with an average age of 66.6. Participants were asked to perform a 

simulated hands-free cell phone conversation as engagement in a non-driving related 

task. Take-over time was defined as "the time between the TOR and the first 

conscious reaction by the driver, i.e. a change of 10% of the maximum brake pedal 

position or more than 2 degrees in steering wheel angle", (Gold, Damböck, Lorenz 

and Bengler, 2013). Results of Körber et al. (2016) showed no significant difference 

in the takeover time regardless of age or task. However, they reported that traffic 

density was the strongest influencer in extending the takeover time. This could be 

due to the time it took drivers to restore full situational awareness. For example, with 

more vehicles on the road, more time was needed by the drivers to perceive, 

comprehend and project the next step of each one of them. It was noticed that the 

number of accidents and takeover time decreased with every new takeover request for 

each participant indicating a learning curve for the system. 10% of both age groups 

got involved in an accident which indicated that age might not have a strong influence 

in the safety of the handover process. 
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In contrast, Radlmayr et al. (2014) found out that reaction time and quality of the 

study’s participants (average of 35 years old) are highly degraded during the takeover 

process which contradicts with the findings of Körber et al. (2016). Radlmayr et al. 

(2014) used n-back task for half of their participants as a cognitively engaging 

continuous task before and during the takeover process (i.e., N-back task assesses if 

participants remember whether a current item is the same as the one presented n-

items previously, explained in detail in section 2.3.1.1). However, Körber et al. (2016) 

used a simulated phone call employing Twenty Questions Task (TQT) that was 

interruptible during the takeover. TQT is a set of questions that stimulate deductive 

reasoning and creativity (Walsorth, 1882) and it is reviewed in section 2.3.1.2 . The 

conflict of their findings could be due to the different stimuli of the chosen secondary 

tasks and in allowing drivers to interrupt the task during the takeover process. 

It is worth noting that a simulated phone call with the TQT task might not have imposed 

a strong cognitive challenge on older participants in comparison to the n-back task. 

A future study should compare effects of several cognitive tasks, natural tasks in 

addition to visually distracting tasks on handover process and how it may affect 

reaction time on several age groups to provide a more consistent comparison among 

different tasks in different age groups. 

Strayer and Johnston (2001) conducted a similar experiment on manual driving 

context (Level 1 automation) and discovered a significant drop in driver’s 

performance while engaging in a simulated phone call. Comparing findings of Körber 

et al. (2016) with Strayer and Johnston (2001), it shows different effects of the same 

secondary task on drivers while using Level 1 Automation systems on the one hand 

and Level 3 Automation systems on the other. Also, a study conducted by Guo et al. 

(2016) on drivers using Level-1 vehicles has indicated that "teenaged, young adult 

drivers [16-29] and senior drivers [65-98] are more adversely impacted by secondary 
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task engagement than middle-aged drivers. Visual and manual distractions impact 

drivers of all ages, whereas cognitive distraction may have a larger impact on young 

drivers". Such findings align with the findings of level-3 automation studies; however, 

it raises a research gap in the field of Level-3 vehicles to compare the effect of long-

term cognitive distraction on different age levels especially teenage and senior 

groups.  

2.3.7.2 Driving Experience 

Driving experience strengthens driver’s comprehension to gain situational awareness 

faster and perform better decisions in comparison to novice drivers. For example, 

comparing two groups of experienced and inexperienced drivers showed a positive 

influence of experience on detection and anticipation of latent hazards during the 

handover process (Wright et al., 2016a). The proportion of glances spent on potential 

hazards during four transfer of control experiments were higher with experienced 

drivers than inexperienced ones which means experienced drivers could identify 

latent hazards faster and more efficiently. The study concluded that middle-aged 

drivers could anticipate 83% of latent hazards in comparison to 71% for inexperienced 

drivers. This could be explained by the presumption that experienced drivers could 

gain full situational awareness faster during the handover process. 

Samuel et al. (2016) identified the adequate time for participants to gain situational 

awareness as eight seconds before a complete transfer of control. Their study 

recommended that eight seconds is the time the driver takes after the TOR to regain 

situational awareness and perform a driving decision. The study was conducted on a 

group of 18-22 years of age which could be arguably described as inexperienced 

drivers (Wright et al., 2016a). To expand on that, the study of Wright et al. (2016b) 

replicated Wright, Samuel, Borowsky, Zilberstein and Fisher, (2016) using a group of 

experienced drivers. Their results identified that 6 seconds were enough for middle 
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age experienced drivers to gain full situational awareness before the transfer of 

control. Results of the study match with results of Louw et al., (2016). The study of 

Wright et al. (2016b), Horswill and McKenna (2004) also suggested that latent hazard 

anticipation is a valid measurement of situational awareness assessment during the 

transfer of control . Latent hazard anticipation is defined as "the ability to detect 

and respond to potential threats that have not yet necessarily emerged on the 

forward roadway", (Wright et al., 2016a). It is also interesting to note here that 

Louw et al. (2016) recommends a future system to direct driver’s visual attention 

immediately towards the hazard for a safer transfer of control. 

Experience with advanced driving systems such as ADAS or ACC gives an advantage 

to drivers handling Level-3 automated driving systems. For example, Larsson et al. 

(2014) concluded that drivers with experience in ACC systems, level-2 automated 

systems, were 500ms faster in gaining back control than drivers who never used ACC 

systems. The study also suggests that ACC experienced drivers were proactive in 

taking control when they realised a system is behaving in an unsafe manner in 

comparison to inexperienced drivers who waited until they were instructed to take 

over control. This could be due to their prior knowledge of system limitations and 

their comfort in handling the transfer of control (Larsson et al., 2014). However, the 

study used only one driving situation to test their hypothesis in and failed to estimate 

when inexperienced drivers would gain such experience. The outcomes of Larsson et 

al. (2014) along with Wright et al. (2016a), Körber and Bengler (2014) suggest that 

an efficient HAD study should consider both drivers with and without ACC driving 

experience if possible in their recruitment to allow for unbiased results. 

2.3.7.3 Individual Differences 

Drivers have individual differences that shape their unique manoeuvring and 

controlling behaviours (e.g., brakes, wheel, and acceleration). Nilsson et al. (2015) 
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proposed the Driver Controllability Set, a statistical model that defines a subset of 

driver’s behaviours, allowing the system to understand their manoeuvring style. The 

model is built automatically using statistical analysis of the driver’s behaviours 

during manual driving. Using the model, a driver’s transition from automatic to 

manual could be classified as safe. The study was performed on real-world data and 

proved to be suitable for real systems (Nilsson et al., 2015). While this might not 

provide a lead on takeover time, it is valid feedback for assessing the transition 

performance.  
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Table 2: Highlights of the main studies reviewed in the literature review of this study.  

Study Aim Secondary 

Task/s 

Participants Experiment 

Preparations 

Devices 

Used 

Data Collected 

(Gold et 

al., 2016) 

Assess changes in 

timing and quality 

aspects during 

takeover when traffic 

density is 

manipulated, and 

the verbal TQT in a 

phone call is used to 

add a level of driver 

cognitive load. 

TQT 

Questions 

asked to 

make the 

driver guess 

an animal. 

19-79, median 

24   and   SD, 

22.2. At least 

one year of 

experience 

Some drivers 

were paid. A 

consent form was 

signed. A brief 

was given.  The 

test drive was 

given.  

Driver 

simulator. 

Head-

mounted  

eye-tracker 

(Dikablis) 

In three takeovers, the 

following data were 

collected. Timing aspect: 

Hands-on time, takeover 

time. Quality aspect: 

maximum longitudinal 

acceleration, maximum 

lateral acceleration, 

minimal time to collision. 

Workload assessment: 

horizontal gaze 

dispersion. 

(Körber et 

al., 2016) 

Influence of age on 

the take-over of 

vehicle control in 

highly automated 

driving 

Hands- free 

phone call

 with 

TQT 

72 

participants. 

80.6% males. 

Two age 

groups.  

The young 

group 19-28 

and old group 

60-79. 

Questionnaire 

about age, 

gender and 

experience. 

Introduction 

and test 

drive. 

BMW 6 

series 

mock-up 

simulator 

Vehicle position, 

acceleration, steering 

wheel, angle, and 

position of pedals at a 

frequency of 100 Hz. 

(Radlmay

r et al., 

2014) 

r How traffic situation 

affects takeover 

quality 

Surrogate 

Reference 

Task and n-

back task. 

 

 

 

 

 

 
 

 

48 

participants 

(38 males). 

Mean age is 

33.5 and SD = 

9.0 

 

 

 

 

 
 

 

 

A demographic 

questionnaire, 

briefing and a 

test drive. 

Dikablis 

Gaze 

Analyser 

and BMW 

high 

fidelity 

simulator 

vehicle and situational 

parameters with video and 

audio recording in 

addition to gaze behaviour. 
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(Zeeb et 

al., 2015) 

What determines 

take-over time 

naturalistic 

tasks: 

internet 

search, 

search, 

texting 

89 

participants, 

(54 males), 

20-72. 

Mean age 4̄ 2 

Demographic 

questionnaire, 

briefing and test 

drive. 

Daimler 

AG 

dynamic 

simulator, 

Two 

cameras for 

eyes 

movements. 

Another 

camera was 

used to 

collect foot 

movements 

Gaze behaviour and body 

movement behaviour. 

(Louw et 

al., 2016) 

Visual attention and 

its correlation to 

crash potential 

IQ questions 

and 1-back 

task. 

75 

participants       

(41 males), 

21-69 with 

M=36.16 and 

SD=12.38. 

Monetary 

compensation. 

Handout and two 

test drives. 

University 

of Leeds 

Driver 

Simulator. 

FaceLab 

eye tracker 

Gaze behaviour and 

driving simulator data. 

(Zeeb et 

al., 2016) 

Effect of visual and 

cognitive distraction 

of-of takeover quality 

Naturalistic 

tasks: 

reading 

news, writing 

an email, and 

watching a 

video. 

79 

participants 

(44 males), 

35-45. 

Participants 

were 

separated 

into 7 groups. 

A demographic 

questionnaire, 

consent form and 

4 test drives. 

Also, training on 

the multimedia 

device used in 

the experiment. 

Monetary 

compensation. 

Mercedes 

Benz 

driving 

simulator. 

Two video 

cameras 

time to eyes on, time-to- 

hands-on, time-to-system- 

deactivation, deviation 

from the centre of the 

lane, lateral acceleration 

after t he  takeover. 

(Gold et 

al., 2013a) 

Quantify adequate 

, time for a driver to 

perform a takeover. 

Surrogate 

Reference 

Task 

32 

participants 

(24 males), 

19-57, 

M=27.6, 

SD=8.7 

Questionnaire, 

briefing and test 

drive. 

High 

fidelity 

driving 

simulator. 

3 cameras 

and 

Dikablis 

eye 

tracking 

system. 

Gaze behaviour and 

simulator data. 
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(Wright et 

al., 2016a) 

Assess takeover 

time for experienced 

drivers. 

Naturalistic 

task: Reading 

task on 

on an iPad 

36 

participants. 

A young 

group 

with M=20.3 

and middle- 

age group 

with M=37 

Questionnaire, 

Briefing and 

test drive. 

Real-time 

Techn-

ologies Inc 

driving 

simulator. 

Mobile 

Eye 

Gaze behaviour and 

simulator data. 

(Merat et 

al., 2012) 

Effect of secondary 

tasks on take over 

time and performance 

TQT 50 

participants, 

28-68 

M=47.38, 

SD=10.37 

Questionnaire, 

Briefing on 

simulator, 

secondary 

task and test 

drive. 

University 

of 

Leeds 

Driver 

Simulator. 

FaceLab eye 

tracker. 

Gaze behaviour and 

simulator data. 

(Larsson 

et al., 

2014) 

Effect of ACC 

familiarity on takeover 

quality 

N/A 31 

participants 

(24 males). 

Two groups   -  

no ACC 

experience 

(M=38) and 

with ACC 

experience 

(M=55). 

Questionnaire, 

Briefing and 

test drive. 

VTI Driving 

Simulator 

III 

Speed reduction, brake 

response time. 



 

46 
 

2.4 Detection of Driver Inattention  

As identified by Singh (2015), driver inattention is responsible for over 48% of 

observed vehicle accidents in manual driving. Driver inattention is a general term 

describing both driver’s fatigue and distraction in general (Craye and Karray, 2015; 

Regan et al., 2011). Driver distraction is defined and reviewed in section 2.3.2 and 

driver fatigue is defined and reviewed in section 2.3.3. 

In the following sections, the literature of automatic detection methods of each type 

of driver inattention is critically reviewed. The following subsections discuss the 

different approaches adopted by the literature to detect driver inattention. As 

previously stated, methods for detecting fatigue, visual distraction, cognitive 

distraction, manual distraction are reported. Finally, a summary is presented at the 

end of this section.   

2.4.1 Detecting Fatigue 

Several approaches have been used to detect driver fatigue and cognitive distraction. 

Drivers are less accepting of invasive methods than non-invasive ones (Barr et al., 

2009; Seppäläinen and Landrigan, 1988). Invasive approaches require the 

attachment of sensors or devices on the participant's body while non-invasive 

approaches use external sensors.  

Ibrahim, (2014) split the methods of driver's fatigue detection into five main 

categories based on their measurement techniques. Firstly, physiological 

measurement uses physiological elements and quantifies their changes to estimate 

fatigue (e.g., Dinges and Grace, 1998; Thomas et al., 2015). Secondly, physical activity 
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measurement uses sleep and consciousness patterns to detect fatigue (e.g., Anderson 

et al., 2017). This requires around the clock data collection to detect general fatigue 

patterns for the participants. This approach has more applications in aviation and is 

unsuitable for an automotive scenario because detection of driver’s patterns will 

require an invasive data collection of driver’s lives before and after driving sessions. 

Thirdly, behavioural measurement, which is the monitoring of driver's responses to 

tasks being carried out (e.g., Mabbott, 2003). These tasks could be either driving tasks 

or other tasks such as pressing a button when an action is required. Fourthly, 

mathematical models, which are models used to predict sleeping cycles and 

deprivation using data such as work times, sleeping hours, types of tasks performed 

and so on (e.g., Dongen, 2004). Finally, some hybrid techniques merging more than one 

of these measurements also exist in the literature (e.g., De Rosario et al., 2010). In 

this section, physiological measures are discussed because it is the only category that 

fits with the limitations of the automated driving systems. 

The physiological measures used in the literature were brain- heart- and eye-related 

measures. For example, ECG and EEG measures were used to assess fatigue. "An 

electrocardiogram (ECG) is a test which measures the electrical activity of your heart 

to show whether it is working normally" (NHS, 2015a). EEG is "a recording of brain 

activity. During the test, small sensors are attached to the scalp to pick up the 

electrical signals produced when brain cells send messages to each other.", (NHS, 

2015b). Li et al., (2011) identified that the most reliable and objective measure of 

driver fatigue is using electroencephalograph (EEG) and associated brain wave 

activities. Craye and Karray, (2015) has used both ECG and EEG signals to infer 

driver’s fatigue level using a Support Vector Machine to classify four different states 

of fatigue. The study has shown accuracy between 87% and 93% for the different 

states. It is worth noting that while EEG and ECG are highly accurate, their 
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invasiveness and the difficulty to deploy them in modern vehicles and driving 

simulator experiments make them an unpreferable choice in industrial research. 

Eye activities are another significant factor in estimating fatigue. Studies since the 

90s have shown their great potential (Stern et al., 1994). Eye activities include 

blinking behaviour, eye closure, pupil size, eye movement patterns and the 

percentage of eye closure (PERCLOS). Each technique provides a strong indication of 

fatigue signs. Most of the literature has shown that PERCLOS is the main feature 

for fatigue detection (Masala and Grosso, 2014). PERCLOS is a psychophysiological 

measure that indicates a person is fatigued when their eyes are closed for more than 

80% of the time during a certain period (Dinges and Grace, 1998). Typically, it is the 

primary technique used in commercial fatigue detection devices (Ibrahim, 2014). 

In addition, the eye blinking rate is another method to detect fatigue. Both the rate 

and duration of eye blinking were extensively studied (Caffier et al., 2003; Lal and 

Craig, 2002). In these two studies, both rate and duration had a proportional 

relationship with fatigue level. This shows an interesting factor to detect the level of 

fatigue. To measure the duration of the blink, Senaratne et al. (2011) used the optical 

flow technique achieving 82.7% of accuracy. The optical flow technique tracks the 

velocity of the upper eyelid through image comparison. Ibrahim, (2014) noted that 

the optical flow model should be combined with the eye closure measurement for more 

reliable detection since blink detection is sensitive to the lighting environment.  

Another critical factor is pupil size. Interestingly, it had a strong relationship with 

the blink rate (Nakayama, 2006) and was found that the pupil width decreases as 

fatigue increases (Morad et al., 2000). Nishiyama et al. (2007) used a high-resolution 

infrared camera to accurately detect the width of the pupil in a driver fatigue 

detection scenario. While this gives another indication, IR cameras required the 
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installation of extra hardware and showed some malfunction during daytime 

measurements (Hartley et al., 2000). 

Table 3: Types of Visual Distraction Metrics (Klauer et al., 2006). 

Eyes off forward roadway 

metric 

Definition 

Total time eyes off the 

forward roadway  

The number of seconds that the driver’s 

eyes were off the forward roadway during the 5 

seconds prior and 1 second after the onset of the 

precipitating factor 

Number of glances 

away from the forward 

roadway 

The number of glances away from the 

forward roadway during the 5 seconds prior 

and 1 second after the onset of the precipitating 

factor 

Location of longest 

glance away from the 

forward roadway 

The location of the longest glance (as 

defined by the length of the longest glance) ‚ 

location is based upon distance (in degrees) 

from centre-forward and is in one of three 

categories: <15°, between 15°and 30°, >30 

Length of longest 

glance away from the 

forward roadway 

The length of the longest glance that 

was initiated during the 5 seconds prior and 1 

second after the onset of the precipitating factor 

2.4.2 Detecting   Visual    Distraction 

Visual distraction is straightforwardly detected using eyes-off-road glances. Klauer 

et al. (2006) used eyes-off-road metrics to evaluate crash or near-crash cases of one 

hundred naturalistic car driving and identified the metric described in Table 3. The 

findings of the study indicated that eyes-off-road model is time dependent as the 

"length of eye glance from the forward roadway increases, the odds of being in a crash 

or near-crash also increases ... Risk percentage calculations suggest that 23 per cent 

of the crashes and near-crashes that occur in a metropolitan environment are 

attributable to eyes-off-the- forward-roadway greater than 2 seconds", (Klauer et al., 

2006). 
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Detection of the eyes-off-road feature is done using either a single camera vision 

system or eye-tracker devices. The eye-trackers could be either glasses worn during 

the experiment or a desktop bar with multiple cameras. A few examples of such 

devices are Tobii Glasses (Tobii, 2016a), Dynavox (Tobii, 2016b) and FaceLAB eye-

tracker (faceLAB, 2016). These devices are more commonly used than the computer 

vision-based solution because of their higher accuracy and simplicity. Alternatively, 

computer vision-based solutions use RGB or RGB-D cameras to detect eyes movements 

using mathematical algorithms using single or multiple cameras. Interestingly, the eye 

trackers method is the most commonly used in the literature of human factors in highly 

automated driving studies (Körber et al., 2015a; Merat et al., 2014, 2012). 

2.4.3 Detecting   Cognitive    Distraction 

Cognitive distraction (or called mind-off-road, mental distraction) is a mental 

distraction that happens when the driver is deeply involved in thoughts other than 

driving tasks and safety. Some studies showed that physiological behaviour provides 

good accuracy in detecting cognitive distraction. For example, a study concluded that 

ECG is the most sensitive measure to mental workload (Paxion et al., 2014). Using 

n-back task, Reimer et al. (2009) imposed an incremental workload on participants 

with 0-back to 3-back tasks. Results have shown that heart rate increases step wisely 

(see Figure 7) as the cognitive workload increases. The study has also shown that 

skin conductance increased proportionally with the cognitive workload. Another non-

invasive approach used Support Vector Machines (SVM) to predict cognitive 

distraction with an accuracy of up to 96% using eye tracking features (Liang et al., 

2007). SVM is a discriminative classifier that uses labelled training data for 

classifying data categories (Suykens and Vandewalle, 1999). 
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Moreover, a novel approach was implemented using ECG to detect driver’s distraction.  

Fifteen drivers between twenty and fifty years old were asked to drive with and 

without a secondary task on a single lane road on a driving simulator. The secondary 

task was double-digit addition arithmetic task. Results showed a significant 

difference between the multi-scale entropy of the ECG signal that could be linearly 

classified (Yu et al., 2011). 

 

Figure 7: An illustration of how heart rate increases as the number of 

variables in the n-back task increases. This signifies an increase of the 

heart rate as the cognitive workload of participants increases. The n in the 

n-back task refers to the number of the variables that participants had to 

retain in their memory during the n-back task (Reimer et al., 2009). 

 

ECG is sometimes used to aid and support the accuracy of studies. A study has used a 

stereo camera to track both head and eyes movements, and pupil size features in 

addition to ECG and heart rate to aid and test the accuracy of the algorithms. Support 

Vector Machine and Adaboost were used to fusion these features. Drivers were 

distracted using conversational and arithmetic tasks. The conversational task was to 

describe a road they usually commute on, and the arithmetic task was to subtract 
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seven from 1000 consecutively. Results have shown an average of 86% accuracy in 

detecting cognitive distraction (Miyaji et al., 2009). 

Table 4: A comparison of different machine learning algorithms used to classify 

cognitive distraction (Fernández et al., 2016). 

Algorithm Feature Classifier Accuracy 

(Zhang et al., 2004) Eye gaze-related features 

and driving performance 

Decision 

Tree 

81 

(Zhang et al., 2004) Eye gaze-related features Decision 

Tree 

80 

(Zhang et al., 2004) Pupil-diameter features Decision 

Tree 

61 

(Zhang et al., 2004) Driving performance Decision 

Tree 

60 

(Liang et al., 2007) Eye gaze-related features 

and driving performance 

SVM 83.15 

(Liang et al., 2007) Eye gaze-related features SVM 81.38 

(Liang et al., 2007) Driving performance SVM 54.37 

(Liang et al., 2007) Eye gaze-related features 

and driving performance data 

DBNs 80.1 

(Miyaji et al., 2010) Heart rate, Eye gaze-related 

features and pupil diameter 

Adaboost 91.5 

(Miyaji et al., 2010) Eye gaze-related features SVM 77.1  

(arithmetic task) 

(Miyaji et al., 2010) Eye gaze-related features SVM 84.2  

(arithmetic task) 

(Miyaji et al., 2010) Eye gaze-related features Adaboost 81.6  

(arithmetic task) 

(Miyaji et al., 2010) Eye gaze-related features Adaboost 86.1  

(arithmetic task) 

(Yang et al., 2015) Eye gaze-related features 

and driving performance data 

ELM 87  

(Yang et al., 2015) Eye gaze-related features 

and driving performance data 

SVM 82.9 

 

Wearable technologies at a consumer level achieved a reasonable accuracy in 

detecting the cognitive workload using collected physiological data of the driver 

(i.e., heart rate) based on Melnicuk's et al., (2016) study. Their experiment took 
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place on a simulator with 14 participants driving in rural, motorways and other 

roads and with a simulated accident. Results showed reliability in detecting 

cognitive workload based on heart rates (Melnicuk et al., 2016). However, Wang et 

al. (2016) compared a set of wearables against ECG and recommended that 

"Electrode-containing chest monitors should be used when accurate heart rate 

measurement is imperative". Polar H7, a chest-based wearable to monitor heart 

rate, achieved a 99% accuracy and Apple Watch was next with an accuracy of 91%. 

Even though Wang et al. (2016) participants were limited to a set of young healthy 

participants, it still gives a good indication of the accuracy of wearables. The findings 

also align with the findings of Melnicuk et al. (2016). 

Also, a smartwatch was used in a full system for assessing driver's vigilance as a 

processing unit for non-invasive ECG and PPG fabrics attached to the driving wheel 

(Lee et al., 2016). PPG is a plethysmogram that is obtained optically to detect blood 

volume changes. Lee's et al., 2016 study found out that using both gender and age of 

the driver in the model increased the accuracy of the classifier. Using machine 

learning methods, the probability of driver's distraction level was calculated, and 

then a warning through the smartwatch is issued when the vigilance level fell below 

a threshold. The study showed an approximate 97.28% accuracy (Lee et al., 2016). 

Fernández et al., (2016) performed a review of different machine learning methods 

and the features used in different cognitive distraction studies. A summary of their 

review is illustrated in Table 4. Most of their reviewed studies used eye and gaze-

related features and pupil diameters during the driving task to predict cognitive 

distraction. Several classifiers were used such as Decision Trees, Support Vector 

Machines, Adaboost and others, more information about machine learning methods 

is illustrated in section 2.6. 
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2.4.4 Detecting  Manual  Distraction 

Manual distraction is concerned with the arm posture of drivers. Manual distraction 

has limited research in the manual driving field; though, (Craye and Karray, 2015) 

proved that arm posture is the highest cue for driver distraction in their study. A 

Kinect camera was used to extract four arm postures and used Hidden Markov Model 

and AdaBoost classifiers to fusion PERCLOS, head pose, orientation, and expressions 

together. The Hidden Markov Model is a statistical model that observes previous states 

to predict how likely the next state would be. AdaBoost is a machine learning meta-

algorithm that merges several other machine algorithms to improve their overall 

performance. The Kinect camera made it easier to classify since it adds a depth layer 

into the RGB images making it easier to extract features from data. The highest 

accuracy in the study was 89% at estimating driver distraction. Another study by 

Park and Trivedi, (2005) used body poses including driver’s static pose, dynamic 

gesture, body-part action, and driver-vehicle interaction to build an activity 

recognition framework for driver’s activities. While arm positioning was essential for 

the classification in this study, the trend of research in this field focuses more on facial 

features and gaze estimation. 

2.4.5 Summary of Driver Inattention Detection  

As discussed in Chapter 1, conditional automated driving systems (Level-3) have 

to identify its limitations using system boundaries (SAE International, 2018).  

For example, driving in construction sites or under heavy weather conditions may 

be challenging to the automated systems due to sensory limitations. When a 

system boundary is detected, a take-over request is issued to the driver to take 

over the vehicle’s control. The take-over request (TOR) will have to be prompted 
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in a timely manner (7 seconds for instance, (Gold et al., 2013a)) allowing the 

driver to perform a safe transition before a potential collision is expected 

(NHTSA, 2013). This time is usually spent by drivers in regaining situational 

awareness and planning a maneuverer in addition to motor readiness which may 

occur sequentially or in parallel (Zeeb et al., 2015). Motor readiness is identified 

as the time it takes a driver to regain mechanical control (i.e., hands-on wheel 

and feet on pedals) (Zeeb et al., 2015) while response time is the time between a 

TOR and the driver applying a significant change on braking or steering wheel 

(Zeeb et al., 2015). Several studies showed that motor readiness is consistent, 

ranging from 1.2 to 1.8 seconds (Gold et al., 2013a; Zeeb et al., 2015).  

Many studies examined the influence of secondary tasks on gaze related 

measures during highly automated and manual driving (Marquart et al., 2015). 

In previous studies, takeover time and performance have been correlated with 

eye blinking (Merat et al., 2012), gaze behaviour (Gold et al., 2016; Ko and Ji, 

2018; Louw et al., 2016; Wright et al., 2016a; Zeeb et al., 2016, 2015), eye 

movements and PERCLOS (Jamson et al., 2013). Two manual driving studies 

induced mental workload using verbal and spatial imagery tasks (Recarte and 

Nunes, 2003, 2000). Their results indicated that their NDR tasks caused pupil 

dilation which indicated a high mental workload. Finally, the literature had 

limited to no studies that investigated pupil diameter changes in a highly 

automated driving environment. This literature limitation is observed, and our 

study decided to investigate the effect of distraction in HAD on the pupil diameter 

of drivers. 

However, few studies examined the effect of NDR tasks on heart rate (Carsten et 

al., 2012; de Waard et al., 1999; Wille et al., 2008). The heart rate measured in 

highly automated driving is lower than manual driving and ACC driving 
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(Carsten et al., 2012) which matches with findings of de Waard et al., (1999) that 

reported a slight decrease (73.2 vs 74.0 beats/min) in heart rate during automated 

driving. This difference is an indication of mental workload reduction (De Winter 

et al., 2014). Moreover, in manual driving studies, heart rate increased 

incrementally with increasing mental workload, and a plateau of the 

physiological measures was observed (Mehler et al., 2009). Moreover, the study 

reports a decrease in driving performance as the mental workload increases. 

Wearable technologies at a consumer level achieved a reasonable accuracy in 

detecting the cognitive workload using collected physiological data of the driver 

(i.e., heart rate). In the study by Mehler et al (2009) the experiment took place on 

a simulator with 14 participants driving in rural, motorways and other roads and 

with a simulated accident. Results showed reliability in detecting cognitive 

workload based on heart rates (Melnicuk et al., 2016). Thus, the study adopted 

measuring heart rate to identify cognitive distraction of drivers in a HAD 

environment.  

2.5 Performance Measures of the Takeover 

The driver’s performance in highly automated driving studies was assessed using 

several methods (Radlmayr et al., 2019). Several studies used minimum time-to-

collision (min-TTC) (Gold et al., 2016; Körber et al., 2016; Radlmayr et al., 2014), 

longitudinal acceleration (Gold et al., 2016; Radlmayr et al., 2014), braking 

(Körber et al., 2016; Larsson et al., 2014), minimum speed (Larsson et al., 2014) 

and occurred collisions (Radlmayr et al., 2014; Wandtner et al., 2018) to assess 

the quality of Drivers’ Performance . Such scarcity makes it challenging to 

provide a cross-comparison among studies. Motivated by these limitations, 
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Radlmayr et al., (2019) reported new take-over performance measures named 

Takeover Performance Measures (TOPS) that aggregates vehicle, mental and 

subjective ratings of the take-over to provide a single metric assessing the 

takeover. Though, the study has not provided any correlation between driver's 

physiological changes and the TOPS results for each participant.  

Based on Radlmayr et al., (2019), Drivers’ Performance  measures could be split 

into the following categories: 

1) Driver-related: reaction time, eyes-on-road time, etc.,  

2) Vehicle-related: braking, time-to-collision, acceleration, etc., 

3) Subjective measures: usually collected through a questionnaire at the end 

of the experiment. A breakdown is illustrated in Figure 8 to show more 

examples of the aforementioned three types of performance measures. 
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Figure 8: A breakdown of the performance measures used by several HAD studies. The wide range of those performance measures 

and their interdependency make it difficult to compare results among studies. The data is gathered through the literature review of 

Radlmayr et al., (2019). 
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Driver-related measures are variables measuring a reaction or a physical move 

made by the driver. For example, take-over time is one of the most prominent 

objective measures for evaluating the take-over performance (Eriksson and 

Stanton, 2017; Gold et al., 2016, 2013a, Zeeb et al., 2016, 2015). In addition, eyes-

on-road time is another objective measure which is defined as the time it takes a 

driver to fix their eyes on the road, probably after being distracted by a visual 

NDR task (Gold et al., 2013a; Vogelpohl et al., 2018) in addition to steering and 

braking reaction times (Eriksson et al., 2017; Happee et al., 2017). To conclude, 

driver-related performance measures are time-based and are an indirect measure 

of a driver’s mental state. Those performance measures are easy to compare to 

but difficult to accurately collect because experimenters have to perform video 

labelling to measure the start and end of each event (Zeeb et al., 2015). 

The driver-related measure covers their physiological behaviour. Gable et al., 

(2015) used heart rate and pupil size as objective physiological measures of 

mental workload. Their results showed that heart rate and pupil size were valid 

objective measures of the workload in manual driving and may require a small 

set of participants to produce a valid dataset. However, physiological measures 

may have an indirect influence caused by the non-driving mental or physical 

stimuli (Teh et al., 2014). It’s argued that physiological data must be normalised 

to cancel individual differences among the collected data; thus, allowing better 

comparison among them (Cain, 2007). 

Vehicle-based performance measures are variables measuring the movement or 

the change of vehicle’s position, lateral or longitudinal speed. For example, the 

minimum time-to-collision (TTC) is a prominent vehicle-related performance 

measure (Radlmayr et al., 2019). Lateral and longitudinal acceleration, steering 
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wheel angle and braking level are also popular measures. Most of the vehicle-

related measures are easy to collect and compare, in comparison to physiological 

measures. Though, most of the HAD studies have not employed an effort in 

providing their rationale for their choice of vehicle-related measures or provided 

a detailed approach in replicating the same measure. The lack of such 

information makes it difficult to compare studies and find common ground for the 

choice of methodologies in HAD studies. 

Finally, subjective measures are values collected through questionnaire or 

surveys during or at the end of the experiment to understand the driver’s 

perceived understanding of the driving task. For example, subjective measures 

could be the driver’s  perceived workload during the takeover process (Eriksson 

et al., 2017), criticality rating (Naujoks et al., 2016) and finally, a rating of 

difficulty (Zeeb et al., 2016). 

Subjective measures of drivers usually assess their mental workload indirectly 

by asking drivers to estimate the difficulty of the task; especially under repeated 

exposure to the same task (Teh et al., 2014). Many studies (De Winter et al., 2014; 

Ko and Ji, 2018) based their questions on the NASA-TLX method (Hart, 2012). A 

previous study by Gopher and Braune, (1984) showed that subjective measures 

have an accuracy of 0.9 or higher in unidimensional ratings. However, few HAD 

studies reported a disassociation between objective and subjective measures 

(Zeeb et al., 2016) which was reported in manual driving studies too (Horrey et 

al., 2009a). This disassociation shows a research gap that the study aimed at 

exploring.  
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2.6 Predicting Drivers’ Performance Using Machine 

Learning  

2.6.1 Introduction 
“Machine learning is programming computers to optimize a performance criterion 

using example data or past experience.”, (Alpaydin, 2014). The definition explains that 

machine learning produces computer programs that are able to solve a problem based 

on previous examples. A machine learning algorithm uses input and output data to 

train on. Once the training is done, the ML algorithm is able to find a solution to any 

input data providing that the learning phase was successful (Alpaydin, 2014). 

Machine learning (ML) has been extensively used in manual driving studies to assess 

situational awareness and fatigue (Sikander and Anwar, 2018).  For example, several 

ML methods were used to assess situational awareness such as Bayesian probabilities 

(Armand, 2016) and Support Vector Machine (Solovey et al., 2014). To identify the 

driver’s inattention, studies used a wide variety of input data to train the ML models. 

Darzi et al., (2018) identified two categories of input data used in machine learning 

studies concerning driver inattention; vehicle-based and physiological based data.  

 

2.6.2 Input Data 
The physiological data were the dominant data used to build up many machine 

learning models. For example, physiological data were used as an input to assess 

mental workload (Solovey et al., 2014b; Sikander and Anwar, 2018), vigilance (Hecht 

et al., 2019) and fatigue (Sikander and Anwar, 2018). The first known study that 

assessed physiological behaviour of drivers to automatically classify their hazarded 

state were (Healey and Picard, 2005) using a range of sensors including galvanic skin 

sensor, ECG and EEG to classify stress levels of drivers in manual driving scenarios. 

Since then, many studies investigated physiological behaviour of drivers to assess 
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their mental workload (Brookhuis and De Waard, 2010), stress level (Wijsman et al., 

2011) and distraction (Hirayama, et al 2016). 

 

Figure 9: A breakdown of all machine learning techniques used in driver 

inattention studies. The techniques are broadly split into two categories: 

regression and classification. The classification approach is the most widely used 

approach with a wide variety of classifiers. Recent studies adopted different types 

of deep learning neural networks to identify driver inattention; however, this 

approach is not extensively surveyed since it’s out of the scope of the study. 

 

The vehicle-based approach uses vehicle metrics to identify distracted drivers using 

an indirect approach of analysing their driving moves such as lane keeping or lane 

changes (Harvey et al., 2011). This approach uses vehicle-based signals such as vehicle 

kinematics, steering angle change and other factors to assess the driver’s interaction 

with the vehicle (Choudhary and Velaga, 2017; Zheng and Hansen, 2016). This 
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approach achieved an accuracy of 98.7% in a study that used 8 signals signifying the 

interaction of the driver such as pedals pressure, steering wheel angle and engine 

RPM (Jafarnejad et al., 2018). A major drawback to this approach is its inapplicability 

to the highly automated driving environment where drivers don’t interact with the 

vehicle during the automation phase. 

So far, the input used in the machine learning methods have been discussed and in 

the next few paragraphs different machine learning techniques used in the driver 

inattention detection studies will be discussed.  

2.6.3 Machine Learning Models  
Machine learning techniques used in driver inattention studies could be broadly 

categorised into shallow and deep learning models. Shallow models represent a group 

of classifiers that are easy to train, understand and provide reasonable accuracy 

(Sikander and Anwar, 2018). For example, Support Vector Machines are extensively 

used in several driving inattention detections studies (Liang et al., 2007; Miyaji et al., 

2009; Solovey et al., 2014) in addition to logistic regression (Darzi et al., 2018), 

ensemble methods (Miyaji et al., 2009; Zhang and Hua, 2015), gradient boosting (Hu 

and Min, 2018), Nearest Neighbour, Random Forest (Jafarnejad et al., 2018) and 

decision trees (Le et al., 2018). A breakdown of those methods is illustrated in Figure 

9. A major drawback to the shallow models is their need to be fed a distinctive set of 

features. Consecutively, this requires a knowledge-based identification of the right set 

of features that domain experts could identify because the chosen features could 

potentially have an accurate prediction of the output (Wu et al., 2018).  

The deep learning approach can extract and identify unique features inside the data 

to enable better classification. However, they require a large set of data and extensive 

training and validation (Sikander and Anwar, 2018). For example, Convolutional 

Neural Networks were the first models adopted in the driving inattention detection 
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studies (Sikander and Anwar, 2018). While the deep learning approach is promising, 

it requires a large dataset to train models which is challenging to collect. 

The literature has a minimal number of studies that covered the performance of the 

handover process. One study used psychometric tests to predict driver’s takeover time 

in highly automated driving (Körber et al., 2015b) – the study used multitasking and 

reaction time tests before the driving to find whether such skills can predict the 

takeover time of drivers. The approach shown in Körber et al., (2015)  was inheritably 

limited since it has no feedback on driver’s mental state at the takeover; making it 

limited and unreliable for real-world driving environment.  

The literature review identified a gap in the use of machine learning techniques in 

highly automated driving to predict driver’s performance. More work is required to 

identify whether the findings of manual driving studies could be applicable to highly 

automated driving field – specifically, whether machine learning techniques using 

physiological data as an input can predict driver’s performance in highly automated 

driving. 

2.7 Research Gap 

In the past four years, several studies have identified the main vital issues that 

impaired the driver's performance during the handover process in Level-3, automated 

vehicles. Researchers have explored several ways to mitigate the deficit of 

performance through "stepped handover (Gold et al., 2013b), feedback systems 

(Lorenz et al., 2014) and trust in the reliability of automated systems to perform 

efficiently at all times (Beller et al., 2013b)" (Morgan et al., 2016: 12). 

However, a system that predicts driver’s future takeover time and performance using 

physiological measures collected right before a takeover request have not been 
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investigated yet even though it was recommended (Wright et al., 2016a) as future 

work. In previous sections, takeover time and performance have been correlated with 

eye blinking (Merat et al., 2012), gaze behaviour (Gold et al., 2016, 2013a; Louw et 

al., 2016; Wright et al., 2016a; Zeeb et al., 2016, 2015), eye movements and PERCLOS 

(Jamson et al., 2013). Therefore, the hypothesis of this study assumes the possibility 

of predicting future takeover time and performance based on the listed features. 

Moreover, the Driver Controllability Set introduced by Nilsson, Falcone and Vinter, 

(2015), that was able to label a takeover process with safe or unsafe could provide a 

foundation for a feedback system for self-learning during the transition from Level-3 

to Level-1. The proposed system would give the automated driving system an eye 

inside the car to better understand the driver's limitations and capabilities at all 

times to plan for appropriate takeover time and suggest an adequate feedback system 

suitable to driver's current state. Therefore, improving the safety level of automation 

will be potentially introduced.  

The main aim of the study was to examine physiological changes caused by 

cognitive and visuo-cognitive secondary tasks and how they influence response 

time and quality during take-over scenarios. Reading and responding to an email 

and twenty questions tasks were reported to degrade response time and quality 

(Merat et al., 2012; Zeeb et al., 2016). Thus, the study investigated the influence 

of secondary tasks on physiological behaviour. Furthermore, the study was 

designed to examine whether the reported learning curve (Körber and Bengler, 

2014; Larsson et al., 2014; Wright et al., 2016a) of take-over handling could have 

any effect on drivers’ physiological changes before and during the takeover and 

how they correlate with response time and quality after a TOR. Specifically, the 

literature used objective and subjective measures to quantify the quality of the 

takeover. Few studies identified a convergence between reported subjective and 
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objective measures (Zeeb et al., 2016). Thus, this study was designed to assess 

whether physiological changes at TOR could provide more information to explain 

the aforementioned convergence. A further aim was to propose new performance 

measures to assess the quality of drivers handling vehicles.  

Key Gaps: 

• How driver’s physiological data correlates to the driver’s attention. Current 

studies showed that physiological data are affected by NDR tasks, but no studies 

investigated heart rate and pupil size.  

• No studies have investigated thoroughly how physiological data are affected by 

the driver’s involvement with NDR tasks and the state of the automated driving 

system. Few studies compared driver’s physiological data during their 

involvement in NDR tasks before the takeover, during the takeover and after 

handling a critical hazard.   

• The literature shows an unaligned and unstructured approach in choosing 

takeover performance measures. The literature requires structured and well-

implemented performance measures to standardize the results. This, in turn, will 

enable better comparison among studies.  

• No studies were found to use physiological data as an input to predict driver’s 

performance using machine learning techniques in a highly automated 

driving field during the take-over process. More work is required to assess and 

choose the right set of features to be used for the machine learning models. 

• Further work is required to assess the suitability of the machine learning 

approach to predict driver’s performance during the takeover in highly 

automated driving.  
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2.8 Summary 

The literature review chapter discussed highly automated driving studies relating to 

driver’s performance in the transition from automated to manual driving. This 

literature review concluded that there was a limited understanding of the driver’s 

physiological behaviour in highly automated driving. Several human factors 

studies observed the human-machine interaction between the driver and the 

automated system. Researchers suggested that the human driver is turning more 

into an operator rather than a driver; however, there was no clear understanding 

of how drivers may recover from a distraction to take back the driving task to 

handle a potentially critical hazard during the transition phase. 

Most HAD studies based their hypotheses on manual driving and flight control 

literature to discover the new aspects of how the human driver (operator) will 

handle the automated system. The literature review showed that the driver’s 

inattention caused by NDR tasks would have the highest impact on the driver’s 

performance during the transition period. Many studies identified a lack of 

situational awareness due to driver’s involvement in tasks that demanded high 

mental and mechanical workload. While visual and mechanical workloads are 

easy to detect, the mental workload is the most difficult to detect and has 

potentially the highest impact on driver’s performance; especially when combined 

with other visual or mechanical distractions. HAD studies showed conflicting 

results on whether NDR tasks with a demanding mental workload could enhance 

the driver’s performance during the transition. Precisely, the impact of mental 

workload on drivers in HAD studies is a new phenomenon that hasn’t been explored, 

and there is no equivalent phenomenon in either manual driving or flight control 

studies. Therefore, more work is required to understand the physiological cues 
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imposed by mentally demanding NDR tasks and how they may correlate to the 

driver’s behaviour in the vehicle. Moreover, there is limited research in 

understanding whether physiological measures could have a direct correlation with 

the driver’s performance during the transition. Studying this correlation may open 

the door to allow the automated system to evaluate a human’s vigilance and the 

ability to handle a critical hazard in any emergency takeover. 

The research gaps listed in section 2.7 illustrate that physiological behaviour might 

give strong predictability power of the driver’s performance in a critical hazard 

during the transition. Limited research was found in highly automated driving that 

explored driver’s physiological data, specifically heart rate, eye movements and pupil 

size. The study’s scope is to focus on physiological data that could be collected in 

production vehicles non-intrusively. However, non-intrusive approaches are usually 

less accurate, and their inaccuracies may bias the data analysis of the study. 

Therefore, the study aimed at using intrusive devices to collect those physiological 

data to ensure minimal error rate and to maximise the accuracy of the analysis. Those 

models may be deployed to the vehicle in the future, and more work will be required 

to assess non-intrusive approaches to collect the same data, but that is out of the 

scope of the study. 

In addition, the research gap identified that assessing driver’s performance had a 

non-standardised approach in the field of HAD. Therefore, the study seeks to 

introduce performance measures that 1) are predefined, 2) could be reused in other 

studies and finally 3) correlate with the driver’s physiological behaviour. Even though 

many studies use time-to-collision and reaction time as the main metrics to identify 

driver’s performance, the literature showed that driver’s reaction time is not 

correlated to driver’s ability to handle a critical hazard during the transition phase. 

Drivers were observed to react faster at the cost of skipping some safety-critical steps 
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such as mirror checks whilst performing their collision avoidance manoeuvres. 

Therefore, more efforts are required to assess the driver’s performance based on their 

ability to handle the vehicle. Some studies introduced relevant performance 

measures such as braking and lane changes but failed to introduce the mathematical 

formulas to reproduce those measures. Consequently, the literature needs new 

performance measures that are easy to reproduce, meaningful and correlate with the 

driver’s physiological behaviour. 

Finally, the prediction of driver’s performance based on their physiological data 

hasn’t been  explored in HAD studies. Though, the same method showed great success 

in manual and flight control studies. Several studies used machine learning methods 

to classify driver’s vigilance, workload and performance automatically. Hence, 

assessing the predictability of driver’s performance based on their physiological 

behaviour using machine learning could enhance the communication loop in the 

human-machine interaction in HAD environment.   
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Research Methodology 
 

The literature review has shown that there’s a possible correlation between drivers’ 

responses and their physiological measures in highly automated driving environment. 

This study assesses this hypothesis as stated in Chapter 2. The following chapter 

covers the research methods used to conduct the research and explain the rationale 

behind the chosen approaches. The study delimitation is addressed at the end of the 

Chapter and a justification for each choice is presented in detail. 

3.1 Research Philosophy 

Oates (2006) stated that Research Philosophy is "the creation of new knowledge using 

an appropriate process, to the satisfaction of the users of the research". Therefore, 

selecting an appropriate process is needed to evaluate the outcomes of the study to 

ensure there is a quantitative correlation. To ensure the success of the project, proper 

communication of the ’big idea’ is needed (Nightingale, 1984). Therefore, a Research 

Philosophy is considered the underlying assumption that defines the strategy of data 

collection, analysis and usage to satisfy the main aim while communicating an easy to 

understand description of work (Walliman, 2005). 

There are two main major disciplines of research philosophies: positivism and 

interpretivism (Bryman, 2003). Table 5 compares the two major types of philosophies 
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and their role in understanding reality. More details are laid out in the following 

subsections. 

Table 5: Procedural Bases of understanding Reality (Cohen et al., 2013) 

 Positivist Interpretivist 

Philosophical 

basis 

Realism:  the world exists 

and is knowable as it really is 

Organisations are real entities 

with a life of their own 

Idealism: the world exists 

But different people construe 

it in very different ways 

Organisations are invented 

social reality 

Theory A rationale edifice built by 

scientists to explain human 

behaviour 

Sets of meanings which people 

use to make sense of their 

world and behaviour within it 

Methodology Abstraction of reality, 

especially through 

mathematical models and 

quantitative analysis. 

The representation of reality for 

purposes of comparison. 

Analysis of language and 

meaning 

Basic units of 

reality 

The collectivity: society or 

organisations 

Individuals acting singly or 

together 

3.1.1 Positivism 

Positivism is the branch of philosophy that emphasises the observable and factual 

over the theoretical and metaphysical. Repetition of measurable phenomena in the 

experimental environment is a necessity in the positivism philosophy. In addition, the 

positivist hypothesis searches for factual knowledge of a phenomenon for the moment 

of time. Since time could change some facts, some researchers question the validity of 

the positivist hypothesis to ensure the study’s objectivity and reliability over time 

(Bryman, 2003). Positivists believe the truth is observable through monitoring 

phenomena in an undisputed objective real world. An objective real world is an 

abstract world that doesn’t incorporate any social values in neither understanding nor 
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interpretation of its phenomenon since observations have to remain repeatable 

(Cornford and Smithson, 1996). Projecting such philosophy on automated driving 

studies concerning driver’s behaviour, positivism is an acceptable approach for 

understanding common human interaction with the automation system. While social 

values may have an influence on drivers (Fleiter et al., 2010), a researcher should have 

a research approach that sets social values away from influencing driving behaviour. 

3.1.2 Interpretivism 

Walsham, (1995) states that “interpretive studies are aimed at producing an 

understanding of the context of the information system, and the process whereby the 

information system influences and is influenced by the context". Interpretivists argue 

that social values and facts cannot be separated. In other words, facts are interpreted 

on the interpretations of social values which disallows any replication of theories over 

periods of time as they are socially constructed and promoted (Cornford and Smithson, 

1996). It’s worth noting that this philosophy is associated with opinions, beliefs, 

feelings, and assumptions rather than scientific facts as Crotty, (1998) argued. 

Therefore, interpretivism is not useful with natural sciences as researchers in such 

fields observe phenomena that are disassociated with social understanding. Even 

though the proposed study takes the human factor in consideration, the outcomes of 

the study are expected to be scientific facts rather than socially constructed reality. 

Thus, the Interpretivism viewpoint is unsuitable for the study’s aims and objectives. 
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Table 6: Research Approaches based on Cornford and Smithson (1996)  list. 

 Philosophy Approach Method Details 

 

 
 
Positivist 

 

Constructive 

Frameworks A prescribed sequence of events that can be applied 

when undertaking a particular piece of research 

e.g. evaluation of systems. 

Theorem 

proof 

Use of formulae and procedures that can be applied 

to represent a problem. 

Prototyping A typical instance of a solution is produced and 

can be tested before producing the final working 

version. 

 

Nomothetic 

Laboratory 

experi

ments 

The researcher manipulates some variables and 
observes the results. However, the laboratory 
setting and identified relationships may not be 
applicable to real-world contexts. 

Field 
experiments 

Experiments   conducted   in   real organisations, 
thereby increasing the reality of results. However, 
few organisations are willing to undergo 
experiments, and it can be difficult to control 
variables. 

Surveys Obtain views and practices at a single point of time 
and draw conclusions from the sample to the whole 
population using quantitative analysis techniques. 

Case studies Phenomena are studied it its real-life context 
without interfering with the phenomena. 

Forecasting Uses quantitative techniques such as   regression 
analysis to provide insights into future events 
where variables may change, such as predicting the 
level of sales. 

 
Interpretivist 

 
Idiographic 

Action 

research 

Where the researcher participates with the    
subjects in the problem situation, rather than 
taking the role of the observer. The problem usually 
results in change. Data is collected during the 
participation to provide practical value to an 
organisation, and the researcher uses the data 
relate to theoretical knowledge. 

Case studies An in-depth exploration of one situation, for 
example, to address the implementation of a new 
accounting system in a particular organisation. Yin 
defines the purpose of the method is to cope with 
the technically distinctive situation in which there 
will be many more variables of interest than data 
points. 

Ethnography Where the researcher is immersed in an 
organisation and interprets the viewpoints of 
members of that setting 

Futures 
research 

See forecasting. 
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3.1.3 The rationale for Choosing the Positivist Philosophy 

The study’s main focus was to observe the human’s physiological changes influenced 

by their surrounding environment. Positivism is the natural sciences’ central 

philosophy because it believes in the progression of knowledge and discovery. The 

positivists believe that there is a reality and science’s aim is to discover it (Denzin and 

Lincoln, 2005). The objectives of the study aimed at exploring the common patterns in 

the driver’s behaviour which is philosophically a ‘reality’ that science attempts to 

unveil. Thus, the positivist approach is used. 

3.2 Research Approach 

Research Approach is the structured approach used to collect data within a pragmatic 

perspective. Based on research objectives, a specific research approach is chosen and 

optimised for the type of data to be obtained, time and resources allocated for the 

research project (Cornford and Smithson, 1996). The research approaches could be 

constructive, nomothetic, or ideographic. See Table 6 for a brief analysis of the 

relationships among research philosophy, approaches, and methods. 

The constructive approach uses models based on refined concepts, frameworks, and 

technical development to represent theories based on situations that couldn’t be 

physically manifested. Even though such models could be observed theoretically 

through existing studies available on the literature, constructing such models could be 

easier through empirical observation  (Cornford and Smithson, 1996).  

The nomothetic approach uses quantifiable measures to collect and observe data 

empirically in order to realise a statistical judgement or prove a hypothesis (Cornford 

and Smithson, 1996). An example of the nomothetic approach is a formal 

mathematical analysis and lab experiments along with surveys. The primary goal of 
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the nomothetic approach is to provide a generalised insight of collected data. Therefore, 

data collection and sampling should be done carefully. It’s worth noting that this 

approach aligns well with the positivist philosophy and is suitable for this study 

presented in the thesis. 

Quantitative data analysis is associated with the nomothetic approach. It’s originally 

developed for natural sciences (Myers et al., 1997) to collect quantifiable data that 

could be measured and replicated precisely without refutation which allows 

hypotheses to be tested statistically (Cornford and Smithson, 1996). Quantitative 

analysis leads to a generalised understanding of results when collected data is large 

enough to accommodate for such an approach. 

Finally, idiographic research aims at exploring and understanding a particular 

phenomenon such as cases or events within a specific context. Crotty (1998) argues 

that it is associated with human affairs and individual cases as identified as 

’idiots’. Case studies or action research are the main methods used in this approach 

(Cornford and Smithson, 1996). Since the proposed study aims at proving a 

hypothesis irrelevant to its context, this approach is rejected. 

Qualitative analysis is associated with idiographic research because it drives a 

deeper understanding of the issue by collecting more personalised and more opulent 

description and more profound level of information. Therefore, the outcome is more 

insightful than quantitative approaches. It’s also associated with the interpretive 

philosophy as it aims at understanding reality within its surrounding values 

(Firestone, 1987). 

To achieve the main aim of the study, data should be collected, analysed, and 

validated. Using the right philosophy, approach and methods enable for accurate and 

scientifically valid results. The study employs the positivist philosophy based on the 

nomothetic approach to achieve its aims. The quantitative approach is used to collect 
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and analyse the collected data. A summary of approaches used in this study is 

represented in 3.3 with a brief justification for each choice. 

The research specific approaches chosen for the proposed study are: 

1. Lab experiment: this approach is used to simulate a driving scenario to 

collect quantifiable measures of the driver’s behaviour before and during 

a takeover situation. In addition, it allows for comparing driver’s behaviour 

during Level-1 and Level-3 automation. And finally, it enables 

repeatability of the study while maintaining safety for all participants. 

2. Questionnaire: this approach is used to understand the driver’s background 

such as age, gender, driving experience, etc., in addition to their confidence 

before and after the experiment on highly automated driving vehicles. The 

confidence of driver’s over the automation level has been questioned by 

Larsson et al. (2014) and therefore, asking drivers about their understanding 

of the system before and after the system is required. 

3. System Development: the study aimed at assessing the predictability of the 

driver’s performance using machine learning models. Thus, the study used 

the Spiral development methodology to explore several machine learning 

models and explore different data preparation techniques, see sections 3.4.6 

and 3.4.8 for more details.  

3.2.1 The justification for the Use of the Lab Experiment Methodology 

Real world driving comes naturally with risks, especially when using a premature 

technology such as highly automated driving. Lab experiments based on driving 

simulators have become an established approach in testing driver’s experiences and 

abilities to handle the driving task that enables constructing a visual driving 
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environment that’s quite similar to normal driving (Kaptein et al., 1996). The main 

advantages of driving simulators are the flexibility to generate and replicate driving 

scenarios in a safe environment (De Winter and Happee, 2012) in addition to the safety 

of drivers when the driving scenarios involve risky manoeuvres  or driving under 

stress (Brookhuis and De Waard, 2010) or alcohol  (Banks et al., 2004). 

There were some concerns among researchers on the impact of driving simulators on 

driver’s behaviour because they provide a safe driving environment in comparison to 

real driving (Santos et al., 2005) – their study concluded that “a relative validity is 

attainable in most cases and absolute validity in some”. The reported results align 

with Kaptein, Theeuwes and Van Der Horst, (1996). No studies were conducted to 

assess the influence of the driving simulator’s environment on driver’s behaviour in 

highly automated driving scenarios. However, most studies in the literature of highly 

automated driving have used a driving simulator, (e.g. Gold et al., 2013a; Körber et 

al., 2016; Zeeb et al., 2016, 2015).  

Also, there were studies examining naturalistic driving in Tesla S models (Endsley, 

2017). The aforementioned study run by Endsley, (2017) used an interpretivist 

approach to understand the issues of automation on the driver’s mindset. She reported 

that her study lacked the controllability of the driving simulator’s environment and 

argued that it might have affected her reported results. In addition, using a real 

driving environment comes with ethical concerns on the safety of participants and the 

replicability of the experiment. 

Accordingly, this study decided to choose the driving simulator to create a 

reproducible driving scenario to limit the variables influencing the 

psychophysiological changes of drivers in order to find answers to the research 

questions raised in Chapter 1.  
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3.2.2 The justification for the Use of the Questionnaire Methodology 

According to Zeeb, Buchner and Schrauf, (2016), there was an observed deviation 

between subjective and objective measures of driver’s performance. In order to collect 

the driver’s personal judgement of their takeover performance, a questionnaire was 

required. The questionnaire method was used in similar studies to collect driver’s 

demographic information and their evaluation of their driving performance (Gold et 

al., 2016; Mok et al., 2017; Zeeb et al., 2016).  

The study followed the same approach to collect driver’s age, driving experience, 

their reported fatigue level during the experiment, automated driving experience, the 

difficulty rating of the three takeovers, the difficulty of NDR tasks. The questions 

followed the structure advised by NASA-TLX standards (Hart, 2012), see Appendix B 

for more details. 

To conclude, the main motivation behind using the questionnaire was to collect the 

driver’s personal performance measures of their interaction with the experiment. This 

is identified as the subjective measures of their performance – that’s in order to study 

the correlation between the subjective and objective measures of their driving 

performance. In addition, the questionnaire provided a better understanding of 

drivers’ demographics and ensured the recruited participants fitted within the study’s 

inclusion and exclusion criteria. More information about participants inclusion and 

exclusion criteria is provided in section 3.3.2. 

3.2.3 The justification for the Use of the System Development 

Methodology 

In order to assess the predictability of the driver’s performance, the study adopted 

the system development approach to build a machine learning model that yields the 
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highest predictability rate. The development process of the predictive models is 

dependent on experimentations (Bramer, 2016). Thus, the study explored various 

software development methodologies (Summers, 2011).  The study imposed a level of 

risk since the study’s hypothesis was to assess the predictability of the driver’s 

performance at the transition. The uncertainty of finding the right features nominated 

the Spiral Model because it’s generally preferred when failure is probable (Summers, 

2011). The study chose the Spiral model because the Spiral model’s main focus is on 

reducing risk during the development process. This is done by splitting the project into 

small segments and to provide continuous evaluation of the risk levels of each decision. 

3.3 Experiment Design 

3.3.1 Participants 

Data represented in this study were collected in an experiment run at Loughborough 

University Design School. There was a total of thirty-six participants recruited for 

this study (53% females) and between 20 and 30 years of age (M=25.8, SD=5.7). 

Participants were invited to the lab for a 90 minutes session that involved both 

training and experimentation. Participants were asked to fill in a demographics 

survey and a questionnaire regarding their driving experience. 

Drivers had a minimum of two years of driving experience. In addition, they were 

required to have a normal or corrected-to-normal vision. Of all participants, 84.6% 

had no experience with advanced cruise control. Informed consent was obtained after 

the experimenter explained the required tasks approved by the university ethics 

committee panel, see section 3.3.7 for more details. All experimental procedures were 

conducted in accordance with the ethical guidelines of the hosting university.  
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Out of the 36 participants, three participants were excluded from the study for the 

following reasons. Two of these were due to some missing data during the data 

collection process and another participant who reported they were profoundly 

fatigued during the experiment in the questionnaire at the end of the experiment.   

3.3.2 The justification for the Chosen Participants’ Demographics 

The study recruited participants between 20 and 30 years of age with a minimum of 

two years driving. The study focused on this age group because the literature showed 

that they had the highest adoption rate of automated driving systems among 

different age groups (Payre et al., 2014). Since previous studies indicated that driving 

experience was a factor in the driver’s performance of handling automated driving 

systems, the study ensured that drivers had to have a minimum of two years driving 

experience (Larsson et al., 2014). 

The number of participants was chosen based on similar studies in the human factors 

field (e.g., Gold et al., 2013a; Wright et al., 2016a), who recruited 32 and 36 

participants and had the same number of independent variables. In addition, 

research studies that focused on physiological measures of drivers recruited 19 and 

21 participants  (e.g., (Darzi et al., 2018)). Thus, the study decided to recruit a total 

number of thirty-six participants.  

Participants who reported a 3-5 fatigue level on the NASA-TLX questionnaire at the 

end of the experiment were excluded from the data analysis, see Appendix B for more 

details. The subjective fatigue level of drivers was taken into consideration due to 

several studies reporting a significant impact on the psychophysiological changes of 

the drivers caused by their fatigue level (Lal and Craig, 2001). While fatigue is one of 

the variables affecting the driver’s performance as indicated in section 2.3.3, the 
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study has not considered it to avoid the potential of high dimensionality in addition 

to their detrimental impact on the clarity of the results. The study discusses the 

delimitations of the experimental design in section 3.5. 

In addition, to ensure participants’ alertness level was not affected, the study was 

only conducted twice a day. The first session was between 11 and 12:30 AM and the 

second one was from 4:00 to 5:30 PM. Picking these two timeslots was motivated by 

the results of Kraemer et al., (2000) that showed that humans had two peak alertness 

level at 11:00 AM and at 3:00 PM.  The first timeslot was centred at the first peak; 

however, the second one was one hour further than the second peak. The author 

decided to choose 4:00 PM for the second slot because it was more convenient for 

participants.  

 

Figure 10: Photo of the driving simulator during an experiment. 
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3.3.3 The STISIM Driving Simulator 

The STISIM driving simulator (STISIM, 2018) provides 135° with graphics projection 

serving as a test environment. The rig consists of an SUV seat and steering wheel 

with automatic transmission, see Figure 10. The cockpit included a tablet for 

multimedia use. On the right side of the cabin, a camera was placed to record the 

participant's posture and behaviour. 

To communicate the transition from normal to automated driving, an audio message 

was played informing drivers that the system is taking over control when a certain 

point in the simulated environment is reached. When the ego vehicles get close to a 

predefined hazard for the scenario, an intermittent beep, based on NHTSA guidelines 

(Campbell et al., 2007), was played to instruct the driver to takeover. When the 

automated driving system is activated, the vehicle speed is set to 70mph and is placed 

to provide a seven seconds gap from the leading vehicle. A seven-second gap was 

chosen based on the study by (Gold et al., 2013a). The automated system provided 

lateral and longitudinal control with no overtaking manoeuvres, changing lanes or 

changing speed. This was done to reduce the number of independent variables and 

ensure drivers will engage in NDR tasks. 

3.3.4 The justification for choosing the STISIM Driving Simulator  

The driving simulator provided a safe approach to test reproducible driving scenarios 

to test driver’s ability to handle critical driving incidents when they are distracted or 

under time pressure to avoid a collision. Thus, a real driving approach was rejected 

because it will not provide enough safety for drivers and may put participants’ lives 

in danger. More details are furnished in section, section 3.2.1. 
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The STISIM driving simulator provides the necessary infrastructure to design and 

implement driving scenarios. The STISIM software uses a scripting language called 

the Scenario Definition Language (SDL) (STISIM, 2007). The SDL allows the design 

of the scenario, road, vehicles, speed limits and allows an extensive data collection of 

telemetry (e.g., throttle, braking pedal, steering angle, etc.) in addition to partial 

automation which was adequate for the experiment design. 

One of the main challenges imposed by the STISIM software was the inability to 

change the angle of the steering wheel automatically through the STISIM software. 

To explain, when the automation starts, drivers may leave the steering wheel with 

an angle which is not changeable by the STISIM software. This posed a challenge 

when the vehicle switched from automation to at the transition because the vehicle 

would steer away from the hazard (vehicle ahead) putting the vehicle in an unknown 

state and therefore breaking the consistency of the experiment among participants. 

To solve that, an automated audio message was played stating ‘Automation starts, 

please centre the steering wheel’ when automation started to remind the participants 

to centre the steering wheel; thus, eliminating this problem. This was done during 

the training scenario and communicated orally with the participants to ensure they 

comprehended the issue. Then the aforementioned audio message was played at each 

transition from manual to automation during the main experiment.  

3.3.5 Non-Driving Related Tasks 

To understand how visuo-cognitive and cognitive distractions may affect 

physiological behaviour of participants, non-driving related tasks were selected based 

on two previous studies (Merat et al., 2012; Zeeb et al., 2015); namely email and 

twenty questions tasks. Also, participants in the control group were requested to pay 
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attention to the road without engaging in any tasks. The sequence of those tasks was 

picked randomly for each participant to alleviate the order effect. The email task 

included reading an email on a tablet on the vehicle’s dashboard then writing a reply. 

The emailer asked participants to pick a close friend and describe their perfect 

birthday party.  

The Twenty Questions Task (TQT) was chosen because it causes a cognitive 

distraction and has been selected in similar studies (Gold et al., 2016; Merat et al., 

2012). During the TQT, participants were asked to guess an animal by asking the 

researcher a maximum of 20 polar questions via a simulated hands-free phone call 

(Jamson et al., 2004). These two tasks were designed to ensure participants’ 

engagement until the takeover request (similar to (Zeeb et al., 2015)) to maintain the 

same effect on mental workload among all participants. The duration of these tasks 

was seven minutes, and their order was randomised. 

3.3.6 The justification for the Chosen NDR Tasks 

According to Craye and Karray, (2015), driver distraction in manual driving could be 

divided into three categories that impose visual, cognitive and manual inattention --  

they also reported that every secondary task (or in this study’s case, NDR tasks) 

might include at least one of the aforementioned distractions. As discussed in section 

2.4.2, visual and manual distractions are straightforward to detect using available 

technologies, see section 2.4.4 for more details. The main challenge was in detecting 

cognitive distraction because most indicators are indirect cues to the mental state 

and may be affected by other individualistic factors, see section 2.4.3 for more details. 

Therefore, the study focused on the NDR tasks that could impose cognitive 

distraction. Among the surveyed NDR tasks, (see section 2.3.2), the study aimed at 
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choosing distracting tasks that could stimulate cognitive distraction alone or visuo-

cognitive distractions at the same time. These two tasks would be compared to a 

control group that performed no tasks to understand the following: 

1. The effect of no tasks on physiological behaviour of drivers and compare it with 

their performance, 

• This was selected as the baseline of the study to compare others to those 

which were performed by the control group. 

2. The effect of cognitive tasks on driver’s physiological changes and their 

performance, 

• This was selected to understand what cognitive distraction could impose 

on the driver’s performance and how it may influence the physiological 

changes among different participants. This was performed by the TQT 

group. 

3. The effect of visuo-cognitive tasks on physiological behaviour and how they 

affected their performance, 

• This was selected to understand if combining visual and cognitive 

distractions could worsen the driver’s performance and see if the 

physiological changes could be detected accordingly. This was performed 

by the email group. 

Choosing the cognitive and visuo-cognitive tasks was based on the literature review 

conducted by the study which is summarised at section 2.3.2. The review showed that 

the Twenty Questions Task was heavily adopted as the main cognitive distraction 

task in several highly automated driving studies. Nevertheless, no studies 

investigated the TQT’s effect on the driver’s physiological behaviour in highly 

automated driving scenarios. Thus, it was selected as the cognitive task of this study. 
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While TQT is heavily used in driving studies, it’s still criticised because it’s not a 

naturalistic task that drivers tend to perform in their daily driving routines. In 

consequence, the choice of the visuo-cognitive task was gravitated to naturalistic 

tasks. 

Zeeb, Buchner and Schrauf, (2016) accentuated visuo-cognitive naturalistic tasks in 

their study. They compared the email, video and news tasks to study their impact on 

the driver’s performance in highly automated scenarios. Their results identified a gap 

between the objective and subjective measures of the difficulty of the email tasks. To 

explain further, the email tasks were the most difficult task reported by participants; 

however, it wasn’t the most difficult one according to the objective measures of the 

driver’s takeover quality. Such contradiction was worth the investigation to 

apprehend whether drivers’ physiological changes could have an answer to such 

inconsistency. Thus, the email task was chosen as a naturalistic visuo-cognitive task 

for this experiment. 

3.3.7 The Ethical Procedure  

All participants were handed a ‘Participant Information Sheet’ that included the 

experiment procedure, what to expect, how data is collected, stored and manipulated 

and the importance of the experiment. Once they finished reading, participants were 

given time to ask any questions regarding the experiment and the information sheet. 

Finally, participants were asked to sign an ‘Informed Consent’ document to accept 

the data collection and processing procedure in addition to a health screening 

questionnaire before starting the study. They were also informed they could leave the 

experiment at any time.  The study followed the university’s ethical procedure and 

used a slightly modified version of the Loughborough University’s Information Sheet 
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and Informed Consent templates. The information sheet and the consent forms are 

attached in Appendix C. 

3.3.8 Driving Scenarios 

After finishing the ethical procedure, participants were informed orally of how the 

experiment was run and encouraged to ask questions. Before showing them the 

simulator, participants were asked of their familiarity with Android or iOS operating 

systems. Based on that answer, the multimedia tablet placed in the vehicle rig was 

chosen accordingly. This was done to alleviate any learning curve of handling the 

tablet during the experiment. 

Participants were given 20 minutes of manual driving to get them familiar with the 

driving simulator. Then, they were given 10 minutes of highly automated driving 

practice before starting the main experiment. First, they were shown the rig and 

explained the features and limitations of the driving simulator. After 20 minutes of 

driving manually, participants were informed they could finish the training period 

whenever they felt fully accustomed to the driving simulator within a limit of two 

minutes. All participants chose to end their training within one minute of the request. 

The next training step involved the activation of the automated system.  

Before the training phase starts, participants were required to put on an eye-tracking 

system (Tobii Pro Glasses) to track their eye movements and a heart rate monitor 

(Polar H7 chest strap). The eye tracking system captured the pupil diameter and 

saccade eye movements of the participants. The heart rate monitor was chosen for 

this study because it has a 99% accuracy in comparison to ECG devices (Wang et al., 

2016). Though, it was difficult to set up for a few female participants because it 

interfered with their brassiere. To overcome that, those female participants were 
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requested to wear a sports brassiere that had no metal support. A chaperone was 

present for the duration of the experiment. The chaperone was the same gender as 

the participant and helped place in the chest strap of the HR monitor. In addition, 

they were asked to put on a smartwatch with a heart rate monitor (Polar A360, 

(Polar, 2016)) as a second heart rate monitor in case the chest strap HR monitor 

failed. No data were collected during the training stage; fitting the data collection 

equipment was done to get participants used to their physical presence.    

After the manual driving training ended, participants were given a chance to 

experience the automated driving once the equipment was all in place. Participants 

started a 10 km practice drive in a UK based three-lane motorway scenario.  

 At the second kilometre of the practice, automation starts. The automated system 

sets the speed at 70mph following a large SUV on the leftmost lane whilst setting a 

500-foot distance from it. At kilometre eight, the TOR is automatically activated due 

to a broken-down vehicle in the current lane. The ego-vehicle starts decelerating 

immediately allowing seven seconds before a collision with the SUV assuming no 

driver's intervention. The scenario was defined in a manner which results in a 

collision with the broken-down vehicle if no action was taken by the driver allowing 

7 seconds of reaction time as recommended by (Gold et al., 2013a). After finishing the 

takeover process, participants drove manually for two kilometres before the 

automation system is re-engaged. When participants were done, the experimenter 

asked them to relax for one minute before starting the main experiment. This was 

done to ensure the drivers’ heart rate returns to a resting level. 

The main experiment was approximately 30 minutes long. It included three 

takeovers and three slots for secondary tasks with no stop in between. The main 

scenario of this experiment was a repetition of the same practice scenario where 

participants started driving manually and then placed the vehicle on automated 
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mode at the second kilometre. This was done by asking the drivers to place the ego-

vehicle in a specific lane. Lane choice was alternated every time to cover the three 

lanes for every participant; this was done to reduce expectancy effects and to consider 

takeover behavioural changes in different lanes. After a minute, drivers were asked 

(via an audio message) to engage in one of the NDR tasks or pay attention to the road.  

The secondary task engagement lasted for approximately 7 minutes. Then, an 

intermittent beep was sounded to a signal a takeover request. Participants were 

expected to stop the NDR task and engage immediately in handling the vehicle. This 

scenario was then repeated twice to cover two more takeovers and two more slots for 

the NDR tasks. The main difference among these phases are 1) the NDR task; 

participants are expected to do a different NDR task in each phase and 2) the lane; 

the vehicle changes lane right after the automation starts. This repeated measure 

approach allowed more results for each participant and provided data to study the 

learning effect of drivers and how it correlates with their physiological measures. 

The driving scenario is explained more in details at Appendix A. It includes a visual 

explanation of the scenario with the key events in each step. In addition, it has the 

full source code of the SDL that defined the road, vehicles and the takeover process. 

3.3.9 The justification for using the Repeated Measures Approach in the 

Driving Scenario 

The author decided to adopt the repeated measure approach for the following reasons. 

First, it allowed more statistical power for a smaller number of participants. As stated 

in section 3.3, data collection was costly because of the specified dates in which the 

study could take place in addition to the difficulties in recruiting participants. 

Second, the repeated measure approach provided the necessary data to study the 
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learning effect on the driver’s performance and its potential effect on their 

physiological data. In few studies, a learning curve of driver’s handling the takeover 

was observed; (Körber and Bengler, 2014; Larsson et al., 2014; Wright et al., 2016a). 

This phenomenon raises questions about whether drivers will maintain the same 

physiological behaviour consistently through the three takeovers or perhaps time 

may have an effect on those changes. Finally, the repeated measure design provided 

the possibility to study the order effect of the NDR tasks on the driver’s performance.  

 

Figure 11: Data analysis scheme (Yu et al., 2006). 
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3.4 Data Analysis 

3.4.1 Introduction 

The quantitative data analysis method was chosen for this research to assess the 

correlation among the dependent and independent variables. As identified by Yu et 

al. (2006), data analysis could be separated into three main steps: data pre-analysis, 

data pre-processing and data post-analysis (see Figure 11). The study mixed the two 

approaches of Yu et al. (2006) and Kotsiantis et al. (2006) to develop a pre-processing 

framework adequate for the research problem. Yu et al. (2006) and Kotsiantis et al. 

(2006) studies were chosen because they were widely used in the literature. While Yu 

et al. (2006) created their framework for neural network modelling, the system could 

be easily extended to other machine learning techniques. The steps taken for the data 

analysis are explained in detail in the next few sections.  

3.4.2 Data Pre-Analysis 

Data pre-analysis is the step-in which data of interest is identified and captured (Yu 

et al., 2006). Yu’s et al. (2006) framework consists of the following steps: requirement 

analysis, data collection, data selection and data integration. At the requirement 

analysis step, the problem targeted by the study should be identified clearly to collect 

a data requirement scheme. The scheme helps researchers to understand what 

information to collect, which data is required for each task, the data format, internal 

and external sources of data. 

Once the requirement is set, the data collection step is performed. The importance of 

this step lies in the fact that data collection should avoid any biases or errors as it 

may resonate throughout the data analysis pipeline. Choosing an adequate data 
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variable is essential to find the simplest facts representation based on the lowest 

number of variables. This ensures saving time in modelling and reduces the problem 

space (Stein, 1993, Kotsiantis et al., 2006). 

Finally, data integration is important when several data sources are used to collect 

data. At this step, data is combined, merged, and synchronised from such sources. 

Based on the nature of data, it could be stored on structured or non-structured 

databases. 

3.4.3 Data Pre-Processing 

Data pre-processing is the step that data has to be transformed and conditioned to 

filter inaccurate and divergent data. This phase consists of two main steps: data 

inspection and data processing. Inspecting data means finding any issues with data 

quantity and quality. Generally, some data could be too small, too big, noisy or 

missing. Solutions to these issues include data regathering, sampling and linear 

regression in order (Yu et al., 2006). 

At the data inspection step, data is analysed to find issues such as missing data 

points, trending data, or data size issues (Yu et al., 2006). In addition, data 

representation could be unsuitable for some statistical models; therefore, a 

normalisation step is required (Kotsiantis et al., 2006) at the data processing step. 

Moreover, missing data points, illegal values (for cardinal metadata for example) and 

out of range for some sensory data have to be identified and tackled (Kotsiantis et al., 

2006).  
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Table 7: Summary of the dependent variables used in the experiment. 

Measure Source Measurement 

Type 

Range 

Response 

Time 

Driver 

Simulator 

Seconds 0-7 

PerSpeed Processed 

Data of 

the 

Driving 

Simulator  

Percentage 

Change 

Starts at 0 which indicated no change 

in speed. Then goes up based on the 

observed changes in speed. 

PerAngle Processed 

Data of 

the 

Driving 

Simulator  

Percentage 

Change 

Starts at 0 which indicated no change 

in the angle of the vehicle. Then goes 

up based on the observed changes in 

the vehicle’s heading angle. 

Takeover 

Difficulty 

Survey Nominal  Difficult, Neutral and Easy 

Distraction 

Level of 

each NDR 

Task 

Survey Ordinal 1-5 where 1 means extremely not 

distracting to 5 which means 

extremely distracting 

Heart rate Polar H7 

Chest 

Strap 

Beats Per 

Minute 

0 – 1. That’s because heart rate data 

was normalised. 

Pupil 

Diameter 

(left and 

right eyes) 

Tobii 

Glasses  

Millimetre 0 -  1. That’s because pupil diameters 

were normalised. 

Saccade 

eye 

movement 

Tobii 

Glasses 

Magnitude of 

X,Y,Z 

movements of 

the eye. 

Starts at 0 which indicated no eye 

movements detected. Then goes up 

based on the saccade eye movements. 

A high value indicated rapid eye 

movements. 

3.4.4 Data Post-Analysis 

At this phase, data is ready to be used for building up classification or regression 

models. Data is divided into mainly two to three sets. The training set is used to teach 

the model the trends of data. Then, the validation set is used to test and train the 

model. This step is optional and could be skipped. Finally, the test set is used to test 

the efficiency of the model. Typically, data is split into 70% training data set, 20% 
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validation set and 10% testing set (Yu et al., 2006). Other methods exist for small 

datasets such as N-Fold Cross Validation, see section 3.4.8.9.  

In addition, feature selection is required to identify and remove any redundant 

features fed to the statistical model. Features are labelled relevant, irrelevant, or 

redundant. Relevant features are identified as the ones that have an influence on the 

output and cannot be identified by other features. In contrast, irrelevant features 

have no influence on the selected output. Redundant features provide information 

that has already been identified either explicitly or implicitly by another feature 

(Kotsiantis et al., 2006). A widely accepted approach for feature selection was 

proposed by Blum and Langley (1997) that uses a heuristic model for grouping and 

evaluating the relevance of each feature. More information is furnished in section 

3.4.9. 

Table 8: Summary of the independent variable used in the experiment. 

Measure Source Measurement Type Range 

Type of 

Distraction 

Research 

Choice  

N/A Email. TQT or control 

group 

 

Data validation is the next step in this phase. Models require several training epochs 

to reach an acceptable training error. Adapting the model and retraining it is 

necessary to achieve an acceptable result (Yu et al., 2006). Models could suffer from 

two main issues, underfitting and overfitting. Overfitting happens when the model 

cannot generalise, i.e., the model performs well on training data but poorly perform 

on test data. Conversely, underfitting happens when the model is unable to fit well 

to the training data and is not capturing trends on the training data. This is also 

called over-generalisation. A perfect model has to have a balance between these two 

issues to ensure adequate generalisation to perform consistently (Yu et al., 2006, Van 

der Aalst et al., 2010). 
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Finally, based on model performance, a data readjustment step could be needed. 

When the model is underperforming, data must be readjusted to overcome the 

overfitting and underfitting problems. To resolve fitting issues, the model has to be 

retrained with different data preparation strategies such as changes in the data 

splitting, the model hyperparameters or learning iterations (Kotsiantis et al., 2006). 

3.4.5 Problem Definition  

During the driving simulator experiment, heart rate (HR) and pupil diameters (PD), 

the location of pupils of both eyes were collected before a takeover request (TOR) 

occurs. Then, Driver’s response time and handling of the vehicle was recorded. 

PerSpeed and PerAngle are two performance measures that were introduced and 

evaluated in the study, see Chapter 4. PerSpeed is defined as the mean percentage 

change of vehicle speed whereas, PerAngle is the mean percentage change of the 

heading angle. The aforementioned measures were used as the variables assessing 

the takeover quality. Table 7 shows a summary of dependent variables collected in 

this experiment. The main independent variable in this experiment was the type of 

distraction. The study collected heart rate, pupil diameter and movement in addition 

to some surveyed data such as subjective level of distraction and their order of 

difficulty, more details are provided in Table 8.  

Table 9: Example Data Collected During the Experiment 
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1 0 74 0.01 0 0 0 0.015 0 0 0 

1 1 74 0.012 0.2 0.1 0 0.016 0.22 0.12 0 

1 2 74 0.016 0..4 0.4 0.2 0.017 0.44 0.41 0.19 
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The study investigated the predictability of the driver’s performance measures in 

highly automated driving using physiological measures data. The study also 

identified the most relevant features that could be extracted from the collected 

dataset. An example of the dataset is illustrated in Table 9.  

Table 9 shows a sample of the multivariate time series data of HR, PD and location 

of pupils of both right and left eyes of participants collected over time. Time series is 

a series of variables identifying the values of a variable over time and multivariate 

refers to the fact that the data includes multiple time series (Anderson, 2011). The 

dataset contains 99 takeover instances collected from 33 participants (53% females) 

between 20 and 30 years of age (M=25.8, SD=5.7). Data were collected up to 200 

seconds before each takeover request. 

 

Figure 12: Different approaches to driver fatigue detection (Sikander and Anwar, 

2018). The study used the same approach to categorise different detection 

algorithms of driver’s inattention. 

 

Each takeover had an ID assigned to it. HR was collected at 1Hz and PDs were 

collected at 60Hz. Out of six participants, 21 HR readings were missing out of an 

average of 2000 readings. To fill HR missing points, they were interpolated using a 



 

98 
 

linear regressor to fill gaps between readings. For each takeover ID, there was 

another table that had a response time, PerSpeed and PerAngle values associated 

with it.  

The dataset nature of being a multivariate time series imposed several challenges. 

To begin with, each takeover is represented by an average of approximately 30,000 

readings of pupil diameter, eye movements and 200 readings of HR data. Using the 

raw data as an input to any data analysis approach (Machine learning for example) 

has major drawbacks such as sensitivity to noise in data, different lengths of time 

series and mismatch in correlating events happening at different times (Nanopoulos 

et al., 2001). To alleviate that, literature in time series analysis field suggested a 

feature-based approach for regression (Kléma et al., 2004) and classification (Bagnall 

et al., 2017; Nanopoulos et al., 2001).  In addition, the literature produced other 

approaches such as MUSE (Schäfer and Leser, 2017a) to create a domain agnostic 

multivariate time series classifier by encapsulating features generation into their 

processes. The two approaches are explained in more detail below. 

Feature-based approach converts time series into first and second order levels of 

features (Nanopoulos et al., 2001). Features are statistical values that aggregate 

information over a period of time and are not dependent on a specific time point which 

makes features less sensitive to noise (Fulcher and Jones, 2014; Nanopoulos et al., 

2001). In addition, the aggregation of those time points reduces the machine learning 

models input and therefore reduces learning time considerably. Then, several 

machine learning algorithms are applied to perform classification using the 

generated features. More details will be discussed in 3.4.6 section. 

From driver inattention studies’ perspective, the literature review identified three 

different approaches for driver inattention detection: mathematical, rule and 

machine learning-based approaches (Sikander and Anwar, 2018). While Sikander 
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and Anwar's, (2018) literature review covered only fatigue studies, their 

categorisation approach could be extended to driver inattention studies. For example, 

driver inattention methods this study surveyed included mathematical-based 

approaches  (Schmitt et al., 2018),  in addition to rule-based approaches (Sigari et al., 

2013) and machine learning-based approaches (Jafarnejad et al., 2018). In summary, 

the model displayed in Figure 12 summarises all approaches used in driver 

inattention studies. 

There are several advantages to the machine learning approach in comparison to the 

mathematical and rule-based models. For example, the machine learning approach 

automates the knowledge acquisition from the collected data (Smola and 

Vishwanathan, 2014). Conversely, mathematical models require a heavy domain-

expert knowledge (Mallis et al., 2004) which make them difficult to produce and 

evaluate since the field of highly automated driving is relatively new (Campbell et 

al., 2018). Similarly, rule-based models using Fuzzy Logic are dependent on function 

approximation which is practically another form of interpolation; hence, they are only 

suitable for problems that have an adequate mathematical description (Reus, 1994). 

Accordingly, the mathematical and rule-based approaches were considered 

unsuitable for assessing the predictability of driver’s takeover performance.  

 

Figure 13: “WEASEL+MUSE Pipeline: Feature extraction, univariate Bag-of-

Patterns (BOP) models and WEASEL+MUSE”, (Schäfer and Leser, 2017a) 

Contrarily, machine learning-based methods provide more flexibility in developing 

predictive models (Smola and Vishwanathan, 2014) which made them applicable for 

several driver inattention studies (Dasgupta et al., 2013; Jafarnejad et al., 2018; Le 
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et al., 2018; Li et al., 2011; Liang et al., 2007; Solovey et al., 2014). Several machine 

learning-based studies achieved high accuracies in driver inattention detection, see 

section 2.4. Subsequently, the study decided to choose the machine learning 

approach.   

 

Figure 14: An Illustration of different machine learning models used in the study. 

 

Contrarily, there's a family of multivariate time series classifiers that encapsulates 

feature learning and classification (Bagnall et al., 2017). For example, MUSE is a 

state-of-the-art multivariate time series classifier. It performs its own feature 

extraction and learning using bag of patterns approach to convert time-series 

frequencies into words using Symbolic Fourier Approximation (Schäfer and Högqvist, 

2012), then filters them based on their information gain. At the end of the features 
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filtering, the algorithm uses linear classifiers as a final classification layer. The full 

pipeline is displayed in Figure 13.  

The individuality of recordings of HR and PD imposed another challenge on providing 

a driver-independent predictor.  Recruited participants had different resting heart 

rate and different mean pupil diameter. To alleviate the individuality of the data in 

order to make them comparable, data normalisation was required for better 

comparison among participants (Patro and Sahu, 2015). More details are provided in 

3.4.8.1. 

3.4.6 The Statistical Approach  

The study used repeated measures ANOVA and linear mixed models (LMM) to study 

the difference among group means and study the correlation between the dependent 

variables and their covariates. Repeated Measures ANOVA was used to test the 

statistical significance between NDR tasks and their corresponding mean heart rate 

and pupil diameters of participants. In addition, it was used to test the statistical 

significance among different PerSpeed and PerAngle groups. PerSpeed and PerAngle 

groups were determined using K-Means Clustering algorithm. 

Linear Mixed Models were used to assess the correlation between response time and 

their corresponding mean heart rate and pupil dimeters while considering the 

repeated measurability nature of the data. In addition, PerSpeed and PerAngle were 

tested using LMM to assess a correlation with the mean heart rate and pupil 

diameters of participants. 

The human factors field has adopted ANOVA approaches to identify the statistical 

significance among groups, see Chapter 2 for the literature review. Additionally, 
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Linear Mixed Models were used in similar studies, e.g., (Cummings and Guerlain, 

2007) to identify the correlations among continuous variables. 

3.4.7 The Machine Learning Approach 

3.4.7.1 Introduction 
Using machine learning, the study used two methods to evaluate the predictability 

of drivers’ performance measures, see Figure 14. The target variables were Response 

Time, PerSpeed and PerAngle. To predict those variables, two approaches were used. 

The first approach was regression-based to predict the actual values of the 

performance measures. The second approach was classification-based where 

performance measures were categorised into discrete values. In the following 

sections, regression and classification methods used in this study are explained. The 

justifications of each method used are briefly discussed. 

In the regression approach, two methods were used: 

3.4.7.2 Linear Regression  
Linear regression is a statistical technique to assess the linear relationship between 

dependent variables and one or more independent variables (Neter et al., 1996). It 

has been previously used in assessing fatigue (Li-Wei Ko et al., 2015), visual and 

cognitive distraction (Li and Busso, 2015).   

3.4.7.3 The justification for Using Lasso Linear Regression  
Lasso algorithm is a linear regression model optimised for prediction. The algorithm 

uses regularised coefficients which enables it to generalise for new datasets and 

therefore, build complex models while avoiding overfitting (Tibshiranit, 1996) which 

makes it more advantageous over regular regression methods (Hansheng et al., 

2007).  

3.4.7.4 Ensemble Regression  
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The ensemble regression models are meta-estimators that combine multiple 

regressors on a patch of sequential or random subsets of the training set (Tin Kam 

Ho, 1998). Their individual predictions are then aggregated to form a final result. 

The randomisation added into the construction of those methods reduces the variance 

in comparison to other estimators such as Gini tree methods which alleviate 

overfitting (Breiman, 1996). 

3.4.7.5 The justification for Using Ensemble Regression  
In the field of driver inattention, several studies proved that ensemble regression is 

adequate for classifying driver mental workload (Le et al., 2018) in addition to fatigue 

(Hu and Min, 2018). The ensemble regression learning models are known to enhance 

learning performance by combining multiple models (Berk, 2006).  Consequently, 

they provide better results than regular regression models due to their ability to 

adapt to highly dimensional datasets (Wang et al., 2010). Therefore, ensemble 

regression was used along with linear regression to compare their results and explore 

the dimensionality of the collected dataset. 

3.4.7.6 Feature-Based Machine Learning Classifiers 
The study used the spiral system development approach, as explained in section 3.2 

and justified in section 3.2.3. The accuracies of the developed regression and 

ensemble regression methods in the study were inadequate for some of the 

performance measures, refer to Chapter 4 for more details. Thus, the author decided 

to investigate the classification approach to build predictive models for the 

performance measures. The study investigated two methods: feature-based and 

multivariate timeseries classification methods. In the following paragraph, a feature-

based method is explained and justified. Section 3.4.7.8 discusses time-series based 

classifiers, and the justification for their use is furnished. 

Classification is the process of mapping input data into a class in a predefined set of 

classes (Smola and Vishwanathan, 2014). Classification requires a set of predefined 
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classes outlining the output of the model for every corresponding input data. In 

addition, the training of the model requires a set of well-chosen features (input data) 

that provides a high information gain to the classification model (Nanopoulos et al., 

2001). Choosing a set of features is crucial to the robustness of those classifiers 

(Nanopoulos et al., 2001). Consequently, data preparation is essential in creating 

robust classifiers in addition to choosing the classifiers themselves. This section is 

concerned with the choice of the classification model. For more information about 

data preparation, please check section 3.4.8. 

 The study used five classification algorithms; namely, Decision Trees using Gini 

algorithm (Quinlan, 1986), Random Forest (Breiman, 2001), Gradient Boosting 

classifier (Freidman, 2008), Support Vector Machines (SVM) (Suykens and 

Vandewalle, 1999), and K-Nearest Neighbour (KNN) (Cover and Hart, 1967) were 

used.  

3.4.7.7 The justification for Using Different Machine Learning 

Classifiers 
According to the ‘No Free Lunch Theorem’, there are no machine learning classifiers 

that perform best for every problem; hence, comparing several classifiers is a 

necessity to identify the most suitable one for the study’s problem (Wolpert, 2002). 

The practice of comparing multiple classifiers is widely adopted in several driver 

inattention studies (Darzi et al., 2018; Jafarnejad et al., 2018; Le et al., 2018; Solovey 

et al., 2014). Hence, the study chose a collection of classifiers to test.  

Picking the five classifiers was based on their reported performances in the literature. 

Decision Tree classifier was used because of their ability to provide a human readable 

solution and for their easiness and training speed (Quinlan, 1986). SVM classifier 

was used because of its ability to handle high dimensional data (Bennett and 

Campbell, 2000; Dong et al., 2015; Smola and Schölkopf, 2004). Default 

hyperparameters based on Scikit-learn models, a Python library (Pedregosa et al., 
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2011) were used to obtain unbiased results and avoid overfitting. To benchmark the 

classifiers results, Gaussian Naïve Bayes (Zhang, 2004) and random classifier 

algorithms were used as a baseline.  

3.4.7.8 Multivariate Time Series Classifiers  
In the literature of time series classification, generic approaches (dictionary-based as 

referred to in some papers (Bagnall et al., 2017)) were developed and tested on several 

timeseries. The generic classifiers encapsulate feature learning, selection and 

training to create domain-independent time-series classifiers (Schäfer, 2015; Schäfer 

and Leser, 2017a, 2017b). While univariate time series classifiers research has 

progressed significantly in the past decade, (Bagnall et al., 2017), research in the field 

of Multivariate Time Series classifiers is limited according to the review of  Schäfer 

and Leser, (2017b) who proposed a novel MTS classifier called MUSE.  

3.4.7.9 Justifications for Using Multivariate Time Series Classifiers  
The study chose MUSE for mainly two reasons: 1) it performed better than all other 

algorithms in domain agnostic time series classifiers (Schäfer and Leser, 2017a)  and 

2) it provides a comparison between the feature-based approach and domain-agnostic 

approach.  The results of MUSE were later compared with the suggested feature-

based solution in section 3.4.7.6. The authors of MUSE reported that their algorithm 

outperformed all its counterparts (Schäfer and Leser, 2017a) which is verified on a 

public code repository on Github (Patrick Schäfer, 2017). In this study, MUSE is used 

and compared against the feature-based approach on the collected dataset. 

3.4.7.10 Summary of the Machine Learning Approach 
The study adopted the machine learning approach to build predictive models for the 

driver’s performance measures. The study used two methods: regression and 

classification. Regression methods included simple regression models such as Lasso 

and ensemble regressors such as random forest and bagging. The second method used 

was classification. It was adopted because regression models underperformed in 



 

106 
 

predicting some of the driver performance measures. Feature-based classifiers were 

used: decision trees, KNN, SVM, RF and GB. Finally, a multivariate time series 

classifier called MUSE was used to compare its accuracy to the feature-based 

approach.  

3.4.8 Data Preparation 

 

Figure 15: An illustration of the data preparation process. Raw data is 

transformed by normalising the data to fit in the range from 0 to 1. Then the data 

is sliced into window sizes. Different features are extracted using simple and 

relevant approaches. Finally, the generated features are passed to either 

regression or classification algorithms. 

 

Data preparation is a crucial step to create robust predictive models (Bramer, 2016; 

Dalgleish et al., 2007). The study put a significant effort in the data preparation by 

creating a general framework motivated by previous research (Fulcher and Jones, 

2014; Kléma et al., 2004). The framework is illustrated in Figure 15 and explained in 

detail in the following sections. The framework consists of four steps, normalisation, 

transformation, window slicing and feature generation. In the following sections, 

each step is explained and justified. 
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3.4.8.1 Normalisation 
 

Normalisation is the “adjustment of the values of an attribute generally to make them 

fall in a specified range such as 0 to 1”, (Bramer, 2016). Pupil diameter (PD) and 

heart rate (HR) data were normalised according to Equation 1 where V is a window 

of the collected data ending at each takeover request. A window is a number of 

recordings that span over a period of time, e.g., a window size of 30 seconds includes 

30 recordings of HR data over a period of 30 seconds at a sampling rate of 1Hz or 300 

recordings of pupil diameter at 10 Hz. Normalisation was performed to alleviate the 

individuality of the collected data by putting minimum HR or PD value at 0.0 and a 

maximum value at 1.0 per each participant for the entire duration of the experiment. 

𝛼 =
1

𝑛
∗  ∑

𝑉𝑖 − min(𝑉)

max(𝑉) − min(𝑉)

𝑛

𝑖=𝑘

 

Equation 1: Normalisation of heart rate and pupil diameters data were performed 

using the method, where V is a vector containing readings from k is time0 and n is 

window size. 

 

3.4.8.2 The justification for Using Normalisation  
The normalisation process facilitates the comparison among different participants. 

For example, different participants have different resting HR based on different 

variables (Karvonen and Vuorimaa, 1988). The recruited participants had a resting 

heart rate ranging from 39 to 75 beats per minute. Having a resting heart rate of 39 

was alarming to the experimenter since it could either be a sign of fitness (Plowman 

and Smith, 2007) or a serious medical condition (Baliga and Eagle, 2008). When the 

participant was asked about their resting heart rate, they informed the experimenter 

they’re a tri-athlete, and they’re aware their resting heart rate is around 39. That 

wasn’t the only incident during the experiment which is understandable since they 
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were recruited at Loughborough University campus where the majority of students 

are involved in sports (Loughborough University, 2018). The reported range in the 

resting heart rate among participants makes it difficult to compare those values to 

each other. To mitigate, that, normalisation was adopted in the data preparation 

pipeline. 

The study picked the simple min/max normalisation approach even though there are 

other popular normalisation techniques in the machine learning field (Zheng and 

Casari, 2018). Choosing a simple normalisation technique makes it easier to analyse 

and read the reported ANOVA results and could drive the adoption of normalisation 

in the field of Human Factors.  

3.4.8.3 Sliding Window 
The time series data are a series of values over time, meaning that every attribute 

has many values observed during a time period (Zheng and Casari, 2018). The format 

of time series is incompatible with the supervised learning methods that expect one 

value attribute (Nanopoulos et al., 2001). In order to fit time series data into 

supervised learning problems format, the values of a specific attribute are aggregated 

using some statistical formulas, e.g., sum, min, max and so on (Anderson, 2011).  One 

of the challenges in this process is choosing the number of values to apply those 

formulas to – the number of values fed to the formula is called the ‘window size’. 

Thus, the dataset was sliced into different window sizes. The window size ranged 

from 2 to 200 seconds. 

3.4.8.4 The justification for Using Window Slicing 
The window size was found to be crucial to the robustness of time series classification 

algorithms (Liang et al., 2007; Solovey et al., 2014; Wijsman et al., 2011). Thus, 

testing different window sizes was essential to identify their effect on the 

effectiveness of the reported models.   The window sizes are defined as the time taken 

to collect data before a TOR. Previous studies indicated that the length of window 
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size had a strong correlation with prediction accuracy (Solovey et al., 2014). 

Therefore, trying out different window sizes was important to explore this correlation 

in our dataset. However, overlapping windows did not add any performance gain 

(Solovey et al., 2014); therefore, the overlapping was not investigated in this study. 

3.4.8.5 Feature Generation 
A feature is defined as “a numeric representation of an aspect of raw data”, 

(Zheng and Casari, 2018). A feature is generated by processing a window of a variable 

to create a single value, e.g., min or max (Anderson, 2011). Generating features in 

this study was the most crucial step to the robustness of the ML algorithms. Many 

studies explored suitable features in manual driving studies (Wijsman et al., 2011); 

however, highly automated driving studies are scarce, and the area hasn't been 

explored fully. Therefore, this study examined two methods for feature generation. 

1) Simple features generation: The min, max, standard deviation, variance, length, 

sum and median were calculated for HR and PD time series which generates a 

total of 18 features for three time-series. Then, pupil locations (X, Y and Z) were 

later processed to calculate the magnitude of the eye movement vector. Several 

studies suggested that saccadic eye movement as a prominent feature for 

identifying mental workload  (May et al., 1990; Tokuda, 2010). To calculate such 

feature, pupil location vector vi represents the magnitude of the eye movement at 

time i using Equation 2. 

Equation 2: the magnitude of eye movement formula. 

vi=  √(𝑥𝑖 − 𝑥𝑖−1) 2 + (𝑦𝑖 − 𝑦𝑖−1) 2 +  (𝑧𝑖 − 𝑧𝑖−1) 2 

where vi is the value of the saccade eye movements vector at time i, then the x, y 

and z are the coordinates of the pupil’s location 

2) Relevant features generation: A total of 600 features in temporal and frequency 

domains in addition to shapelets for the three time-series in the dataset were 
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generated in this experiment. Such a large number of features requires filtering 

to find the most relevant features. Therefore, the study compared a few feature-

selection algorithms to find the most suitable features subset to build the best 

classifier. 

3.4.8.6 The justification for Using Two Feature Generation Methods 
The simple feature generation method uses simple statistical functions. The 

intelligibility of the simple features aims at creating simple classifiers that could 

learn from the descriptive statistics of the input signals. Thus, providing an easy 

explanation to the researchers on how to interpret the changes in the collected 

variables over time.  
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Figure 16: Histogram of PerSpeed, PerAngle and Response Time values are 

plotted in the first row. The second row has the histogram of the same variable 

after being clustered. PerSpeed and PerAngle were clustered into three classes 

while response time was clustered into six classes. 
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Contrarily, the relevant features approach is a comprehensive feature engineering 

approach. The introduced approach is tailored to search for a set of features that could 

provide near-optimal classification accuracy. The process of relevant features 

searches allowed the researchers to explore and identify new features on shapelet, 

time or frequency domains.  

 

3.4.8.7 Discretisation 
 

The discretisation is “the conversion of a continuous attribute to one with a 

discrete set of values, i.e. a categorical attribute”, (Bramer, 2016). It is used to 

convert continuous variables (e.g., Response Time) to categorical variables in order 

to reduce the number of values a continuous variable has by grouping them into a 

number of classes (Bramer, 2016). For example, continuous values of PerSpeed, 

PerAngle and Response Time were used in regression algorithms. Due to the 

unsatisfactory results of the regression methods, the author decided to explore 

classification algorithms. In order to fit PerSpeed, PerAngle into classification 

algorithms, their values were discretised into three categories using the K-Means 

algorithm.  

K-Means clustering algorithm is a widely used supervised clustering algorithm that 

partitions a set of values into a k number of clusters where each observation falls into 

its nearest mean (Bramer, 2016).  

3.4.8.8 The justification for Applying Discretisation  
Classification algorithms typically take a set of classes rather than continuous 

variables (Bramer, 2016). Discretisation was applied to fit the performance measures 

variables to the classification algorithms. Choosing three categories was motivated 

by previous studies that split drivers into low, medium and high-risk participants in 
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highly automated driving studies (Zeeb et al., 2015). With the three classes split, 

predicting the values of PerSpeed and PerAngle is still meaningful to identify the 

risky state of the driver at the takeover whether it could be low, medium or high risk 

when handling the vehicle. Similarly, response time was divided into six categories 

by rounding values to the closest integer, (e.g., 3.2 ≈ 3, 4.9 ≈ 5). Histograms of the 

performance measures are plotted before and after clustering on Figure 16. 

Originally, there are two groups of discretisation algorithms: supervised and 

unsupervised (Kotsiantis and Kanellopoulos, 2006). Unsupervised approaches are 

used when the number of classes is unknown and typically figure out their own set 

of classes in which the data is split into. Conversely, supervised discretisation 

algorithms are used when the number of classes is known. The study used the 

supervised approach because it adopted the three class split of Drivers’ Performance  

as discussed earlier from Zeeb, Buchner and Schrauf, (2015).  

The K-Means discretisation algorithm was chosen because of its simplicity (Jain, 

2010) and superiority to other algorithms (Finley and Joachims, 2008). In addition, 

its discretisation approach maximises the information gain and hence, eases the 

process of training (Kotsiantis and Kanellopoulos, 2006; Liu et al., 2009).  

3.4.8.9 Cross-Validation 
After pre-processing, the dataset was split into a training and test sets. Data splitting 

is the process of splitting the dataset into train and test sets. The train set is used to 

train the machine learning, and the test set is used to test the accuracy of the training 

model (Bramer, 2016). The study used the N-Fold Cross Validation which is also 

known as the ‘leave-one-out’ method. The definition of Leave-One-Out or “N-fold 

cross-validation is an extreme case of k-fold cross-validation, often known as ‘leave-

one-out’ cross-validation or jack-knifing, where the dataset is divided into as many 
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parts as there are instances, each instance effectively forming a test set of one.”, 

(Bramer, 2016: 83). 

3.4.8.10 The justification for Using N-Fold Cross-Validation 
The dataset of the study was challenging due to its small size and unbalanced output. 

To counteract that, the study chose the N-Fold cross-validation. The main benefit of 

the N-Fold method is its suitability for small datasets since it allows for the maximum 

amount of data used to train the model (Bramer, 2016). In addition, Cawley and 

Talbot, (2004: 1467) stated that “Leave-one-out cross-validation has been shown to 

give an almost unbiased estimator of the generalisation properties of statistical 

models, and therefore provides a sensible criterion for model selection and 

comparison”. The N-Fold technique hasn’t been widely adopted in the literature due 

to its high computational cost with large datasets which is missing in this study 

because the dataset was small. Accordingly, the N-Fold technique was the most 

suitable cross-validation technique to be used. 

3.4.9 Features Selection 

3.4.9.1 Introduction 
In similar studies, feature subset selection (FSS) is a well-known technique to pre-

process the data for classification or regression (Kudo and Sklansky, 2000; Yang and 

Honavar, 1998a). FSS is defined as the process of filtering large features set into a 

smaller subset to maximise the prediction performance while maintaining efficient 

and fast processing of the data and predictor, e.g., classifier or regressor (Guyon and 

Elisseeff, 2003). 

3.4.9.2 Feature Selection Method 
In this study, TSFresh, a Python library was used to generate a total of 794 features 

on both time and frequency domains (Christ et al., 2018). Such a large number of 
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features is expensive to process and may include strong collinearity among each 

other. The collinearity of features causes several classifiers and regressors to overfit 

or underperform (O’Brien, 2007). To mitigate that, a feature selection process was 

required to: 

1. Filter out the colinear features to avoid any biases in our predictors, 

2. Rank features according to their relevance, 

3. Select a subset of the features that maximise the predictability of the predictor. 

1) Filtering 
The FRESH algorithm is a feature extraction algorithm that uses the Benjamini-

Yektieli procedure to identify the relevance of features and filter out the irrelevant 

ones (Christ et al., 2018). When FRESH was run on the extracted features, a total of 

approximately 420 features (out of 794 that were generated) were selected. To reduce 

the number of features and maintain decent predictability of proposed predictors, 

colinear features had to be removed. There are several methods to assess the 

collinearity of features; Variance Inflation Factor (VIF) (Marquaridt, 1970) is known 

as a stable statistical measure and has been widely adopted in the literature  

Variance Inflation Factor (VIF) is a method used to quantify the variance inflation 

caused by multicollinearity in the dataset variables. When two variables are colinear, 

their variance is subsequently inflated. VIF is calculated by estimating the ratio 

between the variance of all of the model’s betas and the variance of a single beta of 

the model when calculated alone (Marquaridt, 1970). VIF, using a threshold of 5.0, 

was performed on a list of 420 features to identify the collinear variables. By keeping 

only one feature of all colinear groups, the number of features dropped to 120 

features.  

2) Ranking 
To explore the importance of each feature, the study introduced a ranking approach 

to select the top features. For example, the top 50 features were chosen based on 
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Random Forest variable importance (Louppe et al., 2013). The 50 features were used 

as an input to the regression algorithms. However, the problem was more challenging 

in classification methods since the output classes were unbalanced. By picking top k 

features, generated models may be highly biased by picking the dominant output 

classes and as a result, reduce their precision and accuracy. Consequently, this study 

picked a selection of the most relevant features per class. 

To explain the selection process in detail, features were ranked in multiple tables — 

each table corresponding to one output class based on their Random Forest variable 

importance (Louppe et al., 2013). To perform the relevancy test, a one-vs-rest 

approach was used to identify the top 10 features that provided the highest 

significance in prediction in a Random Forest classifier. This was done for each class 

in the output data. So, the number of tables produced were k tables, where k is the 

number of classes of the predictor. Then a combination of those tables could 

potentially produce an optimal feature set. To find the optimal combinations of 

features to feed into a predictor, an efficient search algorithm was required to find an 

optimal or near-optimal combination of features. A state space consisting of 10 × k 

features makes it very difficult for a greedy algorithm to find the optimal combination 

of features subset. So, a search algorithm was required. 

3) Selection 
The study explored several search techniques. Researchers in the past few years in 

the ML field have adopted genetic algorithms as an efficient optimiser for optimising 

hyperparameters of machine learning (e.g., da Silva et al., 2018; Yang and Honavar, 

1998). Genetic algorithms are evolutionary based optimiser that mimics natural 

selection processes (such as breeding, crossover and mutations) to find solutions for 

problems with large state spaces (Sastry et al., 2005). Genetic algorithms are 

commonly used to solve problems with large state spaces because they offer a fast 
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approach to reach a near-optimal solution (Sastry et al., 2005). A drawback to this 

approach is their tendency to find a solution that overfits training sets and get stuck 

in a local optimum (Srinivas and Patnaik, 1994). To alleviate this, several precautions 

were performed.  

First, Random Forest predictors (e.g., classifier and regressor) were used as an 

evaluation function because they don’t tend to overfit and for their fast training speed 

(Breiman, 2001). Then, multiple initial runs were performed on a standard genetic 

algorithm to perform sensitivity analysis based on recommendations of Srinivas et 

al., (2014). Such analysis helped identify the suitable number of individuals per 

generations in addition to mutation and crossover probabilities. After the sensitivity 

test, a standard genetic algorithm was run for an initial 100 individuals and a total 

generation of 50. Mutations’ probability was chosen to be 5% of the population and 

crossover was assigned a probability of 70%.  

3.4.9.3 The justification for Applying Features Selection Method 
According to Zheng and Casari, (2018: 38), “Feature selection techniques prune away 

non-useful features in order to reduce the complexity of the resulting model. The end 

goal is an efficient model that is quicker to compute, with little or no degradation in 

predictive accuracy”. Since a large set of features is generated in the ‘relevant 

features generation’ pipeline, see section 3.4.8.5, a pruning technique was required 

to filter out the irrelevant features and identify a small subset of features that 

maximise the information gain of the classifiers while minimising the number of 

features fed to the model. 

The FRESH algorithm was used to filter out irrelevant features at the start of the 

study’s feature selection process. The FRESH algorithm was chosen because it’s 

designed to facilitate the knowledge-domain acquisition process (Christ et al., 2018) 

which is missing in the field. The TSFresh algorithm achieved a robust accuracy in 
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comparison to other filtering algorithms such as Boruta and LDA filtering algorithms 

(Christ et al., 2016) and have wide acceptance in industrial projects (Christ et al., 

2018).  

However, the filtering process of FRESH doesn’t recognise the collinearity of filtered 

features as observed from their studies (Christ et al., 2018, 2016). Since passing 

colinear features to some classifiers bias their predictability (Nicodemus and Malley, 

2009), it was important to filter out the most colinear features. Therefore, VIF was 

used to estimate collinearity among the filtered features. The VIF algorithm was 

chosen because it’s “has been widely applied in the scientific literature to diagnose 

the existence of collinearity”, (Salmerón Gómez et al., 2016, p.1).  

Ranking up the variables was necessary to identify the features that provided the 

highest information gain to the classifiers. Knowing the features that provide higher 

predictability develop the acquisition of domain knowledge (Christ et al., 2018).  

Random Forest (RF) variable importance (Louppe et al., 2013) was used to rank up 

the features for a few reasons. “RF can handle huge numbers of variables easily. A 

global relative variable importance measure can be derived as a by-product from the 

Gini-index used in the forest construction with no extra computation involved”, 

(Guyon et al., 2006, p.302). 

To select a subset of features, genetic algorithms were used. There are several 

approaches in the literature that reported better performances in finding features 

subsets such as Floating Search Methods and Simulated Annealing (Guyon and 

Elisseeff, 2006). However, they are computationally expensive to run on a large 

feature set. Thus, genetic algorithms were the best choice because they can 

outperform other methods in problems with large state spaces, i.e., when the number 

of features is over 50 (Kudo and Sklansky, 2000), especially when the study’s large 

state space. 
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3.5 Delimitations of the Experiment Design 

The literature review in Chapter 2 has identified nine variables affecting driver’s 

response in highly automated driving. The nine variables are summarised in the 

following paragraph for a quick reference, see section 2.3 for more details. 

1. Time budget: the time given to drivers to respond to a hazard before a 

potential crash occurs has a strong effect on the driver’s response. 

2. Driver distraction: drivers’ attention may be spent to an NDR task during the 

automation phase which in turn eradicates their situational awareness. This 

affects the driver’s response when they are prompted to perform a takeover. 

3. Fatigue and stress: Some studies reported a correlation between an increase 

in fatigue and the duration of the automation. Fatigued drivers are known to 

respond ineffectively in comparison to alerted drivers. Fatigue and stress 

could separate into two different categories since stress could be a pre-existing 

condition before driving. The work on these two variables are limited in the 

literature so the study decided to merge them together. 

4. Traffic situation: traffic density affects the driver’s response time because it 

creates a complex driving environment where drivers tend to spend a longer 

time to regain situational awareness. 

5. Road condition: road conditions are concerned with the variables that are 

affecting road conditions such as fog limits drivers’ sight which imposes a 

longer time to restore situational awareness and thus affect the driver’s 

performance when they have a limited time budget. 

6. Driver background measures - Age: drivers’ age affects their judgment and 

response time. 
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7. Driver background measures - Driving Experience: experience with 

automated systems affect their complacency, trust in automation and 

response quality. 

8. Driver background measures - Individual differences: drivers have different 

driving styles, and this is another factor affecting drivers’ responses to critical 

hazards. 

9. Human Machine Interface: the design of the communication channels between 

the automated systems and drivers played a major role in the distribution of 

driver’s attention before the transition phase. 

Several studies explored the effect of time budget on the driver’s performance 

(Eriksson and Stanton, 2017; Gold et al., 2016, 2013a; Körber et al., 2015b; Zeeb et 

al., 2016, 2015). Recommendations in several studies suggested that 7 seconds is an 

adequate time for drivers to restore situational awareness and respond safely to 

critical hazards in typical driving scenarios. Based on that, the study decided not to 

vary the time budget variable. Moreover, the study aimed at varying the driver’s 

distraction types in order to understand their effect on driver’s physiological 

behaviour and performance. The rest of the variables affecting driver’s response were 

kept unvaried to limit their effect. The study acknowledges the delimitations and 

suggests future work on those variables in section 77.5. 

3.6 Summary 

Research methods were presented. Based on the analysis, a positivist philosophy with 

the nomothetic approach is used to design and construct the structural procedure of 

the study. The study used a driving simulator lab experiment, a questionnaire, and 

a spiral system development methodology to develop predictive models for the 
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driver’s performance measures. Each method was explained in detail and justified, 

see section 3.2. 

The experiment design of the study was presented. Participants were recruited 

within 20-30 years of age with a minimum of two years of driving experience. The 

driving scenario was designed and implemented on a STISIM driving simulator. Two 

NDR tasks were chosen: TQT and email to impose cognitive and visuo-cognitive 

workload on drivers. The study used a repeated measure approach including three 

groups, two of them had an NDR task the third had a control group that was not 

distracted by any NDR tasks. The ethical and experiment procedures were explained 

and justified.  

The data analysis was explained in detail. The study laid out a brief literature review 

for the data analysis approaches in the literature. Then, a machine learning based 

approach was suggested and justified. It included feature-based machine learning 

regressors and classifiers in addition to a multivariate time series classifier. The 

study used a data preparation technique inspired by previous work to generate a 

feature subset that provided the highest possible information gain to the ML 

classifiers and regressors. This included feature generation and selection processes 

that were designed for the study. Finally, the delimitation of the study was provided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

121 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 
 

 

Using physiological changes to 

determine the quality of a 

takeover in Highly Automated 

Driving 

4.1 Introduction 

In this Chapter, results of the experiment are explored. The results are concerned 

with the understanding of how highly automated driving environment affects the 

physiological data of drivers. The results explore the effect of the NDR tasks on 

drivers and identifies correlations with drivers’ responses. Takeover quality in this 

study was assessed using two new performance measures called PerSpeed and 

PerAngle. They are identified as the mean percentage change of vehicle’s speed and 

heading angle starting from a take-over request time using linear mixed models. As 

outlined in Chapter 3, the physiological measures of drivers were collected. The study 

focused on heart rate and pupil diameter to explore the effect of highly automated 

driving on driver’s physiological behaviour. In the next sections, driver’s physiological 

changes are explored from the start of the scenario until the end of each takeover. 

The study also explored the physiological changes imposed by the NDR tasks. 
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Figure 17: Average normalised HR fluctuations throughout the scenario of the 

experiment based on 60-second window average. In blue, are the average heart 

rate values of participants grouped by order of the takeover. In orange (dashes), 

are the average heart rate values of participants grouped by the secondary task 

type they performed. 

4.2 Physiological Behaviour at the Start of the Scenario 

At the beginning of the experiment, a peak in normalised HR and PD were observed 

in all participants. This was probably due to the stress caused by the anticipation of 

the experiment. After three seconds of manual driving, it dropped by an average of 

20% (M=.6, SD=0.15), see Figure 17, and stabilised (M=.29, SD=.14) as the vehicle 

switched to automation. To simplify the plot, the aforementioned drop in heart rate 

after the start is not plotted in Figure 17.  

0.35

0.4

0.45

0.5

0.55

0.6

0.65

takeovers with order Takeovers with task (control group, email, tqt)

Control group

Email group

TQT groupFirst takeover
Second takeover

Third takeover

TOR TOR

TOR

Start



 

124 
 

 

Figure 18: pupil size changes according to secondary tasks. 

4.3 Effect of NDR Tasks on the Physiological Behaviour of 

Drivers 

4.3.1 Pupil diameter and NDR task  

Repeated measures (RM) ANOVA analysis among the three groups of NDR tasks was 

conducted to explore their impact on the pupil diameter. The data were collected 

whilst drivers were performing a secondary task prior to a takeover request. There 

was a statistically significant difference at F(1.22, 21.9)= 60.741, p<.0001] with 

Greenhouse-Geisser correction. Post-hoc tests using Bonferroni correction 

demonstrated an increase in pupil diameter by an average of 0.314 during email task 

(p<0.0001) and 0.06 during TQT (p=.02) in comparison to the control group. A five-

second window length demonstrated the highest p values of repeated measures 

ANOVA test on periods from 1 to 150 seconds. The overall mean values of PD of all 

participants (after normalisation) are plotted in Figure 18.    
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4.3.2 Heart Rate and NDR Tasks 

The relationship between normalised heart rate and response time was investigated 

using repeated measures ANOVA to investigate whether there was a significant 

difference among different groups. Normalised HR, with an average of 90 seconds 

window, had the strongest significance, F(2,36)=7.75, p<.02, among window sizes. 

Pairwise comparison using Bonferroni correction showed a significant difference 

between the control group and the email task (p=.03), the control group and the TQT 

task (p=.013). Differences showed that heart rate increases significantly when drivers 

are engaged in secondary tasks which align with the results of Carsten et al., (2012). 

No statistical difference was reported between TQT and email tasks (p=.95).  

Therefore, normalised HR could be considered a valid physiological measure to 

identify engagement in secondary tasks; however, it cannot distinguish secondary 

task type for the tasks used in the study reported here.  

  

 

a. Control Group b. Email Task Group c. TQT Group 

Figure 19: Markov Transition Field of heart rate of drivers’ groups. Colours and 

squares represent the shapes and transitions of the timeseries. A clear difference 

is seen between the control group (a) and secondary task groups (b and c). Group B 

and group C show a slight difference among their signals. Those subjective 

observations match with repeated measures ANOVA results reported earlier in 

the study. 

4.3.3 The Fluctuations of Heart Rate During the NDR tasks. 

Markov Transition Fields (MTF) is one of the recent approaches to encode time series 

to an image. MTF images “represent the first order Markov transition probability 
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along one dimension and temporal dependency along the other”, (Wang and Oates, 

2014). MTF images were used to visualise HR signals and their temporal 

dependencies in an image. So, the more squares and more colours in an image, the 

more transitions and temporal dependencies are among the signals. It is essential to 

understand that MTF provides a subjective comparison between signals and is used 

in this study for this purpose. 

To explore the difference in HR transitions among the three groups, MTF images 

were generated to plot the average transitions (see Figure 19) of the HR signals of 

each group. Images demonstrated significant signal transitions among TQT and 

email tasks in comparison to the control group. A clear difference could be identified 

among the three images. Looking specifically at email and TQT, the signals had 

similar probabilities of transitions; however, temporal dependencies were 

significantly different. In contrast, the control group had fewer transitions 

probabilities and less temporal dependencies. This meant that during the NDR tasks, 

HR transitions were much more frequent than the control group. In addition, the 

collected HR fluctuations during the TQT were much higher than the email group. 

4.4 Effect of the Transition on the Physiological 

Behaviour of Drivers 

Takeover requests sparked a peak in HR (M=.43, SD=.2) that lasted for few seconds, 

see Figure 17. Then, HR gradually drops to the mean of the control group (M=.36, 

SD=.14) among the three groups within a mean of 10 seconds (SD=6.2) of a successful 

takeover. In takeovers that ended with an accident, the significant increase of HR 

remained for a more extended period of time (M=20, SD=6.2).  
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4.5 Effect of the Order of the NDR Tasks  

Design of repeated measure studies could cause a severe ambiguity and bias when 

learning or practice effects are not taken into account; especially when observations 

of learning effects are reported in the handover process studies (Larsson et al., 2014). 

The repeated measure-approach was used in this study to assess whether the 

reported learning curve may affect the physiological behaviour of drivers; specifically, 

their heart rate changes.  

Consequently, one-way analysis between takeover groups based on the analysis of 

variance was performed to assess the correlation between heart rate and the order of 

takeover requests. Average heart rate was calculated of all participants grouped by 

the order in which a takeover is performed. For example, the second takeover group 

means the values collected at the second takeover among all participants regardless 

of the secondary task type they performed. 

 

 

 

 

a. First handover b. Second 

handover 

c. Third 

handover 

 

Figure 20: Subjective ratings of the difficulty of first, second and third handovers. 

Results showed that the second takeover group had a higher HR mean (M=.49, 

SD=.13) than the first (M=.462, SD=0.13) and third (M=0.42, SD=0.14) groups. There 

was a difference (F=3.1, p<.05) even though the difference in mean between the three 

groups was quite small. Therefore, the hypothesis that HR could decrease over time 

because of drivers experience in handling the takeover was rejected. Accordingly, the 
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study suggests that the order of the secondary tasks has no significant influence on 

the physiological changes happening during the secondary task engagement. 

4.6 Subjective Ratings of Takeovers’ Difficulties 

At the end of the experiment, participants reported the difficulties of each takeovers, 

as reported in Figure 20. Participants reported the first takeover as the most difficult 

one among the second two takeovers. It’s apparent that participants perception of 

difficulty decreases gradually. This could be interpreted as a confirmation of the 

existence of the learning effect on the driver’s perception and performance on the 

takeover performance.   

4.7 Response Time Estimation Using HR and PD as 

Covariates  

Due to the repeated measure approach of the study, the statistical model used to 

assess the correlation between response time, HR and PD was a repeated measure 

linear mixed model (LMM). Since LMMs assume their covariate variables to be 

independent, left pupil diameter was excluded from this analysis due to its strong 

dependence with right pupil diameter, r=.98, p=.002.  

On the main effects (at window size=30s), right pupil diameter was significant, F(1, 

30.5)=12.2, p=.001, and HR was not significant F(1, 27.2)=3.8, p=.06. When using 

secondary task type as a fixed effect in the model, HR demonstrated a strong 

significance, F(1, 30.3)=11, p=.002. This means HR window length may not have been 

long enough to provide enough significance among groups. Moreover, HR and right 

PD had a strong interaction term, F(1,24.7)=4.2, p=.049. Table 10 shows the 

interaction effect among variables and intercepts value of the analysis. This confirms 
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that normalised HR has a predictability potential for response time assuming the 

right window size is chosen.  

Table 10: Estimates of Fixed Effects on response time using a 30-sec window size 

Parameter Estimate Std. Error Sig. 

Intercept 1.100432 .361619 .005 

hr 1.077343 .552368 .062 

pdr 6.786712 1.935462 .001 

hr × pdr -4.645041 2.247214 .049 

 

In order to understand if window size influences the analysis, the same statistical 

methods were applied to the data extracted from a 60 second window size. HR was 

statistically significant F(1,24.3)=6.2, p=.019 with no secondary tasks type added as 

a fixed effect. When added, significance increased, p<.0001. Conversely, right pupil 

diameter was not significant, F(1, 19.2)=1, p=.317. This indicated that window size 

has a strong effect on the correlation between physiological changes and response 

time since pupil diameter was significant at 5-second window size.  

In order to find the optimal window size in which heart rate and pupil diameters 

performed at, a simple optimisation algorithm was run. Results, as indicated above, 

showed that a 30 seconds window was the best performing window size for PD 

correlation with response time and 60 seconds for heart rate. This could be correlated 

to HR responding slower than PD to external changes.  Hence, a longer HR window 

captures long-term physiological changes, and PD captures short-term physiological 

changes; hence window size values reacted accordingly. Those findings align with 

Solovey et al., (2014) that reported that the best window size for their physiological 

data was 30 seconds.  
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4.8 Quality of the Takeover 

Response Time analysis examines the readiness to respond but not necessarily the 

quality of drivers' responses. Response time is not the only measure of performance 

in takeover situations; other studies take the quality of takeover as another 

important performance measure (Gold et al., 2016; Radlmayr et al., 2014; Zeeb et al., 

2016).  

Few studies used minimum time to collision as a performance measure (Gold et al., 

2016; Körber et al., 2016; Radlmayr et al., 2014); however, sharp changes in speed or 

heading angle of the vehicle are considered poor performance indicators in motorway 

driving scenarios (Kass et al., 2007; Zeeb et al., 2016); especially in this study’s 

scenario design. To evaluate that, two more performance measures were constructed 

from the collected data; those variables were used to assess the correlation between 

driver’s HR and PD changes (pre-TOR), and the quality of the response was 

investigated accordingly. 
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Y-axis: Takeover reading Y-axis: Takeover reading 

a. b. 
Figure 21 :Mean Percentage Change of a.) Speed and b.) Heading angle of the 

vehicle. Participants are split independently into three clusters representing low, 

medium and high-risk groups. Black circles represent the centroid of each cluster. 

4.8.1 Understanding PerSpeed and PerAngle Variables 

To quantify the changes in vehicle speed, PerSpeed and PerAngle measures were 

introduced in this study. PerSpeed is the mean percentage change of vehicle’s speed 



 

131 
 

for a period before the TOR (e.g., 30 seconds), see Equation 3. A higher percentage 

indicates a sharper change in speed which could be either braking or acceleration. 

PerAngle, similarly, is the mean percentage change of vehicle’s heading angle. In this 

study, no rapid change in speed or heading angle was required because the driving 

scenario allowed participants to perform a smooth transition to the next lane. 

Therefore, suczh actions were penalised in this study because it correlates with a lack 

of situational awareness according to Kass et al., (2007). PerSpeed and PerAngle at 

each takeover are plotted in Figure 21 by sorting takeover incidents by their 

corresponding PerSpeed (a) and PerAngle (b) values. 

Table 11: Definition of clusters of PerSpeed and PerAngle. 

 PerSpeed PerAngle 

 Start 

Range (%) 

End 

Range 

(%) 

HR 

mean 

HR 

std. 

Start 

Range 

(%) 

End 

Range 

(%) 

PDR 

mean 

PDR 

std. 

Group 

1 

0 20 0.47 0.13 0 195 0.5 0.2 

Group 

2 

>20 40 0.56 0.10 >195 453 0.7 0.08 

Group 

3 

>40 220 0.61 0.11 >453 1200 0.57 0.19 

 

The K-Means clustering algorithm (MacQueen, 1967) was used to cluster PerSpeed 

and PerAngle readings independently into three groups. Since Zeeb et al.'s, (2016) 

study split participants into three groups based on the quality of their response, this 

study followed the same approach by defining clusters 1, 2 and 3 as low, medium and 

high-risk groups. Clusters start/end ranges identified by the K-Means algorithms, 

and their corresponding mean HR and PD are defined in Table 11. The table includes 

start and end ranges of both HR and PD of each cluster, their mean and standard 

deviation values. As indicated in Figure 21, the high-risk group had four incidents; 

three of them ended with an accident, and the fourth one was an anomaly where a 

participant decided to stop the vehicle for six seconds before deciding to move and 

change lane. 
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𝑦 =
100

𝑛
× ∑

𝑥i − 𝑥𝑖−1

|𝑥𝑖−1|

𝑛

𝑖=𝑘

 

Equation 3: Mean percentage change formula, where 𝑦 is PerSpeed or PerAngle, 𝑥 

is a vector containing readings (speed or heading angle values), k is time0, and n is 

window size. 

 
Statistical analysis of K-Means groups based on their corresponding heart and pupil 

diameter data yielded interesting results. A one-way ANOVA showed that the mean 

normalised HR had a significant difference, F=4.2, p=.01, among PerSpeed groups. 

These findings indicate that higher HR means a higher probability of strong braking; 

which is considered a bad performance measure. No significant difference was 

reported based on drivers’ PD mean values.  

When analysing PerAngle K-Means groups, no correlation, F=2.4, p=0.09 was 

identified between PD and the mean of low (m=.5, SD=.2), medium (m=.7, SD=.08) 

and high (m=.57, SD=.19) risk groups. Though, higher risk groups had higher pupil 

dilation than the low risk group. Based on Batmaz and Ozturk's, (2008) findings, 

pupil diameter dilates with the mental workload which explains the increase of PD 

mean value from low to high-risk groups. However, the medium risk group had a 

significantly higher mean than the high risk one.  

The deviation of the medium risk group may be explainable because the main NDR 

task performed by the medium risk group was the email task. It was performed by 

63% of participants of that group. Reflecting that on the findings, such an increase in 

PD in the second task group could have been due to the difference in lighting between 

the tablet screen and the simulator screens. This could explain the significant 

difference in pupil diameter in comparison to other groups; even though, the 

experiment setup ensured a minimal change in lighting throughout all screens by 

manually setting all brightness on the screens. Another explanation could be due to 
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the change in pupil diameter as participants transit from one screen to another since 

the lab was significantly darker than the two screens.  

The results align with the established findings in the literature that the pupil 

diameter measure is valid only in highly controllable environment (Marquart et al., 

2015). This means that pupil diameter estimation in real-world driving may not be 

accurate; however, there has been significant research in assessing mental workload 

under different lighting conditions (Pfleging et al., 2016). Hence, results presented in 

this study are potentially useful in real-world applications. 

4.8.2 PerSpeed and PerAngle Analysis 

To measure whether the study's task type have any influence on PerAngle and 

PerSpeed, a linear mixed model using Toeplitz covariance type with repeated 

measures test was performed. The task was used as a fixed effect; HR and PD were 

used as a covariate to understand whether they significantly impacted the predefined 

quality measures. Tests were done using linear mixed models. 

For PerSpeed performance metric, task type was significant F(2, 43)=4.3, p=.019, as 

was HR, F(1,44)=5.5, p=.01, and PD, F(1,46)=2.5, p=.01. All other higher-order 

interactions were significant, specifically PD × HR, F(1,46)=8.2, p=.006 that had the 

highest significance. The Bonferroni test showed no significant differences in 

PerSpeed values among task groups. Additionally, estimates of fixed effects 

demonstrated that each one per cent increase in HR corresponds to 4.6% decrease in 

PerSpeed (p=.002) and for each one per cent increase in PD corresponds to 9.1% 

decrease in PerSpeed (p=.004).   

Similarly, PerAngle metric, the secondary task type, F(2,18), p=.001, was significant, 

so was PD, F(1,26)=4.4, p=.04, and HR, F(1,26)=5.1, p=.003. Higher level interactions 
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were not more significant, and Bonferroni pairwise comparison showed no difference 

among task groups. Estimates of fixed effects indicated that one per cent change in 

HR corresponds to 54% change in PerAngle and for each one per cent in PD, 71% 

change in expected. Such results indicate that physiological measures are valid 

predictors for PerSpeed and PerAngle performance measure. 

The results demonstrate further evidence that HR and PD correlate with braking 

behaviour of drivers. According to (Gold et al., 2013a), braking is associated with out-

of-loop drivers allowing themselves a longer time to restore situational awareness. 

Due to an increase in mental workload is associated with an increase in HR (Wilson, 

2002) and PD (Batmaz and Ozturk, 2008), the reported results indicated that 

PerSpeed, PerAngle and driver's mental workload have an indirect negative 

correlation; assuming drivers are out-of-loop. 

4.9 Summary 

The most significant findings are, heart rate and pupil diameters of drivers are valid 

predictors for both response time and determining the quality of takeovers in highly 

automated driving environments. Interestingly, these results are similar to findings 

in air traffic control and aviation systems in addition to manual driving studies that 

were performed previously. The findings of this experiment paved the path to assess 

the possibility to predict the response time and the quality of takeover prediction 

models. The models could be applied to all drivers based on the physiological 

behaviours without necessarily accounting for individual differences or relying on 

identifying the secondary tasks drivers were performing.  

Moreover, two new quality measures were introduced and examined in this study to 

provide an estimate of braking and steering, and they were linked to drivers’ 
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physiological measures. PerSpeed and PerAngle measures could be used by the 

automated driving systems to assess the driver's future responses. In addition, 

PerSpeed and PerAngle showed a strong correlation with driver’s NDR tasks when 

used as fixed factors in mixed linear models. The study split drivers into low, medium 

and high-risk groups by applying K-Means clustering algorithm on PerSpeed and 

PerAngle values. The heart rate of drivers had a strong correlation with driver’s 

clusters of the PerSpeed value. Overall, the study established that heart rate and 

pupil diameter values have a strong correlation with driver’s braking style. The 

reported results provide insight into driver's readiness and therefore, allow 

automated systems to adopt the right driving strategy and plan to enhance their 

experience and make the transition phase safer for everyone.  
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Predicting Drivers’ Performance  

in Highly Automated Driving 
 

5.1 Introduction 

 In highly automated vehicles, drivers can deviate their attention from the road and 

engage in non-driving related tasks whilst the car is driving itself. When the 

automated system prompts drivers to take over the driving task to handle a critical 

hazard, drivers have a lag time when they are trying to restore situational awareness 

before acting (Merat et al., 2012). That is called response time and has been found to 

be influenced by tasks being performed before the takeover request. Previous studies 

showed that response time is not always correlated with response quality, i.e., 

driver’s ability to manoeuvre safely from a critical hazard.  

The aim of this study was to assess the predictability of response time and quality 

based on drivers’ physiological measures before the takeover request. The dataset 

was collected during a driving simulator study presented in Chapter 3. The time-

series of heart rate, pupil diameter and saccade eye movements were used to generate 

sets of features. Then, those features were the input of statistical and machine 

learning algorithms to predict response time and quality of drivers’ takeovers. 

Machine learning results using classification and regression methods are presented. 
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The machine learning models aimed at classifying drivers’ responses. A time-series 

based classification was also explained and evaluated. Results of the classification of 

response time and quality are outlined in the next sections. 

5.2 Results Using Regression Methods 

The study aimed at predicting response time and the driving performance quality 

measures: PerSpeed and PerAngle. The regression methods used were linear 

regression algorithm, random forest regressor and bagging regressors, see 3.4.7.2 for 

more detail. Results for each performance methods are detailed in the next 

subsections. The regression had three target variables that were assessed 

independently, response time, PerSpeed and PerAngle. Results of each one of them 

are reported in their corresponding sections. 

5.2.1 Response Time 

 

Figure 22 Mean square error of the linear regression method (Lasso). 

 First, a linear regression algorithm was used with L1 prior as regularizer 

(known as Lasso) (Tibshiranit, 1996) to find a linear correlation between extracted 

features and the response time (in categories). Extracted features are either simple 
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or relevant, as explained in section Features Selection. Results show, see Figure 22, 

sufficient evidence of the accurate predictability of the model at a window size of 150 

seconds. Analysing the data shows, windows of 120- and 150-seconds lookback time 

had a mean squared error (MSE) of 0.23 – this value reflects a good accuracy of the 

prediction of the response time. However, a higher MSE error was observed at other 

window sizes. This variability in MSE caused by the window size was observed in 

similar studies (Grimes et al., 2008; Solovey et al., 2014). Since linear regression 

models don't explicitly specify why specific window sizes perform better, some effort 

was spent in identifying similar results in other studies to provide more insight into 

this.  

Table 12: Prediction performance of regression models. 

Model Name Output Features Window 

Size 

(Best) 

Results 

(MSE) 

Train Test 

Linear Regression using 

Lasso 

Response Time Simple  120 1.9 1.8 

Relevant  150 0.21 0.23 

PerSpeed Simple  60 35.0 59.1 

Relevant  60 32.1 35.0 

PerAngle Simple  90 21.0 25.0 

Relevant  60 19.3 24.9 

Random Forest Regressor Response Time Simple  150 1.3 1.6 

Relevant  90 0.23 0.24 

PerSpeed Simple  40 36.0 54.1 

Relevant  90 30.1 49.0 

PerAngle Simple  90 19.5 24.0 

Relevant  120 19.3 24.9 

Bagging regressor with 

random patches (based on 

decision tree estimator) 

Response Time Simple  90 2.4 2.7 

Relevant  150 0.18 0.19 

PerSpeed Simple  120 25.0 29.1 

Relevant  60 24.1 24.8 

PerAngle Simple  90 25.0 38.0 

Relevant  120 17.9 19.2 

 

The training data has a set of features over a specific time window; each window has 

a significant feature that could have an impact on the response time. For example, 

few studies have identified mean pupil dilatation of a window size of 30 seconds to  
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                                                                            Importance Value            

Figure 23: List of features passed to the response time regression model. Features 

are ranked by the random forest information gain values. Features highlighted in 

orange formed a subset that had the highest information gain with the least 

collinearity; making the best combination of features for an ML predictor. 
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 have the highest statistical significance to mental workload (e.g. Grimes et al., 2008) 

among other windows sizes.  

Based on the regression results, physiological changes happening between 20 and 

120 seconds before a TOR have a linear correlation with response time. However, 

changes occurring before 20 and after 120 seconds may not have a linear correlation. 

Figure 23 shows a list of features with the highest information gain; those features 

were the input of the regression model. Most of those features are on the frequency 

domain which means their values are highly dependent on the window size. 

Therefore, the regression model is expected to behave differently. Features and their 

generation process were discussed in section 3.4.8.5. 

Current literature has limited research on the effect of heart rate on response time 

in highly automated driving . So, seeking a better understanding of this behaviour 

through literature is not possible. The results show that the windows smaller than 

20 seconds don’t have sufficient features to feed the regression model which is evident 

by the results of the experiment. On the contrary, windows over 150 seconds imposed 

a noticeable lag over the supplied information to the model. To explain this further, 

events happening beyond 150 seconds may have no influence on the driver’s mental 

state at the takeover time; which is 150 seconds later. As a result, any physiological 

data beyond that time biases the model. Since the dataset is quite limited, the 

explanations provided may not be entirely accurate and more research is required in 

this area. 

The second approach used was ensemble models which showed few interesting 

results. First, ensemble models had no significant impact on the regression accuracy, 

see Table 12 for both simple and relevant features. Random Forest ensemble 

approach showed better MSE on train set (1.3) but less accuracy on the test set (1.6) 

using the simple features set. Still, that approach was less accurate than the simple 
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regression approach. However, Random Forest regressor performed nearly the same 

as Lasso linear regressors with only 0.1 difference in MSE.  

 

Figure 24: An illustration of the difference in MSE values in train and test 

datasets. Results show a strong deviation between the train and test MSE. This 

deviation indicates that the ML models were overfitted to the training data. 

Bagging regressors with random patches using decision trees outperformed the 

aforementioned approaches. Again, relevant features had an MSE of 0.19 on the test 

set at window length of 150 seconds. It's interesting to mention here that relevant 

features were consistently better than simple features at generating better regression 

models using the two approaches. Though, generating all features and filtering them 

was computationally more expensive than simple features generation which in turn 

provides slower and computationally demanding algorithms. To explain, relevant 

features processing took approximately twenty minutes on a MacBook Pro Core i7 

using four threads to compute them in parallel. In comparison, simple features took 

300 milliseconds on the same machine. 
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5.2.2 Performance Quality Measures 

PerSpeed and PerAngle had a high MSE in all regression models. Differences in MSE 

values between train and test accuracies showed a strong tendency to overfit the 

training data, see Figure 24. Most of the generated regression models converged by 

outputting the mean value of the entire output for PerSpeed or PerAngle regardless 

of the input values. This could be due to the high dimensionality of the data or a non-

linear relationship between the features and the performance measures. It’s also 

noticeable that bagging regressor had a minimal deviation between training and test 

datasets; however, the MSE values were between 18 and 22 which is a high error. 

Due to the poor results of the regression methods, classification-based methods were 

tested.  

5.3 Results Using the Classification Methods 

 

A classification approach was used to assess the predictability of the performance 

quality measures, e.g., response time, PerSpeed and PerAngle. In this section, seven 

different classification algorithms are presented, and their results are discussed. 

Implementation of those algorithms was provided by Scikit-Learn, a machine 

learning Python library (Pedregosa et al., 2011) 

Reported classification sufficiency is reported in f1-score, precision and recall values. 

Precision is defined as the ratio of relevant instances among the retrieved instances. 

The recall is defined as the ratio of relevant instances that have been retrieved over 

the total amount of relevant instances. F1-score is the harmonic average of precision 

and recall (Davis and Goadrich, 2006). 
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Table 13: Performance measures of classification methods. 

Model 

Name 

Output Features Window  

Size - 

Best 

Results - 

Train 

Results - Test 

Precision Recall Precision Recall F1 

Random 

Forest 

Response 

Time 

Simple  30 0.93 0.89 0.89 0.87 0.88 
Relevant  40 0.91 0.95 0.92 0.94 0.93 

PerSpeed Simple  60 0.95 0.9 0.92 0.89 0.90 
Relevant  60 0.81 1.0 0.94 0.98 0.96 

PerAngle Simple  90 0.87 0.8 0.81 0.82 0.81 
Relevant  60 0.8 0.82 0.86 0.85 0.85 

1-Nearest 

Neighb-

our 

Response 

Time 

Simple  30 0.89 0.72 0.75 0.7 0.72 
Relevant  40 0.93 0.83 0.82 0.84 0.83 

PerSpeed Simple  40 0.93 0.92 0.89 0.87 0.88 
Relevant  90 0.8 0.95 0.92 0.94 0.93 

PerAngle Simple  90 0.81 0.86 0.81 0.85 0.83 
Relevant  90 0.43 0.9 0.82 0.88 0.85 

Gradient 

Boosting 

Response 

Time 

Simple  40 0.44 0.41 0.71 0.72 0.71 
Relevant  40 0.83 0.48 0.73 0.75 0.74 

PerSpeed Simple  120 0.86 0.8 0.82 0.82 0.82 
Relevant  120 0.81 0.84 0.86 0.83 0.84 

PerAngle Simple  90 0.87 0.8 0.71 0.72 0.71 
Relevant  120 0.83 0.82 0.76 0.75 0.75 

Decision 

Tree 

Response 

Time 

Simple  30 0.91 0.81 0.81 0.8 0.80 
Relevant  30 0.91 0.91 0.9 0.95 0.92 

PerSpeed Simple  30 0.92 0.89 0.91 0.89 0.90 
Relevant  30 0.78 0.95 0.93 0.95 0.94 

PerAngle Simple  60 0.83 0.8 0.71 0.81 0.76 
Relevant  90 0.8 0.84 0.83 0.8 0.81 

SVM Response 

Time 

Simple  60 0.89 0.85 0.91 0.9 0.90 
Relevant  60 0.84 0.85 0.95 0.92 0.93 

PerSpeed Simple  30 0.89 0.83 0.83 0.83 0.83 
Relevant  120 0.8 0.83 0.82 0.83 0.82 

PerAngle Simple  90 0.88 0.84 0.83 0.81 0.82 
Relevant  120 0.40 0.81 0.89 0.82 0.85 

Naïve 

Bayes  

Response 

Time 

Simple  120 0.40 0.41 0.43 0.41 0.42 
Relevant  100 0.83 0.48 0.41 0.4 0.40 

PerSpeed Simple  120 0.81 0.8 0.82 0.82 0.82 
Relevant  120 0.81 0.82 0.82 0.81 0.81 

PerAngle Simple  120 0.84 0.8 0.81 0.82 0.81 
Relevant  120 0.93 0.82 0.83 0.81 0.82 

MUSE + 

WEASEL 

Response 

Time 

Timeseries N/A 0.91 0.83 0.56 0.5 
0.53 

PerSpeed Timeseries  0.95 0.83 0.4 0.42 0.41 
PerAngle Timeseries  0.4 0.94 0.51 0.3 0.38 

Random 

algorithm 

Response 

Time 

N/A N/A 0.4 0.3 0.4 0.3 
0.34 

PerSpeed  0.2 0.4 0.5 0.5 0.50 
PerAngle  0.21 0.39 0.4 0.45 0.42 
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5.3.1 Response Time 

First, a decision tree with Gini classifier was used. Decision Trees perform a 

classification based on the frequency of labelled variables to maximise the  

information gain (Raileanu and Stoffel, 2004). Decision tree results have shown that 

f1-score was an average of 0.81; nearly the same value was observed across all 

window sizes.  

Second, a Random Forest classifier was used. It’s an ensemble approach to construct 

classifiers by merging multiple decision trees at training time and outputting the 

most common output among all trees (Breiman, 2001). To avoid overfitting, 40% of 

the data was used as a test set. Overall f1-score of Random Forest classifier was 0.88 

for simple features set and 0.92 for relevant features set. It's noted that a window 

size of 40 seconds had the highest f1-score. 

Third, Gradient Boosting Classifier is a boosting machine learning classifier that 

uses an ensemble of decision trees that incorporates a loss function for better 

optimisation than random forest (Friedman, 2001). It iteratively builds a large set of 

shallow decision trees to reduce bias (Freidman, 2008). Each decision tree is trained 

to improve the output of the previous one (Friedman, 2001). The overall f1-score of 

the algorithm was approximately 0.71 which is significantly lower than random 

forest results. This difference could be due to the small size of the data set even 

though a previous study reported that Gradient Boosting algorithms perform 

efficiently with small datasets (Zhao et al., 2019). 

Fourth, the 1-Nearest Neighbour classifier was used to assess if there’s a pattern 

among the classes. It’s an instance-based learning method that finds the closest k 

neighbours to the instance in the training data (Cover and Hart, 1967). Even though 

it's among the most straightforward machine learning algorithms, it outperforms 
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several algorithms in several practical problems (Caruana et al., 2005). Results 

showed that relevant features set increased the overall f1-score by 11% in comparison 

to the simple feature set, see Table 13: Performance measures of classification 

methods. A standard deviation of 0.13 is observed among window sizes where it 

performs best at window sizes 140 and 170 with f1-score of approximately 0.82.  
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Figure 25: F1 score difference between classification algorithms using simple and 

relevant features sets. 

 
SVM with C-Support Vector Classification with radial basis function (RBF) kernel 

was used. It's a supervised learning approach that uses the RBF kernel to split up 

non-linear training data by mapping them to high dimensional feature space 
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(Suykens and Vandewalle, 1999). Using a hyperplane, it splits up data to n-

dimensional classification space to provide the highest margin between classes; this 

allows better classification and less overfitting than other algorithms (Smola and 

Schölkopf, 2004). Looking at the results in Table 13, SVM outperformed other 

reported classifiers in both simple and relevant features with 0.9 and 0.92 for simple 

and relevant features. This outperformance could be due to SVM’s ability to perform 

with high dimensionality data (Weston et al., 2000) which is evident in this dataset 

based on the results of other classifiers.  

Finally, Table 13 shows the precision and recall values of both train and test results. 

Most classifiers showed no significant differences between their train and test 

accuracies. Moreover, all reported algorithms performed significantly better than the 

random algorithm where f1-score was only 0.35 in comparison to SVM’s f1-score at 

0.93. It was essential to make such a comparison since the output labels were 

unbalanced.  Results, in Table 13, show that most algorithms didn’t get biased by the 

dominant output classes.  

In contrast, WEASEL+MUSE algorithms performed poorly where their f1-score was 

0.53 on test data which is significantly lower than all other algorithms, see Table 13. 

Looking at training data algorithms, a much higher f1-score (0.85) was observed 

signifying clear overfitting over the training data. WEASEL+MUSE’s main drawback 

was overfitting in addition to the heavy computations required for training as 

reported by the authors of the algorithm (Schäfer and Leser, 2017a). They also 

mentioned that the overfitting problem might be mitigated by tuning the 

hyperparameters of the algorithm. Due to the expensive computations required for 

each iteration of training WEASEL+MUSE, the hyperparameter optimisation was 

not considered since other classifiers performed well in response time classification.  
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5.3.2 Measures of Performance Quality  

As mentioned in section 3.4.8.7, PerSpeed and PerAngle values were discretised 

using K-Means cluster into three groups. Those clusters were used as labels to build 

classification algorithms. When predicting PerSpeed, 1-Nearest Neighbour, Decision 

Trees, and Random Forest classifiers had similar performance with f1-score of 0.93, 

0.94 and 0.96 consecutively using relevant features set. An average of two per cent 

increase in f1-score was observed in comparison to simple features set in classifiers. 

Gradient Boosting, SVM and Naïve Bayes algorithms reported an average f1-score of 

0.82. However, MUSE+ WEASEL reported 0.86 for the training set and 0.53 for test 

set which is an indication that it overfitted the training data. Similarly, PerAngle's 

best-performing classifiers were Decision Trees, 1-Nearest Neighbour, SVM with f1-

score of 0.82, 0.85, 0.85 consecutively.   
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Figure 26: the difference between optimised and default parameters using 

Gradient Boosting classifiers 

Figure 25 shows the f1-score of classification algorithms using both simple and 

relevant features set. In PerSpeed and PerAngle results, relevant features increased 

the accuracy of all algorithms with an average of 3.6%. For example, Decision Trees 

performance increased by 12% in classifying Response Time, 4% in classifying 

PerSpeed and 5% in classifying PerAngle. Such an increase could be due to the higher 
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information gain in the relevant feature sets. As such, decision trees could reach 

higher predictability using the same depth of nodes. Interestingly, no significant 

difference is observed in SVM using relevant or simple features; this could be due to 

SVM’s resilience to collinearity and its ability to separate features on hyperplanes 

(Bennett and Campbell, 2000). 

Gradient Boosting classifier performed poorly in comparison to other ensemble 

classifiers such as the random forest algorithm. This may have been caused by the 

high sensitivity of Gradient boosting algorithm to its configuration parameters 

(Bühlmann and Hothorn, 2007). To assess this, grid search analysis was performed 

to find the optimal values of tree depth, the number of trees and shrinkage 

parameters. Results are illustrated in Figure 26. They have shown a significant 

increase in Gradient Boosting algorithm’s performance. Such improvement in 

accuracy proves that Gradient Boosting algorithms require parameter tuning.  

5.4 Conclusion 

In this study, regression and classification methods were used to assess the 

predictability of response time and performance quality measures of drivers in highly 

automated driving based on their physiological behaviour. Performance quality 

measures were PerSpeed and PerAngle that were identified in a previous study. 

Physiological behaviour was represented by three time-series; heart rate, pupil 

diameter and magnitude of eye movements. A regression method using Lasso 

achieved accurate predictability of response time with 0.23 MSE. Though, regression 

approaches had a significantly higher MSE for PerSpeed and PerAngle values.  

Therefore, classification-based ML algorithms were used. This study used an 

evolutionary based approach to find a near-optimal subset of features to feed to 
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machine learning models. Results showed that there was an average of 9.3% increase 

in f1-score in all trained models in comparison to simple features. This was due to the 

enrichment of information due to the extensive number of generated features. To 

evaluate the performances of the selected classification algorithms, the study used 

precision, recall and f1-scores.  1-Nearest Neighbour, Decision Trees, and Random 

Forest demonstrated the highest f1-score among all algorithms achieving an f1-score 

of 0.96 for PerSpeed and 0.85 for PerAngle.  

The most important conclusion of this study was that physiological behaviour of 

drivers before a takeover is sufficient to predict both response time and quality after 

a takeover request in highly automated driving. The results also showed that the 

window size of the time series played a significant role in the stability of the 

algorithms. The results provided few justifications for this behaviour but couldn’t 

back it up with experimentation due to the limited size of the dataset.  
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Discussion 

6.1 Introduction 

The study identified that the heart rate and pupil diameter are valid physiological 

measures to predict response time and quality of drivers. The study introduced 

PerSpeed and PerAngle as new measures of the takeover quality assessment. The 

findings identified a correlation between normalised mean heart rate, pupil diameter, 

PerSpeed and PerAngle. In addition, window size, in which mean values were 

calculated, had a substantial effect on the identified correlations. Such effect was 

reported in previous studies as explained in section 6.2. To summarise, the window 

size offers a focus on the overall change which abstracts the differences that 

happened in between. More details are furnished in sections 6.2 and 6.8. 

Predicting response time and the quality of driver’s performance in the takeover 

scenarios was crucial for highly automated driving to plan ahead to ensure the safety 

of drivers. There have been several papers studying different fixed transition times 

between 2 to 12 seconds (Gold et al., 2016, 2013a; Körber et al., 2016; Zeeb et al., 

2015). With this study’s findings, automation systems could identify a dynamic 

transition time based on the driver’s physiological state to allow for the safest 

handover process possible. 
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Based upon PerSpeed and PerAngle performance measures, automation systems 

could predict the response time and quality of drivers during handovers even before 

a TOR is initiated. Using the driver’s performance prediction models introduced in 

Chapter 5, the automation system may choose to communicate uncertainties to 

drivers through more alerting human-machine interfaces or resort to an emergency 

manoeuvre to give drivers a longer reaction time to regain situational awareness. 

This will, in turn, enhance the driver’s experience in automated vehicles 

(Rakotonirainy et al., 2014). 

6.2 Effect of Window Size on Physiological Measures 

In this research, window size played a crucial role in the stability of the LMMs for 

response time, PerSpeed and PerAngle. Finding an optimal window size was 

commonly an essential task in similar studies (Tapia et al., 2007) and has been 

reported as a significant factor in the classification of EEG studies (Grimes et al., 

2008). Also, a trade-off between the window size and the accuracy in many studies 

such as Solovey et al., (2014) were reported. Specifically, the findings of Solovey et 

al., (2014) showed that their longest heart rate window performed better than the 

smaller windows which matched with the findings in this study, see Figure 22. 

Essentially, a large window size meant a lag in understanding HR state (in 

comparison to instantaneous HR), but it provided an overall understanding of how 

driver’s mental state affected the heart rate values.  

Conversely, the findings of this study suggested that a smaller window size of PD 

performed better than larger window sizes. This could be because pupil diameter can 

change rapidly with changes in the driver’s cognitive load (Klingner et al., 2011; 

Kramer et al., 2013). Our findings indicated that a 30 seconds window size performed 
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well for the NDR task, response time and performance measures. Those findings 

match with outcomes of related studies (Klingner et al., 2011; Son et al., 2012) that 

concluded best performing window size was 30 seconds.  

Surveyed literature used the mean value to analyse HR data (Roscoe, 1993; Solovey 

et al., 2014). However, mean values negate both shape and transition of the HR signal 

that could provide better predictability than just the mean. Further analysis was 

required to understand whether there is a difference in HR transitions among the 

groups.  

6.3 Subjective Rating of the Takeovers’ Difficulty 

The findings indicated some interesting insight to understand some of the previously 

reported subjective measures of the NDR tasks, see Figure 20. The findings of this 

study showed an alignment with Zeeb's et al., (2016) who reported that the email task 

was ranked the most challenging task in a subjective rating which conflicted with 

their study’s objective measures (e.g., deviation from lane centre). Their justifications 

were “email task was simply less demanding... drivers had difficulties rating their 

workload”, (Zeeb et al., 2016).  

On the contrary, the reported findings, see Chapter 4, showed that email task 

engagement caused a significant increase in HR during the email task followed by a 

significant HR peak at the TOR, see Figure 17. Thus, an email task cannot be 

assumed a less demanding task as Zeeb et al., (2016) reported. In fact, Salvucci and 

Bogunovich, (2010) reported that “Interruptions occurring at points of higher mental 

workload are more disruptive and lead to larger resumption lags than those occurring 

at points of lower mental workload”. Also, writing emails had a strong correlation 

with stress (Marulanda-Carter and Jackson, 2012). Reflecting that on our analysis, 
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we could assume that the email task induced a high mental workload which matches 

with the reported subjective measures of our study and Zeeb's et al., (2016) study. 

Accordingly, switching from the demanding email task to another demanding task 

(i.e., takeover) justified the subjective measures choices by the drivers and also 

reflected on their physiological behaviour as reported earlier. Another explanation 

could be due to a significantly degraded situational awareness (due to a higher time-

off-road (Kass et al., 2007) in comparison to the TQT group that maintained eyes-on-

road throughout the task.  

Contrarily, subjective measures showed that the TQT was considered the least 

demanding task in our study by 82% of drivers. HR peak at TOR was significantly 

lower than the email task and so was the average HR as reported in Figure 17. During 

TQT, drivers spent an average of 3.3 seconds (SD=4.2) coming up with a new 

question. When drivers noticed a critical incident of a vehicle tailgating another on 

the neighbouring lane, a significant delay was reported (M=4.2, SD=1.2 seconds) 

among drivers to ask a new question. Such delayed responses showed that drivers 

performed multitasking between road monitoring and the TQT.  

According to Young and Stanton, (2002), active engagement in tasks makes 

participants more engaged and more alert which makes it easier to takeover during 

TQT. Interestingly, the TQT group had a lower HR peak at TOR in comparison to the 

control group. Considering Young and Stanton's, (2002) findings again, the control 

group had no active task engagement before the TOR which turned them into a 

passive state causing a reduction in their level of alertness. Such an assumption could 

justify how the control group reported that it was difficult to engage in the takeover 

and why the control group had a higher HR peak than TQT group during the TOR 

phase. This indicates that a certain level of mental workload is preferential in the 

context of improved TOR quality. This should be explored in further research.  
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In addition to the takeover type, the order of handover processes played another role 

in the perception of the difficulty of the handover phase due to a previously reported 

learning curve of the automated system (Körber and Bengler, 2014; Larsson et al., 

2014; Wright et al., 2016a). Reported subjective ratings (see Figure 20) of the 

takeover difficulty sorted by order showed that 40% of drivers perceived the first 

takeover as easy in comparison to 68% in the third takeover. Such results are taken 

with caution because of previously reported divergence of driving performance and 

subjective estimates of performance (Horrey et al., 2009b). Reported subjective 

measures align with the average heart rate peaks observed after TOR in the three 

takeovers as seen in Figure 17.  

Table 14: Comparing normalised HR at each takeover 

  Normalised HR mean before TOR  

(60-sec window) 

Relative HR Peak 

Takeover 1 Mean 0.47 0.126 

SD 0.125 0.22 

Takeover 2 Mean 0.491 0.08 

SD 0.135 0.187 

Takeover 3 Mean 0.424 0.093 

SD 0.130 0.127 

 
To assess whether this assumption is valid, HR peak at TOR was recalculated by 

subtracting the mean of ‘a 60 seconds normalised HR window before TOR' from the 

HR peak at TOR, referred to as relative HR peak in Table 14. Relative HR peak on 

Table 14 of the second (M=.08) and third (M=.09) takeovers were significantly smaller 

than the first takeover (M=.126). Relative peak HR may be considered a proxy 

measure of the difficulty of the takeover; especially that it matches with the reported 

subjective measures. 
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6.4 PerSpeed and PerAngle in Depth 

This study introduced PerSpeed and PerAngle as two new performance measures for 

take-over quality in Level-3 automated driving. Minimum time to collision is an 

established performance measure in the field (Radlmayr et al., 2019) but it does not 

provide any measure of how drivers handled their vehicle. For example, a driver could 

employ sharp braking; this may maximise the minimum time to the collision but 

introduces a significant hazard to other vehicles, as would sharp transitions to a 

neighbouring lane. PerSpeed and PerAngle provide the missing measures that could 

support minimum time to collision analysis.  

PerSpeed and PerAngle metrics are a further development of previously introduced 

performance measures such as maximum lateral and longitudinal accelerations (Gold 

et al., 2016), max deviation from the lane’s centre (Zeeb et al., 2016), speed reduction 

(Larsson et al., 2014), and percent road centre (Jamson et al., 2013). The aforenoted 

approaches based on min, max or standard deviation were questionable to apply on 

nonnormally distributed variables (Urdan, 2005) such as speed or heading angle at 

the transition phase of this study. To avoid the limitations of the simple statistical 

methods, the study aimed at using an accumulative percentage change of continuous 

variables which gives a single value that identified the overall change introduced by 

drivers to speed and steering. The thesis initiated the introduction of PerSpeed and 

PerAngle and encouraged other studies to use as a standard for assessing 

performance quality to provide comparability among studies. The study identified no 

open access datasets that could have been used to cross-validate those measures on 

previous studies.  

PerSpeed showed some interesting correlations with the physiological measures. 

Even though PerSpeed showed no statistical difference among the NDR task groups, 
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PerSpeed correlated with the physiological measures of drivers. This could be due to 

some drivers who can handle secondary tasks better than others; thus, no observed 

increase in heart rate and pupil diameter. Other studies reported that experienced 

drivers would respond better than new drivers under the same secondary task 

condition (Ko and Ji, 2018) causing less stress and probably less increase in their 

physiological behaviour (Adler et al., 2000). This could explain why PerSpeed or 

PerAngle have no statistical significance among secondary task groups.  

The fact that PerSpeed and PerAngle showed a strong correlation with driver’s 

physiological measures highlighted the possibility that it might have a strong 

correlation with driver’s mental workload (Brookhuis and De Waard, 2010; Marquart 

et al., 2015). Previous studies reported braking as a link to driver’s lack of situational 

awareness (Zeeb et al., 2015), which shows the possibility that situational awareness 

could also be correlated to PerSpeed and PerAngle. Hence, future work is required 

for further exploration.   

Finally, another finding is that this study provided experimental evidence that 

driver’s physiological measures prior to a takeover are capable of predicting drivers’ 

response time and quality as predicted by Chan and Singhal, (2015). It also aligns 

with the vision introduced by Rakotonirainy et al., (2014) that predicting driver’s 

behaviour could enhance their experience. Based on previous suggestions, Heger et 

al., (2010) a mental workload recognition system using EEG and machine learning 

techniques is extendable to highly automated driving scenarios. Findings of this 

study have enabled a machine learning model to be built to accurately predict drivers’ 

performance measures and the response quality of the takeover. 
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6.5 The Impact of the Learning Effect on Drivers’ 

Performance  

The results reported a decrease in both average heart rate and pupil diameter with 

every new takeover transition. The decrease of the heart rate data -see sections 4.2 

and 4.3- could be interpreted as a decrease in the stress level caused by the 

uncertainties of the takeover process. As identified in a previous study, drivers 

enhanced their dual task skills and sped up their task switching skills (Körber et al., 

2015b). The results of this study highlighted the physiological behaviour of drivers 

who passed through a similar experiment run by of Körber et al., (2015) who 

identified that there was a strong relationship between the response time and the 

multitasking test. The relationship between multitasking skills and response time 

aligns with the assumptions that the main cause of the decrease of the heart rate 

data throughout the takeovers was due to the decrease in stress levels and observed 

improvement in the multitasking and task switching skills. While this study didn’t 

collect multitasking skills test scores of its participants, participants showed varying 

differences recovering from the NDR tasks which could be related to their varying 

task handling skills. As identified earlier, there was no correlation between the 

driver’s performance measures and the NDR tasks even though there was a strong 

correlation between the driver’s performance and driver’s physiological measures. 

This difference may be due to driver’s multitasking and task switching skills as 

reported by Körber et al., (2015).  Finally, the results showed that driver’s adaptation 

wasn’t linear which aligns with Körber's et al., (2015) findings.  

 

 



 

160 
 

6.6 Influence of Other Factors on the Driver’s 

Performance 

As identified by other studies, there were other factors affecting response time and 

quality such as fatigue (Driver, 2014), age (Körber et al., 2016), traffic density (Gold 

et al., 2016), weather conditions (Louw et al., 2016) and driving experience (Larsson 

et al., 2014). Those variables were not taken into consideration due to the 

delimitations of the study, refer to section 3.5; however, it should be considered for 

future work, see section 77.5.  

6.8 The Effect of Window Size on the Machine Learning 

Algorithms 

The study showed a varied number of window sizes where classification performed 

best. For example, the 120-second window was the best window size in which reported 

algorithms performed at, followed by 30 and 90 seconds, see Table 13. Such results 

indicate that both short and long-term observations of the drivers are essential to 

gain an overall understanding of their mental state. Those results align with  Solovey 

et al., (2014) findings that 30 seconds window size performed best in classifying 

driver’s workload.   

Moreover,  Solovey et al., (2014)  tested a range of 10 to 30 seconds where 30 seconds, 

the largest window size performed best. The same findings were reported by [Liang, 

2007] where their largest window size of 40 seconds, performed best. Finally, 

Wijsman et al., (2011) reported efficient mental stress detection classifier using 120 

seconds window. Those findings, in addition to this study’s, indicate that features 

generated using short and long windows over driver’s physiological data enrich the 

algorithm’s input and therefore strengthen its predictability.  
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6.9 Feature Selection  

This study explored several feature extraction methods to maximise the information 

gain of the classification. Figure 23 shows different groups of features based on the 

frequency domain and wavelet transform. In addition, other features were based on 

the time domain such as linear trend, autocorrelation, mass quantile and others. 

However, some of those features showed strong collinearity among each other which 

usually causes trained models to be prone to overfitting (Fulcher and Jones, 2014). 

When using the features subset (see Figure 23) selected by our proposed evolutionary 

method, a significant increase in the models' accuracy was observed. 

Several coefficients in the frequency domain were reported as the top-ranked 

features. Such results match with excessive work done in domain-agnostic time series 

classification algorithms that were based on Symbolic Fourier Approximations 

(Schäfer and Högqvist, 2012). Those approaches were primarily based on identifying 

features found on the frequency domain’s coefficient values. More algorithms from 

this family were surveyed in Bagnall's et al., (2017) review even though their 

investigation focused on single variate time series and missed the WEASEL 

algorithm (Schäfer and Leser, 2017b) because it was published later after their work. 

In this study, we examined WEASEL+MUSE algorithm which is based on WEASEL’s 

approach in identifying the top frequency domain's coefficients that maximise the 

information gain. It was evident that WEASEL+MUSE tended to overfit the training 

data. Conversely, the study’s feature-based approach didn’t have any overfitting 

issues even though it had several hyperparameters to be optimised for.  

This contrast between the two approaches could be due to several reasons. Mainly, 

the feature selection approach used by WEASE+MUSE provided extremely effective 

information gain leading to overfitting. The second reason could be due to the linear 
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classifier used by MUSE+WEASEL that may have not provided an extra layer of 

feature learning in contract to tree-based models that outperformed other 

approaches. Specifically, tree-based models of this study handled the frequency 

domain’s coefficient as continuous variables, and by splitting the tree based on those 

values, the tree models provided an additional layer of learning (Breiman, 2001). 

However, the linear classifier in WEASEL+MUSE takes a vector of words (each word 

is a series of characters) which has already been estimated by the SFA algorithm. 

Such input to a linear classifier makes it very difficult to generalise and prone to 

overfitting. Finally, the reported overfitting could be due to the necessity of 

hyperparameter optimisation which wasn’t possible due to the heavy computation of 

the algorithm and to provide a fair comparison with a feature-based approach that 

didn’t receive any parameter optimisations. This aligns with other studies reporting 

WEASEL+MUSE as a computationally demanding algorithm (Nguyen et al., 2018).  

Several coefficients in both HR and pupil diameter time series were another 

intriguing observation on the list of features in Figure 23. While coefficient 14 had a 

significant information gain, there’s no real-world interpretation of its value even 

though it helped the model achieve reasonable accuracy. The study couldn’t find a 

clear explanation to the meaning of this coefficient because there are no studies about 

interpreting HR coefficients in the frequency domain, and because the interpretation 

was out of the scope of this thesis. In addition, due to the limited size of the dataset, 

the study may not be able to provide a meaningful interpretation or conclusion to 

those coefficients because they may change as the dataset grows. This study 

acknowledges that the small dataset size was one of its research limitations that 

required future work.    
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6.10 Summary 

The chapter went through the main discussion points of the thesis. The window size 

played a significant role in the stability of both linear and machine learning models. 

The correlations between the physiological behaviour of drivers and their behaviour 

in highly automated vehicles were discussed and related to similar studies. The study 

identified answers for the differences between subjective and objective measures of 

the driver’s performance in the literature. The reasoning behind those differences 

based on the study’s findings was explained. In summary, it was explained by the 

reported correlation between the driver’s physiological measures and their reported 

subjective difficulties of the takeover scenarios.   

In addition, the driver’s performance measures used in the study, PerSpeed and 

PerAngle were discussed and correlated with similar studies. The new proposed 

methods were found to correlate with driver physiological data. These correlations 

enabled the study to build models to classify the driver performance using their 

physiological data. Finally, the study used a feature selection approach. This 

approach initiated a better understanding of the relevant features that had the 

highest impact on the information gain of the machine learning. In summary, the 

study of relevant features showed that the frequency domain of the heart rate and 

pupil diameter changes had the highest information gain. This understanding lead 

to the gain domain knowledge in understanding how physiological measures correlate 

with the driver’s performance in the field of highly automated driving. 
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Conclusion 

7.1 Introduction 

The focus of this study was to explore the relationship between the driver’s 

physiological data and their behaviour in highly automated driving scenarios. The 

studies in this thesis didn’t aim at providing a production-ready driver’s mental state 

assessment model that could be deployed in highly automated vehicles. 

However, the study provided statistical evidence of the predictability of the driver’s 

performance during the mandatory transition period. Mainly, the study provided a 

better understanding of the driver’s physiological data and their effect on the driver’s 

experience and performance in highly automated vehicles. The study also answered 

several questions regarding the driver’s learning curve and how it affects their 

subjective measures of the take-over difficulty. The results of the studies in this thesis 

give some practical evidence and suggestions about achieving a more harmonious 

human-machine interaction in highly automated driving between the driver (the 

operator) and the machine (automated driving system). 

In the following section, research questions provided in chapter 1 are reviewed and 

answered and practical conclusions are provided. 
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7.2 Review of the Study’s Investigations 

The study was designed to answer eight questions. Questions are reported and 

answered in brief based on the findings of this thesis’s results. To achieve the 

objectives of the study, this Chapter goes through the objectives and their 

corresponding research questions.  

Objective 1: To conduct a critical review of existing literature to study different 

approaches assessing drivers’ physiological behaviour and its effect of their 

performance during the ‘transition’ phase. 

The first objective was motivated by the research question: 

 

1. What physiological patterns that could be collected in a highly automated 

driving environment to provide an assessment of the driver’s vigilance? 

The literature of highly automated driving was very limited in studying how the 

physiological data could correlate with driver’s vigilance. Driver’s vigilance is a short 

term that has been defined earlier in chapter 2, but in short, it means that the driver’s 

mental workload and situational awareness are adequate to perform the driving task. 

While the term is widely used in manual driving studies, it has some limited use in 

highly automated driving ones. 

The main motivation of the study was to assess the predictability of physiological 

data and how it correlated with the driver’s performance during the transition from 

automation to manual driving. The literature review of this thesis identified many 

studies in manual driving that achieved satisfactory results in predicting the driver’s 

performance. Those predictions were based on physiological patterns in addition to 

features relating to the driver’s physical positioning.  
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However, highly automated driving studies were not as rich as manual driving 

studies in that field. Specifically, no studies used a statistical approach in identifying 

the correct physiological data (and features) to build up a machine learning model 

that could predict the driver’s performance during the transition phase. That’s to the 

best of our knowledge. This was the identified as the main motivation of this research. 

The literature review identified that highly automated driving studies relied heavily 

on eye movements, blinking, pupil diameter, eyes fixation and other physiological 

measures as outlined in chapter 2. Studies used the aforementioned features to 

assess the driver’s performance, response time and mental workload during the 

transition. However, few studies investigated pre- and post-transition periods. In 

addition, heart rate data was not thoroughly studied along with pupil diameter 

changes throughout the automated driving scenarios. This was the main gap of the 

literature and acted as a starting point for the first study.  

Objective 2: To design a driving scenario to assess driver’s response quality during 

both manual and highly automated driving. The driving scenario involves the 

transition from highly automated to manual driving to understand driver’s 

physiological behaviour pre- during and post-transition. 

Objective 3: To conduct the study, produced on objective 3, on recruited participants. 

The second and third objectives were motivated by the research question: 

2. How does automation affect physiological patterns of drivers in highly 

automated driving scenarios? 

3. How do secondary tasks reflect on driver’s physiological patterns pre- during 

and post-transition period? 

Chapter 4 presented a driving simulator study conducted to asses a driver’s 

physiological patterns in highly automated driving scenarios. Data collection started 
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200 seconds before the transition and continued until the end of the experiment. 

Repeated measure approach was used to understand if learning is a variable in the 

driver’s physiological behaviour.  

Findings showed that drivers under the influence of a secondary task performed 

significantly worse than the control group who were strictly asked to maintain mental 

and visual vigilance to the road. Those results align with other studies (e.g. Merat et 

al., 2012; Louw et al., 2016). 

During the pre-transition period, physiological patterns of drivers were different. 

Statistical tests showed that mean heart rate and pupil diameter are higher than the 

control group’s mean values. The increase in heart rate and pupil diameter indicated 

higher mental workload which was identified using a linear model. While it was 

simple for the automated system to identify the driver was engaged in the email task, 

it becomes significantly difficult to identify mental workload that doesn’t require 

visual distraction such as the twenty questions task or just general mind-off-road 

distraction (Schooler et al., 2011). However, the increase in mean heart rate, the 

magnitude of eye movements and mean pupil diameter could be an indicator of a 

driver’s high mental workload.  

Another interesting finding of the study was the fluctuation patterns in heart rate 

between the two secondary tasks. First, there was no reported statistical difference 

between physiological data and the type of secondary tasks. However, using a 

timeseries visualisation algorithm, it was evident that those timeseries fluctuated 

differently. The difference between the statistical approach (RM-ANOVA) and the 

time-series approach (Markov Transition Field) could be due to the fact that RM-

ANOVA was fed the mean values of the physiological data which abstracts any 

fluctuations in the data. Usage of Markov Transition Field to visualise physiological 
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data was introduced in this study and had no previous exposure in the field of Human 

Factors.  

As the MTF approach is based on the frequency domain’s observed changes, those 

findings opened up a new space to find appropriate features to predict the driver’s 

performance measures. In chapter 5, most of the features that were most useful to 

the machine learning models were based on the coefficients of the frequency domain. 

These findings suggest that time-series fluctuations could have precious information 

that may be abstracted or obfuscated by using mean and standard deviations data to 

compare them. More work is required to shift the conventions of Human Factors 

researchers towards more modern approaches; this study doesn’t provide a 

systematic approach to that, but it suggests that it may be required for more in-depth 

research.  

The repeated measure design showed that the observed changes in driver’s 

physiological mean values correlated with the driver’s experience in performing the 

NDR task. Experienced drivers with NDR tasks (or multitasking) were found to be 

more relaxed performing  NDR tasks because they are more familiar with them. 

Subsequently, those subsets of drivers performed as good as the control group.  

Additionally, the repeated measure design imposed a limited time for the drivers to 

engage in the driving task. Although studies that prolongated their automated 

driving periods reported fatigue and drowsiness near the end of the experiment 

(Jarosch et al., 2017). While this limited time was considered a limitation of the study 

since drivers didn’t immerse in the secondary tasks, it also helped avoid fatigue, 

boredom and drowsiness effect on the driver’s performance. 

At the start of the transition period, specifically at the TOR, a significant peak of HR 

was observed among drivers. The study discussed in Chapter 4 argued that it had a 
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strong correlation with the driver’s subjective measures of how difficult the take-over 

was. Several studies reported differences between objective measures of secondary 

task difficulty and the subjective measures reported by the drivers (Horrey et al., 

2009b; Zeeb et al., 2016). This study’s findings indicated that subjective measures 

aligned with the driver’s perception of difficulty during the transition following the 

secondary task rather than their performance. Other factors that may explain this 

divergence could be drivers’ task switching (Funke, 2007) and multitasking (Salvucci 

and Bogunovich, 2010) abilities. This suggestion requires more in-depth studies to 

assess its credibility. 

There was an observed relationship between the HR peak at the TOR and the HR 

during the NDR task engagement in the pre-transition period. Specifically, the more 

engaged the driver in the secondary task (i.e, engagement measured through 

subjective measures and eyes off road time), the higher the stress level during the 

transition. Therefore, a strong peak, relative to their stress, was observed. Those 

findings align with (Zeeb et al., 2016) findings that some secondary tasks are more 

stressful than others. In addition, it provided better explanations for the strong 

differences between the driver’s reported subjective and objective measures of the 

difficulty levels of the NDR tasks.  

Interestingly, there was a strong correlation between the HR peak at the TOR and 

the order of the transitions. Specifically, the first transition had the highest peak, 

and its mean value went gradually down until the third transition performed by the 

driver. This observed learning effect was reported in various studies (e.g. Körber and 

Bengler, 2014; Larsson et al., 2014; Wright, Samuel, Borowsky, Zilberstein and 

Fisher, 2016) and this study provided physiological evidence to this observation.  

Thus, car manufacturers need to account for the reported learning effect during the 

early adoption of the automated systems. The human-machine communication 
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channels should aim at alleviating the stress level caused by the transitions to 

manual driving. This, in turn, will enhance driver’s perception of the automated 

systems and encourage its adoption among other drivers. 

Objective 4: To define an evaluation framework that assesses the efficiency of the 

prediction model produced by objective 6. 

Objective 5: To assess the correlation between physiological patterns and driver’s 

performance.  

The fourth and fifth objectives were motivated by the research question: 

 
4. What are the suitable driver’s performance measures to assess their responses 

during the ‘mandatory’ transition period? 

5. What’s the relationship between physiological data and the driver’s 

performance during the transition?  

Most studies used Time to Collision as a performance measure (Radlmayr et al., 

2019). Even though it was widely accepted in the literature in manual driving, TTC 

may not be suitable to be the only performance measure in highly automated driving 

because it omits other important variables. For example, drivers may brake 

aggressively to avoid a collision; hence maximising the TTC but that action may have 

caused a disruption in the motorway when it was possible to safely change lanes.  

Due to the lack of TTC depth, every study investigated an additional performance 

measure that is suitable to their scenario without necessarily reflecting on others 

work. The reported performance measures have many similarities among them and 

some of those are covered in the literature review in Chapter 2. However, Radlmayr 

et al., (2019) had an in-depth literature review of different Drivers’ Performance  

measures. The Radlmayr's et al., (2019) literature review reported that the 

automated driving studies had no convention in measuring or assessing the driver’s 
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performance. The researches also proposed an in-depth driving performance measure 

framework named TOPS that covered a wide variety of performance measure. TOPS 

was published after the end of the study and therefore, wasn’t included in our 

analysis.  

Prior to TOPS proposal, most of the performance measures relied heavily on the 

proposed scenario of their study which made them unsuitable for other studies. 

Consequently, this study aimed at proposing performance measures that 1) are 

scenario independent, 2) are easy to understand, and 3) provide quantitative values 

to describe the drivers’ manoeuvre. 

As a result, PerSpeed and PerAngle values were proposed to describe how the driver’s 

speed and the heading angle changed during critical hazard manoeuvre in a 

mandatory transition period. The definitions and mathematical formulas of PerSpeed 

and PerAngle are laid out in chapter 4. While TOPS is a general framework that 

could incorporate several values, PerSpeed and PerAngle are much easier to 

estimate, understand and compare to. They could also be incorporated into the TOPS 

framework. More work is required to assess the generality of PerSpeed and PerAngle 

and how they compare to TOPS and other performance measures. PerSpeed 

particularly showed a linear relationship with heart rate and pupil diameter values. 

Contrarily, it showed no correlation with the type of secondary tasks.  

Objective 6: To develop a system that will take data collected from objective 4 to 

determine the outcome of the takeover done by the driver. 

The sixth objectives were motivated by the research questions: 

6. What features could be extracted from physiological data that could have a 

predictability power of the driver’s performance? 



 

173 
 

7. How could physiological data be used to assess the predictability of the driver’s 

performance? 

The study used two different features extraction methods. Both approaches 

generated features that were able to fit the model efficiently. However, features based 

on the frequency domain and wavelet had the highest information gain to the 

prediction algorithms. The study refrained from exploring the meaning of those 

features due to several reasons. First, the dataset size was small in addition to the 

lack of literature in the field of explaining different frequencies of the heart rate and 

pupil diameter data. Results showed the feasibility of predicting the driver’s 

performance based on their physiological data during the pre-transition period. 

Window length played a major role in the stability of the algorithm which aligned 

with other studies in the manual driving domain (e.g. Erin T. Solovey et al., 2014).  

PerSpeed and PerAngle values showed signs of high dimensionality. That was 

apparent because regression models failed to predict them accurately. However, 

classification algorithms were able to assign drivers to high, medium and low-risk 

classes which is still sufficient for the automated system to draw an understanding 

of driver’s future performance in case a mandatory transition is required. This 

knowledge may help the system engage the driver using a different medium or 

remind them to monitor the road or use a safe manoeuvre to avoid a collision.  

7.3 Reflection on the Study 

7.3.1 Methodology 

The methodology presented in chapter 4 had some fundamental limitations. The 

number of participants and their age range were the main key limitations of the 
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study. Recruited participants represented a small group of drivers’ demographics 

which in turn could have some effect on the results of the study. However, the study’s 

main aim was the feasibility assessment which proved to be successful. Future work 

will require more participants and recruitment should be extended to a larger 

number of participants.  

In addition, the study has not considered a 3x3 ANOVA analysis to study the 

correlation among the secondary tasks and the order of their execution at the 

scenario. More participants would have been considered to achieve such results.  

Future work will require different scenarios that incorporate different road scenarios. 

For example, most studies performed their transition on a straight road (Gold et al., 

2013a; Zeeb et al., 2015) but other studies showed that take-over time might take 

longer in tunnels (Mok et al., 2017).  

The study alerted drivers to perform a mandatory transition through an audio alert. 

However, there are several studies that showed other alerting methods might be 

better at gaining drivers’ attention (Bazilinskyy et al., 2018). Those different 

interfaces may vary driver’s stress levels, and it would be interesting to see how they 

may influence heart rate peak at the TOR that is reported in this study.  

7.3.2 Driving Simulator 

Driving simulator studies provide a significant advantage to  control the virtual 

driving environment  and provide a safe space to expose drivers to danger without 

risking their lives (Saffarian et al., 2012). While several studies provided evidence 

that simulator-based results  correlate with real-life driving behaviour, there’s little 

to no evidence that this rule still applies to highly automated driving (Louw, 2017).  
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Loughborough University’ Design School driving simulator provided a great space to 

host highly automated driving studies. However, the simulator lacked   the motional 

feedback and provided a sufficient, yet out-of-date graphics to drivers.  In addition, 

the steering wheel posed a challenge in the realism of the driving scenario. In a real-

world scenario, the steering wheel moves along with the vehicle’s movements. In 

addition, if the driver left the wheel with an offset, this offset will still persist at the 

start of transition causing the drivers to put an additional effort to stabilise the 

vehicle. This issue was fixed by automatically notifying the drivers to centre the 

steering wheel at the start of automation.  This simple solution helped avoid  biasing 

the results or eliminating participants as seen in other studies (Louw, 2017). 

Another significant challenge with the driving simulator was due to the limitations 

of their support to automated systems.  This was overcome by using a combination of 

software commands to simulate Level-3 automation.  The scenarios were cross-

validated by the experimenter with other simulators and real-world driving (Tesla S 

model) and provided nearly the same experience.  

7.3.3 Data Collection Devices 

The study used two devices to collect heart rate and eye movements. Eye movements 

were collected using Tobii Pro Glasses. The device provided simple and portable 

glasses with additional infrared sensors to collect eye movements, pupil diameter and 

head positioning. Without a doubt, the data collection was simple using the Tobii 

Glasses. However, the reliability of eye blinking detection was poor and therefore 

excluded from the study.  

HR data was collected using the Polar H7 device. The sensor was very accurate and 

was easy to place on males. However, it was difficult to use with females due to their 
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brassiere’s metal underwire. This was overcome by asking female participants to 

wear a sports bra with no metal underwire and invite a female chaperone to help 

them place the sensor on. The device also collected data at 1Hz which was sufficient 

to run the analysis but may have posed a limitation on finding more interesting 

patterns in heart rate variability.  

7.3.4 Assessing Performance 

Up until TOPS was proposed (Radlmayr et al., 2019), there were no literature reviews 

or a unified proposal to assess the driver’s performance in highly automated driving. 

In this study, the main focus was correlating physiological behaviour with the driver’s 

performance. Thus, using PerSpeed and PerAngle was adequate for the study’s main 

goal.  

Interestingly, the performance measures in this study covered the three metrics 

groups proposed by Radlmayr et al., (2019). Specifically, vehicle guidance parameters 

that were covered by PerSpeed and PerAngle. In addition, subjective rating 

parameters which were covered by the reported perceived criticality of drivers for 

each take-over. Finally, mental processing parameters were considered through eye 

movements, pupil diameter and take-over time. A limitation of this study’s approach 

was the lack of finding a way to merge those different parameters to give a single 

value at the end of the study. 

7.4 Contribution to Knowledge 

The main contribution to knowledge of this study is the feasibility of predicting 

drivers’ ability to respond to critical hazards using physiological behavioural data 

collected before the transition. With the study’s findings, automation systems could 
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adopt a dynamic transition time based on the driver’s physiological state to allow a 

safer transition or alert drivers who are severely out-of-the-loop using gradual 

warning or communicate systems’ uncertainties. In addition, it provides an insight 

into driver’s readiness and therefore, allows the automated system to adopt the 

correct driving strategy and plan ahead to enhance drivers’ experience and make the 

transition phase safer for everyone.   

The human factors field spent a significant effort understanding human’s 

interactions with the automated driving systems. The field has proven that the 

human-machine interaction in highly automated driving environment posed several 

technological, legal and ethical challenges for policy makers and researchers (Louw, 

2017). Most research found in this area attempts to study human’s perspective on the 

human-machine interaction. However, the literature lacks the explorations of  

enabling the automated system to monitor the driver’s readiness or suitability for the 

supervisory role over the automated driving systems. The study proved the possibility 

of using a machine-learning-based approach to assess human’s readiness for a 

potential take-over and predict the riskiness level of their response to a future critical 

hazard. The study identified that the physiological changes of drivers were valid 

predictors for the machine-learning model. Finally, the work of this thesis lacked a 

comprehensive investigation into all the variables affecting the driver’s performance. 

Future work is required to provide a fully functioning predictive model of the driver’s 

performance in handling critical hazards in highly automated driving scenarios.  
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Figure 27: An illustration of the effect of external and internal variables affecting 

the driver’s performance, their effect of driver’s physiological behaviour and the 

performance measures introduced in this study assessing the driver’s manoeuvre 

during the handover process. 
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behaviour and their driving performance, as illustrated in Figure 27. The study used 

physiological measure data to build predictive models using machine learning 

algorithms. The results have shown strong potential in predicting the driver’s 

performance using physiological measures of drivers. More details about the four 

contributions to knowledge are explained in the next sections.  Variables affecting 

the driver’s performance are discussed in section 7.4.1. Physiological changes and 

their cues to the deriver’s performance are discussed in section 7.4.2. Performance 

measures of drivers are discussed in section 7.4.3 and finally predictive models of the 

driver’s performance are discussed in section 7.4.4. 

7.4.1 Variables Affecting the Driver’s Performance 

The study has explored all variables reported in the literature affecting the driver’s 

performance in takeover situations when a critical hazard is present. As seen, drivers 

in Level-3 automated systems are decoupled from the physical control loop (Louw, 

2017). When a takeover is required, the driver’s ability to re-engage depends heavily 

on several internal and external factors. The literature review of this study identified 

five external and four internal factors that affect the driver’s performance, see Figure 

27. Two of those factors are dependent on manufacturers’ choices, namely time 

budget and human-machine interfaces.  

Road and traffic conditions are other factors affecting the driver’s performance. Even 

though they’re dynamic, (i.e., changing over time), they have shown a strong 

intercorrelation with both time budget and human-machine interfaces. Based on the 

literature review, most studies considered a pre-determined time budget and unified 

human-machine interface. However, manufactures should consider using adaptive 

time budget and varying human-machine interfaces that could adapt to driver’s 
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reaction times and help drivers re-engage more quickly. Human-machine interfaces 

should also be designed to direct driver’s attention to the hazards to speed up the 

restoration of their situation awareness and communicate where potential hazards 

could be. This, in turn, would potentially enable drivers to respond more quickly and 

efficiently. 

Additionally, there is a group of driver-based factors influencing their performance. 

The driver-based factors could be transitional or static variables. Transitional factors 

such as fatigue and stress are variables that could change within-session or from one 

driving session to another. Static factors such as age and driving experience may have 

a direct or indirect influence on the driver’s performance at each session. For 

example, age and experience could indirectly influence the driver’s relationship with 

the automated system (complacency, trust, etc.) which in turn affects their 

performance. Those factors change over time but will remain constant at each 

session. This adds time and interdependent complexities in the relationship between 

static and dynamic factors and the driver’s performance measures such as reaction 

time, PerSpeed, PerAngle or eyes-off-road times.  

Unfortunately, most studies assume that drivers’ skills will not deteriorate over time. 

With the use of automation, some researchers raise the fear that drivers may lose 

their manual driving skills and situational awareness comprehension abilities over 

time (Louw, 2017).  This phenomenon was observed in the flight control research 

literature when pilots’ manual flying skills deteriorate significantly due to excessive 

use of autopilot systems (Casner et al., 2014). 

The list of proposed factors affecting the driver’s performance in this thesis lacks 

other subjective factors that are difficult to collect and may change over time. For 

example, the trust level in the automated system had a great influence on the driver’s 

behaviour and thus influenced their performance significantly (Gold et al., 2015c). 
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However, the study’s main hypothesis suggested that those variables may be 

indirectly quantified using the physiological measures of the drivers. More work is 

required in this matter. 

Finally, drivers’ individual differences in gaining situational awareness or 

performing physical control must be considered by manufacturers (Louw, 2017).  

Driver’s personality or mood may have a significant impact on the driver’s 

performance as few studies have suggested (Carsten et al., 2012; Gold and Bengler, 

2014; Petermann-Stock et al., 2013). Though, there’s reported evidence that support 

systems such (e.g. the automated driving system) may induce behavioural adaptation 

over time (Markkula et al., 2012). This, in turn, suggests further work on 

understanding driver’s adaptation to the automated driving system over time. Both 

the thesis and all the reviewed studies in the Level-3 automated systems have not 

studied the adaptation of drivers to the automated system or the effect of prolonged 

use of the automation on their driving experience or style. This is another area that 

needs more exploration of the literature. 

7.4.2 Physiological Changes as Cues to the Driver’s Performance 

Drivers’ performance was the main focus of most studies in the field of highly 

automated driving. The surveyed studies used physiological measures to understand 

the driver’s behaviour during the transition. Some studies used several physiological 

measures as objective measures of performance to understand the effect of several 

external or internal factors such as the driver’s age or road situation, etc. The 

interconnected nature of external and internal factors affecting the driver’s 

performance was the main motivation to study their effect on the driver’s 

physiological behaviour. The main hypothesis was to assess whether physiological 
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measures alone could be valid predictors of the driver’s future performance in critical 

transitions.  

The research has shown that physiological measures had a high correlation with the 

driver’s performance during the transition. The manipulation of the driver’s 

physiological measures using cognitive and visuo-cognitive NDR tasks proved the 

existence of the relationship between physiological measures and the driver’s mental 

state. That relationship helped build predictive models later as explained in section 

7.4.4.   

The heart rate of drivers provided prominent cues to the driver’s mental state and 

were strong covariates in clustering the driver’s performance based on reaction time, 

PerSpeed and PerAngle, the proposed measures of performance in this study. The 

study showed that heart rate normalisation was essential for comparability and for 

building generic linear models. While normalisation is a widely accepted approach in 

the field of machine learning, the study aimed at introducing normalisation to the 

field of human factors. In addition, the study aimed at proposing timeseries 

visualisation approaches from the field of signal processing to the field of human 

factors. The visualization techniques provided subjective comparability among 

different NDR task groups as proposed in Chapter 4.  

Pupil diameter showed a strong correlation with the driver’s mental and visual 

workload. The results of this study showed that pupil diameter had a strong 

correlation with the driver’s mental state and their performance in the transition. 

The collection of pupil diameter was challenged in the visuo-cognitive NDR task due 

to the brightness difference between the tablet screen and the simulator’s projector. 

More work will be required to identify the offset of the pupil diameter caused by the 

mean brightness of the surrounding environment based on the recommendations of 

Pfleging et al., (2016) model.   
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The study identified that each one per cent of heart rate increase corresponds to a 

4.6% change in PerSpeed and each one per cent increase in pupil diameter 

corresponds to 9.1% change in PerSpeed. In addition, each one per cent change in 

heart rate corresponds to approximately 54% change in PerAngle and for each one 

per cent in pupil diameter, 71% change is expected. When analysing heart rate and 

pupil diameter, the window size played a crucial role in the stability of the 

aforementioned percentages. Future studies need to further investigate those 

percentages and their extendibility to larger datasets. 

The exploration of heart rate changes answered a few questions raised in previous 

studies in the literature of human factors. For example, heart rate analysis in this 

thesis explained the deviation between the subjective and objective perception of the 

transition difficulty that few studies have reported. Even though a driver performed 

well according to the objective measures (reaction time, PerSpeed and PerAngle), the 

driver reported that the transition was difficult. When analysing the collected data, 

drivers reported that the level of difficulty was clearly correlated with the stress level 

during the transition and not by the difficulty of the transition itself. Logically, stress 

and difficulty may be highly correlated, but the uncertainty and the lack of ‘transition 

handling’ experience may have played a bigger role in inducing the stress level of 

drivers more than the difficulty of the situation itself. This also aligned with the 

observed gradual degradation of the driver’s heart rate from the first to third 

transition performed by the same driver. This observation, in turn, aligned with 

others studied that reported a learning curve of driver’s ability to handle the vehicle 

at the transition phase.  

The studying of NDR tasks effect on the physiological measures of drivers showed 

that NDR tasks affected drivers differently. This, in turn, provided evidence that the 

driver’s performance was not solely dependent on the NDR tasks. In fact, the driver’s 



 

184 
 

physiological measures could be an integral part of any predictive models of the 

driver’s performance. That’s because a physiological measure may be able to capture 

the individual stress levels of drivers caused by multitasking, task switching and 

experience in performing the NDR task. While this is not clear from the study’s 

findings, the results open the door to study the effect of the driver’s individual 

differences on their physiological measures. 

7.4.3 Performance Measures of the Drivers 

The study has identified a clear sparsity in the assessment of the driver’s 

performance measures during the transition. Several studies used vehicle, driver or 

subjective-based measures of performance in addition to reaction time or take-over 

time as their main variables to assess the driver’s performance. The main limitation 

to this approach was identified in several studies (Radlmayr et al., 2014; Zeeb et al., 

2016) that recommended that reaction time and takeover time “did not necessarily 

provide a holistic view of whether drivers were prepared to resume manual control”, 

(Louw, 2017).  

In addition, using the rate of crashing may not be an adequate measure since the 

occurrence of crashes are rare in the literature of highly automated driving. Thus, 

researchers relied on minimum time to collision (minTTC) to assess near-crash 

scenarios (Happee et al., 2017). However, the minTTC lacks the depth of 

understanding the physical control of drivers, i.e., steering and braking. For example, 

a driver may rely on heavy braking to avoid a collision which endangers nearby 

vehicles but results in a high minTTC. This lack of depth in minTTC provoked 

researchers to find other performance measures that can define what a ‘good’ 

performance is. Most of the vehicle-related measures (see section 2.5) were an 
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attempt to define what a ‘good’ performance measure is. To do so, many studies used 

standard deviation, minimum or maximum values of vehicle-related measures such 

as the positioning of the vehicle or actuators’ positioning. Those approaches, 

unfortunately, lacked the continuity of safety outcome variables because they look for 

an anomaly (e.g., min or max) in continuous variables (e.g., steering) or look for mean 

or standard deviation of variables that don’t follow a normal distribution. 

Chapter 4 proposed PerSpeed and PerAngle to be the new performance measures that 

have several advantages over the existing performance measures. PerSpeed and 

PerAngle were more advantageous over the other surveyed measures in section 2.5 

because they provided a continuous safety outcome of the vehicle on both lateral and 

longitudinal positionings. This resolves the issue of looking for anomalies in 

continuous variables and provides a holistic understanding of driver’s physical 

control. PerSpeed and PerAngle could also be extended to all automated driving 

scenarios which nominate them to become the standard performance measures of 

assessing physical control of drivers in the transition. Finally, Chapter 4 identified a 

strong correlation between the proposed performance measures and the driver’s 

physiological behaviour which was in turn used to build predictive models of the 

driver’s performance in Chapter 5. Future work is required to compare various 

vehicle-related measures to PerSpeed and PerAngle to find their limitation and 

possibly merge them with other proposed techniques such as TOPS (Radlmayr et al., 

2019). 

7.4.4 Predictive Models of the Driver’s Performance 

The machine learning approach was the pillar in which the predictive models were 

built upon. The study investigated regression and classification to predict the driver’s 
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performance during the transition. The study used driver’s physiological measures 

collected before the transition as an input. Results showed the possibility of 

predicting driver’s response time, in addition, to classify them into low, medium or 

high-risk groups based on PerSpeed and PerAngle performance measures. 

Classification approach had higher accuracy than regression models. Feature based-

classifiers performed more effectively than time-series classifiers. Sliding windows 

and normalisation were crucial for the stability of the algorithms. The window size 

was one of the most important parameters to optimise into the data analysis.  

Simple feature generation was sufficient to predict performance measures. Though 

extensive feature generation enriched the knowledge exploration of the dataset 

nature and proved that frequency domain-based features boosted the information 

gain of the classifiers. Though, there was an average increase of 2-5% in the overall 

accuracy of predictive models that used the relevant feature set method in 

comparison to the models that used the simple feature generation method. A 

drawback to the relevant feature set method was the complexity of the method, the 

vast number of parameters that need to be tuned and finally the processing time. A 

deep learning approach should be used in the future should a large dataset be 

available. Out of all used classifiers, Random Forest classifier outperformed in 

predicting all the driver’s performance measures. This is a typical finding and aligns 

with other studies.  

7.5 Future Work 

The research has initiated the exploration of assessing the predictability of the 

driver’s performance using the driver’s physiological measures. Through the 

literature review, the study identified 9 different factors affecting the performance of 
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drivers as stated in section 2.3. The driver distraction was the only variable 

manipulated on the driving simulator study. The thesis has explored the 

delimitations of the study in section 3.5 and listed the other factors that need to be 

explored for future work. Future work needs to consider a 3x3 ANOVA analysis to 

assess the correlation between the order of takeovers and the NDR tasks. 

The feature analysis of this study identified several frequency-domain-based features 

that enriched the machine learning models. The understanding of those frequencies 

and their values were very limited. More research will be required to find an 

interpretation of different frequencies of the heart rate and pupil diameter and how 

they could possibly link to driver’s mental transitions or state. The literature has very 

limited resources on that matter, and future work is suggested here. 

Further work is required in building up and testing a dynamic human-machine 

interface that incorporated the prediction of the proposed models in Chapter 5. The 

suggested experiment should explore the effect of static and dynamic human-machine 

interfaces. The dynamic human-machine interface could alert drivers which are 

expected to perform poorly whenever the predictive models suggested a potential  

poor performance to alert drivers to get back in the loop.  

The limited resources of the academic study made it difficult to recruit a large number 

of participants. A suggestion for future work is to expand the data collection to a 

larger number of participants while considering other factors affecting the driver’s 

performance such as road or traffic conditions. Thus, deep learning approach could 

be applicable to be used. Finally, based on the findings of the study, the researcher 

suggests the exploration of other physiological methods such as head pose and heart 

rate variability.  
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7.6 Summary 

The research conducted in this study listed a set of factors affecting the driver’s 

performance in highly automated vehicles. The study proved that physiological 

measures were able to provide a better understanding of the driver’s mental state 

and provided an underdstanding to their subjective and objective measures of 

performance. Physiological measures were also valid features to predict the driver’s 

performance measures using feature-based machine learning models.    
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Appendix A: Details of the 

Experiment Design  

The experiment used the official scripting language of STISIM software. The 

following section include all the code used in the experiment. 

 

Figure 28: An illustration of the flow of the experiment. 

The code is structured as illustrated in Figure 28. The main experiment is run 

through one of the six files named ‘scenario_xx_yy_zz.EVT’, where xx, yy, and zz are 

the names of the NDR tasks. Each file consists of three segments. For example, 

‘Scenario_email_attention_tqt.EVT’ is a scenario file that requests drivers to check 

their emails at the first segment, pay attention to the road (control group) at the 

second segment and the TQT at the third segment.  

The Segment is a structured code to demonstrates the movement of vehicles on the 

three lanes the ego vehicle is moving. There are three different segments that are 

designed to allow the ego vehicle to be on three different lanes. Those files are named 

‘segmentX’ where X is 0, 1 or 2. Finally, the vehicles that flow on the opposite side of 

the road are coded on a file named ‘opposite0.PDE’.  

Each segment has three major events. The first event is an audio message to inform 

the driver that automation is starting. After few minutes, a message is played asking 
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the driver to engage in a secondary task. This could be of the tasks: email, TQT or 

‘pay attention to the road’. After approximately 7 minutes, a beep is played to inform 

the drivers that the automated system is disabled, and the vehicle is asking the driver 

to takeover. This routine is coded in a file called ‘takeover2.PDE’. Once the driver 

handles the vehicle to avoid the critical hazard, the driver enters the next segment 

repeating the same steps all over again.   

The Takeover process starts with adding a vehicle that slows down the nearby lane 

to allow a space for the driver to perform a safe manoeuvre. Then, a beep sound is 

played to signal that the automated system is disabled.  

The following tables include a copy of all code required to run the experiment on 

any STISIM-based driving simulator. 

 

Scenario_email_attention_tqt.EVT  

 

0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 
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15000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

 

Scenario_attention_tqt_email.EVT  

 

 

0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 

 

15000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

Scenario_email_attention_tqt.EVT  
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0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 

 

15000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

Scenario_emails_tqt_attention.EVT  

 

 

 

 

0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 
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4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 

 

15000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 

 

Scenario_tqt_attention_emails.EVT  

 

 

 

 

0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 
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-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 

 

15000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

 

Scenario_tqt_emails_attention.EVT  

 

 

0, Previously Defined Events, segment0.PDE 

60000, Previously Defined Events, segment1.PDE 

120000, Previously Defined Events, segment2.PDE 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\move_far_right_lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.WAV, 0, 

100 

6500, Play Recording, C:\STISIM3\Sound\center_wheel.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

-1, --------------------------------- audio messages  

 

100, Play Recording, C:\STISIM3\Sound\70_mph.wav, 0, 100 

 

15000, Play Recording, C:\STISIM3\Sound\tqt_tasks.wav, 0, 100 

 

70000, Play Recording, C:\STISIM3\Sound\emails.wav, 0, 100 

 

135000, Play Recording, C:\STISIM3\Sound\attention_road.wav, 0, 100 
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Takeover2.PDE  

 

-1, ----  lat where static onject should be at , lat where vehicle should start 

automation, sound instruction for moving to lane, sound instruction of 

automation start, lat where vehicle is located at 

 

 

100, Playback Marker 

500, Vehicles, 1000, @5, 90{0}, 1, F41, 1, 1, & 

1{15}, 2, 10{0], , , 6, & 

3000{20}, 2, -5{3}, , , 6 

 

700, Vehicles, 1000, @5, 90{0}, 1, F44, 1, 1, & 

1{15}, 2, 10{0], , , 6, & 

2600{20}, 2, -2{3}, , , 3, & 

3000{20}, 2, 150{0], , , 5 

 

 

3000, Play Recording, C:\STISIM3\Sound\beep.WAV, 2, 100, 7, 0 

-1, control vehicle 

3000, CV, , 0, @1 

3000, Begin Block Save, 1, 0.99, TakeOver, 1, 4, 5, 10, 11, 19, 23, 27, 28, 35, 36, 39 

 

3000, Vehicles, 700, @1, 0{0}, 1, T7, 1, 1, & 

3800{20}, 9, 0.5 

-1, 3000, Static Object,   700, @1, 0, 90, 0, 0, C:\STISIM3\Data\Vehicles\Trucks 

and SUVs\Chevy_Tracker_Purple.Mka 

-1, 3000, Collision Block, 700, @1, 30, 10,, 100 

 

-1, 4000, Play Recording, @3, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated_driving_starts.wav, 0, 100 

 

6500, LS, 50, 1000 

 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, End Block Save 

6500, CV, 102, 2, @2, 3 

6600, Play Recording, C:\STISIM3\Sound\center_wheel.wav , 0, 100 
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Scenario0.EVT  

 

0, Previously Defined Events, segment0.PDE 

 

-1, 0, Control Vehicle, 102, 2, -36{0}, 2 

-1, 100, Previously Defined Events, takeover2.PDE, -36{0}, -14{0}, 

C:\STISIM3\Sound\Move rt lane.wav, C:\STISIM3\Sound\automated.WAV, -

26{0} 

 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\Move rt lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -14{0}, 3 

 

 

0, Previously Defined Events, opposite.PDE 

 

Scenario1.EVT  

 

0, Previously Defined Events, segment1.PDE 

 

-1, 0, Control Vehicle, 102, 2, -36{0}, 2 

-1, 100, Previously Defined Events, takeover2.PDE, -36{0}, -14{0}, 

C:\STISIM3\Sound\Move rt lane.wav, C:\STISIM3\Sound\automated.WAV, -

26{0} 

 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\Move rt lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 
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4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -26{0}, 3 

 

Scenario2.EVT  

 

0, Previously Defined Events, segment2.PDE 

 

-1, 0, Control Vehicle, 102, 2, -36{0}, 2 

-1, 100, Previously Defined Events, takeover2.PDE, -36{0}, -14{0}, 

C:\STISIM3\Sound\Move rt lane.wav, C:\STISIM3\Sound\automated.WAV, -

26{0} 

 

 

 

-1 , -------------------------------- start automation at the beginning 

 

 

 

4000, Play Recording, C:\STISIM3\Sound\Move rt lane.wav, 0, 100 

 

5500, Play Recording, C:\STISIM3\Sound\automated.WAV, 0, 100 

 

6500, LS, 50, 1000 

6500, SIGN, 100, 1000, c:\arriva\arrivasigns\Speed_50.3ds, 1, 1, 0 

4500, SOBJ, 2000, -

60,0,90,0,0,C:\ARRIVA\Arrivasigns\gantry\NSL\Gantry_NSL_GIF.mesh 

 

6500, CV, 102, 2, -36{0}, 3 

 

 

 

Segement0.PDE  

 

 

 

-

takeovers******************************************************************

******************************************** 

-1, 0, Control Vehicle, 102, 2, -36{0}, 2 

-1, 100, Previously Defined Events, takeover2.PDE, -36{0}, -14{0}, 

C:\STISIM3\Sound\Move rt lane.wav, 

C:\STISIM3\Sound\automated_driving_starts.WAV, -26{0} 

 

51000, Previously Defined Events, takeover2.PDE, -14{0}, -26{0}, 

C:\STISIM3\Sound\Move rt lane.wav, 

C:\STISIM3\Sound\automated_driving_starts.WAV, -26{0} 
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-1, ----  lat where static object should be at , lat where vehicle should start 

automation, sound instruction for moving to lane, sound instruction of 

automation start, lat where stopping-vehicle is located at 

 

 

 

-straight 

sections********************************************************************

********************************** 

-1, 0, Roadway, 12, 6, 5, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 50, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-100, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 0, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 200, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

0, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 
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C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

12000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

24000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

36000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

42000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 
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-Curved 

sections********************************************************************

************************************ 

1300, Curve, 1200, 1200, 1000, 300, -0.0008 

9000, Curve, 1200, 600, 1000, 300, 0.0008 

15000, Curve, 1200, 600, 1000, 300, 0.0008 

20000, Curve, 1200, 1200, 1000, 300, 0.0008 

29000, Curve, 1200, 600, 1000, 300, -0.0008 

35000, Curve, 1200, 1200, 1000, 300, 0.0008 

45000, Curve, 1200, 1200, 1000, 300, 0.0008 

50000, Curve, 1200, 600, 1000, 300, -0.0008 

 

 

 

 

-hill sections up and back down 

 

-2000,  Hill, 150, 0.02 

3000,  Hill, 150, -0.02 

4000,  Hill, 150, -0.02 

5000,  Hill, 150, 0.02 

14000, Hill, 150, 0.02 

16000, Hill, 150, -0.02 

18000, Hill, 150, -0.02 

22000, Hill, 150, 0.02 

24000, Hill, 150, 0.02 

28000, Hill, 150, -0.02 

32000, Hill, 150, -0.02 

37000, Hill, 150, 0.02 

42000, Hill, 150, 0.02 

 

 

 

-Embankments 

 

 

-

Bridges********************************************************************

******************************************* 

 

6000, Previously Defined Events, 

C:\ARRIVA\ARRIVATRAINING\sessions\Motorwaybridge_start_conversion.pd

e 

 

 

 

 

 

-overhead 

gantrys********************************************************************

********************************* 

110, Speed Limit, 80, 50000 
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-

cars************************************************************************

************************************* 

 

-1 cars in same lane as driver 

 

 

-3lane motorway p1 = speed with * meaning your speed p2= distance away 

vechile appears p3=distance from median 

 

-1,  ------------------black caddilac vehicle in front of the ego lane----- 

0, Vehicles, 600, -14{0}, 0{3}, 1, T7, 0, 1, & 

54000{15}, 2, 120{0], , , 10 

 

 

1500, Vehicles, 1200, -26{0}, 115, 1, T18, 1, 1 

1800, Vehicles, 1200, -26{0}, 0{3}, 1, S9, 1, 18 

1900, Vehicles, 1200, -36{0}, 102{0}, 1, C15, 1, 1 

 

2400, Vehicles, 1200, -36{0}, 102{0}, 1, S46, 0, 1 

 

4000, Vehicles, 1200, -36{0}, 102{0}, 1, F40, 0, 1 

4500, Vehicles, 1200, -26{0}, 105, 1, F39, 1, 1 

 

8500, Vehicles, 1200, -26{0}, 112, 1, F39, 1, 1 

 

-1, 9000, Vehicles, 1200, -36{0}, 102{0}, 1, F4, 0, 1 

9500, Vehicles, 1200, -26{0}, 117, 1, T35, 1, 1 

 

-10200, Vehicles, 1200, -14{0}, 10{3}, 1, T15, 1, 1 

10900, Vehicles, 1200, -36{0}, 102{0}, 1, C6, 1, 1 

 

11400, Vehicles, 1200, -36{0}, 85{0}, 1, S46, 0, 1 

11500, Vehicles, 1200, -26{0}, 112{0}, 1, F39, 1, 1 

 

-12000, Vehicles, 1200, -14{0}, 10{3}, 1, T2, 0, 1 

12400, Vehicles, 1200, -36{0}, 90{0}, 1, S8, 0, 1 

 

-13000, Vehicles, 1200, -14{0}, 10{3}, 1, T22, 0, 1 

13800, Vehicles, 1200, -26{0}, 0{3}, 1, S39, 1, 1 

 

14000, Vehicles, 1200, -36{0}, 90{0}, 1, S14, 0, 1 

 

18300, Vehicles, 1200, -26{0}, 0{3}, 1, S23, 1, 1, & 

57000{15}, 2, 50{3], , , 10 

 

19200, Vehicles, 1200, -36{0}, 90{0}, 1, S6, 1, 1 

 

20700, Vehicles, 1200, -36{0}, 102{0}, 1, F21, 1, 1 

20800, Vehicles, 1200, -26{0}, 0{3}, 1, S16, 1, 1 
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21200, Vehicles, 1200, -36{0}, 102{0}, 1, C15, 1, 1 

 

22200, Vehicles, 1200, -36{0}, 98{0}, 1, F30, 0, 1 

22500, Vehicles, 1200, -26{0}, 112{0}, 1, T16, 1, 1, & 

54000{15}, 2, 30{3], , , 10  

 

 

-23200, Vehicles, 1200, -14{0}, 10{3}, 1, T15, 1, 1 

23300, Vehicles, 1200, -36{0}, 95{0}, 1, S6, 1, 1 

23800, Vehicles, 1200, -26{0}, 0{3}, 1, S4, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

24500, Vehicles, 1200, -26{0}, 15{3}, 1, T7, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

24700, Vehicles, 1200, -36{0}, 93{0}, 1, S6, 1, 1 

28000{15}, 2, -10{3], , , 10, & 

35000{15}, 2, 10{3], , , 10 

 

25800, Vehicles, 1200, -26{0}, 14{3}, 1, F26, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

25850, Vehicles, 1200, -36{0}, 90{3}, 1, C15, 1, 1, & 

30000{15}, 2, -10{3], , , 10, & 

40000{15}, 2, 10{3], , , 10, & 

54000{15}, 2, 120, , , 10 

 

26400, Vehicles, 1200, -36{0}, 90{0}, 1, S46, 0, 1 

-1, 26500, Vehicles, 1200, -26{0}, 102{0}, 1, F3, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

27000, Vehicles, 1200, -36{0}, 98{0}, 1, F7, 0, 1 

27800, Vehicles, 1200, -26{0}, 0{3}, 1, F4, 1, 1, & 

32000{15}, 2, -10{3], , , 4, & 

40000{15}, 2, 120{0], , , 10 

 

30500, Vehicles, 1200, -26{0}, 1{3}, 1, S51, 1, 1, & 

54000{15}, 2, 10{0], , , 10 

 

 

31600, Vehicles, 1200, -14{0}, 10{3}, 1, T15, 1, 1 

31900, Vehicles, 1200, -36{0}, 96{3}, 1, S23, 1, 1 

31700, Vehicles, 1200, -26{0}, -10{3}, 1, S10, 1, 1, & 

32000{15}, 2, 10{3], , , 10, & 

45000{15}, 2, 120{0], , , 10 

 

32400, Vehicles, 1200, -36{0}, 95{0}, 1, S46, 0, 1 

32500, Vehicles, 1200, -26{0}, 112{0}, 1, S53, 1, 1, & 

54000{15}, 2, 120{0], , , 6 

32800, Vehicles, 1200, -26{0}, 0{3}, 1, F30, 1, 1, & 

54000{15}, 2, 120{0], , , 10 
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32900, Vehicles, 1200, -36{0}, 90{0}, 1, S23, 1, 1 

 

33100, Vehicles, 1500, 26{0}, 112{0}, 1, T15, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

44450, Vehicles, 1500, 36{0}, 112{0}, 1, E9, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

44978, Vehicles, 1500, 26{0}, 112{0}, 1, F56, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

33600, Vehicles, 1200, -14{0}, 10{3}, 1, T15, 1, 1 

33900, Vehicles, 1200, -36{0}, 0{3}, 1, S9, 1, 1 

 

 

34500, Vehicles, 1200, -36{0}, 95{0}, 1, T26, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

35800, Vehicles, 1200, -36{0}, 90{0}, 1, F5, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

36800, Vehicles, 1200, -36{0}, 95{0}, 1, T23, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

37800, Vehicles, 1200, -36{0}, 98{0}, 1, F19, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

38800, Vehicles, 1200, -36{0}, 90{0}, 1, S48, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

40100, Vehicles, 1200, -36{0}, 100{0}, 1, S53, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

40400, Vehicles, 1200, -26{0}, 95{0}, 1, S5, 1, 1, & 

54000{15}, 2, 60{0], , , 10 

 

 

41100, Vehicles, 1200, -36{0}, 95{0}, 1, F43, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

42800, Vehicles, 1200, -36{0}, 95{0}, 1, F26, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

43100, Vehicles, 1200, -36{0}, 95{0}, 1, F22, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

43400, Vehicles, 1200, -36{0}, 95{0}, 1, F4, 1, 1, & 

56000{15}, 2, -20{3], , , 20 

 

 

-1 cars on opposite side of road, -------------------------------------------------------------- 

0, Previously Defined Events, opposite.PDE 

 

 

-1 crash 

barriers********************************************************************

************************************* 
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0, Barriers, 0, 0, 0{0}, 0{0}, 10000, 10 

50000, Barriers, 0, 0, 0{0}, 0{0}, 6000, 10 

 

-1,---------------------------------------------------------------------------------------------------------- 

 

 

-1 middle left facing 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

3000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

6000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

9000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

12000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

15000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

18000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

21000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

24000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

27000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

30000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

33000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

36000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

39000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

42000, Static Object, 0, -0.1{0}, 0, 0, *, *, 
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C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

45000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

48000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

51000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

 

 

 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

1000, Tree, 55, 0, *1~3, 80{0}, 100{0}, 2 

1000, Tree, 55, 0, *1~3, -80{0}, -100{0}, 2 

 

 

Segment1.PDE  

 

 

 

-

takeovers******************************************************************

******************************************** 

-1, 0, Control Vehicle, 102, 2, -36{0}, 2 

-1, 100, Previously Defined Events, takeover2.PDE, -36{0}, -14{0}, 

C:\STISIM3\Sound\Move rt lane.wav, 

C:\STISIM3\Sound\automated_driving_starts.WAV, -26{0} 

 

51000, Previously Defined Events, takeover2.PDE, -26{0}, -36{0}, 

C:\STISIM3\Sound\Move rt lane.wav, 

C:\STISIM3\Sound\automated_driving_starts.WAV, -36{0} 

 

-1, ----  lat where static object should be at , lat where vehicle should start 

automation, sound instruction for moving to lane, sound instruction of 

automation start, lat where stopping-vehicle is located at 

 

 

 

-straight 

sections********************************************************************

********************************** 

-1, 0, Roadway, 12, 6, 5, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 
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C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 50, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-100, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 0, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 200, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

0, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

12000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 
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C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

24000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

36000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

42000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

 

 

 

 

-Curved 

sections********************************************************************

************************************ 

1300, Curve, 1200, 1200, 1000, 300, -0.0008 

9000, Curve, 1200, 600, 1000, 300, 0.0008 

15000, Curve, 1200, 600, 1000, 300, 0.0008 

20000, Curve, 1200, 1200, 1000, 300, 0.0008 

29000, Curve, 1200, 600, 1000, 300, -0.0008 

35000, Curve, 1200, 1200, 1000, 300, 0.0008 

45000, Curve, 1200, 1200, 1000, 300, 0.0008 

50000, Curve, 1200, 600, 1000, 300, -0.0008 
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-hill sections up and back down 

 

-2000,  Hill, 150, 0.02 

3000,  Hill, 150, -0.02 

4000,  Hill, 150, -0.02 

5000,  Hill, 150, 0.02 

14000, Hill, 150, 0.02 

16000, Hill, 150, -0.02 

18000, Hill, 150, -0.02 

22000, Hill, 150, 0.02 

24000, Hill, 150, 0.02 

28000, Hill, 150, -0.02 

32000, Hill, 150, -0.02 

37000, Hill, 150, 0.02 

42000, Hill, 150, 0.02 

 

 

 

-Embankments 

 

 

-

Bridges********************************************************************

******************************************* 

 

6000, Previously Defined Events, 

C:\ARRIVA\ARRIVATRAINING\sessions\Motorwaybridge_start_conversion.pd

e 

 

 

 

 

 

-overhead 

gantrys********************************************************************

********************************* 

110, Speed Limit, 80, 50000 

 

 

-

cars************************************************************************

************************************* 

 

-1 cars in same lane as driver 

 

 

-3lane motorway p1 = speed with * meaning your speed p2= distance away 

vechile appears p3=distance from median 
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-1,  ------------------black caddilac vehicle in front of the ego lane----- 

0, Vehicles, 600, -26{0}, 0{3}, 1, T7, 0, 1, & 

54000{15}, 2, 120{0], , , 10 

 

 

1500, Vehicles, 1200, -14{0}, 115, 1, T18, 1, 1 

 

1800, Vehicles, 1200, -14{0}, 15{3}, 1, S9, 1, 18 

 

1900, Vehicles, 1200, -14{0}, 20{3}, 1, C15, 1, 1 

 

 

2400, Vehicles, 1200, -36{0}, 102{0}, 1, S46, 0, 1 

 

4000, Vehicles, 1200, -36{0}, 102{0}, 1, F40, 0, 1 

4500, Vehicles, 1200, -26{0}, 105, 1, F39, 1, 1 

 

8500, Vehicles, -600, -14{0}, 130, 1, F39, 1, 1 

 

-1, 9000, Vehicles, 1200, -36{0}, 102{0}, 1, F4, 0, 1 

9500, Vehicles, -600, -14{0}, 120, 1, T35, 1, 1 

 

-10200, Vehicles, 1200, -26{0}, 10{3}, 1, T15, 1, 1 

-1, 10900, Vehicles, 1200, -36{0}, 102{0}, 1, C6, 1, 1 

 

11500, Vehicles, -1200, -14{0}, 112{0}, 1, F39, 1, 1 

 

-12000, Vehicles, 1200, -26{0}, 10{3}, 1, T2, 0, 1 

12400, Vehicles, 1200, -36{0}, 90{0}, 1, S8, 0, 1 

 

-13000, Vehicles, 1200, -26{0}, 10{3}, 1, T22, 0, 1 

13800, Vehicles, -600, -14{0}, 20{3}, 1, S39, 1, 1 

 

14000, Vehicles, 1200, -36{0}, 90{0}, 1, S14, 0, 1 

 

18300, Vehicles, -600, -14{0}, 20{3}, 1, S23, 1, 1, & 

57000{15}, 2, 50{3], , , 10 

 

19200, Vehicles, 1200, -36{0}, 90{0}, 1, S6, 1, 1 

 

20800, Vehicles, -600, -14{0}, 20{3}, 1, S16, 1, 1 

 

-1, 21200, Vehicles, 1200, -36{0}, 102{0}, 1, C15, 1, 1 

 

22200, Vehicles, 1200, -36{0}, 98{0}, 1, F30, 0, 1 

22500, Vehicles, -600, -14{0}, 120{0}, 1, T16, 1, 1, & 

54000{15}, 2, 30{3], , , 10  

 

 

-23200, Vehicles, 1200, -26{0}, 10{3}, 1, T15, 1, 1 

23300, Vehicles, 1200, -36{0}, 95{0}, 1, S6, 1, 1 

23800, Vehicles, -600, -14{0}, 120{0}, 1, S4, 1, 1, & 
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54000{15}, 2, 30{3], , , 10 

 

24500, Vehicles, -600, -14{0}, 20{3}, 1, T7, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

24700, Vehicles, 1200, -36{0}, 93{0}, 1, S6, 1, 1 

28000{15}, 2, -10{3], , , 10, & 

35000{15}, 2, 10{3], , , 10 

 

25800, Vehicles, -600, -14{0}, 20{3}, 1, F26, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

-1, 25850, Vehicles, 1200, -36{0}, 90{3}, 1, C15, 1, 1, & 

30000{15}, 2, -10{3], , , 10, & 

40000{15}, 2, 10{3], , , 10, & 

54000{15}, 2, 120, , , 10 

 

26400, Vehicles, 1200, -36{0}, 90{0}, 1, S46, 0, 1 

-1, 26500, Vehicles, -600, -14{0}, 120{0}, 1, F3, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

27000, Vehicles, 1200, -36{0}, 98{0}, 1, F7, 0, 1 

27800, Vehicles, -600, -14{0}, 20{3}, 1, F4, 1, 1 

 

30500, Vehicles, -600, -14{0}, 20{3}, 1, S51, 1, 1 

 

 

-1, 31600, Vehicles, 1200, -26{0}, 10{3}, 1, T15, 1, 1 

31900, Vehicles, 1200, -36{0}, 96{3}, 1, S23, 1, 1 

31700, Vehicles, -600, -14{0}, 20{3}, 1, S10, 1, 1, & 

32000{15}, 2, 10{3], , , 10, & 

45000{15}, 2, 160{0], , , 10 

 

32400, Vehicles, 1200, -36{0}, 95{0}, 1, S46, 0, 1 

32500, Vehicles, -600, -14{0}, 120{0}, 1, S53, 1, 1, & 

54000{15}, 2, 120{0], , , 6 

32800, Vehicles, -600, -14{0}, 120{3}, 1, F30, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

32900, Vehicles, 1200, -36{0}, 90{0}, 1, S23, 1, 1 

 

33900, Vehicles, 1200, -36{0}, 0{3}, 1, S9, 1, 1, & 

54000{15}, 2, 150{0], , , 10 

 

34500, Vehicles, 1200, -36{0}, 95{0}, 1, T26, 1, 1, & 

54000{15}, 2, 150{0], , , 10 

 

35800, Vehicles, 1200, -36{0}, 90{0}, 1, F5, 1, 1, & 

54000{15}, 2, 150{0], , , 10 

 

36800, Vehicles, 1200, -36{0}, 95{0}, 1, T23, 1, 1, & 

54000{15}, 2, 150{0], , , 10 
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37800, Vehicles, 1200, -36{0}, 98{0}, 1, F19, 1, 1, & 

54000{15}, 2, 150{0], , , 10 

 

38800, Vehicles, 1200, -36{0}, 90{0}, 1, S48, 1, 1 

 

40100, Vehicles, 1200, -36{0}, 100{0}, 1, S53, 1, 1, & 

54000{15}, 2, 60{0], , , 10 

40400, Vehicles, -600, -14{0}, 120{0}, 1, S5, 1, 1 

 

 

41100, Vehicles, 1200, -36{0}, 95{0}, 1, F43, 1, 1, & 

54000{15}, 2, 60{0], , , 10 

42800, Vehicles, 1200, -36{0}, 95{0}, 1, F26, 1, 1, & 

54000{15}, 2, 60{0], , , 10 

 

43100, Vehicles, 1200, -36{0}, 95{0}, 1, F22, 1, 1, & 

54000{15}, 2, 60{0], , , 10 

43400, Vehicles, 1200, -36{0}, 95{0}, 1, F4, 1, 1, & 

56000{15}, 2, -20{3], , , 20 

 

 

-1 cars on opposite side of road, -------------------------------------------------------------- 

-1, 0, Previously Defined Events, opposite.PDE 

 

 

-1 crash 

barriers********************************************************************

************************************* 

 

-1,---------------------------------------------------------------------------------------------------------- 

 

 

-1 middle left facing 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

3000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

6000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

9000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

12000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

15000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 
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18000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

21000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

24000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

27000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

30000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

33000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

36000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

39000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

42000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

45000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

48000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

51000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

 

 

 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

1000, Tree, 55, 0, *1~3, 80{0}, 100{0}, 2 

1000, Tree, 55, 0, *1~3, -80{0}, -100{0}, 2 
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Segment2.PDE  

 

 

 

-

takeovers******************************************************************

******************************************** 

 

51000, Previously Defined Events, takeover2.PDE, -36{0}, -26{0}, 

C:\STISIM3\Sound\Move rt lane.wav, 

C:\STISIM3\Sound\automated_driving_starts.WAV, -26{0} 

 

-1, ----  lat where static object should be at , lat where vehicle should start 

automation, sound instruction for moving to lane, sound instruction of 

automation start, lat where stopping-vehicle is located at 

 

 

 

-straight 

sections********************************************************************

********************************** 

-1, 0, Roadway, 12, 6, 5, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 50, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-100, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 0, Roadway, 12, 6, 4, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\dirt02.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

-1, 200, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 
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C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

0, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

12000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

24000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

36000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

42000, Roadway, 12, 6, 3, 1, 0.7, 6.5, 13, 0.33, 0.33, 100, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 12, 
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C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 4, 

C:\STISIM3\Data\Textures\Road03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 0, 100, 

C:\STISIM3\Data\Textures\Grass03.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 

C:\STISIM3\Data\Textures\grass08.Jpg, 255/255/255, 12, 0, 12, 

C:\arriva\gif_files\SteveMedianl.gif, , 10, 0 

 

 

 

 

-Curved 

sections********************************************************************

************************************ 

1300, Curve, 1200, 1200, 1000, 300, -0.0008 

9000, Curve, 1200, 600, 1000, 300, 0.0008 

15000, Curve, 1200, 600, 1000, 300, 0.0008 

20000, Curve, 1200, 1200, 1000, 300, 0.0008 

29000, Curve, 1200, 600, 1000, 300, -0.0008 

35000, Curve, 1200, 1200, 1000, 300, 0.0008 

45000, Curve, 1200, 1200, 1000, 300, 0.0008 

50000, Curve, 1200, 600, 1000, 300, -0.0008 

 

 

 

 

-hill sections up and back down 

 

-2000,  Hill, 150, 0.02 

3000,  Hill, 150, -0.02 

4000,  Hill, 150, -0.02 

5000,  Hill, 150, 0.02 

14000, Hill, 150, 0.02 

16000, Hill, 150, -0.02 

18000, Hill, 150, -0.02 

22000, Hill, 150, 0.02 

24000, Hill, 150, 0.02 

28000, Hill, 150, -0.02 

32000, Hill, 150, -0.02 

37000, Hill, 150, 0.02 

42000, Hill, 150, 0.02 

 

 

 

-Embankments 

 

 

-

Bridges********************************************************************

******************************************* 

 

6000, Previously Defined Events, 
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C:\ARRIVA\ARRIVATRAINING\sessions\Motorwaybridge_start_conversion.pd

e 

 

 

 

 

 

-overhead 

gantrys********************************************************************

********************************* 

110, Speed Limit, 70, 50000 

 

 

-

cars************************************************************************

************************************* 

 

-1 cars in same lane as driver 

 

 

-3lane motorway p1 = speed with * meaning your speed p2= distance away 

vechile appears p3=distance from median 

 

 

-1,  ------------------black caddilac vehicle in front of the ego lane----- 

0, Vehicles, 600, -36{0}, 0{3}, 1, T7, 0, 1, & 

54000{15}, 2, 120{0], , , 10 

 

 

1000, Vehicles, 1200, -14{0}, 15{3}, 1, S7, 1, 1 

1200, Vehicles, 1200, -14{0}, 15{3}, 1, F37, 1, 1 

1300, Vehicles, 1200, -14{0}, 15{3}, 1, S16, 1, 1 

1400, Vehicles, -600, -14{0}, 25{3}, 1, S9, 1, 1 

 

 

1500, Vehicles, 1200, -26{0}, -5{3}, 1, T18, 1, 1 

1500, Vehicles, -600, -14{0}, 20{3}, 1, S46, 1, 1 

 

1600, Vehicles, -600, -14{0}, 20{3}, 1, T35, 1, 1 

 

1800, Vehicles, 1200, -26{0}, -5{3}, 1, S9, 1, 18 

1800, Vehicles, 1200, -14{0}, 15{3}, 1, S9, 1, 18 

 

1900, Vehicles, 1200, -14{0}, 20{3}, 1, C15, 1, 1 

 

 

4500, Vehicles, 1200, -26{0}, -5{3}, 1, F39, 1, 1 

 

8500, Vehicles, 1200, -26{0}, -2{3}, 1, F39, 1, 1 

8500, Vehicles, -600, -14{0}, 130, 1, F37, 1, 1 
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9500, Vehicles, 1200, -26{0}, -1{3}, 1, T35, 1, 1 

9500, Vehicles, -600, -14{0}, 120, 1, S8, 1, 1 

 

-10200, Vehicles, 1200, -14{0}, 15{3}, 1, T15, 1, 1 

 

11500, Vehicles, 1200, -26{0}, 105{0}, 1, F39, 1, 1 

11500, Vehicles, -1200, -14{0}, 120{0}, 1, S9, 1, 1 

 

 

 

13800, Vehicles, 1200, -26{0}, 0{3}, 1, S39, 1, 1 

13800, Vehicles, -600, -14{0}, 20{3}, 1, S6, 1, 1 

 

 

18300, Vehicles, 1200, -26{0}, 0{3}, 1, S23, 1, 1, & 

57000{15}, 2, 50{3], , , 10 

18300, Vehicles, -600, -14{0}, 20{3}, 1, T35, 1, 1 

 

20800, Vehicles, 1200, -26{0}, 0{3}, 1, S16, 1, 1 

20800, Vehicles, -600, -14{0}, 20{3}, 1, T7, 1, 1 

 

22500, Vehicles, 1200, -26{0}, 112{0}, 1, T16, 1, 1, & 

54000{15}, 2, 30{3], , , 10  

22500, Vehicles, -600, -14{0}, 120{0}, 1, S6, 1, 1 

 

 

23800, Vehicles, 1200, -26{0}, 0{3}, 1, S4, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

23800, Vehicles, -600, -14{0}, 120{0}, 1, F30, 1, 1 

 

24500, Vehicles, 1200, -26{0}, 15{3}, 1, T7, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

24500, Vehicles, -600, -14{0}, 20{3}, 1, T16, 1, 1 

 

 

25800, Vehicles, 1200, -26{0}, 10{3}, 1, F26, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

25800, Vehicles, -600, -14{0}, 20{3}, 1, T7, 1, 1 

 

 

-1, 26500, Vehicles, 1200, -26{0}, 102{0}, 1, F3, 1, 1, & 

54000{15}, 2, 30{3], , , 10 

 

27800, Vehicles, 1200, -26{0}, 5{3}, 1, F4, 1, 1, & 

32000{15}, 2, -10{3], , , 4, & 

40000{15}, 2, 120{0], , , 10 

27800, Vehicles, -600, -14{0}, 20{3}, 1, E9, 1, 1 

 

30500, Vehicles, -600, -14{0}, 20{3}, 1, F26, 1, 1 

30500, Vehicles, 1200, -26{0}, 5{3}, 1, S51, 1, 1 
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31700, Vehicles, -600, -14{0}, 20{3}, 1, F56, 1, 1 

31700, Vehicles, 1200, -26{0}, -10{3}, 1, S10, 1, 1 

 

32500, Vehicles, -600, -14{0}, 120{0}, 1, S5, 1, 1 

32500, Vehicles, 1200, -26{0}, 112{0}, 1, S53, 1, 1 

 

32800, Vehicles, -600, -14{0}, 120{3}, 1, S9, 1, 1 

32800, Vehicles, 1200, -26{0}, 7{3}, 1, F30, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

33100, Vehicles, 1500, 26{0}, 112{0}, 1, T15, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

44978, Vehicles, 1500, 26{0}, 112{0}, 1, F56, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

 

 

 

40100, Vehicles, -600, -14{0}, 120{0}, 1, F4, 1, 1 

40400, Vehicles, 1200, -26{0}, 95{0}, 1, S5, 1, 1, & 

54000{15}, 2, 120{0], , , 10 

 

 

 

 

-1 cars on opposite side of road, -------------------------------------------------------------- 

-1, 0, Previously Defined Events, opposite.PDE 

 

 

-1 crash 

barriers********************************************************************

************************************* 

 

 

-1,---------------------------------------------------------------------------------------------------------- 

 

 

-1 middle left facing 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

3000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

6000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

9000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

12000, Static Object, 0, -0.1{0}, 0, 0, *, *, 
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C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

15000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

18000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

21000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

24000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

27000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

30000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

33000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

36000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

39000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

42000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

45000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

48000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

51000, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

 

 

 

 

0, Static Object, 0, -0.1{0}, 0, 0, *, *, 

C:\Bosch\Projects\vico_2\autobahn\objects\buildings\leitplanke5.3DS, 3500, 

10 

1000, Tree, 55, 0, *1~3, 80{0}, 100{0}, 2 

1000, Tree, 55, 0, *1~3, -80{0}, -100{0}, 2 
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Opposite.PDE  

 

 

60, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

113, Vehicles, 1500, 14{0}, 120{0}, 3, S43, 1, 1 

158, Vehicles, 1500, 14{0}, 120{0}, 3, T30, 1, 1 

322, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

650, Vehicles, 1500, 36{0}, 120{0}, 3, T10, 1, 1 

814, Vehicles, 1500, 26{0}, 120{0}, 3, T29, 1, 1 

978, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

 

1600, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

1900, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

2100, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

2500, Vehicles, 1500, 26{0}, 120{0}, 3, T10, 1, 1 

2900, Vehicles, 1500, 36{0}, 120{0}, 3, T22, 1, 1 

 

4000, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

4900, Vehicles, 1500, 36{0}, 120{0}, 3, T22, 1, 1 

 

 

5200, Vehicles, 1500,  26{0}, 120{0}, 3, C16, 1, 1 

5230, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

5450, Vehicles, 1500, 26{0}, 120{0}, 3, C1, 1, 1 

5600, Vehicles, 1500, 36{0}, 120{0}, 3, C15, 1, 1 

5714, Vehicles, 1500, 26{0}, 120{0}, 3, S9, 1, 1 

5978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

6060, Vehicles, 1500,  26{0}, 120{0}, 3, T30, 1, 1 

6113, Vehicles, 1500, 36{0}, 120{0}, 3, C1, 1, 1 

6322, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

6650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

6978, Vehicles, 1500, 26{0}, 120{0}, 3, T30, 1, 1 

 

7060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

7113, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

7158, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

7322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

7650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

7978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

8060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

8113, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

8158, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

8322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

8650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

8978, Vehicles, 1500, 26{0}, 120{0}, 3, S9, 1, 1 

 

9000, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

9213, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 
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9322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

9700, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

9978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

10010, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

10213, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

10502, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

10600, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

10931, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

11060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

11113, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

11322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

11650, Vehicles, 1500, 36{0}, 120{0}, 3, S35, 1, 1 

11978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

12060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

12158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

12322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

12650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

12978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

13060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

13158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

13322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

13650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

13978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

14060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

14158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

14322, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

14650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

14978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

15060, Vehicles, 1500,  26{0}, 120{0}, 3, T2, 1, 1 

15158, Vehicles, 1500, 36{0}, 120{0}, 3, T7, 1, 1 

15322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

15650, Vehicles, 1500, 36{0}, 120{0}, 3, T29, 1, 1 

15978, Vehicles, 1500, 26{0}, 120{0}, 3, C15, 1, 1 

 

 

16060, Vehicles, 1500,  26{0}, 120{0}, 3, C16, 1, 1 

16158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

16322, Vehicles, 1500, 26{0}, 120{0}, 3, S52, 1, 1 

16650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

16978, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 
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17060, Vehicles, 1500,  26{0}, 120{0}, 3, S43, 1, 1 

17158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

17322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

17650, Vehicles, 1500, 36{0}, 120{0}, 3, S41, 1, 1 

17978, Vehicles, 1500, 26{0}, 120{0}, 3, F4, 1, 1 

 

 

18060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

18158, Vehicles, 1500, 36{0}, 120{0}, 3, T18, 1, 1 

18322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

18650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

18978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

19060, Vehicles, 1500,  26{0}, 120{0}, 3, F39, 1, 1 

19158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

19322, Vehicles, 1500, 26{0}, 120{0}, 3, T19, 1, 1 

19650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

19978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

20060, Vehicles, 1500,  26{0}, 120{0}, 3, F8, 1, 1 

20158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

20322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

20650, Vehicles, 1500, 36{0}, 120{0}, 3, S44, 1, 1 

20978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

21200, Vehicles, 1500,  26{0}, 120{0}, 3, T22, 1, 1 

21400, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

21450, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

21600, Vehicles, 1500, 36{0}, 120{0}, 3, S9, 1, 1 

21978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

 

22060, Vehicles, 1500,  26{0}, 120{0}, 3, S43, 1, 1 

22158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

22322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

22650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

22978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

23060, Vehicles, 1500,  26{0}, 120{0}, 3, C1, 1, 1 

23158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

23322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

23650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

23978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

24060, Vehicles, 1500,  26{0}, 120{0}, 3, T15, 1, 1 



 

261 
 

24158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

24322, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

24650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

24978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

25060, Vehicles, 1500,  26{0}, 120{0}, 3, T22, 1, 1 

25158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

25322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

25650, Vehicles, 1500, 36{0}, 120{0}, 3, T29, 1, 1 

25978, Vehicles, 1500, 26{0}, 120{0}, 3, C15, 1, 1 

 

 

25060, Vehicles, 1500,  26{0}, 120{0}, 3, T29, 1, 1 

26158, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

26322, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

26650, Vehicles, 1500, 36{0}, 120{0}, 3, T10, 1, 1 

26978, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

 

27700, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

27900, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

27100, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

27600, Vehicles, 1500, 26{0}, 120{0}, 3, F4, 1, 1 

27900, Vehicles, 1500, 36{0}, 120{0}, 3, T22, 1, 1 

 

28000, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

28900, Vehicles, 1500, 36{0}, 120{0}, 3, T22, 1, 1 

 

 

29200, Vehicles, 1500,  26{0}, 120{0}, 3, C16, 1, 1 

29400, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

29450, Vehicles, 1500, 26{0}, 120{0}, 3, C1, 1, 1 

29600, Vehicles, 1500, 36{0}, 120{0}, 3, C15, 1, 1 

29978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

30060, Vehicles, 1500,  26{0}, 120{0}, 3, T30, 1, 1 

30113, Vehicles, 1500, 36{0}, 120{0}, 3, C1, 1, 1 

30322, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

30650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

30978, Vehicles, 1500, 26{0}, 120{0}, 3, T30, 1, 1 

 

31060, Vehicles, 1500,  26{0}, 120{0}, 3, C1, 1, 1 

31322, Vehicles, 1500, 26{0}, 120{0}, 3, F4, 1, 1 

31650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

31978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

32060, Vehicles, 1500,  26{0}, 120{0}, 3, S9, 1, 1 

32158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

32322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

32650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 
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32978, Vehicles, 1500, 26{0}, 120{0}, 3, S9, 1, 1 

 

33000, Vehicles, 1500,  26{0}, 120{0}, 3, T30, 1, 1 

33213, Vehicles, 1500, 36{0}, 120{0}, 3, T10, 1, 1 

33322, Vehicles, 1500, 26{0}, 120{0}, 3, S9, 1, 1 

33978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

34010, Vehicles, 1500,  26{0}, 120{0}, 3, F39, 1, 1 

34458, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

34502, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

34931, Vehicles, 1500, 26{0}, 120{0}, 3, F45, 1, 1 

 

 

35000, Vehicles, 1500,  26{0}, 120{0}, 3, S43, 1, 1 

35322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

35700, Vehicles, 1500, 36{0}, 120{0}, 3, T10, 1, 1 

35978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

36010, Vehicles, 1500,  26{0}, 120{0}, 3, T30, 1, 1 

36512, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

36600, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

36931, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

37000, Vehicles, 1500,  26{0}, 120{0}, 3, E1, 1, 1 

37322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

37700, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

37978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

38060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

38158, Vehicles, 1500, 36{0}, 120{0}, 3, T18, 1, 1 

38322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

38650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

38978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

39060, Vehicles, 1500,  26{0}, 120{0}, 3, F39, 1, 1 

39158, Vehicles, 1500, 36{0}, 120{0}, 3, E2, 1, 1 

39650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

39978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

40060, Vehicles, 1500,  26{0}, 120{0}, 3, F8, 1, 1 

40158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

40322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

40650, Vehicles, 1500, 36{0}, 120{0}, 3, S44, 1, 1 

40978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

41200, Vehicles, 1500,  26{0}, 120{0}, 3, F21, 1, 1 

41400, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

41450, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 
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41600, Vehicles, 1500, 36{0}, 120{0}, 3, F19, 1, 1 

41978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

42060, Vehicles, 1500,  26{0}, 120{0}, 3, F31, 1, 1 

42158, Vehicles, 1500, 36{0}, 120{0}, 3, F42, 1, 1 

42650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

42978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

43060, Vehicles, 1500,  26{0}, 120{0}, 3, C1, 1, 1 

43158, Vehicles, 1500, 36{0}, 120{0}, 3, S34, 1, 1 

43322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

43650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

43978, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

 

 

44060, Vehicles, 1500,  26{0}, 120{0}, 3, F22, 1, 1 

44158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

44322, Vehicles, 1500, 26{0}, 120{0}, 3, T15, 1, 1 

44650, Vehicles, 1500, 36{0}, 120{0}, 3, E9, 1, 1 

44978, Vehicles, 1500, 26{0}, 120{0}, 3, F56, 1, 1 

 

 

45060, Vehicles, 1500,  26{0}, 120{0}, 3, T22, 1, 1 

45158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

45322, Vehicles, 1500, 26{0}, 120{0}, 3, F7, 1, 1 

45650, Vehicles, 1500, 36{0}, 120{0}, 3, T29, 1, 1 

45978, Vehicles, 1500, 26{0}, 120{0}, 3, C15, 1, 1 

 

 

46060, Vehicles, 1500,  26{0}, 120{0}, 3, T29, 1, 1 

46158, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

46322, Vehicles, 1500, 26{0}, 120{0}, 3, S46, 1, 1 

46650, Vehicles, 1500, 36{0}, 120{0}, 3, F9, 1, 1 

46978, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

 

47700, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

47900, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

47100, Vehicles, 1500, 36{0}, 120{0}, 3, T30, 1, 1 

47600, Vehicles, 1500, 26{0}, 120{0}, 3, F55, 1, 1 

47900, Vehicles, 1500, 36{0}, 120{0}, 3, F8, 1, 1 

 

 

48060, Vehicles, 1500,  26{0}, 120{0}, 3, T10, 1, 1 

48158, Vehicles, 1500, 36{0}, 120{0}, 3, T18, 1, 1 

48322, Vehicles, 1500, 26{0}, 120{0}, 3, F39, 1, 1 

48650, Vehicles, 1500, 36{0}, 120{0}, 3, S43, 1, 1 

48978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

49060, Vehicles, 1500,  26{0}, 120{0}, 3, F39, 1, 1 
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49158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

49322, Vehicles, 1500, 26{0}, 120{0}, 3, F38, 1, 1 

49978, Vehicles, 1500, 26{0}, 120{0}, 3, F8, 1, 1 

 

 

50060, Vehicles, 1500,  26{0}, 120{0}, 3, F8, 1, 1 

50158, Vehicles, 1500, 36{0}, 120{0}, 3, S46, 1, 1 

50322, Vehicles, 1500, 26{0}, 120{0}, 3, F41, 1, 1 

50650, Vehicles, 1500, 36{0}, 120{0}, 3, S44, 1, 1 

50978, Vehicles, 1500, 26{0}, 120{0}, 3, F3, 1, 1 
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Appendix B: Demographics 

Survey 
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Appendix C: Consent Form and 

Information Sheet 

Consent Form 

 

How physiological behaviour of drivers correlates with their 

responses during takeover scenarios in highly automated 

driving 
 

INFORMED CONSENT FORM  
 
Taking Part Please 
initial box 

 
The purpose and details of this study have been explained to me.  I understand that 
this study is designed to further scientific knowledge and that all procedures have been 
approved by the Loughborough University Ethics Approvals (Human Participants) Sub-
Committee. 
  
I have read and understood the information sheet and this consent form. 
  

I have had an opportunity to ask questions about my participation.  
  
I understand that I am under no obligation to take part in the study, have the right to 
withdraw from this study at any stage for any reason, and will not be required to 
explain my reasons for withdrawing. 
  
I agree to take part in this study. Taking part in the project will include being recorded 
(video); heart rate and eye movement data are collected. 
 

Use of Information 

 

I understand that all the personal information I provide will be treated in strict 

confidence and will be kept anonymous and confidential to the researchers unless 

(under the statutory obligations of the agencies which the researchers are working with), 

it is judged that confidentiality will have to be breached for the safety of the participant 

or others or for audit by regulatory authorities.  

  
I understand that anonymised quotes may be used in publications, reports, web pages, 
and other research outputs. Video data will be strictly confidential and will be deleted 
by the end of the project. 
  
I agree for the data I provide will be completely anonymous and shared publicly for other 

researchers. Video data will not be included in the shared data. 
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I agree to assign the copyright I hold in any materials related to this project to Mohamed 

Taher Alrefaie, the investigator of the experiment. 

 
Collected Data  
  
I agree to get my hear rate, eye movement and to be video recorded during the 
experiment. 
 
 
  
 

________________________ _____________________ ________  
Name of participant [printed] Signature              Date 

 
__________________________ _______________________ _________  

Researcher  [printed] Signature                 Date 

 

 
Information Sheet 

 

How physiological behaviour of drivers correlate with their 

responses during takeover scenarios in highly automated 

driving  

 
INFORMATION SHEET 

 

Investigators Details: 

 

Mohamed Taher Alrefaie 

 m.t.a.alrefaie@lboro.ac.uk 

01509 223393 

The School of Business and Economics, Loughborough LE11 3TU 

 

Steve Summerskill 

S.J.Summerskill2@lboro.ac.uk 

01509222222 

Loughborough Design School, Loughborough, LE11 3GR  

 

Tom Jackson, 

t.w.jackson@lboro.ac.uk 

01509 223393 

The School of Business and Economics, Loughborough LE11 3TU 

 

Invitation 

 
We would like to invite you to take part in our study. Before you decide we would like you to 

understand why the research is being done and what it would involve for you. One of our team will 

go through the information sheet with you and answer any questions you have. Talk to others about 

the study before making a decision if you wish. 
 

What is the purpose of the study? 

 

Fully autonomous vehicles will be a reality in 10-15 years. Until then, most vehicles will eventually 

require human intervention due to a system limitation or failure. But humans will be busy doing 

other activities such as reading, eating or checking their phone. These tasks cause a high mental 

 

 

mailto:m.t.a.alrefaie@lboro.ac.uk
javascript:void(0)
mailto:S.J.Summerskill2@lboro.ac.uk
tel:+441509222222
mailto:t.w.jackson@lboro.ac.uk
javascript:void(0)
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workload and when vehicles requests a takeover, the driver may not be ready and hence will make 

a poor decision. In this study, we want to explore whether we can predict how good the human 

decision will be based on their eye movement, heart rate and their body posture right before a 

takeover is requested. 

 

Who is doing this research and why? 

 

Mohamed Taher Alrefaie will be the experimenter and main investigator of the experiment. He’s 

a PhD student at Loughborough University and supervised by Tom Jackson and Steve 

Summerskill. The study is Part of Mohamed’s PhD thesis. 

 

Are there any exclusion criteria? 

 

Participants who are below 18 or above 30 are excluded from this study. Also, participants with 

less than 2 years of driving experience are excluded. 

 

What will I be asked to do? 

 

You will be asked to come to Vehicles lab at Loughborough Design School. The experiment will 

last for a maximum of 90 minutes. You will be introduced to the experiment and equipment used. 

You will use a driving simulator to simulate driving and get used to it. The practice session will 

last for 20 minutes. Then, when ready the main experiment will start. 

 

You will be asked to put on Tobii eyeglasses and Polar H7 heart rate monitor. Tobii Glasses use 

infrared to track eye movement and pupil size. There is a camera in front of Tobii Glasses to 

track what you see during the experiment. Polar H7 is a chest belt that tracks heart rate. These are 

two commercial products and are safe to use.  

 

 

 
 

 

When the experiment starts, you will be asked to drive the car manually for a short period of 

time. The car will switch to automated mode. You may be asked to perform secondary tasks that 

simulate mental workload. These tasks include watching a video, reading news article, playing 20 

questions task to guess an animal or writing an email. The chosen video will be in a general topic 

and won’t require any prior knowledge. The news article will be in general business topics and 

should be easy to understand with no prior knowledge to the topic. 

 

There will be four takeover requests that you need to handle. The automated system will 

encounter a problem in the road it cannot handle and will start a beep to alert you. After hearing 
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the beep, you must look towards the road, understand the problem and take full driving control to 

handle the situation. 

 

 

Once I take part, can I change my mind? 

 

Yes.  After you have read this information and asked any questions you may have if you are 

happy to participate we will ask you to complete an Informed Consent Form, however if at any 

time, before, during or after the sessions you wish to withdraw from the study please just contact 

the main investigator.  You can withdraw at any time, for any reason and you will not be asked to 

explain your reasons for withdrawing. 

 

However, once the results of the study are aggregated/published/dissertation has been submitted 

(expected to be by December 2018), it will not be possible to withdraw your individual data from 

the research. 

 

Will I be required to attend any sessions and where will these be? 

 

You will be required to be physically present in Vehicles Lab 0.16 at Loughborough Design 

School for up to 90 minutes. 

 

How long will it take? 

 

The experiment will take up to 90 minutes. 

 

What personal information will be required from me? 

 

We will ask for your name, gender, age, years of driving experience, car you usually drive, 

whether you used Adaptive Cruise Control (ACC) or not. 

 

Are there any disadvantages or risks in participating? 

 

The only major risk identified in this experiment is the high mental workload that may cause 

stress for few seconds. The experiment is done inside a driving simulator that is safe to use.  

 

Will my taking part in this study be kept confidential? 

 

You will be assigned an ID at the start of the experiment. Your name and ID will be kept in a 

separate file throughout the experiment and your name will not be included in any data 

processing.  

 

On a separate file, your ID and your demographic information in addition to collected data 

(through devices) will be stored. This file will be processed and may be shared publicly on the 

internet. 

 

Your video recording will NOT be shared with anyone beside the investigator (Mohamed Taher 

Alrefaie) of the study, his supervisors (Steve Summerskill, Tom Jackson), internal or external 

reviewers of the PhD study if needed. Once the study is over (expected December, 2018), video 

data will be deleted permanently.  

 

Your data will be stored on the investigator’s laptop or devices where he needs to conduct his 

study and research on throughout the duration of the study. These devices will be secured by a 

password and kept away from others. 

 

 

I have some more questions; who should I contact? 

You can ask the main investigator directly. If he doesn’t answer or is unclear, please contact his 

supervisors. 

 

What will happen to the results of the study? 
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Your results will be securely stored on a laptop, anonymised and processed. Some of these 

anonymous data will be shared publicly with other researchers.  

 

The results will be published in the investigator’s PhD thesis, conference papers or journal papers 

as well.  

 

Anonymous data along with results will be publicly shared in a public repository for other 

researchers to work on. 

 

What if I am not happy with how the research was conducted? 

 

If you are not happy with how the research was conducted, please contact Ms Jackie Green, the 

Secretary for the University’s Ethics Approvals (Human Participants) Sub-Committee: 

 

Ms J Green, Research Office, Hazlerigg Building, Loughborough University, Epinal Way, 

Loughborough, LE11 3TU.  Tel: 01509 222423.  Email: J.A.Green@lboro.ac.uk 

 

The University also has a policy relating to Research Misconduct and Whistle Blowing which is 

available online at http://www.lboro.ac.uk/committees/ethics-approvals-human-

participants/additionalinformation/codesofpractice/ .  

 

Is there anything I need to do before the sessions? 

 

It’s a driving experiment so please be prepared for a driving session. That means you should be 

fully awake, not tired, not under the influence of alcohol or drugs. 

 

What are the possible benefits of participating? 

 

You will have a good opportunity to experience driving future cars, see how your heart rate 

changes whilst driving and help researchers make future cars safer and easier to use. 

mailto:J.A.Green@lboro.ac.uk
http://www.lboro.ac.uk/committees/ethics-approvals-human-participants/additionalinformation/codesofpractice/
http://www.lboro.ac.uk/committees/ethics-approvals-human-participants/additionalinformation/codesofpractice/
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