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Abstract— A clinical decision support system forms a critical
capability to link health observations with health knowledge to
influence choices by clinicians for improved healthcare. Recent
trends towards remote outsourcing can be exploited to provide
efficient and accurate clinical decision support in healthcare. In
this scenario, clinicians can use the health knowledge located
in remote servers via the Internet to diagnose their patients.
However, the fact that these servers are third party and therefore
potentially not fully trusted raises possible privacy concerns.
In this paper, we propose a novel privacy-preserving protocol
for a clinical decision support system where the patients’ data
always remain in encrypted form during the diagnosis process.
Hence the server involved in the diagnosis process is not able to
learn any extra knowledge about the patient data and results.
Our experimental results on popular medical data sets from
UCI database demonstrate that the accuracy of the proposed
protocol is up to 97.21% and the privacy of patient data is not
compromised.

Index Terms— Pricacy, clinical decision support, encryption,
classification, support vector machine.

I. INTRODUCTION

A clinical decision support system is a computerized med-

ical diagnosis process for enhancing health-related decisions

and actions with pertinent, organized healthcare knowledge

and patient data to improve health and healthcare delivery

[1]. Artificial intelligence in machine learning together with

biomedical engineering revamp the available clinical data set

into healthcare knowledge to build the clinical decision support

system [2]–[5]. The current approach uses locally available

clinical data sets to build a clinical decision support system.

However, the accuracy of the system depends on the availabil-

ity of sufficient valid clinical data sets but these are not always

accessible. As an example, a particular general practitioner

(GP) surgery does not generally have sufficient number of

samples for all the diseases. Hence, making a correct diagnosis

using limited samples is unlikely to be successful.

The recent advances in remote outsourcing techniques (i.e.

cloud computing) can be exploited in healthcare to provide

efficient and accurate decision support as a service. This

service could be utilized by any clinicians in a flexible manner
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such as on-demand or pay-per use [6]. Within this context, let

us consider the following scenario: a third party server builds

a clinical decision support system using the existing clinical

data set (i.e. assume that the server has rich clinical data set

for a particular disease). Now clinicians, who want to verify

whether their patients are affected by that particular disease,

could send the patient data to the server via the Internet to

perform diagnosis based on the healthcare knowledge at the

server. This new notion overcomes the difficulties that would

be faced by the clinicians such as having to collect a large

number of samples (i.e. rich clinical data set), and requiring

high computational and storage resources to build their own

decision support system.

However, there is now a risk that the third party servers

are potentially untrusted servers. Hence, releasing the patient

data samples owned by the clinician or revealing the decision

to the untrusted server raises privacy concerns. This drawback

can affect the adoption of outsourcing techniques in healthcare

[7], [8]. Furthermore, the server may not wish to disclose the

features of the clinical decision support system even if it offers

the service to the clinicians. Hence, in this paper we propose

a privacy preserving clinical decision support system which

preserves the privacy of the patient data, the decision and the

server side clinical decision support system parameters, so that

the benefits of the emerging outsourcing technology can also

be enjoyed in healthcare sector.

In particular, we consider a decision support system devel-

oped using support vector machine (SVM), which is one of the

machine learning tools which has been widely used to predict

various diseases in biomedical engineering [9]–[11]. Typically,

using a SVM consists of two different phases namely training

and testing. During the training phase, a classifier will be

trained using features of the training data set belonging to

different classes. In the testing phase, any unlabeled data

sample can be classified and labeled to the corresponding

matched class using the trained classifier. In the current setting,

the available clinical data set can be used to train a classifier

and the trained classifier can be used as a clinical decision

support system during the testing phase to make the decision

for the patient data.

Depending on the separability of the available training data,

the SVM uses particular kernel functions such as linear and

non-linear kernels. If the number of features is larger than the

number of instances, it is not necessary to map the data into

higher dimensional space. It is because non-linear mapping

does not improve the performance. Since medical data sets,

in general, have less number of features than the number



Fig. 1. The overview of a privacy-preserving clinical decision support system.

of instances it is possible to get better classification results

with non-linear kernel based SVM. Polynomial and Gaussian

kernels are non-linear kernels. The polynomial kernel based

model is parametric while the Gaussian kernel based model

is non-parametric. In a way a non-parametric model means

that the complexity of the model is infinite, its complexity

grows with number of instances. In contrast a parametric

model’s size is fixed, so after a certain point, the model become

saturated, and giving more and more instances will not help.

It means that the accuracy is dependent on the chosen degree

of the polynomial. However, Gaussian kernel finds the best

polynomial function in the infinite dimension for the given data

set. Hence, we consider Gaussian kernel based classification

in this paper.

To the best of our knowledge, we present the first known

privacy-preserving clinical decision support system for a

Gaussian kernel based SVM. In order to preserve privacy,

we re-design the conventional Gaussian kernel based SVM

algorithm as an encrypted-domain algorithm using the Paillier

homomorphic encryption technique as one of its building

blocks [14]. Since Paillier encryption supports only integers

and the system variables are continuous and the Gaussian

kernel involves exponentiation of negative values, crucially

we develop a novel technique to scale the variables, which

overcomes these barriers without deteriorating the privacy and

performance.

In the system, as shown in Fig. 1, a clinician sends the

patient data sample in the encrypted format to the server over

the Internet. Then the server exploits the Paillier homomorphic

encryption properties to perform the operations directly on

the encrypted data, or if there are any operations that cannot

be handled by homomorphic properties, then there will be a

limited amount of interaction between the clinician and the

server based on two-party secure computation protocols [15].

We assume that both the parties will execute the protocol

correctly to maintain their reputation, hence we assume that

they will behave in a semi-honest manner, i.e. they are honest

but curious so privacy is a real issue.

The rest of this paper is organized as follows: In Section

II, we describe the conventional SVM, i.e. the steps involved

in training the SVM and classification in the plain-domain.

Particular focus is placed on the Gaussian kernel method.

In Section III we first briefly describe one of the building

blocks i.e. homomorphic encryption, and show how SVM

classification can be extended to work in the encrypted-

domain. Hence, the patient data can remain encrypted even

when it is being processed by the server. In particular, the

novel technique for scaling variables without deteriorating the

performance and privacy is described in Section III.B. We

analyze the performance of thus encrypted-domain method in

Section IV. We review related works in Section V. Conclusions

are discussed in Section VI.

Notation. We use boldface upper and lower case letters for

matrices and vectors, respectively; (.)′ denotes the transpose

operator; ∥.∥2 the Euclidean norm; JmK the encryption of

message m; and sign(m) denotes sign of the number m. The

modular reduction operator is denoted by mod.

II. SUPPORT VECTOR MACHINE

SVMs have been widely used in machine learning for data

classification [16], [17]. They have high generalization ability

which provides high reliability in real-world applications such

as image processing, computer vision, text mining, natural

language processing, biomedical engineering and many more

[18]–[21]. The goal of a SVM is to separate classes by a

classification function, which is obtained by training with the

data samples. We describe the classification function of a

SVM in the following subsection. This classification function

is crucial to derive the privacy-preserving decision support

system proposed in Section III.

A. In Plain-Domain

We start with a training set of samples x̃i ∈ R
n, i =

1, . . . , N where each sample x̃i belongs to one of the two

classes denoted by a label yi ∈ {−1,+1}, i = 1, . . . , N .

Using these training data samples we can train a SVM to

classify an unlabelled test sample. Before training a SVM,

the training data need to be normalized. Normalization keeps

the numeric values of training samples on the same scale and

prevents samples with a large original scale from biasing the

solution. Let us denote the normalized training data samples

as xi ∈ R
n, i = 1, . . . , N where,

xi =
x̃i − x̄

σ2
, ∀i, (1)

where x̄ and σ are denote mean and standard deviation of

the training data samples. Depending on the separability of

the training data, this problem is further divided into either

a linear classification problem or a non-linear classification

problem.

1) Linear classification problem: The goal of linear clas-

sification is to obtain two parallel hyperplanes as shown in

Fig. 2, w
′
x + b = −1 and w

′
x + b = +1, where w and

b are classification parameters obtained during the training

process. Both hyperplanes separate the training data of the

two classes such that the distance between those hyperplanes

is maximized.

After the training stage we can classify an unlabelled test

sample, t̃ ∈ R
n. Before the classification, the test sample is

normalized similar to (1) as

t =
t̃− x̄

σ2
. (2)



Fig. 2. Training data samples for two different classes are denoted by +

and − signs.

Fig. 3. Non-linear classification problem converted into linear classification
problem after the kernel mapping.

Now the normalized test sample, t, can be substituted into the

following classification function

f(t) = sign(w′
t+ b) = sign

(
∑

s∈S

αsysx
′
st+ b

)

, (3)

where f(t) ∈ {−1,+1}, αi, i = 1, . . . , N are Lagrangian

variables [22] and xs, s = 1, . . . , N are support vectors. If

f(t) = +1 then the test sample t̃ belongs to the +ve class

else it belongs to the −ve class. Please note that a decision

function d(t) can be extracted from (3) as

d(t) = w
′
t+ b =

∑

s∈S

αsysx
′
st+ b, (4)

where w
′
x + b = 0 denotes the decision-hyperplane which

lies between the two hyperplanes (i.e. w
′
x + b = −1 and

w
′
x+ b = +1)

2) Non-linear classification problem: In the previous sec-

tion, we discussed the classification problem where the training

data samples were linearly separable. However, it has been

proven in the literature that a similar approach can be used

for a non-linear classification problem using kernel methods

[23]. Hence, the non-linear classification algorithm is formally

similar to the linear classification algorithms except that the

dot product between the data samples (i.e. x′
ixj) is replaced

by various non-linear kernel functions. These kernel functions

transform the non-linear classification problem into a linear

classification problem by mapping data samples into a higher

dimensional feature space (see Fig. 3). In this work we

consider only a Gaussian function as kernel, where the dot

product between the data samples xs and t in (3) and (4) can

be replaced as

x
′
st ⇒ K(xs, t) = e−γ||xs−t||2

2 , (5)

where γ > 0. Hence, the classification function in (3) can be

modified as

f(t) = sign

(
∑

s∈S

αsyse
−γ||xs−t||2

2 + b

)

︸ ︷︷ ︸

decision function

. (6)

Without encryption the server would use (6) to make a

decision on the basis of the patient data. We propose a new

technique to reformulate (6) in the next section which will

preserve the privacy of patient data, decision and server side

parameters without compromising the classification perfor-

mance.

III. PRIVACY PRESERVING DECISION SUPPORT SYSTEM

In this section, we develop an algorithm which utilizes the

healthcare knowledge available in the remote location via the

Internet while preserving privacy. Hence, we consider a client-

server scenario where the remote server uses (6) as a decision

making tool. As shown in Fig. 1, a clinician sends the patient

data, t, over the Internet and obtains support from server to

make a decision. However, the clinician is reluctant to reveal

the patient data or the decision to the server due to privacy

concerns. At the same time the server desires not to leak any

parameter values of the classification function as thus would

be a breach of privacy of the training clinical data samples

which relate to other patients. In this section we show how to

preserve the privacy of the patient data t and the decision from

the server and the server side parameters from the clinician.

First, let us explain the required building blocks in the next

section.

A. Homomorphic Encryption

One of the building blocks for our technique is homomor-

phic encryption. For concreteness and without loss of general-

ity, our descriptions are based on the Paillier cryptosystem [14]

although any other homomorphic encryption schemes could be

used. The Paillier cryptosystem is an additively homomorphic

public-key encryption scheme, whose provable semantic secu-

rity is based on the decisional composite residuosity problem:

it is mathematically intractable to decide whether an integer z
is an n-residue modulo n2 for some composite n, i.e. whether

there exists some y ∈ Z
∗
n2 such that z = yn mod n2. Let

n = pq where p and q are two large prime numbers. A message

m ∈ Zn can be encrypted using the Paillier cryptosystem as

JmK = gmrn mod n2 where g ∈ Z
∗
n2 and r ∈ Z

∗
n. The

Paillier cryptosystem is said to be an additively homomorphic

cryptosystem because for some given encryptions Jm1K and

Jm2K, the encryption Jm1 + m2K of the sum m1 + m2 in

the plain-domain and the encryption Jm1.αK of the product of

m1 with a constant α in the plain-domain can respectively be

computed efficiently in the encrypted-domain as

Jm1 +m2K = Jm1KJm2K, Jm1.αK = Jm1K
α. (7)

In the setting considered in this paper, the clinician dis-

tributes a public-key to the server while keeping his private-

key secret. The server is able to perform encryptions under



TABLE I

OVERVIEW OF VARIABLES WHICH ARE KNOWN TO CLINICIAN AND/OR TO

SERVER (KNOWN-X, UNKNOWN-X ).

Variables Known to Known to

(in plain-domain) Clinician Server

public− key X X

private− key X X
t X X

αs, ys, γ, xs, b X X

c1 X X

c2, c3, c4,s c5,s, c6,s X X

d1,s, d3 X X

d2,s X X

this public-key and exploits the homomorphic properties of the

Paillier cryptosystem to perform the required linear operations

in the encrypted-domain. However, only the clinician is able

to decrypt any encrypted messages using his corresponding

private-key.

B. Decision Support Function in the Encrypted-Domain

In (6), the server knows αs, ys, γ, xs, s ∈ S and b in

the plain-domain (refer to Table I for the other variables). The

clinician encrypts each element of the patient data using the

public-key and sends the encrypted data and the corresponding

public-key to the server. Note that because the encryption is

performed with the clinician’s public-key, no one including the

server could decrypt this to obtain the values of the elements

thus the patient data are protected against being revealed even

to the server taking part in this process. Since the server only

has the encrypted patient data, it has to compute (6) in the

encrypted-domain using homomorphic and two-party secure

computation properties.

Generally, the variables associated with (6) are continuous

data. Since the Paillier cryptosystem only supports integers,

all the variables in (6) will be quantized to the nearest integer

value during the computation in the encrypted-domain, which

will potentially lead to deterioration of performance [24], [25].

Hence, it is crucial to reformulate (6) into a form which

is suitable for encrypted-domain operations. To address this

issue, we propose a novel technique for scaling each variable

in (6) by a positive large number. More specifically, let us

multiply the decision function in (6) by c2e
c3 > 0 as

f(t) = sign

{

c2e
c3

[
∑

s∈S

αsyse
−γ||xs−t||2

2 + b

]}

, (8)

where c2, c3 ∈ R
+, hence, the solutions of (6) and (8) are

equal. Let us define the scaled decision function in (8) as

d(t) = c2e
c3

[
∑

s∈S

αsyse
−γ||xs−t||2

2 + b

]

(9)

and since −γ||xs − t||22 = −γx′
sxs − γt′t+2γx′

st, it can be

modified as

d(t) = c2e
c3

[
∑

s∈S

αsyse
−γx′

sxse−γt′t+2γx′

st + b

]

,

=
∑

s∈S

(c2αsyse
−γx′

sxs)(ec3e−γt′t+2γx′

st) + (c2e
c3b).

(10)

Let us define c3 = c4,s + c5,s + c6,s, where c4,s, c5,s, c6,s ∈
R

+. Hence, (10) can be modified as

d(t) =
∑

s∈S

(c2αsyse
−γx′

sxsec4,s)× (ec5,sec6,s−γt′t+2γx′

st)

+ (c2e
c3b),

=
∑

s∈S

(c2αsyse
−γx′

sxsec3−c5,s−c6,s)

× (ec5,sec6,s−γt′t+2γx′

st) + (c2e
c3b), (11)

and we define

d1,s = (c2e
c3−c5,s−c6,s)αsyse

−γx′

sxs , s ∈ S, (12)

d2,s = (ec5,s)ec6,s−γt′t+2γx′

st, s ∈ S, (13)

d3 = (c2e
c3)b, (14)

so that (11) and (8) can be replaced as,

d(t) =
∑

s∈S

d1,sd2,s + d3, (15)

and

f(t) = sign {d(t)} . (16)

Note that, c2e
c3−c5,s−c6,s , c5,s and c2e

c3 have respectively

been used to scale the variables associated in (12), (13) and

(14). Variable c6,s in (13) has been used to mask the value

−γt′t + 2γx′
st. We generate fresh random values of c6,s in

the range of x
′
sxs for different s values. This masking can

be used to preserve the privacy of variables computed by the

server. We explain this in detail later in this section. All the

variables associated in this section are given in Table I for

convenience.

Now the server needs to compute (15) followed by (16)

to complete the decision making process. The server knows

all the variables associated with (12) and (14) in the plain-

domain, hence it can easily compute (12) and (14) without

interacting with the clinician. In order to obtain the whole

decision function in (15), the server also needs to compute

(13). Since the patient data, t in (13), are available to the

server only in the encrypted-domain, the server cannot directly

compute (13) in the plain-domain. To proceed, the server needs

to normalize the patient data, then compute c5,s+c6,s−γt′t+
2γx′

st and finally the exponentiation. Let us explain each step

in the following subsections.

1) Normalizing the test sample: Before computing (13), the

server needs to normalize the patient data as in (2). Denote the

patient data at the clinician as t̃ = [t̃1, . . . , t̃n]
′. The clinician

scales each element of t̃ by c1 > 0 to avoid quantization errors

during the encryption. Then the clinician encrypts the scaled

patient data and sends Jc1t̃K =
[
Jc1t̃1K, . . . , Jc1t̃nK

]′
and the



Fig. 4. Privacy-preserving decision support system based on a SVM. The
clinician supplies patient data in the encrypted format to the server.

corresponding public-key to the server (see Fig. 4). Now the

server will obtain the scaled and normalized patient data in

the encrypted-domain using (2) and homomorphic properties

as

Jc1tK = J
c1t̃− c1x̄

σ2
K = J

c1t̃

σ2
−

c1x̄

σ2
K. (17)

Let us define a mean vector x̄ = [x̄1, . . . , x̄n]
′ and normalized

patient data as t = [t1, . . . , tn]
′. Hence, each element of (17)

is given by

Jc1tiK = J
c1t̃i
σ2

−
c1x̄i

σ2
K, ∀i. (18)

Since the server knows the vector x̄, and scalars c1 (as-

suming both the server and clinician know c1) and σ in

the plain-domain, the server can easily compute the values

− c1x̄i

σ2 = (−1). c1x̄i

σ2 , ∀i and encrypt each of its components by

exploiting homomorphic properties J(−1). c1x̄i

σ2 K = J c1x̄i

σ2 K(−1),

∀i. Similarly, encryption of c1 t̃i
σ2 can be obtained as J c1 t̃i

σ2 K =

Jc1t̃iK
1

σ2 , ∀i. Hence, the scaled and normalized value of the

patient data in (18) can be obtained in the encrypted-domain

as follows:

Jc1tiK = J
c1t̃i
σ2

−
c1x̄i

σ2
K = J

c1t̃i
σ2

K.J−
c1x̄i

σ2
K ∀i,

= Jc1t̃iK
1

σ2 .J
c1x̄i

σ2
K(−1),∀i. (19)

Note that every computation in (19) can be performed by the

server without interacting with the clinician. Now the server

can use the encrypted, normalized and scaled patient data

Jc1tK = [Jc1t1K, . . . , Jc1tnK]
′
, (20)

to compute (13).

2) Computing (c5,s + c6,s − γt′t+ 2γx′
st) in (13): To do

this, let us raise the power of (13) by c31 to yield

(d2,s)
c3
1 = ec

3

1
(c5,s+c6,s−γt′t+2γx′

st), s ∈ S,

= ec
3

1
c5,s+c3

1
c6,s−c3

1
γt′t+2c3

1
γx′

st, s ∈ S,

= ec
3

1
c5,s+c3

1
c6,s+(2c2

1
γxs)

′(c1t)−(c1γ)(c1t)
′(c1t), s ∈ S.

(21)

In (21), the server knows c1, c5,s, c6,s, γ and xs, s ∈ S
in the plain-domain. Hence, the server can compute the term

c31c5,s + c31c6,s in (21) in the plain-domain. Since c1t is

available at the server only in the encrypted-domain (i.e. (20)),

the server needs to exploit the homomorphic properties to

compute the term (2c21γxs)
′(c1t) in (21) in the encrypted-

domain. Let us define xs = [xs,1, . . . , xs,n]
′, s ∈ S. Now

the server computes the term (2c21γxs)
′(c1t) in (21) in the

encrypted-domain as

J(2c21γxs)
′(c1t)K = J

n∑

i=1

(2c21γxs,i)(c1ti)K,

=
n∏

i=1

J(2c21γxs,i)(c1ti)K,

=
n∏

i=1

Jc1tiK
2c2

1
γxs,i . (22)

Unfortunately, the server cannot compute the term

−(c1γ)(c1t)
′(c1t) in (21) without interacting with the

clinician. Hence, the server additively blinds the scaled and

normalized patient data with uniformly distributed random

vector r = [r1, . . . , rn]
′ to obtain ĴtK = Jc1t+rK = Jc1tK.JrK.

Then the server sends ĴtK to the clinician. The clinician

decrypts the received ĴtK and obtains t̂ in the plain-domain.

Then the clinician calculates t̂
′
t̂ and encrypts and sends Ĵt′t̂K

back to the server. Now the server extracts J(c1t)
′(c1t)K from

Ĵt′t̂K using homomorphic properties as follows:

J(c1t)
′(c1t)K = Ĵt′t̂− 2c1t

′
r− r

′
rK,

= Ĵt′t̂KJ−2c1t
′
rKJ−r

′
rK,

= Ĵt′t̂K.J−r
′
rK.

n∏

i=1

Jc1tiK
−2ri (23)

The server then computes J−(c1γ)(c1t)
′(c1t)K using (23) and

the scalar −c1γ as

J−(c1γ)(c1t)
′(c1t)K = J(c1t)

′(c1t)K
−c1γ . (24)

After obtaining all the terms, the server can compute the whole

term c31c5,s+c31c6,s+(2c21γxs)
′(c1t)−(c1γ)(c1t)

′(c1t) in (21)

in the encrypted-domain using the homomorphic properties as

Jc31c5,s + c31c6,s + (2c21γxs)
′(c1t)− (c1γ)(c1t)

′(c1t)K

= Jc31c5,s + c31c6,sK.J(2c
2
1γxs)

′(c1t)K.J−(c1γ)(c1t)
′(c1t)K.

(25)

3) Exponentiation using secure two-party computations:

The only part left is exponentiation of c31c5,s + c31c6,s +
(2c21γxs)

′(c1t) − (c1γ)(c1t)
′(c1t) to obtain (21). Since (25)

is in the encrypted-domain, the server cannot do the expo-

nentiation as in (21) and thus will interact with the clinician

to complete this exponentiation. The server sends (25) to

the clinician, who decrypts and obtains c31c5,s + c31c6,s +
(2c21γxs)

′(c1t)− (c1γ)(c1t)
′(c1t). Then the clinician divides

the decrypted component by c31 and obtains c5,s + c6,s +
(2γxs)

′(t)− (γ)(t)′(t). It is worth noting that the values c5,s
and c6,s have been used as a scaling factor and masking factor,

respectively to protect (2γxs)
′(t)−(γ)(t)′(t). Note that c5,s+

c6,s < c3 and the range of c6,s must be the same as the range of

x
′
ixj , ∀ i, j. Since the range c6,s is the same as the range of x′

st



(i.e. x′
sxs) the clinician cannot extract any useful information

from the decrypted c5,s+ c6,s+(2γxs)
′(t)− (γ)(t)′(t). Note

that for every component of (13) a fresh random value c6,s
must be generated.

Now the clinician computes and encrypts

ec5,s+c6,s+(2γxs)
′(t)−(γ)(t)′(t) and returns it to the server.

The server has received (13) in the encrypted-domain (i.e.

Jec5,s+c6,s+(2γxs)
′(t)−(γ)(t)′(t)K, s ∈ S), so it can compute

(15) in the encrypted-domain as

Jd(t)K = J
∑

s∈S

d1,sd2,s + d3K = Jd3KJ
∑

s∈S

d1,sd2,sK,

= Jd3K
∏

s∈S

Jd1,sd2,sK = Jd3K
∏

s∈S

Jd2,sK
d1,s . (26)

In order to complete the classification, the server needs to

compute (16). Since d(t) is in the encrypted-domain (i.e. (26))

the server needs to obtain the sign of an encrypted-number to

complete this.

4) Obtaining the sign of an encrypted value: Let us denote

two strings yes and no to represent the decision. Assume that

if the sign of d(t) is positive then the decision for the given

patient data is yes and if the sign of d(t) is negative then the

decision for the given patient data is no. Since the server has

the value of d(t) in the encrypted-domain as in (26), we show

in this section how to obtain the decision for the patient data in

the encrypted-domain. Let us assume that | d(t) |< 10l, l ∈ Z

in the plain-domain. Note that since the training and test data

samples are normalized, the value of l can be determined using

the scale factor c2e
c3 used in (8).

Now the server computes a new variable in the encrypted-

domain as

JzK = J10l + d(t)K = J10lK.Jd(t)K. (27)

Since |d(t)| < 10l, the most significant digit of z is either 1
(i.e. if d(t) > 0) or 0 (i.e. if d(t) < 0). Let us denote the

most significant digit of z as z̃ ∈ {1, 0}. Hence, the decision

Dec, can be obtained as

Dec = z̃.(yes− no) + no. (28)

The most significant digit z̃ could be computed using the

following linear operation:

z̃ = 10−l.
[
z − (z mod 10l)

]
, (29)

where subtraction sets the least significant digits of z to 0
while the multiplication shifts the most significant digit down.

Since the z in (27) is in the encrypted-domain the server needs

to obtain the z̃ in (29) in the encrypted-domain. This can be

performed as follows:

Jz̃K = J10−l.
[
z − (z mod 10l)

]
K,

=
(
JzK.Jz mod 10lK−1

)10−l

. (30)

However the z available at the server is encrypted, thus similar

to the process leading to the server being able to compute

(26), the server engages the clinician in a secure two-party

computation protocol to compute Jz mod 10lK.

The server blinds JzK using a uniformly distributed random

value r as

JzrK = Jz + rK = JzK.JrK,

and this is sent to the clinician who decrypts JzrK and reduces

zr mod 10l. The result i.e., Jzr mod 10lK is then encrypted

and returned to the server who retrieves Jz mod 10lK as

Jz mod 10lK = Jz + r mod 10lK.Jr mod 10lK−1JλK10
l

,

where λ ∈ {0, 1} is used to avoid underflow (i.e. λ = 0 if

z + r mod 10l > r mod 10l or λ = 1 if z + r mod 10l <
r mod 10l). The server knows z + r mod 10l in the plain-

domain while the clinician knows r mod 10l in the plain-

domain. Comparing two integers in encrypted-domain has

been widely studied in the literature [26]. Now the server can

compute Jz̃K using (30). The obtained Jz̃K can be used in (28)

to obtain the decision for the patient data in the encrypted-

domain, as follows:

JDecK = Jz̃.(yes− no) + noK = Jz̃K(yes−no).JnoK. (31)

Now JDecK can be returned to the clinician who decrypts it

to find the decision of the patient data (see Fig. 4).

C. Information Leakage

In the proposed algorithm, the private key resides at clini-

cian side, hence it is not possible for the remote server who

participates in this classification operation to decrypt the test

sample or the classification result. However, the remote server

interacts with the clinician when the homomorphic properties

of Paillier cryptography are not sufficient to complete the

task. During the interaction any encrypted values sent by

the server could be decrypted by the clinician. It is possible

to formally analyse whether this interaction can reveal any

server side parameters to the clinician. The server first interacts

with the clinician to compute J(c1t)
′(c1t)K from J(c1t)K (see

between (22) and (23)). If the server sends J(c1t)K without

any preprocessing then it may possible for the clinician to

infer the normalization parameters using (17). However, the

sever sends only ĴtK = Jc1t + rK, where the addition of

random variables r = [r1, . . . , rn]
′ makes it infeasible for the

clinician to extract any information about the normalization

parameters from t̂. Secondly, the server interacts with the

clinician to exponentiate the encrypted value as described in

Section III-B-3 where the server adds a random value c6,s
in c5,s + c6,s + (2γxs)

′(t) − (γ)(t)′(t) where the range of

c5,s is the same as the range of (γxs)
′(xs). Note that for

every support vector, c6,s is generated freshly. Hence, this

randomization makes it infeasible for the clinician to extract

any server side parameters. However, this interaction reveals

the number of support vectors used for classification. Since

there is no relation between size of the data set and the number

of support vectors used for classification, this leakage is not

a breach to privacy of the data set used in the training phase.

Finally, the server interacts with the clinician for modulo

reduction in order to obtain the sign of the decision function

d(t) (see between (27) and (31)). Since, d(t) is included in

z in (27), revealing z may leak the decision function value

to clinician. Hence, the server adds a random value r to z



TABLE II

SOME EXAMPLES OF NORMALIZED TRAINING SAMPLES OF THE WBC AND PID DATA SETS. THE FIRST FOUR SAMPLES ARE BENIGN WHILE THE LAST

FOUR SAMPLES ARE MALIGNANT.

Fea. 1 Fea. 2 Fea. 3 Fea. 4 Fea. 5 Fea. 6 Fea. 7 Fea. 8 Fea. 9

Sample 1 [WBC] -0.1243 0.1970 -0.6986 -0.7383 -0.6366 -0.5541 -0.6966 -0.1754 -0.6101

Sample 2 [WBC] -0.1196 0.1970 0.2823 0.2666 0.7585 1.6919 1.7700 -0.1754 -0.2827

Sample 3 [PID] -0.8443 -1.1227 -0.1551 0.5306 -0.6944 -0.6745 -0.3681 -0.1902 -

Sample 4 [PID] -0.8443 -0.9976 -0.1551 0.1544 0.1195 -0.4858 -0.9209 -1.0412 -

Sample 5 [WBC] -0.0967 1.2590 2.2442 2.2764 1.8048 1.6919 1.7700 2.2964 1.3543

Sample 6 [WBC] -0.0570 0.1970 -0.0447 -0.0684 0.0609 -0.5541 -0.1485 0.2365 0.3721

Sample 7 [PID] 0.6395 0.8478 0.1524 0.9067 -0.6944 0.2057 0.4612 1.4266 -

Sample 8 [PID] 1.2331 1.9425 -0.2576 -1.2874 -0.6944 -1.0894 0.5964 -0.1051 -

TABLE III

THE CLASSIFICATION RESULTS FOR THE WBC DATA SET FOR DIFFERENT VALUES OF γ IN THE PLAIN-DOMAIN.

WBC γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 1 γ = 10 γ = 20 γ = 50
Benign (444) 436 435 435 435 435 433 433 433

(98.20%) (97.97%) (97.97%) (97.97%) (97.97%) (97.52%) (97.52%) (97.52%)
Malignant (237) 212 212 215 215 215 229 228 228

(89.45%) (89.45%) (90.72%) (90.72%) (90.72%) (96.62%) (90.20%) (90.20%)
Overall Accuracy (681) 648 647 650 650 650 662 661 661

(95.15%) (95.01%) (95.45%) (95.45%) (95.45%) (97.21%) (97.06%) (97.06%)

TABLE IV

THE CLASSIFICATION RESULTS FOR THE PID DATA SET FOR DIFFERENT VALUES OF γ IN THE PLAIN-DOMAIN.

PID γ = 0.1 γ = 1 γ = 5 γ = 10 γ = 15 γ = 20 γ = 25 γ = 30
Benign (500) 466 421 442 462 482 473 444 429

(93.20%) (84.20%) (88.40%) (92.40%) (96.40%) (94.60%) (88.80%) (85.80%)
Malignant (268) 106 166 204 230 239 227 230 218

(39.55%) (61.94%) (76.11%) (85.82%) (89.17%) (84.70%) (85.82%) (81.34%)
Overall Accuracy (768) 572 587 646 692 721 700 674 647

(74.48%) (76.43%) (84.11%) (90.10%) (93.88%) (91.15%) (87.76%) (84.24%)

before sending it to the clinician. Again this randomization

makes it infeasible for the clinician to extract any server side

information. Overall our proposed method not only preserves

the privacy of the patient information but also the server side

classification parameters.

IV. PERFORMANCE ANALYSIS

In this section we analyse the performance of the proposed

encrypted-domain algorithm. We compare the accuracy of

the proposed encrypted-domain method with the conventional

plain-domain method. For the experiment, we consider two

data sets from the UCI machine learning repository called the

Wisconsin Breast Cancer (WBC) and Puma Indian Diabetic

(PID) data sets [27]. The WBC data set contains 681 samples

where 444 samples are benign (non-cancerous) and 237 sam-

ples are malignant (cancerous) while PID data set contains 768
samples where 500 samples are malignant and 268 samples

are benign. The number of features for each sample in WBC

and PID data sets are nine and eight, respectively (excluding

class label attribute). Table II shows some examples of training

samples after normalization from the WBC and PID data sets.

For evaluation, we used a leave-one-out approach [28],

that is, one sample is removed from the data set and all

the remaining samples are used for training the SVM. The

removed sample will be used as patient data. This procedure

will be repeated for a different left out sample each time until

all the samples are used. In order to analyse the proposed

methods we first conduct an experiment in the plain-domain.

Later we do the same experiment in the encrypted-domain for

various scaling factors.

A. Experiments in the Plain-Domain

In all experiments, we assume that the training data are

not linearly separable and therefore we use a Gaussian kernel

method as in (6). Initially, we need to determine empirically an

appropriate value for γ in (6). Hence, we have obtained Table

III and Table IV for the WBC and PID data sets, respectively

in the plain-domain using the method described in Section II.

These tables show the classification accuracy for various γ
values. Let us explain the sixth result column (i.e. γ = 10)

in Table III. When γ = 10, the total number of correctly

classified benign samples is 433 out of 444 (97.52%) and that

of malignant samples is 229 out of 237 (90.72%). In total

662 samples were correctly classified out of 681 (97.21%).

Similarly, when γ = 15 for PID data set as in Table IV, the

total number of correctly classified benign samples is 482 out



of 500 (96.40%) and that of malignant samples is 239 out of

268 (89.17%). In total 721 samples were correctly classified

out of 768 (93.88%). Since γ = 10 for WBC data set and

γ = 15 for PID data set provide higher accuracy than other

values in this experiment, without loss of generality, we use

γ = 10 for WBC data set and γ = 15 for PID data set for the

experiments in the encrypted-domain. We also noticed that the

average numbers of support vectors used for WBC and PID

data sets are 205 and 535, respectively.

B. Experiments in the Encrypted-Domain

We have now evaluated our algorithm with 2048-bit key

size. We tested our proposed privacy-preserving algorithm in a

computer with 3.40 GHz processor and 8 GB of RAM running

on Windows 64-bit operating system. The algorithm is written

in C++ using GNU GMP library version 4.2.4. Both the server

and clinician were modeled as different threads of a single

program, which passes variables to each other.

As we mentioned in Section III-B, the scaling factors

c1, c2, c3 and c5,s have influence on the classification

accuracy in the encrypted-domain due to the fact that the

Paillier cryptosystem only encrypts integers. When we set

c1 = 1, c2 = 1, c3 = 0 and c5,s = 0, the classification

accuracy has reduced to 0%, which shows the importance of

the scaling factor in the encrypted-domain.

Scalar c1 is a linear scalar and has been used to scale

the patient data in (20). We noticed that each element of the

normalized training samples of the WBC and PID data sets

are in the range of ±10−4 (see Table II), hence, we have

chosen c1 = 104. Scalar c2 is also a linear scalar and it has

been used in (12) and (14). In order to get six decimal point

accuracy, we have chosen c2 = 106 in all the experiments.

Scalar c3 is an exponential scalar and used in (12) and (14).

The Paillier cryptosystem only encrypts integers in Zn, hence,

0 < c3 < loge(n). The scalar c5,s must be chosen such that

c5,s + c6,s < c3, where c6,s is a masking factor in the range

of x
′
ixj ∀i, j. Next we obtain a classification accuracy for

different values of scaling factors.

Table V shows the accuracies in the encrypted-domain for

different values of c5,s when c3 = 10. The scalar c5,s can

take any value between 0 and c3 and is not necessarily an

integer. For the WBC data set, the classification accuracy in the

encrypted-domain is equal to the classification accuracy in the

plain-domain when 5 ≤ c5,s ≤ 9 (i.e. γ = 10 column in Table

III). Similarly, for the PID data set, the classification accuracy

in the encrypted-domain is equal to the classification accuracy

in the plain-domain when 7 ≤ c5,s ≤ 9 (i.e. γ = 15 column in

Table IV). However, the performance of the encrypted-domain

algorithm deteriorates when c5,s < 3 (c5,s < 5) for WBC data

set (PID data set) due to the quantization effect of the Paillier

encryption. Hence, the decision function becomes independent

of the patient data and provides infeasible results. Overall, the

proposed method does not degrade the classification accuracy

even when the classification is conducted in the encrypted-

domain for appropriate scaling factors.

TABLE V

CLASSIFICATION RESULTS FOR THE WBC AND PID DATA SETS IN THE

ENCRYPTED-DOMAIN WHEN c3 = 10.

WBC (γ = 10) c5,s = 0 c5,s = 2 c5,s = 5 c5,s = 9
Benign N/A N/A 433 433
(444) (97.52%) (97.52%)

Malignant 4 170 229 229
(237) (1.69%) (71.73%) (96.62%) (96.62%)

Overall 4 170 662 662
Accuracy (681) (0.58%) (24.92%) (97.21%) (97.21%)

PID (γ = 15) c5,s = 0 c5,s = 2 c5,s = 5 c5,s = 9
Benign N/A 71 452 482
(500) 14.20% 90.40% (96.4%)

Malignant 3 23 239 239
(268) (1.11%) (8.58%) (89.17%) (89.17%)

Overall 3 94 691 721
Accuracy (768) (0.39%) (12.23%) (89.97%) (93.88%)

C. Analysing the Factors Related to Accuracy

Equation (6) clearly shows that the classification function

only depends on the number of support vectors (i.e. |S|) and

the corresponding αs ∀s and b. Hence, after the training phase,

the classification task becomes independent of the size of the

data set.

In the encrypted-domain classification equation, d1,s ∀s
and d3 can be calculated by the server in the plain-domain.

Since the test sample, t, given to the server is in the en-

crypted format, d2,s ∀s need to be computed by the server

in the encrypted-domain by interacting with the clinician.

Hence, let us closely look at d2,s = ec5,sec6,s−γt′t+2γx′

st =
ec5,s+c6,s−γt′t+2γx′

st, where the server computes c5,s+ c6,s−
γt′t + 2γx′

st in the encrypted-domain. Since the Paillier

cryptography approximates the values to integers (floor values)

before encryption, it is crucial to scale the values in the test

sample t and support vectors xs. Scaler c1 has been used

to scale the test sample and c5,s has been used to scale the

c6,s − γt′t + 2γx′
st. Scaler c2 has been used to avoid the

approximation errors in d1,s and d3. Hence, classification er-

rors due to integer replacements during Paillier encryption are

solely dependent on choices of these scalars in the encrypted-

domain.

The choice of c1 depends on values in the test sample and

support vectors. Table II in the revised manuscript shows that

these values are in the range of ±10−4 and there was not

significant improvement in performance when we used more

than four decimal points. Hence, the error is dependent on

how many decimal points would be enough to get a good

accuracy. Which means if there is no significant increment in

performance then using more decimal points in values will

not be useful. Since there is no significant improvement in

performance beyond four decimal points c1 has chosen to be

104.

As shown in Section III-B-3, ec5,s has been used to scale

ec6,s−γt′t+2γx′

st. Hence, the classification error is dependent

on the value ec5,s too. Table VI depicts the required c5,s for

various decimal value accuracy (i.e. e2.3026 = 101).



TABLE VI

CONVERSION TABLE FOR c5,s .

c5,s 2.3026 4.6052 6.9078 9.2103 11.5129

Accuracy 101 102 103 104 105

In our experiment, there is no improvement in perfor-

mance beyond three decimal point accuracy for c5,s (i.e.

c5,s > 6.9). Similarly, c2 has been fixed to 106. Overall there

will not be significant improvement in accuracy even if we

increase these scalers beyond the values mentioned earlier.

However, from equations (6) and (8), it is obvious that the

accumulated error of the decision function (i.e. d(t)) due to

the wrong choice of c1 (i.e. if c1 = 102) is proportional

to the number of support vectors × edimension of data

and the accumulated error in the decision function due to

the wrong choice of c2 and c5,s being proportional to the

number of support vectors.

D. Communication Complexity

The communication cost of the proposed algorithm highly

depends on the size of Paillier cryptography; in our imple-

mentation the size of a encrypted sample is 2048 bits long.

Sending an encrypted test sample with N number of features

consumes 2.048N Kbits of bandwidth in the communication

channel. In the proposed algorithm, the server interacts with

the clinician for three times. During the second interaction (i.e.

for exponentiation) the server sends |S| number of encrypted

values (i.e. equal to the total number of support vectors)

while in the first and last interaction the server sends only

one value. Hence, the communication cost for our algorithm

is upper-bounded by the second interaction which requires

2.048|S| Kbits of bandwidth. Since the number of support

vectors should be less than the size of the data set, the worse

case bandwidth requirement for both WBC and PID data sets

are 0.174MB and 0.197MB, respectively.

E. Computation Complexity

We measure the computation complexity in terms of average

runtime required for the proposed algorithm when the size of

the security parameter N = 2048. The average times required

for WBC and PID data sets are 41 and 92 seconds respectively.

It is noted that the average time is increasing linearly, with the

number of support vectors used for classification.

V. RELATED WORK

In general, data classification is a combination of two

phases: training phase and testing phase. The first phase,

training a classifier, requires a large collection of data. There

are various organizations publish their customers data for

research and monetary purposes. Publishing a person specific

data set (e.g. data related to patients of a cancer hospital) may

reveal individuals identity and breach the privacy of patients.

However, there are various privacy preserving techniques (i.e.

anonymization techniques and data perturbation techniques)

have been well studied in literature to preserve the privacy of

individuals in the data sets ( [29]–[31] and references there in).

However, the proposed work in this paper considers the privacy

in the second phase of the data classification task, where

clinicians only require to send the test data of their patient

to the remote server where classifier is already established.

Since the proposed method preserve the privacy of training

data set, it is possible for any organization with large data

to provide a classification as a service to anybody through

the Internet rather than anonymize and publish the data set in

plain-domain. Hence, our method is different from the data

anonymization and data perturbation based methods.

A SVM has been used in bio medical engineering to

diagnose various diseases in the plain-domain ( [9]–[11] and

references therein). Note that, any algorithm in the plain-

domain cannot be used to provide decision support via the

Internet due to the privacy issue. Recently, Mathew and

Obradovic proposed a privacy preserving framework for clin-

ical decision support using a decision tree based machine

learning technique [32]. The work in [32] supports prevention

of personally identifiable information leakage. However, the

authors in [32] only considered the privacy of the training data

set by assuming that the training data is available from more

than one location. In our work, we are not only preserving the

privacy of the training data set but also the patient data and

the result. Moreover, the algorithm developed for the decision

tree cannot be directly extended to a SVM.

Let us review some of the privacy-preserving SVM algo-

rithms developed in the data mining literature. The majority of

works in datamining were developed for the distributed setting

[33]–[36]. More specifically, in [33]–[36], the researchers

assumed that different parties hold parts of the training data

sets. Hence, they developed protocols to securely train a

common classifier without each party needing to disclose its

own training data to other parties. After the training each party

holds part of the classification parameters and support vectors.

In order to classify a new data, each party has to be involved

equally to compute part of the kernel matrix and then all

parties together or the trusted third party will classify the new

data. The works in [34]–[36] exploited the secure multi-party

integer summation to cooperatively compute the kernel matrix.

Basically, each party generates the Gramm matrix using scalar

products of the training and new data samples. This Gramm

matrix is later revealed to the trusted third party who will

compute the kernel matrix and then classify the new data.

Revealing the Gramm matrix may leak the private data and

therefore privacy cannot be entirely preserved.

The work in [33] proposed for the first time a strongly

privacy-enhanced protocol for a polynomial kernel based SVM

using cryptographic primitives where the authors assumed that

the training data are distributed. Hence, to preserve privacy,

they developed a protocol to perform secure kernel sharing,

prediction and training using secret sharing and homomorphic

encryption techniques. At the end of the training each party

will hold a share of the secret. In the testing phase all parties

collaboratively perform the classification using their shared

secrets. At the end of the protocol each party will hold a

share of the predicted class label. Since the work is based

on secret sharing, all the parties must be involved in every

operation of calculating the kernel values and predicting the



class. Hence, it is suitable only for the distributed scenario and

not for the client-server model considered in this paper. In the

client-server model, the client just sends the new data in the

encrypted-domain and is minimally involved in interactions

with the server during the classification process. Moreover,

the method developed in [33] considered only the polynomial

kernel and so it cannot be modified directly to work with the

Gaussian kernel based SVM considered in this paper as these

kernel functions are of different forms.

The recent work in [37] discusses the issue of releasing

the trained SVM classifier without violating the privacy of

support vectors. While the Gaussian kernel was considered,

a Taylor series was exploited to approximate the infinite

dimension of the Gaussian kernel into finite dimension and

adhere negligible performance loss. Since this works purely

in the plain-domain, it cannot be modified to the clinician-

server scenario considered in this paper.

VI. CONCLUSIONS

In this paper we have proposed a privacy-preserving deci-

sion support system using a Gaussian kernel based support

vector machine. Since the proposed algorithm is a potential

application of emerging outsourcing techniques such as cloud

computing technology, rich clinical data sets (or healthcare

knowledge) available in remote locations could be used by

any clinicians via the Internet without compromising privacy,

thereby enhancing the decision making ability of healthcare

professionals. We have exploited the homomorphic properties

of the Paillier cryptosystem within our algorithm where the

cryptosystem only encrypts integer values. Hence, we pro-

posed a novel technique to scale the continuous variables

involved in the process without compromising the performance

and privacy. To validate the performance, we have evaluated

our method on two medical data sets and the results showed

that the accuracy is up to 97.21%. Importantly, the benefit of

our encrypted-domain method is that patient data need not be

revealed to the remote server as they can remain in encrypted

form at all times, even during the diagnosis process.
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