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Abstract 
The addition of ethyl ester L-lysine tri-isocyanate (LTI) to mixtures of poly(lactide)/poly(ε-

caprolactone) has been reported to improve the compatibility of the resulting blends. In the present 

work, we have investigated the influence of adding increasing amounts of LTI to the mechanical 

and thermal properties of the blends. Torque trends, plate-plate rheology, differential scanning 

calorimetry, scanning electron microscopy, and uniaxial tensile characterization were conducted on 

samples with amounts of LTI comprised between 0.5 and 5 phr. Results suggests that by increasing 

the content of LTI over 0.5 phr the mechanical and thermal behaviour of the blends tend to change 

from that of a thermoplastic to that of a cross-linked, rubber-like material with outstanding 

mechanical properties. Morphological investigations show a very fine, well-dispersed morphology 

in all cases. Numerical models have been applied to rheological experiments to identify processes 

and phases in the studied blends, further supporting the hypothesis of a cross-linked phase formed 

for blends containing more than 0.5 phr of LTI. 

 

 

1. Introduction 

 

In recent years the growing interest into bio-based polymers for environmental and medical 

applications has brought the need for new types of materials which can show outstanding physical 

properties, while maintaining the bio-integration1. 

Most of the commercial grades of bio-polymers available nowadays show mechanical properties 

which are still not ideal for orthopaedics applications. Metals continue to be widely used in this 

sector, although polymeric material with proper elasticity and mechanical characteristics, able to 

dissolve in a biological medium and to selectively deliver drugs, could represent a useful 

alternative1b. 



A widely used method to tailor materials properties making use of what is commercially available is 

melt blending, and several studies have been devoted to the issue of obtaining properly dispersed 

blends using diverse combinations of polymers2. Polyesters, such as polylactide (PLA) and poly(ε-

caprolactone) (PCL),are good examples as they couple interesting mechanical/thermal properties 

with biocompatibility and biodegradability. 

Poly(lactide) is obtained by ring-opening polymerization of the (D,L) enantiomorphs of lactide, it is 

brittle at room temperature, as its Tg is ~ 60 °C, but shows suitable mechanical features like high 

yield strength and Young’s modulus. Since lactides are sugars fermentation products, another great 

advantage is that the polymer can be obtained from 100% renewable sources1b,1d. 

Poly(ε-caprolactone) is instead a rubbery and very ductile material (Tg ~ -60 °C), with over 1500% 

of ultimate strain and ~ 200MPa elastic modulus1b,1c. 

They are both frequently used, either pure or in blends, in particular in the medical field, where they 

have found applications such as scaffolds for cellular growth, and sutures3. 

Achieving a good dispersion of one phase in another is key to blending, since the properties of the 

final materials are expression of the interface characteristics1b,1d, 2,4. 

Many studies have targeted the dispersion of these polyesters, for example using block and random 

copolymers as additives during mixing, which brought more ductile materials with noticeable 

properties1a,4a,4b,4c. 

In multiphasic systems, the viscoelasticity of the interface is an important parameter, as it influences 

the macroscopic properties of the materials. 

The linear viscoelastic properties obtained from rheological experiments can be used to infer the 

homogeneity and the phase dispersion of the materials, as a result of the presence of an interfacial 

area (and consequently interfacial tension) between the polyesters. 

Previous studies on PLA/PCL blends reported that materials without a fine dispersion of the two 

components show an enhancement in the elastic modulus in the frequency region below 1 Hz, that 

has been attributed to the shape relaxation of the dispersed phase due the presence of the interface5. 

Reactive mixing, i.e. the use of reagents able to produce reactive compounds chemically similar to 

the two phases during the mixing stage, has been reported as a successful method to obtain a fine 

dispersion and good interfacial characteristics in blends1a,4d,4e,6. Reactive agents based on amino-

acid derivatives have been studied to produce co-polyester-urethane networks3, 7or in polyester 

blends obtained by reactive mixing or extrusion1d, 4e, 6b, 6c. 

Ethyl ester L-lysine tri-isocyanate (LTI) is a three-functional molecule, able to react with the 

hydroxyl chain ends of polyesters, generating grafted and cross-linked co-polyester-urethanes 

structures1d, 1e. 



The maximum amount of the reactive agent used till now, as found in the literature, is 2 phr4e,4f,6b: 

Tuba et al. have investigated the increased ductility of the blends, while. Takayama et al. conducted 

annealing experiments of the reactive blends after processing, obtaining further improvements in 

both ductility and impact strength. 

To the best of our knowledge, none of those studies employing LTI as a reactive agent has focused 

on the reaction mechanisms, to elucidate how the cross-linking density influences the mechanical 

properties and the viscoelastic interfacial characteristics of these reactive polyester-based blends. 

We have previously reported that reactive blends of poly(lactide), poly(ε-caprolactone) and LTI can 

show outstanding mechanical features and a range of applicability1b. 

In the present work, combining rheology, differential scanning calorimetry, uniaxial tensile, and 

electronic microscopy, we have analysed the influence of increasing amounts of LTI up to 5 phr on 

blends of PLA/PCL. Results suggest that high amounts of reactive agent (>0.5 phr) can lead to a 

different kind of material, which is still retaining some of the properties of the base polyesters, 

while showing a proper cross-linked, rubber-like behaviour. Further confirmation of the existence 

of this cross-linked phase is obtained from rheological data. 

The dynamic rheological behavior of the reactive blends has been modelled using frequency 

dependent computational formulae. The fractional calculus was introduced to relate stress to strain 

fields describing viscoelastic phenomena8. To describe the experimental data of materials which 

exhibit symmetrical loss peak behavior or contain symmetrical distinct processes in the frequency 

spectrum, the Cole-Cole or four-parameter fractional derivative Zener function model can be 

applied9. In addition, to fit asymmetrical processes the five-parameter fractional derivative Zener 

model has proven to be useful10. Similar semi-empirical mathematical formulae have been 

employed previously to model the dielectric response of materials including asymmetrical 

processes11. 

 

2. Experimental 

 

2.1 Materials and methods 

Poly(lactide) (Bioflex F6510,Mn = 40000 g/mol, Mw= 160000 g/mol by GPC, supplied by FKUR) 

and Poly(ε-caprolactone) (Mn= 100000 g/mol; Mw = 160000 g/mol by GPC, supplied by Sigma-

Aldrich) pellets were dried overnight before use. 

Ethyl ester L-lysine tri-isocyanate (optical purity 80%, supplied by Infine Chemicals) in liquid form 

was used as received. Physical and reactive blends were obtained by blending with an internal 

mixer, a Brabender Plasticorder PL-2000, following conditions previously described in 1b: 



- Polyesters pellets previously weighted and mixed in a glass beaker, were added in the mixer 

chamber at 180 °C and 25 rpm, at a constant ratio of 50:50 (wt%) 

- After 5 minutes of mixing, LTI (amounts comprised between 0,5and 5 phr) was added to the 

blends, keeping the processing conditions constant for further 10 minutes. 

- During the mixing process, torque values expressed in N*m were recorded every 30 s by the 

Brabender software on a PC interfaced with the instrument transducer. 

- Materials obtained were compression moulded at 180 °C and 100 bars for 10 minutes with a 

Campana s.r.l press, equipped with a water cooling system, to obtain flat sheets of 1mm thickness. 

All blends produced have been detailed and codified as reported in Table 1: 

 

Table 1 – Blends code and composition 

 

Code PLA 
(wt.%) 

PCL 
(wt.%) 

LTI 
(phr) 

T0 50 50 0 

T05 50 50 0,5 

T1 50 50 1 

T2 50 50 2 

T5 50 50 5 

 

 

Dog bones for tensile characterization were obtained by a Ray-Ran manual die cutter, following the 

ASTMD638-10. Type V specimens were characterized with a Lloyd LR 10K Uniaxial machine 

with a cross-head speed of 10 mm/min according to the same standard. The mechanical parameters 

obtained from uniaxial tests are: Young modulus (E, MPa), stress at yielding (σy, MPa) stress at 

break (σb, MPa), maximum stress (σmax, MPa), elongation at yielding (εy, %) and at break (εb, %), 

and work at break (Wb, J). 

Samples for scanning electron microscopy were obtained by cryogenical fracture in Liquid 

Nitrogen, in order to investigate the dispersion of the phases before and after rheological analysis. 

The as-compressed materials were characterised with a FEI Quanta FEG 450 microscope, operating 

at an accelerating voltage of 5kV in low vacuum mode, while the samples after rheology were 

analysed using a JEOL 7800F Field Emission Scanning Electron Microscope at 5kV. 

Calorimetric characterizations were performed via differential scanning calorimetry with a TA 

Instruments DSC Q100, using 5 mg samples subject to temperature ramps from room temperature 



to 200°C, ata heating rate of 10 °C/min. The crystalline degree of PCL, χ, was calculated using 

equation (1): 

 

                                          𝜒𝜒 =  ∆𝐻𝐻𝑚𝑚
𝜑𝜑∙∆𝐻𝐻0

         (1)  

 

Where ΔHm [J/g] is the melting enthalpy as derived from the DSC traces, ϕ is the weight fraction of 

the PCL and ΔHo[J/g] is the theoretical enthalpy of fusion of a 100% crystalline PCL 6b. 

Initial crystalline fraction of PLA, χi, was calculated using equation (2): 

 

   𝜒𝜒𝑖𝑖 =  ∆𝐻𝐻𝑚𝑚−∆𝐻𝐻𝑐𝑐𝑐𝑐
𝜑𝜑∙∆𝐻𝐻0

        (2) 

 

Where  ΔHcc [J/g] is the “cold-crystallization” enthalpy of PLA. Cold crystallization is due to the 

well-known phenomenon of PLA re-organization in more ordered regions induced by the thermal 

heating during a DSC test 6b. For this reason, equation 3 has been used to calculate the crystalline 

degree of the cold crystallized PLA (χcc): 

 

   𝜒𝜒𝑐𝑐𝑐𝑐 =  ∆𝐻𝐻𝑐𝑐𝑐𝑐
𝜑𝜑∙∆𝐻𝐻0

         (3) 

 

Rheology experiments were conducted on an ARES LS2 by TA Instruments equipped with 25 mm 

plate-plate geometries. A temperature ramp experiment was initially conducted from room 

temperature to 200 °C at 10 rad/s and 0.1% strain, followed by strain amplitude oscillation, at 10 

rad/s and 150 °C from 0.1 to 10% of strain. The limit of the linear viscoelastic region was found to 

be 0.8% of strain for all blends and this limit was used for the other experiments. The thermal 

response with time was evaluated by applying 0.8% strain at 10 rad/s for 105s at 150 °C. During this 

experiment, a build-up of the elastic modulus G′ was observed. Once the G′ reached a plateau value, 

the frequency response was evaluated at 150 °C, 0.8% of strain from 400 to 10−2rad/s.  

 

3. Results and discussion 

3.1 Torque characterization 

 

The graph in Figure 1 shows the torque vs time trends of physical (T0) and reactive blends (T05-

T5), as recorded during the mixing process. 

 



 
Figure 1. Torque vs time trends of Physical and Reactive blends 

 

The torque is strictly related to the viscosity η of the molten materials and this, in turn, is associated 

to their molecular weights, as suggested by Berry and Fox for any molecular weight M higher than a 

critical value Mc, defined as double the mass between entanglements, Me
12: 

 

η∝𝑀𝑀α   ;          𝛼𝛼 = 3.4              (4)                                        

 

The torque values show a considerable increase, in some cases to double the initial values, in the 

presence of LTI 12b. According to Harada et al., the reactive mixing process in presence of LTI can 

produce copolyester-urethane networks, which localize at the interface between the polyesters, 

bringing to a finer dispersion of phases1d,1e. 

The torque results support the idea that new branched and/or cross-linked structures of co-polyester-

urethanes are formed during processing.  

As shown in Figure 2, the reaction of LTI with PLA and PCL brings branched structures, thanks to 

the three-functionality of the reactive agent. 
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Figure 2. The reaction between PLA/PCL and LTI resulting in a combination of branched 

copolymer and (at higher content) network formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2 Tensile characterization 

 

 
Figure 3. Stress strain curves of a) PLA and PCL homopolymers, and b) all blends, obtained after 

physical or reactive mixing. 

 

 

The stress-strain curves of PLA and PCL as homopolymers (Fig. 3a), obtained after the same 

mixing time, confirm the complementary behaviour of the two polyesters. The highest ductility of 

PCL is opposite to the stiffness and yield strength of PLA, as already discussed in literature 
1b,1c,1d,2,5,6  

When comparing the tensile tests results performed on all blends, (Figure 3b and Table 1) the T0 

blend show a fragile behaviour similar to the pure PLA, while for all the other blends an increase in 

ductility is observed, irrespective of the LTI amount. Furthermore, an increase in mechanical 
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strength is observed for increasing amounts of LTI. It is worth mentioning that the strain at yield, an 

index of the material resilience, has the highest value for the T05 blend (27%, while T0 value is 

3%), while the stress at yield, an index of mechanical strength, reaches the highest value for the T5 

blend, 20.2 MPa, an increase of 178% compared to the T0.  

The increase in cross-linking density is affecting the elastic modulus, which becomes in the T5 

blend almost double that of T05 (from 267 to 485 MPa, +82%).  

From a stoichiometric point of view, in the reactive blend T05 the addition of 0.5 g of LTI 

(molecular weight = 267.24 g/mol) in 100 g of blend corresponds to 0.002 moles (and 0.006 moles 

of available NCO reactive groups). A very rough estimate of the moles of chain ends present in our 

blend (based on the Mn values measured by GPC) gives a value of available OH in the order of 

0.004 moles. In this respect, it is possible to speculate that at low loading of LTI, the reaction shown 

in Figure 2 is mainly forming branched copolymers with a random composition of PLA and PCL. 

When the loading is increased, the LTI tends to saturate all possible chain ends, thus forming a 3D, 

cross-linked network.  

It should be considered that the mass between crosslinks is in all cases very high, as the LTI can 

only react with the chain end groups of both polymers, and this could be the reason for the high 

ductility observed even in the presence of 5 phr of LTI. For that reason, the work at breakage of T5 

has a value of 6.22 J, while the value of T0 is only 0.02 J (an increase of more than 300 times), and 

the highest value of elongation at break is observed for the T1 blend, with 646 % instead of 10%. 

The work at breakage and the elastic modulus are plotted in Figure 4. 

 

Table 2 – Mechanical properties of blends from tensile tests. 

Sample E 

[MPa] 
εy 

[%] 

σy 

[MPa] 

σm 

[MPa] 
εb 

[%] 

σb 

[MPa] 

Wb 

[J] 

PLA 816±120 6±1 22.4±1.6 22.4±1.6 15±4 15.1±0.9 0.08±0.03 

PCL 154±26 19±3.3 14.0±0.9 43.0±6.0 1405±243 39.8±4.8 10.81±3.01 

T0 334±48 3±0.7 7.2±0.6 10.0±0.9 10±2 9.5±0.6 0.02±0.01 

T05 267±47 27±8 13.2±1.0 21.8±2.8 446±81 21.5±2.8 3.05±0.92 

T1 370±51 21±5 17.6±1.2 39.0±2.1 646±38 38.8±2.1 5.72±0.41 

T2 473±45 14±2 20.0±0.7 43.4±6.0 534±71 43.0±6.4 6.20±1.36 

T5 485±57 16±1 20.2±1.4 45.7±1.9 586±68 45.6±2.0 6.2±0.5 
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Figure 4.Elastic modulus and work at breakage as a function of the LTI amount in the blends. 

 

The Elastic modulus of blends can be theoretically estimated using the Equivalent Box Model13. 

The model estimates the elastic modulus of a blend based on the relative elastic moduli of the 

components (E1, E2), their volume fractions (v1, v2) and the parallel and serial parts of those 

fractions (v1p, v2p, v1s, v2s), according to equation 5: 

 

𝐸𝐸𝑏𝑏 = 𝐸𝐸1𝑣𝑣1𝑝𝑝 + 𝐸𝐸2𝑣𝑣2𝑝𝑝 + 𝑣𝑣𝑠𝑠2 [(𝑣𝑣1𝑠𝑠 𝐸𝐸1⁄ ) + (𝑣𝑣2𝑠𝑠 𝐸𝐸2⁄ )]⁄       (5) 

In our blends, according to our previous study 1b, the experimental values of the elastic moduli for 

PLA and PCL are: 

𝐸𝐸1 = 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 815.91 𝑀𝑀𝑀𝑀𝑀𝑀; 

𝐸𝐸2 = 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 153.70 𝑀𝑀𝑀𝑀𝑀𝑀;  

𝑣𝑣1𝑠𝑠 = 0.31; 𝑣𝑣2𝑠𝑠 =  0.31;  𝑣𝑣1𝑝𝑝 = 0.19;  𝑣𝑣2𝑝𝑝 = 0.19; 𝑣𝑣𝑝𝑝 = 𝑣𝑣1𝑝𝑝 + 𝑣𝑣2𝑝𝑝;  𝑣𝑣𝑠𝑠 = 𝑣𝑣1𝑠𝑠 + 𝑣𝑣2𝑠𝑠; 

 

The parallel or the serial fractions of the blends components have been evaluated theoretically 

following the method reported elsewhere 13f. 

The estimated value of Eb, 344 MPa, is very close to the experimental result of the physical blend 

(334 MPa), confirming a good reliability of the model. 

Instead, for all reactive blends (T05-T5), the experimental elastic moduli are not in line with the 

theoretical values (for example 473 MPa in T5 blend), most probably due to the effect on 

mechanical properties of the new cross-linked phases in the system. 

 

3.3 Thermal characterization 

 

DSC traces for all blends and corresponding thermal parameters are given in Figure 5 and Table 3. 

The DSC traces clearly show a progressive decrease of melting and cold crystallization enthalpies 
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with increasing amounts of LTI, a shift of the melting peak of PCL to lower temperatures and a 

shift of the cold crystallization peak of PLA to higher temperatures. These observations concur to 

reinforce the hypothesis that a progressively denser cross-linked network is formed, thus reducing 

the ability of the two polymers to crystallize. 

 

Table 3 - Differential scanning calorimetry data for all blends. 

Sample 

Tm 

PCL 

(°C) 

ΔHm 

PCL  

(J)  

Tcc 

PLA 

(°C) 

ΔHcc 

PLA  

(J) 

Tm 

PLA  

(°C) 

ΔHm 

PLA  

(J) 

χi 

PLA 

(%)  

χcc 

PLA 

(%)  

χ 

PCL 

(%)  

T0 64.02 39.68 103.61 7.24 146.65 155.74 9.45 3.28 10.72 55.69 

T05 62.83 35.57 111.05 6.21 148.31 154.37 8.35 3.17 9.20 49.92 

T1 62.08 32.43 113.05 7.11 148.88 157.14 8.33 1.81 10.53 45.52 

T2 61.87 32.32 113.50 3.86 149.46 6.80 4.36 5.72 45.36 

T5 62.75 31.78 117.85 5.21 149.57 6.44 1.83 7.72 44.60 

 

 
Figure 5. DSC thermograms for all blends. 

 

 

 

3.4 Rheology 
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In Figure 6 are reported the shear amplitude sweeps of two blends, T0 and T1, with black squares 

indicating the storage modulus, red for the loss modulus and blue for the tanδ. 

 
Figure 6. Shear amplitude response of physical blend T0 and reactive blend T1. 

 

The linear viscoelastic regime, defined as the zone of linear response of the moduli in a strain 

modulation experiment, has been estimated to be up to 0.8 % of strain and this value has been used 

for the subsequent experiments. As Figure 6 shows, just 1 phr of LTI is enough to observe an 

increase of the storage modulus of several order of magnitude. In figure 7 are reported the storage 

moduli as a function of time for the various blends when a constant temperature of 150 °C and a 0.8 

% of strain are applied.  



 
Figure 7. Time evolution of storage modulus G’ for all blends. The modulus remains constant for 

the T0 blend, while a progressive increase is observed for all reactive blends.  

 

It is interesting to observe that the storage modulus for the T0 blend does not change with time, 

while an increase is observed for all the reactive blends, and it is more pronounced, the higher the 

amount of LTI is. This result can be explained if we postulate that the reaction between LTI and the 

available OH groups is not completed during the thermo-mechanical processing, and the different 

plateau values correspond to fully-cured materials with increasing cross-linking density. As the 

amount of LTI in the blends increases, both the slope of the build-up curves and the G’ values 

increase, suggesting that the reaction kinetics and the obtained cross-linking density are governed 

by the reactive agent amount. Therefore, from a proper viscous thermoplastic melt, with the 

progressive increase of the carbamates links, we produced a series of materials with an evident 

elastic and/or rubber-like behaviour. 

Once all the blends reached a plateau value, indicating that an equilibrium situation had been 

achieved, frequency sweep experiments were conducted. The frequency response experiments data 

are plotted in Figure 8, showing the trends for both storage (G’) and loss (G”) moduli. In both cases, 

moduli values increase with increasing the LTI content. These results are in line with the previous 



characterizations, and confirm the formation of a cross-linked network showing a solid-like 

behaviour. 

 

 
 

 

Figure 8. Frequency response of physical and reactive blends; top: G’, bottom: G”. 

 



The storage modulus trend of the T0 blend shows an evident change in slope at frequencies below 1 

rad/s. This variation of the elastic behavior, according to previous studies, is attributed to the shape 

relaxation of the dispersed phase, often observed in the shape of big circular droplets, due the high 

interfacial energy exhibited by PLA and PCL when mixed. 

 In the low frequencies region, the effect of this interfacial interaction is more prominent 4a. The 

disappearance of this slope change in all reactive blends suggests a much finer dispersion of the two 

phases, and a lower interfacial energy.  

For the reactive blends containing 1phr or more of LTI, the values of G’ are higher than G” in the 

entire range of frequencies examined. This suggests a transition from a proper molten thermoplastic 

behaviour displayed by T0 and T05, to a solid, rubber-like behaviour, typical of a cross-linked 

structure, displayed by the remaining reactive blends. It is also evident how the gap between the two 

moduli becomes wider as the LTI content increases, indicating a denser cross-linking. 

Rheological characterisations confirm what observed already from the tensile tests, where the T05 

reactive blend seems to be the boundary between a binary system compatibilized by the in-situ 

formation of copolymers and a crosslinked network. 

 

3.5 Numerical Modeling of Rheological Properties  

 

The Cole-Cole or four-parameter fractional derivative Zener function model was applied to 

describe the experimental data obtained from rheology. 

The complex, real and imaginary parts of modulus follow the Equations 6 to 8 respectively, as 

follows: 

𝐺𝐺∗ = 𝐺𝐺𝑜𝑜 + (𝐺𝐺∞−𝐺𝐺𝑜𝑜)(𝑖𝑖𝑖𝑖𝑖𝑖)𝛽𝛽

1+(𝑖𝑖𝑖𝑖𝑖𝑖)𝛽𝛽 = 𝐺𝐺′ + 𝑖𝑖𝐺𝐺′′        (6) 
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where 𝑙𝑙𝑖𝑖𝑙𝑙
𝑖𝑖→∞

𝐺𝐺 =𝐺𝐺∞is the high-frequency limit value of the dynamic modulus, lim
𝑖𝑖→0

𝐺𝐺 = 𝐺𝐺0 is the 

zero frequency limit value of the dynamic modulus, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 is the frequency loss peak position and 

β is the model’s parameter where 0< β< 1. For β = 1, the conventional Zener model applies 

implying the existence of a single relaxation time9,10, while β approaching 0 indicates a wide 

distribution of relaxation times.  



When more relaxation processes take place, the superposition of the individual relaxations needs to 

fit the experimental data, according to Equations 9-10:14 

𝐺𝐺𝑆𝑆′ = ∑ 𝐺𝐺𝑁𝑁′𝑁𝑁
1  (9) 

𝐺𝐺𝑆𝑆′′ = ∑ 𝐺𝐺𝑁𝑁′′𝑁𝑁
1     (10)  

where 𝐺𝐺𝑆𝑆′  and 𝐺𝐺𝑆𝑆′′ are the real and imaginary parts of the modulus superposition for 𝑁𝑁 processes.  

 

 

 
Figure 9.The storage and loss moduli, corresponding to real and imaginary part of the complex 

modulus, as a function of angular frequency at 150 oC for all blends, with corresponding fitting 



according to the Cole-Cole or four-parameter fractional derivative Zener function model. Black 

represents the real part while red the imaginary part of the complex modulus.  

 

Figure 9 presents the storage and loss modulus as a function of angular frequency at 150oC for all 

studied specimens. The rheological behaviour was fitted following the model described above, 

where the α-modes of PLA and PCL and the interfacial process between them where described. The 

solid squares represent the experimental values as obtained from rheology, while the solid lines 

represent the superposition of the individual relaxations (shown as open symbols).Two phases were 

sufficient to perfectly fit the behavior of the T0 and T05 blends. From the T1 blend onwards, a third 

phase had to be introduced in order to fit the experimental data. According to the model’s 

parameters presented in Table 4, the β parameter of PCL’s and PLA’s α-modes is generally 

increasing with the addition of LTI, approaching a more ideal rheological behaviour with a single 

relaxation time. This provides evidence that the distribution within the chains of each polymer type 

is diminishing, and it can be attributed to the growing cross-linked phase. The contribution of the 

cross-linked phase, as expected, increases with the addition of LTI (the 𝐺𝐺∞ factor increases) as it 

gains more mass, while the distribution of relaxation modes is almost unperturbed between 1 and 5 

phr LTI (β ≈ 0.3). Additional information that can be retrieved from the numerical modelling are 

the shift of PLA loss peak to lower frequencies, the reduction of G∞ and the increase of both the α-

mode of PCL and the interfacial process with increasing LTI amounts. All these observations 

concur to strengthen the hypothesis that LTI reacting with chain ends of both PCL and PLA, 

initially creates an in-situ copolymer that improves the polymers blending for T05, while for LTI of 

1 phr and above, a third phase appears from the extensive crosslinking. The boundary between the 

T05 and the T1 represents the switch from a 2-phase interface to a 3-phase interface, evident in the 

sudden jump of G∞ from 1.45 to 65 and the corresponding decrease of β, that can be attributed to 

broader distribution and complexity of relaxation modes between the 3 phases.  

  



Table 4 - Parameters used for the Cole-Cole function model where 𝐺𝐺0 and 𝐺𝐺∞ are the values of 

modulus in zero and infinite frequency respectively, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 is the loss peak position and β is the 

model’s parameter.  

Blend Process 𝑮𝑮𝟎𝟎 (kPa) 𝑮𝑮∞ (kPa) 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎 (rad/s) β 

T0 

α-mode PLA 0.040 370 825 0.812 

α-mode PCL 0.030 0.75 27 0.298 

InterfacialProcess 0.070 0.43 0.04 0.779 

T05 

α-mode PLA 0.040 385 420 0.857 

α-mode PCL 0.040 65 30 0.736 

InterfacialProcess 0.050 1.45 0.30 0.685 

Cross-Linked - - - - 

T1 

α-mode PLA 0.040 495 185 0.908 

α-mode PCL 0.040 425 25 0.576 

InterfacialProcess 0.050 65 0.30 0.513 

Cross-Linked 1.000 7.50 0.0002 0.367 

T2 

α-mode PLA 0.040 280 170 0.978 

α-mode PCL 0.040 395 25 0.609 

InterfacialProcess 0.050 165 0.30 0.523 

Cross-Linked 1.000 98 0.0002 0.347 

T5 

α-mode PLA 0.040 220 160 0.989 

α-mode PCL 0.040 395 25 0.623 

InterfacialProcess 0.050 220 0.30 0.535 

Cross-Linked 1.000 220 0.0002 0.315 

 

The Cole-Cole curve �𝐺𝐺′′ = 𝑓𝑓(𝐺𝐺′)� at 150oC for all studied specimens is presented in Figure 10. 

The symbols represent the experimental data, while the lines are the superposition of the modelled 

relaxation processes of each specimen. While the curves for T0 and T05 originates from (0,0), 

confirming that we experimentally observe the full relaxation modes of the two-phase components, 

the curves for T1 and higher are progressively shifted, supporting the existence of a third 

component with very high relaxation times. 

 



 
Figure 10.Cole-Cole plot of all the specimens at 150oC. 

 

3.4 SEM characterization 

 

SEM images have been acquired following the thermo-mechanical blending, before and after 

rheological experiments. The images shown in Fig. 11 correspond to samples before the full-

curing/build-up process in the rheometer. The LTI effect on the morphology of the blends is evident 

and clearly dependent on the amount. The physical blend shows an heterogeneous morphology, 

with wide PLA spherical droplets that, according to previous studies6b,6c, is due to the interfacial 

tension between the polyesters solidifying from molten state. The reactive blends show a much finer 

dispersion, with smaller droplets, as noticeable by the T2-T5 images (Fig. 11). 

From T1 to T5 images, it is possible to have visual evidence of a third phase, indicated by the 

arrows in Fig. 11, which seems to be in acicular shapes. The acicular shape could be originating 

from the shear induced during the mixing of blends.The formation of these particles could justify 

the effect detected on the mechanical properties, similarly to what happens when rod-like 

particulate is added to blends. Previous studies have found that mechanical properties, like elastic 

modulus or mechanical strength of Poly(lactide) or Poly(ε-caprolactone) composites, were 

improved by addition of particles like SiO2 or carbon15. 

The T5 blend presents an overall rougher morphology, probably because the third phase is 

extensively present as an amorphous and brittler component in the blends. 

 



 

 

 
Figure 11. SEM images of physical and reactive blends before rheology. 
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Figure 12. SEM images of reactive blends after 8x104 s at 150 °C. 

 

As shown in Figure 12, after the ‘curing’ observed in the rheometer, reactive blends exhibit a 

smoother and more homogeneous surface, despite what observed previously in particular for the T5 

blend. That is probably due to the increased size of the network, in which some particles of 

unreacted polymers are finely dispersed, following the high temperature shear in the rheometer. 

No degradation processes seem to occur, suggesting that the LTI presence in the blends could slow 

down these phenomena, with a mechanism which is still under study. 

 

4. Conclusions 

 

The addition of a reactive agent, LTI, to 50/50 wt % mixtures of PLA and PCL can improve 

dramatically the mechanical performance of the resulting blends. The effect on the blends of 

increasing amounts of LTI from 0.5 up to 5 phr has been followed by thermal, mechanical and 

optical characterizations, including torque, tensile tests, rheology, DSC and SEM.  

T05 T1 

T2 T5 



 Experimental data from all techniques concur to suggest that at low levels of LTI (0.5 phr, T05) the 

resulting blend is displaying a thermoplastic behavior and a finer dispersion, while for LTI ≥ 1phr a 

third phase with a rubber-like behavior appear to be forming. Our hypothesis to justify the observed 

response is that at lower level of LTI, the random reaction with PLA and PCL chain ends results in 

the in-situ formation of three-armed copolymers that improve the polymers compatibility. For LTI 

amounts ≥ 1phr, a progressive saturation of the chain end groups leads to the formation of a cross-

linked network constituting by all means a third phase.  

Mechanical characterization showed how the ductility was maintained for all blends, also when the 

LTI amount is as high as 5phr, thanks to long spacing between the cross-links. Elastic modulus and 

mechanical strength of all materials appeared to be improved for the reactive blends compared to 

the pure blend T0. 

The appearance of a third phase from blends containing ≥1phr of LTI was further supported by the 

numerical modelling of the rheological results via the Cole-Cole or four-parameter fractional 

derivative Zener function model.  
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