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 Crude oil drops are passed through a slotted pore membrane, with, and without 

oscillating the membrane.  

 

 Higher mass of crude oil in the permeate is obtained at higher flux rates. 

 

 

 Permeate size distribution of crude oil drops is predicted based on ‘linear fit’ 

approach.  
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ABSTRACT  

Permeate size distribution of various crude oil drops with, and without, oscillating the 

membrane has been predicted using the ‘Linear Fit’ approach. Drops pass through the 

membrane due to drag force created by the flow of fluid around the drops. Static force is 

the force responsible for the rejection of drops through the membrane and is directly 

proportional to the interfacial tension between dispersed and continuous phases. 

Without applied shear, 100% cut-off of drops though the membrane is assumed when 

the drag force and the static force balances each other.   With the applied shear, 100% 

cut-off of drops through the membrane is when drops moves away from the membrane 

surface due to migration velocities and do not pass the membrane into the permeate. 

*Manuscript
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Extrapolating 100% cut-off to the origin of the rejection graphs gives a straight line that 

is referred as ‘Linear Fit’ and can be used for predicting rejection below 100% cut-off. 

Linear fit can be used for predicting drop rejection below 100% cut-off. The portion of 

oil that would not be rejected by the membrane and would pass through the membrane 

into the permeate can be calculated using this approach. For a given size of drops in a 

feed suspension, permeate size distribution can be predicted by multiplying the fraction 

of oil passing through the membrane and the feed size distribution data. Overall 

concentration of oil in the permeate can be calculated by knowing size distribution of 

drops in the permeate, and that provides an idea whether the concentration of oil in the 

permeate is below the standard set by international regulatory authorities.  

KEYWORDS: Permeate size distribution prediction, Slotted pore membranes, 

Deforming drops, Microfiltration.  

1. INTRODUCTION  

Oil in water is associated with many environmental problems and needs to be separated 

efficiently. It is a threat for life in water and the concentration of oil in the sea water is 

limited to 30 mg l-1 or below [1]. Initially, hydrocyclones were used as primary 

separators, but the separations targets for drops below 40 µm were not achieved and 

the process was expensive [2-4].   

In recent years, membrane separation technology has attracted researchers for 

oil/water separation [5]. Ultrafiltration is useful with low oil content, but a lower 

permeate flux rate was achieved, normally lower than 100 l m-2 hr-1; which is too low to 

be commercially attractive for offshore operations [6, 7]. Microfiltration is an efficient 
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process for oil/water separation with drops below 10 µm and due to several advantages 

like: low space requirement, high permeate flux and high permeate quality; 

microfiltration is distinct from conventional separation methods [8-12]. Surface 

microfiltration is found effective than depth microfiltration because the membrane used 

in surface microfiltration can be cleaned easily after the process [13]. Pore structure 

design has attracted researchers and circular pore membranes with surface filtration 

filters are found efficient in oil/water separation [13]. Slotted pore membranes were 

found less foulent and higher permeate flux and better separation of filtering material 

were achieved specially with deforming oil drops as compared to circular pore 

membranes [14-19].   

Shear rate over the membrane surface is provided at higher fluid velocity in crossflow 

microfiltration that reduced fouling of the membrane [11]. Crossflow microfiltration is 

very expensive and more energy is required for pumping the fluid again and again into 

the system [20, 21]. Shear enhanced dynamic microfiltration is an alternative to 

crossflow microfiltration, in which shear is produced due to vibrating/rotating the 

membrane and the process is more economical [21]. Four times lower trans-membrane 

pressure is observed by vibrating the membrane with 21 Hz during filtration of 

deforming oil drops [17, 18]. Similarly, vibrating the membrane increased separation 

efficiency of crude oil drops from water and separation increased linearly with 

increasing vibrating frequency of the used membrane [19].    

Overall oil concentration in the permeate is an important factor and it has to be below 

the standard set by international regulation authorities for oil content in water if the 

permeate is discharge into sea waters.  Predicting size distraction in the permeate 

provide an opportunity to calculate overall oil concentration in the permeate at various 
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flux rates and different interfacial tension systems with, without oscillating the 

membrane. The study provides a model for predicting size distribution in the permeate 

for a 4 µm slotted pore membrane and the presented model in the paper can be applied 

for different membrane with slots widths when different filtering materials.  

2. THEORY 

Static force (
xcF ) is the force responsible for the rejection of drops through the 

membrane without shear applied to the surface of the membrane and can be expressed 

as follows: [15], 
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Where   is interfacial tension between oil/water, spR  is the radius of the drop, and h  is 

the half width of slot of the membrane. 

The drag force exerted on a sphere moving between two plates is given in [1, 22] as:   

dF = 
wk URsp12

.
                                                                                                                          (2) 

Where wk  is a wall correction factor and for a similar system its value is equal to 4.3 [1]. 

  is viscosity of the fluid, spR  is the radius of the spherical droplet and U  is the  velocity 

of the fluid through the slot.  The drop is under steady state conditions inside the pore, 
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when cxF  becomes equal to dF   and the drops will be captured in this position. The drop 

will deform and will pass through the membrane when cxd FF   and it will be rejected 

by the membrane in the case of cxd FF   [15]. 

When shear is applied (whether the applied shear is due to crossflow velocity or 

oscillating the membrane) to the membrane surface there is a lift present in the system, 

and due to the lift, drops moves away from the membrane surface [23]. Lift due to 

crossflow velocity through the membrane is referred as ‘Inertial lift’ and the model used 

for ‘Inertial lift’ is used as a starting point knowing that the system used in the study is 

oscillating flow system and a higher lift is present. Inertial lift migration created due to 

applied shear rate that opposed permeate velocity [24]. Migration velocity under fast 

laminar flow (the model is used as a starting point) conditions of a drop due to inertial 

lift, ifv , was deduced in [24]: 



 32036.0 spf

if

R
v


 .                                                                                                            (3) 

Where f  is density of the fluid,   is viscosity of the fluid,   is the applied shear rate 

and spR  radius of the drop.                                                                                                                         

Dilute oil/water emulsion is used, so, particle to particle interaction is assumed to be 

negligible in our case.  Inertial lift velocity can be calculated using equation (3). 

Migration velocity due to inertial lift is directed oppositely to the convection, 0v , caused 

by the flowing liquid. This consideration shows that drops reach the surface of the 

membrane with a velocity, v , which is lower than the velocity of the flowing liquid: 
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This expression is used for comparison with the experimental data. 

For a given shear rate and convection velocity or superficial velocity  ( 0v ), critical drop 

size would be the one at which v  become negative. Critical radius can be obtained using 

equation (4).  For a given convection velocity, critical radius of drops would different at 

different shear rates.  If velocity of the drops on the membrane surface becomes 

negative then the drops cannot pass the membrane into the permeate and will be 

transferred away from the membrane.  

For a given drop size and convection velocity, critical shear rate ( cr ) is the one at which 

migration velocities of drops due to inertial lift become greater than convection velocity 

of the drops. For a given drop size and convection velocity, critical shear rate can be 

obtain using equation (4). For a given convection velocity, drops with different sizes 

having different critical shear rates. Similarly, for a given drop size, at different 

convection velocities critical shear rate would be different.  

In case of without applied shear, 100% cut-off of oil drops through the membrane is 

assumed when equation (1) and (2) balances each other. Extrapolating 100% cut-off to 

the origin of rejection graphs gives a straight line that is referred as ‘Linear fit’ and can 

be used for predicting rejection of drops below 100% cut-off [15].  ‘Linear fit’ provide 

the idea of fraction of oil rejected and passed through the membrane. In the case of 

applied shear to the membrane surface 100% cut-off of oil drop through the membrane 

is assumed when v  becomes negative in equation (4).  
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3. MATERIALS AND METHOD  

Crude oil was provided by North Sea oil companies. A 4 µm slotted pore membrane was 

used for separating oil drops from produced water; see Figure 1 of [18]. Experimental 

tests were carried out with a vibrating microfiltration rig provided by micro-pore 

technologies UK for schematic view of the rig see Figure 3 of [18]. Experimental set-up 

for filtration without membrane oscillating is provided in Figure 3 of [15]. Full details 

about the used materials and experimental procedure are provided in [15, 18]. 

4. RESULTS AND DISCUSSION  

Drops of crude oil (22, 27 and 30 oAPI) from crude oil provided by North Sea oil 

operating companies were made in produced water, with a food blender, operated for 

12 mins at its highest speed, and feed size distributions can be seen in Figure 1. Once 

the drops are produced, then the feed size can be nearly maintained constant by gently 

stirring the emulsion. The difference in feed size distribution of different crude oil drops 

may be due to different viscosities, interfacial tensions and densities. It has been noticed 

that the higher the API value of a crude oil, the lower interfacial tension between 

dispersed and continuous phases observed [15]. Static force (
xcF ) and can be calculated 

using equation (1) is a linear function of interfacial tension ( ) between dispersed and 

continuous phases [1, 15]. It means that the higher the interfacial tension ( ) between 

dispersed and continuous phases; the higher would be rejection of crude oil drops 

through the membrane; and a lower portion of drops would be passing through the 

membrane into the permeate [15]. Similarly, 100% cut-off is the point when equation 

(1) and (2) balances each other is an inverse function of interfacial tension ( ) between 

dispersed and continuous phases. Applied shear rate to the membrane surface also 

influences the 100% cut-off of drops through the membrane [17]. Shear rates produce 
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migration velocities of drops away from the surface of the membrane and due to it some 

drops do not reach the surface of the membrane [17]. Migration velocities away from 

membrane surface are a linear function of the applied shear rate [17, 24]. So, applied 

shear rate decreases the 100% cut-off value of drops through the membrane.  

Drops pass through the membrane into the permeate due to drag force ( dF ) offered by 

the flow of fluid around the drops and can be calculated using equation (2) [1, 15]. Drag 

force ( dF ) is a linear function of permeate flux rate (


0v ): higher the flux rate (


0v ), 

higher would be the drag force ( dF ) around the drops [1, 15]. This shows that at higher 

flux rate a larger number of drops would pass through the membrane as compared to 

low flux rates. Similarly, like drag force, 100% cut-off point (when equation (1) = 

equation (2) without applied shear rate; and when equation (4) becomes negative in the 

case of applied shear rate) is a linear function of flux rate. Extrapolating 100% cut-off 

point to the origin of the graph produced a straight line and was referred as linear fit 

[15]. Linear fit can be used for predicting rejection of drops below the 100% cut-off. The 

idea of linear fit can be further extended for predicting size distributions of drops in the 

permeate. For a given size of drop, predicted permeate size distribution can be obtained 

by multiplying the fraction of drops passed through the membrane to the feed size 

distribution. Permeate size distribution mainly depends on feed size distribution, 

interfacial tension ( ) between dispersed and continuous phases, flux rate (


0v ) and 

size of slot/pore of the used membrane. 

Figures 2 (a)-(c) show predicted and experimental permeate size distributions of crude 

oils 22, 27, 30 oAPI respectively. Predicted lines in Figures 2 (a)-(c) means data obtain 

from the ‘linear fit’ approach. The crude oils were provided by North Sea oil operating 
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companies. From the linear fit, at different points, the fraction of oil drops through the 

membrane is obtained. The fraction of oil drops passed through the membrane 

decreased moving from down to up on the linear fit line and reached zero at the 100% 

cut-off point. At the same flux rate, the fraction of oil drops passed through the 

membrane is higher for crude oil having high API values as compared to lower API 

crude oil due to the fact that higher API crude oil offers lower interfacial tension ( ). 

Lower interfacial tension means a lower static force (
xcF ), which is responsible for the 

rejection of drops through the membrane [1, 15]. It is also clear from Figures 2 (a), (b) 

and (c) that an increase in the flux rate increases the passage of drops through the 

membrane for all crude oil drops tested during experiments. It has been noticed that a 

large portion of oil by mass passed through the membrane below the size of the slot due 

to the fact that resistance to the drag force ( dF ) below the size of slot/pore was a 

minimum. Due to a higher resistance offered by the static force to the drops above slot 

size, a lower portion of drops above slot size passed through the membrane.  Coulter 

analysed 2 ml sample, and the mass recovered both in the feed and in the permeate by 

the Coulter was actually mass of oil in 2 ml sample. Based on 2 ml sample calculations, 

mass of oil in the feed and in the permeate in ppm can easily be obtained.   

Oscillating the membrane with various frequencies created shear rates ( ) of different 

intensities over the surface of the membrane [18, 25]. Migration velocities (Inertial lift 

migration velocities) away from the surface of the membrane are created due to the 

applied shear rate to the membrane [17, 24]. Migration velocities ( ifv ) are a linear 

function to the applied shear rate [17, 24]. Its means lower mass of crude would pass 

through the membrane with the higher shear rate. Figure 3 (a) and (b) show 

experimental and predicted size distributions by mass of crude oil (31 oAPI) at different 
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shear rates and flux rates.  The theory is in satisfactory agreement with the experiments 

that shows that the linear fit idea can be successfully applied to predict permeate size 

distribution of deforming drops with, and without, shear. 

Table 1 shows a measured size distribution of published data for crude oil (32 oAPI, 29 

oAPI) samples in various continuous phases of a Kuwait oil company [26]. This data is 

used in order to demonstrate the linear fit approach for predicting size distribution in 

the permeate for various crude oil drops obtained at different locations. It can be seen 

in Table 1 that a large number of drops are above 4 µm. Based on their API values, 

interfacial tensions between dispersed and continuous phases can be assumed. 100% 

cut-off points through a 4 µm slotted pore membrane can be assumed on the basis of 

API values. On the basis of 100% cut-off and linear fit approach, permeate size 

distributions at different flux rates for crude oil obtained from this Kuwait oil company 

can be predicted.  Feed size distribution of crude oil drops in different continuous 

phases is provided in Figure 4 (a) and (b). Predicted permeate size distributions based 

on a linear fit for crude oil (29, 32 oAPI) at different rates are illustrated in Figures 5 (a), 

(b) (c) and (d). 

Size distributions of crude oil drops in the permeate can be predicted knowing size 

distribution of the feed; size of membrane slot/pore; interfacial tension between 

continuous and dispersed phase and permeate flux rate. This idea can be used for 

permeate size distributions of crude oil obtained from various locations and dispersed 

in different continuous phases. The concept of predicting permeates size distributions 

can also be applied to the filtration of other deforming materials like yeast and stem 

cells.  
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Table 2 shows the predicted mass of 29 oAPI and 32 oAPI crude oil drops in the 

permeate at different flux rates. Mass of 29 oAPI crude oil drops in Oil Field Effluent 

Water and in Bair Aquifer water is reported as 1.5 and 1 ppm respectively [26]. 

Similarly, mass of crude oil (32 oAPI) in Bair Aquifer Water and Produced Water is 17 

and 26 ppm respectively [26]. Using the linear fit approach the mass of crude oil drops 

in the permeate reduced significantly at different flux rates as can be seen in Table 7.2. 

Theoretically, the mass of various crude oil (29 and 32 oAPI) in the permeate is reduced 

by more than 20 times that to the mass of crude oil in the feed at different flux rates.  

From the above study it can be concluded that if a stream coming from an oil rig 

containing 500 ppm of crude oil, can be reduced to 25 ppm of crude oil in the permeate 

using a 4 µm slotted pore membrane.  

5. CONCLUSIONS  

Mainly, drag force ( dF ) created by the flow of fluid around drops is responsible for the 

passage of oil drops through the membrane. While, static force ( cxF ) acts in the opposite 

direction to the drag force ( dF ) and it tries to reject the drops from the membrane. A 

balance in static and drag force is assumed at the 100% rejection point. Extrapolating 

100% rejection or cut-off point to the origin of a graph gives a straight line which is 

referred to as linear fit. The linear fit approach can be used for predicting permeate size 

distribution of deforming drops such as oil drops. For a given size, permeate size 

distribution can be obtained by multiplying the fraction of material passed through the 

membrane to a size distribution of the feed. The approach of predicting permeate size 

distribution has been demonstrated with a genuine feed size distribution using 

published data of a Kuwait oil company. Higher mass of oil was obtained at lower 

interfacial tension ( ) due to the fact that higher deformation and passage of drops 
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occurred. Similarly, increase in flux rate (


0v ) results in increased mass of drops in the 

permeate. By knowing the feed size distribution, interfacial tension, slot/pore size of the 

membrane and flux rates, size distribution for permeate can be predicted for crude oil 

obtained at various oilfields and locations and, therefore, the total concentration of 

dispersed oil in water. Further work required to apply and validate the model presented 

in the study for predicting size distribution of deforming drops in the permeate using 

slotted pore membrane of different slots width.  
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LIST OF SYMBOLS  

cF
     Static force (N) 

dF
     Drag force (N) 

h        Half width of the slot (m) 

wk      Drag force correction factor 

spR
    

Radius of spherical drop (m) 

v       Convection velocity of drops towards membrane surface with shear rate applied 

          (m s-1) 

ifv       Inertial lift migration velocity (m s-1) 



13 
 

ov       Convection velocity of drops towards membrane surface without shear rate 

            applied (m s-1)                                         

GREET SYMBOLS 

        Interfacial tension (N m-1) 

        Angle at which slot converges towards inside (o) 

f       Density of the fluid (kg m-3) 

         Shear rate (s-1) 

         Viscosity of the fluid (Pa s)  
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Table 1 Reported size distribution of crude oil (29 and 32 oAPI) drops per 0.1 ml 

sample in various continuous phases provided by a Kuwait oil company.  

Drop 
size 

(µm) 

Number of (29 oAPI) per 
0.1 ml of sample in Bair 
Aquifer water 

Number of drops per (29 
oAPI) per 0.1 ml of 
sample in oil field 
effluent water  

Number of drops per 
(32 oAPI) per 0.1 ml of 
sample in Bair Aquifer 
water 

Number of drops 
(32 oAPI) per 0.1 ml 
of sample in 
Produced water 

 
1.5 

 
2 
 

3 
 

5 
 

8 
 

10 
 

12 
 

15 
 

20 
 

 
7566 

 
3298 

 
745 

 
117 

 
22 

 
5 
 

1 
 

0 
 

0 
 

 
3519 

 
1400 

 
576 

 
175 

 
50 

 
4 
 

16 
 

7 
 

0 

 
- 
 

22511 
 

21622 
 

1899 
 

170 
 

79 
 

49 
 

18 
 

4 

 
- 
 

46352 
 

23841 
 

2219 
 

320 
 

150 
 

71 
 

22 
 

4 
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Table 2 Predicted mass of permeate (ppm) of various crude drops in different 

continuous phases at different flux rates and the feed size distribution data is reported 

by a Kuwait company. 

Flux rate 

 (l m-2 hr-1) 

Mass in permeate of 

crude oil (29 oAPI) 

in Oil Field Effluent 

Water (ppm) 

Mass in permeate of 

crude oil (29 oAPI) 

drops in Bair Aquifer 

Water (ppm) 

Mass in permeate of 

crude oil (32 oAPI) 

drops in Bair Aquifer 

Water (ppm) 

Mass in permeate 

of crude oil (32 

oAPI) drops in 

Produced Water 

(ppm) 

200 

400 

600 

0.017 

0.022 

0.03 

0.015 

0.02 

0.027 

0.09 

0.13 

0.15 

0.3 

0.36 

0.46 
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respectively. 

Figure 2 (c) Predicted and experimental size distributions by mass of crude oil (30 

oAPI) drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 21, 24 and 26 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 

respectively. 

Figure 3 (a) Predicted and experimental size distributions of crude oil (30 oAPI) drops 

in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, provided by 

North Sea operating companies with 10,000 s-1 shear rate, reducing 400 ppm in the feed 

into 4, 6 and 8 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 respectively. 
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North Sea operating companies with 8000 s-1 shear rate, and reducing 400 ppm in the 

feed into 7, 9, 10 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 in the permeate 
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Figure 1 provides the drop size distribution of crude oil from North Sea operating 

companies (22, 27, 30 oAPI) )  in terms of mass of oil per 2 ml of feed measured by the 

Coulter Multisizer.  
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Figure 2 (a) Predicted and experimental size distributions by mass of crude oil (22 

oAPI) drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 16, 19 and 21 ppm at 2000, 4000 and 6000 l m-2 hr-1 respectively. 

Predicted point mean data came from the ‘linear fit’ approach.  
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Figure 2 (b) Predicted and experimental size distributions by mass of crude oil (27 

oAPI) drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 18, 22 and 24 ppm in the permeate at 2000, 4000 and 6000 l m-2 hr-1 

respectively. 
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Figure 2 (c) Predicted and experimental size distributions by mass of crude oil (30 

oAPI) drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 21, 24 and 26 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 

respectively. 
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Figure 3 (a) Predicted and experimental size distributions of crude oil (30 oAPI) drops 

in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, provided by 

North Sea operating companies with 10,000 s-1 shear rate, reducing 400 ppm in the feed 

into 4, 6 and 8 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 respectively. 
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Figure 3 (b) Predicted and experimental size distributions of crude oil (30 oAPI) drops 

in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, provided by 

North Sea operating companies with 8000 s-1 shear rate, and reducing 400 ppm in the 

feed into 7, 9, 10 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 in the permeate 

respectively. 
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Figure 4 (a) Feed size distributions of crude oil from Kuwait crude oil operating 

company (29 oAPI).  
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Figure 4 (b) Feed size distributions of crude oil from Kuwait crude oil operating 

company (32 oAPI) . 
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Figure 5 (a) Prediction of permeate size distributions of crude oil drops (29 oAPI) in Oil 

Field Effluent Water, provided by Kuwait oil company at different flux rates without 

shear rate applied.    
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Figure 5 (b) Prediction of permeate size distributions of crude oil drops (29 oAPI) in 

Bair Aquifer Water, provided by Kuwait oil company at different flux rates without 

shear rate applied.    
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Figure 5 (c) Prediction of permeate size distributions of crude oil drops (32 oAPI) in 

Bair Effluent Water, provided by Kuwait oil company at different flux rates without 

shear rate applied.  
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Figure 5 (d) Prediction of permeate size distributions of crude oil drops (32 oAPI) in 

Produced Water, provided by Kuwait oil company at different flux rates without shear 

rate applied. 
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Table 1 Reported size distribution of crude oil (29 and 32 oAPI) drops per 0.1 ml sample 

in various continuous phases provided by a Kuwait oil company.  

Drop 
size 

(µm) 

Number of (29 oAPI) per 
0.1 ml of sample in Bair 
Aquifer water 

Number of drops per (29 
oAPI) per 0.1 ml of 
sample in oil field 
effluent water  

Number of drops per 
(32 oAPI) per 0.1 ml of 
sample in Bair Aquifer 
water 

Number of drops 
(32 oAPI) per 0.1 ml 
of sample in 
Produced water 

 
1.5 

 
2 
 

3 
 

5 
 

8 
 

10 
 

12 
 

15 
 

20 
 

 
7566 

 
3298 

 
745 

 
117 

 
22 

 
5 
 

1 
 

0 
 

0 
 

 
3519 

 
1400 

 
576 

 
175 

 
50 

 
4 
 

16 
 

7 
 

0 

 
- 
 

22511 
 

21622 
 

1899 
 

170 
 

79 
 

49 
 

18 
 

4 

 
- 
 

46352 
 

23841 
 

2219 
 

320 
 

150 
 

71 
 

22 
 

4 
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Table 2 Predicted mass of permeate (ppm) of various crude drops in different 

continuous phases at different flux rates and the feed size distribution data is reported 

by a Kuwait company. 

Flux rate 

 (l m-2 hr-1) 

Mass in permeate of 
crude oil (29 oAPI) 
in Oil Field Effluent 
Water (ppm) 

Mass in permeate of 
crude oil (29 oAPI) 
drops in Bair Aquifer 
Water (ppm) 

Mass in permeate of 
crude oil (32 oAPI) 
drops in Bair Aquifer 
Water (ppm) 

Mass in permeate 
of crude oil (32 
oAPI) drops in 
Produced Water 
(ppm) 

200 

400 

600 

0.017 

0.022 

0.03 

0.015 

0.02 

0.027 

0.09 

0.13 

0.15 

0.3 

0.36 

0.46 
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North Sea operating companies with 10,000 s-1 shear rate, reducing 400 ppm in the feed 

into 4, 6 and 8 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 respectively. 
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North Sea operating companies with 8000 s-1 shear rate, and reducing 400 ppm in the 

feed into 7, 9, 10 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 in the permeate 

respectively. 

Figure 4 (a) Feed size distributions of crude oil from Kuwait crude oil operating 
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Figure 1 provides the drop size distribution of crude oil from North Sea operating 

companies (22, 27, 30 oAPI) )  in terms of mass of oil per 2 ml of feed measured by the 

Coulter Multisizer.  
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Figure 2 (a) Predicted and experimental size distributions by mass of crude oil (22 oAPI) 

drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 16, 19 and 21 ppm at 2000, 4000 and 6000 l m-2 hr-1 respectively. 

Predicted point mean data came from the ‘linear fit’ approach.  
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Figure 2 (b) Predicted and experimental size distributions by mass of crude oil (27 

oAPI) drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 18, 22 and 24 ppm in the permeate at 2000, 4000 and 6000 l m-2 hr-1 

respectively. 
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Figure 2 (c) Predicted and experimental size distributions by mass of crude oil (30 oAPI) 

drops in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, 

provided by North Sea operating companies without shear rate, reducing 400 ppm in 

the feed into 21, 24 and 26 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 

respectively. 
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Figure 3 (a) Predicted and experimental size distributions of crude oil (30 oAPI) drops 

in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, provided by 

North Sea operating companies with 10,000 s-1 shear rate, reducing 400 ppm in the feed 

into 4, 6 and 8 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 respectively. 
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Figure 3 (b) Predicted and experimental size distributions of crude oil (30 oAPI) drops 

in terms of mass of oil per 2 ml of feed measured by the Coulter Multisizer, provided by 

North Sea operating companies with 8000 s-1 shear rate, and reducing 400 ppm in the 

feed into 7, 9, 10 ppm in the permeate at 400, 600 and 1000 l m-2 hr-1 in the permeate 

respectively. 
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Figure 4 (a) Feed size distributions of crude oil from Kuwait crude oil operating 

company (29 oAPI).  

 



13 
 

 

Figure 4 (b) Feed size distributions of crude oil from Kuwait crude oil operating 

company (32 oAPI) . 
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Figure 5 (a) Prediction of permeate size distributions of crude oil drops (29 oAPI) in Oil 

Field Effluent Water, provided by Kuwait oil company at different flux rates without 

shear rate applied.    
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Figure 5 (b) Prediction of permeate size distributions of crude oil drops (29 oAPI) in 

Bair Aquifer Water, provided by Kuwait oil company at different flux rates without 

shear rate applied.    
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Figure 5 (c) Prediction of permeate size distributions of crude oil drops (32 oAPI) in Bair 

Effluent Water, provided by Kuwait oil company at different flux rates without shear 

rate applied.  
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Figure 5 (d) Prediction of permeate size distributions of crude oil drops (32 oAPI) in 

Produced Water, provided by Kuwait oil company at different flux rates without shear 

rate applied. 

 

 

 

 

 

 


