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Abstract 

Floating photocatalytic composite particles were created by injecting a lipid 

(sunflower oil or liquefied cocoa butter) into an aqueous suspension of TiO2 

nanoparticles using the process of membrane emulsification to control the 

(Pickering) emulsion size. The composite particle median diameters were controlled 

in a range from 80 to 300 µm. The composite particles floated in water and 

possessed photocatalytic activity, which was further enhanced by chemically 

incorporating silver particles into the TiO2 shell. The cocoa butter-based composite 

particles proved more robust, and were not affected by the UV photocatalytic 

process. Using a combination of cocoa butter and hexane, for the core of the 

particles, it was possible to generate composite TiO2 and lipid particles with 36 mg 

TiO2 per gram of particle. Optimal dye decolourization was achieved with a particle 

surface coverage of between 60 and 80%. Complete surface coverage resulted in a 

reduced reaction rate due possibly to reflection of the UV light. 

 

 



2 

1. Introduction 

The photocatalytic potential of the semi-conductor, titanium dioxide (TiO2) has been 

described at length, and many reviews of its wide-ranging uses have been 

published; a recent example being that of Gaya and Abdullah1.  In essence, when 

the anatase crystalline form of TiO2 is irradiated with UV light at wavelengths in the 

vicinity of 365 nm, electrons are promoted from the valence to the conduction band. 

Both the energised electrons and the positive holes created thereby can undergo 

reactions that lead to the formation of a number of free radical species (Figure 1). 

These highly oxidizing species have the ability to completely mineralize organic 

matter2. Many applications of TiO2 relate to the remediation of aqueous 

environments and there are a number of different ways by which TiO2 could be 

employed to achieve this. In some studies the TiO2 nanoparticles have been 

incorporated into a larger polymer matrix, to facilitate easier solid-liquid separation by 

sedimentation3. An alternative is to incorporate the TiO2 nanoparticles into an easily 

floating species. It has been shown that such particles are able to receive sufficient 

solar, or artificial, irradiance to be able to produce free radicals4. One early 

application of this concept was to coat hollow glass beads with TiO2 for the treatment 

of oil slicks at sea4,5. More recently, high surface-area exfoliated vermiculite has 

been used to support TiO2 for water decontamination6 whilst Magalhaes and Lago7 

grafted TiO2 onto expanded polystyrene beads. Syoufian and Nakashima8 took a 

different approach, and succeeded in manufacturing submicrometer sized hollow 

spheres from TiO2 itself that floated on the surface of water. Recently, detailed 

chemical formulation has been described to form TiO2 on the surface of hollow glass 

spheres, which are then used as floating photocatalysts9. 
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If the concept of using floating catalytic particles were ever to become a viable 

alternative to conventional advanced oxidation methods for water remediation, an 

efficient method of mass producing particles having the desired characteristics would 

be required. In the particular context described above, buoyancy and particle size 

are key parameters. If the particles are to be separated and recycled to a UV 

contactor then they need to possess a physical property that facilitates solid-liquid 

separation, and particles that float easily would be beneficial. The position of the 

particles at the air-water interface will also be important; it is likely that there is an 

optimum position at the interface to maximise the use of the incident UV light, 

together with the water and oxygen that is present. Hence controlling the particle 

size, and its buoyancy, is an important consideration. One means of producing 

particles of uniform and controllable size is to employ membrane emulsification10. 

This is a much-studied process by which a liquid (the dispersed phase) is forced 

through the pores of a microfiltration membrane into another immiscible liquid – the 

continuous phase. Stabilisation of the particles formed conventionally requires the 

use of emulsifiers or stabilisers. However, it is possible to stabilize such particles 

using finely divided solids, and emulsions stabilized in this way are known as 

‘Pickering Emulsions’ and do not require the use of any additional emulsifying 

agent11. Emulsions stabilized by proteins and food colloids are widely used 

commercially, and fine clays were historically used for stabilization in what is known 

as ‘suspension polymerisation’. The work presented here describes the production, 

and testing, of composite particles formed by coating lipids - sunflower oil and cocoa 

butter - with nanoparticulate TiO2. As used here, the finely dispersed TiO2 both 

stabilizes the dispersed phase oil drops as well as providing photocatalytic reaction 

sites at the surface of the particles, see Figure 1.  In this work, the photocatalytic 
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potential of such particles was demonstrated by bringing about the decolourization of 

aqueous solutions of the dye indigo carmine. Apart from using the dye as a 

convenient assay for photocatalytic reactivity, there is interest in photocatalytic 

oxidation of dyes using TiO2
12. Other potential uses of photocatalyst particles 

includes the ability to ‘split’ water into hydrogen and oxygen13. In all these 

photocatalyst applications it is beneficial to have the catalyst close to the liquid 

surface, to minimise the UV light attenuated within the liquid. 

 

2. Experimental 

2.1 Materials 

TiO2, P25 (Aeroxide) was purchased from Lawrence Industries (Tamworth, UK). 

sunflower oil was purchased from a local supermarket and cocoa butter from Keylink 

UK. Citric acid, lanthanum nitrate and sodium nitrate were supplied by Fisher 

Scientific. Indigo carmine [3,3-dioxo-1,3,1,3-tetrahydro-[2,2]-bi-indolylidene-5,5-

disulfonic acid disodium salt], hexane, silver nitrate and oxalic acid were supplied by 

Sigma Aldrich.  

 

2.2 Generation of Pickering Emulsions 

 

Pickering emulsions were generated using a Dispersion Cell (150 mL volume), 

supplied by Micropore Technologies Ltd (Loughborough, UK), for membrane 

emulsification, using membranes with pore sizes of 5 or 14 μm. A comprehensive 

description of the device, and its use, can be found elsewhere10. The shear rate at 

the membrane surface was varied by altering the speed of rotation of a paddle-blade 

stirrer mounted above the membrane. The dispersed phase (liquid lipid) was injected 
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by means of a syringe pump, and a peristaltic pump, through the membrane pores at 

a rate of up to 10 mL/min into the Dispersion Cell. The drops formed during 

emulsification were sized approximately using an optical microscope and the volume 

distribution and particle size of the Pickering emulsions were obtained using a 

Malvern Mastersizer Model S (Malvern, UK). The primary particle size of the TiO2 

was determined from surface area measurements made using the BET method with 

an ASAP 2020 instrument (Micromeritics (UK) Ltd., Dunstable). Particle density 

measurements were made using a helium pycnometer (Micromeritics (UK) Ltd.)    

 

 

Initially, suspensions of TiO2, ranging in solids content from 2 to 8.5% w/w, were 

prepared by mixing TiO2 in a solution comprising 1mM sodium nitrate, 3 mM 

lanthanum nitrate or 0.5% w/w citric acid in deionized water.  The multivalent 

aqueous cation solutions were used as they were previously reported to have 

enhanced the stability of particle stabilised emulsions14.  The citric acid was used as 

it has been shown15 that mildly acidic conditions promotes weak flocculation of the 

TiO2, which are the conditions required for stabilising an emulsion14. The Pickering 

emulsion thus formed was then decanted from the Dispersion Cell and replaced with 

fresh TiO2 suspension to generate further floating TiO2 particles. The influence of 

stirrer speed settings on particle size was investigated. In the case of the melted 

cocoa butter, the Dispersion Cell was placed in a water bath at 40oC, as was the 

cocoa butter for injection. A further formulation was tested using a mixture of cocoa 

butter and hexane. In this case the liquid was mobile at room temperature and the 

injection was performed under room temperature conditions. 
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After formation, the emulsion was stirred for 30 min at 3 Volts (205 to 222 rpm) in an 

ice-cooled beaker for a conditioning stage, to allow the lipid to set and the particles 

to stabilise. The Pickering emulsions were then left to settle for approximately 2 

hours. This resulted in a three-layered mixture comprising a settled suspension of 

TiO2 particles, a clear aqueous phase layer and a creamy emulsion top layer 

containing floating TiO2 coated lipid particles (i.e. a Pickering emulsion). The 

Pickering emulsion was removed by pipetting and then washed in 100 mL of 

continuous phase solution (this stage will be referred to as the ‘washing stage’ later 

in this paper). For the washing stage, the drops were mixed using the paddle bladed 

stirrer at a gentle rotation speed of 558 rpm for 10 minutes and then allowed to settle 

again.  The washing stage removed any entrapped TiO2 particles not firmly fixed to 

the floating lipid-TiO2 composite particle. The volume distribution and size of the TiO2 

coated lipid particles generated in the Dispersion Cell were determined from: (i) the 

Pickering emulsion after 10 mL lipid had been injected; and (ii) the Pickering 

emulsion after the washing stage, using the Malvern Mastersizer. For size analysis, 

or for use in the photocatalytic tests, the TiO2 stabilised lipids were pipetted into a 

Petri dish (diameter 130 mm) which contained only water and dye (100 mL volume 

used); i.e. there was no further necessity for salts or citric acid as the post-washed 

TiO2 stabilised lipids were stable in water and the salts and citric acid were only used 

during the initial composite particle formation stage. 

 

As proposed by Devi and Reddy16, silver-deposited P25 TiO2 was prepared by the 

addition of oxalic acid and 0.1 M solution of AgNO3 to 1000 mL of distilled water to 

give resulting concentrations of 5x10-3 M of oxalic acid and 4x10-4 M, of AgNO3. The 

pH of the AgNO3 – oxalic solution was adjusted16 and 4 g TiO2 was added to the 
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solution. The resulting suspension was irradiated under UV- light (λ = 365 nm) for 1 

hour under vigorous agitation using a magnetic stirrer. After irradiation the 

suspension was left to settle overnight. After settling, 900 g of the clear supernatant 

water was carefully pumped out of the container avoiding re-suspension of the 

settled solids. The remaining suspension was tipped into the Dispersion Cell and 10 

mL of mobile lipid was injected through the membrane. According to the cited 

literature16,17 the application of UV light to the silver nitrate – oxalate mixture results 

in the adsorption of silver onto the TiO2 composite particles resulting in an enhanced 

photocatalytic species. 

 

2.3 Assessment of Photocatalytic Activity 

 

Solutions (100 mL) of indigo carmine having an absorption of approximately 1.0 

when measured at a wavelength of 620 nm (A620), were dispensed into disposable 

plastic Petri dishes  and then placed uncovered beneath a tubular ‘black light blue’ 

source (20 WT12 BLB ISL, Philips (UK) Ltd., Croydon) emitting principally at 365 nm. 

The intensity directly below the source was measured using a radiometer (Model 

UVX, UVP, Cambridge) fitted with a sensor having peak sensitivity at 365 nm and 

measurements of light intensity were taken at various positions under the lamp. The 

dishes were positioned at fixed locations and experiments were conducted in 

duplicate, or even more replicates. Two Petri dishes could be accommodated under 

the lamp, receiving almost identical average light intensities of 0.68 mW/cm2. 

Various masses of composite particles were added by pipetting the composite 

particle suspension onto the surface of the dye in the Petri dishes to initiate dye 

decolourization. The actual mass of particles used was determined after the 
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experiment was completed, by filtering the suspension and drying the remaining 

particles at room temperature. After drying and weighing, the amount of TiO2 used 

was checked by ‘ashing’ the sample by heating in a muffle furnace at 550 degrees 

Celsius to burn off all the organic materials and leave the TiO2 for weighing after 

cooling. During the dye decolourisation tests, samples of aqueous dye (4 mL) were 

taken periodically in such a way as to avoid removing photocatalytic particles from 

the system, filtered through a 0.2 µm Millipore nitro-cellulose membrane in order to 

remove any turbidity and then placed in 2 mL cuvettes for A620 determination using a 

spectrophotometer, Model 1201, Shimadzu (UK) Ltd., Milton Keynes. Approximate 

values of surface coverage of the floating particles was determined at the start of the 

experiment by photographing the surface of the Petri dish containing the particles 

and dye solution and using bit map editing software with adjustable grey scale 

thresholds to determine the fraction of the total surface covered by the floating 

particles.  

 

3. Results and discussion 

 

The techniques described above using the Dispersion Cell were capable of 

producing composite particles that were stable prior to exposure to UV light. The 

method of size analysis employed, laser light diffraction using a Malvern Mastersizer, 

involved circulating composite particle suspensions around the instrument’s flow cell. 

This in itself might have caused damage to the particles. However, comparison of 

size analyses achieved using direct microscopic methods of estimating particle 

diameter with the results obtained using the Malvern Mastersizer did not reveal any 

particle disintegration. Comparison of the washed and non-washed particles made 
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from suspensions of over 3% w/w TiO2, using sunflower oil demonstrated good 

floating particle stability, see Table 1: and the median size was the same before and 

after the washing stage. However, there was evidence of slight degradation after 

exposure of the sunflower oil core particles to the UV radiation which is discussed 

later. 

 

Frith and co-workers demonstrated14 that stabilisation of Pickering emulsions is 

favoured by an ionic composition that encourages weak flocculation of the particles. 

Hence, lanthanum nitrate and sodium nitrate were initially used as proposed by 

these authors to encourage weak flocculation. However, on conducting trials using 

only citric acid, it was discovered that this compound alone could bring about the 

stable formation of the oil drop-particle composites. The data of Table 1 was 

obtained using only citric acid.  In the table, the term D10 represents the particle size 

below which 10% of the distribution occurs, and D90 the size below which 90% of 

the distribution occurs. The relative span is a measure of how monodisperse a 

particle size distribution is; it is defined as being the difference between the D90 and 

D10, divided by the median size (D50). In practical terms a span value of less than 

1.0 is taken as being indicative of a monodisperse particulate phase. Hence, the 

data in Table 1, supported by the information in Figures 2 to 3, indicate that the 

composite particle distributions are narrow (monodisperse). Also, the particles 

formed using just the citric acid, at the higher concentrations of TiO2 used in the 

slurry (Table 1), are the most monodisperse and appear to be very stable before 

contact with UV light. Multivalent cation solution was also used, as the continuous 

phase in the generation of some composite particles with a sunflower oil core, and 
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the particle size distributions were similar to those illustrated in Figure 3 where 

simply citric acid was used. 

 

Figure 2 shows particle size distributions achieved using a 14 µm pore diameter 

membrane at stirrer speeds ranging from 558 to 1085 rpm. The median particle size 

decreased as the stirrer speed was increased: at 558 rpm it was 230 µm, at 821 rpm 

140 µm whilst at 1085 rpm it was 115 µm. It is also evident that the particle size 

distribution is broader at the lower speeds than at the higher ones. Figure 3 shows 

similar data obtained using a 5 µm membrane. There is a similar influence of stirrer 

speed on median particle size to that obtained using the membrane with larger 

pores, but the effect is less pronounced; at 558 rpm the median was 112 µm, at 821 

rpm 98 µm, whilst at 1085 rpm it was 82 µm. The greatest contrast was that the 

particle size distribution remained relatively narrow, even at the lower stirrer speeds. 

Figures 2 and 3 demonstrate that it is possible to produce floating composite 

particles with a size distribution that can be controlled by the pore size of the 

membrane used, as well as the shear applied during the membrane emulsification.  

 

Figure 4 depicts the results of dye decolourization control tests. These comprised 

UV-irradiating the dye solution in the absence of photocatalytic particles, contacting 

dye solution with fully formed composite particles but without UV light (labelled ‘TiO2 

in dark’) and also with sunflower oil particles devoid of an outer TiO2 shell, but 

stabilised by a surfactant (Tween 20), also in the dark. Some dye is evidently taken 

up by the composite particles even in the dark. This characteristic of the particles is 

desirable as adsorption constitutes an important step in the degradation of the dye. 

There has been some conjecture reported in the literature over the mechanism for 
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dye decolourization using TiO2 photocatalysis18: i.e. whether the dye plays an active 

role in the adsorption of the UV light, helping to facilitate its own destruction. The 

nature of the work here was not intended to contribute to that field of enquiry, but 

rather to provide a verified simple method of generation floating photocatalytic 

composite particles and to demonstrate their utility.  

 

Experiments on dye decolourization conducted using particles stabilized by citric 

acid, sodium and lanthanum nitrates is shown in Figure 5, which illustrates a 

compilation of experiments clearly indicating the increasing effectiveness for 

decolourization with respect to the mass of TiO2 within the composite particle. With 

increased TiO2 loading the particle size distribution will change, and this contributes 

to the enhancement of the decolourization rate observed at higher loadings. In all 

cases 1 mL of composite particle stock suspension was used, pipetted into the Petri 

dish containing 100 mL of dye solution, and giving between 60 and 80% surface 

coverage of the floating particles. Different masses of TiO2 were achieved by varying 

the starting concentrations of TiO2 that were used at the particle formation stage, 

and different composite particle sizes were formed, in a similar way to the data 

illustrated in Figures 2 and 3. However, the correlation of dye decolourization with 

the mass of TiO2 present, as determined by the ashing test, is clear. 

 

After exposure to UV radiation it was observed that the composite particles formed 

using a sunflower oil core had a tendency to shed a small amount of fine solids from 

their surface whereas those made from cocoa butter maintained their integrity. 

Filtering the decolourised dye solution through a 0.2 µm pore membrane filter yielded 

a particle-free filtrate. The presence of these fine particles of TiO2 points to the 
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partial destruction of the composite particles during UV exposure when using 

sunflower oil as the core – a phenomenon that does not occur with composite 

particles having a core comprising cocoa butter.  It is concluded that the cocoa butter 

particles are more stable. Further conditions that were found to assist in composite 

particle stability was the size distribution: fairly narrowly sized particles, and at sizes 

with medians below 100 micrometres were preferable for the production of stable 

composite particles.  

 

Table 2 provides information on the physical properties of the composite particles 

formed using cocoa butter as the core, and a mixture of cocoa butter and hexane. 

From measurements of the specific surface area (53.2 m2/g) and density (4034 

kg/m3) of the TiO2 it was possible to calculate a primary particle size for the 

photocatalyst of 28 nm assuming that the particles were spherical.  By contrast 

Figure 6 a Scanning Electron Microscope image of the dry P25 TiO2 nanoparticles, 

shows a wide range of particles sizes. The ideal situation would be to have a 

monolayer coverage of the oil droplets by TiO2 nanoparticles. However, the 

nanoparticulate TiO2 will form clusters in water15, and whilst this is a desirable 

characteristic from the perspective of providing composite particles with as high a 

mass of TiO2 as possible (as demonstrated in Figure 5), this will be at the cost of a 

reduced utilization efficiency. 

 

 

An example, taken by optical microscopy, of composite particles with a cocoa butter 

core and TiO2 shell is shown in Figure 7. The image illustrates the two extremes of 

the composite particle sizes - 50 and 180 microns. The entire distribution lies 
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between these limits and has a median value of 98 µm (see Table 2 particle type 2), 

with a coefficient of variation of 38% around this value. That the composite particles 

are indeed spheres is evident from the image. Knowledge of the densities of cocoa 

butter and TiO2 coupled with observations that the TiO2 forms clusters having 

dimensions of approximately 5 microns15, and that the high cluster voidage traps 

water and reduces the TiO2 solids concentration to only 3% v/v enabled calculation 

of the minimum diameter that will be neutrally buoyant by a force balance on the 

drop (buoyancy against composite particle weight) giving the following equation: 

 
)(

6

o

sxC
d








  

where d is the composite particle diameter, x is the cluster diameter of the TiO2, C is 

the volume concentration of the TiO2 in the cluster, ρs is the density of the TiO2, ρ is 

the water density and ρo is the oil density.   

 

The above logic provides a value of approximately 30 µm, or more, for neutrally 

buoyant composite particles. Particles entirely coated by TiO2 and smaller than this 

value will sink, due to the high density of the TiO2 mineral. Clearly, it is desirable to 

have small and stable composite particles with a high loading of TiO2 in the surface 

shell, and further work to achieve this was performed by mixing the melted cocoa 

butter with hexane, in a volume ratio of 2/3 lipid to 1/3 alkane. This provided an 

organic liquid that was mobile at room temperature, and that could be injected 

through the membrane in the membrane emulsification process in much the same 

way as the sunflower oil was. During conditioning the hexane evaporated, leaving a 

solid core of cocoa butter and, during this process, the composite particles shrank in 

size. Hence, the resulting composite particles were smaller than those produced 
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without shrinkage, and the resulting concentration of TiO2 in the shell was higher. 

The influence of this process on the decolourization is illustrated in Figure 8, where 

the composite particles including hexane are shown to have considerably greater 

photocatalytic activity.  

 

Colloidal silver particles were formed at a pH of 2.56 which was determined by the 

concentration of the oxalic acid used during the preparation of the composite 

photocatalytic particles. However, in order to encourage the greatest concentration 

of TiO2 in the shell of the composite particles membrane emulsification at a pH 

around the iso-electric point (IEP) may be preferable. Hence, determination of the 

Zeta potential of the TiO2 particles in a continuous phase of silver nitrate and oxalic 

acid was performed. Figure 9, shows that the IEP is close to a pH of 1.0. Further 

tests in which the composite particles were produced at a pH of 1.0 were performed, 

with both the 14 and the 5 µm pore size membranes. The intention was to produce 

composite particles with a median diameter below 100 µm, but with as few as 

possible particles below 30 µm and with no large particles. The results are 

summarised in Table 2. For the determination of the amount of TiO2 in the shell of 

the composite particles, repeat ash tests were performed over a number of samples. 

It should be noted that the contribution made by the presence of silver to these 

weights was negligible. The range of mass of TiO2 per gram of particle is shown in 

Table 2 and the mid-values are used in the discussion that follows. The use of 

hexane clearly significantly increased the amount of TiO2 trapped in the shell of the 

composite particles. A maximum value of 35.7 mg TiO2 per gram of composite 

particle was achieved when using a pH of 1.0 and the 5 µm pore size membrane for 

the production of the composite particles. To enable meaningful comparisons to be 
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made between particles of different diameters, and therefore different surface 

loadings of TiO2, the final column in Table 2 ‘normalises’ the TiO2 content to a 

particle diameter of 90 µm: i.e. the value that theTiO2 loading would take if the 

particle diameter were 90 µm for each of the different types of particle, based on its 

current loading and particle size. It is clear that the most effective composite particles 

are those produced using hexane added to the cocoa butter and injected into a 

suspension of TiO2 at a pH of 1.0 with silver nitrate present.  

 

The rate of decolourization of the dye solution using the composite particles based 

on the cocoa butter particles, doped with silver, appeared to be faster than that 

obtained from the sunflower oil system. When using 1 gram of composite particles 

for the decolourization the floating particles completely covered the surface of the 

Petri dish, providing a layer that may reflect the UV radiation. Therefore, reduced 

masses of particles were also tested, providing differing levels of surface area 

coverage. Under these circumstances it was difficult to assess the total mass of 

composite particles being used before the experiment started, but after it was 

completed all the particles were removed, filtered and dried at room temperature. 

Hence, the actual mass used was determined after running the experiment. The 

results are presented in Figure 10 and Table 3 which shows the first order rate 

constants. The most rapid rates of decolourization were obtained for 217 and 534 

mg of composite particles, i.e. 7.8 and 19 mg of TiO2, and all the data was closely 

modelled using first order kinetics.  These masses also provide much faster 

decolourization than when using lower quantities of particles and, more surprisingly, 

even when using complete surface coverage (i.e. 100% coverage at 1000 mg of 

composite particles or 36 mg TiO2). Hence, it can be concluded that for a static 
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system (i.e. no forced convection) the most effective surface coverage to be used is 

in the range of 60 to 80%, and not 100%. A similar result was obtained for the 

sunflower oil core composite particles, which are described in Table 1. 

 

Additional tests were performed under stirred conditions. For these tests the volume 

of dye solution was increased to 200 mL, so that a narrow magnetic stirrer could be 

positioned in the Petri dish. For these tests the mass of composite particles used 

was increased to 2 g, to maintain the concentration of 1 g per 100 mL of dye 

solution. The results are illustrated in Figure 11. Stirring definitely led to a more 

effective use of the photocatalytic composite particles under these particular 

conditions, with the time for 50% reduction in dye concentration being reduced to 

about 75 minutes. This is probably due to the dispersion of the particles during 

stirring, whereas the floating particles remain at the surface where they are most 

effective (as illustrated in Figure 1). However, it is clearly possible to have too many 

particles at the surface, leading to reflection of UV light, as illustrated in Figure 10 by 

the coverage data.  

 

In the work described here the photocatalytic potential of TiO2 composite particles 

was demonstrated using the dye indigo carmine even though this compound does 

not represent a significant threat to the environment. The sorts of recalcitrant 

compounds increasingly found in bodies of surface water, and in which much current 

concern is being focussed, are endocrine disrupting compounds such as estradiol, 

and agrochemicals best typified by atrazine. Both classes of compound have been 

shown to be oxidizable using TiO2 in suspensions19,20. The advantage of the 

composite particles generated by the methods described here is that the composite 



17 

floating particles can be separated from the water flow and could be recycled, and 

the method of production is straightforward and controllable. 

 

In addition to having considerable potential for oxidising a variety of organic chemical 

species, the particles could be deployed against a variety of water borne organisms. 

For example it has been shown that TiO2 is biocidal towards common bacterial 

contaminants of water21 and that the lethality of TiO2 extends to protozoa22. Another 

application in which the composite particles described here may prove useful is in 

photocatalytically induced hydrogen production from water13. Other less-dense-than-

water materials could be used for the composite particle core, and possibly enhance 

the buoyancy of the composite particles. 

 

4. Conclusions 

 

TiO2 has a natural relative density considerably in excess of that of water, and even 

small particles will aggregate and sink unless treated to prevent this happening. The 

application of TiO2 as suggested here in the form of floating photocatalytic composite 

particles, together with atmospheric oxygen and UV light, provides a viable method 

of oxidizing organic materials in-situ, reducing (or eliminating) the need for 

exogenous oxidising chemical species which may persist in the aqueous 

environment much longer than the short-lived species generated at the surface of 

the TiO2.  

 

Pickering emulsions were initially prepared using an ionic composition that had 

previously been recommended as favouring weak flocculation of the TiO2 particles 
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and enhancing the stability of Pickering emulsions. The studies reported here show 

that, in fact, stabilization of composite particles prepared with sunflower oil as a core, 

is best achieved using only citric acid, and that the resulting photocatalytic activity is 

higher in such cases and related to the mass of TiO2 present in the shell. The lipid is 

fully enclosed inside a TiO2 shell, and with future developments it may be possible to 

reduce the lipid content still further, by introducing air thus forming a foam which 

would result in particles with even greater buoyancy. For best stability and 

photocatalytic effect, TiO2 concentration in the aqueous phase of over 3.5% w/w 

solids should be used when forming the composite particles, with a minimum 0.5% 

w/w concentration of citric acid.  

 

The membrane emulsification process was shown here to be a highly effective 

method of generating floating TiO2 composite particles. In this process composite 

particle size can be controlled by the membrane emulsification process and in 

addition, the method of production is straightforward, requires minimal energy, and 

generates no waste. Most importantly, it could readily be scaled up23.  

 

Composite particles made from cocoa butter were considerably more robust than the 

sunflower oil-stabilised particles. These particles displayed a decreased tendency to 

shed TiO2 nanoparticles during contact with the dye, and the kinetics of the dye 

decolourizations were much faster. The kinetics were shown to be further enhanced 

by including dispersed silver particles onto the surface of the TiO2 composite 

particles. The particles floated readily and could be easily separated from the 

subnatant water. Hence, engineering a contactor system to use the composite 

particles under a UV light source and to separate them for recycling and reuse would 
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be simplified. The incorporation of hexane into the lipid cores of particles provided an 

additional means of exercising control on the size, and ultimately, on the 

photoactivity of the composite particles produced. Another finding of operational 

significance is that total surface coverage by the floating photocatalytic composite 

particles is not necessary. In fact, 100% surface coverage was found to be 

detrimental to the photocatalytic effect. It seems likely that albedo effects at high 

surface coverage reduced the UV at the reaction interface.  

 

  

The technique of membrane emulsification, used to generate the particles by the 

formation of Pickering emulsions, has been demonstrated to be effective in 

controlling the composite particle size: a Pickering emulsion with a small particle size 

may produce particles that sink, due to the high density of the TiO2 mineral. 

Composite particles that are too large will be less stable and have a relatively low 

loading of the photocatalyst TiO2, hence there is a balance and composite particles 

between 30 and 180 µm appear to be the most effective, when using a common lipid 

core to form a floating composite particle. 
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Table 1 Floating composite TiO2 particle size distributions and dispersity after 

formation and after washing when using citric acid and various masses of TiO2 

suspended in water during the emulsification of sunflower oil through a 5 micron 

membrane 

 

 

 

 After formation – before washing After washing 

TiO2 

used in 

slurry 

D10 

 

Median 

size 

D90 Span D10 Median 

size 

D90 Span 

w/w % (µm) (µm) (µm)  (µm) (µm) (µm)  

2 79 111 152 0.66 70 95 128 0.61 

3 84 123 178 0.76 83 117 164 0.69 

3.5 73 100 138 0.65 73 100 139 0.66 

5.2 73 94 123 0.53 70 94 126 0.60 

8.5 68 94 135 0.71 67 95 138 0.75 
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Table 2 Properties of composite TiO2 particles when using cocoa butter as the core phase 

Conditions under which composite particles 

were 

formed  

Median 

particle 

diameter 

(µm) 

Mass TiO2 per 

gram of composite 

particles 

 

(mg/g) 

Surface area of 

TiO2 in 

composite 

particle 

(m2/g) 

Specific 

surface area 

per unit 

volume 

(µm-1) 

Normalising to a 

90 µm particle 

mass of TiO2 

(mg/g) 

Silver nitrate and oxalic acid at a pH of 2.56, 

using a 14 µm membrane 

330 Range: 5.8 to 6.8; 

mid value: 6.3 

0.34 0.018 24 

Citric acid with the addition of hexane at a 

pH of 2.1, using a 14 µm membrane 

98 Range: 9.4 to 12.8; 

mid value: 11.2 

0.59 0.061 12 

Silver nitrate with the addition of hexane and 

oxalic acid at a pH of 2.56, using a 14 µm 

membrane 

90 Range: 10.3 to 

14.5; mid value: 

12.4 

0.66 0.067 13 

Silver nitrate with the addition of hexane and 

oxalic acid at a pH of 1.0, using a 14 µm 

membrane 

86 Range: 16.7 to 

17.1; mid value: 

16.9 

0.9 0.070 16 

 Silver nitrate with the addition of hexane 

and oxalic acid at a pH of 1.0, using a 5 µm 

membrane 

76 Range: 33.6 to 

37.7; mid value: 

35.7 

1.9 0.079 30 

 



26 

Table 3 First order rate constants for decolourization of dye solution with composite particles prepared using cocoa butter with 

hexane, silver nitrate and TiO2 

 

 

Mass of Composite 
Particles 

 (mg) 

Rate 
Constant   

(min-1) 

 
Correlation 
Coefficient 

(R2) 
 

48  0.0057 0.9301 

69  0.0031 0.9893 

217 0.0254 0.9898 

534  0.0531 0.9572 

1000  0.0052 0.9952 
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Figure Captions 

 

Fig. 1.  Schematic diagram of floating composite TiO2 composite particles and 

their action forming free radicals to decompose organic matter 

 

Fig. 2.  Floating composite particle size distribution formed using three shear 

rates at the membrane surface and a 14 micron pore sized membrane: 

sunflower oil is the composite particle core 

Fig. 3.  Floating composite particle size distribution formed using three shear 

rates at the membrane surface and a 5 micron pore sized membrane: 

sunflower oil is the composite particle core 

 

Fig. 4.  Control tests: minimal dye decolourization using sunflower oil as the 

composite particle core in the absence of UV light and any composite 

particles 

 

Fig. 5  Decolourisation of blue dye using floating composite TiO2 particles 

made using a TiO2 suspension with sodium and lanthanum nitrates and 

citric acid present at different surface coverage of the particles: 

sunflower oil is the composite particle core; the mass of TiO2 recovered 

at the end of the experiment is included in the key 

 

Fig. 6.  Scanning electron microscope image of P25 titanium dioxide 

 

Fig. 7.  Optical microscope image of the size range of composite particles 
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 produced (50 to 180 microns) and illustrating the spherical nature of 

the composite particles; cocoa butter used as the core material and 

P25 titanium dioxide as the shell 

 

Fig. 8.  Composite particles produced using cocoa butter, silver nitrate, oxalic 

acid and TiO2 at a pH of 2.56 and using the 14 um pore size 

membrane, with and without hexane usage, 1 g of particles in 100 mL 

and 10 ppm dye 

 

Fig. 9.  Zeta potential of the TiO2 composite particles in a continuous phase 

solution of silver nitrate and oxalic acid similar to what was used in 

forming the Pickering emulsion 

 

Fig. 10.  Various masses of composite particles used and the apparent surface 

coverage of the floating particles: particles produced using cocoa butter 

with hexane, silver nitrate, oxalic acid and TiO2 at a pH of 1 and the 5 

µm pore size membrane, 1 g of particles in 100 mL and 10 ppm dye 

 

Fig. 11.  Influence of stirring when decolourising 200 mL of dye at 10 ppm using 

2 g of composite particles using cocoa butter with hexane, silver 

nitrate, oxalic acid and TiO2 at a pH of 1 and the 5 µm pore size 

membrane 
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Fig. 1.  Schematic diagram of floating composite TiO2 particles and their action 

forming free radicals to decompose organic matter
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Fig. 2.  Floating composite particle size distribution formed using three shear 

rates at the membrane surface and a 14 micron pore sized membrane: 

sunflower oil is the composite particle core 
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Fig. 3.  Floating composite particle size distribution formed using three shear 

rates at the membrane surface and a 5 micron pore sized membrane: 

sunflower oil is the composite particle core 
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Fig. 4.  Control tests: minimal dye decolourization using sunflower oil as the 

composite particle core in the absence of UV light and any composite 

particles 
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Fig. 5.  Decolourisation of blue dye using floating composite TiO2 particles 

made using a TiO2 suspension with sodium and lanthanum nitrates and 

citric acid present at different surface coverage of the particles: 

sunflower oil is the composite particle core; the mass of TiO2 recovered 

at the end of the experiment is included in the key 
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Fig. 6  Scanning electron microscope image of P25 titanium dioxide 
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Fig. 7.  Optical microscope image of the size range of composite particles 

 produced (50 to 180 microns) and illustrating the spherical nature of 

the composite particles; cocoa butter used as the core material and 

P25 titanium dioxide as the shell 
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Fig. 8.  Composite particles produced using cocoa butter, silver nitrate, oxalic 

acid and TiO2 at a pH of 2.56 and using the 14 um pore size 

membrane, with and without hexane usage, 1 g of particles in 100 mL 

and 10 ppm dye 
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Fig. 9.  Zeta potential of the TiO2 particles in a continuous phase solution of 

silver nitrate and oxalic acid similar to that used in forming the 

Pickering emulsion 
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Fig.10.  Various masses of composite particles used and the apparent surface 

coverage of the floating particles: particles produced using cocoa butter 

with hexane, silver nitrate, oxalic acid and TiO2 at a pH of 1 and the 5 

µm pore size membrane, 1 g of particles in 100 mL and 10 ppm dye 
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Fig. 11.  Influence of stirring when decolourising 200 mL of dye at 10 ppm using 

2 g of composite particles using cocoa butter with hexane, silver 

nitrate, oxalic acid and TiO2 at a pH of 1 and the 5 µm pore size 

membrane 


