

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Provision of Adaptive and Context-Aware Service
Discovery for the Internet of Things

by

Talal Ashraf Butt

A Doctoral Thesis

Submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy
of

Loughborough University

18th October 2013

Copyright 2013 Talal Ashraf Butt

Abstract

The Internet of Things (IoT) concept has revolutionised the vision of the future
Internet with the advent of standards such as IPv6 over Low power Wireless
Personal Area Networks (6LoWPAN) making it feasible to extend the Internet
into previously isolated environments, e.g., Wireless Sensor Networks (WSNs).
The abstraction of resources as services, has opened these environments to a new
plethora of potential applications. Moreover, the web service paradigm can be
used to provide interoperability by offering a standard interface to interact with
these services to enable Web of things (WoT) paradigm. However, these networks
pose many challenges, in terms of limited resources, that make the adaptability
of existing IP-based solutions infeasible. As traditional service discovery and
selection solutions demand heavy communication and use bulky formats, which are
unsuitable for these resource-constrained devices incorporating sleep cycles to save
energy. Even a registry based approach exhibits burdensome traffic in maintaining
the availability status of the devices. The feasible solution for service discovery and
selection is instrumental to enable the wide application coverage of these networks
in the future.

This research project proposes, Trend-based Service Discovery Protocol (Pro-
posed Solution) (TRENDY), a new compact and adaptive registry-based Service
Discovery Protocol (SDP) with context awareness for the IoT, with more emphasis
given to constrained networks, e.g., 6LoWPAN. It uses Constrained Application
Protocol (CoAP)-based light-weight and Representational state transfer based
(RESTful) web services to provide standard interoperable interfaces, which can
be easily translated from Hyper Text Terminal Protocol (HTTP). TRENDY’s
service selection mechanism collects and intelligently uses the context information
to select appropriate services for user applications based on the available context
information of users and services. In addition, TRENDY introduces an adaptive
timer algorithm to minimise control overhead for status maintenance, which also
reduces energy consumption. Its context-aware grouping technique divides the
network at the application layer, by creating location-based groups. This grouping
of nodes localises the control overhead and provides the base for service composi-
tion, localised aggregation and processing of data. Different grouping roles enable

2

3

the resource-awareness by offering profiles with varied responsibilities, where high
capability devices can implement powerful profiles to share the load of other low
capability devices. Thus, it allows the productive usage of network resources.
Furthermore, this research project proposes Adaptive Piggybacked Publishing
(APPUB), an adaptive caching technique, that has the following benefits: it allows
service hosts to share their load with the resource directory and also decreases the
service invocation delay.

The performance of TRENDY and its mechanisms is evaluated using an ex-
tensive number of experiments performed using emulated Tmote sky nodes in
the COOJA environment. The analysis of the results validates the benefit of
performance gain for all techniques. The service selection and APPUB mechanisms
improve the service invocation delay considerably that, consequently, reduces the
traffic in the network. The timer technique consistently achieved the lowest control
overhead, which eventually decreased the energy consumption of the nodes to
prolong the network lifetime. Moreover, the low traffic in dense networks decreases
the service invocations delay, and makes the solution more scalable. The group-
ing mechanism localises the traffic, which increases the energy efficiency while
improving the scalability. In summary, the experiments demonstrate the benefit
of using TRENDY and its techniques in terms of increased energy efficiency and
network lifetime, reduced control overhead, better scalability and optimised service
invocation time.

Acknowledgements

This research project for me is like an adventurous journey, which guided me
to discover myself. I am grateful to Almighty ALLAH that He gave me this
opportunity to learn, think critically, investigate, evaluate concepts and ideas.
Furthermore, I am thankful to a number of people who have guided and supported
me throughout the research process and provided assistance for my venture.

Foremost, I would like to express my sincere gratitude to Dr. Iain Phillips and
Dr. Lin Guan, my supervisors, whose selfless time and care were sometimes all
that kept me going. In addition, their out of office hours meetings and favours will
always keep me indebted. Furthermore, their provoking attention to detail drove
me to learn many key skills, which I appreciate the most. I feel being a kid at the
start of my research and then raised up by both of them, who have taught me that
how devotion, enthusiasm and patience are important to achieve a goal.

I would like to thank Dr. George Oikonomou and Dr. Shafique Ahmad Chaudhry
for their support. Both of them lifted my spirit by giving in more informal and
personal meetings. I would like to thank Loughborough University and specifically
to Department of Computer Science for funding my research study, as my dream
to become a researcher is materialised by their support. Moreover, I am indebted
to the financial support of Churches International Student Network (CISN), The
Leche Trust and The Charles Wallace Pakistan Trust. Furthermore, I am grateful
to the Department’s staff, who facilitated my research. I would like to extend my
gratitude to fellow research students and staff for making this journey a memorable
one.

I dedicate this research work to my beloved parents and wife, who constantly
encouraged me and motivated me to believe in myself. I want to admit that I
could’ve never made it, if my father hadn’t dreamt about it. Furthermore, I want
to dedicate my work to ABBA jee and his family, who always believed in me and
nurtured my potential. In addition, I want to thank my beloved Baba Muhammad
Yahya Khan for guiding me to understand the reason of my existence. Finally, I
want to thank all my family members and friends, as they have supported and
helped me along the course of this research project by providing the moral and
emotional support.

4

Publications

• Talal Ashraf Butt, Iain Phillips, Lin Guan and George Oikonomou.
“TRENDY: An Adaptive and Context-aware Service Discovery Protocol for
6LoWPANs.” In Proceedings of the third international workshop on the web
of things (WoT 2012), ACM.

• Talal Ashraf Butt, Iain Phillips, Lin Guan and George Oikonomou.
“Adaptive and Context-aware Service Discovery for the Internet of Things.”
In the 6th conference on Internet of Things and Smart Spaces (ruSMART
2013), Internet of Things, Smart Spaces, and Next Generation Networking,
Lecture Notes in Computer Science, Springer Berlin Heidelberg.

5

Contents

Abstract 2

Acknowledgements 4

Publications 5

Acronyms 14

1 Introduction 18
1.1 Motivation . 19
1.2 Research Challenges . 20
1.3 Aims and Objectives . 22
1.4 Research Methodology . 23
1.5 Original Contributions . 26
1.6 Thesis structure . 27

2 From the Internet of Things (IoT) to the Web of Things (WoT) 29
2.1 Introduction . 29
2.2 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) 29

2.2.1 Architecture . 30
2.2.2 Design Considerations . 31

2.3 RPL (IPv6 Routing Protocol for Low power and Lossy Networks) . 32
2.3.1 Protocol and Topology Construction 33

2.4 Application Protocol Paradigms . 35
2.4.1 End-to-End . 35
2.4.2 Real-time streaming and sessions 35
2.4.3 Publish/Subscribe . 36
2.4.4 Web service . 36

2.4.4.1 Simple Object Access Protocol (SOAP) 36
2.4.4.2 Representational state transfer (REST) 37

2.5 CoAP (Constrained Application Protocol) 38
2.5.1 Transaction ID and messages types 39

6

CONTENTS 7

2.5.2 Methods . 40
2.5.3 Options . 41
2.5.4 Message Format . 42
2.5.5 UDP binding . 44
2.5.6 Interaction Model . 44

2.5.6.1 Synchronous response 44
2.5.6.2 Asynchronous response 46

2.5.7 Resource discovery . 46
2.5.8 Caching and Proxying . 47

2.6 Protocol Integration Approaches . 47
2.6.1 Gateway approach . 47
2.6.2 Compression approach . 48

2.7 Technologies for Experiments . 48
2.7.1 Operating System: CONTIKI 48
2.7.2 Simulator: COOJA . 49

2.8 Summary . 50

3 Service Discovery (SD) in Literature 51
3.1 Introduction . 51
3.2 SD Objectives . 51
3.3 SD Entities . 52
3.4 SD Classifications . 52
3.5 Centralised architectures . 53

3.5.1 SLP (Service Location Protocol) 53
3.5.2 SLP-based adaptations and optimised solutions 54
3.5.3 JINI (Java Intelligent Network Interface) 55
3.5.4 Salutation . 56
3.5.5 FRODO (Framework for Robust and Resource-aware Dis-

covery) . 56
3.5.6 SLEEPER . 57
3.5.7 Splendor . 58

3.6 Distributed architectures . 58
3.6.1 Domain Name Server (DNS) based 58
3.6.2 Clustering based . 60
3.6.3 Hash-based P2P . 62

3.7 Directory-less architectures . 63
3.8 Cross-layer design . 66
3.9 Discussion from 6LoWPAN’s perspective 67
3.10 Service Discovery (SD) Process . 71

CONTENTS 8

3.10.1 Service description . 72
3.10.2 Service advertisement/registration 72
3.10.3 Service discovery . 73
3.10.4 Service selection . 74
3.10.5 Service Invocation . 74

3.11 Challenges . 75
3.11.1 Scalability . 75
3.11.2 Energy, Memory and Bandwidth Constraints 76
3.11.3 Reliability and accuracy . 76
3.11.4 Heterogeneity and resource-awareness 76
3.11.5 Security and privacy . 76

3.12 New perspectives . 77
3.12.1 Context Awareness . 77
3.12.2 Adaptability . 78

3.13 Summary and Discussion . 79

4 Service Discovery for the IoT: A Requirement Analysis 80
4.1 Introduction . 80
4.2 Scenario . 80
4.3 User Interactions . 82
4.4 IoT Service Discovery Requirements 82

4.4.1 Heterogeneity and Interoperability 83
4.4.2 Context-awareness . 83
4.4.3 Adaptability . 84
4.4.4 Constrained networks . 84

4.5 Summary . 85

5 A Context-aware Service Discovery Protocol (SDP) for the IoT 87
5.1 Introduction . 87
5.2 Architecture . 87

5.2.1 Directory Agent (DA) . 88
5.2.2 Service Agent (SA) . 89
5.2.3 User Agent (UA) . 89

5.3 Communication Protocol . 89
5.4 Service Description . 89
5.5 Context awareness . 90
5.6 Registration and Status maintenance 93

5.6.1 Provision of the DA’s IP . 93
5.6.2 Status maintenance . 94

CONTENTS 9

5.7 Service Discovery . 94
5.8 Service Selection . 95
5.9 Service Inovcation . 98
5.10 Overall framework . 98
5.11 Message Formats . 99

5.11.1 UPD (Update) for registration 99
5.11.2 UPD (Update) message for Status maintenance 101
5.11.3 SDR (Service Discovery Request) 102

5.12 Summary and Discussion . 104

6 Experimental Design and Performance Metric 106
6.1 Introduction . 106
6.2 Performance Metrics . 106

6.2.1 Control packet overhead . 106
6.2.2 Service Discovery Delay . 107
6.2.3 Service Invocation Delay and cache hits 107
6.2.4 Energy Efficiency and Network lifetime 108
6.2.5 Scalability factor: Packets to the DA 110
6.2.6 Reliability and Accuracy . 110

6.3 Experimental Setup . 111
6.3.1 Topology . 113

6.4 Experimental Design . 118
6.5 TRENDY’s Service Selection Experiments 120

6.5.1 Introduction . 120
6.5.2 Control packet overhead . 120
6.5.3 Service Invocation Delay . 124
6.5.4 Energy Consumption and network lifetime 127
6.5.5 Packets at the DA: a scalability factor 129
6.5.6 Reliability and Accuracy . 129

6.6 Summary and Discussion . 130

7 Adaptive Reporting Timer 131
7.1 Introduction . 131
7.2 Aims . 131
7.3 Adaptive Timer Process . 132

7.3.1 Design . 132
7.3.2 Example Scenario . 135

7.4 Message Formats . 137
7.4.1 Updated TRENDY reporting message 137

CONTENTS 10

7.5 Experiments and Results . 138
7.5.1 Introduction . 138
7.5.2 Control packet overhead . 139
7.5.3 Energy Consumption and network lifetime 144
7.5.4 Scalability factor: Packets to the DA 148
7.5.5 Service Invocation Delay . 150
7.5.6 Reliability and Accuracy . 152

7.6 Summary and Discussion . 152

8 Context-aware Grouping 154
8.1 Introduction . 154
8.2 Aims . 154
8.3 Architecture . 155

8.3.1 Group Member (GM) . 155
8.3.2 Group Leader (GL) . 155

8.4 Grouping Process . 156
8.5 Best GL Selection . 159
8.6 Message Formats . 159

8.6.1 UPD (Update) for GL registration 159
8.6.2 Grouping Messages . 160

8.6.2.1 YGM (Your Group member) 160
8.6.2.2 RGM (Remove Group member) 161
8.6.2.3 YGL (Your Group Leader) 162

8.6.3 Reporting Messages . 163
8.6.3.1 UPD (Update) message for Status maintenance . . 163
8.6.3.2 NRP (Not reported) 163
8.6.3.3 SSC (Some Service Changed) 164
8.6.3.4 GLD (Group Leader Done) 165

8.6.4 Discovery Messages . 166
8.6.4.1 FWD (Forward Query) 167

8.7 Experiments: Group Scalability . 168
8.7.1 Introduction . 168
8.7.2 Control packet overhead . 171
8.7.3 Energy Consumption and network lifetime 173
8.7.4 Scalability factor: Packets to the DA 175
8.7.5 Service Invocation Delay . 176
8.7.6 Reliability and Accuracy . 178

8.8 Experiments: Grouping with different groups 178
8.8.1 Introduction . 178

CONTENTS 11

8.8.2 Control packet overhead . 179
8.8.3 Energy Consumption and network lifetime 181
8.8.4 Scalability factor: Packets to the DA 183
8.8.5 Service Invocation Delay . 185
8.8.6 Reliability and Accuracy . 186

8.9 Summary and Discussion . 186

9 Adaptive Piggybacked Publishing (APPUB): An Algorithm for
Adaptive Caching 187
9.1 Introduction . 187
9.2 Aims . 187
9.3 Design . 188

9.3.1 APPUB Process . 188
9.3.2 DA’s role . 189
9.3.3 SA’s role . 189
9.3.4 Cache Format . 191

9.4 Message Format . 191
9.4.1 Update for TRENDY’s UPD reporting message 191

9.5 Experiments and Results . 192
9.5.1 Introduction . 192
9.5.2 Service Invocation Delay and Cache hits 193
9.5.3 Energy Consumption and network lifetime 198
9.5.4 Control packet overhead . 201
9.5.5 Scalability factor: Packets to the DA 204
9.5.6 Reliability and Accuracy . 204

9.6 Summary and Discussion . 204

10 TRENDY: a Trend-based Service Discovery Solution for the IoT206
10.1 Introduction . 206
10.2 TRENDY Protocol with Adaptive Techniques 206

10.2.1 Message Format . 206
10.2.2 SA roles . 207
10.2.3 Policies . 207
10.2.4 Framework . 207

10.3 Experiments and results . 208
10.3.1 Introduction . 208
10.3.2 Service Invocation Delay and Cache hits 209
10.3.3 Control packet overhead . 211
10.3.4 Scalability factor: Packets to the DA 213

CONTENTS 12

10.3.5 Energy Consumption and Network Lifetime 215
10.3.6 Memory Requirements . 218

10.4 Summary and Discussion . 219

11 Comparison with other solutions 221
11.1 Introduction . 221
11.2 Context-awareness . 222
11.3 Extensibility . 222
11.4 Interoperability . 223
11.5 Constraints Considerations . 223
11.6 Dependencies . 224
11.7 Performance Metrics . 224

11.7.1 Service Discovery delay . 224
11.7.2 Service Invocation support 224
11.7.3 Scalability . 225
11.7.4 Energy Consumption . 226

11.8 Summary . 226

12 Conclusions and Future Work 228
12.1 Conclusions . 228
12.2 Future Work . 231

References 232

Appendices 246

A Automation of experiments 247
A.1 Scenarios automation . 247
A.2 Script for 6LoWPAN data gathering 253

B Logs for validation and debugging 258
B.1 Simulation Log . 258
B.2 COOJA Log . 262

B.2.1 Case-x-packet.pcap . 262
B.2.2 Lowpan-detail.log . 262
B.2.3 l-energy-all.log . 265
B.2.4 l-energy-ind.log . 266
B.2.5 l-packet-all.log . 267
B.2.6 l-packet-ind.log . 268

B.3 DA Log . 269
B.3.1 daperformance.log . 269

CONTENTS 13

B.3.2 da-detail.log . 269
B.3.3 daFullDetail.log . 272

B.4 UA Log . 274
B.4.1 uaperformance-processed.log 274
B.4.2 ua-detail.log . 275

C Automation for statistics processing and graph generation 276
C.1 Data Processing . 276
C.2 GNUPLOT graphs generation . 284

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

ACK Acknowledgement

AES Advanced Encryption Standard

AODV Ad-hoc On-Demand Distance Vector Routing

APPUB Adaptive Piggybacked Publishing

BXML Binary XML

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

CSMA Carrier Sense Multiple Access

DA Directory Agent

DAO DODAG Advertisement Object

DHCP Dynamic Host Configuration Protocol

DIO DODAG Information Object

DIS DODAG Information Solicitation

DNS Domain Name System

DODAG Destination Oriented Directed Acyclic Graph

EUI-64 64-bit Extended Unique Identifier

EXI Efficient XML Interchange

FWD Forward Query

14

Acronyms 15

GL Group Leader

GLD Group Leader Done

GM Group Member

HTTP Hyper Text Terminal Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

IS-IS Intermediate System to Intermediate System

LLN Low Power and Lossy Network

M2M Machine-to-Machine

MAC Medium Access Control

MANET Mobile Ad-hoc Network

MIME Multipurpose Internet Mail Extensions

MTU Maximum transmission unit

NAPTR Name Authority Pointer

NRP Not Reported

OF Objective Function

OGC Open Geospatial Consortium

OLSR Optimized Link State Routing Protocol

OSPF Open Shortest Path First

PubSub Publish and Subscribe

QoS Quality of Service

RDC Radio Duty Cycling

RDF Resource Description Framework

REST Representational state transfer

Acronyms 16

RESTful Representational state transfer based

RGM Remove Group Member

RPC Remote Procedure Call

RPL IPv6 Routing Protocol for Low power and Lossy Networks

RQL RDF Query Language

RTCP RTP Control Protocol

RTP Real-time Transport Protocol

SA Service Agent

SD Service Discovery

SDP Service Discovery Protocol

SDR Service Discovery Request

SIP Session Initiation Protocol

SLIP Serial Line Internet Protocol

SOAP Simple Object Access Protocol

SSC Some Service Changed

SSDP Simple Service Discovery Protocol

TCP Transport Control Protocol

TRENDY Trend-based Service Discovery Protocol (Proposed Solution)

UA User Agent

UDP User Datagram Protocol

UPD Update

uPnP Universal Plug and Play

WADL Web Application Description Language

WBXML WAP Binary XML

WoT Web of things

Acronyms 17

WSDL Web Service Description Language

WSN Wireless Sensor Network

WSNs Wireless Sensor Networks

YGL Your Group Leader

YGM Your Group Member

Chapter 1

Introduction

The IoT vision has drastically changed the way we foresee the future Internet [10].
Integration of constrained networks with the broader Internet can open new avenues
for these networks, as this extends the ability of these networks to share resources
and information with other networks. These low cost, battery operated devices
with limited data rates are becoming smarter and making this kind of integration
more feasible.

Arrival of new standards has allowed constrained networks to integrate seam-
lessly with the Internet. IP-based devices can be connected easily to other IP
networks, without the need for complex translation gateways. This gives the
opportunity for the reusability of existing infrastructure and proven standards,
instead of using proprietary solutions. Moreover, IP connectivity enables WSNs
to utilise the broad body of existing IP tools and standards such as firewalls,
proxies, caches. Furthermore, the use of IP outperforms existing systems in average
duty-cycle, per-hop latency, and data reception rate with a higher traffic load [56].
However, the inherent nature of these networks still poses many challenges in
adapting existing IP-based standards.

Devices can offer their functionalities by abstracting them as services. Moreover,
the provision of Service Discovery (SD) and service selection can assist the user
applications to find the required services. This changes the traditional view of
these constrained networks by making them directly accessible over the Internet.
Furthermore, web services can provide a standard interface to offer interoperability
with other existing similar solutions. However, the design of such a solution faces
the underlying issues of these networks, for example, small packet size and sleep
cycles. In constrained environments, services are mostly hosted on battery operated
devices, which can fail without any notification. Thus, these networks require an
efficient, reliable and interoperable solution for SD. This research project analyses
existing solutions with the IoT requirements and challenges of its constrained
domains, to identify the potential gaps. Consequently, the project proposes a

18

CHAPTER 1. INTRODUCTION 19

compact, adaptive and context-aware SD solution that considers the inherent
challenges, and offers the desired features to encompass them.

This chapter highlights the significance of the research problems and related
challenges, and then summarises the original contributions made by this project.

1.1 Motivation

The Internet Engineering Task Force (IETF)’s 6LoWPAN [93] standard has made
it possible for constrained networks to connect directly to the Internet. This
integration has opened new horizons for these devices. Recent developments have
changed the profile of WSNs from isolated and application-specific, to more in-
terconnected and directly accessible 6LoWPANs. However, these networks still
have constrained properties, including limited packet size, intermittent communic-
ation, high packet loss, restricted power and throughput. Besides these challenges,
the major benefit of integration is resource sharing, which can be achieved by
abstracting the resources as services. A service can provide any data reading or
measurement such as temperature reading of a sensor, which can be shared inside
a 6LoWPAN or with external IP network. Services can be further composed to
create higher-level services. Furthermore, mashups can be generated to provide
new functionality with the combination of different services [136]. To make use of
all potential benefits; discovery of available services is highly crucial and demands
suitable SD, and selection solution.

The employment of existing IP-based SD solutions is a first choice to enable
the inherent interoperability. However, the large packet sizes and heavy control
overhead of these solutions make these infeasible for constrained networks such as
6LoWPANs. The difference of both networks can be understood by their Maximum
transmission unit (MTU), which is 1280 bytes for IPv6 and is only 127 bytes for
6LoWPAN (which uses IEEE 802.15.4). This implies that even in the case of single
IPv6 packet transmission, a 6LoWPAN network needs to send multiple packets,
which will entail heavy traffic load and bandwidth utilisation. Similarly other
available distributed solutions demand excessive use of broadcast or multicast,
which is unsuitable in networks with devices with sleep cycles and intermittent
connectivity.

A 6LoWPAN based network mostly consists of heterogeneous devices; therefore,
a solution should be able to deal with the heterogeneity. Web services offer the
solution with high interoperability, customisation and flexibility by providing a
standard interface to services. These characteristics make web services a key
technology to enable WoT vision that depicts a view where a collection of web
services that could be discovered, composed and executed [136]. Although web

CHAPTER 1. INTRODUCTION 20

services remarkably change the way how services are accessed, but are a poor match
for constrained networks because of the inherent complexity [114]. Both Simple
Object Access Protocol (SOAP) based big web services, and Representational
state transfer (REST) in their traditional forms are impractical for such networks.
However, constrained nodes can benefit from IETF’s CoAP [13] standard, which
offers compact and optimised RESTful web services.

The IoT vision has significantly changed the way we approach the solution
for a Wireless Sensor Network (WSN). Figure 1.1 shows the IP stack with some
6LoWPAN related protocols from different perspectives.

����� ������ 	

����
� ���

���
��

����������
� ���

��������������

�������
��������

���������!
"�#

�"�"!�����
�$�
�%&

��' ��������

�"��(���

����������
)��*

�� ���)��+� ��%���!

Figure 1.1: Protocols for 6LoWPANs from different perspectives

1.2 Research Challenges

This thesis focuses on provision of adaptive and context-aware SD and selection for
IoT environments while accounting for challenges, including heterogeneity, inter-
operability, scalability and energy efficiency. Following are the research questions
which raise the research challenges addressed by this thesis:

Research question 1: What constitutes a better SD solution for the IoT compared
to existing solutions?
IoT environments contain heterogeneous networks and devices, which pose
new challenges and requirements for a SD solution. This merger of constrained
networks with the IoT for example, 6LoWPANs, requires a special emphasis.

CHAPTER 1. INTRODUCTION 21

Thus, a review of existing SD solutions is required in the context of these
challenges.

• Literature review of existing SD solutions: A critical analysis of existing
SD solutions and discussion of their applicability for constrained domains
is required to find out the research gaps and to take better design
decisions.

• The IoT requirements for a SD: Clear understanding of the new IoT
perspective is needed to be analysed in the context of future scenarios.
The general and constrained network specific SD requirements and
challenges are needed to be scrutinised and well defined.

Research question 2: How IP-based WSNs consisting of resource-constrained
nodes can offer efficient and interoperable SD and selection to user applica-
tions in the IoT?
New technologies have enabled WSNs to integrate with the Internet, but
work still needed to make them an active part of the web. The discovery
of the available services in a WSN is important to access the functionality
within a dynamic environment. Therefore, the mechanism for discovery of
services is essential to assist the user to discover required services. A user
application query for SD can result in a list of matching services, even though,
application actually looking for one appropriate service. A SDP should ad-
dress this requirement by offering context-aware service selection as this is a
norm in IoT scenarios. A discovery depending on multicast or broadcast is
not an efficient choice in terms of efficiency and sometimes error prone in
networks with intermittent connectivity. Consequently, challenge is to design
an interoperable SD and selection solution that satisfy the requirements of
the IoT, while providing the required efficiency to meet the challenges posed
by constrained nodes and networks.

• Interoperability: Web service interface is always preferable to allow
the desired interoperability in the IoT; however, the challenge is to
enable this paradigm for its constrained domains. The WoT vision has
recommended the use of RESTful web services as a standard interface
for the services hosted by smart devices [43]. However, offering the
web service interface using traditional solutions put more burden on
constrained nodes, and is not feasible for many low capacity nodes and
networks.

Research question 3: How a SD solution can become context-aware and enable
service composition without creating heavy traffic load on the network?

CHAPTER 1. INTRODUCTION 22

The IoT user applications can look for one best service to issue queries or
to execute a command on a collection of nodes sharing some context (for
example, switching the actuators on in some area). The nodes in a WSN exist
in an environment where collaboration between them can reduce the overhead,
and consequently, enable the creation of new high-level services. However,
the challenge is to enable such a functionality in new IoT paradigm with
diverse networks that have constraints. The SD solution needs to find those
common context attributes before applying some mechanism to collectively
invoke services. The collection of context information and approach to enable
service composition should be efficient for constrained domains of the IoT.

Research question 4: How to deal with mostly unavailable nodes (because of
sleep cycles) and high number of service invocations by the users?
Energy is a precious resource for constrained wireless sensor nodes; therefore,
these nodes use different Radio Duty Cycling (RDC) algorithms to save
energy. Furthermore, IP-based WSNs offer services to the broad range of
users and applications, so there is a potential for an overwhelming number of
requests. The sheer number of requests face more delays when nodes keep on
sleeping for most of the time, and consequently more energy is consumed by
devices in a multi-hop network. The question arises that how this trade-off
of energy conservation and better user response can be managed.

1.3 Aims and Objectives

The main aim of this research project is to design a compact SD solution for the
IoT with low control overhead, minimised energy consumption and reduced SD
and invocation delay. New technologies, including, 6LoWPAN, are shifting the
existing paradigm of the Internet by allowing resource-constrained networks to
become an active part of the IoT. The target of this work is to analyse and cover
the new challenges for SD posed by this new paradigm. However, these networks
and devices are still resource-constrained and require an efficient and compact SDP.
The solution needs to balance the trade-off of interoperability and efficiency while
ensuring its applicability for a wide variety of networks in the IoT. The objectives
of this research project are:

• To investigate the SD process and scrutinise design options available at
different stages.

• To explore existing SDPs in literature, categorise them and examine their
features.

CHAPTER 1. INTRODUCTION 23

• To scrutinise existing research efforts for providing SD for 6LoWPANs, and
the research gaps left by those schemes.

• To investigate the SD requirements for the IoT in context of some use-case
scenarios, so the design of proposed protocol can cover new challenges.

• To design and test new SD solution that:

1. has open and extensible framework to address the diverse capabilities of
the networks in the IoT.

2. should consider interoperability with an existing approach.

3. should address new requirements posed by the IoT.

4. should allow context-aware SD by allowing sophisticated queries.

5. should provide context-aware service selection to assist user applications
for choosing more efficient hosts.

6. is independent of underlying protocols at different layers, including,
routing, Medium Access Control (MAC) and RDC etc.

7. should have compact implementation and message sizes.

8. is efficient in terms of control overhead, energy consumption and SD
and invocation delay.

9. should be adaptive to network dynamics, so can provide better user
response even during high demand.

10. should provide reliable and accurate information, including, service
information and cached values.

11. is scalable, by conforming that the control overhead is not proportional
to increasing number of devices.

1.4 Research Methodology

Research gap identification is the first stage of this work, which consists of literature
review and new IoT requirements gathering. Firstly, the concepts related to
emerging IoT environments are developed to identify the basic requirements and
challenges posed by its constrained sub-domains. This is followed by an extensive
literature review to analyse existing SD protocols. The protocols are categorised
and then scrutinised for different stages of SD. The identified IoT SD requirements
are used in the scrutiny. The design guidelines is the outcome of this stage for the
conception of a better design for new solution.

CHAPTER 1. INTRODUCTION 24

The solution design stage proposes a solution to achieve the objectives (Sec-
tion 1.3) according to the design guidelines produced in the first stage. The protocol
is implemented and tested in the experiments stage. The results of the evaluation
are fed back to the design stage to tackle the unsolved issues. Consequently,
new algorithms are devised to improve the solution and to make it more feasible,
efficient and suitable for IoT environments. These algorithms are integrated with
the existing solution and tested individually. The generated results are used to
improve the proposed mechanisms. Finally, the solution composed of all algorithms
is tested, verified and validated at experiments stage before finalising the design
stage. Figure 1.2 illustrates all stages in a simplified flowchart.

CHAPTER 1. INTRODUCTION 25

�������� ��	
���
�����
��� �
���

��
���
��� ������
��� �������� �� ����
���
���������

����������
�
��
�
����
 �� ������
 � !��"#$%

����
��� &����� �
���

��'%&(
������� &�������� #��
����

'�	������
� �
���

%�� $�����
��

� ��	���� ����
���

)���� ���
� ��� �����
�

)���� ������� ��
��'%&(�& ����
���

&�����
����������

������� �

���
� ��� '�����
����

Figure 1.2: Research Methodology

CHAPTER 1. INTRODUCTION 26

1.5 Original Contributions

In this section, the main contributions of this thesis are described with regard to
the posed research questions and challenges.

Contribution 1: Analysed SD requirements for the IoT
The demands of IoT environments are very diverse. However, to devise a
better solution a review of existing solutions is needed by focusing on the
requirements of IoT and its constrained sub-domain. At first, Chapter 2
covers the detail of IoT environments by explaining related technologies.
Subsequently, a literature review of existing SD solutions in context of
6LoWPANs is conducted in Chapter 3. This chapter also discusses the details
of general challenges and new perspectives in context of SD. Furthermore,
Chapter 4 describes some IoT use case scenarios and emphasises the general
IoT and specific 6LoWPAN requirements for SD.

Contribution 2: Proposed a SD and selection solution for IP-based Wireless
sensor networks
This project proposes TRENDY, a context-aware SD and selection solution
for IP-based WSNs (Chapter 5), which uses the context information of
nodes to select the best matched service. Its service selection mechanism
is evaluated in different experiments using different RDCs and topologies
(Section 6.5). Moreover, CoAP is employed as a communication protocol that
enables the web service paradigm to provide service invocation and desired
interoperability.

Contribution 3: Proposed an adaptive timer to reduce control overhead
An adaptive timer technique is proposed (Chapter 7) to minimise the overhead
of status maintenance. It uses the service popularity (number of times a
service is discovered in a time window) as criteria to adaptively increase
or decrease the interval between status updates. The timer mechanism is
evaluated in the number of experiments using different number of nodes and
topologies.

Contribution 4: Proposed a grouping technique to provide scalable architecture
and to enable service composition
Chapter 8 covers the detail of a grouping approach, which uses the context
information to group nodes. It creates an application-level overlay of the
network to localise the status maintenance and provide basis to enable
service composition while localising the traffic within a group. It makes
the solution resource-aware by defining distinctive roles, which consist of

CHAPTER 1. INTRODUCTION 27

different modular features to deal with the heterogeneity. This allows nodes
to implement different level of functionality depending on their capabilities.
An evaluation is done to analyse the impact of grouping w.r.t. the size of a
group, and the number of groups in a network.

Contribution 5: Proposed adaptive caching technique to deal with sleepy nodes
An adaptive caching technique is proposed by this research project (Chapter 9)
that reduces the burden on network’s bandwidth and delay in service invoca-
tions. This technique helps the nodes to deal with the high number of service
requests while conserving energy with sleep cycles. Furthermore, it’s cache
publishing ensures that the delay of service invocations tend to zero when
the number of request increases drastically. This technique is evaluated using
different network loads, RDCs and topologies.

1.6 Thesis structure

This thesis begins with the introduction of those technologies that have enabled
constrained networks to become an active part of the Internet. Chapter 2 introduces
the technologies needed to merge WSNs with the Internet. This chapter covers
the discussion of existing application protocol paradigms and their integration
in constrained networks to enable the WoT paradigm. Chapter 3 introduces the
role of SD by explaining its objectives and entities. The literature is reviewed in
this chapter, by classifying existing SDPs by architectural design. Furthermore, it
covers the related issues and some new perspectives in the SD domain. Chapter 4
presents the IoT SD requirements in the context of different future scenarios with
an emphasis to 6LoWPANs. Chapter 5 describes the SD and selection solution
proposed by this research project. This chapter discusses the design details of
the protocol, including aims, architecture, and protocol’s overview. The protocol
specifications including details of algorithms and message formats are also explained
in this chapter. Chapter 6 presents the experimental tools, performance metrics,
experimental setup and design for evaluation of the solutions. It also covers
the evaluation of the service selection mechanism of TRENDY. Chapters 7, 8
and 9 present the detail of three proposed techniques: adaptive reporting timer,
context-aware grouping and adaptive caching. These chapters cover the detail of
design, performed experiments and generated results of the respected techniques.
Chapter 10 combines the four contributions together to form an adaptive and
context-aware SD solution for the IoT. This chapter also discusses the experiments
performed and generated results by combining different techniques. The proposed
solution is then compared with some existing SD solutions in Chapter 11. The

CHAPTER 1. INTRODUCTION 28

thesis is concluded with the discussion of the research project’s contributions and
future work in Chapter 12.

Chapter 2

From the Internet of Things (IoT)
to the Web of Things (WoT)

2.1 Introduction

The IoT vision extends the current Internet to previously unconnected physical
things. These everyday objects are connected to the virtual world and empower
remote users to control them. This paradigm transforms the computing truly
ubiquitous - an idea coined by Mark Weiser [131]. New technologies have made this
integration a reality by enabling even very low capable devices and isolated WSNs
to become an active part of the Internet. The WoT [42] paradigm extends this
integration to the application layer [45]. This chapter explains the technologies,
which enable constrained networks to become the part of the Web. The details
of different application protocol paradigms and related protocols are covered in
this chapter. In the end, it describes the employed technologies by this research
project for implementation and evaluation.

2.2 6LoWPAN (IPv6 over Low power Wireless
Personal Area Networks)

6LoWPAN [90] is an IPv6 adaptation layer that defines mechanisms to connect
resource constrained devices with IP [76]. These devices mostly communicate over
low power, lossy links such as IEEE 802.15.4. It uses a compression format [55] to
compress the IPv6 packets. The adaptation layer is introduced at the edge router,
for translation of packets to and from IPv6 network.

A 6LoWPAN consists of one or many stub networks. A stub network is a
small network to which packets can be sent or received, but it doesn’t behave as
a transit to other networks. The connection to other IP networks is maintained

29

CHAPTER 2. IOT TO WOT 30

by edge routers as shown in the Figure 2.1. The edge router plays a pivotal
role in 6LoWPANs as it routes the traffic in and out; additionally, it handles
the 6LoWPAN neighbour discovery, compression and IPv4 inter-connectivity. A
typical 6LoWPAN can consists of one or more edge routers, and nodes with host
or router roles. In case of multiple edge routers in the same LoWPAN, all edge
routers need to share a common backbone link.

2.2.1 Architecture

The architecture of a 6LoWPAN network consists of edge-router(s), router and
servers, as shown in Figure 2.1. The nodes send their data out from the network
via edge-routers. The edge-routers can also act as a proxy to allow the use of new
compressed application protocols and can enable caching.

������
������

	�
��
������

��
���

����
����

����

����
��������

����

����

���� ��
���

��������

����

����

��
���

��������

���� ��
���

�	
��� ������

�������� ������

���� ��
���

Figure 2.1: Architecture of a 6LoWPAN

Figure 2.2 shows a comparison of 6LoWPAN protocol stack with its IP counter
part.

CHAPTER 2. IOT TO WOT 31

�����������

��������

������

���� ����

��������

�������� ���
������ ���

	�
�	�
� ���

������� ���

�� �������� �����

������� ���� ��

	���

�������� ���
������ ���

	�
� ���

	

 ��������

������
 �������� �����

����������� ����� ���

�� !��" �#$%�$����

Figure 2.2: IP and 6LoWPAN protocol stacks

2.2.2 Design Considerations

This section describes number of design considerations, which should be taken into
account while designing an application protocol for 6LoWPANs [112].

Link layer: 6LoWPANs use the IEEE 802.15.4 low power radio technology for
wireless communication. This radio is quite distinctive in nature from IEEE
802.11 WLANs, so the unlike attributes of IEEE 802.15.4 are highly con-
siderable. It uses Carrier Sense Multiple Access (CSMA) as a MAC with
multiple retransmission. The rate of packet loss also increases if there is radio
interference. There is no built-in multi-cast support, which can be crucial
in the context of sensor networks. Furthermore, links are asymmetrical, so
the packets successfully sent in one direction do not guarantee delivery from
the other side. The most constraint feature of IEEE 802.15.4 is its limited
bandwidth as at the physical layer payload size is 127 bytes and offer only
60-80 bytes ideally for a User Datagram Protocol (UDP) payload [114]. The
data rates are also typically between 20 and 250 kbit/s and are shared by
all nodes on the channel, and will drop further over multi-hops. Therefore,
end-to-end reliability is important for applications, because of the lossy links.
The application protocol for 6LoWPANs should use compact binary headers
and payload formats.

Networking: UDP has the most favourable qualities (for example, connection-less
behaviour) to be considered for 6LoWPANs. On the other hand, Transport
Control Protocol (TCP) does have some use, but this will require a new
enhanced, and compact version of TCP. This option is interesting to be
considered as most of the IP-based protocols rely on TCP because of its

CHAPTER 2. IOT TO WOT 32

reliable connection-oriented byte stream. Large packet transfer can be
achieved by using the fragmentation feature of 6LoWPAN, but this will
increase the traffic and message response time.

Host Identification Issues: The identification of the devices is a key for end-
to-end communication. There are several ways in which a device can be
identified such as a serial number, the IPv6 number of node, 64-bit Extended
Unique Identifier (EUI-64) number, or by its domain name. The IPv6 address
can change for a mobile device when it moves or point of attachment changes.
An EUI-64 [52] is a unique serial number of the device; it is reliable identifier
but needs to be resolved by the node.

Compression: Traditional IP protocols are not designed for constrained envir-
onments; therefore, these do not address the inherent challenges in these
environments. For example, features like human readability and protocol
extensibility are not of great priority in Machine-to-Machine (M2M) commu-
nication. Similarly, constrained devices are not able to implement complex
protocols. Consequently, existing IP-based protocols require compression to
be applicable for constrained devices and environments.

Security: 6LoWPANs use link layer encryption for securing the links in a net-
work. IEEE 802.15.4 also secures each link with a built-in 128 bit Advanced
Encryption Standard (AES) encryption feature. In a multi-hop network,
intermediate hops to have the same encryption key, which makes the applica-
tion data vulnerable on these hops. Applications that deal with important
data demand more security, for example, enterprise and defence systems. If
an application is dealing with sensitive data, it can apply end-to-end applica-
tion layer security. This enables only the involved end-points to encrypt and
decrypt the data accurately.

2.3 RPL (IPv6 Routing Protocol for Low
power and Lossy Networks)

IPv6 Routing Protocol for Low power and Lossy Networks (RPL) [133] is an
IETF standard and focused on Low Power and Lossy Network (LLN) a class of
network in which devices including routers have constraints on memory, processing
power and energy (battery powered). Furthermore, the types of traffic flows in
these networks include point-to-point (between devices inside a network), point-to-
multipoint (from a central control point to a subset of devices inside a network),
and multipoint-to-point (from devices inside a network towards a central control

CHAPTER 2. IOT TO WOT 33

point). In the start, the designers of RPL identified the routing requirements for
LLNs, which were used to evaluate existing protocols including Open Shortest Path
First (OSPF), Ad-hoc On-Demand Distance Vector Routing (AODV), Intermediate
System to Intermediate System (IS-IS) and Optimized Link State Routing Protocol
(OLSR). However, they couldn’t find a match for the unique requirements of LLNs
such as constrained devices and unreliable lossy links with high loss rates, low data
rates, and instability. Subsequently, RPL was designed that is tailored to deal with
the requirements of wide range of LLN application domains.

2.3.1 Protocol and Topology Construction

RPL is a proactive distance vector protocol and does not rely on any particular
features of a specific link layer mechanism. It requires bi-directional links (may
have asymmetric properties) between devices to build one or more Destination
Oriented Directed Acyclic Graph (DODAG). A DODAG is a set of vertices without
any cycle in them where each node has a path towards a single root. All the
routes are optimised for traffic to or from the root that represents the sink for the
topology. This makes RPL more suitable for LLNs where topology is not predefined
by point-to-point wires. Furthermore, RPL allows a root to define an Objective
Function (OF) that is used by rest of the nodes to optimise the paths to achieve
objectives e.g., minimizing energy, minimizing latency, or satisfying constraints. A
leaf node can have multiple paths towards the root, which satisfies an important
routing requirement for LLNs.

Objective Function (OF): Each RPL’s DODAG specifies an OF [122] that is
used by nodes to optimise the routes. The OF is defined by an Objective Code
Point (OCP) in a DODAG Information Object (DIO) message. It defines the
rules for nodes to translate one or more metrics and constraints [125] into
a value called rank. The metrics could be combination of node attributes
e.g., hop count, node residual energy, or link attribute including throughput,
latency, link quality level or expected transmission count (ETX). This rank
approximates the node’s distance from the root in a DODAG.

Upward traffic: RPL specifies DODAG Information Solicitation (DIS), DIO and
DODAG Advertisement Object (DAO) messages to build a DODAG, which
are defined as new ICMPv6 messages. The DIS message, which is analogous
to IPv6 RS (Router Solicitation) message, is used by the nodes to discover
DODAGs in their vicinity. The root of a DODAG (usually a border router
node) wraps OF and other configurations for the DODAG in a DIO message
and advertise it using link-local multicast. Other nodes receives the DODAG

CHAPTER 2. IOT TO WOT 34

configuration and spread it in their vicinities. When a node joins a DODAG,
it computes the rank of its neighbours using OF and decides about its parent
node to maintain an upward route towards the root node. These routes
enable the multipoint-to-point traffic flow from nodes in a network towards a
sink (root node).

Downward traffic: RPL’s DAO messages are communicated by nodes to main-
tain routing information in the downward direction that is used for point-to-
multipoint and point-to-point communication. These messages carry related
information including IPv6 destination address, prefix or multicast group.
RPL has two modes of downward traffic: storing (nodes have routing tables
to destinations) or non-storing (fully source routed as nodes do not store any
information about routes). In storing mode, the point-to-point traffic will go
upwards until a mutual parent node is found to route the traffic downwards
towards the destination. On the contrary, in non-storing mode point-to-point
traffic needs to go upwards all the way to root before moving downwards, as
no node in the path has any routing information to route the traffic.

Controlling RPL’s Topology: The DODAG’s OF is a key to control the rout-
ing topology of RPL. It influences the decision of nodes to select their parents,
to maintain routes towards root. Therefore, any implementation or deploy-
ment can specify administrative preferences by changing the OF to control
traffic and configure a DODAG formation to better support application
requirements [61, 133].

Adaptability: RPL uses on-demand loop detection using data packets to deal
with the low-power and lossy nature of constrained networks. Thus, RPL’s
control traffic is adaptive to the stability of a DODAG, because maintaining
a routing topology that is constantly up-to-date with the physical topology
can waste energy. Therefore, the infrequent changes in connectivity or loop
detection in a DODAG are only addressed by RPL when there is data
to be sent. RPL employs Trickle timers [72] to adapts to the changes by
determining the frequency of DIO and DAO messages. The ranks (computed
using OF) of nodes are examined while making any routing decision (upward
or downward) to discover any inconsistency, e.g., any loop in a DODAG.
When a node receives such a packet, it institues a local repair operation and
consequently changes the frequency of DIO and DAO messages.

CHAPTER 2. IOT TO WOT 35

2.4 Application Protocol Paradigms

According to Shelby and Bormann, Internet application protocols function in four
different paradigms [112]. Those paradigms are end-to-end, real-time streaming
and sessions, Publish and Subscribe (PubSub) and web services. The explanation
of each of those is described in this section.

2.4.1 End-to-End

In this paradigm, only application end-points take part in the application protocol
exchanges. Both application end-points use Internet socket model between them,
which is based on the transport layer to provide a byte stream service or an IP
datagram. There can be exception of those application protocols, which allow the
use of intermediate nodes to cache, modify or inspect application protocols. For
example; HTTP uses these intermediate nodes to perform web-content caching,
which are known as proxies.

In case of 6LoWPANs, most of the devices are battery operated and thus their
availability can be intermittent, so end-to-end paradigm’s role is significant in the
realisation of protocol compression. This can be achieved in two different ways. In
the first approach the compressed format can be supported on the both application
end-points. The second approach is of placing the functionality in the edge router,
which can then act as a proxy. The later approach can be useful as it eliminates
the need of modification of the applications on constrained nodes.

2.4.2 Real-time streaming and sessions

The applications which involve sensor video or audio have the requirement to
deal with real-time data streams. Generally the Internet protocols deal with the
real-time data with best-effort approach, which means without any Quality of
Service (QoS). This approach introduces considerable jitter, and packets may arrive
out-of-order, which should be considered by real-time applications.

There are different Internet protocols which are used to deal with the real-
time traffic including Real-time Transport Protocol (RTP), RTP Control Protocol
(RTCP) and Session Initiation Protocol (SIP). The RTP adds the time-stamp
and sequence number to the stream and uses RTCP to control it. SIP is used to
automatically setup and configure the relationship between sender and receiver.

CHAPTER 2. IOT TO WOT 36

2.4.3 Publish/Subscribe

This is an asynchronous paradigm in which messaging is done in a way that sender
sends data without having any knowledge of the actual receiver, and receiver
subscribes to a topic which is based on the content of the data. In this centralised
architecture, sender is a publisher that publishes the data with a topic to centralised
brokers and receiver subscribes with the topic of interest to get the data from a
broker. A central broker decouples the application end-points, which gives a lot of
flexibility to the network. In wireless embedded Internet, the concept of PubSub is
of great significance in those applications which are data centric, where the source
of the data is not important.

2.4.4 Web service

A web service is a software system designed to support interoperable M2M com-
munication over a network. It works between clients and servers and uses HTTP
to operate. The concept of web services is the idea of having a simple URL
available on the servers with resources or services to be called from them. There
are two different kinds of web services; Service-based (SOAP) web services and
Resource-based (REST) and web services.

2.4.4.1 Simple Object Access Protocol (SOAP)

The SOAP based web services are a defacto in enterprise M2M systems. It uses
one URL to identify a service that can implement several Remote Procedure Call
(RPC) calls. These web services use HTTP and RPC for message negotiation and
transmission between clients and servers. The SOAP messages are in XML format,
and the sequence of messages is explained in Web Service Description Language
(WSDL) [27]. Following is an example of a simple SOAP message’s header:

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/soap-envelope">

<soap:Header>
</soap:Header>
<soap:Body>

<m:GetStockPrice xmlns:m="http://www.example.org/stock">
<m:StockName>IBM</m:StockName>

CHAPTER 2. IOT TO WOT 37

</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

The below example shows an example of a URL with some methods, which
can be used in a single SOAP message. A RPC call example to execute different
methods:

URL:
http://sensor1.lboro.ac.uk/soap

Methods (Analogy is verb):
getSensorValue(sensorNum)
setSensorValue(sensorNum)

There are many issues involved in the adaptation of SOAP based web services.
Its XML format is verbose and thus poses a serious challenge to use these web
services in 6LoWPANs. Furthermore, it employs HTTP as a transport protocol,
which demands for more complex processing power at both ends. For example, the
above message header has length of 408 bytes, which is too large for a 6LoWPAN
frame. In this case, sending this message over a 6LoWPAN, will require up to
six fragments to transmit. On top of this, HTTP needs TCP to operate, which
requires more reliable connections. These limitations need serious optimisation
and change in design to work in 6LoWPANs. SOAP based web services are used
in various efforts [39, 91, 92, 116, 117] by employing gateways.

2.4.4.2 Representational state transfer (REST)

Another dimension of realising the web services is using resource based REST [36]
design. This architecture is much simpler and straight forward, as a message is not
being wrapped in a separate body. Instead, all the resources on the server have
corresponding URLs assigned. HTTP is used to request different methods on a
resource. In this case, client will only send a HTTP message with the corresponding
URL and the method. For example, if a server has a light sensor with /light URL,
a HTTP GET can be sent with this URL to get the content of the resource. The
response can be in any of the Multipurpose Internet Mail Extensions (MIME) type,
which is described in the response so that the other end can parse the message.

Following are the principles of REST architecture [36]:

• URI (Universal Resource Identification): The REST paradigm uses
model objects as HTTP resources, with a unique URL for each resource. Con-

CHAPTER 2. IOT TO WOT 38

sequently, RESTful web services expose all the resources with corresponding
URIs. The users target the desired resource by specifying its URI.

• Uniform interface: HTTP is used as an application protocol by the REST-
ful web services. It allows different methods of GET, POST, PUT and
DELETE to be use to get, set or delete the value of a resource. The Web Ap-
plication Description Language (WADL) is used to describe the interfaces of
the resources. The content of the resource is defined by the MIME, normally
XML is common in M2M applications.

• Self-descriptive messages: The representations of the resources can be
described in any common format, e.g., HTML, XML, UTF8, PDF and GIF.
The decoupled nature of the resource representations allows the freedom of
using any commonly understandable format between endpoints.

• Stateless operations: Every interaction with the resource is stateless, thus
this eliminates the need to carry all related information.

Some examples of REST messages are given below which represent the analogy
of nouns.

http://s1.lboro.ac.uk/sensors/light ->Method:Get
http://s1.lboro.ac.uk/sensors/temp ->Method:Get
http://s1.lboro.ac.uk/sensors/acc ->Method:Post, Payload:Value
http://s1.lboro.ac.uk/config/sleeptime ->Method:Put, Payload:Value
http://s1.lboro.ac.uk/config/waketime ->Method:Put, Payload:Value

RESTful web service paradigm is employed in different research efforts [119, 132]
because of its simplicity and suitable characteristics for embedded constrained
networks. The research effort [43] which coined the idea of WoT has also utilised
the RESTful web service paradigm.

2.5 CoAP (Constrained Application Protocol)

The IETF Constrained RESTful Environments (CoRE) working group is working
on realisation of the REST architecture in an optimum and more suitable form for
the most constrained nodes and networks (such as 6LoWPANs). The CoRE working
group is designing CoAP [13], which is an alternative (to HTTP) compact way of
enabling RESTful web services in constrained environments. The applicability of
CoAP is especially considered for commercial applications which include building
automation and other M2M applications. Following are the features of the CoAP,

CHAPTER 2. IOT TO WOT 39

which make it more suitable and interoperable solution for the wide range of
constrained networks and especially for industry-specific networks:

• Constrained web protocol fulfilling M2M requirements. CoAP is a
simple and compact protocol for constrained node, as it is deployable on
nodes with 8-16 bit micro-controllers, 64-256K of flash and 8-12K of RAM.

• Low header overhead and parsing complexity. CoAP protocol is op-
timised for the extremely restricted throughput (order of tens of kbits/s),
limited bandwidth (60-80 bytes for application layer payload), and a high
ratio of packet loss.

• Simple proxy and caching capabilities. Caching is supported by the
protocol. If a proxy is employed, it can cache recent responses to later reply
on behalf of a sleeping node.

• Different types of message exchanges. CoAP follows the REST archi-
tecture, so it allows creating, reading, updating and deleting a resource on
a device. The normal protocol transaction consists of a single request and
response exchange.

• UDP binding with optional reliability supporting unicast and mul-
ticast requests. Constrained networks have high rate of packet loss, so
CoAP supports UDP as transport protocol with back-off mechanism for
reliability. It describes an option for sending larger chunks of data using
UDP. Moreover, it supports multicast with no reliability.

• URI and Content-type support.The Internet has a large list of media
types; CoAP supports the subset of these media types.

• Stateless HTTP mapping The basic goal of CoAP is to integrate seam-
lessly constrained networks with the Internet. Therefore, CoAP defines
stateless HTTP mapping, allowing proxies to be built providing access to
CoAP resources via HTTP in a uniform way, or HTTP simple interfaces to
be realised alternatively over the CoAP.

This section covers a brief introduction to the CoAP protocol.

2.5.1 Transaction ID and messages types

Each CoAP end-point has a transaction ID (unsigned integer) which is initially
randomised and then changed each time for a new confirmable or Non-Confirmable
message. Transaction ID of a response is matched for every corresponding request.

CHAPTER 2. IOT TO WOT 40

The Token Option is used to match a response with a request. Furthermore, every
request has a client-generated token which is echoed back by the server in every
response. This option is used to deal with the delayed response, as a transaction
ID will remain same for one response and its corresponding request, but varies if a
transaction involves more than one requests or responses.

There are four different message types used by the CoAP transactions as defined
by the protocol. These messages are transparent to the request/response carried
over them.

1. Confirmable (CON): This message type is used when an acknowledgement
is required in response. The ACK or RST message types are used in response
to CON.

2. Non-Confirmable (NON): This type of message is suited for a scenario
where no acknowledgement is required e.g., if a sensor is sending readings
frequently, there is no need of acknowledgement.

3. Acknowledgement (ACK): The ACK is used to inform the sender of the
message that message has been successfully received. The message with ACK
type can also carry a payload to save the communication overhead.

4. Reset (RST): A Reset message explains that the receiver has lost the
context information of some Confirmable message, and is unable to process
the response.

2.5.2 Methods

One of the prime requirements for CoAP is to easily map to HTTP, that’s why it
supports basic methods including GET, POST, PUT, DELETE which are akin
to their HTTP counterparts. All of these methods can manipulate resources and
have the similar safe (only retrieval) and idempotent (same effect even after being
executed multiple times) properties. The response has mentioned any unsupported
method code, the response should have the response code of “method not allowed”
(CoAP 4.05 equivalent to HTTP 405).

1. GET: This method is used to get the information of a resource, which
is identified by a URI. In case of success a 2.05 (Content) or 2.03 (Valid)
response SHOULD be sent. It is safe, idempotent and cacheable method.

2. POST: The POST method is used to create a new sub-ordinate resource
under the given resource URI. On the success of the POST, response code of
2.01 (Created) in case of resource creation and 2.04 (Changed) when existing

CHAPTER 2. IOT TO WOT 41

resource is updated, is sent back. When a new resource is created, the
response includes the URI of the new resource in a sequence of one or more
Location-Path Options and/or a Location-Query Option used to send the
URI of the created resource. The POST is not safe and neither idempotent.

3. PUT: The PUT message is used to create or update a resource specified
by a given URI. If the resource exists, it is updated by the modified version
which is appended in the message body and 2.04 (Changed) response code is
returned. If no resource exists, the receiver may create a new resource with
the given URI, and 2.01 (Created) response code is sent back. In case of any
problem, the respective error code is sent in the response. The PUT is not
safe, but is idempotent.

4. DELETE: This method is used to delete a resource which is specified by
the sent URI. The 2.02 (Deleted) code on success or an error message is sent
back in response. The DELETE is not safe, but is idempotent.

2.5.3 Options

CoAP defines different options to be used with requests and responses. Most
common option Content-Format is used to describe the format of the information
in the payload. CoAP has specified very compact and extensible Type-Length-
Value (TLV) style option format. This section covers the basic handling of the
options and the concepts of URI and content types, which are related to options.

• Options processing: CoAP has elective and critical types of options. There
is a place of option count in the header, which is set to 0, if there is no option.
If any option is specified in the message, it is placed in the message after
the header. In case of unknown options, the elective types of options can
be skipped, and an error response code 4.02 (Bad Option) with the critical
option number in the payload is sent back in the response.

• Universal Resource Identifier (URI): CoAP has four options to deal
with the Universal Resource Identifier (URI), which is an important feature of
the REST architecture (on which the web is based). The CoAP URI consists
of scheme, authority, path and query options. The protocol reconstructs the
URI using those options. The example of the CoAP URI is

coap://[IP address]:port/s/light?status

CoAP supports this URI by using four different options in the following way

CHAPTER 2. IOT TO WOT 42

– coap is given in URI scheme option

– [IP address] is described in the URI authority option

– /s/light is mentioned in URI path option

– ?status is specified in the URI query option

CoAP does not support “.” Or “..” in URIs, IRIs, and does not fragment “#”
processing. Every CoAP request contains a URI-path option and can have
a URI-QUERY option. The URI-scheme and URI-authority are optional
between CoAP end-points. If URI-authority is needed to reconstruct the
URI but not given in the message, an error code 4.02 (Bad Option) is sent
in the response.

• Content types: The CoAP specifies a subset of MIME types as its content
types. As part of optimisation, designers have changed the string definition
to 1-byte code definition, which describes the content type of the payload.
The default value of this option is “text/plain” which is assumed, if content
type option is not given in the message.

2.5.4 Message Format

CoAP uses a very simple and compact binary header, which is followed by options
in the Type-Length-Value (TLV) format. Any bytes after header and options are
considered as payload that can be calculated by using the datagram length. The
format of a CoAP header is shown in the figure 2.3. The header fields include the
V er as CoAP version, T as transaction type, OC as the number of options in the
message, Code as a method or response code. All options come after the header,
then a payload is appended at the end.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

������� ��� ���� ���
������� ��� ���� ���

� � � �

 ���� !����"� #$

Figure 2.3: CoAP Packet format

The fields in the header are defined in as follows:

• Version (Ver): 2-bit unsigned integer. Indicates the CoAP version number.
Implementations of this specification MUST set this field to 1. Other values
are reserved for future versions.

CHAPTER 2. IOT TO WOT 43

0 1 2 3 4 5 6 7
+---------------+---------------+
| Option Delta | Option Length | 1 byte -> for 0 ..14
+---------------+---------------+

for 15..270
+---------------+---------------+---------------+---------------+
| Option Delta | 1 1 1 1 | length - 15 |
+---------------+---------------+---------------+---------------+

Figure 2.4: CoAP Option header format

• Type (T): 2-bit unsigned integer. Indicates if this message is of type
Confirmable (0), Non-Confirmable (1), Acknowledgement (2) or Reset (3).

• Option Count (OC): 4-bit unsigned integer. Indicates the number of
options after the header. If set to 0, there are no options and the payload (if
any) immediately follows the header. The format of options is defined below.

• Code: 8-bit unsigned integer. It is further split into 3-bit class (most
significant bits) and a 5-bit detail (least significant bits), comparable to
HTTP codes as c.dd where c is a digit from 0 to 7 for the 3-bit sub-field and
dd is two digits from 00 to 31 for the 5-bit sub-field. Indicates if the message
carries a request (0.01-0.31 as 1-31) or a response (64-191 as 2.00-5.31), or is
empty (0 as 0.00). All other code values are reserved. In case of a request, the
Code field indicates the Request Method; in case of a response a Response
Code.

• Message ID: 16-bit unsigned integer. Used for the detection of message
duplication, and to match messages of type Acknowledgement/Reset and
messages of type Confirmable

The number of options is defined in the header, while options are appended
after basic header, in a sorted manner. The option with the least number will come
first, and rest of options follow the same rule. The critical (must be understood or
error generated) options are recognised by the odd value and electives are given
even values. The option header consists of option delta and length. The option
delta is used to identify the type of the option. Each option header has the format
as shown in figure 2.4. The option header requires 1 byte or 2 byte (if option
length is more than 14 bytes).

CHAPTER 2. IOT TO WOT 44

2.5.5 UDP binding

UDP is the default transmission protocol for CoAP. The other transmission
protocols like TCP or SCTP can also be used with CoAP. The requirements for the
UDP were to provide the bare minimum features with some reliability, to avoid the
need of creating a compact TCP with a new feature set. CoAP defines following
reliability support for UDP:

1. It gives some reliability by providing simple stop and wait retransmission
reliability with exponential back-off for Confirmable messages.

2. The transaction IDs are used for the response matching

3. It also supports multicast communication.

2.5.6 Interaction Model

The client/server model is followed as an interaction model by CoAP. It is similar
to HTTP, as a client sends a request for an action on a resource (which is identified
as a URI), and then server sends back a response consisting of response code and
resource representation. However, a CoAP implementation plays the roles of both
server and client, and is called an end-point.

To fulfill the M2M requirements, CoAP supports asynchronous interchanges
over a UDP. This is achieved using four transaction messages (Confirmable, Non-
Confirmable, Acknowledgement, Reset). The asynchronous transactions are com-
pleted by following the same request and response interchanges, with the permission
of deferred response.

This allows to think of CoAP with two layers, i.e., a request/response interaction
using methods and response codes, and a transactional layer used to deal with
UDP and asynchronous transactions. This conceptual view of CoAP transactional
model is shown in figure 2.5.

2.5.6.1 Synchronous response

The synchronous response of CoAP is similar in functionality to HTTP. In CoAP, a
client sends a confirmable request message and then waits for the acknowledgement
message which also carries the response. The scenario is shown in the figure 2.6.

The optimisation here is the relationship between the confirmable message
(CON) and an acknowledgement message (ACK). The ACK message also carries
the response in payload, which minimises the protocol communication overhead.
The transaction IDs are used to match the specific acknowledgement message
(ACK) to the confirmable message (CON).

CHAPTER 2. IOT TO WOT 45

�����������

	
��

�
�	

���

�

��

���

����

Figure 2.5: Abstract layering of CoAP

����
�����	

����

�����

�
� �	������� ��� �����	
������ �� ��

��! �	������� �"�# ���	��	
������ �� �� $��"# �$

����
�����	

����

�����

�
� �	�����%� ��� �	�&'
������ �� ��

��! �	�����%� %"�% ��	 (�)��
������ �� �� $��	 (�)��$

Figure 2.6: CoAP Synchronous Scenario

CHAPTER 2. IOT TO WOT 46

2.5.6.2 Asynchronous response

The asynchronous response of CoAP is crucial in a situation where a server might
need some time to send a response. In this case, the client uses the token message
of the request. The server knows that it can’t send the response immediately so
it keeps the record of the token and simply informs the client about the delay of
the response with an ACK (without any resource representation appended). This
alleviates the risk of client to retransmit the request repeatedly. When the server
knows that the resource representation is ready, it will make a confirmable message
to send the resource representation with the same token but with a new transaction
id. The client uses the ACK with the received transaction id, to inform the server
that it has received the response. The scenario is shown in the Figure 2.7.

����
�����	

����

�����

�
� �	������� ��� �����	
������ �� !�

��" �	�������

�
� �	���#� � �$�� ���	��	
������ �� !� %��$� �%

��" �	���#� �

$$$$$$$$$$$$$$$$$$$��&� �'((�($$$$$$$$$$$$$$$$$$$$$

Figure 2.7: CoAP Asynchronous Scenario

In the special failure situation, when the client is not at all able to process a
Confirmable message (i.e., not even able to provide a suitable error response), it
sends the special Reset message as shown in Figure 2.8.

2.5.7 Resource discovery

The CoAP end-point supports the CoRE Link Format [111] of ascertainable
resources. This resource discovery feature is crucial in the M2M application, where
no human is involved. This standard defines Web Linking using a link format to
utilise by constrained web servers to describe hosted resources, their attributes and
other relationships between links. The attribute value pairs of this format can easily
represent the desired information. The idea behind using this format comes from
providing interfaces to collections of resources offered by RESTful design paradigm.

CHAPTER 2. IOT TO WOT 47

����
�����	

����

�����

�
� �	������� ��� �����	
������ �� !�

"�#�	 �	�������

Figure 2.8: CoAP Reset Scenario

The linking between those resources works like pages on a website. CoAP defines
that each device can offer a web resource with URL “/.well-known/core”, to offer
resource discovery.

2.5.8 Caching and Proxying

CoAP end-points are constrained in terms of bandwidth and processing power. To
optimise the performance and life-time of the network, CoAP specifies the caching
feature like HTTP. The proxies provide the features of caching, and also send
responses on the behalf of the sleeping nodes.

2.6 Protocol Integration Approaches

Traditional IP-based protocols are not directly applicable to resource-constrained
environments. This section describes two different approaches to integrate complex
protocols into these environments [112].

2.6.1 Gateway approach

This is a traditional approach widely used in non-IP wireless embedded networks
such as ZigBee [5] and other vendor-specific solutions. In this approach, a gateway
is introduced at the edge of the network that deals with the protocol translation.
In 6LoWPANs, this can be achieved by implementing the gateway into the edge
router. Therefore, the gateway becomes an end-point for the protocol, which
controls the devices and sends responses on their behalf. This allows a proprietary
protocol to work within a 6LoWPAN, which makes the gateway dependent on
the content of the protocol. Consequently, whenever a new use of the network is
added or the format of the application is modified, all the gateways are needed to
be upgraded. Resultantly, this causes evolvability and scalability problems for the

CHAPTER 2. IOT TO WOT 48

network and translation increases the delay as each message needs to be translated
twice.

2.6.2 Compression approach

This approach leads to the compression of existing protocols, so that those can
be made suitable for use over 6LoWPANs. The integration can follow either
end-to-end or proxy approaches. In end-to-end approach, both application end-
points should support the compressed format. Whereas an intermediate proxy can
seamlessly translate the messages to, and from constrained end-points in proxy
based approach.

Both HTTP and TCP are infeasible to be used directly in a 6LoWPAN. In
literature, various efforts have used HTTP and TCP, by optimizing existing
standards. Some efforts [29, 30] have used an optimised TCP’s version. Another
effort [59] has used HTTP’s simple form to provide RESTful web services. The
NanoWS [112] (Nano Web Services) has also tried to transmit binary XML transfer
using UDP over 6LoWPANs. Furthermore, the SENSEI project [102] is researching
to find more efficient ways of using web services inside wireless embedded sensor
networks. Another example is CoAP protocol (Section 2.5) that offers a compact
version of the RESTful web services, while offering interoperability to HTTP by
seamless translation.

Several standardisation efforts are going underway for the compression of XML.
The W3C is working on a standard which will perform compact binary encoding of
XML and is called Efficient XML Interchange (EXI) [109] format. A standard WAP
Binary XML (WBXML) [83] format was developed for mobile phone browsers.
Another draft proposal called Binary XML (BXML) [41] from the Open Geospatial
Consortium (OGC) aims to compress the large set of geo-spatial data. EXI
is more suitable technology for 6LoWPANs, as it gives compact representation
without-of-band schema knowledge.

2.7 Technologies for Experiments

The selection of the technology for experiments is the key to create useful experi-
ments and analysis. This section discusses the features of the selected technologies
to emphasise the reasons for their consideration.

2.7.1 Operating System: CONTIKI

This research project employs the CONTIKI [31] operating system for the devices.
CONTIKI is an open source, highly portable, multi-tasking operating system

CHAPTER 2. IOT TO WOT 49

for memory-efficient networked embedded systems and wireless sensor networks.
It is designed for the micro-controllers with limited memory. There are many
alternatives [35] including the widely known TinyOS. The main reasons to choose
CONTIKI was its high portability, better feature set and an IP stack with RPL [133].
It works with both IPv4 and IPv6. Following is the list of CONTIKI’s features:

• Advance IP networking with uIPv6/6LoWPAN protocol stack that supports
RPL.

• Hybrid threading model with protothreads.

• Power profiling mechanism to keep track of energy consumption of each node.

• Text-based shell interface for sensor network interaction and sensing.

• Dynamic loading of the modules.

• Extensive simulation support with COOJA and MSPsim.

2.7.2 Simulator: COOJA

A simulator plays a pivotal role in the code development and testing of any
technique in constrained networks. The testing and verification of certain algorithm
is difficult and tedious without a simulator. Simulators can perform the simulation
at application, operating system or hardware levels. The time and overhead
increases, when a node simulates at a hardware level because of the implementation
of device drivers. On the other hand, the more high-level simulation does not
model the node’s hardware; consequently, it restricts the development to the high
level algorithms only.

COOJA [99] is a novel simulator to be used with CONTIKI OS that enables
the cross-level simulation (simultaneous simulation at many levels of the system).
It is developed in Java but allows to run node software written in C, by using JNI
(Java Native Interface). The list of COOJA features are:

• It allows simultaneous simulation at different levels (application, OS, machine
code levels) that makes it distinctive among other simulators [60]. This way
it combines low-level simulation of sensor node hardware and simulation of
high-level behaviour in a single simulation [120].

• It works with the Contiki OS (compatible with the choice of OS made in
previous section).

• It can simulate heterogeneous types of nodes in the same network.

CHAPTER 2. IOT TO WOT 50

• It is easily extensible as new plug-ins and radio mediums can comfortably be
changed or replaced.

• It gives a lot of details of the node’s hardware.

The rich features of COOJA; especially its support for hardware-level simu-
lations and having heterogeneous nodes in the same network, native CONTIKI
support and its extensibility were the key reasons to employ it as a 6LoWPAN
simulator for this research.

2.8 Summary

This chapter has covered the detail of technologies, which enable the WoT. The
discussion started with 6LoWPAN architecture and issues related to its integration
with the Internet. Furthermore, RPL is covered with some detail of its topology
creation and existing application protocol paradigms are discussed in the context
of 6LoWPANs. The emphasis is given to web service paradigm by explaining both
REST and SOAP based web services. This chapter has argued that existing web
services are a poor match for 6LoWPANs, because of there large messages and heavy
dependence on traditional IP-based protocols. However, compact CoAP based
RESTful web services can be leveraged by these resource-constrained networks.
Subsequently, some approaches are explained to integrate existing protocols in the
6LoWPANs. In the end, the chapter described the chosen experimental tools.

The next chapter focuses on SD details with the discussion of existing solutions
in literature and analyse them from the perspective of 6LoWPANs.

Chapter 3

Service Discovery (SD) in
Literature

3.1 Introduction

The IoT environment is begin to form with the advent of new technologies such as
6LoWPAN. Heterogeneous devices ranging from tiny sensors to powerful devices
can now become an active part of the Internet. These devices provide a variety of
information and services. The management and dynamic discovery of these services
are the tasks of a SDP. Moreover, the demand of efficient and reliable discovery
of network wide services complicate the problem. For example, a user needs to
know the service’s location and communication protocol before he can access it,
any time and anywhere. This chapter covers the details of different aspects related
to SD, including its objectives, existing solutions in literature, design challenges
and new perspectives. In addition, some comparative analysis of existing solutions
is presented from the perspective of 6LoWPANs.

3.2 SD Objectives

Services encapsulate the functionalities offered by devices. These provide the
abstraction from underlying heterogeneous hardware or implementation details. In
addition, services can be orchestrated to create new higher-level functionality, and
they can be deployed and executed in remote locations, in-situ on an embedded
device if necessary [126]. The function of a SDP is to find the software entities
or agents that can provide access to required services. An efficient SDP ensures
availability of optimal services to users and application [3]. The objectives of SD
are:

• Dynamic Discovery: The target of SD is to dynamically find a service

51

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 52

provider according to the request properties. To fulfil this goal, a SDP
needs a language to describe services, a way to store the service information
somewhere, and a protocol to search for services.

• Self-configuration: SD has to function without human intervention, i.e. with
no administration. This demands the capability of dynamic adaptation of
changes in topology and service descriptions, while enabling a user with
reliable and latest information regarding available services.

3.3 SD Entities

The process of SD is mapping the service description to service location. The
architecture of SDPs identifies the building blocks and the links between the
participating components (entities) [79]. At least following two entities participate
in the SD process.

Client (User or User Agent (UA)): The entity, which is interested in search-
ing and using a service usually hosts certain applications, which access specific
services. The service request is initiated by this entity.

Server (Service Provider or Service Agent (SA)) : The entity, which hosts
and offers services.

Protocols may use service repositories, to facilitate the service mapping proced-
ure. Following participating entity is common within SDPs.

Directory (Server, Service Broker or Directory Agent (DA)): The
directory node improves the performance of a SDP by acting as a broker or
registry for the discovery process.

3.4 SD Classifications

There is a plethora of SDPs proposed in the literature [2, 79, 87, 88, 129]. Existing
protocols are primarily focused on some specific environments (Ad-Hoc, Mobile Ad-
hoc Network (MANET), etc) mostly other than constrained networks. However, the
description highlights the interesting features and approaches used for providing SD.
This section classifies the protocols according to their architecture, and summarises
the design details.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 53

3.5 Centralised architectures

A Centralised approach introduces only one centralised directory, which keeps the
service information of the network. Clients generally use to discover the directory
using broadcast or multicast. However, unicast is used by the clients to advertise
their services. In a SD scenario, client first contacts a central directory to obtain
the matching service, and then contacts the specific node to invoke it.

This approach is more optimal in the service search context, but it creates a
single point of failure. Centralised architectures depend upon the availability of
a central directory that has a tendency of becoming a bottleneck, as all status
maintenance traffic flows towards a single point. The scope of SD is also limited
to the devices in the local domain. However, the boundaries of the domain can
be defined administratively to IP subnet or to range of a wireless network. This
section covers the details of different SDPs based on a central directory.

3.5.1 SLP (Service Location Protocol)

SLP [47] is an IETF standard, and provides a scalable and flexible framework for
SD through an IP network.

Entities and protocol: There are three major software entities in the SLP frame-
work: UA, SA, and DA. The SA advertises the attributes of hosted services.
The service registration with the DA has a lifetime and service needs to re
register after time-out. The SA also replies to the request for services using
unicast. The UA initiates a service request on behalf of client application and
receives a service URL from the DA or SA. SLP can work with or without
a DA. In the absence of a DA, the UA’s service requests is spread in the
whole network, and any SA offering the service would send a reply back.
SLP without a DA works well for small networks. In case with a DA, it
forms a centralised architecture by placing a DA as tier between UAs and
the SAs, which communicate indirectly through DA. The main function of a
DA remains to improve the performance of SLP. The significance of having a
DA becomes more apparent in large-scale networks, where the requirement
of multicast traffic between UAs and SAs is omitted. The DA works as a
registry which stores all SA advertisements.

Service description and queries: SLP provides service templates [46], which
is an attribute set of searchable service types. The templates include a
specification of attribute: types, default and allowed values. These templates
are used to keep the information of services differentiating between them and

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 54

communicate configuration information to UAs. SLP also offers filters for
attributes using operators like AND, OR and substrings.

SLP allows multiple DAs; therefore, is scalable. It is flexible, because services
can be deployed in small networks without any special configuration. It can work
without Domain Name System (DNS), Dynamic Host Configuration Protocol
(DHCP), or routing. Nevertheless, in order to get registered, the address of the
central directory needs to be known by every SA. It is not dependent to any
programming language. Its centralised architecture is vulnerable to a single point
of failure. There is no service selection and service invocation mechanisms are
specified by SLP. Polling is used by SLP to fetch the information from the network
and eventing is defined by SLP. However, some enhancements [62] are introduced
for SLP to adopt subscribe/notify.

3.5.2 SLP-based adaptations and optimised solutions

SLP is not directly applicable to 6LoWPANs as it needs optimisations with more
consideration to the message size. As in 6LoWPANs, SLP will have 60-80 bytes at
the application layer. Following is the discussion of some research efforts which
have used SLP ideas to offer SD solution for constrained networks.

SSLP with proximity: The Simple Service for Location Protocol (SSLP) [63]
which supports many features of SLP is a draft proposal in the IETF
6LoWPAN work group. SSLP provides a simple and lightweight frame-
work for the discovery of network services in 6LoWPANs. It uses Tokenised
XML strings to minimise the packet exchange. SSLP can also inter-work
with SLP in external IP networks. This can be achieved by using simple
translation of SLP to SSLP at edge-routers, which enables the clients to dis-
cover and control services inside a 6LoWPAN even from outside the network.
A proximity-based discovery solution [18] follows the same framework and
introduced a TA (Translation Agent) to translate the SSLP to SLPv2 com-
patible type and vice versa. This protocol employs multiple local registries
and uses multicast for the advertisements and status updates. However, its
dependency on gateway marginalise the benefit of using IP for end-to-end
communication, and the translation between protocols is complex and incurs
a large overhead.

nanoSLP: nanoSLP [59] is a miniaturised form of SLP that does not support
DA and multicast. The communication between UAs and SAs is allowed
using uni-cast or multicast. In nanoSLP, the resource values are piggybacked
in the response to a SD message to save one round trip time. The format

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 55

of the request message is also enhanced by using URL instead of a service
name. Consequently, one request can be addressed to several nodes. This
is a useful feature for a WSN, where nodes are addressed by a geographical
location (geocasting). The complex search is achieved using one byte encoded
comparison field, called Flags. The drawback is that as the network grows,
the burden of multicast increases considerably. Furthermore, nodes have
sleep cycles as well, so the discovery process may return without considering
the sleeping nodes.

nanoSD: nanoSD [69] borrows some ideas of nanoSLP. It has introduced a map-
ping tree structure to enable compression of service identifiers into optimal
binary strings. Resultantly, it reduces the packet overhead and also decreases
the processing and lookup time. Moreover, this structure generates WSDL
style service descriptions for the backward compatibility with the web-based
back-end systems. The WSDL style service descriptions enable sensor nodes
to communicate with the variety of other devices using web services through
a gateway.

3.5.3 JINI (Java Intelligent Network Interface)

JINI [9] is a SDP, which relies on the Java language and can be considered as an
extension of the Java environment from a single machine to the whole network. It
consists of service providers, lookup servers and clients.

Service Registration: A service provider uses multicast to find the lookup server
to store services, and respond to clients who need a service.

Service Description and Discovery: Services are stored in the lookup servers
in the form of service objects, which have different attributes. The object
has Java interface for service invocation with other descriptive attributes.
The lookup process copies the object to the client, which is then available
for other clients by object interface. A service is provided to a user on lease
basis, which requires renewal to prolong the validity. The lease time can be
varied in the case of a busy server.

JINI has a rich service description format and supports subscribe/notify mech-
anism, where a subscriber of an object gets notification of the changes. The major
drawback of JINI is that it requires each device to either run a Java virtual machine
or to associate itself with a device (proxy) that can execute a JVM on its behalf.
It also needs reliable, stream-oriented communication and a multicast facility.
Furthermore, JINI makes the assumption about the capabilities of RAM and CPU

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 56

power of the devices connected to the network. It also requires the Java Virtual
Machine (JVM) and Java Remote Method Invocation (RMI). A service proxy poses
an extra challenge, that all the devices should have the common interface, which is
not feasible, as no implementation standard is defined for JINI.

3.5.4 Salutation

Salutation [105] is an architecture for SD, proposed by Salutation Consortium that
is non-proprietary and primarily solves the problem of SD and can be utilised by
heterogeneous devices and network technologies. The development of a transport-
independent SD solution was the main aim of the designers.

Entities and Protocol: Its architecture consists of three components: Functional
units, Salutation manager (SM), and transport manager (TM). A functional
unit defines services using a descriptive attribute unit. A service provider
locates a nearby SM and registers itself with it. The SM is a registry of
service providers and their services, similar to JINI lookup service. During
the discovery client contacts local SM to locate a service. The search is
then performed with the coordination among the SMs. The RPC is used for
the communication. The TM is responsible for providing reliable channel
independent of underlying transport, but it can support one network transport
at a time. Therefore, if devices are using many different transport protocols,
each is handled by a separate TM. The SM not only acts as a service registry,
it also discovers services and manages the sessions.

Salutation is independent of employed transport protocol. Salutation-lite is
the lighter version of Salutation for constraint devices and networks. It primarily
focuses on SD and waives optional functions. The Salutation consortium was
dissolved in 2005 and its specification is no more maintained on the website.
Consequently, it can’t cope with the new challenges posed by drastically different
technologies including 6LoWPAN.

3.5.5 FRODO (Framework for Robust and
Resource-aware Discovery)

FRODO [121] SDP targets the home environment with a limited number of devices.
It focuses on two main issues of resource-awareness and robustness. It defines
its own communication protocol which makes it independent of the underlying
network.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 57

Resource Awareness: FRODO address resource-awareness by specifying three
different types of devices which include 300D (powerful devices), 3D (medium
complex devices), and 3C (simple devices). The architecture of FRODO
consists of users (who use services), managers (who provide services) and
registries (who store service information). It elects one of the most powerful
300D node as a registry. Another node is selected as a backup registry, which
takes the responsibility of a central directory in the case of failure. The
availability of a backup registry provides the robustness by making FRODO
resilient to single point of failure. Both solicited/unsolicited registration
mechanisms are used in FRODO; it depends on the device’s capabilities. The
state is maintained by polling the registry in case of a resource constrained
devices like 3D and 3C. On the other hand, the powerful devices like 300D
periodically poll the registry by themselves.

3.5.6 SLEEPER

Sleeper [15] is a SDP, which uses proxy advertisement and discovery to reduce the
workload from power constrained nodes. It has a special emphasis on limiting the
power consumption of devices. The advertisement structure supports several modes
of SD, including conventional service advertisements, meta discovery, taxonomic-
based discovery, location-based discovery and federated discovery. Both pull, and
push modes of advertisement are used by the protocol. Service popularity attribute
i.e. number of times a node is called for a service in a recent time window, is used
as a decision criterion to select the respective mode of advertisement.

Energy efficiency: Sleeper uses an algorithm to select a proxy node with respect
to capability criteria. The other service nodes can be in a state of online, offline
and standby. In the online state, a service node advertises its services, service
popularity and capabilities to the proxy. The node can go to stand by mode
until it receives the signal for service provisioning. The proxy periodically
broadcasts the service information and popular advertisement. Sleeper is
analytically compared to Universal Plug and Play (uPnP), Simple Service
Discovery Protocol (SSDP), and DEAPspace and the analysis promises
comparable response time with the benefit of power saving [15]. However,
the criteria for selection of proxy nodes and design issues of proxy nodes in a
geographical network are not addressed by the protocol.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 58

3.5.7 Splendor

Splendor is a SD model which emphasises security and supports privacy. Location
awareness is used to decrease the discovery network infrastructure [138].

Protocol: The initial communication between clients and a directory is done
using multicast. The protocol assumes that all parties know the multicast
address in priori. All service information is registered on predefined directory
nodes. A client can directly query to a directory node to discover services
with unicast requests. The directories cache service information and respond
to queries.

Security: Services and clients use certificates to verify and authenticate the dir-
ectories. Splendor supports mobility by keeping the soft states of services and
with periodical directory advertisements. It also stores services represented
by proxies as a hard state in directories. The directories explicitly query
proxies about status of services. The use of proxies also enables Splendor to
offer security and privacy features.

3.6 Distributed architectures

In this architecture, many directories are maintained in a network which hold the
service information of the nodes in their vicinity. DNS based protocols ensure
scalability by using a hierarchical architecture. Cluster-based protocols do not
use the preselected directories. Instead, directories are elected based on suitable
capability, which can be battery power, node coverage, memory, or processing power.
Hash-based protocols built peer-to-peer overlay networks and offer distributed hash
tables (DHT). The significance of using distributed directory-based architecture
increases, as size of a network becomes larger.

This section covers the detail of various distributed directory based approaches.

3.6.1 Domain Name Server (DNS) based

DNS is employed to translate human readable names to IP addresses. However, it
assumes that sets of Internet host names (domain names) and addresses do not
change frequently. Consequently, registration just follows a static process type.
New pairs of domain names and addresses are stored at a designated server. The
lookup process starts when a client sends a query to local host. At first, the local
host checks its DNS entries. If it can’t provide the mapping, it passes the query to
DNS server one level up in hierarchy. The location information of the next DNS

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 59

server is configured for a host. Following is the detail of some of the protocols
which follow DNS architecture for SD.

GloServ: GlovServ [8] is a global SD architecture to locate local and wide-area
services. The architecture of GloServ is similar to DNS, which contains root
name servers and authoritative name servers to manage the information of
services. The DNS like structure is used to provide scalability. Services are
defined in Resource Description Framework (RDF) and queried using the
RDF Query Language (RQL). The RDF also enables a service to include
contextual information. The service classification on high level is based on
general categories like events, services, people and places.

A SA can register its service to GloServ by specifying the particular point in
the hierarchy. URNs (Uniform Resource Names) are used to reference services
in GloServ, because services can support different protocols such as HTTP,
SIP and others. RDF specifies the mapping of a service to URN and details
of its properties. A UA which already holds a copy of the updated service
hierarchy, queries directly for a particular service on behalf of a user. The
formats used by this protocol are verbose and require a number of packets to
communicate a single message in constrained networks such as 6LoWPANs.

Electronic Number Mapping (ENUM) based SD: This
is an attempt to adopt the DNS based architecture in 6LoWPANs using
ENUM-based numbers to provide SD [7]. ENUM assigns E.164 numbers [14]
(unique identifier) to services to make them globally accessible. The archi-
tecture consists of sensor nodes and few master nodes. Each sensor node
is associated with a master node. The gateway is used to communicate
with the outside network. Sensor nodes are computationally constrained
devices, which depend on master nodes for communication with the gateway.
Therefore, master nodes not only forwards the sensor nodes’ requests to
gateway, but also passes services destined for them. The protocol translates
E.164 numbers to domain name and sends it to DNS server to get matching
Name Authority Pointer (NAPTR) [86] records. These records are resolved
into URIs which are returned to the clients.

The protocol assumes that DNS lookup will always be able to find matching
NAPTR records, and sensors (multi-hop distance away from master node)
must know the route towards the master node. However, the use of E.164
numbers and NAPTR format reduces the message size and results in low
latency and bandwidth utilisation.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 60

3.6.2 Clustering based

In this approach, a set of nodes is elected as act like distributed directories. These
nodes act like hubs for the neighbour nodes, as all SD messages travel among them.
This approach restricts the use of multicast and consequently, reduces the network
traffic significantly. To address the issues of both latency and energy conservation,
Clustering in the wireless sensor network has proven to be the most efficient [82].

Clustering for Service Discovery (C4SD): Clustering for service discovery
(C4SD) protocol [81] selects the cluster nodes and cluster heads based on
their capabilities. The cluster heads act as directories, and other nodes
register services with the cluster heads in their vicinities. A service requester
just needs to query the cluster heads to discover services, which reduces
the communication cost. Furthermore, the lightweight clustering algorithms
build the distributed directory of service registration based on only those
neighbours who are one hop away. It reacts rapidly to topological changes
and resultantly provides the basis for energy-efficient SD. The protocol also
considers low maintenance overhead while reducing the chances of issues
e.g., chain reaction problem.

However, solution still exhibits the potential of facing chain reaction problem.
Moreover, re-clustering and re-registration are costly in a network with the
large number of clusters.

Sailhan: Sailhan [106] is a scalable SDP for large-scale (100s of nodes) MANET.
The architecture of Sailhan is structured as a virtual network of distributed
and dynamically deployed directories.

In this approach, directories are elected among all the nodes in a network with
the criteria of available resources and context parameters. Each directory
keeps the information regarding available services in neighbour nodes within
a fixed number of hops. The WSDL standard is used to define a service
description. Directories co-operate with each other by exchanging their
profiles between them. The shared profile consists of capacity of the node and
condensed list of service information created using bloom filter technique. A
client sends a query for a service to its local directory. At first, local directory
tries to find the service in its cache. In case of failure, it initiates global
discovery by forwarding the query to selective directories. The criterion of
the selection is based on the information provided by shared profiles.

The protocol assumes a MANET with nodes holding the same network
interface, with IP-level connectivity using the underlying routing protocol.
However, it also poses a prerequisite of some gateway nodes which hold

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 61

interfaces to several networks, either ad hoc or infrastructure-based. This
defines a bridging between hybrid networks (MANETs and infrastructure-
based networks), according to the specific networking capabilities of the
wireless nodes [22]. This protocol is designed specifically for MANETs;
consequently, it doesn’t address the challenges posed by 6LoWPANs.

SANDMAN: SANDMAN [108] is a cluster based SDP designed for MANETs
that concentrates on power saving. It groups the nodes with similar mobility
patterns into clusters. A Cluster Head (CH) is elected among the nodes to
stay awake permanently and responds on behalf of other nodes in the cluster.
The other nodes sleep most of the time, and periodically wake up to update
CH about their presence and service status. The protocol also offers the load
balancing technique to re-elect the CH occasionally.

The evaluation results show that SANDMAN saves energy up to 40% of
service requests. The rationale is that more energy can be saved by increasing
the size of a cluster, but this also increases the delay. As the cluster size
increases, requesting client has to wait more for the sleeping node to wake
up. However, the performance can be improved by adaptive selection of idle
and sleep times.

Service Rings: Service Rings [67] is a scalable SDP designed for MANETs. The
network is clustered into rings, which creates a hierarchal ring structure.
The nodes that are physically closed and offer similar services are grouped
into rings. Every ring contains a Service Access Point (SAP) and know only
about it predecessor and successor rings. SAP in the last ring is called world
ring. A node keeps information about all services offered by the ring in its
SAP. The protocol devises algorithm for ring restructuring, splitting and
merging to optimise ring’s structure. Rings use those algorithms to decide
dynamically, about their structure, to monitor network traffic efficiently. A
chosen SAP periodically initiates a ring check message, which is circulated in
the ring to verify the consistency of the network. In the case of a breakage
or a partition, the selected SAP starts a ring repair or integration algorithm.

Service rings protocol has not defined any format for service descriptions.
SAP in every ring is used to store service information, and are queried to
discover a service. It also supports the mobility as rings are maintained with
periodic ring check messages. The efficiency of the protocol depends on the
effective selection of the nodes in every ring (with the similar services and
efficient links between them), and the appropriate size of a ring (neither too
small nor too big).

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 62

LANES: LANES (A Lightweight Overlay for Service Discovery in Mobile Ad Hoc
Networks) [66] is a SDP which is based on Content Addressable Network
(CAN) [103] structure. It creates a two-dimensional overlay structure of
the network by grouping nodes into lanes. One dimension is responsible for
disseminating service advertisements, whereas other dimension distributes
service requests. Every node in the lane pro-actively broadcasts its services
to other nodes, and keeps the cache of services in the lane. However, the
lanes are loosely coupled with each other and reactively forward the queries
to other lanes using any-cast.

Service descriptions are distributed to

√
Nnodes

where N is the total number of nodes in a network. The protocol is independ-
ent of any service description format. A periodic ping message is used to
check and maintain the lanes. Furthermore, protocol defines the algorithms
to split and merge the lanes to achieve their optimal size.

Virtual Service Overlay (VSO): Virtual Service Overlay (VSO) [94] approach
creates a virtual overlay of a network based on service types. It creates
a service-centric overlay to provide better energy conservation, instead of
network centric model which focuses on the physical location of nodes. Nodes
use Service Capability Messages (SCAP) to get the knowledge about network
wide available services. Every node broadcasts the SCAP message and
maintains a table of other peer nodes offering the similar services. The peer
nodes multicast “vDA Interest” messages among them to elect a virtual DA.
This elected DA matches, compares and aggregates services provided by the
similar peer nodes. In addition, it also searches for the closed match services
offered by a resource-rich node in the neighbourhood. The virtual DA is
re-elected periodically for load balancing.

VSO emphasises on providing better service quality by aggregating services.
It also claims to improve overall energy conservation and congestion control.

3.6.3 Hash-based P2P

The protocols categorised in this class rely on peer-to-peer (P2P) overlay networks
that are constructed using Distributed Hash Tables (DHT). The examples include
Chord, Pastry, Content Addressable Networks (CAN), Tapestry. DHT is used to
store a key-value pair on designated nodes. The hash function is applied to the

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 63

message and is passed to the responsible nodes in the fixed number of hops. Every
node keeps a routing table with network addresses of neighbour nodes.

The main advantage of using DHT based protocols is their scalable and efficient
lookup mechanism. The lookup is performed within O(log(N)) hops, where ‘N’
is number of nodes in the overlay network [79]. However, the downside is that it
generates considerable network traffic and a maintenance overhead, which makes it
less suitable for the WSNs [80]. The search is based on a unique identifier, which
is only useful for searching services with a unique name. Conversely, effective
attribute-based searches are still not supported by DHTs.

Following is the detail of a Tapestry which is based on hash-based approach.

Tapestry: Tapestry [137] is a peer-to-peer (P2P) decentralised architecture, which
provides a fault-tolerant, scalable and robust wide-area infrastructure to
locate the required services. It efficiently constructs an overlay network using
distributed algorithms. It assigns Globally Unique identifier (GUID) to an
object’s unique identifier. The object ID with a “salt” value is hashed to
identify appropriate roots. Tapestry dynamically maps each GUID to a
unique live node called the object’s root. Tapestry assigns multiple roots
to each object. The message to a node is routed to its root. If in the way,
any node found with the location mapping to the destination, then it is
immediately passed to the node that contains the object. In other cases, the
message keeps on traversing the hierarchy towards the root. The root to a
node always got the required mapping.

3.7 Directory-less architectures

The protocols with directory-less architecture use multicast or broadcast to dis-
cover a service. These protocols incur the overhead when services are discovered.
Therefore, this kind of solutions can be efficient in a small-scale network. How-
ever, these solutions are not feasible for a medium or large-scale network, as the
control overhead can overwhelm the network. Furthermore, node’s sleep cycle
in constrained networks such as 6LoWPANs can result in a discovery based on
incomplete information. Some popular protocols of this domain are described in
this section.

Bonjour: Bonjour [118] is Apple’s version of Zeroconf [40] networking, which is
based on a combination of the multicast domain name system (mDNS) [21]
and DNS-SD [71]. It targets service and device discovery among computers
and other networked devices. Bonjour provides zero-configuration by assign-
ing IP addresses to the devices, without the aid of DHCP server. A new

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 64

service provider in a network uses multicast to advertise its presence to other
devices. Clients receiving the advertisement cache service records for a spe-
cified time. In discovery scenario, a client multicasts a query with the details
of domain name, service type and preferred communication protocol. Service
providers with the matching DNS entries respond with service records.

Bonjour generates a significant amount of traffic by using multicast extensively.
This issue is addressed by the protocol by using exponential back-off, which
increases the time interval between queries and announcements. The reliance
of protocol on multicast results in heavy traffic, more energy consumption and
congestion. Therefore, bonjour is only suitable for very small scale networks
and high bandwidth usage makes it a poor match for resource constrained
networks.

uBonjour (Compressed Bonjour): uBonjour [64] is bonjour’s compact form,
based on mDNS and DNS-SD. This protocol works like bonjour, but com-
bines different messages to decrease the control overhead. Even though
mDNS/DNS-SD message sizes were recently optimised for 6LoWPANs [65],
uBonjour still relies on the availability of IP multicast and entails more com-
munication overhead. The compression requires more changes and processing
at the gateway to decode the information.

Universal Plug and Play (uPnP): uPnP1 was proposed by Microsoft for device
and SD in small office and home environments. The main features of uPnP
are its zero-configuration and automatic discovery of heterogeneous devices.
It is independent of any programming language or operating system. UPnP
uses protocols, including HTTP, TCP/IP and SOAP. Zeroconf feature en-
ables it to assign IP addresses automatically to devices, if no DHCP server
is available. Its architecture consists of devices, services and control points.
Every device needs to provide an XML device description document, which
contains the list of services and properties of the device. A service stores
its state information in state table, and supports a control server to update
its state table. The subscribers to a service are also managed by its event
server. Control points act as directories and are optional. UPnP’s discovery
is based on Simple Service Discovery Protocol (SSDP), which uses HTTP
and SOAP over TCP multicast (query request) and UDP unicast (using a
service by specifying URL).

UPnP generally operates better over reliable networks, so it is unsuitable
for networks with lossy links and other constraints. It is based on HTTP,

1http://upnp.org

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 65

and SOAP protocols, which are heavy and verbose for a resource constrained
networks. Moreover, it does not support attribute-based querying for services.
The extensive use of multicast makes uPnP non-scalable and also exhausts
the energy of the devices in a network.

DEAPspace: DEAPspace is a peer-to-peer SDP for single-hop short-range wire-
less systems [95]. The DEAPspace uses the proactive SD framework. Devices
periodically broadcast their services and keep information of all services
available in their one hop proximity. Each device also specifies the time
period, during which the service is valid. After expiration, the device should
renew its service description, or it is marked unavailable for its neighbours.

A performance evaluation [74] shows that time for discovery is better in the
case of DEAPspace when compared to other broadcast-based push models.
However, the periodic broadcasts consume much of the network bandwidth,
which makes DEAPspace unsuitable for constrained devices and networks.

Group-based Service Discovery (GSD): GSD [16] is based on peer-to-peer
caching of service advertisements and forwarding of service requests. Service
descriptions are defined in DARPA Agent Markup Language (DAML+OIL).
It uses the semantic information of DAML to create a service hierarchy to
create service groups. The protocol does not broadcast service requests, but
instead it exploits semantic information to selectively forward to the nodes
with similar services. The more flexible service matching mechanism is also
provided by the protocol using DAML format of service information.

Each node periodically advertises its list of services to all nodes in its vicinity
(particular number of hops) and caches their service information. The service
group information is also disseminated with the advertisement. On receiving
a service request, the node multicasts the request to its other group members.
The parameters like advertisement expiration period and range of hops can be
specified according to the network. Semantic service definitions have merits
of grouping of nodes and better service matching, but these also increase the
energy consumption and require large packet size.

Konark: Konark [50] is peer-to-peer SD and delivery architecture for multi-hop
ad hoc networks. It is based on lightweight HTTP servers, and uses SOAP
to handle service delivery. It also defines WSDL based service description
language. Konark supports both push and pull modes of SD. The proactive
or reactive service advertisements are used on the need basis. A service
advertisement specifies its time-to-live and enables its caching on each node.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 66

In Konark, each device runs a lightweight HTTP server and uses multicast
to advertise services. Every node maintains a service registry to store service
information. The registry is based on a tree structure with a number of
levels to classify services. A service request can query for a generic or specific
service in each category, so it can carry simple keywords or more precise
service description. The multicast is used to send forth service requests to
a fixed group; corresponding nodes with the matching service will respond
back using unicast.

Service advertisements of Konark allow semantic matching and are lighter
than WSDL, but still increases the energy consumption. The use of multicast
for service requests is also costly for restricted networks where bandwidth is
limited and links are unreliable. Konark doesn’t address the issues of energy
consumption and delay, which have significant importance in constrained
networks.

Bluetooth SDP: Bluetooth SDP [12] targets the bluetooth devices with limited
complexity. Therefore, it is optimised and partly addresses SD. It provides
a simple API for enumerating the devices in one hop range and browsing
through available services. It offers no feature of service advertisement,
registration, or invocation. Services are described in attribute-value pairs,
which are searched by service type without a priori knowledge of service
attributes. The features like selection, access and usage of services are also
not defined by the bluetooth SDP. Moreover, services can become unavailable
without any notification.

3.8 Cross-layer design

The cross-layer SDPs extend the routing mechanism to find the routes and discover
services offered by that node. It is obvious that by piggybacking the service
information onto routing messages decreases the number of messages needed for
SD and routing. Resultantly, the less traffic increases the available bandwidth, and
energy is also saved.

The cross-layer SD was first proposed by R.Koodli [68]. A similar approach
based on Ad-hoc On-demand Distance Vector (AODV) [38] extended the function-
ality of the routing protocol. SD-AODV and SD-DSR [48] extended AODV and
Dynamic Source Routing (DSR) to support SD. These approaches outperform the
application-layer SDP based on SLP. A proactive routing protocol Destination-
Sequenced Distance Vector (DSDV) was extended in the similar way [34]. The
comparison has shown that reactive SD-DSR performed best in terms of messaging

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 67

overhead, when compared to SD-DSDV and SLP. Some extensions of routing
protocols [127] and [51] have also considered the issue of energy consumption.

SPIZ (Service advertisement and discovery Protocol with Independent Zones) [96],
a hybrid integrated protocol (based on multiple criteria such as mobility and ser-
vice popularity) performed better than SD-AODV solution. The extension of
On-demand multicast routing protocol (ODMRP) that uses multicast and only
resend advertisements if service changes [75]. An approach [49] used High Efficiency
Service Discovery (HESED) multicast routing protocol for both service requests
and responses. LIFT (Limited Flooding of requests within a clusTer) SDP [134]
divides a network into clusters with some High Capability Devices (HCD) as a
cluster leader. The SD-AODV is extended with the cluster-based SD approach,
which further decreases the energy consumption. Another approach Multi-path
Cross-layer Service Discovery (MCSD) [110], finds multiple routes to service agents
and provides better service availability and network layer performance.

In summary, the cross-layer design and optimisations can be used to improve
the performance of a protocol. The main idea is to control and exchange of
information over different layers in the architecture for efficiency. However, there
are cons of using cross layered architecture in a WSN. Architecture violations
make the protocol hard to maintain by increasing the complexity of later updates.
Furthermore, the luxury of designing protocols at different layers independently is
also violated by the cross-layer design.

3.9 Discussion from 6LoWPAN’s perspective

WSNs are resource-constrained environments, which consist of highly resource
and power limited nodes with very low data rate communication. The nodes
communicate over IEEE 802.15.4 radio channel and have few kilobytes of RAM and
about 100 kilobytes of ROM. The mostly battery operated nodes are not recharged
quite often, thus need to run for longer periods. This domain poses more difficult
requirements for SD than others. The limited bandwidth and power do not allow
heavy traffic and necessitated acknowledgements for guaranteed packet delivery in
a lossy environment. The limit to typical packet size is 127 bytes, which is further
reduced at the application layer to only 60-80 bytes (Section 2.2.2).

These limitations along with the node’s memory and processing capabilities
restrict the use of a resource and computational hungry protocols. The nodes also
have sleep cycles to conserve power, which needs to be considered by a SDP. These
reasons do not allow most popular protocols like UPnP and SLP to work directly
for 6LoWPANs. To make those functional, their features should be minimised, and
some compression mechanism should be used for their verbose formats. The trade-

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 68

off between the computational complexity and compression ratio should be managed
for applicability. Some extreme approaches focuses just on performance gain for
these constrained networks include the cross-layer optimisations (Section 3.8) and
merging of SD and data collection functionality like TinyDB system [77]. Another
suitable approach is to use attribute based naming scheme [87], which also work
on lower layer in the protocol stack to improve the performance of the network.
In addition, other functions like data aggregation and in-network processing can
be used, which make use of intermediate nodes to do the aggregation of data to
save the power and bandwidth of the network. These approaches only benefit the
specified single application and also lose the potential of using layered architecture
from extensibility perspective.

Traditionally, there are three types of SDPs: Centralised, Directory-less and
distributed directory based approaches. The comparison of different architectures
is given in Table 3.1.

The centralised directory and cluster based architectures (Section 3.5 and 3.6.2)
are mostly suited for a network with the element of heterogeneity. These archi-
tectures exploit the power of more resource-rich devices by making them servers,
to assist the other nodes by sharing computational load. In some approaches, the
gateway registers the nodes in a network using special optimised protocol [19]. It
acts on behalf of registered nodes and can support multiple external SDP architec-
tures. The distributed hash-baed P2P (peer-to-peer) approaches (Section 3.6.3)
can also be employed in WSNs. This type of approach treats all nodes equally, but
uses multicasts and broadcasts, which can overwhelm the network by generating
heavy traffic.

Directory-less protocols, as the name suggests, work without any specific nodes
to act as registries and make use of flooding mechanisms to discover a service. In
this approach devices cache the service information of the neighbours to enhance
the SD process. UPnP, Bluetooth SDP, DeapSpace and Konark are popular SDPs
of this domain. However, the extensive use of multicast or broadcast make this
kind of SDPs unsuitable for the resource constrained 6LoWPANs.

Distributed architectures consist of multiple registries, which act as a service
information container of their vicinity. These registries collaborate between them by
passing the request to each other for discovery. CS4D, Service rings and Lanes are
the examples of this technique. Sailhan has optimised the forwarding by periodic
information sharing among registries. Other approaches, including SANDMAN
conserve energy of the nodes by keeping the nodes sleep while keeping their cluster
heads awake to respond on behalf of them. VSO approach has defined the criteria
of creating clusters based on the type of services, rather than node’s locality. This
method can be useful in scenario where similar kinds of services are available in

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 69

Table 3.1: Comparison of SD architectures

A
rc
hi
te
ct
ur
e

N
um

be
r
of

re
gi
st
ry

D
is
co
ve
ry

of
re
gi
st
ry

P
ro
s

C
on

s
D
ir
ec
to
ry

ba
se
d

C
en
tr
al
ise

d
O
ne

M
ul
tic

as
t

U
ni
ca
st

fo
r
di
sc
ov
er
y

Si
ng

le
po

in
t
of

fa
ilu

re
H
ig
h

st
at
us

m
ai
nt
en
an

ce
tr
affi

c
Li
m
ite

d
sc
al
ab

ili
ty

Li
m
ite

d
sc
op

e
(lo

ca
ld

om
ai
n)

D
ist

rib
ut
ed

Sc
al
ab

le

D
N
S

M
ul
tip

le
Pr

e-
se
le
ct
ed

an
d
st
at
ic

Q
ue

ry
tr
av
el
s
th
e
hi
er
ar
ch
y
of

re
gi
st
rie

s
R
eq
ui
re
s
D
N
S
in
fr
as
tr
uc
tu
re

Ve
rb
os
e

D
N
S

qu
er
ie
s

an
d

fo
rm

at

C
lu
st
er
in
g

M
ul
tip

le
D
yn

am
ic
al
ly

E
le
ct
ed

an
d
R
e-

el
ec
te
d

Q
ue
ry

pa
ss
ed

be
tw

ee
n

re
gi
s-

tr
ie
s

R
e-
cl
us
te
rin

g
fo
r
lo
ad

ba
la
n-

ci
ng

C
ha

in
re
ac
tio

n
pr
ob

le
m

P2
P

M
ul
tip

le
Ea

ch
no

de
ha

s
a
ha

sh
ta
bl
e

H
as
h

fu
nc
tio

n
is

ap
pl
ie
d

to
qu

er
y,

w
hi
ch

pa
ss
ed

am
on

gs
t

th
en

od
es

to
re
ac
h
th
er

eq
ui
re
d

ho
st

C
on

sid
er
ab

le
tr
affi

c
ov
er
he
ad

N
o
at
tr
ib
ut
e-
ba

se
d

se
ar
ch

is
po

ss
ib
le

D
ir
ec
to
ry
-l
es
s

N
o

Ea
ch

no
de

M
ul
tic

as
t
or

br
oa
dc
as
t

E
xt
en
siv

e
us
e

of
m
ul
tic

-
as
t/
br
oa
dc
as
t

H
ig
h
co
nt
ro
lo

ve
rh
ea
d

N
o
in
fo
rm

at
io
n
is

ke
pt

re
ga
rd
-

in
g
sle

ep
in
g
no

de
s

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 70

different clusters, and most of these services are queried together. Distributed SDPs
save energy in the case of service status maintenance, but overhead of creating
clusters can overwhelm the network. Moreover, the chain reaction problem further
argues against the clustering for a SDP for 6LoWPANs.

The directory based infrastructure can be more feasible for 6LoWPANs. The
adaptation layer needs an edge router to connect a PAN to the Internet. Edge
router can be used as a main directory for 6LoWPANs. The well-known industry-
standard IP based SDPs include SLP, UPnP, JINI and Salutation. Table 3.2 shows
the comparison of most popular SDPs with respect to 6LoWPAN SD requirements.
All these protocols are not directly applicable to constrained 6LoWPANs and
most of them are based on TCP/IP, which creates further problems in their
adaptation [89]. JINI lacks the versatility as it is language-dependent and needs
service information in the form of Java objects. In the same way, NanoSD assumes
that each participating node has enough memory to keep the cache of service
information. However, the extensive use of multicast and broadcast make this kind
of SDPs unsuitable for resource constrained 6LoWPANs.

There are some efforts, which have tried to adapt the SLP for 6LoWPANs.
NanoSLP, a miniaturised version of SLP, is an attempt to use SLP with the reduced
features and only supports the directory-less architecture. Another attempt was
the SSLP [63], which proposes a compact version of SLP for 6LoWPANs. A
proximity-based approach [18] which uses DPAs (Directory Proxy Agents)as local
registries has employed SSLP inside a 6LoWPAN and provided the interoperability
with SLP by using a Translation agent (TA). However, this solution involves
complexity and delay of translation, each time message is translated to or from
SLP. Furthermore, the casual sharing of resources between distributed directories
increases the traffic burden. uBonjour [64] is bonjour’s compact version, based on
mDNS and DNS-SD. Even though mDNS/DNS-SD message sizes were recently
optimised for 6LoWPANs [65], uBonjour still relies on the availability of IP
multicast and entails more communication overhead for service registration and
status maintenance. ENUM-based approach [7] also requires some master nodes.
This technique introduces compression for 6LoWPANs, and has assumptions, which
depend on the availability of the required information and database entries. A
TCP/IP based web portal’s mechanism [104] is employed using regional locals
(master nodes) for the local SD and data servers are used in a network, which
provides a complex mechanism which increases cost burden. RSDPP (Real-World
Service Discovery and Provisioning Process) [44] is an industry focused SOA
(Service Oriented Architecture) based middle-ware solution that uses SOAP-based
or RESTful web services. DiscoWoT [84] provides RESTful web services using
HTTP based SD with existing or injected strategies. However, this scheme has

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 71

Table 3.2: Comparison of SDPs with 6LoWPAN Solution requirements

Bonjour SLP JINI Salutation UPnP Bluetooth
Adaptive No No No No No No

Compact uBonjour SSLP No Salutation No No
Size Lite

Compact No SSLP No Salutation No No
message Lite
Sleepy No Yes Yes Yes No No
nodes
IP Yes Yes Yes Yes No No

usage
Heterogeneous Yes Yes Yes Yes Yes Yes

Interoperable DNS No No No No No

Energy No No No No No No
efficient
Service No No No Yes No No
Selection
Service No No No No No No

Composition
Scalable Small Small Small Small Small Small

to medium to medium to medium

not described any solution for the management and status maintenance of the
registered devices. The IETF Resource directory [113] uses CoAP as an underlying
communication protocol for SD. In summary, a compact and efficient SD solution
still required for 6LoWPANs.

In summary, a research gap for an optimised SD solution for 6LoWPANs still
exists. This project proposes a compact and optimise registry based SD solution
with context awareness for the IoT, which is more focused on constrained domains
such as 6LoWPANs. It uses CoAP-based [114] RESTful web services to provide a
standard interoperable interface which can be easily inter-worked with HTTP. The
modular design of the protocol features allows its implementation on constrained
devices. High capability devices can benefit by implementing profiles to share the
load of other devices. Thus, it allows the productive usage of network resources.

3.10 Service Discovery (SD) Process

This section discusses different stages of SD process.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 72

3.10.1 Service description

Every SDP needs a way to describe services. Therefore, a service description
mechanism is essential for any SDP to function. Different protocols use unlike
formats of service description to enable users to search for a particular service by
setting fields and values according to the format. A service description generally
contains the identity and type of a service with optional attributes.

Generally, SDPs use classes to classify services into service types. Each service
class (e.g., print class for print-related services) contains a list of attributes, which
are assigned with values to identify the instance of the class. A service description
is usually stored as a set of attributes/values pairs [79]. The same approach is
used by various SDPs, as all use distinct naming and conventions. Some protocols
including Salutation, SLP, JINI and UPnP store the attribute/value pairs as lists
and do not relate attributes to each other. On the other hand, INS/TWINE [11]
relate attributes and store them in a tree-like hierarchy based on a dependency
between them. In Salutation and SLP, predefined set of attributes can be used for
each service type. Many approaches, including UPnP, Web Services and TWINE
use XML based representations to provide openness and extensibility.

Features like naming, invocation and status query are closely related to service
description. New services must be identified by an unused name. In order to avoid
the naming conflict, many protocols define attribute naming conventions. These
are used to find a service provider according to the query requirements. Some
protocols like INS use special conventions, e.g., if some attribute is not set, it is
inferred that it can take any value. Different protocols can use various vocabularies
for the same service, because of the lack of compatibility between the protocols.

3.10.2 Service advertisement/registration

The host nodes are required to advertise their services to make them discoverable
by consumers.

SDPs manage service descriptions in different ways. Some SDPs store service
descriptions only in node’s local cache. In this case, the query initiates the search
that floods the whole network to find the required services. Another similar
approach is to store the service information of all services on each node of a
network. This way advertisements can flood the whole network, thus is not feasible
for nodes with low capabilities. However, the search becomes straightforward, as a
node simply has to look into its local cache. In some approaches, this process is
optimised by only storing service descriptions in a subset of a node collection. In
this way, advertisements are distributed to n hops or multicast to a specific group
of nodes. By using multicast instead of broadcast and storing the advertisement

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 73

nearby (e.g., just one hop), protocols reduce the memory requirements and increase
the probability of finding a service in requester’s vicinity. However, multicast is
still expensive in terms of traffic, as creation and maintenance of multicast groups
will introduce new overhead especially in multi-hop networks.

In some protocols, service descriptions are stored in special selected nodes,
which are called directory nodes. These nodes are responsible for keeping service
descriptions available in a network, facilitating SD. The directory nodes can be
preselected designated nodes (e.g., in SLP and JINI), or can be selected dynamically
according to the network conditions, as in Service rings. In the case of dynamic
selection, each group chooses a node as group head, which keeps the record of
service description of its group members (Section 3.6.2). The subset of directory
nodes creates an overlay which reduces the network traffic in advertisement and
discovery phases.

In the case of directory-based architecture, the registration procedure starts
when nodes register services with directories. On the other hand, nodes in directory-
less architecture, forward or cache the service information of each other. The
directory-less approach is mainly based on a flooding mechanism using broadcast
or multicast, which is unsuitable for constrained environments with mostly sleeping
nodes both efficiency and scalability perspectives. While the directory-based
approach eliminates these issues, but requires status maintenance overhead and
can limit the scalability. In summary, the directory-based technique with some
optimizing techniques to deal with the issue can be a better candidate for resource
constrained environments.

3.10.3 Service discovery

The discovery stage is responsible for searching the relevant registered services
in a network that meet the query requirements. The search in networks without
directory nodes depends on the way services get registered.

The discovery can be done with active or passive search. The active search
floods the whole network with the search message; this is the case where services
are registered in local cache of nodes. In SDPs which store service information on
all nodes, search will only look into the localised cache. This type of discovery is a
passive search, which is efficient in detecting the changes, but expensive in terms
of memory and traffic requirements to keep the record of all updates of services
in a network. On the other hand, the active search only floods the network when
SDP sends the search message, so it has an advantage of less network traffic. Some
SDPs support both active and passive search [50, 124]. In another approach, SDP
first looks in the node’s local cache and then selectively forwards search requests.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 74

This selective forwarding technique can depend on some ontology description [17].
In the case, when a node has not enough information, it can simply broadcast the
requests to its neighbour nodes. This approach scales well compared to simple
flooding, but the high mobility can cause problems when a node moves from the
targeted region.

In directory-based solutions, all service providers register their services to
directory nodes. In this case, query-based approach is used. The client queries
to the directory nodes and receives an immediate response. In Service rings, the
protocol searches only Service access point (SAP) nodes. In Lanes, groups of nodes
form an overlay network that creates lanes of nodes. Each group is called a lane,
and nodes in the same lane share one directory replicated in cache of each node.
In this way, client can query to any of the nodes in the lane, instead of one specific
node.

3.10.4 Service selection

SD can result in a number of matched services according to the request query. The
service selection phase, not addressed by most of SDPs, helps to determine the
appropriate service from the discovered service list.

The process of service selection can be manually completed by the user, or it
can be performed using optimisation algorithm implemented on directory nodes or
on the client side. In an automatic protocol, selection is based on some criteria or
metric. The best offer metrics can consider different factors, including route specific
(e.g., hop count, bandwidth, delay) or service specific (e.g., server load, remaining
energy, capacity) [129]. In literature, approaches have considered some contextual
information e.g., lowest hop count [123], best rendezvous point (RP) [37] etc., as a
criterion for service selection. In Intentional Naming System (INS) [1], a service
lookup is resolved to a service location at a delivery time. It adopts the approach
in which an application defined service weight is used to select a best-suited service
from the list. This approach requires service side knowledge and also helps to
balance the load among services. However, there is a probability that user will not
get the intended service because a user specified it in attributes. In general, most
of the SDPs simply ignore the selection support.

3.10.5 Service Invocation

SD is completed when an application gets the response with a service identifier
and address of its host. However, the client who initiated the query needs to
invoke a service using its service interface. Service invocation varies in different

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 75

protocol scenarios because each protocol defines service interfaces in a distinctive
way. Existing SDPs, provide three varied support levels [139].

1st level At the first level, protocol only provides service location, and leaves the
job of communication and operation to applications.

2nd level The second-level protocol defines the underlying communication mech-
anisms as well, for example; Salutation uses RPC and JINI use download-able
Java code. UPnP and WSDL [23] communication mechanisms are based on
XML, SOAP, and HTTP protocols and formats.

3rd level At the third level, UPnP and Salutation define application operations
specific to an application domain in addition to the communication mechanism
and service location.

3.11 Challenges

The design of a SDP needs to consider several aspects for the provision of service
publishing and searching. This section covers the details of major issues related to
SD with the relevant solutions.

3.11.1 Scalability

The scalability issue arises with the increasing number of services and clients in a
network. The control overhead of a SDP can overwhelm the network by generating
burden due to dynamic interactions in the large-scale network.

The directory based architectures with the load balancing and query efficiency
can significantly increase the scalability. Multiple directory nodes to handle
service registration can avoid the problems of bottlenecks by managing service
registrations. In the case of a homogeneous network, directory nodes can be re-
elected to increase the lifetime of nodes. Service grouping with multiple directories
can further guarantee the elimination of the bottleneck problem by assigning
different directories to specific nodes. In this regard, SLP deals this by proposing
the concept of scopes and Virtual service overlay (VSO) [94] allocates unique
directory agents for service groups.

The caching approach increases scalability by keeping the values of services
on the directory nodes, and responding on behalf of nodes to avoid overloading
nodes [15]. The number of directory nodes can also be increased, if the current load
is difficult to handle by the directory nodes. DNS based hierarchical structures
ensure the scalability of a large-scale network.

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 76

3.11.2 Energy, Memory and Bandwidth Constraints

The focus on energy, memory and bandwidth limitations is of great concern in
resource constrained wireless sensor networks. Most of sensor nodes consist of
8-12 KB of RAM, about 100 KB of ROM and a battery as the main source of
energy. Consequently, the lifetime of a constrained network directly depends on
depletion of the batteries of the nodes. The network bandwidth (20-250 Kb in
6LoWPANs) and maximum packet size (127 bytes in 6LoWPANs) are limited in
the wireless sensor networks. A SDP should ensure that the scarcest nodes are
capable of implementing the protocol, and its messages are compact enough to fit
in a single packet.

3.11.3 Reliability and accuracy

The reliability refers to fault tolerance, failure recovery, and provision of accurate
and up-to-date service information.

FRODO provides support of a redundant backup directory to prepare for the
recovery in case of failure of the main directory. In the distributed directory
architecture, multiple directory nodes are maintained, which collaborate and re-
elect new directory nodes in case of failure. Another approach is to use multi
modal functioning as SLP switches to directory less approach if no directory node
is available .

Proactive mode and negative announcement (advertising unavailability) can be
used by SDPs to provide accurate and up-to-date information. This issue becomes
more important to be addressed when a network has nodes with sleep cycles or
high mobility. In addition, soft states of service description and caching are used
to get an update in a specified time interval.

3.11.4 Heterogeneity and resource-awareness

SDPs need to support the integration of heterogeneous nodes in a network.
Resource-awareness enables a SDP to delegate different roles to the nodes de-
pending on their capabilities, so high-capability nodes can share the burden of
constrained nodes in the vicinity. For example, FRODO ranks the devices into
three levels and allocates the jobs accordingly, and Splendor uses proxies to offload
the low capacity nodes.

3.11.5 Security and privacy

Security is the important issue which is mostly overlooked by SDPs. There
are multiple aspects of security, including authentication (verifying an identity),

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 77

authorisation (granting permission), trust (level of confidence), confidentiality
(encrypted information), and Integrity (data items are not amalgamated). The
privacy, on the other hand, is the degree to which a user will allow the environment
to interact with it. JINI and SLP define some security features, whereas Splendor
provides a solution to both security and privacy.

3.12 New perspectives

The conception of WoT has made SD an indispensable function for meaningful
integration of WSNs with the Internet. Brand new perspectives in the SD process
can be conceived by inclusion of context awareness and adaptivity in response
to the future demands of searching most appropriate services. Therefore, a SDP
that adopts these new perspectives can increase the efficiency and applicability of
WSNs. The details of these paradigms are covered in this section.

3.12.1 Context Awareness

Context is any information that can be used to characterise the situation
of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application [28].

Context is not simply the state of a predefined environment with a fixed
set of interaction resources. It’s part of a process of interacting with
an ever-changing environment composed of reconfigurable, migratory,
distributed, and multi scale resources [26].

Context awareness is the key to provide most appropriate services by exploiting
the context information which includes user’s preference, location and present
environments. A SDP with context awareness can offer more intelligence, which
results in efficient SD. In this era of dynamic and heterogeneous WSNs, it is a
challenge to provide a service selection mechanism in a SDP. The pool of services
offered by different available devices demands an intelligent process of suitable
service selection for user tasks. Context information offer the intelligence in
decision-making by filtering the unrelated services.

A research effort [53] insists that most of the algorithms and architectures can
only work for specific applications, and context awareness enables the adaptability
of the dynamically changing environments. Tandem [78], a context-aware clustering
method, which re-clusters in case of topological or contextual changes to increase
the responsiveness. AlarmNet [135] adapts to individual context and behaviour
patterns in assisted residential monitoring to manage the power. CALEEF [107]

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 78

(Context Aware Lightweight Energy Efficient framework) has HTTP and XML
peer-to-peer communication among sensors, and uses a context model to optimise
the polling time of sensors to reduce the energy consumption. A context-aware
resource management framework [73] deals with the heterogeneity and mobility
of devices in smart homes. Another effort [19] uses context information in a
6LoWPAN-based SD architecture that reduces the traffic overhead considerably by
finding and using the closest service. A recent approach [130] has also considered
context-awareness for the IoT.

3.12.2 Adaptability

The context awareness provides information, which enables a SDP to become
adaptive. Most of the SDPs have not considered to maintain the context information
which has potential to provide the features of better service selection and adaptation
to dynamic changes and demands. Some SDPs offer context-awareness, but the
approaches, mainly concern about service selection without being adaptive to a
dynamic aspect. However, the context information can be exploited by a SDP
to decide dynamically about different protocol parameters (number of hops an
advertisement can travel) and switch between modes of operations (pull or push
method). The protocol parameters like advertisement frequency and cache lifetime,
etc. are mostly fixed by a SDP, which never changes in the entire operation.
Dynamic networks with different types of nodes and changing services, demand
for an intelligently diversified protocol, which can adapt to changes and results in
increased efficiency.

The PULL and PUSH based discovery approaches can be used alternatively
by a protocol depending on the popularity (increasing demand) of services. The
protocol can poll the sensors for more demanding services, and can assign a periodic
or threshold based push method to nodes with fewer numbers of service queries.
The decision equation can also consider the network conditions (e.g., congestion).
This dynamic decision-making increases the autonomy of a SDP.

SPIZ (Service Ad/D protocol with independent zone) [96] is a lightweight
adaptive cross-layer based on dynamic switching between pull and push-based
approaches. Each node in SPIZ has its own zone to facilitate local adaptation to
dynamic changes (based on multiple criteria such as call rate, mobility, service
popularity, etc.), to reduce the overhead and support scalability. AVERT (Adaptive
SerVicE and Route Discovery ProTocol for MANETs) proposed in [128] extends
the SPIZ by adapting the rate of proactive messages sent by nodes.

Adaptive middleware for smart home environments [54] ranks all available
service providers to choose the appropriate one. This middleware matches the

CHAPTER 3. SERVICE DISCOVERY (SD) IN LITERATURE 79

quality of context (QoC) requirements with the QoS attainable with the sensors.
MidFusion [4] discovers and selects the best set of sensors that maximises the
potential of reaching application goals. It maps the QoS availability of the sensors
to a utility function based on the QoS parameters of the application and the cost
of information acquisition.

3.13 Summary and Discussion

SD is instrumental in the provision of services from 6LoWPANs for the IoT
paradigm. This chapter has scrutinised the literature to get the insight into the
perspectives addressed, and gaps left by existing solutions. The chapter started by
discussing the basics of SD and then categorised existing solutions while explaining
and analysing them for 6LoWPANs. The SD process is discussed in the context
of existing literature and important existing techniques to deal with the issue at
each level of SD are explored. In later part, this chapter focused on the general
challenges exist for a SDP and new perspectives that can improve the performance
by coping with the dynamics of a network.

In summary, there is a plethora of solution exists in literature, which generally
can be categorised into two classes depending on their focused technology: IP-based,
non-IP based solutions. The existing IP-based solutions are already working and
thus become an obvious to be selected. However, these solutions are not designed
to target the issues and challenges of 6LoWPANs. Therefore, these solutions can’t
be used directly in constrained environments. Several efforts have tried to design
the compact versions of existing standards, but those need application gateways
for translation of messages. Furthermore, their choice of communication is mostly
is multicast or broadcast that incurs high control traffic, which is unsuitable for
constrained wireless environments with lossy links and limited bandwidth. On the
other hand, the non-IP based protocols are mainly performance-centric for a single
application, so these solutions from their roots are in contrast to the philosophy of
the IoT vision. However, there are many aspects that have been addressed in parts
by existing solutions at different levels of the SD process, which are important to
be considered for a new solution. New perspectives, including context-awareness
and adaptability are the key approaches to deal with the dynamic nature of IoT
environments.

The next chapter presents some IoT scenarios to emphasise the challenges and
requirements that are important to be considered by a SDP.

Chapter 4

Service Discovery for the IoT: A
Requirement Analysis

4.1 Introduction

The IoT vision integrates heterogeneous devices and networks together to form a new
collaborative paradigm. This creates new opportunities for co-ordination of end-to-
end communication between devices from diverse networks. The idea of wrapping
up a functionality into service and providing an interoperable way for invocation
revolutionises our perception regarding isolated constrained networks. SD plays
a key role to assist the applications and users to locate services. However, there
are many challenges that are needed to be considered while devising any solution
for IoT environments. The complexity is caused by the inherent diversity, which
demands for the trade-off between generality (to deal with range of applications,
devices and networks) and efficiency (for constrained domains). This requires a
framework that should be evolvable to embrace the new challenges.

This chapter introduces some use-case scenarios in a IoT environment and
highlights the involved challenges and requirements.

4.2 Scenario

This section explains different scenarios to emphasise and analyse the role of SD
solution for the IoT paradigm. Firstly, this section covers the context of scenarios
to give an overview of the situation.

Ipswich university (fictional) has transformed its traditional campus to an
intelligent and automated one by installing new sensors in every building and room.
The University has also created and distributed an application, to enable its staff
and students to use features according to their defined authority. Furthermore,

80

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 81

the application is smart enough to use the sensors on hand-held devices of users
to provide sensing information in a region. It also allows other user applications
(personal management applications) to get access into the system. The whole
system empowers the users to utilise functions ranging from finding the parking
space to automate closing down their office windows.

Their system uses different policies to balance the trade-off between the network
overhead and the prompt provision of services, depending on the time and demand.
During the day in term time, system is scheduled to run on a full mode. This mode
is more focused on reducing the delay time of SD and invocation. In the term’s
night mode, system follows the security mode which only focuses on decreasing
the system overhead while providing the security breach alerts. The system also
has scheduled off-peak policies for weekends and holidays. Furthermore, it allows
a power-user to add/amend policies depending on the current needs, e.g., in the
case of some emergency, etc.

Following are few situations where different users utilise the network:

Auto management of personal places with preferences: Michael is a senior
lecturer in Ipswich University. He spends time mostly in any of his two offices,
and in his house. His mobile usually alerts him on reception of new emails,
SMS, and tweets. He has installed the provided application to use features
of his University’s smart system. He uses it to schedule the heating system
of his office, to get the alerts of opened windows, and to actuate set of tasks
that are performed on occurrence of some event (he is coming or leaving
office). However, he is more interested in controlling his house in the same
way.

He installs “My iplaces” application, which allows him to save and view his
common places. The system of university authorises his application to log in
and acquire various services as a registered user. The application allows him
to see different status, e.g., temperature values and doors open/close. He can
also set alarms based on various rules specified by him. In addition, he can
create sets of commands to execute e.g., When no one is at home close all
windows and notify me on security breach, etc. He can automate the whole
procedure (e.g., leaving home) as well by allowing application to execute the
commands using his context, including current time and his GPS location.

Michael has different demands when he is at home. His home lights are
already intelligent enough to switch on when any motion is detected. However,
he is more interested to adapt to current available light of a room to adjust
their brightness using light sensor and only switching on when he is around.
He has also specified different commands comprising a set of tasks, e.g., Set

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 82

cinema environment command adjusts the blinds and lights, and changes
the TV settings. The application enables him to add any place, e.g., vehicle,
garden, study room, bedroom, etc. and to browse through the available
services in those areas to create set of commands.

Monitoring and management of places: Mark is a security personnel in Ipswich
University. He has installed the University’s application on his phone. Uni-
versity’s system allows mark to get security related alerts. It recognises him
as a power user and allows him to load and change the policies based on
different circumstances.

Assisting users to find the best matched services: George is visiting the Ipswich
University. He uses his “My iplaces” application to discover and add the
Ipswich University into his list. He logs in as a guest and tries to find the
nearest parking space by giving his GPS location. Then he enters a building
for his meeting and searches for available printers around. He selects the
closest printer and issues a command to it.

4.3 User Interactions

The framework of the solution is required to support following three interaction
models to materialise the discussed scenarios.

Direct interaction: Applications or users directly access sensors and actuators
(in a server/client request-response model). In all scenarios, user applications
need to interact with the host devices to actuate a command.

Continuous monitoring: A continuous stream of data is required at regular
intervals (e.g., Smart meters). This kind of interaction is required where
a user needs to monitor some sensed data, as for security personnel in the
scenario.

Conditional monitoring: The updates are only sent when certain thresholds
are surpassed or some predefined event happens (e.g., temperature alerts).
This is a requirement for Scenarios 1 and 2, where user needs to be notified
on occurrence of some event.

4.4 IoT Service Discovery Requirements

The new IoT scenarios (Section 4.2) present a paradigm, where the plethora of
applications discovers and invokes services hosted by IP-enabled smart devices.

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 83

The SD solution needs to deal with a wide variety of devices ranging from very con-
strained capabilities (e.g., RFID tags, sensor nodes) to resourceful ones (e.g., smart
phones, printers, etc.). This section explains SD requirements extracted from the
scenarios.

4.4.1 Heterogeneity and Interoperability

Following are some points in the context of inherent heterogeneity of the IoT and
required interoperability:

• The system consists of heterogeneous devices and new devices can be integ-
rated into the system as well. Consequently, the solution should not assume
anything about the involved hardware and allow the range of different devices
to be a part of it.

• Interoperability becomes crucial because of the underlying diversity. Thus, a
SD solution should offer standard interface for services. Furthermore, solution
should be routing and MAC protocol independent to allow the underlying
networks to select the one which suits them.

• The solution should accept service description ranging from very simple URLs
to more concise form of XML or JSON descriptions.

• The devices can be mobile as well, so solution should specify a way to register
explicit detail of device’s mobility to deal with them in a different manner.

4.4.2 Context-awareness

Context-awareness is an important factor to be considered in the IoT paradigm [100].
The scenarios have emphasised the need of context-awareness, as each user is
interested to find services depending on his/her location. The challenge is to allow
users to discover more relevant and appropriate services based on the available
context information in a transparent manner. Following are the key requirements
gathered from the IoT use case scenarios:

• The solution should allow the user to search a service depending on some
specified context. There are different perspectives of context, e.g., relatedness
depending on location and user authority, battery, demand of service, etc.

• The minimum context information should include location. This can aid the
user application to define a query to discover a service in the proximity or in
a specific location.

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 84

• A service selection mechanism should be offered where in case of discovery of
multiple services, a user seek assistance in the selection of an appropriate one.
The benefits of service selection are many: it aids the user application to get
a best matched service and it also enables the efficient usage of resources
e.g., by choosing the closest service in terms of number of hops.

• The solution can make the process even more efficient by saving the user
context; for example, usual interest of an individual user to offer related
services. This can enable the solution to recognise the multiple requests from
users and can adaptively facilitate them.

4.4.3 Adaptability

An adaptive SDP can tackle several challenges by adapting to dynamics of the
network to change different parameters, e.g., status maintenance interval, etc.
The discussed scenarios introduced the concept of configuration profiles (set of
attributes), which can be changed by an adaptive solution dynamically w.r.t.
current usage of a network. Following list recognises some of the potential adaptive
features that a SDP can provide:

• In SD, status maintenance overhead is a burden on the network that can be
marginalised by adapting to the current demand of a network.

• The solution can allow adaptive caching, so service invocation delay can
be reduced by using cached values. Constrained networks can be easily
overwhelmed by the high number of invocations; therefore, in these networks
the energy and bandwidth can also be saved by providing the cached values
for services in high demand.

• The solution can allow to schedule and run different policies and configurations
based on the dynamics of a network.

4.4.4 Constrained networks

The 6LoWPAN standard enables constrained networks to become an active part
of the Internet. However, this also increases the number of challenges involved in
designing a solution for constrained networks. This section explains the constraints
that should be considered by a SD solution for 6LoWPANs.

Scalability: The solution which can manage and control discovery overhead in a
dense network, while keeping track of the availability of service hosts.

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 85

Compact size: The complexity of the solution should be implementable on the
resource-constrained devices.

Compact communication: The limited bandwidth (20kbps to 250 kbps) and
packet size (127 bytes and 60-80 bytes) at the application layer of 6LoWPANs,
demands a careful use of bandwidth. Large packets will get fragmented and
result in multiple packets, which can overwhelm the entire network.

Sleeping nodes: Constrained nodes usually save their limited power sources by
sleeping most of the time, using a RDC. The solution should assign high
priority to this issue, by giving some alternatives like proxy which can act on
behalf of sleeping nodes.

Interoperability: Different standards for lower layers are being used in 6LoWPANs.
The solution should be inter-operable to work between networks with di-
verse standards. Interoperability aids the application development, as single
application can be used across different networks.

Energy efficiency: This is the key to increasing the lifetime of the network. The
solution should optimise its operation by minimizing its control overhead.
Furthermore, most of the nodes in multi-hop networks waste their energy by
passing the message towards the sink.

Resource-awareness: The assumptions of multiple resource-rich devices should
not be forced. However, the protocol should be opportunistic enough to
exploit the availability of high-capacity devices .

Service composition: Many services are discovered and invoked together, mostly
depending on their vicinity. For example, switching lights on and off in a
room will require all the actuators of lights to be called collectively. A SDP
should consider this aspect to allow grouping of different services in a locality,
to offer new services.

4.5 Summary

The analysis of the IoT requirements for SD provide the basis to propose an efficient
solution for this emerging domain. This chapter covered these requirements in
the context of future use-case scenarios. Furthermore, the application paradigms
and different user interactions are also explained to elaborate the points for a
user oriented design of a SD solution. The requirement analysis has given more
emphasis to the needs of 6LoWPANs by explaining the implicit challenges of this

CHAPTER 4. SD REQUIREMENT ANALYSIS FOR THE IOT 86

constrained sub-domain of the IoT. The chapter is concluded by summarising the
design choices for a SD solution with the future needs for IoT environments.

The next chapter discusses the first contribution, a context-aware SDP for the
IoT, proposed by this research project.

Chapter 5

A Context-aware Service
Discovery Protocol (SDP) for the
IoT

5.1 Introduction

Chapter 3 analysed existing SD solutions and their shortcomings, including lack
of interoperability, verbose formats and heavy bandwidth demands. Chapter 4
presented the requirements analysis of SD for the IoT. Both chapters have given
more emphasis to the challenges of constrained sub-domain of the IoT. This chapter
describes the design of TRENDY, a new SDP proposed for the IoT. The protocol
aims to provide a SD solution to satisfy the identified requirements in Chapter 4.
Interoperability is the key to deal with the heterogeneity of involved devices and
networks. This chapter explains the architecture of TRENDY, and covers the
protocol details related to several aspects of SD, including service description,
discovery, selection and invocation.

5.2 Architecture

A registry-based architecture is employed in TRENDY that is more suitable to
cover the scalability, reliability and efficiency requirements for a SD solution
(Section 3.10.2). Following are the points that become the basis of this choice:

1. The IoT paradigm allows people and things to be connected any-time, any-
place, with anything and anyone, ideally using any path/network and any
service [126]. Consequently, the queries from the user applications from

87

CHAPTER 5. SDP FOR THE IOT 88

outside the network is the norm in such environments. This requires a place
to deal with these queries, and certainly a directory-based approach will serve
the purpose.

2. This architecture is a better match for 6LoWPANs, where nodes mostly
sleep, and broadcasting or multicasting is an expensive way to discover a
service in the case of a directory-less solution (Section 3.10.2).

Figure 5.1 presents TRENDY’s architecture. It consists of: the DA (Directory
Agent), SAs (Service Agents) and UAs (User Agents). This section further covers
the detail of these entities.

��

��

�������	
 �
���

��

�� ��

��

��

�������	
 �
���

��

�� ��

��

��

�������	
 �����

��

��

��

��

�� �������
���������

���
���

�

�	�
���

���	

�� �� ��

Figure 5.1: Architecture of TRENDY

5.2.1 Directory Agent (DA)

The DA has a backbone role in TRENDY’s architecture and serves following
responsibilities:

• Registry: The DA maintains a registry table to store soft state entries for
registered services and context information by the host devices.

• Status maintenance: All registry entries bound to a lifetime period spe-
cified by the size of the DA’s time window. Host devices need to update their
status at the DA or their entries are deleted to ensure reliability.

• Service discovery and selection: The DA responds to SD requests and
uses collected context information to select a better service.

CHAPTER 5. SDP FOR THE IOT 89

• Service Invocation: The DA can act optionally as a proxy, in this case it
will respond on behalf of other devices and other benefits like caching can
also be exploited.

5.2.2 Service Agent (SA)

A SA is any host device that registers its service descriptions and context inform-
ation at the DA. It receives a time window length in response to a registration
message, which specifies the maximum time to send a status update to the DA.
All SAs need to keep the DA updated about their availability by sending status
updates within a time window.

5.2.3 User Agent (UA)

A UA is a client interested in discovering services available . It sends discovery
requests to the DA, and can be located either within a sensor network or elsewhere
in the Internet.

5.3 Communication Protocol

The RESTful web service paradigm is more suitable for embedded constrained
networks because of its simplicity and efficiency (Section 2.4.4.2). Furthermore,
CoAP (Section 2.5) is a compact and interoperable alternative to HTTP and can be
utilised to enable this paradigm in constrained networks [25]. Therefore, CoAP is
employed by TRENDY as a default communication protocol between devices. All
SAs and UAs can communicate with the DA using either CoAP (default) or HTTP.
However, SAs in constraint networks such as 6LoWPANs will require proxies to
offer interoperability to HTTP. Moreover, the DA can be extended to present its
services in other formats (depending on its capability) and can respond to queries
sent using other protocols e.g., DNS-SD.

5.4 Service Description

Service descriptions are important to provide a better SD by giving a more detail for
a service. In the IoT, there can be diverse requirements on the level of information
needed to be specified by the devices depending on the context of the application
and capabilities of the devices. There are several possible service types that can
be used by the IoT applications. This suggests the need for such a solution that
can accept different service descriptions ranging from very brief to semantically

CHAPTER 5. SDP FOR THE IOT 90

detailed ones. However, existing versions of service descriptions use verbose XML
and other formats (Section 3.10.1) which are unsuitable for 6LoWPANs. The
compressed formats like EXI etc. pose the additional requirement for translation
to be done on each device (Section 2.6.2).

The solution focuses on the extensibility factor as well as the challenges of
constrained networks (Section 4.4.4). Therefore, TRENDY has designed an extens-
ible strategy for service descriptions to balance the trade-off between size of the
description (large packets entail fragmentation) and an application’s requirements.
It defines a default compact format for service descriptions consisting of only
semi-colon separated URLs of resources offered by a device. This simple format of
resource description is a compact and efficient choice for constrained environments.
Additionally, the use of optional IETF Core Link Format (Section 2.5.7) or any
other format can also be used to describe extra semantic information by agreement
of the end-points. However, the devices initially need to register their service using
the default format and if the DA allows other formats, then more description is
sent. Figure 5.2 shows the examples of some service description formats being
received by the DA.

��

�������

�	
� �
��
�	
���

����

�	
����

��
������������
��

������	
����������
���� !���	
 "���# $������	
��������
�� �����
���
�%
� �
�� ����	
 $

�

Figure 5.2: Different service descriptions formats are allowed in TRENDY

5.5 Context awareness

The importance of context-awareness is covered in Section 3.12.1 and detail of its
importance for IoT environment is emphasised in Section 4.4.2.

Context awareness is a prime requirement for a IoT environment, where a user
application usually looks for assistance to get a single relevant service in response

CHAPTER 5. SDP FOR THE IOT 91

to a query. However, there are plethora of context attributes that can be important
for context-aware decision making. Figure 5.3 shows some of the potential context
attributes that are useful to be considered in IoT environments.

Any fixed way to define these context attributes can restrict the framework
and extensibility required by the IoT. Thus, the solution has only defined the
basic simple format for defining context attributes to be used by default, while
allowing other formats to be used by using CoAP options. The format of some
context attributes is defined, including location, battery consumed, battery source,
mobility, hop-count are defined (Figure 5.4), which are important in most of the
scenarios. The format detail of these context attributes is covered in Section 5.11.1.
This format is evolvable as more context attributes can be easily added by updating
the DA to accommodate the application and environment requirements.

CHAPTER 5. SDP FOR THE IOT 92

�������

������

���	�
�

�
�
�����

�����������

������ �
����

������� ��������
��

���

������

�����
��

����

������

��
�����
���

���	�

�����

��������
�����
��

����
������
	�����

�����

�
�����

����
�� �������
�

������

���

����
�

 �

�����
�

�����
�

������������

Figure 5.3: Few potential context attributes

CHAPTER 5. SDP FOR THE IOT 93

������� ���	�
	

�������

�����

������	��

����

���� �������

����������

��� �����

������

��������� �����	�����

���������� ����

	������

��������������

��	�����

��������

Figure 5.4: Defined context attributes

5.6 Registration and Status maintenance

This section focuses on the challenges related to registration and status main-
tenance approaches for the selected architecture (Section 5.2). Each SA needs
to register with the DA. At first, the SA sends its service information with op-
tional context attributes, e.g., location, battery information, etc. as described in
Figure 5.4. The DA responds with an acknowledgement carrying the size of its
time window. Figure 5.5 shows the detail about the registration process. After
successful registration, every SA informs the DA about its status at least once in a
time window. Upon reception of every subsequent status update message, the DA
marks the respective SA active in its registry. The registry is checked by the DA
at the expiration of a time window, and the records of all inactive SAs are deleted.

5.6.1 Provision of the DA’s IP

All SAs need to know the address of the DA to register their services. There are
several methods to provide the DA’s IP address. It can be either hard coded in a
SA (a well known or anycast IP address), or distributed as DHCP parameter, if
this protocol is in use. Furthermore, the DA can flood the network to announce its
authority, or suitable neighbour discovery messages can be used for this purpose.

CHAPTER 5. SDP FOR THE IOT 94

5.6.2 Status maintenance

The registry keeps soft states of the entries that require a status update from the
host devices within a time window. These status messages ensure reliability of
SD, as devices can die or move away from the network after registration. The size
of the DA’s time window is constant for all SAs that has a potential of causing
congestion, when nodes try to send periodic status updates simultaneously in a
network [57]. This issue is fixed by defining a rule for each SA to select a random
interval between 50% and 100% of the DA’s time window. Figure 5.5 presents a
scenario where the above approach is being implemented by the SA.

��� ��
�����	�
 ��
��
������ ���	��	�

���� ����	� ���
� ��� �������
���� ������ ���
"��	 ����	� �#	�

$�	����
%�& 	� ���&�'��� ����

()
�	�	�� ����	�

*%� ���

��������
���+ ��
������ ���	��	

Figure 5.5: SA’s registration and status updates

5.7 Service Discovery

The pro-active behaviour of the protocol allows the discovery process with a
single unicast message. Figure 5.6 presents an example of a solution’s scenario
where the UA’s query formulation and a glimpse of a SD process at the DA are
shown. The UA can specify the context of a service to be discovered including
its location, type or some other information (format described in Section 5.11.3).
The location information is the most obvious and important criteria for a UA
to target the search in a specific area. The DA discovers the matching services
using information sent in the query. It searches its registry for services that match
query’s criteria. Subsequently, the DA responds back to the UA by appending the
service information (resource’s URL and IP address of the host) of one service or
list of services in the payload.

CHAPTER 5. SDP FOR THE IOT 95

��

����� �����	
���

��

�������
��
������ �����

������� �� ���� 	 ��
���
��� � �� ���������� �
��� ������ �� ����������� ����

�� ����������� ���������� �����������

�������� � ���� 	 ��
���
��� � �� ���������� �
���� � �����������

���� � ������������ ������� ���

������� ���������
���
������ ����

�������� � ���� 	 ��
���
��� � �� ���������� �
 ��� ������ ����� ���

���� �� ���� �������� �����������

��
� ��
��������
������

Figure 5.6: A SD Scenario using TRENDY

5.8 Service Selection

The development of a SDP that allows user applications to discover and interact
with most appropriate services is crucial for IoT environments [126]. These services
are hosted and advertised by heterogeneous devices and software components. An
IoT user application will require the assistance in the selection of a best matched
service, instead of getting a list of matching services. An example scenario is
depicted in Figure 5.7, where the DA has discovered two matched services for the
query. In this situation, the DA needs to assist the UA by selecting an appropriate
service using available context information.

Figure 5.8 presents an algorithm to show the utilisation of context information
by the DA to select an more optimal service from the list. This selection approach
applies different checks, on available context information, one by one with the
defined priority. It stops if nodes differ for certain context attribute after sorting
the list or will carry on with other checks. Either stopping after a successful check
or all checks, the first element of the list is returned. This algorithm works even
when some of the context attributes are not available, as those checks are skipped.
This algorithm is extensible as new context attribute checks can be introduced at
the DA.

CHAPTER 5. SDP FOR THE IOT 96

����

� ���� ������	�
�� ����
��

� � ����
� � �

��
��
�
�� ���
�	� ������
��

���
��	
��
 ����
��

��
�� �� ��

�� ��

��
�� ��

��

�� ��
� ����

��� �	�����
������ ��� ���

�
�� 	�	
�	���

�������
�����	�
��

Figure 5.7: TRENDY’s Service Selection Scenario

CHAPTER 5. SDP FOR THE IOT 97

�������
	
���

 	
�

����

�����
����� �

���

����	�
�
�����

��

�
� ���
��
����
 ���
�����

���� ���
����
��� �����

���
 ����	�

����
�����

��
���
����
 �
�����
�

���
 �� ��
����� ��
�����

���
 �� �� ��������

�
�
�
 ��

�

��� �
��

	
�

�
��
 �����
�
�
�� �� ��
 ����

���
� ����� ��� �

���
�
���

 �� ��
 ����

���
 �� �� ��������

���
 �� �� ��������

���
 �� �� ��������

���
 �� �� ��������

�
�
�
 ��

�

��� �
��

�
�
�
 ��

�

��� �
��

�
�
�
 ��

�

��� �
��

�
�
�
 ��

�

��� �
��

�
�
�
 ��

�

��� �
��

���� ��
 �
���

 �� ��
 ����

Figure 5.8: Example of TRENDY’s Service Selection

CHAPTER 5. SDP FOR THE IOT 98

5.9 Service Inovcation

SD is completed when an application gets the response with a service identifier and
address of its host. In TRENDY, the RESTful web service paradigm is enabled by
employing CoAP, so inherent support for service invocation is offered by standard
web service interface. CoAP can be used to invoke services at any SA. Furthermore,
HTTP can be used as well if a node supports it or a CoAP-to-HTTP proxy is
available. TRENDY improves the response of a SA by defining a lifetime period for
a resource’s value depending on its previous reading. If a SA responds with a value
of a resource, it will also append corresponding lifetime period, e.g., temperature
sensor can help the SA to decide that life time for the value being sent is 30 minutes.
The value is enclosed in parenthesis and lifetime in minutes is placed after that,
e.g., a temperature of 22C approximately valid for next half an hour is sent as
{22C}30. This enables the UA to get more information about the context and
trend of the current value of a resource.

5.10 Overall framework

Figure 5.9 shows the TRENDY’s framework with its features. The DA is a
central repository that can cause single point of failure issue. Therefore, the
DA’s functionality is must be placed at a powerful always available node e.g., at
edge-router in 6LoWPANs, which is a bridge between IP-based networks and
6LoWPANs.

CHAPTER 5. SDP FOR THE IOT 99

��������� 	
���

��� ����	��
����
��	

����
��
��������

������
 �� �
 �
	�� ������	

�����
���	

�	������

������� ����
����� ������� ���������

������� ���������������������
����������

�	�

������
����������

����
��

�	����������

�	������
�	�
�	������

��
�����

�� �����
������� ����������

������� ������������

������ �����������

Figure 5.9: Framework of TRENDY with service selection

5.11 Message Formats

The CoAP message format (Section 2.5.4) is used to define messages for TRENDY.
All messages are exchanged using unicast and require an Acknowledgement (ACK)
message in response. This section covers the detail of TRENDY’s messages required
for registration, reporting and discovery.

5.11.1 UPD (Update) for registration

When a SA is switched on, it acquires its IP address and schedule time for
registration with the DA. It is assumed that the address of the DA is known
(Section 5.6.1). Then, it uses UPD message to register its service information with
the DA.

Sender: SA

Receiver: DA

Purpose: SA registers its hosted resources at the DA

Format: The format of Update (UPD) messages for a SA is shown in the Fig-
ure 5.10.

CHAPTER 5. SDP FOR THE IOT 100

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�����
���� ���� !�
� �!��"��

�	
��	�� #"�$%���&"��
"��'�(#)*��(�!')�(

� � � �

���$�

�
���-.�

/�00�*� �1

Figure 5.10: UPD message for registration

This message uses the method 2 (POST) to update the registry of DA. The
option Uri-Path is set to trendy/rep and URI-QUERY is set to upd=y.

The minimum information contained in a registration message is a basic
service description. Context information can be added, if necessary. The
format consists of attribute and value pair (only a subset is defined) is
separated by “=” sign whereas “,” is used to separate multiple of them. The
pairs can be specified in any order. The description of attributes in the
payload are defined as follows:

• Location tag (“l” or “location”) = Value (string): It indicates
the physical location information of a SA in a descriptive or encoded
format. If this is not given, the registry will register the SA with “Not
Specified” location.

• Battery source (“bs” or “battery source”) = Value (8-bit un-
signed integer): This attribute explains that a SA is battery operated
or is plugged in directly. If not defined it is set to ‘0’ which implicitly
defines that the SA is battery powered. Otherwise, the value ‘1’ is used
by a SA to describe it’s plugged in.

• Mobility level (“m” or “mobility”) = Value (8-bit unsigned
integer): If specified it indicates that node is mobile. Furthermore,
the value ranges from 1 to 9 which specifies the level of mobility. This
is used while comparing two services according to their hosts mobility
level. If not defined, default value of ‘0’ is assumed.

• Hop count (“h” or “hops”) = Value (8-bit unsigned integer):
This value is used to specify the host’s distance in hops from the sink
(registry). If not specified then it is set to ‘0’.

• Battery consumed (“b” or “battery”) = Value (16-bit un-
signed integer): It represents the percentage of available battery
consumed by a SA. It is estimated by a SA according to its battery
usage. If it is not specified, then ‘0’ is assumed by the registry.

CHAPTER 5. SDP FOR THE IOT 101

Actions: The DA responds back with an ACK, and carries a two byte value in
the payload specifying the number of seconds in a time window. A sample
response to registration is shown in Figure 5.11, which carries 600 seconds in
payload. The response code 2.01 (equivalent to HTTP 201) is sent back on
successful registration to inform about the creation of a new record in the
registry. In case of any problem, a corresponding error code is sent in the
response.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

������� �� 	�
��
� ��� ����� ������ �� ��������

� � � �

�
�����

����
��
�� �� ��� �� !��"� #����$� %&

Figure 5.11: The DA’s response for a registration request

5.11.2 UPD (Update) message for Status maintenance

This is a variation of registration message (Section 5.11.1) and used by SAs to
update their status at the DA.

Sender: SA

Receiver: DA

Purpose: A SA updating the DA about current status.

Format: The format of UPD messages for status maintenance is shown in the
Figure 5.12.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�����
���� ���� !�
� �!��"��

� � � �

�
���$�

	
���&'�

(�))�*� �+

Figure 5.12: UPD message for a status update

This message uses POST method, Uri-Path option is set to trendy/rep and
URI-QUERY is set to upd=y. If a SA also appends its service description or
context attributes, then the DA will overwrite all its previously advertised
information with the newly received one, which can be used by a SA whenever
it detects change in any of its hosted services.

CHAPTER 5. SDP FOR THE IOT 102

Actions: Figure 5.11 shows the format of an ACK. In the case of a successful
update, a response code 2.04 (equivalent to HTTP 204) is sent back. In case
of a failure, the DA will send a reset message with corresponding error code,
as shown in Figure 5.13. After receiving such a reset message the SA will
send another UPD message for registration of its services at the DA.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
��

�
 ��� �� �����

����� � !"

Figure 5.13: Reset response from the DA

5.11.3 SDR (Service Discovery Request)

This section covers the detail of Service Discovery Request (SDR) message which
is used by a UA to discover a service.

Sender: UA

Receiver: DA

Purpose: Services are maintained at the DA to enable a unicast discovery. The
DA accepts SDR messages in both CoAP (default) and HTTP protocol.
The UA uses URL query options to explain context of a service or multiple
services to discover. Services are searched based on attached query attributes
and responded accordingly.

Format: A UA specifies the trendy/server URL with CoAP’s GET method and
URL queries (examples shown in Table 5.1) for SD. The discovery query can
be specified in one of the following three different ways:

1. Attribute-based: The UA can define type, info (information) and
location attributes using URI-QUERY to describe a query. Any or all
attributes can be used to discover a service. The format of this type is
shown in Figure 5.14.

2. Best search based: Any attribute based discovery message can be
amended by adding best in the payload to seek assistance from the DA
for appropriate service selection.

3. Other format request: The UA can request for the WSDL or WADL
file of service information, by mentioning a URI-QUERY option with
the format name. The message format is shown in Figure 5.15.

CHAPTER 5. SDP FOR THE IOT 103

Table 5.1: TRENDY’s discovery queries

Discovery queries Matching Criteria

?location=INB01 Location based
?location=INB01&type=temperature Location and type based

?location=INB01&type=temperature&info=sensor Location, type
and relevant information based

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������
��
�
����#$�
� ���%�&'��()
��
����#$�
� �*)+��,)�&'��()
��
����#$�
� �,�-)&'��()
��

� � � �

�
���.�

	
�/���

0����1� �2

Figure 5.14: Service Discovery request (SDR) for services

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������
��
�
����#$�
� �%&
'��()��*�

� � � �

�
���+�

	
�,��� -����.� �/

Figure 5.15: Service Discovery request (SDR) for format

CHAPTER 5. SDP FOR THE IOT 104

Actions: The DA responds to a SDR query, depending upon its type.

1. Keywords based search: Matching service(s) with their URL(s) and
SA’s IP address(es) is returned in the payload.

2. Best search: The DA sends service information of the most appropriate
service matched with its URL and host’s IP address.

3. Requested format file: A HTTP link to the format file in the payload.

The general format of a response to SDR message is shown in figure 5.16. In
case of success, the response code 2.05 (equivalent to 205 in HTTP) is used
or, respective error code is sent to the UA.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �� �������

� � � �

�
�����

��	

�������� ��� �� �����

 ���!"� #$

%�
&�'� (�
)!� �� �!*+�!�, -#�./012

�
���� �
�������� 1��� �(!++)!�'3�� ��
&�'��
���
��� ������
��� ��+* ��� ��+�'��� ��
&�'�
������ �������� 0�45����� (�
)!� ��(!&!�+!6+��

Figure 5.16: SREP: response carried in payload as requested

5.12 Summary and Discussion

This chapter has described the proposed TRENDY protocol that provides a context
aware SD and selection for IoT environments. This protocol focused on constrained
environments (more specifically 6LoWPANs) and consider the challenges and
requirements identified in Chapters 3 and 4. The discussion started with the
TRENDY’s architecture and then different aspects of protocol are covered including,
communication protocol, service description, context-awareness, registration, status
maintenance, SD, selection and invocation. In the end, its overall framework is
described and message formats are specified.

The solution uses light weight state of the art web services to enable RESTful
paradigm. This enables the host devices to wrap up their offered services in web
services with standard interoperable format. The design is focused on interop-
erability and extensibility, which are the main requirement for IoT environment.
All specifications including, service descriptions, context attributes, SD, service
invocation are defined while considering the future needs and extensibility. Overall,

CHAPTER 5. SDP FOR THE IOT 105

TRENDY offers a SD solution that satisfies new requirements of the IoT and more
specifically deals with the challenges posed by its constrained domains.

The next chapter explains the experimental design with the detail of selected
tools for experiments. Afterwards, Chapters 7, 8, 9 describe additional techniques
for TRENDY including, adaptive timer, context-aware grouping and adaptive
caching.

Chapter 6

Experimental Design and
Performance Metric

6.1 Introduction

This chapter starts by discussing the important performance metrics for SD from
the context of the IoT. Then, the details of experimental set-up used is defined by
describing configurations, including protocols used at different layers of IP stack,
and employed physical topologies with generated RPL topologies. Furthermore,
the experimental design is explained, which covers testing, debugging, validation,
compilation of statistics, and graph generation. In the last part, the chapter
presents the generated results from experiments performed to analyse the benefit
of the service selection mechanism of TRENDY.

6.2 Performance Metrics

This section describes SD performance metrics, which are used to analyse the
performance of the proposed solution.

6.2.1 Control packet overhead

A protocol’s control packet overhead is defined by the number of control packets
used by a protocol to serve its job. These packets are generated by a protocol to
complete its operational and management tasks; therefore, it’s a burden on the
network. The control overhead affects the energy and bandwidth consumption of a
network, and thus impacts the scalability factor of a protocol. In a dense network,
the traffic generated by SD becomes an extra burden, because it has a considerable
effect in a multi-hop network. The frequent packet forwarding reduces the sleep
time of the nodes by keeping them awake for passing messages, so this consumes

106

CHAPTER 6. EXPERIMENTAL DESIGN 107

more energy. Therefore, an efficient and scalable SD solution generates less control
traffic.

In the case of TRENDY, an application layer protocol, the control overhead
is the sum of all registration, and reporting messages. The number of service
invocation messages are technically not considered as a part of overhead; however,
if a SDP employs a caching mechanism, then this number becomes important to
analyse the impact of the scheme.

TRENDY works at application layer and is independent of lower layer protocols
that’s why only application-layer level packets are counted to calculate its overhead.
However, in reality, the application layer messages initiate a round of several efforts
at the bottom layers, and overhead actually costs several times more than the
count at the top layer. This effect becomes much larger for 6LoWPANs with lossy
radio environments consist of nodes with sleeping cycles, as one packet might be
sent several times before it reaches at the destination. Therefore, the total network
packets are also recorded in experiments to quantify the impact of such properties.
Subsequently, further analysis is done on recorded packets using Wireshark [98] to
segregate and classify SD messages from routing and other messages.

6.2.2 Service Discovery Delay

The service discovery delay is the interval between initiation of a UA query message
and receipt of a response from the DA. It includes the processing time at the DA
to match and select a service with query parameters. TRENDY has a registry-
based architecture and has proactive behaviour, so this factor does not have much
significance because only a single uni-cast message required between two entities
(UA and DA) for SD. However, it is an important SD metric that matters more
in directory-less and distributed directory based solutions where a query has to
pass through different nodes either by multicast or unicast in case of multiple local
directories.

6.2.3 Service Invocation Delay and cache hits

Service Invocation (SI) delay is defined by the time taken from issuing an invocation
request until the receipt of a response. This is an important parameter to analyse
the efficiency of a SD solution, because lower SI delay means better system
performance and response to a user application. The network traffic load, average
path length in multi-hop network and message processing time are the factors that
affect the SI delay. Usually, a service discovery solution has no impact on this
metric, unless it is either supporting service selection, service invocation or using
some caching mechanism to facilitate user applications. If caching is enabled, then

CHAPTER 6. EXPERIMENTAL DESIGN 108

the number of cache hits defines the number of times the maintained cache is used
by the registry to serve a request. This number measures the benefit of maintaining
the cached values. TRENDY’s employed communication protocol; CoAP, enables
service invocation using RESTful web services. Thus, service invocation delay
becomes an important metric to be measured in TRENDY experiments.

6.2.4 Energy Efficiency and Network lifetime

Energy is considered a precious resource in 6LoWPANs with mostly battery-
operated nodes. A node consumes energy while processing, sleeping, and radio
listening, receiving and transmitting. Energy consumption is also highly dependent
on the routing overhead, and selected MAC and RDC mechanisms [6].

In experiments, Energest [33] is used to evaluate the energy consumption
of individual nodes. Energest is a software-based mechanism to estimate the
energy consumption of a sensor node, which runs directly on a node to provide
real-time estimates of current energy consumption. It keeps track of the time
spent by individual modules, including, CPU, radio transceiver (listen, receiving
and transmitting), and low power or sleep mode. The time is then processed
using the data-sheet of emulated devices to calculate the energy consumption.
COOJA performs the simulations at the hardware-level by using the real hardware
profiles of the employed nodes; therefore, devices can be emulated with actual
hardware configurations. Tmote Sky motes are emulated in all experiments as
6LoWPAN nodes in COOJA. Table 6.1 shows the data-sheet values of current
consumed by a Tmote Sky while performing different operations. These values
along with CONTIKI’s fixed operating voltage of 3V are used in experiments to
calculate the total energy consumption of each node. Different statistics, including,
individual node energy consumption and average node energy consumption are
used to compare the energy efficiency of proposed techniques in the performed
experiments.

Table 6.1: Current consumed by a Tmote Sky while performing different operations

Operation Current
(mAmp)

Radio listening and Receiving 19.7
Radio transmit 17.4

CPU ON 1.95
CPU LPM (Low Power Mode) 0.5

Energy consumption and network lifetime are interrelated as lower energy
consumption suggests that network will last longer. The definition of the network

CHAPTER 6. EXPERIMENTAL DESIGN 109

lifetime varies according to a specific application or topology [20]. In TRENDY,
location tags are considered as a key criterion to search and differentiate services
according to their placement within a network. Therefore, the network is segregated
into different locations with a dynamic topology with the RPL [133] protocol. RPL
maintains its topology by forming new routes dynamically during the simulation
period. Consequently, the different topologies are used in experiments to check the
impact of the diversity of generated RPL routing trees. In reality, the definition of
the network lifetime depends upon the way nodes are placed in a network. This
research project considers the most widely used definition of the network lifetime
where the network lasts until first node dies in a network.

Emulated Tmote Sky motes can be powered by two AA batteries with operating
voltage range between 2.1V to 3.6V . Normally, two Alkaline batteries provide on
average capacity of 2500mAh with operating voltage of 3 volts. Following formula
is used to compute the capacity of batteries in Joules.

ECapacity = V × I × 3600

Where ECapacity represents the available energy in Joules, V is the electromotive
force expressed in volts and I is the current expressed in amperes. The equation
V × I is multiplied by 3600 to get the Watt-seconds. Therefore, the total available
energy capacity, by applying the formula is:

ECapacity = 2.5× 3× 3600

ECapacity = 27000 Joules

The individual energy consumption of nodes during a simulation period is used
to linearly approximate the energy required by them in a day, which is used further
to approximate the total lifetime of nodes for available energy capacity provided
by two AA batteries. The assumption taken here is that all batteries will provide
2500mAh capacity while their voltage will never drop from 3 Volts. Finally, these
estimations are used to determine the time when first node dies.

The assumption taken in energy consumption approximations is that the same
events occurred during the simulation period (number of UA queries and control
overhead) will keep on repeating in the similar way over the lifetime of the network.
However, the nodes will not get registered again neither the equivalent number
of queries will be repeated in reality. For example, in the discussed scenarios
(Section 4.2), the network is supposed to have longer idle periods of low demand
during the nights. Therefore, this calculation is only an assumption and represents
an approximation of the network lifetime for a rather worst-case scenario.

CHAPTER 6. EXPERIMENTAL DESIGN 110

6.2.5 Scalability factor: Packets to the DA

In a centralised SD solution, all services are stored and maintained by a DA. This
requires messages for registration and status maintenance to be sent to the registry
by all host devices. Consequently, the number of messages generated by nodes for
the DA can overwhelm a network, as mostly these messages need to pass through
multiple hops to reach at the DA (sink). Thus, the total number of these messages
determines the scalability factor of a SD solution.

TRENDY’s DA counts the number of packets received from all SAs as a measure
to determine the scalability of the solution. Each TRENDY message consists of a
confirmation and an acknowledgement, so the number of received messages at the
DA actually results in two packets; however, the messages are just counted once
when they arrived at the DA. In a 6LoWPAN with mostly sleeping nodes, which
usually more than one hop away from the DA, the anticipated generated traffic
by these application-level messages is far higher. To study this impact in different
network densities and RPL routing configurations, the network is sniffed for the
total number of packets sent and received by the DA to analyse the overall impact
of a mechanism to reduce the actual all-inclusive traffic.

6.2.6 Reliability and Accuracy

The reliability covers different aspects: the reliable message delivery in a lossy
wireless environment, and the prevention of single point of failure in the case of a
centralised directory. Whereas, accuracy is determined by the correctness of the
information provided by a SDP in response to the UA queries. Following is the
brief detail of different factors which determine the reliability and accuracy of a
SDP:

Reliable communication: Constrained networks operate with a low bandwidth,
small packet size, and lossy asynchronous links (Section 2.2.2). The challenge
for a SDP is to offer reliability in these constrained environments. TRENDY
addresses the reliability by using CoAP based communication that offers
reliability using back-off mechanism and acknowledgements (Section 2.5.5).
Moreover, TRENDY’s messages can easily fit into a single 6LoWPAN packet,
which alleviates the need of packet fragmentation.

Reliable directories: A SDP solution with centralised architectures can cause
a single point of failure problem, where a solution stops functioning after
its central directory fails. A SDP solution with central directory needs to
provide some way to ensure reliability. TRENDY deals with this problem

CHAPTER 6. EXPERIMENTAL DESIGN 111

by implementing a centralised directory at the resource-rich edge-router
(Section 5.10).

Accurate Service Information: The accuracy of a SD solution determined by
the accuracy of discovered service information and cached values in the case
of caching. In a SD solution, service information is advertised by nodes
either among neighbour nodes (directory-less approaches) or to directories
(directory-based architecture). This advertised information is cached at
different nodes to reduce service discovery delay, as other nodes can also
serve queries. This cached service information maintained at other nodes is
needed to be refreshed by status maintenance to guarantee the accuracy of a
SD response.

In TRENDY, the DA stores the soft values of service entries, which require
status updates from the nodes in a specified time period (Section 5.6). If no
status update is received from a SA, the corresponding records are considered
obsolete and removed from the DA’s registry. This ensures the accuracy of
SD responses from the DA. Furthermore, the UA sends a service invocation
query after receiving a SD response, so a successful service invocation certifies
the accuracy of the service information.

Accurate cached values: If a caching mechanism is employed, there is a risk of
expired cached values being sent to a UA by intermediate proxy. Therefore,
this issue of outdated cached values need a consideration in such cases.

6.3 Experimental Setup

This project employed the CONTIKI operating system with RPL as a routing
protocol and used COOJA to simulate a 6LoWPAN network. COOJA allows
hardware-level simulations, so it can emulate different hardware nodes with re-
spective drivers. Therefore, all the SAs in the 6LoWPAN are emulated as Tmote
Sky [115] motes, so the same implemented code can work directly on real hardware.
ContikiMAC [32] is used as the RDC scheme and compared to NullRDC (where
radio never switches off), and CSMA is used as MAC protocol. Two implementa-
tions of CoAP are used in experiments. Erbium [70] is a CONTIKI based CoAP
implementation, which is used inside the 6LoWPAN for SAs; and Java based
Californium1 is used to implement the DA and UA.

All simulations consist of a different number of nodes where one node acts as a
border router to connect the COOJA-based 6LoWPAN to the DA running as Linux

1http://people.inf.ethz.ch/mkovatsc/californium.php

CHAPTER 6. EXPERIMENTAL DESIGN 112

process via the Serial Line Internet Protocol (SLIP). All nodes are placed according
to one of the topologies (explained in Section 6.3.1) and given 5 unique location tags.
This is done to send queries in different areas of a network and to analyse the effect
of context-awareness of TRENDY. Each node hosts three resources: temperature,
humidity and light. Furthermore, this has been assured that a SA can register its
all resources in one 6LoWPAN packet. Thus, the TRENDY message and packet
become synonymous and are used interchangeably. CONTIKI’s ENERGEST [33]
module is used to measure the energy consumed at each node. All UA queries are
stateless (each is sent as if from a new UA) and randomly selected to discover a
resource at the DA from one of the five locations after a random interval between
0 and 10 seconds. After receiving a response for a SD query, the UA sends a
GET request to invoke the service at the SA. Consequently, the number of Service
Invocation requests are equal to SD queries. All the experiments are repeated
with 10 different random seed values, and overall traffic is sniffed for validation
in one iteration to analyse the actual number of packets produced in a network.
Furthermore, the analysis classifies and segregates different types of packets to see
the real burden of SD and the impact of different topologies.

The simulation configurations are summarised in Table 6.2.

Table 6.2: General configurations for experiments

Total nodes Variable + 1 border router
Number of locations 5

Node Type Tmote Sky
Routing protocol RPL

Radio duty cycling ContikiMAC and/or NullRDC
MAC CSMA

Energy Measurement ENERGEST (CONTIKI)
Radio Environment Unit Disk Graph Medium (UDGM)
Transmission range TX: 50m, Interference: 50m
Physical topology Section 6.3.1

Area Depends on the selected topology
Number of cases Variable

Number of Iterations 10
Total Service Discovery queries Variable
Total Service Invocation queries Variable

First UA Query Variable
Interval between queries Random between 0 and 10 seconds

DA time window period Variable
Number of time windows Variable

Simulation Duration Variable

CHAPTER 6. EXPERIMENTAL DESIGN 113

6.3.1 Topology

The experiments are done using three different tree topologies. In these topologies,
nodes are placed from completely random to a fully controlled way to analyse the
effect of RPL’s generated tree topologies when different TRENDY mechanisms are
used. The placement of a node at a certain level of RPL tree is instrumental in
its energy consumption. In experiments, each iteration uses a different random
seed value for a COOJA simulation. This value is responsible for the packet order,
node start-up time that changes the generation of interrupts. Therefore, the RPL
tree construction is also affected by this value and results in a slightly unique tree
for each seed values. Following is the description of employed topologies:

Topology#1 - Fully Controlled topology: The RPL topology construction
mechanism (Section 2.3.1) can be controlled by using different RPL’s OFs
and ranks for a DODAG. This topology fully exploits this fact and places
the nodes in different areas while strategically placing only one node in each
group one-hop away from the DODAG’s root (where the DA is also placed).
However, other nodes in each group are placed randomly, but in a way that
no node from any group is in the radio range of another group’s node. The
whole topology covers an area of 190m× 180m. The nodes organisation in
distant groups is analogous to discussed scenarios in Section 4.2 where nodes
can be placed in different building and one resource-rich node that has large
transmission range in each building becomes the parent (in RPL tree) of all
local nodes. The DODAG’s root (border router) acts as a sink. Figure 6.1a
shows the physical topology of 6LoWPAN defined in COOJA simulator.
Furthermore, Figure 6.1b presents the RPL tree generated for one COOJA
simulation iteration, which is, in reality, is incongruent to physical topology;
however, it matches closely to the physical topology for this topology because
of its strategic configurations.

Topology#2 - Partially Controlled topology: This topology is similar to to-
pology 1, but in each area, nodes are allowed to have overlapping radio access
to nodes in other areas. Therefore, the topology becomes more dense and
occupies an area of 180m× 140m. This topology demonstrates a physical
topology of nodes in a single building where areas represent different floors.
Figure 6.2a shows the physical topology in COOJA and Figure 6.2b presents
corresponding RPL routing topology for one random seed value. In contrast
to topology No. 1, it can be noticed that the routing tree is not even for each
area, and different parent nodes have a different number of branches. This is
the result of RPL parent selection mechanism (described in Section 2.3.1)

CHAPTER 6. EXPERIMENTAL DESIGN 114

that has preferred the parents from other areas and thus creating dissimilar
routing paths compared to topology 1. This topology is a combination of
routing tree tweaking (forced top parent nodes in the tree) and more common
overlapping areas in the IoT.

Topology#3 - Completely random topology: In this topology, nodes are
placed in a fully random order with overlapping radio ranges. It is more
dense compared to other two topologies and covers an area of 150m× 170m,
as shown in Figure 6.3a. Figure 6.3b shows the generated RPL tree, which
reflects how RPL can behave when nodes are homogeneous and thus selects
any node to become a parent of others. It can be notice that more nodes
are situated at tree’s level one and have a direct link to the DODAG root.
Furthermore, only two nodes get more than three branches. This will cause
more contentions towards the root, and will increases the delays that will
multiply when some RDC is used by nodes for sleep cycles. This topology
represents a real-life deployment where all nodes are homogeneous and are
meant to work in a complete ad-hoc manner without any RPL configurations.

CHAPTER 6. EXPERIMENTAL DESIGN 115

(a) Physical Topology No.1

(b) RPL tree for Topology No.1

Figure 6.1: Different views of Topology 1

CHAPTER 6. EXPERIMENTAL DESIGN 116

(a) Physical Topology No.2

(b) RPL tree for Topology No.2

Figure 6.2: Different views of Topology 2

CHAPTER 6. EXPERIMENTAL DESIGN 117

(a) Physical Topology No.3

(b) RPL tree for Topology No.3

Figure 6.3: Different views of Topology 3

CHAPTER 6. EXPERIMENTAL DESIGN 118

6.4 Experimental Design

The DA and UA run as Java’s processes on Linux machine and the 6LoWPAN
network runs in a COOJA Simulator (which is also a Java process). The com-
munication between IPv6 and 6LoWPAN is managed by using a Tunslip via an
edge-router located in COOJA environment. The maximum number of 35 nodes
are used in the experiments, because the simulation running in COOJA performs
slower than real-time when emulated nodes interact with the other Java processes
(DA and UA) as it uses only one CPU thread for execution. The clocks of the DA
and UA (which normally run at real-time), and the COOJA simulation speeds
were synchronised to run the experiments with 0.85 of real time. The simulation
architecture is shown in Figure 6.4.

�����

����	
��� ����

����

���� ����

����

�������
��
����

������ ���
��

���� �!

�"#" ���	�����
������� �� "

����$ %��

����
�"����
��#����&��
 '��� (��
��

����������	�
�

Figure 6.4: Experiment setup for evaluation of TRENDY

The design of performing experiments and data collection is shown in Figure 6.5.
Eight VMs (Virtual Machines) are used in the shown way to execute simulations
and synchronise the generated data using Dropbox web service2. All validation and
statistic data are collected at a central machine, where it is synced via Dropbox.
The received raw statistics are further processed by applying bash scripts to
generate the suitable format for plotting graphs using gnuplot [58] scripts. The
details of automation of simulations, COOJA’s JavaScript, and data processing
bash scripts, validation logs and statistics, and gnuplot scripts can be found in
Appendices A, B and C.

2http://www.dropbox.com/

CHAPTER 6. EXPERIMENTAL DESIGN 119

��� �������	
� ��
��
��

����� �����	
��
������

�������
���

�
 ����� �����

�
������

���
��� ������

������

� �

�����

 ����� �����

�

������

!����

� "

�����

�#$%&���
�	� ����

�������
!���� !"��

Figure 6.5: Experimental design: Simulation setup and data collection for experi-
ments

CHAPTER 6. EXPERIMENTAL DESIGN 120

6.5 TRENDY’s Service Selection Experiments

This section covers the detail about experiments conducted to emphasise the
role of TRENDY’s service selection mechanism (Section 5.8), including scenarios,
experimental setup and discussion of the results.

6.5.1 Introduction

Following scenarios are used to analyse the impact of service selection for a network
of 35 Nodes:

Case 1 - Basic TRENDY: This scenario only enables the basic functionality of
TRENDY, so the UA will get a list of all matching services.

Case 2 - Basic TRENDY with service selection: This scenario enables
TRENDY’s service selection mechanism on top of case 1. Thus, the UA gets
a best matched resource’s URL and IP address of a SA hosting the matching
service.

The simulations are configured with the same settings defined in Section 6.3
with the changes given in Table 6.3.

Table 6.3: Configurations for the experiments of adaptive timer

Total nodes 35 nodes + 1 border router
Physical topologies 1, 2 and 3 (Section 6.3.1)
Number of locations 5 with 7 SAs in each location

RDC Both ContikiMAC and nullRDC
Number of cases 2

Total Service Discovery queries 1000
Total Service Invocation queries 1000

First UA Query At 600 seconds
DA time window 5 minutes = 300 seconds

Number of time windows 30
Simulation Duration 300 × 30 = 9000 seconds

This section continues with the generated results of simulations to analyse the
effect of TRENDY’s service selection mechanism.

6.5.2 Control packet overhead

The service selection mechanism has not affected the application-level control packet
overhead, because it has not introduced any extra packets nor is it’s target to
reduce the number of packets. However, Figure 6.6 shows that the service selection
mechanism actually improves the total network traffic, because of the selection of

CHAPTER 6. EXPERIMENTAL DESIGN 121

closer nodes in a multi-hop network. Furthermore, all the scenarios with NullRDC
have performed similarly with the significantly low traffic compares to ContikiMAC
cases, because it never switches off the radio, and thus it avoids re-transmissions.
On the other hand, topology 3 has the highest number of packets below routing
layer in ContikiMAC scenarios, because of its high density. In the simulations,
RPL assumes the availability of IP stack for the provision of bi-directional links
and Neighbour Un-reachability Detection (NUD). Consequently, more neighbour
discovery packets are communicated between nodes in a dense network to update
their neighbour table entries. Figure 6.7 supports this phenomenon by categorising
the traffic below RPL, which explains that neighbour discovery traffic is much
higher in topology 3 for ContikiMAC cases. Similar trend is quite evident in
NullRDC cases, but the increment in the number of neighbour discovery messages
is very small because of always available radio.

Figure 6.8 segregates the total CoAP traffic into the number of SD, and
invocation packets. The benefit of using NullRDC is apparent, but it can also
be noticed that the service selection mechanism has decreased the number of
service invocation messages. Same fact is further elaborated in more detail in
Figure 6.9 which classifies service invocation messages into the number of requests
and responses. The packet analysis shows that the number of packets for service
invocation requests and responses decreased almost equally. This effect is the result
of the nearest node selection by the service selection mechanism that reduces the
number of hops to reach the destination. Overall, ContikiMAC’s retransmission
is the reason of the high number of packets of its cases compared to NullRDC
scenarios.

CHAPTER 6. EXPERIMENTAL DESIGN 122

 0

 20000

 40000

 60000

 80000

 100000

 120000

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topo3-NullTopo2-NullTopo1-NullTopo3-CMACTopo2-CMACTopo1-CMAC

Figure 6.6: Total network traffic in ContikiMAC and NullRDC cases for topologies 1,
2 and 3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Neighbour Discovery
6LoWPAN and/or ContikiMAC

Topo3-NullTopo2-NullTopo1-NullTopo3-CMACTopo2-CMACTopo1-CMAC

Figure 6.7: Details of traffic below routing layer in ContikiMAC and NullRDC
cases for topologies 1, 2 and 3

CHAPTER 6. EXPERIMENTAL DESIGN 123

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

Topo3-NullTopo2-NullTopo1-NullTopo3-CMACTopo2-CMACTopo1-CMAC

Figure 6.8: CoAP’s traffic details in ContikiMAC and NullRDC cases for topolo-
gies 1, 2 and 3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

N
o S

election
W

ith S
election

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Invocation Requests
Service Invocation Responses

Topo3-NullTopo2-NullTopo1-NullTopo3-CMACTopo2-CMACTopo1-CMAC

Figure 6.9: Service Invocation traffic details in ContikiMAC and NullRDC cases
for topologies 1, 2 and 3

CHAPTER 6. EXPERIMENTAL DESIGN 124

6.5.3 Service Invocation Delay

Figure 6.10 shows that the service selection mechanism has reduced the average
service invocation delay in ContikiMAC scenarios for all topologies. Both configured
topologies 1 and 2 have performed nearly similarly where delay reduced to almost
half; however, topology 3 still incurred high invocation delay. The density of
topology 3 has played a major role in increasing service invocation delay, because
more nodes are at the first level of the RPL tree, which increases the time of
response from the corresponding node because of the extra communication done at
lower layers, as shown in Figure 6.7. The efficiency in service selection scenarios is
the result of the context-awareness of TRENDY, as it selects the most appropriate
service from all the matching ones (explained in Section 5.8).

On the other hand, the NullRDC cases don’t show a significant improvement
compared to ContikiMAC cases, because in these cases, the radio remains always
on which decreases the query response time significantly, as no extra time is spent
by the messages in waiting for radio to be switched on. However, the service
selection mechanism has even then improved the service invocation delay and
topology 3 gained the maximum efficiency compared to other topologies, because
the benefit of better node selection becomes more visible in NullRDC. This fact
is further elaborated by Figure 6.11 that shows the role of the service selection
mechanism in ensuring the low delay for most of the UA queries. It can also be
noticed that the employment of service selection improved the service invocation
delay for almost 80% of the UA queries in topology 3, but still the overall high
delay for 20% of queries affects the average service invocation delay. The analysis
of Figure 6.12 shows that the high delay happens after few queries in all topology 3
scenarios, which is the effect of high density that increases the waiting time using
both ContikiMAC and NullRDC.

CHAPTER 6. EXPERIMENTAL DESIGN 125

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

No Selection With Selection

D
el

ay
 in

 m
ill

i s
ec

on
ds

Topo1-NullRDC
Topo2-NullRDC
Topo3-NullRDC

Topo1-CMAC
Topo2-CMAC
Topo3-CMAC

Figure 6.10: Average Service Invocation delay in ContikiMAC and NullRDC cases
for topologies 1, 2 and 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

Service Invocation (SI) delay in milli seconds

Topo1-CMAC
Topo2-CMAC
Topo3-CMAC

Topo1-selection-CMAC
Topo2-selection-CMAC
Topo3-selection-CMAC

Topo1-NullRDC
Topo2-NullRDC
Topo3-NullRDC

Topo1-selection-NullRDC
Topo2-selection-NullRDC
Topo3-selection-NullRDC

Figure 6.11: CDF graph of Service Invocation delay in ContikiMAC and NullRDC
cases for topologies 1, 2 and 3

CHAPTER 6. EXPERIMENTAL DESIGN 126

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90 100

D
el

ay
 in

 m
ill

i s
ec

on
ds

Query Number

No Selection
With Selection

(a) ContikiMAC scenarios

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90 100

D
el

ay
 in

 m
ill

i s
ec

on
ds

Query Number

No Selection
With Selection

(b) NullRDC scenarios

Figure 6.12: Service Invocation delay for first 100 queries for topology 3

CHAPTER 6. EXPERIMENTAL DESIGN 127

6.5.4 Energy Consumption and network lifetime

This section covers the detail of energy consumption and network lifetime only
for ContikiMAC scenarios, because NullRDC keeps the radio always on and
consumes a tremendous amount of energy, which is significantly higher to be
compared. Figure 6.13 shows that TRENDY’s service selection improves the
energy consumption of nodes. It also explains that most of the nodes are benefited
in terms of energy efficiency in all scenarios. This efficiency is the result of
preference of closer and more reliable nodes by the service selection mechanism.
Topology 1 is more efficient in terms of energy efficiency for all nodes, because of
its routing configurations. Furthermore, topologies 1 and 2 have the same trend
for energy efficiency when service selection is employed. However, the high density
of topology 3 results in more energy consumption for all nodes in the network
compared to other topologies. Figure 6.14 shows that topologies 2 and 3 have a
similar trend for the top five nodes in energy consumption, because of their un-even
DODAG trees (shown in Figures 6.2b and 6.3b). Table 6.4 estimates the network
lifetime in the number of days and concludes that service selection increases the
lifetime of the network as well.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5500 6000 6500 7000 7500 8000 8500

Energy consumption (mJ)

Topo1-No Selection
Topo2-No Selection
Topo3-No Selection

Topo1-With Selection
Topo2-With Selection
Topo3-With Selection

Figure 6.13: CDF graph of energy consumption per node in ContikiMAC scenarios
for topologies 1, 2 and 3

CHAPTER 6. EXPERIMENTAL DESIGN 128

 6000

 6500

 7000

 7500

 8000

 8500

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Topology#1
Topology#2
Topology#3

With SelectionNo Selection

Figure 6.14: Energy consumption of top five nodes in ContikiMAC scenarios for
topologies 1, 2 and 3

Table 6.4: Service Selection: network lifetime in days estimation for 35 nodes

Topology No Service Selection With Service Selection

1 390 405
2 350 370
3 350 365

CHAPTER 6. EXPERIMENTAL DESIGN 129

6.5.5 Packets at the DA: a scalability factor

TRENDY’s service selection is not aimed to decrease the number of packets at the
DA, so all cases have the similar number of application-level messages received
at the DA (excluding service invocation messages). However, Figure 6.15 shows
that there is a slight benefit of using the service selection mechanism in topology 3
in terms of total traffic to or from the DA. This gain comes from the reduction
of the number of neighbour discovery messages, because the DA sits on tops of
DODAG’s root and once the closest node is selected to serve a query its entry
in the neighbour’s table (maintained by neighbour discovery) is also updated.
Consequently, the network traffic in topology 3 that’s decreased around 10%.

 0

 10000

 20000

 30000

 40000

 50000

 60000

No Selection With Selection

N
um

be
r

of
 P

ac
ke

ts

Topo1-NullRDC
Topo2-NullRDC
Topo3-NullRDC

Topo1-CMAC
Topo2-CMAC
Topo3-CMAC

Figure 6.15: The DA traffic in ContikiMAC and NullRDC cases for topologies 1, 2
and 3

6.5.6 Reliability and Accuracy

The reliability and accuracy of TRENDY are explained in Section 6.2.6 holds true
for service selection scenarios. However, the context-aware selection of service hosts
increases the reliability, because the selection criteria (Section 5.8) chooses the
most reliable SA. All service invocation responses are verified and validated, using
logs and sniffed packets (Appendix B), and are found accurate. Consequently, it is
concluded from the validation that the DA has always sent reliable SD information
to the DA.

CHAPTER 6. EXPERIMENTAL DESIGN 130

6.6 Summary and Discussion

This chapter has explained the SD performance metrics, experimental setup and
design of generating the results from the performed experiments. Furthermore,
the results of the experiments done to analyse the service selection mechanism are
presented and discussed. The analysis of the results of experiments explains the
impact of the service selection mechanism from different perspectives. The total
network traffic analysis highlights the different behaviour of a network depending
on its physical topology’s density and generated RPL tree. Service selection only
improves the traffic by reducing the number of service invocation requests. However,
the rest of the traffic still depends on the physical topology and organisation of the
RPL tree. The more dense network incurs extra neighbour discovery traffic and
causes extra delays for packets. Therefore, the density of the network diminishes
the service invocation delay efficiency introduced by service selection, because
the high delay of small percentage of service invocation queries aggregates and
increases the overall average delay. Similarly, the energy consumption of nodes
also found higher in a dense network because the nodes need to be awake more
often to update their neighbour discovery table’s entries. In summary, the service
selection mechanism improves the control overhead, service invocation delay and
energy consumption; however, its level of efficiency depends on the density of the
network and formed routing topology.

The next chapter discusses the proposed adaptive timer mechanism.

Chapter 7

Adaptive Reporting Timer

7.1 Introduction

Chapter 5 proposes a context-aware SD solution for the IoT. The solution provides
an interoperable and open framework to work with different data formats accessible
using compact CoAP-based RESTful web services. However, all services are
registered at the DA and then status maintenance messages required to be sent to
the DA as well. The generated traffic increases the energy consumption of nodes, as
other nodes usually need to pass the control traffic towards the DA in a multi-hop
network. This chapter proposes an adaptive timer algorithm that reduces the
control traffic. Consequently, nodes become energy efficient and scalability is also
improved, as control traffic not remains linearly proportional to the increasing
number of nodes in a network. The detail of the mechanism’s aims and challenges,
design, message format and experiments with the results are covered in this chapter.

7.2 Aims

The main goal of the adaptive timer algorithm is to decrease the number of control
packets by adaptively increasing the interval between status updates. This has
multiple benefits: it will decrease the control packet overhead and will improve
the energy consumption. However, this will consequently, sacrifice the inherent
reliability by increasing the probability that the DA will forward stale (outdated)
information to a UA. Therefore, the challenge for timer is to reduce this risk by
sensing the requirements of a network and its dynamics.

Following is the summary of the timer mechanism’s objectives:

1. The number of status updates should be reduced to improve the energy
consumption of constrained nodes and network.

131

CHAPTER 7. ADAPTIVE REPORTING TIMER 132

2. The decision of increasing the interval should be based on some network
dynamics and demand of services. Furthermore, it should be adaptive enough
to decrease the interval when it is required.

7.3 Adaptive Timer Process

The TRENDY timer mechanism increases the interval between status updates
w.r.t. the number of times a SA sends an update. Therefore, all SAs use the
basic time window period of the DA (Section 5.6) to calculate the status interval.
Later on, the DA sends a TRENDY counter value in the response payload of
every status update, which is used by the corresponding SA to increase the status
update interval. The SA multiplies the initial status interval, derived from the
DA’s time window, with the received counter value to schedule the next status
update message. This adaptively decreases the number of control packets from a
SA, and consequently other nodes will also benefited with the reduced traffic in a
multi-hop network.

The DA is configured with a general upper bound for the maximum TRENDY
counter value, and each SA record, in the DA’s registry, has its individual maximum
limit as well that is adaptively changed. Furthermore, a hit count attribute for
each service is also maintained by the DA, which is incremented whenever a service
is discovered and selected. This hit count or popularity or demand of a service is
used as a basic criterion for adaptation. Timer adapts to the current popularity of
services hosted at a SA to increase or decrease the corresponding counter limit.
Therefore, any SA hosting more popular services is needed to send status update
more frequently. The process is adaptive, as the individual counter limit value for
a node is increased by the DA for prolonging the status update interval only when
hosted services of a SA not remain popular.

7.3.1 Design

Following are the parameters maintained by the DA to enable the adaptive timer
algorithm:

• max_trendy_counter_limit: This is global maximum value for adaptive
timer that is used as default upper bound of the TRENDY counter.

• node_trendy_max_limit: The individual upper bound for the TRENDY
counter maintained for each registered SA. This bound can’t exceeded then
global maximum value.

CHAPTER 7. ADAPTIVE REPORTING TIMER 133

• hit_count_threshold: The threshold value to determine the decision point
when hosted services of a SA become enough popular. This attribute is used
by the DA before increasing or decreasing node_trendy_max_limit of a SA.
This threshold can be set at any value up to the application requirements, and
its effect will only become apparent when same service is selected multiple
times for SD queries.

• retain_threshold: It determines the mimimum number of hit counts re-
quired to keep the decremented node_trendy_max_limit unchanged.

• timer_step: Whenever the hit_count_threshold is exceeded, the
node_trendy_max_limit is decremented by this value for the corresponding
SA. This step value is also used to increment the SA’s maximum limit when
hit count remains less than retain_threshold.

• node_trendy_counter: It represents the TRENDY counter value for each
registered SA, and its value never surpasses node_trendy_max_limit.

• node_trendy_current: This attribute is updated with node_trendy_counter
value each time a status update is received from a SA. This value is decre-
mented after every time window until reaches to 1.

• node_trendy_counter_changed: This is a flag used to ensure that multiple
changes are not made to a node_trendy_counter in one time window.

All attributes starting with node prefix are maintained for each SA, whereas
others have global scope. Each SA only requires trendy_counter attribute that
has a default value set at 1, which is updated when a new value is received from
the DA

Following is the procedure of the adaptive timer:

Step 1 - Initiation: The DA starts with the configured parameters, and it follows
the Algorithm 1 when it receives a registration message from a SA. This
algorithm initialises the TRENDY counter variables for the node and sets
the flag to avoid multiple changes in its value with in a time window. The
SA gets a basic time window period in response to its successful registration
at the DA.

Step 2 - Evaluation on receiving a Status update message: The DA follows
Algorithm 2 at receipt of every status update message. This algorithm checks
and increment the node_trendy_counter, which subsequently enables the
SA to increase the time period for its next status update message. This

CHAPTER 7. ADAPTIVE REPORTING TIMER 134

Algorithm 1 DA at SA’s registration time
1: node_trendy_max_limit← max_trendy_counter_limit
2: node_trendy_counter ← 1
3: node_trendy_current← 1
4: node_trendy_counter_changed← false

algorithm ensures that the counter value will only gets changed once in a
time window. The status maintenance requests are responded by the DA
with respective node_trendy_counter in the payload.

Algorithm 2 DA on receiving an status update message
1: if !trendy_counter_changed and trendy_current == 1 then
2: if node_trendy_counter < node_trendy_max_limit then
3: node_trendy_counter + +
4: node_trendy_counter_changed← true
5: end if
6: end if
7: node_trendy_current← node_trendy_counter

Step 3 - Report time interval calculation of a SA: The SA follows the Al-
gorithm 3 on receiving response for the status update. This algorithm follows
the basic interval calculation (Section 5.6.2) and then multiplies it with the
received trendy_counter value to schedule the next status update.

Algorithm 3 SA report time interval calculation after getting response for a
status update
1: trendy_counter ← received_trendy_counter
2: report_time← 0.5time_period
3: report_time += random(between 0 and 0.5)time_period
4: if trendy_counter == 1 then
5: default_report_time← report_time . time saved at registration time
6: end if
7: report_time← report_time * trendy_counter

Step 4 - Hit count evaluation at discovery time: The timer is adaptive to
the hit count (popularity) of a service. The DA increments the hit count
attribute of each service whenever its service description is passed to a UA.
Then a evaluation of hit count is done by the DA as shown in Algorithm 4.
This evaluation set the appropriate interval between status updates by
changing the trendy counter of the SA.

Step 5 - Hit count evaluation at time window expiration: The DA follows
Algorithm 5 at the expiration of each time window. This algorithm evaluate
the demand of all services hosted by each device to update node_trendy_max_limit.

CHAPTER 7. ADAPTIVE REPORTING TIMER 135

Algorithm 4 Hit count evaluation at discovery time
1: if node_hit_count > hit_count_threshold then
2: node_trendy_max_limit← node_trendy_max_limit− timer_step
3: trendy_counter_changed← true
4: node_hit_count← 0
5: end if

Algorithm 5 Hit count evaluation at end of a time window
1: if trendy_counter_changed == false then
2: if hit_count < retain_threshold then
3: node_trendy_max_limit← node_trendy_max_limit + timer_step
4: trendy_counter_changed← true
5: if node_trendy_max_limit > max_trendy_counter_limit then
6: node_trendy_max_limit← max_trendy_counter_limit
7: end if
8: end if
9: end if

7.3.2 Example Scenario

This section demonstrates the working of the timer mechanism by explaining it
with some scenarios expressed in figures, which depict adaptive timer mechanism
in action at different stages.

Figure 7.1 describes the adaptive timer in a scenario, where the hit count
threshold was set at 2. The counter value kept on increasing over the time and
reached its maximum. It keeps on updating the DA with the same large interval
until its services become popular. The algorithm assesses this change of demand,
and adaptively changes the maximum counter limit value to reduce the status
update interval for the particular SA. Furthermore, Figure 7.2 shows the same
scenario in the long run and describes the behaviour of timer when a service is not
in demand for a SA. Moreover, Figure 7.3 expresses a possible state of the network
while using the adaptive timer mechanism, where the nodes have different intervals
as a result of the diversity of SD queries.

CHAPTER 7. ADAPTIVE REPORTING TIMER 136

�

��� ��
�����	�
 ��

��
� ����	� ���
� ��� ����
��

�
���

�����

�����

���
���

���
���

����

�
���

����� !�"
$�	 	%
��%�&� ' �
����
 �	�� ' �

��	��
 	%
��%�&� ' �
�����(' �

�������

�������

����

���

��� ��
 ' �
�����(')

�����

�����

Figure 7.1: Adaptive timer’s in a scenario

��������

�� �� �� �� �� �� �� �� �� �� �� �� ��

��	

���
	��
�����

�� ��

��	

�� ��
��	

�� ��

��	

�� ��

���

��	

�� ��
��	

�� ��

���

��	
�� ��

���
	��
�����

�� � ���� ���
��

Figure 7.2: Timer’s adaptability in the long run

CHAPTER 7. ADAPTIVE REPORTING TIMER 137

��

���

����� 	�
� ��
���� ��� ����
��

�
������ � �����

���

�
������ � �����

���

�
������ � �����
���

�
������ ������

���

�
������ � �����

���

�
������ � �����

��� ��
���
�! � �
��� ��
���
�! � �
��� ��
���
�! � �
��� ��
���
�! � �
��� ��
���
�! � �
��� ��
���
�! � �

Figure 7.3: Behaviour of adaptive timer in a network

7.4 Message Formats

7.4.1 Updated TRENDY reporting message

The adaptive timer mechanism requires a small update in the response of the DA
for status maintenance updates, as explained in Section 5.11.2. The DA now sends
a node_trendy_counter in the payload of response of a status update to change
the update interval of a SA. Figure 7.4 shows the updated message format.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

������� �� 	�
��
� � ��
���� ������
 ������

� � � �

�
��� �

�!��
��#��$�� ��� %� &��'�

(�))�$� *+

Figure 7.4: Adaptive timer: TRENDY message change for status maintenance

CHAPTER 7. ADAPTIVE REPORTING TIMER 138

7.5 Experiments and Results

This section covers the detail about experiments, including scenarios, experimental
setup and discussion of the results.

7.5.1 Introduction

Following scenarios are repeated for different number of nodes (15, 25 and 35
nodes).

Case 1 - Basic TRENDY without timer: This scenario only enables the ba-
sic functionality of TRENDY with service selection. The UA gets a best
matched resource’s URL and IP address of a SA hosting the matching service.

Case 2 - Basic TRENDY with timer threshold 1: This scenario has imple-
mented adaptive timer with trendy_counter_maximum fixed at 9,
hit_count_threshold at 1 and timer_step at 2 on top of case 1’s function-
ality.

Case 3 - Basic TRENDY with timer threshold 2: This case is exactly like
case 2 with hit_count_threshold fixed at 2.

The hit count threshold of timer is varied to check the effect of adaptive timer
in scenarios of the different number of nodes. The reaction of timer mechanism
in response to the change in a hit count threshold depends on multiple factors,
including, the number of specific queries for a location, and the number of times
when services of the same SA are selected by the service selection mechanism. In
experiments, the UA queries are stateless, generated randomly and sent after a
random interval. Therefore, only two threshold values (1 and 2) are selected for
above scenarios after testing different values for 1000 queries. The selected values
produced the maximum impact to be analysed with the query set, and other higher
values produce almost the same result.

The simulations are configured with the same settings defined in Section 6.3
with the changes given in Table 7.1.

CHAPTER 7. ADAPTIVE REPORTING TIMER 139

Table 7.1: Configurations for the experiments of adaptive timer

Total nodes 35 nodes + 1 border router
Physical topologies 1, 2 and 3 (Section 6.3.1)

RDC ContikiMAC
Number of locations 5 with 7 SAs in each location

Number of cases 3 (Cases) × 3 (total nodes variations) = 9
Total Service Discovery queries 1000
Total Service Invocation queries 1000

First UA Query At 600 seconds
DA time window 5 minutes = 300 seconds

Number of time windows 30
Simulation Duration 300 × 30 = 9000 seconds

This section continues with the generated results of simulations to analyse
the effect of adaptive timer mechanism. The analysis is done for two sets of
experiments: topology 1 with 15, 25 and 35 nodes, and topologies 1, 2 and 3 with
35 nodes. Both sets provide different perspectives of timer’s impact in various sizes
of networks with unique topologies.

7.5.2 Control packet overhead

The high control packet overhead is unsuitable for constrained networks, because
its effect is amplified in a multi-hop network consists of sleeping nodes, which,
consequently, consume more energy. The main aim of adaptive timer is to decrease
the number of control packets generated by TRENDY.

Cases for different number of nodes: Figure 7.5 shows the significance of us-
ing adaptive timer for scenarios (Section 7.5.1) with 15, 25 and 35 nodes
within a network with topology 1. It is evident that timer reduces the number
of per node status update messages to one-fourth for about 70− 85% of the
nodes in all scenarios.

The overhead is reduced further for more percentage of nodes with the
increasing size of the network. This is the effect of adaptability of the timer
algorithm that increases the status update interval for nodes with unpopular
services. Therefore, those nodes consume fewer numbers of packets over the
time. Thus, scenarios with 25 and 35 nodes have more nodes with the low
application-level control packet overhead.

CHAPTER 7. ADAPTIVE REPORTING TIMER 140

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

Number of packets

15 Nodes-No Timer
25 Nodes-No Timer
35 Nodes-No Timer

15 Nodes-Timer (t=1)
25 Nodes-Timer (t=1)
35 Nodes-Timer (t=1)

15 Nodes-Timer (t=2)
25 Nodes-Timer (t=2)
35 Nodes-Timer (t=2)

Figure 7.5: CDF graph of application-level control packet overhead per node with
different timer threshold values for topology 1

Figure 7.6 shows the aggregated control overhead for all nodes in the network.
It is clearly evident in the figure that employment of adaptive timer makes
the solution scalable as increasing number of nodes only marginally increases
the control overhead. The scenarios with 35 nodes have performed the best,
where the number of packets reduced to more than one-third with the usage
of adaptive timer because of the aggregated benefit of all nodes. In addition,
Figure 7.7 shows the same trend in terms of total network traffic overhead.
It can also be noticed that the decreased number of CoAP packets has also
reduced the number of packets at layers below RPL in all scenarios. Moreover,
Figure 7.8 presents the detail of CoAP packets by categorising those in SD
and invocation packets. The number of SD packets in scenarios with timer
demonstrate the same scalable behaviour. The cases with the hit count
threshold 1 and 2 performed almost similarly because of the randomness of
the used query set and the effect of service selection that chooses a better
SA each time and hence reduced the number of hit counts for services. In
summary, the rate of control packet overhead is not proportional to the
increasing number of nodes, which indicates that timer has made the solution
scalable.

CHAPTER 7. ADAPTIVE REPORTING TIMER 141

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Timer Timer (t=1) Timer (t=2)

N
um

be
r

of
 P

ac
ke

ts

15 Nodes 25 Nodes 35 Nodes

Figure 7.6: Aggregated Control packet overhead of the network for topology 1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000
N

o Tim
er

Tim
er (t=1)

Tim
er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

35 Nodes25 Nodes15 Nodes

Figure 7.7: Total traffic of the network for topology 1

CHAPTER 7. ADAPTIVE REPORTING TIMER 142

 0

 5000

 10000

 15000

 20000

 25000

 30000

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

35 Nodes25 Nodes15 Nodes

Figure 7.8: Total CoAP traffic of the network for topology 1

Cases for different topologies: This section discusses the timer’s effect in three
topologies with different densities (explained in Section 6.3.1). Figure 7.9
shows that all the topologies have shown a similar trend like topology 1
when the timer mechanism is employed. This validates the application-level
packet overhead that should be similar for different topologies. However,
the total packet overhead at all layers, presented in Figure 7.11, shows
that the performance for topology 3 is not equivalent to other topologies,
because it has more nodes one-hop away from the root. Therefore, the service
selection mechanism selects different SAs each time to serve a query. The
difference between the performance of both timer scenarios becomes visible
for topology 3, where the more sensitive timer (with threshold at 1) produced
extra traffic because of its quick adaptability.

The aggregated application-level control overhead is shown in Figure 7.10,
which points out the scalability introduced by timer. Furthermore, Figure 7.11
presents the overhead detail of the whole network and explains that the
reduction of the application-level messages has resulted in the decline of
overall traffic. The trend is same for all topologies, but topology 3 gained the
maximum benefit because of its density with the 40% reduction in overall
traffic. Figure 7.12 elaborates that SD packets (updates, etc.) are reduced
to around 50− 60% in all scenarios. However, topology 3 has slightly fewer
SD packets than other topologies, which indicates its low average hop count
distance between nodes and the DA because of high density.

CHAPTER 7. ADAPTIVE REPORTING TIMER 143

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

Number of packets

Top1-No Timer
Top2-No Timer
Top3-No Timer

Top1-Timer (t=1)
Top2-Timer (t=1)
Top3-Timer (t=1)

Top1-Timer (t=2)
Top2-Timer (t=2)
Top3-Timer (t=2)

Figure 7.9: CDF graph of individual control packet overhead per node with different
timer threshold values for topologies 1-3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Timer Timer (t=1) Timer (t=2)

N
um

be
r

of
 P

ac
ke

ts

Topology #1 Topology #2 Topology #3

Figure 7.10: Aggregated application-level control packet overhead with different
timer threshold values for topologies 1, 2 and 3

CHAPTER 7. ADAPTIVE REPORTING TIMER 144

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topology #3Topology #2Topology #1

Figure 7.11: Total traffic of the network for topologies 1-3

 0

 5000

 10000

 15000

 20000

 25000

 30000
N

o Tim
er

Tim
er (t=1)

Tim
er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

N
o Tim

er
Tim

er (t=1)
Tim

er (t=2)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

Topology #3Topology #2Topology #1

Figure 7.12: Total CoAP traffic of the network for topologies 1-3

7.5.3 Energy Consumption and network lifetime

Cases for different number of nodes: Figure 7.13 presents the individual en-
ergy consumption for scenarios with 15, 25 and 35 nodes using topology 1.
The overall energy consumption rose with the increasing number of nodes
in the network; however, the energy efficiency for the timer scenarios also
increases from around 200mJ to 800mJ. This behaviour supports the ar-
gument that adaptive timer increases the scalability of the solution from

CHAPTER 7. ADAPTIVE REPORTING TIMER 145

energy consumption’s perspective as well. Both the scenarios of timer have
performed almost similarly in these simulations with 1000 queries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5400 5600 5800 6000 6200 6400 6600 6800 7000

Energy consumption (mJ)

15 Nodes-No Timer
25 Nodes-No Timer
35 Nodes-No Timer

15 Nodes-Timer (t=1)
25 Nodes-Timer (t=1)
35 Nodes-Timer (t=1)

15 Nodes-Timer (t=2)
25 Nodes-Timer (t=2)
35 Nodes-Timer (t=2)

Figure 7.13: CDF graph of energy consumption per node for scenarios for topology 1

Figure 7.14 shows the topmost five nodes in energy consumption. In addition,
the simulation time (9000 seconds) and energy consumption of the top-most
node are projected linearly in Table 7.2 w.r.t. the available energy provided
by 2 AA batteries (Section 6.2.4). It is evident from both figure and table
that network will last longer in adaptive timer scenarios, because the timer
has reduced the energy consumption for the nodes. The network lifetime
approximation in Table 7.2 shows that the network will last for around 10%
extra time by employing the timer mechanism.

CHAPTER 7. ADAPTIVE REPORTING TIMER 146

 5600

 5800

 6000

 6200

 6400

 6600

 6800

 7000

 7200

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

No Timer
Timer (t=1)

Timer (t=2)

35 Nodes25 Nodes15 Nodes

Figure 7.14: Top five nodes in energy consumption for topology 1

Table 7.2: Adaptive timer: network lifetime estimation in days for 35 nodes

Technique Topology#1

No timer 400
With timer 445

Cases for different topologies: Figure 7.15 shows the energy efficiency gained
in all topologies when timer is employed for 35 nodes. All topologies 1-3
experienced a gain in energy efficiency for most of the nodes. However, it
is evident that topology 3, because of its density, still has higher energy
consumption for individual nodes than other topologies. Anyhow, it also
shows that topologies 3 has gained more energy efficiency compared to other
topologies. The extra gain was actually comes from the reduction of packets
generated at lower layers, as presented in Figure 7.11. Moreover, Figure 7.16
presents the top five nodes of each topology in energy consumption. The
approximated network lifetimes for all topologies are given in Table 7.3, which
further support the benefit of using timer mechanism.

CHAPTER 7. ADAPTIVE REPORTING TIMER 147

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5500 6000 6500 7000 7500 8000

Energy consumption (mJ)

Topo1-No Timer
Topo2-No Timer
Topo3-No Timer

Topo1-Timer (t=1)
Topo2-Timer (t=1)
Topo3-Timer (t=1)

Topo1-Timer (t=2)
Topo2-Timer (t=2)
Topo3-Timer (t=2)

Figure 7.15: CDF graph of energy consumption per node for scenarios for Topology 1

 5500

 6000

 6500

 7000

 7500

 8000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Topology #1
Topology #2

Topology #3

Timer (t=2)Timer (t=1)No Timer

Figure 7.16: Top five nodes in energy consumption for topology 1

Table 7.3: Adaptive timer: network lifetime estimation in days for all topologies
(with 35 nodes)

Technique Topology #1 Topology #2 Topology #3

No timer 405 370 365
With timer 445 435 425

CHAPTER 7. ADAPTIVE REPORTING TIMER 148

7.5.4 Scalability factor: Packets to the DA

Cases for different number of nodes: Figure 7.17 shows the number of pack-
ets received by the DA from 15, 25 and 35 nodes networks using topology 1.
The scenarios with the adaptive timer mechanism have generated fewer
control overhead packets, consequently; fewer numbers of application-level
packets are received at the DA. Moreover, the total packets received and sent
by the DA at all layers are shown in Figure 7.18. It can be noticed that the
number of packets at the DA is not linearly proportional to the size of the
network, which concludes that using a timer makes TRENDY more scalable.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1200 2400 3600 4800 6000 7200 8400 9600

N
um

be
r

of
 P

ac
ke

ts

Time in seconds

15 Nodes-No Timer
25 Nodes-No Timer
35 Nodes-No Timer

15 Nodes-Timer (t=1)
25 Nodes-Timer (t=1)
35 Nodes-Timer (t=1)

15 Nodes-Timer (t=2)
25 Nodes-Timer (t=2)
35 Nodes-Timer (t=2)

Figure 7.17: Packets received at the DA for topology 1

CHAPTER 7. ADAPTIVE REPORTING TIMER 149

 0

 5000

 10000

 15000

 20000

 25000

N
o Tim

er

Tim
er (t=1)

Tim
er (t=2)

N
um

be
r

of
 P

ac
ke

ts

15 Nodes 25 Nodes 35 Nodes

Figure 7.18: Total traffic at the DA for topology 1

Cases for different topologies: Figure 7.19 presents the application-level mes-
sages received at the DA. Fewer packets in scenarios with timer show that
the traffic flow at the DA is decreased considerably. Moreover, Figure 7.20
presents the overall traffic flow at the DA in terms of all packets sent or
received by the DA at all layers. It can be noticed that timer has reduced
the number of packets to less than half in all topologies. However, topology 3
has gained the highest efficiency, but still has almost twice the number of
packets compared to other topologies, because it has more direct neighbours
to the DODAG root where the DA is placed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1200 2400 3600 4800 6000 7200 8400 9600

N
um

be
r

of
 P

ac
ke

ts

Time in seconds

Topo1-No Timer
Topo2-No Timer
Topo3-No Timer

Topo1-Timer (t=1)
Topo2-Timer (t=1)
Topo3-Timer (t=1)

Topo1-Timer (t=2)
Topo2-Timer (t=2)
Topo3-Timer (t=2)

Figure 7.19: Packets received at the DA from 6LoWPAN for topologies 1-3

CHAPTER 7. ADAPTIVE REPORTING TIMER 150

 0

 10000

 20000

 30000

 40000

 50000

 60000

N
o Tim

er

Tim
er (t=1)

Tim
er (t=2)

N
um

be
r

of
 P

ac
ke

ts

Topology #1 Topology #2 Topology #3

Figure 7.20: Total traffic at the DA for topologies 1-3

7.5.5 Service Invocation Delay

Figure 7.21 shows that adaptive timer had almost no impact on the service
invocation delay in scenarios with topology 1. On the other hand, Figure 7.22
presents a unique phenomenon for topology 3, where timer has improved the average
service invocation delay. This efficiency is the result of considerable reduction of
total traffic in the network for topology 3, as shown in Figure 7.11. Figure 7.23
provides another perspective, which explains that the reduction in traffic actually
improves the delay for around 30-40% of queries in scenarios with topology 3, and
consequently, improves the average service invocation delay.

CHAPTER 7. ADAPTIVE REPORTING TIMER 151

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Timer Timer (t=1) Timer (t=2)

D
el

ay
 in

 m
ill

i s
ec

on
ds

15 Nodes 25 Nodes 35 Nodes

Figure 7.21: Average Service Invocation delay for topology 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Timer Timer (t=1) Timer (t=2)

D
el

ay
 in

 m
ill

i s
ec

on
ds

Topology #1 Topology #2 Topology #3

Figure 7.22: Average Service Invocation delay for topologies 1-3

CHAPTER 7. ADAPTIVE REPORTING TIMER 152

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

Service Invocation (SI) delay in milli seconds

Top1-No Timer
Top2-No Timer
Top3-No Timer

Top1-Timer (t=1)
Top2-Timer (t=1)
Top3-Timer (t=1)

Top1-Timer (t=2)
Top2-Timer (t=2)
Top3-Timer (t=2)

Figure 7.23: CDF graph of Service Invocation delay for topologies 1-3

7.5.6 Reliability and Accuracy

The adaptive timer mechanism increases the interval between status updates to
decrease the control overhead. This results a the more energy-efficient and scalable
solution. However, this also risks the validity of service information at the DA,
as a SA hosting services might fail or replaced before the next status update is
due. The timer mechanism deals this by gradually decreasing the status update’s
interval for the nodes with popular services (Section 7.3.1). Nevertheless, there is
still a chance that the DA can send stale service information to the UA.

In all experiments, no node failed during simulations, and all service invoca-
tions were successful. In addition, the validation of all service invocation queries
(explained in Appendix B) concludes that all responses were correct. This describes
the success of the DA to provide accurate service information to all SD queries, as
each SD query is immediately followed by a service invocation request. Overall,
the risk of unreliable information from the DA still exists; however, the DA can be
configured dynamically to increase or decrease the counter’s maximum or minimum
values to control the frequency of SD messages.

7.6 Summary and Discussion

The node density plays an important role in the overall overhead of a network. The
number of neighbour discovery messages for a node increases in a dense vicinity.
This also raises the delay for passing the messages over a multi-hop network. On top
of that, the SD mechanism adds its burden, which aggregates to the cost in terms

CHAPTER 7. ADAPTIVE REPORTING TIMER 153

of longer delays, overheads and energy consumption. Consequently, constrained
environments with battery-operated nodes need more frequent status updates. The
status maintenance of TRENDY is a major overhead; however, a large time window
for maintaining registrations of constrained and unpredictable nodes is also not
a worthy idea. Therefore, the adaptive timer mechanism is designed to trade off
the involved risk of obsolete information. This mechanism adaptively increases
the status interval over the time depending on the number of times a node has
sent updates. However, the interval is limited by a bound, which adapts to the
popularity of a node’s hosted services. As a result, a node is asked to send updates
more frequently if its services are becoming popular. There are several other
aspects, which can be included into the equation used for adaptation, e.g., node’s
energy and its number of hosted services, etc. However, the hit count translates
to the actual popularity and demand of node’s services and hence selected as a
criterion for adaptation.

This chapter has covered the detail of the adaptive timer mechanism that
makes TRENDY energy-efficient and scalable by reducing the number of control
packets. The results generated by various experiments using the different number of
nodes and topologies support the benefit of using the timer algorithm in providing
the energy efficiency and scalability. The gain in energy efficiency increases the
network lifetime, and scalability allows more nodes to be part of the network
without creating too many overheads. Furthermore, it is also concluded that the
timer improves the performance further when the density of a network increases,
because it reduces the overall network traffic. In a highly dense network, timer
can even improve the average service invocation delay as well, because the reduced
traffic allows the messages to propagate more quickly. All these benefits are
achieved by introducing a mechanism that only requires one attribute at each SA
and one message change in TRENDY (Chapter 5). However, the DA needs changes
in its logic and new attributes for each node entry in its registry. The experiments
validate the benefits of using the adaptive timer in terms of scalability and longer
network lifetime.

The next chapter introduces a context-aware grouping mechanism proposed by
this research project.

Chapter 8

Context-aware Grouping

8.1 Introduction

The centralised architecture of the proposed solution (Chapter 5) requires the
registration and status maintenance updates to be received at the DA. However,
this can lead to a single point of failure and also has a potential for bottleneck
problem for scalability. The problem is partially addressed by embedding the
DA role in an edge router. This can tackle the single point of failure issue, as
an edge router is a bridge between a 6LoWPAN and the Internet. Furthermore,
adaptive timer (Chapter 7) decreases the control traffic, but the inherent problem
of scalability with centralised architecture still exists as all control traffic flows
towards a single point. This chapter covers the detail of context-aware grouping
technique, which solves the problem by localising the status maintenance task and
provides the basis to enable service composition paradigm.

8.2 Aims

Following are the aims of context-aware grouping:

1. Localise status maintenance: The main goal of the grouping scheme is
to localise the traffic generated by status updates.

2. Efficient: It should not overwhelm the network by extra burden of grouping
messages, so grouping overhead should be minimum.

3. Resource awareness: The mechanism should not pose more requirements
to constrained devices. On the other hand, it should be able to intelligently
use the resources of highly capable devices.

4. Service Composition: It should address the demand of service composition
for the IoT scenarios.

154

CHAPTER 8. CONTEXT-AWARE GROUPING 155

8.3 Architecture

The location-based grouping classifies a SA into Group Member (GM) or Group
Leader (GL). Following is the detail of these new entities.

8.3.1 Group Member (GM)

A GM is the extended version of SA, as it needs to register its resources and send
status updates. However, it sends the status updates to allocated GL after groups
are formed. Each GM needs to maintain a RESTful reporting resource identified
by the “trendy/rep” URL to support the grouping messages from the GL.

8.3.2 Group Leader (GL)

A GL maintains a group table to keep the record of its associated GMs. Each
GM entry in the table has attributes: GM’s IP address, a flag to confirm that a
status is updated and a synchronisation flag to represent whether GM has been
successfully notified about its grouping. The size of a grouping table depends on
the capability of a GL and can vary.

Context-aware grouping also defines different GL roles to introduce a modular
design. Therefore, a GL can choose a feature-set to implement according to its
available resources. Following list shows different types of RESTful resources for
GLs that should be understood by a DA.

GL status maintainer: This resource is slightly updated version of GM’s report-
ing resource and identified by the same “trendy/rep” URL. This updated
resource is a mandatory for a GL. On top of basic GM functionality, it also
handles the UPD (Update) message (Section 5.11.2). If some GM failed
to send a status update within an agreed interval period to respective GL,
then a NRP (Not responded) message (Section 8.6.3.2) is used by the GL to
inform the DA.

GL grouping resource: It is identified by the “trendy/gl” URL and a mandat-
ory resource that should be offered by each GL. This resource allows a GL
to receive grouping related messages, including YGM (Your Group Member)
and RGM (Remove Group Member) messages (Section 8.6.2).

Forwarder: This optional resource is identified by “trendy/glfwd” URL. This
resource tells the DA that the GL can also forward a PUT command to its
GMs e.g., Switching light or heating actuators. Section 8.6.4.1 covers the
detail of the related FWD (Forward Query) message.

CHAPTER 8. CONTEXT-AWARE GROUPING 156

Aggregator: This resource enables the GL to execute a composed service by
collecting the local values to return an aggregated result to the enquirer, and
has “glagg” URL.

GL as Local Proxy: This resource is identified by “trendy/glproxy” URL. Im-
plementing this resource conveys to the DA that the GL can act as a local
proxy and can respond to the querier on behalf of other SAs.

GL as Local DA: A GL implementing this resource can maintain a local DA for
its group to serve SD queries only for a certain location. This resource uses
“trendy/glda” URL.

Figure 8.1 presents new architecture of TRENDY after enabling context-aware
grouping, which is behave in a distributed way compared to earlier one (Figure 5.1).
This architecture is distinct from clustering as a GL is no obliged to provide the
functionality of a distributed directory, nor it is elected by the surrounding nodes.

�� �� ��

��

��

��

��

�� ��

��

��
��

��
��

��

��

��

��

��

��

�����	�
�
���� �����	�
�
���� �����	�
� �����

Figure 8.1: New architecture of TRENDY with grouping mechanism

8.4 Grouping process

Context-aware grouping creates an application-level grouping overlay, to keep the
load of status maintenance in the specific area of a network and to deal with

CHAPTER 8. CONTEXT-AWARE GROUPING 157

group-based requests. Location tags of the nodes are exploited by this mechanism
to form groups of nodes. It requires some SAs to offer the functionality of GL by
taking additional responsibility to correspond to group formation requests and
manage a group. Following is the process of grouping:

1. While registering the nodes, the DA checks whether any node is offering
the basic GL functionality (Section 8.3.2). It keeps all identified GLs in a
separate location-based GL list. Figure 8.2 presents a sample scenario of this
step.

2. The DA periodically analyses its registry for grouping. It selects the location-
based GLs for each un-grouped GM. If multiple GLs are available for the
same location, the DA will select the appropriate one (Section 8.5), as shown
in Figure 8.3. Any ungrouped GM with some level of mobility (Section 5.5)
is not considered for grouping.

3. For each newly grouped GM, the DA sends a YGM message with the GM’s
IP address to the respective GL.

4. The GL confirms the addition of the new GM and sends back the confirmation
to the DA, with appended GM’s IP address (for validation).

5. The GL periodically checks the newly added GMs, and synchronises them
by sending YGL message. This needs an acknowledgement from the GM to
finalise the registration.

6. The registered GM then starts sending UPD messages to GL instead of the
DA. Figure 8.4 shows the grouping process at this stage.

7. The GL periodically checks the status of its GMs after time window interval,
and deletes the record before sending a report of the inactive ones to the DA.

8. The GL keeps track of their remaining battery and after reaching a threshold
value can inform the DA to select a new GL. It uses the GLD (Group Leader
Done) message (Section 8.6.3.4) for this purpose.

9. If any GL provides extra functionality by implementing more GL resources
(Section 8.3.2) then the DA can also use the capabilities of GLs to further
optimise the network or to offer new mash-up services.

CHAPTER 8. CONTEXT-AWARE GROUPING 158

���

��

��������	 ��
��

���

���

��� ���

���� �����	�

��������	 �	
��

���� �� ������� ���������
������������ 	���������

��� �� �����
��� �� �����
��� �� �����
��� �� �����
��� �� �����

���� �� ���	
��� �� �	
��
��� �� �	
��

Figure 8.2: Step 1 - Registration and recognition of location and profiles

���

��

��������	 ��
��

���

���

��� ���

���� �� ����
��� �	
��
�
��� �	
��
�

�	
���
� �� �������

�� ��� ���

��������	
��
�
������ ���� ������	

��� �	� ���

����� �	 ���������

Figure 8.3: Step 2 - The DA’s analysis for grouping and GL selection

CHAPTER 8. CONTEXT-AWARE GROUPING 159

����� ���

��� ��	
� ��	
� �
��
��
�� ����
�� 	� ��

��
�
���� �� ����
��

��� ��	
� ��	
� �
��
��

��

����
� �����

Figure 8.4: Step 3 - Grouping completed by exchanging messages

8.5 Best GL Selection

Context-aware grouping mechanism devises a best GL selection mechanism to
select among multiple potential GLs in a location. The DA selects a GL with more
GL resources (Section 8.3.2) whenever multiple GLs are available in one location.
If in case all GLs have implemented equal number of GL resources, then the DA
will prefer the one with better battery source (Section 5.5). If still decision is not
made then the DA goes through the list and compares their ranks. These ranks
are maintained by the DA and updated every time the registry is analysed for
grouping. The equation to calculate rank is:

rank = ST + NGM − f − b

Where ST is serving time of a GL in hours, NGM is the number of GMs supported
by a GL, f is the number of failures in response to YGM messages, b is battery
consumed. It is important to select a best GL that can serve the job for longer
duration, because re-grouping can cause the adverse effect on the performance.

8.6 Message Formats

This section covers the detail of message formats required for context-aware group-
ing. All messages require an acknowledgement in response.

8.6.1 UPD (Update) for GL registration

The registration of a GM is exactly like a SA’s registration (Section 5.11.1).
However, the registration of a GL differs with the addition of two new context

CHAPTER 8. CONTEXT-AWARE GROUPING 160

variables. The format of UPD messages for a GL is shown in the Figure 8.5.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�����
���� ���� !�
� �!��"��

�	
��	�� #$#"��%&"�'(���)"����
"�
�����$&%

� � � �

���'�

�
���,-�

.�//�$� �0

Figure 8.5: GL Registration request

Following is the description of new context attributes for group leaders:

• Maximum Group Member (“mgm” or “maxgm”)= Value (8-bit
unsigned integer): The GL uses this attribute in registration to inform
the DA about its capacity in terms of the number of GMs supported.

• Group Member (“gm” or “currentgm”) = Value (8-bit unsigned
integer): This attribute is used by the GL to inform the DA about the
number of its registered GMs. This value is used by the DA for validation of
GL’s record.

8.6.2 Grouping Messages

The context-aware grouping introduces Your Group Member (YGM), Remove
Group Member (RGM) and Your Group Leader (YGL) messages to enable the
grouping technique.

8.6.2.1 YGM (Your Group member)

Sender: DA

Receiver: GL

Purpose: The DA uses this message to allocate a group members to a GL.

Format: The format of a YGM message consists of: trendy/gl URI-path and
ygm=y URI-QUERY. The IP address of the GM is also piggybacked, and
the POST method is used. Figure 8.6 shows the format of a YGM request
message.

Actions: When the GL receives a YGM message, it adds a new record of GM in
its group list, by using the IP address from the payload. The ACK message
from GL, as specified in Figure 8.7, carries the IP address of the newly added

CHAPTER 8. CONTEXT-AWARE GROUPING 161

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� ���#$��

�	
��	�� �� ���
�%% &' ()

� � � �

���+�

�
��&%��

)�%%��� �-

Figure 8.6: YGM: Your Group member request

GM. The success code 2.04 (equivalent to HTTP 204) that specifies that the
GM has been added by the GL.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �� ���
��� ��
������ �� ���
 ��
���������

� � � �

�
�"�#

��	

��%��&�� ��� �� '((�

�����&� �)

Figure 8.7: YGM-ACK: Your Group member response

8.6.2.2 RGM (Remove Group member)

Sender: DA

Receiver: GL

Purpose: The DA uses RGM messages to remove group members from GL’s list.

Format: To remove a single GM, the DA uses trendy/gl URI-path and rgm=1
as a URI-QUERY, 4 (Delete) method code and IP address of GM in the
payload. The message format is shown in Figure 8.8. However, the DA can
ask a GL to reset and remove all GMs by setting URI-QUERY to rgm=2, as
shown in Figure 8.9).

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� �
�#$��

�	
��	�� �� ���
�%% &' ()

� � � �

���+�

�
�-������

)�%%��� �-

Figure 8.8: RGM request: Remove Group member request

CHAPTER 8. CONTEXT-AWARE GROUPING 162

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� �
�#$��

� � � �

�
���&�

�
�(������

)�**��� �(

Figure 8.9: RGM request: Remove all Group member request

Actions: If the query variable is 1, the GL uses the IP address to remove the GM.
It then sends the ACK response, as specified in figure 8.10 that carries the
IP address of the removed GM. In case of query variable’s value more than
1, the GL reset its GM’s list and format acknowledgement as specified in
Figure 8.11. In both cases, the success code 2.02 (equivalent to HTTP 202)
or respective error code is set in acknowledgement.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �� ���
��� ��
������ �� ���
 ��
���������

� � � �

�
�"�#

��	�
�%�&���� ��� �� '((�

�����)� �%

Figure 8.10: RGM Response after removal of one GM

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
�������� ��� �� �����

�� !"� #�

Figure 8.11: RGM Response after removal of all GMs

8.6.2.3 YGL (Your Group Leader)

Sender: GL

Receiver: GM

Purpose: The GL announces its role to a GM. This message orders a GM to start
sending the status updates to the GL.

Format: The format uses trendy/rep URI-path and ygl=y as a URI-QUERY,
POST method code. Figure 8.12 shows the format of a YGL message.

CHAPTER 8. CONTEXT-AWARE GROUPING 163

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�����
���� ���� !�
� ��"#$��

� � � �

�
���&�

	
��()��

*�))�"� �+

Figure 8.12: YGL: Your Group Leader request

Actions: The GM saves the sender’s IP address of the message to send future
status updates, and sends a simple ACK message with the corresponding
status code. In case of success, 2.04 response code (equivalent to HTTP 204)
is sent, as shown in Figure 8.13.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
�������� ��� �� �����

�� ��� !"

Figure 8.13: YGL: Your Group Leader response

8.6.3 Reporting Messages

All GLs and GMs use UPD (Section 5.11.2) and Some Service Changed (SSC)
messages for status maintenance. GLs also use Not Reported (NRP) message to
send report of their unresponsive GMs and Group Leader Done (GLD) for load
balancing request to the DA.

8.6.3.1 UPD (Update) message for Status maintenance

It follows the same format and actions explained in Section 5.11.2. However, the
GL resets its GM list when it receives a reset response from the DA.

8.6.3.2 NRP (Not reported)

Sender: GL

Receiver: DA

Purpose: The GL informs the DA that a GM is unavailable.

Format: The format of a NRP request message is shown in Figure 8.14, where
method code 3 is specified for a DELETE request. NRP message specifies the
trendy/server in URI-PATH option and unavailable GM’s IP address in the

CHAPTER 8. CONTEXT-AWARE GROUPING 164

payload, to request the registry resource to update the service information
against the IP address of a node.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������
��
� ����!"�
� ��
#$��

�	
��	�� �� ���
��� %& � "����'(�)(� *+

� � � �

���-�

�
�/�(����

+����0� �/

Figure 8.14: NRP (Not reported Message) request

Actions: The DA deletes the entry for a SA by using the IP address received in
request’s payload. It then sends back an ACK in response with 2.02 (HTTP
202) response code or corresponding error message, as shown in Figure 8.15.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
�������� ��� �� �����

�� !"� #�

Figure 8.15: NRP (Not reported Message) response

8.6.3.3 SSC (Some Service Changed)

Sender: SA (GM or GL)

Receiver: DA or GL (if GL is also acting as a local DA)

Purpose: A SA informs its DA or GL (if grouped) that some resource availability
is changed.

Format: This message contains URI-PATH option that is set to trendy/server
and ssc=1 URI-QUERY with DELETE (to delete a service) or POST (to
add a service) method. The URL of a service, which is needed to be added
or deleted, is included in the payload. The message format is given in
Figure 8.16.

If a SA wants to update the DA about multiple services, it uses format shown
in Figure 8.17. In this case, the URI-QUERY option is set to ssc=2 and
service descriptions of all resources is appended to the payload.

Actions: If the DA receives the ssc URI-QUERY set at 1, it reads the payload for
resource’s URL. The request’s method code is used to perform the requested

CHAPTER 8. CONTEXT-AWARE GROUPING 165

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� �##$%��

�	
��	�� �&��� ���' () ���
�#("
$��

� � � �

���+�

�
�-������

.�##��� �-

Figure 8.16: SSC Some Service Changed request for one resource change

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� �##$%��

�	
��	�� ��&'(�)���(�"&)�(���* #�
+)$� ��#$
)'�),� �)#��

� � � �

���.�

�
��,#�� 0�##��� �1

Figure 8.17: SSC Some Service Changed request for all resources

operation. Otherwise, if it is more than one, then the DA overwrites the
node’s service description attached to the payload. In both cases, the response
shown in Figure 8.18 on success. In case of failure, the respective error code
is used.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

��
�������� ��� �� �����

�� ��� !"

Figure 8.18: SSC Some Service Changed response

8.6.3.4 GLD (Group Leader Done)

Sender: GL

Receiver: DA

Purpose: The GL informs the DA that its battery is depleting. The DA can
remove GMs from a GL to regroup them; however grouping also offers the
load balancing on the GL’s demand. The constrained GL can specify a
threshold value for battery level. When a battery is depleted and crosses the
threshold value, an event triggers a GLD message to notify the DA for load
balancing.

CHAPTER 8. CONTEXT-AWARE GROUPING 166

Format: The format of a GLD message is shown in Figure 8.19. The request
is specified by addressing the reporting resource at DA by trendy/server
URI path and gld=x URI query, where x defines the number of times a GLD
message is already sent by this GL to the DA.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������
��
� ����!"�
� �#$�%&�

� � � �

�
���(�

	
��*���

+����#� �,

Figure 8.19: GLD (Group Leader Done) request

Actions: After receiving a GLD message, DA sends an acknowledgement message.
Figure 8.20 shows the acknowledgement where the DA asks the GL to wait
for reset command. The response code is set to 2.03 (HTTP 203) that
means request was valid but nothing is modified yet. The DA then starts the
re-selection procedure for a new GL. The previous GL will keep performing
the role of a GL, until it receives a RGM message (Section 8.6.2.2). However,
the DA can ask GL to reset immediately by sending the acknowledgement
shown in Figure 8.21. The message type set to 3 which means ‘RESET’, and
the GL immediately resets.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
������ ��� �� ����� ����� � !"

Figure 8.20: GLD (Group Leader Done) response: DA asked to wait

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

� � � �

�
�����

����
�������� ��� �� �����

�� ��� !"

Figure 8.21: Reset response: DA asked to reset

8.6.4 Discovery Messages

The grouping mechanism introduces a base for service composition, where a GL
can pass a query to its GMs and can process responses as well. This section defines

CHAPTER 8. CONTEXT-AWARE GROUPING 167

a query forwarding process using Forward Query (FWD) message for GLs with
Forwarder resource (Section 8.3.2).

8.6.4.1 FWD (Forward Query)

Sender: DA

Receiver: GL

Purpose: The DA can use the group information to offer higher level services.
This message is used by the DA to forward a UA query to all GLs in a
location, when it receives a query for an offered higher level location-based
service. The UA can request different operations, e.g., PUT method to switch
the lights ON or OFF in location X. The GLs then disseminate the command
to all their GMs.

Format: The DA formulate a request by specifying corresponding method (GET,
POST, PUT or DELETE) and specify the rest of the message as shown in
Figure 8.22.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� ���
�������� ����!"�
� �#$�%�� ����!"�
� �&'(�

�	
��	�� �����&)*

� � � �

�
���'�

�

�� -.) � ��/) ��01�

2�33��� �4

Figure 8.22: FWD: request to a group

Actions: The GL sends an acknowledgement message to the DA. Then it for-
mulates the corresponding query message to forward. The GET method is
not allowed in a forwarded request. The message is made non-confirmable
(commands, e.g., Switch off the lights, etc.) as presented in Figure 8.23.

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

�������� �������� �������� ���� ����!"�
� �����
 ���� #$� ����

� � � �

�
�&�&�

� � �
���(��)(�
 *+,+(+�

-�..�/� �*

Figure 8.23: FWD: Non confirmable request forwarded by the GL to all GMs

CHAPTER 8. CONTEXT-AWARE GROUPING 168

8.7 Experiments: Group Scalability

This section covers the detail of experiments, including scenarios, experimental
setup and discussion of the results performed to analyse the grouping impact on
different metrics with the increasing size of a group.

8.7.1 Introduction

Grouping is designed to achieve two goals: localise status maintenance to reduce
the number of hops for a packet and to avoid a bottleneck, and to provide a
base for service composition. However, the application-level topology formed by
grouping can be incongruent to the routing topology and can even increase the
traffic overhead. This can decrease the nework lifetime when a homogeneous node
is acting as a GL. The experiments are performed using emulated hardware nodes
to analyse the impact of RPL, employed routing protocol, and to find the grouping
overhead in different RPL DODAGs. The number of nodes is varied, and grouping
effect is analysed against scenarios with no grouping. Following scenarios are used
in experiments:

Case 1-4 - Basic TRENDY without grouping: This scenario only enables
the basic functionality of the proposed solution where a UA gets a single
best matched service information. The number of nodes are varied between
6, 11, 21 and 31 to analyse the network performance.

Case 5-8 - Basic TRENDY with 1 GL: These scenarios are the extension of
case 1-4 by assigning the role GL to one of the nodes.

The simulations were configured with the same settings defined in Section 6.3
with the changes given in Table 8.1. The experiments for the above scenarios
are conducted using two physical topologies given in Figures 8.24 and 8.25 with
corresponding RPL’s DODAGs. Both topologies are similar except that second
one is configured in such a way that only one node is placed in the vicinity of
the DODAG root by following the analogies defined in Section 6.3.1. In case of
TRENDY grouping, one physical topology translates into three different topologies:
physical topology, RPL topology and application-level TRENDY tree topology
formed by grouping.

CHAPTER 8. CONTEXT-AWARE GROUPING 169

(a) Physical Topology No.1

(b) RPL tree for Topology No.1

Figure 8.24: Different views of Topology 1 to evaluate grouping scalability

CHAPTER 8. CONTEXT-AWARE GROUPING 170

(a) Physical Topology No.2

(b) RPL tree for Topology No.2

Figure 8.25: Different views of Topology 2 to evaluate grouping scalability

CHAPTER 8. CONTEXT-AWARE GROUPING 171

Table 8.1: Configurations for the experiments of grouping scalability

Total nodes 6, 11, 21 and 31 nodes + 1 border router
Area 150m× 100m

Physical topologies 1 and 2 (Explained in this section)
Number of locations 1 location for all nodes

Number of cases 4 × 2 = 8
Total Service Discovery queries 100
Total Service Invocation queries 100

First UA Query At 600 seconds
DA time window 5 minutes = 300 seconds

Number of time windows 30
Simulation Duration 300 × 30 = 9000 seconds

This section continues with the discussion of results generated by the simula-
tions.

8.7.2 Control packet overhead

Figure 8.26 shows the detail of application-level control packet overhead for all
scenarios using topology 1 and 2. It is evident that grouping has only marginally
increased the traffic at the application layer. However, Figure 8.27 provides a
deeper insight into the actual overall traffic in the whole network. This figure
explains the impact of RPL’s DODAG in diminishing the benefit of grouping in
topology 1, where more nodes have direct links to the root. In this case, all nodes
are grouped with the GL (node 2), which has only two leaf nodes that have chosen
it as a parent in the DODAG. This will cause all the status maintenance traffic
from the nodes to reach at the GL via the root. Consequently, packets need to
traverse more hops and the number of packets also increases. On the contrary,
topology 2 represents a case on other extreme where the DA has only GL as its
neighbour, so the formed DODAG has only GL at its level one. This forces all
traffic to bypass the GL and as a result all packets traverse the GL path to reach
at the DA. It is evident that this actually increases traffic considerably; however,
in this case grouping improves the traffic overhead of the network.

Both physical topologies are similar with only the mentioned difference (place-
ment of GL and DA) that’s why the number of RPL and other messages remain
same. Figure 8.28 presents the detailed view of CoAP packets. Topology 1 has
fewer service invocation messages compared to topology 2 because of closer SAs
are available near its root. Topology 2 with grouping incurs fewer numbers of
packets compared to topology 1 due to localise traffic in it. This is important to

CHAPTER 8. CONTEXT-AWARE GROUPING 172

mention that the efficiency will increase further and will become more visible in
the long run because of localised traffic. In conclusion, the efficiency of grouping
depends upon the formation of the routing tree and better GL selection, which can
serve for a long run. This can be achieved by manipulating the RPL by forcing
a resource-rich node to be at the top of a DODAG and using the designed GL
selection mechanism to take an informed decision before assigning the GMs to a
GL.

 0

 200

 400

 600

 800

 1000

 1200

 1400

6 11 21 31 6 11 21 31 6 11 21 31 6 11 21 31

N
um

be
r

of
 P

ac
ke

ts

Updates Grouping

Topo2-With GroupingTopo2-No GroupingTopo1-With GroupingTopo1-No Grouping

Figure 8.26: Detailed aggregated Control packet overhead for all scenarios for
topologies 1 and 2

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

6 G
M

s
11 G

M
s

21 G
M

s
31 G

M
s

5 G
M

s + 1G
L

10 G
M

s + 1G
L

20 G
M

s + 1G
L

30 G
M

s + 1G
L

6 G
M

s
11 G

M
s

21 G
M

s
31 G

M
s

5 G
M

s + 1G
L

10 G
M

s + 1G
L

20 G
M

s + 1G
L

30 G
M

s + 1G
L

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topology-2-GroupingTopology-2Topology 1-GroupingTopology 1

Figure 8.27: Overall network traffic for all scenarios for topologies 1, and 2

CHAPTER 8. CONTEXT-AWARE GROUPING 173

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

6 G
M

s
11 G

M
s

21 G
M

s
31 G

M
s

5 G
M

s + 1G
L

10 G
M

s + 1G
L

20 G
M

s + 1G
L

30 G
M

s + 1G
L

6 G
M

s
11 G

M
s

21 G
M

s
31 G

M
s

5 G
M

s + 1G
L

10 G
M

s + 1G
L

20 G
M

s + 1G
L

30 G
M

s + 1G
L

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

Topology-2-GroupingTopology-2Topology 1-GroupingTopology 1

Figure 8.28: Overall CoAP traffic for all scenarios for topologies 1 and 2

8.7.3 Energy Consumption and network lifetime

Figure 8.29 shows that the nodes in grouping scenarios consume more energy in all
scenarios for topology 1. Moreover, the energy consumption increases considerably
for the GL when 30 GMs are assigned to it. On the other hand, topology 2
demonstrates that grouping improves the energy efficiency in its scenarios, as
shown in Figure 8.30. This is because the GL node is in the way to the DA for
all nodes. However, this topology suffers a drawback as well that it causes the
problem where all traffic even service invocation messages needed to pass through a
particular node in both cases, which increases the energy consumption considerably
for a single node at DODAG’s level 1. Figure 8.31 and Table 8.2 shed light on this
issue. It is evident from both figure and table that the energy consumption for the
top node is doubled or in other words, network lifetime (our definition) reduced
to half when topology 2 is used in both cases. However, grouping increases the
energy efficiency and network lifetime for topology 2. Nevertheless, the grouping
is not expensive in both topologies and even increases efficiency in some cases.
Furthermore, if a resource-rich GL is available with a better power source, then
the network lifetime issue in topology 2 will be eliminated and a preconfigured GL
node with RPL configurations can provide the base for service composition while
optimising the network lifetime as well.

CHAPTER 8. CONTEXT-AWARE GROUPING 174

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5500 6000 6500 7000 7500 8000

Energy consumption (mJ)

6 GMs
5 GMs + 1GL

11 GMs
10 GMs + 1GL

21 GMs
20 GMs + 1GL

31 GMs
30 GMs + 1GL

Figure 8.29: CDF graph of energy consumption per node for 35 nodes for topology 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Energy consumption (mJ)

6 GMs
5 GMs + 1GL

11 GMs
10 GMs + 1GL

21 GMs
20 GMs + 1GL

31 GMs
30 GMs + 1GL

Figure 8.30: CDF graph of energy consumption per node for 35 nodes for topology 2

CHAPTER 8. CONTEXT-AWARE GROUPING 175

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Number of nodes

Topo1-No Grouping
Topo1-With Grouping

Topo2-No Grouping
Topo2-With Grouping

3121116

Figure 8.31: Top five nodes in terms of energy consumption for topologies 1 and 2

Table 8.2: Network lifetime approximation for different number of nodes for
topologies 1 and 2

Network Lifetime (days)

Total Topology #1 Topology #2
nodes No-GL With-GL No-GL With-GL

6 490 485 430 445
11 475 465 375 410
21 440 405 245 311
31 410 360 180 230

8.7.4 Scalability factor: Packets to the DA

Grouping aims to increase scalability while keeping the number of application-level
messages towards the DA to the minimum. Figure 8.32 shows that the grouping
has substantially decreased the number of application-level packets at the DA by
assigning the task to the GL. However, the actual traffic in the whole network
depends upon the RPL’s DODAG. One application-level message can generate
several packets and in the worst case, can go at the root first to reach at the
GL. This process can cause the network in terms of high-traffic overhead, delays
and energy consumption. Figure 8.33 depicts the detail of the total number of
packets sent or received at the DA in all scenarios at all layers. It is evident in
the figure that grouping has reduced the number of packets at the DA in all cases,
but topology 1 still incurs high number of packets for scenarios with 21 and 31

CHAPTER 8. CONTEXT-AWARE GROUPING 176

nodes, because messages need to travel extra hops to reach at the GL. Overall,
the grouping reduces the traffic towards a single point of the network in both
topologies.

 0

 200

 400

 600

 800

 1000

 1200

 1400

6 11 21 31

N
um

be
r

of
 p

ac
ke

ts

Number of nodes

Topo1-No Grouping
Topo1-With Grouping

Topo2-No Grouping
Topo2-With Grouping

Figure 8.32: Application-level packets at the DA for all scenarios for topologies 1
and 2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

6 11 21 31

N
um

be
r

of
 P

ac
ke

ts

Number of nodes

Topology-1 no grouping
Topology-1 with grouping

Topology-2 no grouping
Topology-2 with grouping

Figure 8.33: Total traffic at the DA over the time for all scenarios

8.7.5 Service Invocation Delay

The grouping mechanism is not focused on improving service invocation delay.
Consequently, it is evident from Figure 8.34 that the service invocation delay

CHAPTER 8. CONTEXT-AWARE GROUPING 177

remains almost same for all scenarios. However, a slight improvement can be
noticed for scenarios of 21 and 31 nodes using topology 2. This benefit comes as a
repercussion of localised traffic, which improves the delay for queries as illustrated
in Figure 8.35, but it becomes only evident in a large network. Overall, topology 1
performed better in terms of average service invocation delay because it has SAs
available one-hop away from the DA.

 0

 200

 400

 600

 800

 1000

 1200

6 11 21 31

D
el

ay
 in

 m
ill

i s
ec

on
ds

Number of nodes

Topo1-No Grouping
Topo1-With Grouping

Topo2-No Grouping
Topo2-With Grouping

Figure 8.34: Average Service Invocation delay in all cases for both topologies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600 1800

Service Invocation (SI) delay in milli seconds

6 GMs
5 GMs + 1GL

11 GMs
10 GMs + 1GL

21 GMs
20 GMs + 1GL

31 GMs
30 GMs + 1GL

Figure 8.35: CDF of Service Invocation delay in all cases for topology 2

CHAPTER 8. CONTEXT-AWARE GROUPING 178

8.7.6 Reliability and Accuracy

Grouping makes the GL responsible for informing about the missing nodes, so
chance of obsolete registry entries is eliminated. In experiments all service invoc-
ation requests and responses are validated and were found accurate, so all the
communicated information was correct and reliable.

8.8 Experiments: Grouping with different
groups

This section covers the detail of experiments, including scenarios, experimental
set-up and discussion of the results performed to evaluate the impact of grouping
and creation of multiple groups in networks with different topologies.

8.8.1 Introduction

The scalability testing of grouping is done in Section 8.7 where experiments were
done only for one group of nodes with a GL. This section scrutinise the grouping
mechanism further by increasing the number of groups in different topologies.
Following scenarios are used in experiments.

Case 1 - Basic TRENDY without grouping: This scenario only enables the
basic functionality of the proposed solution where a UA gets a single best
matched service information.

Case 2 - Basic TRENDY with 5 GL: This case has grouping mechanism en-
abled with 5 GLs that are placed one in each of the 5 locations, on top of
case 1’s functionality. In all topologies, node 2-6 (No. 1 is the border router)
were assigned the role of GLs for their groups.

Case 3- GL failure scenario with 6 GLs: This scenario has 6 GLs (node 12
as well), where one of them fails during the simulation (after 1000 seconds)
and other GL is reselected by the DA. All topologies are same like case 2, but
topology 1 is slightly changed for this case and position of node 2 is swapped
with node 7 to maintain the DODAG tree after the GL’s failure.

The simulations were configured with the same settings defined in Section 6.3
with the changes given in Table 8.3. In the case of TRENDY with grouping, one
physical topology translates into three different topologies: physical topology, RPL
topology and application-level trendy tree topology formed after grouping. The
experiments for the above scenarios are conducted using three physical topologies

CHAPTER 8. CONTEXT-AWARE GROUPING 179

explained in Section 6.3.1. The GL nodes are employed one hop away from the
DA and only perform the group formation and status maintenance responsibilities.
In addition, all the GLs do not offer any other resource to sense the environment.
Therefore, all scenarios have 30 nodes that offer resources, to make a better
comparison.

Table 8.3: Configurations for the experiments of Grouping

Total nodes 35 nodes + 1 border router
Physical topologies 1, 2 and 3 (Section 6.3.1)
Number of locations 5

Number of SAs hosting services 6 in each location
Number of cases 6

Total Service Discovery queries 1000
Total Service Invocation queries 1000

First UA Query At 600 seconds
DA time window 5 minutes = 300 seconds

Number of time windows 30
Simulation Duration 300 × 30 = 9000 seconds

This section continues with the results generated by the simulations.

8.8.2 Control packet overhead

Figure 8.36 shows the aggregated application-level control overhead for all 35 nodes
for cases 1-2 and 34 nodes in the case 3, because one node dies in that scenario. The
grouping scenarios have slightly more packets because of the extra communication
overhead for grouping (YGM and YGL) messages. It can be noticed that case 3
still has the same overhead as the case 2, because it’s just showing the control
overhead for 34 nodes. The figure also emphasises that the grouping overhead is
marginal. The grouping overhead can increase in those cases where load balancing
is done more often; however, TRENDY reduces this risk by utilising a GL selection
algorithm while selecting a GL for a group.

The overall traffic in the network at all layers is shown in Figure 8.37 that
explains that the density of a network plays a key role in network traffic when
grouping is enabled. The network analysis includes the runs with the different
number of GLs to demonstrate the trend of network’s reaction when the number
of GLs is increased. The networks with topology 1 and 2 produce a similar trend
where the overall traffic actually decreases when GLs are employed, because of
the topology configurations. On the contrary, the traffic in topology 3 increases
with the employment of each GL, because of its high density where more nodes

CHAPTER 8. CONTEXT-AWARE GROUPING 180

are at the level one of the DODAG as no preference is made during its formation.
Therefore, most of the packets travel upward towards the root and then downwards
towards the GL, which not only increase the number of hops but also more delay
is added because of the high traffic at the DA. However, the traffic in all the
topologies increases considerably in the case of a GL failure, where the traffic at
the layers below RPL experienced a heavy load. This behaviour is the result of the
increase in neighbour discovery packets that are communicated more frequently
when a node becomes unreachable. Figure 8.38 explains this behaviour by showing
the neighbour discovery traffic for first ninty minutes in all topologies, where the
high spikes after 20 minutes represent the neighbour discovery reaction to the
unavailability of a node. Topology 3 performs worst in this case because of its
density.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No GL 5-GLs 1-GL fails No GL 5-GLs 1-GL fails No GL 5-GLs 1-GL fails

N
um

be
r

of
 P

ac
ke

ts

Updates Grouping

Topology #3Topology #2Topology #1

Figure 8.36: Detailed aggregated Control packet overhead for all scenarios (case-7
with 34 nodes and rest of the cases with 35 nodes)

CHAPTER 8. CONTEXT-AWARE GROUPING 181

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

N
o G

L
1-G

L
2-G

Ls
3-G

Ls
4-G

Ls
5-G

Ls
1-G

L fails

N
o G

L
1-G

L
2-G

Ls
3-G

Ls
4-G

Ls
5-G

Ls
1-G

L fails

N
o G

L
1-G

L
2-G

Ls
3-G

Ls
4-G

Ls
5-G

Ls
1-G

L fails

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topology #3Topology #2Topology #1

Figure 8.37: Overall network traffic in all scenarios for topologies 1, 2 and 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 P

ac
ke

ts

Time in Minutes

Topo1 - 1 GL failure Topo2 - 1 GL failure Topo3 - 1 GL failure

Figure 8.38: GL failure case: Neighbour discovery traffic in first 90 minutes for
topologies 1, 2 and 3

8.8.3 Energy Consumption and network lifetime

Figure 8.39 shows that the grouping mechanism has not affected the energy
consumption for the node significantly for all topologies. The worst scenario for all
topologies remains the GL failure case where re-grouping is done. This scenario
explains the benefit of choosing a best GL, which can serve for a longer period
of time to improve the energy consumption. However, topology 1 has suffered

CHAPTER 8. CONTEXT-AWARE GROUPING 182

less compared to other topologies, because of its RPL formation. Furthermore,
Figure 8.40 presents the top five nodes in energy consumption, which emphasises
the burden of re-grouping on a single node. Moreover, both topologies 2 and 3
have different nodes topped the energy consumption in 10 iterations because of
the random seed values. This is the result of the overlapping radios in a dense
environment, and high density topology 3 has more randomness in this perspective.

Table 8.4 uses the energy consumption values of the top most node in energy
consumption to estimate the network lifetime by projecting that linearly using
simulation time. It is evident from the table that grouping increases the network
lifetime only for topologies 1 and 2. In summary, grouping only causes extra energy
burden on one GL node (top in energy consumption) and rest of the nodes actually
save energy in a network. This issue can be mitigated by employing a GL with a
better energy source.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 6000 7000 8000 9000 10000 11000 12000

Energy consumption (mJ)

Topology1 - 0 GL
Topology2 - 0 GL
Topology3 - 0 GL

Topology1 - 5 GLs
Topology2 - 5 GLs
Topology3 - 5 GLs

Topology1 - 1 GL failure
Topology2 - 1 GL failure
Topology3 - 1 GL failure

Figure 8.39: CDF graph of energy consumption per node for 35 nodes

CHAPTER 8. CONTEXT-AWARE GROUPING 183

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Topology #1 Topology #2 Topology #3

1-GL fails5-GLsNo GL

Figure 8.40: Top five nodes in terms of energy consumption for topologies 1, 2 and
3

Table 8.4: Grouping: network lifetime approximation in days for all topologies

Topology No Grouping 5 GLs 1 GL fails

1 380 400 250
2 355 370 255
3 365 330 255

8.8.4 Scalability factor: Packets to the DA

Figure 8.41 shows that the number of application-level packets sent towards the
DA from all SAs decreases considerably when grouping is enabled. In the 5-GLs
scenarios where a GL is placed in each location, the number of packets sent to
the DA from nodes decreased by 6-7 times compared to the scenarios where no
grouping was enabled. The case with GL failure performed equivalent to the
scenario with 5 GLs, because the GMs were immediately regrouped under a new
GL. This phenomenon is also supported by Figure 8.42, which presents the number
of packets in all cases over simulation time. However, the sniffed overall network
traffic, shown in Figure 8.43, highlights a different perspective for topology 3 where
the number of packets only slightly reduced. This is due to the generated DODAG
for topology 3 that cancels out the traffic localisation benefit of grouping, because
the DODAG is incongruent to the physical placement of the node, so all traffic
routes via the root.

CHAPTER 8. CONTEXT-AWARE GROUPING 184

 0

 200

 400

 600

 800

 1000

 1200

 1400

No GL 5-GLs 1-GL fails

N
um

be
r

of
 p

ac
ke

ts

Topology #1 Topology #2 Topology #3

Figure 8.41: Packets at the DA for all scenarios

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1200 2400 3600 4800 6000 7200 8400 9600

N
um

be
r

of
 P

ac
ke

ts

Time in seconds

Topology1 - 0 GL
Topology2 - 0 GL
Topology3 - 0 GL

Topology1 - 5 GLs
Topology2 - 5 GLs
Topology3 - 5 GLs

Topology1 - 1 GL failure
Topology2 - 1 GL failure
Topology3 - 1 GL failure

Figure 8.42: Application-level packets at the DA over the time for all scenarios

CHAPTER 8. CONTEXT-AWARE GROUPING 185

 0

 10000

 20000

 30000

 40000

 50000

 60000

No GL

1-GL
2-GLs

3-GLs

4-GLs

5-GLs

1-GL fails

N
um

be
r

of
 P

ac
ke

ts

Topology-1 Topology-2 Topology-3

Figure 8.43: Total traffic at the DA over the time for all scenarios

8.8.5 Service Invocation Delay

The grouping mechanism is not focused on improving service invocation delay.
Consequently, it is evident from Figure 8.44 that the service invocation delay
remains almost same for all scenarios. However, the slight improvement of SI
delays in some scenarios of topology 3 is the consequence of the availability of
many SAs in the neighbourhood of the DA.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

No GL 5-GLs 1-GL fails

D
el

ay
 in

 m
ill

i s
ec

on
ds

Topology #1 Topology #2 Topology #3

Figure 8.44: Average Service Invocation delay for all cases

CHAPTER 8. CONTEXT-AWARE GROUPING 186

8.8.6 Reliability and Accuracy

Grouping distributes the status maintenance task by allocating GLs in different
areas of a network. The GLs report to the DA regarding each unresponsive SA
to ensure the accuracy of service information maintained at the DA. All service
invocation responses are validated and found successful that explains that the DA
provided accurate information to all SD requests.

8.9 Summary and Discussion

This chapter covered the detail of a context-aware grouping mechanism that
localises status maintenance traffic and enables a paradigm for service composition
to facilitate the future WoT applications. Furthermore, it eradicates the bottleneck
problem associated with a centralised directory and makes a network more scalable,
by localising the status maintenance traffic. It also devises modular profiles for
more capable devices to gain benefits of distribution of jobs. The idea of grouping
becomes useful when less load balancing is needed, which can be ensured by utilising
proposed GL selection algorithm.

The scalability of grouping is evaluated in simulations by varying the size of
a group, and it is found that grouping improves the control overehead, energy
efficiency and total DA traffic for all cases in topologies with different densities.
However, it is also found that the energy consumption and total traffic of a network
depend on the RPL’s DODAG and the number of direct neighbours of a node.
Therefore, it increases the energy consumption of the nodes when the congruency
between grouping topology and DODAG increases, which is common in a network
with high node density. The scrutiny of grouping mechanism in a network of
few groups is also done, which emphasises the role of network’s density on total
traffic and energy consumption of the network. It is also concluded from the
experiments that if a GL fails during the lifetime of the network, the load balancing
will increase the overhead, and the newly selected GL pays the price in form of
energy consumption. Therefore, the role of the GL selection algorithm becomes
important to reduce the probability of a GL failure by selecting a wise choice during
the GL selection. In summary, all the results prove that the grouping mechanism
considerably reduces the number of packets towards the DA and improves the
energy efficiency and network lifetime while marginally increasing the control
overhead.

The next chapter covers the detail of the proposed adaptive caching mechanism.

Chapter 9

Adaptive Piggybacked Publishing
(APPUB): An Algorithm for
Adaptive Caching

9.1 Introduction

Chapters 5, 7 and 8 covered the details of the proposed context-aware SDP, adapt-
ive timer and grouping mechanisms, respectively. However, only service selection
mechanism addresses the service invocation delay to improve user response. This
chapter focuses on improving the service invocation delay by offering adaptive cach-
ing mechanism. Moreover, the adaptability requirement (Section 4.4.3) demands
a technique that can adaptively arrange cached values for user applications. In
addition, the high number of service invocations increases the traffic and energy
consumption for nodes in a multi-hop network by keeping them awake most of
the time. Furthermore, the constraints of involved devices can restrict them to be
available more frequently, as these are prone to failure because of depleted batteries.
Therefore, the effect of the high number of service invocations will decrease the
network lifetime. This chapter proposes a technique that arranges cache values by
sensing the popularity of services.

9.2 Aims

The aims for the required adaptive caching technique are:

1. The process of maintaining cache values should have low control overhead.

2. The algorithm should be adaptive to a context-aware criteria, e.g., demand
of services, so that criteria should be checked first before making the decision

187

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 188

of caching a resource.

3. The design should enable a SA to take the decision of making cache available
(PUSH based approach defined in Section 3.12.2).

9.3 Design

This section explains the APPUB technique and its design details including, roles
of different entities, algorithmic details.

9.3.1 APPUB Process

APPUB is a demand-based caching technique that balances the trade-off between
service invocation delay and network efficiency. It adapts to the demand of a
resource for caching rather than blindly maintaining cache of all resources in a
network.

The SA implements APPUB algorithm to adaptively send cache of a resource
with corresponding lifetime to the DA, when the number of invocations exceeds the
hit count threshold. This enables a SA to get help from the registry to share the
burden by acting as a proxy in busy times. The DA also passes the resource’s cache
with the SA’s IP address to a UA, if the fresh (not expired) cached value of the
resource is available. Figure 9.1 shows how the cache is pushed by a SA and then
used by the DA to serve a UA SD query. The benefit of cache hits will decrease the
service invocation delay while reducing the number of service invocations queries,
which will consequently improve energy consumption of SAs.

�����

���

�� � ��	
� �
�����
��

���
�����

���
�����

��

��������
�����	���	�

� � �	��

�� � ��	 � �
�����

�� � ��	
� �
�����

�� � ��	
� �
�����

Figure 9.1: APPUB Example Scenario

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 189

9.3.2 DA’s role

The DA maintains cached values with cached time and cache lifetime for each
service. This cache related attributes remain empty until updated by the SA. On
top of that, the DA has a proxy_mode attribute that defines different proxy modes
depending on the ability of a DA. One of the following proxy modes can be used
by the DA:

• ‘1’ - Basic: This is the default DA mode. The DA sends this proxy mode to
inform SAs that no caching is supported, but context attributes and service
information is accepted.

• ‘2’ - Caching is also enabled: This proxy mode tells the SA that it can
support caching, but leave the choice up to the SA to decide when to send
the cache.

The DA needs to set the proxy_mode at 2 to allow APPUB mechanism. When
the DA receives a resource’s cache, it saves the received cache with its lifetime and
caching time.

9.3.3 SA’s role

The SA is the main decision maker to send cache of a service towards the DA. In
APPUB, each SA implements following attributes:

• proxy_mode: A proxy level assigned by the DA. The default value is 1.

• num_of_service_invocation_threshold: This defines the threshold limit
of service invocation messages after which a cache is sent. The SA sends
the cache of a resource to the DA, when that resource is already invoked
num_of_service_invocation_threshold times. This value can be set to
any value depending on the capability of a SA.

• resource_hit_count: This parameter is maintained for each resource to
keep the record of its hit counts (service invocations).

• life_time: This attribute is kept for each resource and indicates the total
life time of a resource in minutes (e.g., temperature after 20 minutes, and
light after 10 minutes) as covered in Section 5.9.

• current_life_time: It is kept for each resource and updated with the
life_time whenever resource’s cache is sent. This works as a timer to keep
track of the remaining time, before which a new cache is not sent.

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 190

• resource_APPUB_enabled: A resource’s cache is only sent if this counter is
above 0 and the registry has proxy_mode set for caching. This counter is
decremented each time a resource’s cache is sent.

The APPUB process consists of following steps:

Step 1 - Initiation: The SA starts with the default value of proxy_mode. It
also has a num_of_service_invocation_threshold value to react to the
number of service invocations. Each resource has its resource_hit_count,
life_time, current_life_time and APPUB_enabled to take a decision using
APPUB technique.

Step 2 - SA at receiving proxy mode: A SA receives a proxy_mode from the
DA in response to a status update. It updates its current proxy mode with
the received one by following Algorithm 6. The algorithm schedules the next
status update message as soon as possible if newly received value is greater
than the existing proxy mode. Otherwise, it follows normal scheduling.

Algorithm 6 APPUB: SA at receiving a proxy mode
1: prev_proxy_mode← proxy_level
2: proxy_mode← received_proxy_level
3: if proxy_mode < 2 then . No caching allowed
4: resource_APPUB_enabled[all]← 0
5: end if
6: if prev_proxy_mode < proxy_mode then . Send ASAP
7: set_next_report_event(in_fixed_smallest_interval)
8: else
9: schedule_next_interval_normally() . Normal scheduling
10: end if

Step 3 - SA at service invocation: The SA keeps a watch on the number of
service invocations of its resources. Each time a resource is invoked, the SA
uses Algorithm 7 to decide about the possibility of sending the resource’s cache
in the next status update message. The resource’s hit count is incremented
(if DA allows caching) at each service invocation and the resource’s cache is
scheduled to be sent in next update message (if threshold is surpassed).

Step 4 - SA at status update: APPUB allows the cache to be piggybacked in
a status update message. The SA follows Algorithm 8 for every resource to
decide whether to piggyback its cache in a status update message.

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 191

Algorithm 7 APPUB: SA at service invocation
1: if proxy_mode == 2 then . If DA enables caching
2: resource_hit_count + +
3: if resource_hit_count >= service_invocation_threshold then
4: resource_APPUB_enabled + + . high demand: enable send cache
5: resource_hit_count = 0
6: set_next_report_event(in_fixed_smallest_interval)
7: end if
8: end if

Algorithm 8 APPUB: SA while deciding to piggybacked a resource’s cache
1: if proxy_mode > 1 and resource_APPUB_enabled > 0 and

resource_current_life_time == 0 then
2: Piggyback_value_in_payload(resource_value)
3: resource_current_life_time = resource_life_time
4: resource_APPUB_enabled−−
5: end if

9.3.4 Cache Format

APPUB describes a default format to piggyback a resource’s cache; however, it is
extensible as Content-Format CoAP option (Section 2.5.3) can be used to specify
other agreed formats. The basic service description format (Section 5.4) is extended
to append the cache with the URL within curly braces and placing its lifetime
after it. Following are few examples of piggybacking cache in default format.

• temp{23}30; - This defines a temperature service with URL temp, 23 as
resource’s cache and 30 minutes lifetime.

• light{262:814}10; - This defines a light service with URL light, 262 : 814
as cache and 10 minutes lifetime.

9.4 Message Format

9.4.1 Update for TRENDY’s UPD reporting message

APPUB technique requires only a small update in DA’s response for status mainten-
ance updates (Section 5.11.2). The DA’s response now carries a proxy_level value
(Section 9.3.2) in the payload to inform SAs that it supports caching. Figure 9.2
shows a DA response which mentions that it supports caching.

In the case of a reset message the SA will reset its APPUB related attributes
(Section 9.3.3) to default.

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 192

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

������� �� 	�
��
� � ��
��� ������

� � � �

�
�����

����
����� �! ��� "� #$$��

%�&&� � '(

Figure 9.2: APPUB: Changed UPD response from the DA

9.5 Experiments and Results

This section covers the detail the results of experiments performed to analyse
the performance of APPUB with the different level of demands and topologies.
The performance analysis is done to scrutinise the role of APPUB in network’s
efficiency and scalability using metrics, including, service invocation delay, energy
consumption, control packet overhead.

9.5.1 Introduction

The number of queries is varied (100 and 1000) to repeat the following scenarios:

Case 1 - Basic TRENDY without APPUB: This scenario enables the basic
functionality of the proposed solution. The UA gets a best matched resource’s
URL and IP address of the SA hosting the matching service.

Case 2 - Basic TRENDY with APPUB threshold 2: This scenario has AP-
PUB enabled with num_of_service_invocation_threshold fixed at 2 on
top of case 1’s functionality.

Case 3 - Basic TRENDY with APPUB threshold 1: This case is exactly
like case 2 with num_of_service_invocation_threshold fixed at 1.

The num_of_service_invocation_threshold is varied to check the effect of
APPUB in scenarios with different topologies and service demand. The reaction of
APPUB depends on multiple factors, including, the number of specific queries for
a location, and the number of times when services of the same SA are preferred
by the service selection mechanism. In experiments, the UA queries are generated
arbitrarily and sent after a random interval, that’s why only two threshold values
are tested, as even their result was found similar. However, depending on the
application environment and its requirements, any value can be chosen for the hit
count threshold or it can be changed dynamically.

The simulations are configured with the same settings defined in Section 6.3
with the changes given in Table 9.1. Furthermore, all SAs use the cache lifetime of

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 193

10, 30 and 60 minutes for light, temperature and humidity resources, respectively.
These cache lifetimes were selected randomly and have no impact on the query
generation process.

Table 9.1: Configurations for the experiments of APPUB

Total nodes 35 nodes + 1 border router
Physical topologies 1, 2 and 3 (Section 6.3.1)

RDC ContikiMAC and NullRDC
Number of locations 5 with 7 SAs in each location

Total Service Discovery queries 100 and 1000
Total Service Invocation queries 100 and 1000

Number of cases 3 (cases)× 2 (query variations) = 6
First UA Query At 600 seconds
DA time window 5 minutes = 300 seconds

Number of time windows 30
Simulation Duration 300 × 30 = 9000 seconds

This section continues with the generated results of simulations to analyse the
effect of the APPUB mechanism.

9.5.2 Service Invocation Delay and Cache hits

The APPUB mechanism adaptively makes cached values available at the DA, which
are then used to serve future queries to decrease the overall service invocation delay
and overhead incur while passing a message over a multi-hop network. Figure 9.3
shows the number of cache hits (the number of times maintained cache is used) in
all cases. Both APPUB cases have served 60 − 70% of UA queries with cached
values regardless of the employed RDC. There is no significant difference between
case 2 and 3, because of the randomness introduced by query generation process,
and service selection’s preference for choosing a SA to serve a query. Furthermore,
the figure shows a contradiction where more sensitive hit-count threshold value
actually proved less efficient in some scenarios. However, the scenarios with small
threshold value show better performance in the cases of 100 queries, because of
the randomness in the query generation and arrival process.

Figure 9.4 demonstrates the impact of APPUB for first 100 UA queries in
scenarios with 1000 queries using ContikiMAC. It is evident that the DA started
serving the queries with cache values after first 40 randomly generated queries.
This reaction comes from the adaptive nature of APPUB that senses the high
number of queries and arranges cache at the DA. Furthermore, the small hit count
threshold value reacted to the load quickly to serve the query with a cached value

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 194

than the large value. The service invocation delay for topology 3 is the highest
because of its density, which produces a more dense RPL’s DODAG near the root
node (covered in Section 6.3.1).

The effect of cache hits is evident in Figure 9.5a for ContikiMAC scenarios,
which shows that the mean service invocation delay for 1000 queries reduced to
more than half in both APPUB scenarios. However, the NullRDC scenarios, shown
in Figure 9.5b, have performed better than ContikiMAC scenarios, because the
radio is never switched off in these scenarios which ultimately increase the energy
cost for the nodes. On the other hand, ContikiMAC keeps the radio switched off for
most of the time, but has performed closer to NullRDC when APPUB is employed.
Moreover, Figure 9.6 shows that the cache-hits also optimises the delay for those
queries which are not served by a cached value and thus need a separate message
to invoke a service. The major benefit is noticed for topology 3, which decreases
the delay because of the reduction in the number of messages communicated inside
a dense 6LoWPAN.

In conclusion, the APPUB mechanism adapts to the number of service invoca-
tions in a network and arranges cache at the DA to reduce the load in a 6LoWPAN.
The behaviour of APPUB remains the same in different topologies where it di-
minishes the average service invocation delay. In addition, the evaluation explains
that the cache hits eliminate the need of separate service invocation queries that
improve the response time in a dense network.

 0

 100

 200

 300

 400

 500

 600

 700

 800

No Caching APPUB (t=2) APPUB (t=1)

N
um

be
r

of
 C

ac
he

 h
its

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 9.3: Cache hits for queries for topologies 1-3 (same for both ContikiMAC
and NullRDC scenarios)

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 195

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

Query Number

No Caching APPUB (t=2) APPUB (t=1)

(a) Topology 1

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

Query Number

No Caching APPUB (t=2) APPUB (t=1)

(b) Topology 2

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

Query Number

No Caching APPUB (t=2) APPUB (t=1)

(c) Topology 3

Figure 9.4: APPUB trend: Service Invocation delay for first 100 queries using
ContikiMAC

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 196

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Caching APPUB (t=2) APPUB (t=1)

S
er

vi
ce

 In
vo

ca
tio

n
D

el
ay

 in
 m

ill
i s

ec
on

ds

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

(a) ContikiMAC scenarios

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Caching APPUB (t=2) APPUB (t=1)

S
er

vi
ce

 In
vo

ca
tio

n
D

el
ay

 in
 m

ill
i s

ec
on

ds

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

(b) NullRDC scenarios

Figure 9.5: Average Service Invocation delay for topologies 1, 2 and 3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 197

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

Service Invocation (SI) delay in milli seconds

Top1-No Caching
Top2-No Caching
Top3-No Caching

Top1-APPUB (t=2)
Top2-APPUB (t=2)
Top3-APPUB (t=2)

Top1-APPUB (t=1)
Top2-APPUB (t=1)
Top3-APPUB (t=1)

(a) ContikiMAC scenarios

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

Service Invocation (SI) delay in milli seconds

Top1-No Caching
Top2-No Caching
Top3-No Caching

Top1-APPUB (t=2)
Top2-APPUB (t=2)
Top3-APPUB (t=2)

Top1-APPUB (t=1)
Top2-APPUB (t=1)
Top3-APPUB (t=1)

(b) NullRDC scenarios

Figure 9.6: CDF graph of service Invocation delay with 1000 queries for topologies 1-
3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 198

9.5.3 Energy Consumption and network lifetime

This section covers the detail of energy consumption of nodes in ContikiMAC
scenarios, whereas NullRDC cases are not compared, because keeping the radio
always on consumes 70− 75 times more energy than ContikiMAC. Additionally, if
the radio is constantly on, then no technique can improve the energy consumption
of nodes, because radio listening and receiving cost more energy than any other
activity.

Figure 9.7 shows the individual energy consumption of nodes in case of 100
and 1000 queries. The APPUB enabled scenarios have performed slightly better in
case of 1000 queries to reduce the energy consumption of nodes, because the cache
hits have avoided the need of service invocation requests. Nevertheless, it can be
noticed that the overhead of APPUB has increased the energy consumption for the
upper 10th percentile of the nodes in scenarios with fewer queries. On the other
hand, topology 1 shows efficiency for top nodes in energy consumption because of
its topology configurations. However, topologies 2 and 3 have not demonstrated
much benefit in energy-efficiency terms, because of their densities and formed
DODAGs. Figure 9.8 emphasises this phenomenon where topology 2 and 3 perform
worst for the top node in terms of energy consumption in all cases. Furthermore,
Table 9.2 projects the energy consumption of top nodes linearly to approximate
the network lifetime, and supports the same phenomenon. Therefore, it can be
concluded that the benefit of APPUB in increasing lifetime of a network is actually
depends on the combination of different factors, including the arrangement of the
physical topology, the generated RPL tree and the number of service invocation
requests.

Table 9.2: Network lifetime approximation for different number of queries for
topologies 1-3

Network Lifetime (days)

Case Topology #1 Topology #2 Topology #3
100 1000 100 1000 100 1000

No caching 415 400 365 370 360 365
with APPUB (t=2) 415 415 375 365 370 375
with APPUB (t=1) 415 410 375 370 365 370

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5500 6000 6500 7000 7500 8000

Energy consumption (mJ)

Top1-No Caching
Top2-No Caching
Top3-No Caching

Top1-APPUB (t=2)
Top2-APPUB (t=2)
Top3-APPUB (t=2)

Top1-APPUB (t=1)
Top2-APPUB (t=1)
Top3-APPUB (t=1)

(a) Scenarios with 100 queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5500 6000 6500 7000 7500 8000

Energy consumption (mJ)

Top1-No Caching
Top2-No Caching
Top3-No Caching

Top1-APPUB (t=2)
Top2-APPUB (t=2)
Top3-APPUB (t=2)

Top1-APPUB (t=1)
Top2-APPUB (t=1)
Top3-APPUB (t=1)

(b) Scenarios with 1000 queries

Figure 9.7: CDF graph of service Invocation delay for topologies 1-3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 200

 6000

 6500

 7000

 7500

 8000

 8500

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Topology#1-100 queries
Topology#2-100 queries
Topology#3-100 queries

Topology#1-1000 queries
Topology#2-1000 queries
Topology#3-1000 queries

APPUB (t=1)APPUB (t=2)No CachingAPPUB (t=1)APPUB (t=2)No Caching

Figure 9.8: Energy consumption of top 5 nodes for scenarios with 100 and 1000
queries only ContikiMAC scenarios for topologies 1-3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 201

9.5.4 Control packet overhead

APPUB increases the control packet overhead because of its extra messages that
are used to push cache values at the DA. In case of high demand of a resource,
the APPUB mechanism sends the next status update before the expiration of the
earlier scheduled interval. This difference is more visible in Figure 9.9 which shows
that some nodes have sent more packets when APPUB is employed. Anyhow,
the overall overhead is marginal as shown in Figure 9.10, because a SA switches
back to normal scheduling after it receives the response from the DA. However,
this overhead translates to a better network response to UAs, as the DA uses
cached values to serve queries for a determined time, which eradicates the need
for extra service invocation messages. Therefore, APPUB actually decreases the
control overhead, if the equation also includes the number of service invocation
messages. Figure 9.11 depicts this phenomenon by showing that the overall traffic
in the network actually decreased with the employment of APPUB. The effect is
more evident in cases with 1000 queries because the number of service invocation
messages reduced because of caching, as shown in Figure 9.12. A more detailed
view of service invocation messages in terms of request and response is depicted in
Figure 9.13, which explains the same phenomenon.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 36 38 40 42 44 46 48 50 52 54

Number of packets

Top1-No Caching
Top2-No Caching
Top3-No Caching

Top1-APPUB (t=2)
Top2-APPUB (t=2)
Top3-APPUB (t=2)

Top1-APPUB (t=1)
Top2-APPUB (t=1)
Top3-APPUB (t=1)

Figure 9.9: CDF of application-level control packet overhead per node for each
node for all scenarios

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 202

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

No Caching APPUB (t=2) APPUB (t=1)

N
um

be
r

of
 P

ac
ke

ts

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 9.10: Aggregated application-level control packet overhead for all scenarios

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topo3 - 1000Topo2 - 1000Topo1 - 1000Topo3 - 100Topo2 - 100Topo1 - 100

Figure 9.11: Total network traffic in ContikiMAC and NullRDC cases for topolo-
gies 1, 2 and 3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 203

 0

 5000

 10000

 15000

 20000

 25000

 30000

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

Topo3 - 1000Topo2 - 1000Topo1 - 1000Topo3 - 100Topo2 - 100Topo1 - 100

Figure 9.12: CoAP’s traffic details in ContikiMAC and NullRDC cases for topolo-
gies 1, 2 and 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

N
o C

aching
A

P
P

U
B

 (t=2)
A

P
P

U
B

 (t=1)

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Invocation Requests
Service Invocation Responses

Topo3 - 1000Topo2 - 1000Topo1 - 1000Topo3 - 100Topo2 - 100Topo1 - 100

Figure 9.13: Service Invocation traffic details for ContikiMAC scenarios for topolo-
gies 1, 2 and 3

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 204

9.5.5 Scalability factor: Packets to the DA

The APPUB mechanism has no effect on the scalability factor, as the application-
level messages received at the DA remain the same as the number of control
packets generated by SAs, as shown in Figure 9.10. Furthermore, Figure 9.14
shows the number of packets sent or received between the DA and 6LoWPAN nodes
(excluding service invocation messages). The density of topology 3 is the main
reason of its high number of packets, which are increased further with APPUB.
However, the overall impact remains marginal for all topologies.

 0

 10000

 20000

 30000

 40000

 50000

 60000

No Caching APPUB (t=2) APPUB (t=1)

N
um

be
r

of
 P

ac
ke

ts

Topology 1-100 queries
Topology 2-100 queries
Topology 2-100 queries

Topology 1-1000 queries
Topology 2-1000 queries
Topology 2-1000 queries

Figure 9.14: Total traffic at the DA over the time for all scenarios

9.5.6 Reliability and Accuracy

All service invocation responses are verified and found successful. However, APPUB
provides the caching mechanism on top of TRENDY by enabling the DA to serve
SD queries with cached values. The accuracy (freshness) of these values is ensured
by a cache lifetime attribute, which is sent by SAs with each cache (Section 9.3.4).
The DA saves the cached time to ensure that it will not serve any query with an
expired cached value. Therefore, all cached values provided by the DA will be
considered accurate.

9.6 Summary and Discussion

This chapter has covered the detail of the proposed APPUB, adaptive caching
technique, that balances the trade-off between service invocation delay and network

CHAPTER 9. ADAPTIVE PIGGYBACKED PUBLISHING (APPUB) 205

efficiency. This method provides an alternative to proxy behaviour by reacting
to the increasing number of service invocations. It adapts to the demand of a
resource for caching rather than blindly caching all resources in a network. Each
SA implements APPUB functionality to reduce the burden of service invocations
by sending cached values and corresponding lifetime values to the registry. This
mechanism offers multiple benefits: it decreases the service invocation delay and
also allows service hosts to share their load with the resource directory.

Several simulation experiments with emulated hardware nodes validate the
benefit of using APPUB technique in terms of low service invocation delay, overall
control packet overhead and energy consumption. The evaluation of the results
supports the efficiency of APPUB, but it also draws some important conclusions.
The density of a network plays a significant role in increasing the overall packet
overhead of the network, which is further augmented by the extra packets used for
caching. Nevertheless, the employment of APPUB reduces the number of service
invocation messages and consequently, decreases the overhead of a constrained
network. In addition, the low service invocation delay with APPUB improves the
user experience. However, this benefit comes only when the network is enough
busy and maintained cache is being used by the DA to serve the queries, so it
depends on the carefully chosen sensitivity-level of the APPUB hit-count threshold.
This research project arguments that it should be left to the ease of a SA, which
can choose a hit count threshold depending on its available resources. In this case,
different SAs are allowed to have a diverse range of threshold values. Even though,
this makes APPUB a PUSH-based approach, it still can face challenging situations
where high-capacity nodes can have high threshold values and can cost more
energy for constrained nodes within a multi-hop network. This can be improved
by changing the RPL OF settings, so the high-capacity nodes remain on high level
of a DODAG tree and never use a path of constrained nodes. Another perspective
which is out of scope of this thesis is the case of a dense network where a DODAG’s
root has many nodes at the first level that increases neighbour discovery traffic
and consequently, incurs high delays. Furthermore, a node can select a lifetime for
its cache value depending on its constraints and the criteria and requirements of a
network. It can use any algorithm to change this lifetime value adaptively.

The next chapter explains the effect of combining different TRENDY techniques
proposed in Chapters 7, 8 and 9.

Chapter 10

TRENDY: a Trend-based Service
Discovery Solution for the IoT

10.1 Introduction

Chapters 7, 8 and 9 have introduced new adaptive and grouping techniques for
the TRENDY protocol to cope with the IoT requirements gathered in Chapter 4.
The proposed techniques require small changes in TRENDY’s message formats
(Section 5.11). Furthermore, new rules are needed when a combination of these
techniques is used together. This chapter explains the usage of TRENDY with the
combination of proposed techniques. In addition, it discusses the evaluation done
by undertaking experiments to analyse the effect of using a combination of these
techniques in a network.

10.2 TRENDY Protocol with Adaptive
Techniques

This section describes the TRENDY protocol with the integration of adaptive
timer, APPUB and grouping techniques.

10.2.1 Message Format

The merger of timer, grouping and APPUB together with TRENDY requires
only one small update in the response of the DA for status maintenance updates
(Section 5.11.2). In the new format, the DA sends both trendy_counter and
proxy_mode in the payload to the SA. Figure 10.1 shows the order of attributes
in the updated message format. Grouping mechanism requires no change in the
TRENDY message formats (Section 5.11); however, the YGL message now needs to

206

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 207

include the trendy_counter and proxy_mode values in the payload. Furthermore,
the GL will respond to status update similar to the DA (Figure 10.1).

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � �
��
 ��

������� �� 	�
��
� � ��
���� ������
 ������� �� !" #
��� $����

� � � �

�
� �&�

�'��
��)��*�� ��� +� ,��-�

.�""�*� /�

Figure 10.1: The DA’s response to a status update message

10.2.2 SA roles

A SA can be a GM or GL. Each SA needs to implement capabilities defined
in Sections 5.2.2, 7.3.1 and 8.3.1. On the other hand, the APPUB technique
(Section 9.3.3) and GL role (Section 8.3.2) are optional features, which can be
enabled depending on the capability of a SA.

10.2.3 Policies

All GLs need to specify the trendy_counter and proxy_mode attributes in response
to status updates, as shown in Figure 10.1. If a GL only supports status maintenance
(Section 8.3.2), then it should set the proxy_mode at ‘0’ to stop GMs from sending
any extra information including, context attributes. The GM maintains another
GL_proxy_mode attribute, which is updated after receiving YGL message. All GMs
that implement the APPUB role (Section 9.3.3) use proxy_mode to decide about
the adaptive caching. In case of APPUB, the cache is always sent to the DA. After
sending cache to the DA, a GM needs to update its local GL as soon as possible
(if it’s grouped).

10.2.4 Framework

TRENDY’s framework (Section 5.10) is updated by the inclusion of new techniques
to offer a more efficient SD solution and to fill the research gaps. Figure 10.2 shows
the updated version of the framework.

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 208

��������� 	
���

��� ����	��
����
��	

����
��
��������

������
 �� �
 �
	�� ������	

�����
���	

�	������

�������

	������� �����

������� ����������

������� ����
�����

������� ���������

������� ���������

������� ���
������ �����������

��� ��

�� �

������������
����������

�	�

������
���������������

!����
��������

������ �����������

����
��

�	�������"""

�	������
�	�
�	������

Figure 10.2: New framework of TRENDY

10.3 Experiments and results

10.3.1 Introduction

Different combinations of TRENDY techniques are employed in the experiments
to evaluate the performance metrics (Section 6.2). The employed GLs in grouping
scenarios only manage status maintenance of their GMs. The number of queries
are varied (100 and 1000) for the following scenarios:

Case 1 - Basic TRENDY Service discovery (SD): This scenario enables the
basic functionality of TRENDY with service selection. All SAs send their
status reports to the DA in each time window.

Case 2 - Adaptive timer and grouping: In this scenario, grouping and timer
(hit_count_threshold fixed at 2) techniques are employed with the func-
tionality of case 1.

Case 3 - APPUB and timer: This scenario employs the APPUB technique
with the service_invocations_threshold fixed at 2 and the timer is con-
figured similar to case 2.

Case 4 - APPUB with timer and grouping: In this scenario, grouping is also
enabled on top of the case 3.

The simulations are configured similarly as defined in Section 6.3 with the
changes given in Table 10.1. Furthermore, all SAs in APPUB scenarios use

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 209

the cache lifetime of 10, 30 and 60 minutes for light, temperature and humidity
resources, respectively. All scenarios have 30 SAs hosting the mentioned services.
In grouping scenarios 5 SAs act as GLs, whereas in non-grouping scenarios 5 SAs
offer no service for a better comparison for all scenarios.

Table 10.1: Configurations for the experiments of TRENDY techniques

Total nodes 35 nodes + 1 border router
Physical topologies 1, 2 and 3 (Section 6.3.1)

RDC ContikiMAC
Number of locations 5 with 7 nodes in each location

Number of SAs hosting services 6 in each location
Number of cases 4 (cases)× 2 (query variations) = 8

Total Service Discovery queries 100 and 1000
Total Service Invocation queries 100 and 1000

First UA Query At 600 seconds
DA time window 7 minutes = 420 seconds

Number of time windows 20
Simulation Duration 420 × 20 = 8400 seconds

The impact of different TRENDY techniques on different performance metrics
is covered in Chapters 7, 8 and 9. This section focuses on their effect when those
techniques are used together in a scenario by analysing the results of simulations.

10.3.2 Service Invocation Delay and Cache hits

Figure 10.3 shows that the average service invocation delay decreased considerably
with the employment of APPUB and to some extent with timer in cases 2-4.
The delay for UA queries in topology 3 is higher than other topologies in all
scenarios, because of its high density. Overall, the substantial improvement is only
experienced in the scenarios where the number of queries is higher and APPUB is
employed by SAs. This performance is further elaborated in Figure 10.4, which
depicts that APPUB enabled the DA to serve around 70% queries with cache
in scenarios with 1000 queries. Moreover, timer in case 2 reduces the delay for
topology 3, because the reduction in the number of status updates eventually
translates into low delay only in a dense network. Figure 10.5 expresses this benefit
in a CDF graph that supports the same hypothesis. Furthermore, it explains that
provision of cache by APPUB reduces the 6LoWPAN’s burden and consequently,
decreases the delay for those queries where no cache is found at the DA, and
separate service invocation requests are sent.

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 210

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

case-1 case-2 case-3 case-4

S
er

vi
ce

 In
vo

ca
tio

n
D

el
ay

 in
 m

ill
i s

ec
on

ds

Scenarios

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.3: Average service Invocation delay for topologies 1-3 with the different
number of queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

case-1 case-2 case-3 case-4

N
um

be
r

of
 C

ac
he

 h
its

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.4: Total cache hits for topologies 1-3 with the different number of queries

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 211

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000

Service Invocation (SI) delay in milli seconds

Topology 1 - case-1
Topology 2 - case-1
Topology 3 - case-1

Topology 1 - case-2
Topology 2 - case-2
Topology 3 - case-2

Topology 1 - case-3
Topology 2 - case-3
Topology 3 - case-3

Topology 1 - case-4
Topology 2 - case-4
Topology 3 - case-4

Figure 10.5: CDF graphs of service Invocation delay for topologies 1-3 with 1000
queries

10.3.3 Control packet overhead

Figure 10.6 shows the significance of using the adaptive timer mechanism, as cases 2-
4 with timer have low application-level control overhead for all topologies. However,
case 4 has created more control traffic compared to cases 2 and 3, because it uses
both grouping and APPUB techniques, which require extra traffic to create groups
and to send status updates for caching (updates sent before normal scheduled
time).

The application-level control overhead can produce many times higher traffic
in the whole network, which depends on the network’s density and formed RPL’s
DODAG. Therefore, a total network control packet overhead is also analysed
to measure the impact of control traffic, as shown in Figure 10.7. The analysis
shows that timer reduces total traffic in cases 2-4 for all topologies. Furthermore,
networks with topologies 1 and 2 incur almost the same packet overhead. However,
topology 3 produces more traffic when grouping is enabled in cases 2 and 4, because
of its density. In addition, Figure 10.8 shows that the number of packets below the
routing layer are much higher for topology 3. Moreover, Figure 10.9 emphasises
that the high overhead for scenarios with 1000 queries is the result of extra traffic
generated by service invocation messages that eventually decreases in cases 3-4 for
all topologies, where APPUB is employed.

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 212

 0

 200

 400

 600

 800

 1000

 1200

case-1 case-2 case-3 case-4

N
um

be
r

of
 P

ac
ke

ts

Scenarios

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.6: Application-level control packet overhead for topologies 1-3 with the
different number of queries

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

CoAP packets
RPL packets

Rest of the traffic

Topo3 - 1000Topo2 - 1000Topo1 - 1000Topo3 - 100Topo2 - 100Topo1 - 100

Figure 10.7: Overall traffic for topologies 1-3 with the different number of queries

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 213

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

case-1

case-2

case-3

case-4

N
um

be
r

of
 P

ac
ke

ts

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.8: Traffic at layers below RPL for topologies 1-3 with the different
number of queries

 0

 5000

 10000

 15000

 20000

 25000

 30000

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

case-1
case-2
case-3
case-4

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

Service Discovery packets
Service Invocation packets

Topo3 - 1000Topo2 - 1000Topo1 - 1000Topo3 - 100Topo2 - 100Topo1 - 100

Figure 10.9: CoAP traffic for topologies 1-3 with the different number of queries

10.3.4 Scalability factor: Packets to the DA

TRENDY timer and grouping techniques are designed to reduce the number of
packets sent towards the DA from a 6LoWPAN by decreasing and localising
the traffic. Figure 10.10 depicts the same phenomenon by further explaining that
benefit of both techniques aggregated when their combination is used in cases 2 and
4. The slight increase in case 4 with 1000 queries is due to the extra traffic generated

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 214

by APPUB. Figure 10.11 shows the equivalent trend over the simulation’s period
for scenarios with 1000 queries, which explains that the efficiency in cases with
grouping will remain effective in the long-run. Whereas, case 3 also demonstrate
timer’s efficiency, but it decreases the overhead adaptively, because the adaptation
of the timer’s counter value over the time. The rise in case 4 compared to case 2 is
caused by extra packets needed to send for caching; however, both cases performed
almost similarly after 5000 seconds because no cache message is sent after that
time.

The total number of packets sent and received by the DA (excluding service
invocation messages) are shown in Figure 10.12. The number is much higher than
the application-level packets, but the overall trends remain the same. However,
topology 3 shows the impact of its density by increasing the actual traffic then
what is anticipated. Moreover, it is important to notice that, in reality, grouping
has increased the traffic at the DA in topology 3, because of the incongruity exist
between the application-level grouping topology and the generated RPL topology.

 0

 200

 400

 600

 800

 1000

 1200

case-1 case-2 case-3 case-4

T
ot

al
 n

um
be

r
of

 p
ac

ke
ts

Scenarios

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.10: Application-level packets received at the DA for topologies 1-3 with
the different number of queries

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 215

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 P

ac
ke

ts

Time

Topology 1 - case-1
Topology 2 - case-1
Topology 3 - case-1

Topology 1 - case-2
Topology 2 - case-2
Topology 3 - case-2

Topology 1 - case-3
Topology 2 - case-3
Topology 3 - case-3

Topology 1 - case-4
Topology 2 - case-4
Topology 3 - case-4

Figure 10.11: Application-level packets received at the DA over the time for
topologies 1-3 with the different number of queries

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

case-1

case-2

case-3

case-4

N
um

be
r

of
 P

ac
ke

ts

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Figure 10.12: Total traffic at the DA for topologies 1-3 with the different number
of queries

10.3.5 Energy Consumption and Network Lifetime

The individual energy consumption for all nodes is shown in Figure 10.13 for
scenarios with 100 and 1000 queries. Overall, nodes saved energy when TRENDY
techniques are enabled for all topologies. In general, topology 3 performed worst
in energy consumption, whereas topology 1 remained the best one. In case of
topology 3, case 3 proved to be the best case, because in cases 2 and 4, grouping

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 216

affects the energy consumption for 10% of the nodes, which are acting as GLs. It
is also evident that nodes consume more energy in scenarios with 1000 queries;
however, APPUB, in cases 3-4, saves more energy by offering cached values and
brings the energy consumption close to the results of scenarios with 100 queries.

Figure 10.14 shows the top five nodes in energy consumption for all scenarios. It
suggests that cases with TRENDY techniques will increase the network lifetime for
all topologies. However, grouping has affected the network lifetime for topology 3
by increasing the energy consumption of top nodes in cases 2 and 4. This again
points out the impact of incongruent grouping and RPL topologies. The network
lifetime approximations in Table 10.2 depicts that the network lifetime increases
about 10-15% when all TRENDY techniques are employed, and more efficiency
is gain for busier network in case of 1000 queries. It’s important to notice that
grouping increased the lifetime for topology 1 and remained neutral for topology 2,
whereas it decreases the network lifetime for topology 3. Therefore, grouping
maintained the same behaviour as discussed in Section 8.8.3.

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 217

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 5500 6000 6500 7000 7500

Energy consumption in milli Joules (mJ)

Topology 1 - case-1
Topology 2 - case-1
Topology 3 - case-1

Topology 1 - case-2
Topology 2 - case-2
Topology 3 - case-2

Topology 1 - case-3
Topology 2 - case-3
Topology 3 - case-3

Topology 1 - case-4
Topology 2 - case-4
Topology 3 - case-4

(a) Scenarios with 100 queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 5500 6000 6500 7000 7500

Energy consumption in milli Joules (mJ)

Topology 1 - case-1
Topology 2 - case-1
Topology 3 - case-1

Topology 1 - case-2
Topology 2 - case-2
Topology 3 - case-2

Topology 1 - case-3
Topology 2 - case-3
Topology 3 - case-3

Topology 1 - case-4
Topology 2 - case-4
Topology 3 - case-4

(b) Scenarios with 1000 queries

Figure 10.13: CDF graph of energy consumption per node for topologies 1-3

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 218

 5000

 5500

 6000

 6500

 7000

 7500

 8000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Topology 1 - 100 queries
Topology 2 - 100 queries
Topology 3 - 100 queries

Topology 1 - 1000 queries
Topology 2 - 1000 queries
Topology 3 - 1000 queries

Case-4Case-3Case-2Case-1Case-4Case-3Case-2Case-1

Figure 10.14: Top five nodes in energy consumption for topologies 1-3 with the
different number of queries

Table 10.2: Network lifetime approximation for topologies 1-3 with the different
number of queries

Network Lifetime (days)

Technique Topology #1 Topology #2 Topology #3
100 1000 100 1000 100 1000

Basic TRENDY 420 385 385 355 380 365
With timer and grouping 445 415 425 395 410 405
With timer and APPUB 445 430 425 415 430 420
With all mechanisms 455 440 425 415 405 400

10.3.6 Memory Requirements

The COOJA supports hardware-level simulations (Section 2.7.2); therefore, Tmote
Sky devices were emulated as SAs in all scenarios, and code is compiled with
MSP430 GCC compiler. This enables the same implementation to work directly
on the hardware as well. The size of the code is presented by dec, which is further
divided into data, bss and text. The data portion of the program contains
defined constants and initialised variables. The bss (Block Started Symbol) part
represents those variables that remain uninitialised in the start. Finally, text
contains the program instructions to be executed.

Table 10.3 shows the memory requirements for different features of TRENDY.
Erbium [70] (C implementation of CoAP) is downsized by eliminating extra options
and features to fit on the devices, but still requires around 6KB. The size of three

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 219

CoAP resources also include the extra driver code required to enable the sensors
on the device. The APPUB algorithm has consumed around 1KB of memory,
because a SA is the main decision maker (Section 9.3). Overall, TRENDY can be
implemented by a GM with all algorithms at cost of 1.7KB, and for a GL, this cost
will increase to 3.2KB (to manage 12 GMs without APPUB). In summary, the
compiled code with CONTIKI, CoAP, and other TRENDY features is compact
enough to directly run on Tmote Sky hardware, which has only 64KB of memory.

Table 10.3: Size of TRENDY protocol: Compiled with MSP430 GCC Compiler

Feature text data bss dec

CoAP (Downsized version) 5552 32 324 5908
3 sensors with CoAP resources 1892 56 8 1956

TRENDY basic 1328 0 206 1534
Timer 94 0 0 94
APPUB 942 0 50 992

SA as GM 130 18 0 148
SA as GL 1382 44 294 1720

10.4 Summary and Discussion

This chapter scrutinised the effect of using the combination of proposed timer,
grouping and APPUB techniques with TRENDY. It required a change in a message
format and new policies while using the techniques together. The roles of a SA
now vary to a GM or GL with different implemented techniques.

The analysis of several experiments concludes that the TRENDY techniques
maintain their individual efficiency, and total performance improves with the
aggregation of all their benefits. The timer mechanism improves the control
overhead both at application layer and in the whole network, which also reduce
the service invocation delay in a dense network. APPUB adapts to the increasing
demand of the service invocation requests and consequently, reduces the delay while
decreasing the traffic load. However, if a network is not busy enough, then more
sensitive APPUB can become a burden on the network. Therefore, the sensitivity
of its threshold value should be selected carefully, as in a multi-hop network of
heterogeneous devices, which is a norm in the IoT. Hence, the choice of one device
can affect the sleeping schedule and ultimately energy consumption of other nodes.
In experiments, it remains fixed for all nodes, but APPUB design allows a node to
dynamically change the sensitivity-level depending on its constraints and network
dynamics. The grouping mechanism localises the traffic in different vicinities and
consequently, improves the availability of the link towards the sink. However, it

CHAPTER 10. TRENDY SD SOLUTION FOR THE IOT 220

is concluded from the analysis of the results that it actually makes the situation
worse for GLs, if grouping topology is incongruent to RPL topology. Anyway, this
can’t be an issue in those scenarios where a GL has better battery source and
is a resource-rich device. Even though, the results of multiple topologies convey
that if RPL’s parameters are configured administratively to create more congruent
DODAG, then situation becomes suitable for grouping to improve the performance
of a network.

The next chapter compares the TRENDY SD solution with other prospective
techniques from different perspectives.

Chapter 11

Comparison with other solutions

11.1 Introduction

There is a plethora of SDPs devised for Ad-Hoc, MANET, WSN and IP networks
(Chapter 3). Industry-standard IP-based SDPs including SLP, UPnP, JINI and
Salutation are not directly applicable to 6LoWPANs because of their verbose and
complex data formats, high communication overhead and dependence on protocols,
which are unsuitable for constrained networks. On the other hand, the solutions
designed for constrained networks just focus on increasing the efficiency for a
single application (Section 3.9). Therefore, most of these existing standards do
not address the issues which need a solution to balance the trade-off between
the requirements of the IoT and efficiency for constrained domains (Chapter 4).
Consequently, this research project proposes TRENDY to provide context-aware
SD and selection. Moreover, it devises the timer, grouping and APPUB techniques
for adaptability to network dynamics to cope with the challenges.

This chapter covers the functionality based comparison of the proposed solu-
tion with other suitable options for 6LoWPANs. Two protocols are selected for
comparison, which are the adaptations of existing widely used IP-based standards:
uBonjour [64] (Bonjour Adaptation) and SSLP-based [18] (SLP Adaptation) SD
solutions. These adaptations have considered constraints of 6LoWPANs and have
reduced the complexity, size and overhead of existing protocols. Furthermore, those
solutions are backward compatible to their complex versions, but need a gateway
for such a translation. Another option could be the IETF Resource directory
which is closely related to TRENDY. However, it is still in a design phase, and can
benefit from the proposed techniques to enhance its performance. The proposed
solution focused on addressing the key requirements of efficiency, adaptability and
context-awareness. This chapter qualitatively compares the proposed solution with
the selected protocols from different perspectives related to SD and its requirements

221

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 222

in IoT environment.

11.2 Context-awareness

Context-awareness is an important feature that enables a user application to define
a better SD query to search the relevant services in the IoT. Furthermore, it can
enable a SD solution to assist the user application to select a better service based
on available context information.

uBonjour: uBonjour has no support for context-awareness. Thus, it only allows
the query with a fixed DNS based URL.

SSLP-based solution: This solution is extended [19] to enable context-awareness,
but no detail of context registration has been described. However, the idea
allows the user agents to send context-aware SD queries. Its service selection
only considers proximity (close in hops) as a service selection criteria.

TRENDY: This SDP has focused on context-awareness by defining a default
simple attribute-value pair format to describe context attributes (Section 5.5);
however, it allows the employment of any other semantic format as well.
TRENDY allows a discovery query to define service types, location and
other relevant information (e.g., semantic information). Its service selection
mechanism (Section 5.8) uses maintained context information including,
battery source, distance (number of hops), remaining power and popularity
to enable the discovery of an appropriate service based on user and network’s
context.

11.3 Extensibility

The IoT environment demands extensible solution to accommodate a range of
heterogeneous devices (resource-awareness) and new semantic formats for service
descriptions. Following is the comparison of SD solutions from the extensibility
perspective:

uBonjour: uBonjour uses fixed service description format by only allowing DNS
URI to describe a service. It has not described any specific roles for hetero-
geneous devices.

SSLP-based solution: SSLP-based solution uses fixed SLP service types as
service descriptions. However, it describes two profiles for nodes: SA and

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 223

master node. The master nodes serves as local registries and localises the
information by enabling a hierarchical architecture.

TRENDY: TRENDY has a simple service description format, but allows the
usage of any other format (Section 5.4). It proposes different roles with
modular design to enable nodes to implement distinctive features depending
on their capabilities (Section 10.2.2).

11.4 Interoperability

Interoperability of protocols and systems is important to allow their usage with
other existing solutions.

uBonjour: uBonjour uses DNS-SD to offer interoperability with DNS infrastruc-
ture, but it has not defined an efficient way to maintain a central directory
while employing mDNS inside the network.

SSLP-based solution: SSLP-based solution offers interoperability with SLP;
however, it requires an application gateway for translation between protocol.

TRENDY: TRENDY employs CoAP that enables the RESTful web service
paradigm to offer an open and interoperable framework (Section 10.2.4). It
allows the discovery using either CoAP or HTTP, and central registry can
be updated to offer interoperability by passing services in many formats,
including, WSDL and DNS-URIs (Section 5.11.3).

11.5 Constraints Considerations

Following is the list of the constraints discussed for each of the protocols being
compared:

Devices with sleep cycles: uBonjour uses mDNS and multiple packets for ser-
vice registration and status updates, which needs more data to be passed on
in a multi-hop network and thus is an unsuitable choice for devices with sleep
cycles. SSLP-based solution utilises unicast for discovery, but still requires
service information to be communicated between different local directories
and the DA. This demands high-bandwidth usage, as service status main-
tenance is required at multiple places. TRENDY addresses this challenge in
multiple ways: it uses unicast and timer mechanism to decrease the control
overhead, and its APPUB technique allows the nodes to sleep more even in
case of high number of service invocations.

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 224

Code and Packet Size: All protocols have considered 6LoWPANs code and
packet size issues (Section 4.4.4), and can run on constrained devices with
compact packet size.

11.6 Dependencies

Following is the dependency list of all protocols being compared:

uBonjour: uBonjour requires multicast support.

SSLP-based solution: This needs an application gateway to translate between
SLP and SSLP messages. In addition, local master nodes are required to be
deployed in each area.

TRENDY: This protocol requires CoAP-to-HTTP seamless proxy where a UA
wants to use HTTP for service invocation (Section 10.2.4). Furthermore,
some nodes are required to act as GLs to reap the benefits of the grouping
mechanism.

11.7 Performance Metrics

The performance metrics for a SD solution consists of: Service Discovery delay,
Service Invocation delay, energy consumption, scalability in terms of protocol’s
architecture and control overhead (Section 6.2). This section compares TRENDY
with other solutions from these metrics perspectives.

11.7.1 Service Discovery delay

A UA mostly queries from outside the network in a IoT environment, which needs
a centralised registry to deal with SD queries. Thus, in that case, all solutions
will perform similarly; however, the service discovery delay will be variable for
queries that are initiated from within a network as these solutions use different
architectures (Section 11.7.3).

11.7.2 Service Invocation support

A SD solution can support different levels of service invocation (Section 3.10.5).
TRENDY provides service invocation support, and its APPUB technique provides
cached values to improve the service invocation delay. On the other hand, none
of the compared techniques support service invocation other than finding a host
device.

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 225

11.7.3 Scalability

The scalability of a SD solution depends upon the architecture of a protocol and
its behaviour in response to the increasing number of nodes and services within a
network in terms of control overhead. The control overhead of a protocol is the
sum of all service registration, advertisement and status update messages.

In a centralised architecture, all nodes register their services at the central
registry, whereas in a distributed directory based architecture, all services are
registered to local registries. On the other hand, directory-less solutions allow
nodes to pro-actively advertise their services within vicinity, which are cached by
their neighbours for a quick SD response to a user agent. This cached service
information at a registry or neighbour node requires status maintenance to ensure
the reliability of SD responses, which is achieved by refreshing the status of
registered services. However, this increases the control overhead of a protocol,
and result in extra energy consumption of nodes and can also cause a bottleneck
problem in centralised architectures.

This section analyses the scalability in the context of control overhead of SDPs
including, uBonjour, SSLP-based solution and TRENDY.

uBonjour: uBonjour uses a directory-less approach, which generates high multic-
ast traffic to announce services in a vicinity that are cached by the neighbours.
However, it still needs a centralised registry, e.g., service proxy [101] or a
mDNS daemon [64] to allow a user application from outside the network to
efficiently discover a service. In uBonjour, a node needs to send 2-4 pack-
ets [64, 65] for the registration of a single service. This adds extra burden
on the network as multicast is used to announce services inside the net-
work. The effect is multiplied in case of status maintenance as it will require
the same number of status updates for all advertised services. Therefore,
uBonjour entails heavy traffic for service registration and status maintenance
in a IoT scenario that hosts 100s of services, or otherwise it will increase
service discovery delay tremendously in absence of an service advertisement
mechanism.

SSLP-based solution: SSLP-based solution has a centralised architecture; how-
ever, it devises DPAs (Directory Proxy Agents) based local registries to
enable distributed architecture. In this solution, all host devices send their
registrations to dedicated DPAs in their vicinity that forwards the informa-
tion towards the centralised registry after storing it in its registry. Its packet
format is compact, which requires one packet for each service. However,
all SAs register their services at a DPA in the vicinity, which forwards this

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 226

cache to the centralised registry. Similarly, the status updates are done by re-
registering services to maintain the soft values at both DPAs and centralised
directory. This process doubles the control overhead for service registration
and status maintenance.

TRENDY: TRENDY has a centralised architecture, but it also proposes grouping
mechanism to localise the traffic in a specific area depending on the physical
location of nodes. In TRENDY, nodes declare their implemented roles while
registering at the DA, and later some nodes are selected by the DA to act
as group leaders (GLs) for their vicinities. The role of a GL varies as it
depends on the the capability of a node. Load balancing policy allows GLs
to take turns to prolong the network’s lifetime. The grouping mechanism
enables distributed behaviour of the architecture by localising information in
different groups. Each SA can register multiple services to the centralised
registry by using one registration message (Section 5.11.1). In experiments
(Section 10.3.1), three service are registered together with context attributes in
a single 6LoWPAN packet. TRENDY describes a single 6LoWPAN packet to
update the status of all services hosted by a SA (Section 5.11.2). Furthermore,
it introduces a demand-based adaptive timer that further reduces the control
overhead (Section 7).

11.7.4 Energy Consumption

Energy consumption in a constrained network depends on the employed RDC
mechanism and control overhead of a protocol. High control overhead means
that radio will be switched on more often to send and receive control messages
between nodes, which translates into more energy consumption. This causes a
ripple effect in case of a multi-hop network, where more nodes will need to be
awake to pass the messages towards the receiver node. Section 11.7.3 has described
that how TRENDY will require fewer numbers of control packets compared to
other protocols. Furthermore, uBonjour uses multicast for service registration
and advertisement, which require most of the devices to listen and forward to the
messages not intended for them that further increases the energy overhead. Thus,
nodes will consume less energy when TRENDY will be used.

11.8 Summary

Table 11.1 presents the comparison of uBonjour, SSLP-based solution and the
proposed TRENDY solution from different aspects. In summary, the proposed

CHAPTER 11. COMPARISON WITH OTHER SOLUTIONS 227

solution offers a better context-aware, adaptive and efficient SD solution compared
to other protocols.

Table 11.1: Comparison of SDPs for the IoT

uBonjour SLP adaptation TRENDY
Context-Aware No Yes Yes

Service Description Fixed Fixed Any

Discovery Scope Local Local Local

Interoperability DNS-SD SLP CoAP, and HTTP
with gateway with seamless proxy

Dependencies Multicast Application gateway Proxy for HTTP

Architecture Service cache Multiple One or many
on each node directories directories

Registration 2-4 messages 1 message 1 message
for each service for each service for multiple services

Status maintenance Same as Same as 1 message
registration registration for all services

Adaptive No No Adaptive timer
status maintenance mechanism
Discovery query DNS URI Service type Service type and

with scopes context information
Service selection No Yes Yes

(number of hops) (multiple attributes)
Service invocation No No Yes

Caching No No Yes

Adaptive Caching No No Yes
(APPUB)

Support No No APPUB
for sleepy nodes
Resource-aware No Yes Yes

(2 profiles) (Multiple profiles)
Message size Fits in a packet Fits in a packet Fits in a packet

Chapter 12

Conclusions and Future Work

This research project is focused on providing an efficient, context-aware and adaptive
SD solution for the IoT. In this chapter, the completed work is summarised and
the potential future work is discussed.

12.1 Conclusions

The IoT paradigm has introduced new perspective to be realised for the future
Internet. Isolated islands of WSNs are now enabled to merge with the Internet by
new technologies, such as 6LoWPAN. This merger allows IP based connectivity of
constrained networks with the Internet. SD and service selection are the key to
change the way we perceive constrained networks. Furthermore, web services can
provide a standard interface to offer interoperability with other existing similar
solutions. However, the design of such a solution faces the underlying challenges
of these networks, for example; small packet size and sleep cycles, etc. On one
hand, the sleep cycles demand the registry based architecture. On another hand,
the limited bandwidth and energy required to decrease the control overhead in
such networks. Services are mostly hosted on battery operated devices, which
are prone to failure. Therefore, status maintenance is required in case of registry
based solution, which increases the bandwidth utilisation and energy consumption.
All these challenges require a solution that deals with the heterogeneity and
interoperability requirements of the IoT, while addressing the constraints posed by
WSNs.

This research project has proposed TRENDY: an adaptive and context-aware
SD solution for the IoT. To deal with the interoperability, this solution employs
CoAP-based RESTful web services, which enable application-layer integration
of constrained domains and the Internet. Moreover, the context-aware service
selection mechanism assists users to discover appropriate services by using available

228

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 229

user- and network-based context. The accuracy of service information is ensured
by keeping soft values at the DA and maintaining the status maintenance.

The trade-off between status maintenance load and reliability is managed by a
demand-based adaptive timer. This timer mechanism is even beneficial in scenarios
where the basic interval for status updates is an hour or more, as the timer’s
maximum counter limit can be configured to increase the interval adaptively. A
IoT environment can have peaked usage times where a constrained network can
easily be overwhelmed by the increased demand of its resources.

The research project devises the APPUB technique to deal with such situations
by enabling service hosts to share their load with the resource directory. Therefore,
SAs push the cache values of busy services towards the registry, which decreases the
service invocation delay because of the cache-hits. The DA ensures the accuracy
of cached information by using the respective cache lifetime values to send only
valid cached values.

The proposed context-aware grouping technique divides the network at the
application layer, by creating location-based groups. This grouping of nodes local-
ises the control overhead and provides the base for service composition, localised
aggregation and processing of data. The simulation results show that TRENDY’s
techniques decrease the control overhead, energy consumption and service invoca-
tion delay. Additionally, the grouping technique considerably decreases the number
of packets towards the sink and thus improves scalability in a multi-hop network.
However, the performance of the grouping depends on the congruity between the
grouping and routing topologies.

Following is a brief summary about the features of the proposed solution:

Web Service Paradigm: TRENDY uses a RESTful web service paradigm. En-
tities use either CoAP (default) or HTTP (in case the targeted host un-
derstands it or DA is acting as a proxy) to define their services and to
communicate with each other. The use of CoAP/HTTP simple proxy can
seamlessly translate requests from both protocols. This blends the real-world
devices into existing web and enables the WoT paradigm.

Context-awareness: In TRENDY, the DA stores all service and contextual
information, including service descriptions, location, battery consumed, and
registration time for all registered nodes. Furthermore, it maintains a hit
counter for each service, which is incremented whenever a service is discovered
and selected. The maintained context information is used by the service
selection and better GL selection mechanisms.

Grouping: Context-aware grouping serves several purposes, including simple
localisation of status maintenance, execution of group-based queries to offer

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 230

an optional local service repository. It costs in terms of some packet overhead.
However, networks can get the benefit in the form of localised communication,
which conserves energy. In addition, this enables a DA to compose and offer
group-based services, e.g., to actuate a command in a certain area. The
experiments (Section 8.8) demonstrate the benefit of grouping in terms of
scalability and energy efficiency, while slightly increasing the control overhead.

Hybrid architecture: Basically, TRENDY has a centralised architecture that
converges to a distributed one when the DA uses context information to
group GMs.

Service Management: All service records have soft states at the DA, therefore,
needs to be updated depending on the reliability and other requirements.
TRENDY introduces an adaptive timer to increase or decrease the update
interval depending on the demand of a service. This marginally decreases the
bandwidth by reducing the number of update messages. The experiments
(Section 7.5) show that the employment of timer mechanism reduces the con-
trol overhead and consequently, improves the energy efficiency and scalability
of TRENDY.

Service Discovery: The DA determines the matching service from the registry
using the attributes of the UA request. Subsequently, it responds back to the
UA by appending the service information (resource’s URL and IP address of
the host) of one or more matching services in the payload.

Service Selection: A UA can ask for the DA’s assistance in selecting the best
matching host if multiple prospective hosts are found. In this case, the
DA determines the most appropriate service (if multiple services have been
discovered) using available user and network context information, e.g., battery,
hops count, UA location, etc. The simulation experiments (Section 6.5) show
that service selection lowers the service invocation delay while improving the
energy efficiency as well.

Service Invocation: SD is completed when an application gets the response with
a service identifier and address of its host. TRENDY, however, enables
service invocation using a RESTful web service interface and takes a step
ahead by defining APPUB an adaptive caching technique. The simulations
(Section 9.5) supports the point that APPUB reduces the service invocation
delay closer to the NullRDC performance for ContikiMAC scenarios.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 231

12.2 Future Work

Following are few dimensions and recommendations based on the discussions from
previous chapters, which can be consider for potential future work:

Extension to the protocol’s functionality: TRENDY has considered differ-
ent aspects of the IoT by offering a context-aware SD solution; however,
following aspects can be further investigated to allow a broader applicability
of the protocol.

• Dynamic Service mashups: The context-awareness of TRENDY
enables the DA to understand different aspects of services and devices
in a network. Furthermore, its grouping mechanism changes the DA’s
perspective of the network. After grouping the nodes, the DA can
disseminate a command in an area by passing one command to all
GLs in the area. This platform allows a DA to mashup services to
create higher-level services. The IoT scenarios (Section 4.2) can be
better served with service mashups; for example, a user can execute one
command for the whole area without searching and executing services
individually. In addition, the DA can smartly offer related services by
using user’s context details. Therefore, an investigation can be done to
define, implement and analyse an extension to grouping mechanism to
create service mashups dynamically using user’s and network’s context
information.

• Semantic discovery: An investigation to improve context-awareness
by analysing the feasibility to use compact and rich formats to enable
semantics based discovery.

• Adaptability of timer: The adaptability of a timer currently considers
the number of times a node has sent updates and the demand of its
services. An investigation can consider other attributes e.g., node’s
energy etc. to analyse the behaviour of the timer and its efficiency.

• Decision making in APPUB : Currently, SAs solely decide about
pushing the cache at the DA, this can be changed for some scenarios
to find out the impact of pull-based approach where a DA requests for
cache values to serve queries.

Expansion of experimental analysis: Several experiments are conducted us-
ing different RDC, number of queries and topologies. Following are some
recommendations to investigate and broaden the experiments:

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 232

• RPL configurations and performance: The impact of RPL’s DODAG
has been extensively mentioned in experimental analysis. An investiga-
tion to change the RPL’s OF to better suit the network dynamics can
be conducted.

• Different routing protocols: Other routing protocols can be em-
ployed to analyse their impact on the performance of TRENDY.

• Mobility: Mobile nodes are common in IoT environments, as local
mobile phones can become a part of the network to use its services and
also share their services (hosted sensors) with the registry. Therefore,
an investigation to find out TRENDY’s behaviour scenarios can be
investigated and can be improved.

• Compare multicast: The group queries can benefit from multicast
technique [97] to execute group based commands. However, multicast
is costly so an investigation can be conducted to compare available
multicast techniques and test their applicability to execute group-based
queries.

• Large-scale Network: Another perspective could be to design the
collaboration of different small networks to form a large-scale SD sys-
tem. Moreover, the solution can be deployed in a real-life scenario to
materialise the discussed scenarios in Section 4.2.

• Searching in a large-scale network: Another dimension is searching
the objects on the Internet using a search engine so the important
questions for a future work in a broader perspective include: how
services offered by one network can be made available to the existing
DNS infrastructure or what context or semantic information will be
required to facilitate the user to discover appropriate services using a
search engine (related work [24, 85]).

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design
and implementation of an intentional naming system. In ACM SIGOPS
Operating Systems Review, volume 33, pages 186–201. ACM, 1999.

[2] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, D. Li, N. Limam, J. Xiao,
and J. Ziembicki. Service discovery protocols: A comparative study. In
Proceedings of IM, pages 15–18, 2005.

[3] H. Alex, M. Kumar, and B. Shirazi. Service discovery in wireless and mobile
networks. Wireless information highways, page 251, 2005.

[4] H. Alex, M. Kumar, and B. Shirazi. Midfusion: An adaptive middleware
for information fusion in sensor network applications. Information Fusion,
9(3):332–343, 2008.

[5] Z.B. Alliance. Zigbee specification. ZigBee document 053474r06, version,
1:378, 2006.

[6] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella.
Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7(3):537–568, 2009.

[7] Fatima Muhammad Anwar, Muhammad Taqi Raza, Seung-Wha Yoo, and
Ki-Hyung Kim. Enum based service discovery architecture for 6lowpan. In
Wireless Communications and Networking Conference (WCNC), 2010 IEEE,
pages 1–6. IEEE, 2010.

[8] K. Arabshian and H. Schulzrinne. Gloserv: Global service discovery archi-
tecture. In Mobile and Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual International Conference on, pages
319–325. IEEE, 2004.

[9] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann
Wollrath. Jini Specification. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

233

REFERENCES 234

[10] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787–2805, 2010.

[11] M. Balazinska, H. Balakrishnan, and D. Karger. Ins/twine: A scalable peer-
to-peer architecture for intentional resource discovery. Pervasive Computing,
pages 149–153, 2002.

[12] SIG Bluetooth. Bluetooth specification version 1.1. Available HTTP:
http://www. bluetooth. com, 2001.

[13] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An applica-
tion protocol for billions of tiny internet nodes. Internet Computing, IEEE,
16(2):62–67, 2012.

[14] S Bradner, L Conroy, and K Fujiwara. The e. 164 to uniform resource
identifiers (uri) dynamic delegation discovery system (ddds) application
(enum). Internet Request for Comments, vol. RFC, 6116, 2011.

[15] J. Buford, B. Burg, E. Celebi, and P. Frankl. Sleeper: A power-conserving
service discovery protocol. In Mobile and Ubiquitous Systems-Workshops,
2006. 3rd Annual International Conference on, pages 1–9. IEEE, 2006.

[16] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Gsd: A novel group-based
service discovery protocol for manets. In Mobile and Wireless Communica-
tions Network, 2002. 4th International Workshop on, pages 140–144. IEEE,
2002.

[17] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service
discovery in pervasive computing environments. Mobile Computing, IEEE
Transactions on, 5(2):97–112, 2006.

[18] Shafique Ahmad Chaudhry, Won Do Jung, Chaudhary Sajjad Hussain,
Ali Hammad Akbar, and Ki-Hyung Kim. A proxy-enabled service discovery
architecture to find proximity-based services in 6lowpan. In Embedded and
Ubiquitous Computing, pages 956–965. Springer, 2006.

[19] S.H. Chauhdary, M.Y. Cui, J.H. Kim, A.K. Bashir, and M.S. Park. A context-
aware service discovery consideration in 6lowpan. In Third 2008 International
Conference on Convergence and Hybrid Information Technology, pages 21–26.
IEEE, 2008.

[20] Y. Chen and Q. Zhao. On the lifetime of wireless sensor networks. Commu-
nications Letters, IEEE, 9(11):976–978, 2005.

REFERENCES 235

[21] S. Cheshire and M. Krochmal. Multicast dns. Technical report, IETF, 2006.

[22] C. Cho and D. Lee. Survey of service discovery architectures for mobile ad
hoc networks. term paper, Mobile Computing, CEN, 5531, 2005.

[23] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services
description language (wsdl) 1.1, 2001.

[24] Benoit Christophe, Vincent Verdot, and Vincent Toubiana. Searching the’web
of things’. In Semantic Computing (ICSC), 2011 Fifth IEEE International
Conference on, pages 308–315. IEEE, 2011.

[25] Walter Colitti, Kris Steenhaut, Niccolò De Caro, Bogdan Buta, and Virgil
Dobrota. Evaluation of constrained application protocol for wireless sensor
networks. In Local & Metropolitan Area Networks (LANMAN), 2011 18th
IEEE Workshop on, pages 1–6. IEEE, 2011.

[26] J. Coutaz, J.L. Crowley, S. Dobson, and D. Garlan. Context is key. Commu-
nications of the ACM, 48(3):49–53, 2005.

[27] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to soap, wsdl, and uddi.
Internet Computing, IEEE, 6(2):86–93, 2002.

[28] A.K. Dey. Understanding and using context. Personal and ubiquitous
computing, 5(1):4–7, 2001.

[29] A. Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of the 1st
international conference on Mobile systems, applications and services, pages
85–98. ACM, 2003.

[30] A. Dunkels, J. Alonso, and T. Voigt. Making tcp/ip viable for wireless sensor
networks. SICS Research Report, 2003.

[31] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight and flexible
operating system for tiny networked sensors. In Local Computer Networks,
2004. 29th Annual IEEE International Conference on, pages 455–462. IEEE,
2004.

[32] Adam Dunkels. The contikimac radio duty cycling protocol. Technical Report
T2011:13, Swedish Institute of Computer Science, 2011.

[33] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-
based on-line energy estimation for sensor nodes. In Proceedings of the 4th
workshop on Embedded networked sensors, pages 28–32. ACM, 2007.

REFERENCES 236

[34] P.E. Engelstad, Y. Zheng, R. Koodli, and C.E. Perkins. Service discovery
architectures for on-demand ad hoc networks. International Journal of Ad
Hoc and Sensor Networks, 1(3), 2005.

[35] Muhammad Omer Farooq and Thomas Kunz. Operating systems for wireless
sensor networks: a survey. Sensors, 11(6):5900–5930, 2011.

[36] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, 2000.

[37] J. Gao and P. Steenkiste. Rendezvous points-based scalable content discovery
with load balancing. Proceedings of NGC 2002, 2002.

[38] J.A. Garcia-Macias and D.A. Torres. Service discovery in mobile ad-hoc
networks: better at the network layer? In Parallel Processing, 2005. ICPP
2005 Workshops. International Conference Workshops on, pages 452–457.
IEEE, 2005.

[39] R.S. Gopinath, I. Khan, and Z. Suryady. Optimized web service architecture
for 6lowpan. In Information Networking, 2009. ICOIN 2009. International
Conference on, pages 1–3. IEEE, 2009.

[40] IETF Zeroconf Working Group et al. Zero configuration networking (zero-
conf).

[41] M. Gudgin, N. Mendelsohn, M. Nottingham, and H. Ruellan. Xml-binary
optimized packaging. W3C Recommendation, Jan, 2005.

[42] Dominique Guinard. A Web of Things Application Architecture – Integrating
the Real-World into the Web. Ph.d., ETH Zurich, 2011.

[43] Dominique Guinard and Vlad Trifa. Towards the web of things: Web mashups
for embedded devices. In Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009), in proceedings of WWW
(International World Wide Web Conferences), Madrid, Spain, 2009.

[44] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and
Domnic Savio. Interacting with the soa-based internet of things: Discovery,
query, selection, and on-demand provisioning of web services. Services
Computing, IEEE Transactions on, 3(3):223–235, 2010.

[45] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From
the internet of things to the web of things: Resource-oriented architecture
and best practices. In Architecting the Internet of Things, pages 97–129.
Springer, 2011.

REFERENCES 237

[46] E. Guttman. Service templates and service: Schemes. Technical report,
IETF, 1999.

[47] E. Guttman, C. Perkins, J. Veizades, and M. Day. Slpv2: Service location
protocol. Technical report, Version 2. RFC 2608, Jun, 1999.

[48] G. Halkes, A. Baggio, and K. Langendoen. A simulation study of integrated
service discovery. Smart Sensing and Context, pages 39–53, 2006.

[49] H. Hassanein, Y. Yang, and A. Mawji. A new approach to service discovery in
wireless mobile ad hoc networks. International Journal of Sensor Networks,
2(1):135–145, 2007.

[50] S. Helal, N. Desai, V. Verma, and C. Lee. Konark-a service discovery and
delivery protocol for ad-hoc networks. In Wireless Communications and
Networking, 2003. WCNC 2003. 2003 IEEE, volume 3, pages 2107–2113.
IEEE, 2003.

[51] A. Helmy, S. Garg, N. Nahata, and P. Pamu. Card: a contact-based archi-
tecture for resource discovery in wireless ad hoc networks. Mobile networks
and applications, 10(1):99–113, 2005.

[52] Robert M Hinden and Stephen E Deering. Ip version 6 addressing architecture.
Technical report, IETF, 2006.

[53] Q. Huaifeng and Z. Xingshe. Context aware sensornet. In Proceedings
of the 3rd international workshop on Middleware for pervasive and ad-hoc
computing, pages 1–7. ACM, 2005.

[54] M.C. Huebscher and J.A. McCann. Adaptive middleware for context-aware
applications in smart-homes. In Proceedings of the 2nd workshop on Middle-
ware for pervasive and ad-hoc computing, pages 111–116. ACM, 2004.

[55] J. Hui and P. Thubert. Compression format for ipv6 datagrams in 6lowpan
networks. draft-ietf-6lowpan-hc-04 (work in progress), 2008.

[56] Jonathan W Hui and David E Culler. Ip is dead, long live ip for wireless
sensor networks. In Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 15–28. ACM, 2008.

[57] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in
wireless sensor networks. In Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 134–147. ACM, 2004.

REFERENCES 238

[58] Philipp K Janert. Gnuplot in action: understanding data with graphs. Man-
ning Publications Co., 2009.

[59] C. Jardak, E. Meshkova, J. Riihijarvi, K. Rerkrai, and P. Mahonen. Im-
plementation and performance evaluation of nanoip protocols: Simplified
versions of tcp, udp, http and slp for wireless sensor networks. In Wireless
Communications and Networking Conference, 2008. WCNC 2008. IEEE,
pages 2474–2479. IEEE, 2008.

[60] Miloš Jevtić, Nikola Zogović, and Goran Dimić. Evaluation of wireless sensor
network simulators. In Proceedings of the 17th Telecommunications Forum
(TELFOR 2009), Belgrade, Serbia, pages 1303–1306, 2009.

[61] Patrick Olivier Kamgueu, Emmanuel Nataf, Thomas Djotio Ndié, and Olivier
Festor. Energy-based routing metric for rpl. Rapport de recherche RR-8208,
INRIA, Jan 2013.

[62] James Kempf and Jason Goldschmidt. Notification and subscription for slp.
Technical report, RFC 3082, March, 2001.

[63] K Kim, S Yoo, H Lee, S Daniel Park, and J Lee. Simple service location
protocol (sslp) for 6lowpan. drraft-daniel-6lowpan-sslp-00, 7, 2005.

[64] Ronny Klauck and Michael Kirsche. Bonjour contiki: a case study of a
dns-based discovery service for the internet of things. In Ad-hoc, Mobile, and
Wireless Networks, pages 316–329. Springer, 2012.

[65] Ronny Klauck and Michael Kirsche. Enhanced dns message compression
Âŋoptimizing mdns/dnsÂŋsd for the use in 6lowpans. In Proceedings of the
9th International Workshop on Sensor Networks and Systems for Pervasive
Networks (PerSeNS 2013), co-located with the 11th IEEE International
Conference on Pervasive Computing and Communications (PerCom 2013),
March 2013.

[66] M. Klein, B. König-Ries, and P. Obreiter. Lanes: A Lightweigth Overlay for
Service Discorvery in Mobile Ad Hoc Networks. Univ., Fak. für Informatik,
2003.

[67] M. Klein, B. Konig-Ries, and P. Obreiter. Service rings-a semantic overlay
for service discovery in ad hoc networks. In Database and Expert Systems
Applications, 2003. Proceedings. 14th International Workshop on, pages 180–
185. IEEE, 2003.

REFERENCES 239

[68] R. Koodli and C.E. Perkins. Service discovery in on-demand ad hoc networks.
IETF draft, 2002.

[69] Aleksandar Kovacevic, Junaid Ansari, and Petri Mahonen. Nanosd: A
flexible service discovery protocol for dynamic and heterogeneous wireless
sensor networks. In Mobile Ad-hoc and Sensor Networks (MSN), 2010 Sixth
International Conference on, pages 14–19. IEEE, 2010.

[70] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. A low-power
coap for contiki. In Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE
8th International Conference on, pages 855–860. IEEE, 2011.

[71] M. Krochmal and S. Cheshire. Dns-based service discovery. Technical report,
IETF, 2011.

[72] Philip Alexander Levis, Neil Patel, David Culler, and Scott Shenker. Trickle:
A self regulating algorithm for code propagation and maintenance in wireless
sensor networks. Computer Science Division, University of California, 2003.

[73] Y. Liang, X. Zhou, Z. Yu, H. Wang, and B. Guo. A context-aware resource
management framework for smart homes. In Ubiquitous Information Techno-
logies and Applications (CUTE), 2010 Proceedings of the 5th International
Conference on, pages 1–8. IEEE, 2010.

[74] H. Luo and M. Barbeau. Performance evaluation of service discovery strategies
in ad hoc networks. In Communication Networks and Services Research,
2004. Proceedings. Second Annual Conference on, pages 61–68. IEEE, 2004.

[75] W. Ma, B. Wu, W. Zhang, and L. Cheng. Implementation of a lightweight
service advertisement and discovery protocol for mobile ad hoc networks. In
IEEE Globecom, pages 1–5. Citeseer, 2003.

[76] X. Ma and W. Luo. The analysis of 6lowpan technology. In Computa-
tional Intelligence and Industrial Application, 2008. PACIIA’08. Pacific-Asia
Workshop on, volume 1, pages 963–966. IEEE, 2008.

[77] S. Madden, W. Hong, J. Hellerstein, and M. Franklin. TinydbâĂŤa declarative
database for sensor networks. TinyDB web page. http://telegraph. cs. berkeley.
edu/tinydb, 2005.

[78] R. Marin-Perianu, C. Lombriser, P. Havinga, H. Scholten, and G. Tröster.
Tandem: A context-aware method for spontaneous clustering of dynamic
wireless sensor nodes. In Proceedings of the 1st international conference on
The internet of things, pages 341–359. Springer-Verlag, 2008.

REFERENCES 240

[79] R. S. Marin-Perianu, P. H. Hartel, and J. Scholten. A classification of service
discovery protocols. Technical Report TR-CTIT-05-25, Centre for Telematics
and Information Technology University of Twente, Enschede, June 2005.

[80] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga, and P. H. Hartel.
Performance evaluation of a cluster-based service discovery protocol for
heterogeneous wireless sensor networks. Technical Report TR-CTIT-06-61,
Centre for Telematics and Information Technology University of Twente,
Enschede, October 2006.

[81] Raluca Marin-Perianu, Hans Scholten, Paul Havinga, and Pieter Hartel.
Energy-efficient cluster-based service discovery in wireless sensor networks.
In Local Computer Networks, Proceedings 2006 31st IEEE Conference on,
pages 931–938. IEEE, 2006.

[82] RS Marin-Perianu, J. Scholten, PJM Havinga, and PH Hartel. Cluster-based
service discovery for heterogeneous wireless sensor networks. International
Journal of Parallel, Emergent and Distributed Systems, 23(4):325–346, 2008.

[83] B. Martin and B. Jano. Wap binary xml content format. W3C Note, 64,
1999.

[84] Simon Mayer and Dominique Guinard. An extensible discovery service for
smart things. In Proceedings of the Second International Workshop on Web
of Things, page 7. ACM, 2011.

[85] Simon Mayer, Dominique Guinard, and Vlad Trifa. Searching in a web-
based infrastructure for smart things. In Internet of Things (IOT), 2012 3rd
International Conference on the, pages 119–126. IEEE, 2012.

[86] M. Mealling and R. Daniel. Rfc 2915: The naming authority pointer (naptr)
dns resource record, 2000.

[87] E. Meshkova, J. Riihijarvi, M. Petrova, and P. Mahonen. A survey on
resource discovery mechanisms, peer-to-peer and service discovery frameworks.
Computer Networks, 52(11):2097–2128, 2008.

[88] Adnan Noor Mian, Roberto Baldoni, and Roberto Beraldi. A survey of
service discovery protocols in multihop mobile ad hoc networks. Pervasive
Computing, IEEE, 8(1):66–74, 2009.

[89] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Ipv6 over low-power
wireless personal area networks (6lowpans): Overview, assumptions, problem
statement, and goals. Network working group, IETF, 2007.

REFERENCES 241

[90] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of ipv6
packets over ieee 802.15. 4 networks. Internet proposed standard RFC, 4944,
2007.

[91] G. Moritz, E. Zeeb, F. Golatowski, D. Timmermann, and R. Stoll. Web
services to improve interoperability of home healthcare devices. In Pervasive
Computing Technologies for Healthcare, 2009. PervasiveHealth 2009. 3rd
International Conference on, pages 1–4. IEEE, 2009.

[92] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski, D. Timmermann, and R. Stoll.
Devices profile for web services in wireless sensor networks: Adaptations
and enhancements. In Emerging Technologies & Factory Automation, 2009.
ETFA 2009. IEEE Conference on, pages 1–8. IEEE, 2009.

[93] G. Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 78–82. ACM, 2007.

[94] S.A. Munir, X. Dongliang, C. Canfeng, and J. Ma. Virtual overlay for service
classification & discovery in wireless sensor networks. In Advanced Commu-
nication Technology, 2009. ICACT 2009. 11th International Conference on,
volume 2, pages 991–996. IEEE, 2009.

[95] M. Nidd. Service discovery in deapspace. Personal Communications, IEEE,
8(4):39–45, 2001.

[96] D. Noh and H. Shin. Spiz: an effective service discovery protocol for mobile
ad hoc networks. EURASIP Journal on Wireless Communications and
Networking, 2007(1):27–27, 2007.

[97] George Oikonomou, Iain Phillips, and Theo Tryfonas. Ipv6 multicast forward-
ing in rpl-based wireless sensor networks. Wireless Personal Communications,
pages 1–28, 2013.

[98] Angela Orebaugh, Gilbert Ramirez, Josh Burke, and Larry Pesce. Wireshark
& Ethereal Network Protocol Analyzer Toolkit (Jay Beale’s Open Source
Security). Syngress Publishing, 2006.

[99] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level sensor network simulation with cooja. In Local Computer
Networks, Proceedings 2006 31st IEEE Conference on, pages 641–648. IEEE,
2006.

REFERENCES 242

[100] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context aware computing for the internet of things: A survey.
CoRR, abs/1305.0982, 2013.

[101] S Pohlsen, Carsten Buschmann, and Christian Werner. Integrating a decent-
ralized web service discovery system into the internet infrastructure. In on
Web Services, 2008. ECOWS’08. IEEE Sixth European Conference, pages
13–20. IEEE, 2008.

[102] M. Presser, P.M. Barnaghi, M. Eurich, and C. Villalonga. The sensei project:
integrating the physical world with the digital world of the network of the
future. Communications Magazine, IEEE, 47(4):1–4, 2009.

[103] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. ACM SIGCOMM Computer Communication
Review, 31(4):161–172, 2001.

[104] M.T. Raza, S.W. Yoo, K.H. Kim, S.S. Joo, and W.C. Jeong. Design and
implementation of an architectural framework for web portals in a ubiquitous
pervasive environment. Sensors, 9(7):5201–5223, 2009.

[105] G.G. Richard III. Service advertisement and discovery: enabling universal
device cooperation. Internet Computing, IEEE, 4(5):18–26, 2000.

[106] F. Sailhan and V. Issarny. Scalable service discovery for manet. In Per-
vasive Computing and Communications, 2005. PerCom 2005. Third IEEE
International Conference on, pages 235–244. IEEE, 2005.

[107] D. Sathan, A. Meetoo, and RK Subramaniam. Context aware lightweight
energy efficient framework. World Academy of Science, Engineering and
Technology, 52, 2009.

[108] G. Schiele, C. Becker, and K. Rothermel. Energy-efficient cluster-based service
discovery for ubiquitous computing. In Proceedings of the 11th workshop on
ACM SIGOPS European workshop, page 14. ACM, 2004.

[109] J. Schneider and T. Kamiya. Efficient xml interchange (exi) format 1.0. W3C
Working Draft, 19, 2008.

[110] X. Shao, L.H. Ngoh, T.K. Lee, T.Y. Chai, L. Zhou, and J.C.M. Teo. Multipath
cross-layer service discovery (mcsd) for mobile ad hoc networks. In Services
Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific, pages 408–
413. IEEE, 2009.

REFERENCES 243

[111] Z Shelby. Core link format. draft-ietf-core-link-format-07 (work in progress),
2011.

[112] Z. Shelby and C. Bormann. 6LoWPAN: the wireless embedded internet,
volume 33. Wiley, 2010.

[113] Z Shelby and S Krco. Core resource directory, draft-shelby-core-resource-
directory-02. IETF work in progress, 2012.

[114] Zach Shelby. Embedded web services. Wireless Communications, IEEE,
17(6):52–57, 2010.

[115] Tmote Sky. Tmote sky: Ultra low power ieee 802.15.4 compliant wireless
sensor module. Datasheet, Moteiv Corporation, 2006.

[116] A. Sleman and R. Moeller. Integration of wireless sensor network services
into other home and industrial networks; using device profile for web services
(dpws). In Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on, pages
1–5. Ieee, 2008.

[117] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and
V. Trifa. Soa-based integration of the internet of things in enterprise services.
In Web Services, 2009. ICWS 2009. IEEE International Conference on, pages
968–975. IEEE, 2009.

[118] D. Steinberg and S. Cheshire. Zero configuration networking: the definitive
guide. O’Reilly Media, Inc., 2005.

[119] V. Stirbu. Towards a restful plug and play experience in the web of things. In
Semantic computing, 2008 IEEE international conference on, pages 512–517.
IEEE, 2008.

[120] Harsh Sundani, Haoyue Li, Vijay K Devabhaktuni, Mansoor Alam, and Prabir
Bhattacharya. Wireless sensor network simulators a survey and comparisons.
International Journal of Computer Networks (IJCN), 2(6):249–265, 2011.

[121] Vasughi Sundramoorthy. At home in service discovery. University of Twente,
2006.

[122] Pascal Thubert. Objective function zero for the routing protocol for low-power
and lossy networks (rpl). Technical Report RFC 6552, IETF, 2012.

[123] A. Varshavsky, B. Reid, and E. de Lara. The need for cross-layer service
discovery in manets. Report CSRG-492, UofT Computer Science, 2004.

REFERENCES 244

[124] A. Varshavsky, B. Reid, and E. de Lara. A cross-layer approach to service
discovery and selection in manets. In Mobile Adhoc and Sensor Systems
Conference, 2005. IEEE International Conference on, pages 8–pp. IEEE,
2005.

[125] J Vasseur, M Kim, K Pister, N Dejean, and D Barthel. Routing metrics
used for path calculation in low power and lossy networks. Technical report,
IETF, 2011.

[126] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald
Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura,
Mark Harrison, M Eisenhauer, et al. Internet of things strategic research
roadmap. Internet of Things-Global Technological and Societal Trends, pages
9–52, 2011.

[127] C.N. Ververidis and G.C. Polyzos. Extended zrp: a routing layer based service
discovery protocol for mobile ad hoc networks. In Mobile and Ubiquitous
Systems: Networking and Services, 2005. MobiQuitous 2005. The Second
Annual International Conference on, pages 65–72. IEEE, 2005.

[128] C.N. Ververidis and G.C. Polyzos. Avert: Adaptive service and route discovery
protocol for manets. In Networking and Communications, 2008. WIMOB’08.
IEEE International Conference on Wireless and Mobile Computing,, pages
38–43. IEEE, 2008.

[129] C.N. Ververidis and G.C. Polyzos. Service discovery for mobile ad hoc
networks: A survey of issues and techniques. Communications Surveys &
Tutorials, IEEE, 10(3):30–45, 2008.

[130] Qiang Wei and Zhi Jin. Service discovery for internet of things: a context-
awareness perspective. In Proceedings of the Fourth Asia-Pacific Symposium
on Internetware, page 25. ACM, 2012.

[131] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):94–104, 1991.

[132] Erik Wilde. Putting things to REST. Technical Report 2007-015, School of
Information, UC Berkeley, Berkeley, California, November 2007.

[133] T Winter, ABP Thubert, and et al. Clausen. Rpl: Ipv6 routing protocol for
low-power and lossy networks. Technical Report RFC 6550, IETF, 2012.

[134] M.A. Wister and D.A. Torres. Lift: An efficient cross-layer service discovery
protocol in manet. In Advanced Information Networking and Applications

REFERENCES 245

Workshops, 2009. WAINA’09. International Conference on, pages 781–786.
IEEE, 2009.

[135] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu,
L. Fang, and R. Stoleru. Context-aware wireless sensor networks for assisted
living and residential monitoring. Network, IEEE, 22(4):26–33, 2008.

[136] D. Zeng, S. Guo, and Z. Cheng. The web of things: A survey. Journal of
Communications, 6(6):424–438, 2011.

[137] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, Computer Science Division, U. C. Berkeley, April 2001.

[138] F. Zhu, M. Mutka, and L. Ni. Splendor: A secure, private, and location-
aware service discovery protocol supporting mobile services. In Pervasive
Computing and Communications, 2003.(PerCom 2003). Proceedings of the
First IEEE International Conference on, pages 235–242. IEEE, 2003.

[139] Fen Zhu, Matt W Mutka, and Lionel M Ni. Service discovery in pervasive
computing environments. Pervasive Computing, IEEE, 4(4):81–90, 2005.

Appendices

246

Appendix A

Automation of experiments

This chapter covers the detail about the automation of experiments. Each experi-
ments consists of four different processes: COOJA, router to connect the COOJA
with other processes, DA and UA. Each process is started in an order depending
on the parameters of a simulation run, as shown in Figure 6.5. Therefore, a bash
script is written to automate the process for different runs and their multiple
iterations. This chapter explains the automation process and presents examples
from the actual codes used in simulations.

A.1 Scenarios automation

This research project has defined several bash scripts to execute simulations in a
bulk. There are multiple scripts written to automate the process. A Code List-
ing A.1 gives an example script that is actually used in experiments. Furthermore,
Figure A.1 shows the command given to this script to execute a set of simulation
scenarios. The script uses the passed attributes to generate and update file appro-
priately, before actually starting all the process. The script makes changes in code
files of various entities (SA, GM or GL) and generates new COOJA simulation
files with the specified topology and settings. At the end of each simulation run, it
saves the log files generated by all processes in a directory for debugging, validation
and further processing.

Listing A.1: Simulations Automation script
1 #! / bin / bash

3 #Swicthing to c o r r e c t GIT branches
experimentDIR=" /home/ t a l a l "

5 cd $experimentDIR / uatrendy /
g i t checkout trendy −1

7 cd $experimentDIR / datrendy /
g i t checkout trendy −1

9 cd $experimentDIR / sens inode −c o n t i k i /
g i t add .

11 g i t r e s e t −−hard HEAD
g i t checkout trendy −1− f u l l p

247

APPENDIX A. AUTOMATION OF EXPERIMENTS 248

���� ����	�
����
���
�
�����	�
��� � �� � � �� ��� �� ��� �� � � � ������ ������������������������� ����

������
�	 ��
��

�
������ ���� �������� �
�
������ �
	��� ��

������
�	 ��
�� ������ �	

���� ���
���

���� ���
��
�� ��
��
�

��
�����
�������

��������
�������
�������

 ��������� �	
����� ���

���� ��
 ��������

 ��
��

 ���!����
���
 �����

"����
�� #�� �������� �	
$#%&#'(!)�!��

%�
*��� ��	����
�

Figure A.1: Simulation automation: an example command to run bash script

13

15 #Checking f o r the r i g h t number o f arguments
noOfArgumentsReqd =12;

17 i f [" $#" −ne " $noOfArgumentsReqd "] ; then
echo " Usage : Need $noOfArgumentsReqd arguments "

19 echo " Format : NUMBEROFNODES simModeFrom simModeTo . . . DATotalTimeWindows s i m I t e r a t i o n s
simRef VMNo"

exit 1
21 f i

echo " t o p o l o g y= $1 , simModeFrom=$2 , simModeTo=$3 , s i m I t e r a t i o n s=$4 , DATimeWindow=$5 ,
DATotalTimeWindows=$6 , UaStart = $7 , queryInOneSet=$8 , r a t i o=$9 , nullRDC=$ {10} , simRef=$
{11} , VMNo=$ {12} "

23
t o p o l o g y=$1

25 simModeFrom=$2
simModeTo=$3

27 s i m I t e r a t i o n s=$4
DATimeWindow=$5

29 DATimeWindow=$ ((${DATimeWindow#0}))
totalTimeWindows=$6

31 totalTimeWindows=$ ((${totalTimeWindows#0}))
DATotalTimeWindows=$6

33 UAStartTime=$7
queryInOneSet=$8

35 q u e r y I n t e r v a l =10
queryRandomInterval=1

37 querySetRepeatTimes=1
q u e r y S e t I n t e r v a l=1

39 r a t i o=${9}
nullRDC=$ {10}

41 simRef=$ {11}
VMNo=$ {12}

43 NUMBEROFNODES=35

45 #Stopping Dropbox to f r e e system ’ s r e s o u r c e s
sudo s e r v i c e dropbox stop

47
DA=" $experimentDIR / datrendy / d i s t / datrendy . j a r "

49 UA=" $experimentDIR / uatrendy / d i s t / uatrendy . j a r "
t o t a l S i m u l a t i o n D u r a t i o n=$DATimeWindow∗$DATotalTimeWindows

51
#Logging D i r e c t o r i e s f o r a l l

53 BASE=" /home/ t a l a l /Dropbox/ exper iments / r e s u l t s "
gBASE=" /home/ t a l a l /Dropbox/ exper iments / g r e s u l t s "

55
#Creat ing s p e c i f i c D i r e c t o r i e s

57 DATE=$ (date +%F)
TIME=$ (date +%H%M)

59 FDIR="$BASE/$DATE"
mkdir −p $FDIR

61 FDIR="$FDIR/$TIME−ALL−$simRef "
mkdir −p $FDIR

63 echo $FDIR" i s c r e a t e d "

65 gFDIR="$gBASE/$DATE"
mkdir −p $gFDIR

67 gFDIR=" $gFDIR/$TIME−$simRef "
mkdir −p $gFDIR

69 echo $gFDIR " i s c r e a t e d "

APPENDIX A. AUTOMATION OF EXPERIMENTS 249

71
GDIR=" $gFDIR/ALL−$NUMBEROFNODES−top$topology −tw$totalTimeWindows−q$queryInOneSet−

r$queryRandomInterval−n$querySetRepeatTimes−f o r −$ s i m I t e r a t i o n s −[$VMNo] "
73 mkdir −p $GDIR

echo $GDIR" i s c r e a t e d f o r S i mu la t i o n r e c o r d "
75

#S e l e c t i n g a s i m u l a t i o n v a r i a t i o n
77 for ((i = $simModeFrom ; i <= $simModeTo ; i ++)) ; do

79 SIMNAMEFORMATTED=" case−$i−top$topology −tw$totalTimeWindows−q$queryInOneSet−
r$queryRandomInterval−n$querySetRepeatTimes "

CONTIKI=" $experimentDIR / sens inode −c o n t i k i "
81 timerMin =1;

timerMax =1;
83 t imerThreshold =1;

t imerStep =0;
85 #S e t t i n g c o n f i g u r a t i o n s f o r each s i m u l a t i o n

case " $ i " i n
87 " 0 ")

i s g r o u p i n g =0;
89 numOfGLs=0;

DAMode=0;
91 appubThreshold=0

; ;
93 " 1 ")

i s g r o u p i n g =0;
95 numOfGLs=0;

DAMode=1;
97 appubThreshold=0

; ;
99 " 2 ")

i s g r o u p i n g =1;
101 numOfGLs=5;

DAMode=4;
103 appubThreshold=0

; ;
105 " 3 ")

i s g r o u p i n g =0;
107 numOfGLs=0;

DAMode=7;
109 appubThreshold=2

; ;
111 " 4 ")

i s g r o u p i n g =1;
113 numOfGLs=5;

DAMode=8;
115 appubThreshold=2

; ;
117 ∗)

echo " Ending "
119 ; ;

e s a c
121

#Random s e e d s f o r d i f f e r e n t number o f i t e r a t i o n s
123 for ((j = 1 ; j <= $ s i m I t e r a t i o n s ; j++)) ; do

125 case " $ j " i n

127 " 1 ")
newrandomseed =1668841902061472829;

129 ; ;
" 2 ")

131 newrandomseed = −8020676306221162569;
; ;

133 " 3 ")
newrandomseed = −5174799744808039206;

135 ; ;
" 4 ")

137 newrandomseed =5471226677158381259;
; ;

139 " 5 ")
newrandomseed =2442086531776532400;

141 ; ;
" 6 ")

143 newrandomseed = −52470407069163422;
; ;

145 " 7 ")
newrandomseed = −290209011825205304;

147 ; ;

APPENDIX A. AUTOMATION OF EXPERIMENTS 250

" 8 ")
149 newrandomseed = −8489044479846245982;

; ;
151 " 9 ")

newrandomseed = −2437497649994250447;
153 ; ;

" 10 ")
155 newrandomseed =4869737434645930484;

; ;
157 ∗)

echo " Ending "
159 ; ;

e s a c
161

#−−−−−−−−−−−−−−−−COOJA SIMULATION GENERATION−−−−−−−−−−−−−−−−−−−−−
163 #Total Nodes and/ or grouping [S p e c i f i c to Si m ul at io n]

LOWPAN="$CONTIKI/work/ trendy−gm"
165 COOJA="$CONTIKI/ t o o l s / c o o j a / d i s t / c o o j a . j a r "

167 cd $LOWPAN
h e a d e r F i l e=" sim−header . c o o j a "

169 t o p o l o g y F i l e="$NUMBEROFNODES−" g "−$numOfGLs " g "−$topology . t o p o l o g y "
f o o t e r F i l e=" sim−f o o t e r . c o o j a "

171
SIMFILE="$NUMBEROFNODES−" g "−$numOfGLs " g "−$topology−grouping . c s c "

173 cat $ h e a d e r F i l e $ t o p o l o g y F i l e $ f o o t e r F i l e > " $SIMFILE "
SIMULATION=" $SIMFILE "

175
#−−−−−−−−−S e l e c t i n g COOJA SCRIPT−−−−−−−−−−−−

177 s c r i p t F i l e="$NUMBEROFNODES−$DATimeWindow−t$totalTimeWindows . j s "
cat "$LOWPAN/ g e n e r a l −sim . j s " > " $ s c r i p t F i l e "

179 echo " $ s c r i p t F i l e f i l e i s c r e a t e d "

181 #−−−−−−−−−Changes i n COOJA SCRIPT f o r c o n f i g u r a t i o n s −−−−−−−−
timeout=$ (($DATimeWindow∗$totalTimeWindows ∗1000))

183 timeoutPlus=$ (($DATimeWindow∗$totalTimeWindows ∗1000+100000))

185 l i n e t o c h a n g e="MAIN−TIMEOUT"
n e w l i n e w i t h c o o j a s c r i p t=" $timeoutPlus "

187 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{
gsub (var1 , var2)

189 p r i n t
} ’ $LOWPAN/ $ s c r i p t F i l e > temp

191 mv temp $LOWPAN/ $ s c r i p t F i l e

193 l i n e t o c h a n g e="TIME−OUT−FINALIZE"
n e w l i n e w i t h c o o j a s c r i p t=" $timeout "

195 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{
gsub (var1 , var2)

197 p r i n t
} ’ $LOWPAN/ $ s c r i p t F i l e > temp

199 mv temp $LOWPAN/ $ s c r i p t F i l e

201 l i n e t o c h a n g e=" nrNodes = 0 ; "
numOfNodesForJS=$ (($NUMBEROFNODES+1))

203 n e w l i n e w i t h c o o j a s c r i p t=" nrNodes = $numOfNodesForJS ; "
awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{

205 gsub (var1 , var2)
p r i n t

207 } ’ $LOWPAN/ $ s c r i p t F i l e > temp
mv temp $LOWPAN/ $ s c r i p t F i l e

209
l i n e t o c h a n g e=" tota l_reports_needed = 0 ; "

211 numOfNodesForJS=$ (($NUMBEROFNODES+1))
n e w l i n e w i t h c o o j a s c r i p t=" total_reports_needed = $NUMBEROFNODES; "

213 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{
gsub (var1 , var2)

215 p r i n t
} ’ $LOWPAN/ $ s c r i p t F i l e > temp

217 mv temp $LOWPAN/ $ s c r i p t F i l e

219 l i n e t o c h a n g e="RATIO−TO−CHANGE1"
n e w l i n e w i t h c o o j a s c r i p t=" $ r a t i o "

221 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{
gsub (var1 , var2)

223 p r i n t
} ’ $LOWPAN/ $ s c r i p t F i l e > temp

225 mv temp $LOWPAN/ $ s c r i p t F i l e

227 l i n e t o c h a n g e="RATIO−TO−CHANGE2"

APPENDIX A. AUTOMATION OF EXPERIMENTS 251

n e w l i n e w i t h c o o j a s c r i p t=" $ r a t i o "
229 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{

gsub (var1 , var2)
231 p r i n t

} ’ $LOWPAN/ $ s c r i p t F i l e > temp
233 mv temp $LOWPAN/ $ s c r i p t F i l e

235 echo " $ s c r i p t F i l e f i l e i s CHANGED"

237 #−−−−−−−−−−−−−−−−Java s c r i p t f o r COOJA SIMULATION−−−−−−−−−−−−−−−−−−
l i n e t o c h a n g e="< s c r i p t f i l e ></ s c r i p t f i l e >"

239 n e w l i n e w i t h c o o j a s c r i p t="< s c r i p t f i l e >[CONTIKI_DIR] / work/ trendy−gm/ $ s c r i p t F i l e </ s c r i p t f i l e >"

241 awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{
gsub (var1 , var2)

243 p r i n t
} ’ $SIMULATION > temp

245 mv temp $SIMULATION

247 #−−−−−−−−−−−−−Changing S im u la t i o n speed−−−−−−−−−−−−−−−−−
l i n e t o c h a n g e="<s p e e d l i m i t >0.85</ s p e e d l i m i t >"

249 n e w l i n e w i t h c o o j a s c r i p t="<s p e e d l i m i t >$ r a t i o </s p e e d l i m i t >"
awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $ n e w l i n e w i t h c o o j a s c r i p t " ’{

251 gsub (var1 , var2)
p r i n t

253 } ’ $SIMULATION > temp
mv temp $SIMULATION

255
#−−−−−−−−−−−−−−−−−−−−−Changes i n o t h e r f i l e s −−−−−−−−−−−−−−−−−−−−−−−

257 workDIR="$CONTIKI/work "
SAVEIFS=$IFS

259 IFS=$ (echo −en " \n\b ")
for ((gm = 1 ; gm <= 5 ; gm++)) ; do

261
case "$gm" i n

263
" 1 ")

265 gmFile=" $workDIR/ trendy−gm/ group−member . c "
; ;

267 " 2 ")
gmFile=" $workDIR/ trendy−gm group −2/group−member . c "

269 ; ;
" 3 ")

271 gmFile=" $workDIR/ trendy−gm group −3/group−member . c "
; ;

273 " 4 ")
gmFile=" $workDIR/ trendy−gm group −4/group−member . c "

275 ; ;
" 5 ")

277 gmFile=" $workDIR/ trendy−gm group −5/group−member . c "
; ;

279 ∗)
echo " Ending "

281 ; ;
e s a c

283 echo " s e l e c t e d f i l e : $gmFile and APPUB = $appubThreshold "

285 l i n e t o c h a n g e="#d e f i n e hit_count_threshold "
n e w l i n e w i t h c o o j a s c r i p t="#d e f i n e hit_count_threshold $appubThreshold "

287 sed − i " s / $ l i n e t o c h a n g e . ∗ / $ n e w l i n e w i t h c o o j a s c r i p t / " $gmFile
done

289
IFS=$SAVEIFS

291
#−−−−−−−−−−−−−−S e l e c t i o n o f RDC−−−−−−−−−−−−−−−−−−

293 workDIR="$CONTIKI/work "
SAVEIFS=$IFS

295 IFS=$ (echo −en " \n\b ")
for ((sa = 1 ; sa <= 1 1 ; sa++)) ; do

297
case " $sa " i n

299
" 1 ")

301 s a F i l e=" $workDIR/ trendy−gm/ p r o j e c t −c o n f . h "
; ;

303 " 2 ")
s a F i l e=" $workDIR/ trendy−gm group −2/ p r o j e c t −c o n f . h "

305 ; ;
" 3 ")

307 s a F i l e=" $workDIR/ trendy−gm group −3/ p r o j e c t −c o n f . h "

APPENDIX A. AUTOMATION OF EXPERIMENTS 252

; ;
309 " 4 ")

s a F i l e=" $workDIR/ trendy−gm group −4/ p r o j e c t −c o n f . h "
311 ; ;

" 5 ")
313 s a F i l e=" $workDIR/ trendy−gm group −5/ p r o j e c t −c o n f . h "

; ;
315 " 6 ")

s a F i l e=" $workDIR/ trendy−g l / p r o j e c t −c o n f . h "
317 ; ;

" 7 ")
319 s a F i l e=" $workDIR/ trendy−g l group −2/ p r o j e c t −c o n f . h "

; ;
321 " 8 ")

s a F i l e=" $workDIR/ trendy−g l group −3/ p r o j e c t −c o n f . h "
323 ; ;

" 9 ")
325 s a F i l e=" $workDIR/ trendy−g l group −4/ p r o j e c t −c o n f . h "

; ;
327 " 10 ")

s a F i l e=" $workDIR/ trendy−g l group −5/ p r o j e c t −c o n f . h "
329 ; ;

" 11 ")
331 s a F i l e="$CONTIKI/ examples / ipv6 / rpl −border−r o u t e r / p r o j e c t −c o n f . h "

; ;
333 ∗)

echo " Ending "
335 ; ;

e s a c
337 echo " s e l e c t e d f i l e : $ s a F i l e and nullRDC = $nullRDC "

339 l i n e t o c h a n g e="#d e f i n e NULLRDC"
n e w l i n e w i t h c o o j a s c r i p t="#d e f i n e NULLRDC $nullRDC "

341 sed − i " s / $ l i n e t o c h a n g e . ∗ / $ n e w l i n e w i t h c o o j a s c r i p t / " $ s a F i l e
done

343
IFS=$SAVEIFS

345
#−−−−−−−−−−−−−−Loading new seed v a l u e s i n a s i m u l a t i o n −−−−−−−−−−−−

347 l i n e t o c h a n g e="<randomseed>generated </randomseed>"
newlinewithrandomseed="<randomseed>$newrandomseed</randomseed>"

349
awk −v var1=" $ l i n e t o c h a n g e " −v var2=" $newlinewithrandomseed " ’{

351 gsub (var1 , var2)
p r i n t

353 } ’ $SIMULATION > temp
mv temp $SIMULATION

355
echo $SIMULATION" with random seed = $newrandomseed i s s t a r t i n g "

357
#S p e c i f i c to S im ul a t i on

359 SDIR="$FDIR/$NUMBEROFNODES−$SIMNAMEFORMATTED−f o r −$ s i m I t e r a t i o n s −[$VMNo] "
mkdir −p $SDIR

361 echo $SDIR " i s c r e a t e d f o r Si m ul at i on r e c o r d "

363 unset DISPLAY
cd $LOWPAN

365

367 #Log f i l e f o r Simulation ’ s t e r m i n a l output
LOGFILE=" $SDIR/ sim$j . l o g "

369 echo "GIT ID : $simRef by VM#$VMNo" >>$LOGFILE
echo " The S im u la t i on Duration = $ t o t a l S i m u l a t i o n D u r a t i o n " >>$LOGFILE

371 echo " Total Nodes $NUMBEROFNODES" >>$LOGFILE
echo " o f $ j th o f $ s i m I t e r a t i o n s i t e r a t i o n s " >>$LOGFILE

373 echo "DA l a s t f o r $DATotalTimeWindows time windows each with $DATimeWindow seconds " >>$LOGFILE
echo "UA w i l l query $queryInOneSet q u e r i e s with i n t e r v a l o f $ q u e r y I n t e r v a l seconds " >>$LOGFILE

375 echo "UA w i l l r e p e a t above query s e t f o r $querySetRepeatTimes t imes each with
$ q u e r y S e t I n t e r v a l seconds i n t e r v a l " >>$LOGFILE

377 #Cleaning up b e f o r e ending
rm ∗ . t e s t l o g

379 rm ∗ . t x t
rm ∗ . l o g

381 rm ∗ . dat
rm ∗ . pcap

383
#−−−−−−−−−−S t a r t i n g and s c h e d u l i n g p r o c e s s e s −−−−−−−−−−−−−−−−−−−−−−−−−−

385 s l e e p 120 && sudo make connect−rou ter −c o o j a >> $LOGFILE&
pid_cooja_router=$!

APPENDIX A. AUTOMATION OF EXPERIMENTS 253

387 s l e e p $UAStartTime && java −j a r $UA $queryInOneSet $ q u e r y I n t e r v a l $queryRandomInterval
$querySetRepeatTimes $ q u e r y S e t I n t e r v a l $ r a t i o >> $LOGFILE&

pid_ua=$!
389

java −j a r $DA $DATimeWindow $DATotalTimeWindows $DAMode $ r a t i o $timerMin $timerMax
$timerThreshold $t imerStep >> $LOGFILE&

391 pid_da=$!
/ usr / bin / time −−v e r b o s e −o c o o j a t i m e . l o g −a java −j a r $COOJA −nogui=$SIMULATION −c o n t i k i=

$CONTIKI >> $LOGFILE&
393 pid_cooja=$!

395 wait $pid_cooja

397 s l e e p 10
k i l l −9 $pid_ua

399 k i l l −9 $pid_da
k i l l −9 $pid_cooja_router

401
#General d e t a i l e d l o g

403 cat d a D e t a i l . t x t >> " $SDIR/$SIMNAMEFORMATTED−da−d e t a i l . l o g "
cat d a x t r a d e t a i l . t x t >> " $SDIR/$SIMNAMEFORMATTED−d a F u l l D e t a i l . l o g "

405 cat uacompleteLog . t x t >> " $SDIR/$SIMNAMEFORMATTED−ua−d e t a i l . l o g "
cat COOJA. t e s t l o g >> " $SDIR/$SIMNAMEFORMATTED−Lowpan−d e t a i l . l o g "

407 cat daperformance . t x t >> " $SDIR/$SIMNAMEFORMATTED−daperformance . l o g "
cat uaperformance . t x t >> " $SDIR/$SIMNAMEFORMATTED−uaperformance . l o g "

409 cat uaperformance−p r o c e s s e d . t x t >> " $SDIR/$SIMNAMEFORMATTED−uaperformance−p r o c e s s e d . l o g "
cat l−energy−a l l . dat >> " $SDIR/$SIMNAMEFORMATTED−l−energy−a l l . dat "

411 cat l−energy−ind . dat >> " $SDIR/$SIMNAMEFORMATTED−l−energy−ind . dat "
cat l−raw−energy−ind . dat >> " $SDIR/$SIMNAMEFORMATTED−l−raw−energy−ind . dat "

413 cat l−packet−a l l . dat >> " $SDIR/$SIMNAMEFORMATTED−l−packet−a l l . dat "
cat l−packet−ind . dat >> " $SDIR/$SIMNAMEFORMATTED−l−packet−ind . dat "

415 cat radio −p a c k e t s . dat >> " $SDIR/$SIMNAMEFORMATTED−radio −p a c k e t s . l o g "
cat " r a d i o l o g −" ∗ " . pcap " >> " $SDIR/$SIMNAMEFORMATTED−p a c k e t s . pcap "

417 cat c o o j a t i m e . l o g >> " $SDIR/$SIMNAMEFORMATTED−coojaTime . l o g "

419
#Saving Log f o r g e n e r a t i n g graphs

421 cat uaperformance . t x t >> "$GDIR/ case−$i−uaperformance . l o g "
cat uaperformance−p r o c e s s e d . t x t >> "$GDIR/ case−$i−uaperformance−p r o c e s s e d . l o g "

423 cat daperformance . t x t >> "$GDIR/ case−$i−daperformance . l o g "
cat l−energy−a l l . dat >> "$GDIR/ case−$i−energy−a l l . dat "

425 cat l−energy−ind . dat >> "$GDIR/ case−$i−energy−ind . dat "
cat l−raw−energy−ind . dat >> "$GDIR/ case−$i−raw−energy−ind . dat "

427 cat l−packet−a l l . dat >> "$GDIR/ case−$i−packet−a l l . dat "
cat l−packet−ind . dat >> "$GDIR/ case−$i−packet−ind . dat "

429 cat radio −p a c k e t s . dat >> "$GDIR/ case−$i−radio −p a c k e t s . l o g "
cat " r a d i o l o g −" ∗ " . pcap " >> "$GDIR/ case−$i−p a c k e t s . pcap "

431

433 #Cleaning up b e f o r e ending
rm ∗ . t e s t l o g

435 rm ∗ . t x t
rm ∗ . l o g

437 rm ∗ . dat
rm ∗ . pcap

439
done #End o f m u l t i p l e i t e r a t i o n s o f one Si mu la t io n

441 done #End o f one Unique S i mu la t io n − Loop f o r a l l s i m u l a t i o n s
sudo s e r v i c e dropbox s t a r t

A.2 Script for 6LoWPAN data gathering

Each COOJA simulation requires some Javascript to produce results in log files
with different level of details. This automates the process of result gathering
in a specified format for each experiment, which aids the process of debugging,
validation and measurements of different performance metrics for 6LoWPANs.
Following is an example of such a Javascript:

1 importPackage (java . i o) ;

3 // F u n c t i o n to r e c o r d s t a t i s t i c s a f t e r e a c h t i m e w i n d o w

APPENDIX A. AUTOMATION OF EXPERIMENTS 254

function
5 p r i n t _ s t a t s ()

{
7 total_energy_consumption = total_cpu_energy_consumption + total_lpm_energy_consumption

+ total_l isten_energy_consumption + total_transmit_energy_consumption ;
9

l o g . l o g (" - - - - - - - - - - - - - - - - T i m e = "+ time +" -\ n ") ;
11 l o g . l o g (" T o t a l N o d e s = " + (nrNodes −1) +" :\ n ") ;

l o g . l o g (" T o t a l r e p o r t s = " + t o t a l _ r e p o r t s +" :\ n ") ;
13 l o g . l o g (" T o t a l U p d a t e M e s s a g e s = " + total_updates_msgs + " \ n ") ;

l o g . l o g (" T o t a l G r o u p i n g M e s s a g e s = " + total_grouping_msgs + " \ n ") ;
15

l o g . l o g (" T o t a l C P U C o n s u m p t i o n = " + Math . round (total_cpu_energy_consumption)
17 + " [" + Math . round ((total_cpu_energy_consumption /

total_energy_consumption) ∗100 , 5) + " %] ") ;

19 l o g . l o g (" T o t a l L P M C o n s u m p t i o n = " + Math . round (total_lpm_energy_consumption)
+ " [" + Math . round ((total_lpm_energy_consumption /

total_energy_consumption) ∗100 , 5) + " %] ") ;
21

l o g . l o g (" T o t a l L I S T E N C o n s u m p t i o n = " + Math . round (total_l isten_energy_consumption)
23 + " [" + Math . round ((total_l isten_energy_consumption /

total_energy_consumption) ∗100 , 5) + " %] ") ;

25 l o g . l o g (" T o t a l T R A N S M I T C o n s u m p t i o n = " + Math . round (total_transmit_energy_consumption)
+ " [" + Math . round ((total_transmit_energy_consumption /

total_energy_consumption) ∗100 , 5) + " %] ") ;
27

l o g . l o g (" T o t a l E n e r g y C o n s u m p t i o n = " + (total_energy_consumption) /1000 + " J o u l e s [m i l l i :
"+total_energy_consumption) ;

29 l o g . l o g (" -\ n ") ;

31 gtime = time /1000000;
remainder = gtime %60;

33
i f (remainder <200){

35 gtime = gtime−remainder ;
}

37
// F i l e to s a v e a g g r e g a t e d e n e r g y s t a t i s t i c s : l A l l E n e r g y D e s c f i l e

39 w r i t e i n f i l e = gtime +" "+total_energy_consumption +" "+total_cpu_energy_consumption+" "+
total_lpm_energy_consumption +" "+total_l isten_energy_consumption+" "+
total_transmit_energy_consumption+" \ n " ;

output1 [l A l l E n e r g y D e s c f i l e] . w r i t e (w r i t e i n f i l e) ;
41 l o g . l o g (" l A l l E n e r g y D e s c f i l e : "+ w r i t e i n f i l e) ;

43 // F i l e to s a v e a g g r e g a t e d p a c k e t s s t a t i s t i c s : l A l l P a c k e t D e s c f i l e
w r i t e i n f i l e = gtime +" "+ (total_updates_msgs + total_grouping_msgs) + " "+

total_updates_msgs + " "+ total_grouping_msgs +" \ n " ;
45 output3 [l A l l P a c k e t D e s c f i l e] . w r i t e (w r i t e i n f i l e) ;

l o g . l o g (" l A l l P a c k e t D e s c f i l e : "+ w r i t e i n f i l e) ;
47

}
49

51 TIMEOUT(MAIN−TIMEOUT) ;
/* o v e r r i d e s i m u l a t i o n s p e e d l i m i t to s p e c i f i e d o n e */

53 sim . setSpeedLimit (RATIO−TO−CHANGE1) ;

55 l o g . l o g (" -\ n ") ;
/* C o n f i g u r a t i o n s at s t a r t */

57 nrNodes = 0 ;
node_reported = new Array () ;

59 cpu_value = new Array () ;
lpm_value = new Array () ;

61 l i s t e n _ v a l u e = new Array () ;
transmit_value = new Array () ;

63 energy_value = new Array () ;
updates_value = new Array () ;

65 grouping_value = new Array () ;
data = new Array () ;

67 total_updates_msgs = 0 ;
total_grouping_msgs = 0 ;

69 total_cpu_energy_consumption = 0 ;
total_lpm_energy_consumption = 0 ;

71 total_l isten_energy_consumption = 0 ;
total_transmit_energy_consumption = 0 ;

73 total_energy_consumption = 0 ;
t o t a l _ r e p o r t s = 0 ;

75 total_reports_needed = 0 ;

APPENDIX A. AUTOMATION OF EXPERIMENTS 255

a l l _ r e p o r t e d = f a l s e ;
77

output1 = new Object () ;
79 output2 = new Object () ;

output3 = new Object () ;
81 output4 = new Object () ;

output5 = new Object () ;
83 saNodes = nrNodes −1;

l A l l E n e r g y D e s c f i l e = " l - e n e r g y - a l l . d a t " ;
85 l I n d E n e r g y D e s c f i l e = " l - e n e r g y - i n d . d a t " ;

l IndRawEnergyDescf i le = " l - raw - e n e r g y - i n d . d a t " ;
87 l A l l P a c k e t D e s c f i l e = " l - p a c k e t - a l l . d a t " ;

l I n d P a c k e t D e s c f i l e = " l - p a c k e t - i n d . d a t " ;
89

n o d e s _ s t a r t i n g = true ;
91 f o r (i = 2 ; i <= nrNodes ; i ++) {

node_reported [i] = f a l s e ;
93 energy_value [i] = 0 ;

cpu_value [i] = 0 ;
95 lpm_value [i] = 0 ;

l i s t e n _ v a l u e [i] = 0 ;
97 transmit_value [i] = 0 ;

updates_value [i] = 0 ;
99 grouping_value [i] = 0 ;

}
101

// T h i s l o o p w i l l r u n t i l l t h e e n d a n d w a i t f o r d i f f e r e n t m e s s a g e s to r e c o r d t h e m
103 while (true) {

105 // C r e a t i n g d i f f e r e n t l o g f i l e s
i f (! output1 [l A l l E n e r g y D e s c f i l e]) {

107 output1 [l A l l E n e r g y D e s c f i l e] = new F i l e W r i t e r (l A l l E n e r g y D e s c f i l e) ;
s l i n e t o w r i t e = " # T i m e : c a l c u l a t e d _ e n e r g y _ c o n s u m p t i o n c a l c u l a t e d _ c p u _ e n e r g y _ c o n s u m p t i o n

c a l c u l a t e d _ l p m _ e n e r g y _ c o n s u m p t i o n c a l c u l a t e d _ l i s t e n _ e n e r g y _ c o n s u m p t i o n
c a l c u l a t e d _ t r a n s m i t _ e n e r g y _ c o n s u m p t i o n "+ " \ n " ;

109 // o u t p u t 1 [l A l l E n e r g y D e s c f i l e]. w r i t e (s l i n e t o w r i t e) ;
l o g . l o g (s l i n e t o w r i t e) ;

111 }

113 i f (! output2 [l I n d E n e r g y D e s c f i l e]) {
output2 [l I n d E n e r g y D e s c f i l e] = new F i l e W r i t e r (l I n d E n e r g y D e s c f i l e) ;

115 s l i n e t o w r i t e = " # T i m e : i e n e r g y _ v a l u e [i] c p u _ v a l u e [i] l p m _ v a l u e [i] l i s t e n _ v a l u e [i
] t r a n s m i t _ v a l u e [i] "+ " \ n " ;

output2 [l I n d E n e r g y D e s c f i l e] . w r i t e (s l i n e t o w r i t e) ;
117 l o g . l o g (s l i n e t o w r i t e) ;

}
119

i f (! output3 [l A l l P a c k e t D e s c f i l e]) {
121 output3 [l A l l P a c k e t D e s c f i l e] = new F i l e W r i t e r (l A l l P a c k e t D e s c f i l e) ;

s l i n e t o w r i t e = " # T i m e : T o t a l T r e n d y P a c k e t s : U P D G R O U P I N G "+ " \ n " ;
123 output3 [l A l l P a c k e t D e s c f i l e] . w r i t e (s l i n e t o w r i t e) ;

l o g . l o g (s l i n e t o w r i t e) ;
125 }

127 i f (! output4 [l I n d P a c k e t D e s c f i l e]) {
output4 [l I n d P a c k e t D e s c f i l e] = new F i l e W r i t e r (l I n d P a c k e t D e s c f i l e) ;

129 s l i n e t o w r i t e = " # T i m e : Node - ID : T o t a l T r e n d y P a c k e t s : U P D G R O U P I N G "+ " \ n " ;
output4 [l I n d P a c k e t D e s c f i l e] . w r i t e (s l i n e t o w r i t e) ;

131 l o g . l o g (s l i n e t o w r i t e) ;
}

133
i f (! output5 [l IndRawEnergyDescf i le]) {

135 output5 [l IndRawEnergyDescf i le] = new F i l e W r i t e r (l IndRawEnergyDescf i le) ;
s l i n e t o w r i t e = " # T i m e : i r a w _ e n e r g y _ v a l u e [i] r a w _ c p u _ v a l u e [i] r a w _ l p m _ v a l u e [i]

r a w _ l i s t e n _ v a l u e [i] r a w _ t r a n s m i t _ v a l u e [i] "+ " \ n " ;
137 l o g . l o g (s l i n e t o w r i t e) ;

}
139

141 t r y {
YIELD () ;

143 }catch (e) {
output1 [l A l l E n e r g y D e s c f i l e] . c l o s e () ;

145 output2 [l I n d E n e r g y D e s c f i l e] . c l o s e () ;
output3 [l A l l P a c k e t D e s c f i l e] . c l o s e () ;

147 output4 [l I n d P a c k e t D e s c f i l e] . c l o s e () ;
output5 [l IndRawEnergyDescf i le] . c l o s e () ;

149 log_func () ;
throw (’ t e s t s c r i p t k i l l e d ’) ;

151 }

APPENDIX A. AUTOMATION OF EXPERIMENTS 256

153 /* E n f o r c i n g s i m u l a t i o n s p e e d l i m i t to s p e c i f i e d o n e */
sim . setSpeedLimit (RATIO−TO−CHANGE2) ;

155
// R e c o r d i n g e r r o r m e s s a g e s

157 i f (msg . c o n t a i n s (" off - l i n k ")) {
nmsg=msg . s u b s t r (msg . indexOf (" slip - b r i d g e ")) ;

159 l o g . l o g (" \ n " + i d +" at "+ time + " : " + nmsg + " \ n ") ;
c o n t i n u e ;

161 }
l o g . l o g (" \ n " + i d +" at "+ time + " : " + msg + " \ n ") ;

163
// R e c o r d i n g S t a t i s t i c s m e s s a g e

165 i f (! msg . c o n t a i n s (" S : ")) { c o n t i n u e ; }

167 node_reported [i d] = true ;
l o g . l o g (i d +" at "+ time + " : " + msg + " \ n ") ;

169 data = msg . s p l i t (" : ") ;
updates_value [i d] = Number (data [1]) ;

171 grouping_value [i d] = Number (data [2]) ;
cpu_value [i d]= Number (data [3])

173 lpm_value [i d]= Number (data [4]) ;
l i s t e n _ v a l u e [i d]= Number (data [5]) ;

175 transmit_value [i d]= Number (data [6]) ;
energy_value [i d]= cpu_value [i d]+ lpm_value [i d]+ l i s t e n _ v a l u e [i d]+ transmit_value [i d] ;

177

179 // T i m e is r o u n d e d
gtime = time /1000000;

181 remainder = gtime %60;

183 i f (remainder <20){
gtime = gtime−remainder ;

185 }

187 // S y n c h r o n i s a t i o n w i t h t h e DA a f t e r e a c h t i m e w i n d o w
syncWithDA = new Object () ;

189 i f (! syncWithDA [" s y n c "]) {
syncWithDA [" s y n c "] = new F i l e W r i t e r (" s y n c . d a t ") ;

191 l o g . l o g (" S y n c F i l e C r e a t e d ") ;
}

193 syncWithDA [" s y n c "] . w r i t e (" "+gtime+" ") ;
syncWithDA [" s y n c "] . c l o s e () ;

195
// # 1 : l I n d E n e r g y D e s c f i l e

197 l o g . l o g (i d + " B e f o r e C o n v e r s i o n :[CPU , LPM , LSN , T R N] = [" + cpu_value [i d] +" "+ lpm_value [i d]+ " "
+ l i s t e n _ v a l u e [i d]+ " " + transmit_value [i d]+ "]\ n ") ;

199 w r i t e i n f i l e = gtime +" "+i d +" "+energy_value [i d]+ " "+cpu_value [i d]+ " "+lpm_value [i d]+ "
"+l i s t e n _ v a l u e [i d]+ " "+transmit_value [i d]+ " \ n " ;

output5 [l IndRawEnergyDescf i le] . w r i t e (w r i t e i n f i l e) ;
201 l o g . l o g (" l I n d R a w E n e r g y D e s c f i l e : "+ w r i t e i n f i l e) ;

203 cpu_value [i d] = ((cpu_value [i d] ∗ (0 . 5 ∗ 3 . 9)) ∗3) /32768;
lpm_value [i d] = ((lpm_value [i d] ∗ (0 . 0 5 4 5)) ∗3) /32768;

205 l i s t e n _ v a l u e [i d] = ((l i s t e n _ v a l u e [i d] ∗ 1 9 . 7) ∗3) /32768;
transmit_value [i d] = ((transmit_value [i d] ∗ 1 7 . 4) ∗3) /32768;

207 energy_value [i d] = cpu_value [i d] + lpm_value [i d] + l i s t e n _ v a l u e [i d] + transmit_value [
i d] ;

l o g . l o g (i d +" A f t e r C o n v e r s i o n :[CPU , LPM , LSN , T R N = T O T A L] = [" + cpu_value [i d] +" "+ lpm_value [i d
]+ " " + l i s t e n _ v a l u e [i d]+ " " + transmit_value [i d]+ " = "+ energy_value [i d]+ "]\ n ") ;

209
w r i t e i n f i l e = gtime +" "+i d +" "+energy_value [i d]+ " "+cpu_value [i d]+ " "+lpm_value [i d

]+ " "+l i s t e n _ v a l u e [i d]+ " "+transmit_value [i d]+ " \ n " ;
211 output2 [l I n d E n e r g y D e s c f i l e] . w r i t e (w r i t e i n f i l e) ;

l o g . l o g (" l I n d E n e r g y D e s c f i l e : "+ w r i t e i n f i l e) ;
213

// # 2 : l I n d P a c k e t D e s c f i l e
215 w r i t e i n f i l e = gtime +" "+i d +" " +(updates_value [i d]+ grouping_value [i d]) +" "+

updates_value [i d]+ " "+grouping_value [i d]+ " \ n " ;
output4 [l I n d P a c k e t D e s c f i l e] . w r i t e (w r i t e i n f i l e) ;

217 l o g . l o g (" l I n d P a c k e t D e s c f i l e : "+ w r i t e i n f i l e) ;

219 t o t a l _ r e p o r t s ++;

221 // R e c o r d i n g d e t a i l s t i l l a n d r e s e t a f t e r e a c h t i m e w i n d o w
i f (t o t a l _ r e p o r t s >= total_reports_needed) {

223 a l l _ r e p o r t e d = true ;
}

225

APPENDIX A. AUTOMATION OF EXPERIMENTS 257

i f (a l l _ r e p o r t e d) {
227 a l l _ r e p o r t e d = f a l s e ;

229 f o r (i = 2 ; i <= nrNodes ; i ++) {
total_updates_msgs += updates_value [i] ;

231 total_grouping_msgs += grouping_value [i] ;
total_cpu_energy_consumption += cpu_value [i] ;

233 total_lpm_energy_consumption += lpm_value [i] ;
total_l isten_energy_consumption += l i s t e n _ v a l u e [i] ;

235 total_transmit_energy_consumption += transmit_value [i] ;
}

237
p r i n t _ s t a t s () ;

239 total_updates_msgs = 0 ;
total_grouping_msgs = 0 ;

241 total_energy_consumption = 0 ;

243 i f (sim . g e t S i m u l a t i o n T i m e M i l l i s ()>TIME−OUT−FINALIZE) {
l o g . l o g (" E n d e d at "+ time + " \ n ") ;

245 output1 [l A l l E n e r g y D e s c f i l e] . c l o s e () ;
output2 [l I n d E n e r g y D e s c f i l e] . c l o s e () ;

247 output3 [l A l l P a c k e t D e s c f i l e] . c l o s e () ;
output4 [l I n d P a c k e t D e s c f i l e] . c l o s e () ;

249 log_func () ;
SCRIPT_TIMEOUT() ;

251 }

253 f o r (i = 2 ; i <= nrNodes ; i ++) {
node_reported [i] = f a l s e ;

255 updates_value [i] = 0 ;
grouping_value [i] = 0 ;

257 cpu_value [i]= 0 ;
lpm_value [i]= 0 ;

259 l i s t e n _ v a l u e [i]= 0 ;
transmit_value [i]= 0 ;

261 energy_value [i]= 0 ;
t o t a l _ r e p o r t s = 0 ;

263 total_updates_msgs = 0 ;
total_grouping_msgs = 0 ;

265 total_energy_consumption = 0 ;
total_cpu_energy_consumption = 0 ;

267 total_lpm_energy_consumption = 0 ;
total_l isten_energy_consumption = 0 ;

269 total_transmit_energy_consumption = 0 ;
}

271
}

273
}

Appendix B

Logs for validation and debugging

This chapter describes the validation log generated by simulations and gives some
examples with the snippets of some log files. Each simulation generates number of
log files produced by the automation script process, COOJA, UA and the DA. All
the log files are placed in a hierarchy of date and time in different folders, which
makes the process of debugging and validation easier and manageable. During
the testing, verification and validation of the results, these logs contains all the
information required to confirm the origin of a bug. For example, the DA generates
three different log files, which provides general perspective to a detailed one.
Similarly, the 6LoWPAN log is generated using COOJA script, which also provides
different level of detail in each file. These log files are used extensively during the
implementation, testing and debugging phases.

B.1 Simulation Log

A separate log file is generated for each simulation iteration, which represents the
more elaborative perspective of a simulation. Following is an example of such a
log file:

Listing B.1: Log of automation script (covers all processes)

2 GIT ID : aa1da98−5f 0 3 9 7 f −f 1 f a e 1 6 by VM#c1
The S i mu la t io n Duration = 420∗20

4 Total Nodes 35
o f 1 th o f 2 i t e r a t i o n s

6 DA l a s t for 20 time windows each with 420 seconds
UA w i l l query 100 q u e r i e s with i n t e r v a l o f 10 seconds

8 UA w i l l r e p e a t above query set for 1 times each with 1 seconds i n t e r v a l

10 New Report time window : Now a f t e r 494117:

12 New Performance A n a l y s i s p r i n t i n t e r v a l = 7 0 5 8 8 :
Mode=4[Basic SD : with t imer and grouping] : TimeWindow{420} Grouping {true} Trendy {1 ,9} Adaptive {

Enabled [true] , t h r e s h o l d [1] , s t e p [2] , Limit [1] , RetainThreshold [1] } PPUB{ Enabled [f a l s e] ,
Threshold [0] , Limit [0] , RetainThreshold [0] } D i r e c t o r y Agent l i s t e n i n g on port 5 6 8 3 .

14 DA w i l l run for more than 9882 seconds .
WARN [main] (GUI . java : 3 1 5 2) − JAVA_HOME environment v a r i a b l e not set , Cooja motes may not

compile

258

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 259

16 INFO [main] (GUI . java : 1 3 2 5) − > S t a r t i n g Cooja
INFO [main] (GUI . java : 2 8 3 9) − External t o o l s d e f a u l t s e t t i n g s : / e x t e r n a l _ t o o l s _ l i n u x . c o n f i g

18 INFO [main] (GUI . java : 2 8 6 9) − External t o o l s u s e r s e t t i n g s : / r o o t / . c o o j a . u s e r . p r o p e r t i e s
INFO [main] (S im ul a t i on . java : 4 2 3) − S im ul at i on random seed : −1948817365486295399

20 INFO [main] (CompileContiki . java : 1 4 0) − > make border−r o u t e r . sky TARGET=sky
INFO [main] (CompileContiki . java : 1 4 0) − > make group−member . sky TARGET=sky

22 INFO [main] (CompileContiki . java : 1 4 0) − > make group−member . sky TARGET=sky
INFO [main] (CompileContiki . java : 1 4 0) − > make group−member . sky TARGET=sky

24 INFO [main] (CompileContiki . java : 1 4 0) − > make group−member . sky TARGET=sky
INFO [main] (CompileContiki . java : 1 4 0) − > make group−member . sky TARGET=sky

26 INFO [main] (CompileContiki . java : 1 4 0) − > make group−l e a d e r . sky TARGET=sky
INFO [main] (CompileContiki . java : 1 4 0) − > make group−l e a d e r . sky TARGET=sky

28 INFO [main] (CompileContiki . java : 1 4 0) − > make group−l e a d e r . sky TARGET=sky
INFO [main] (CompileContiki . java : 1 4 0) − > make group−l e a d e r . sky TARGET=sky

30 INFO [main] (CompileContiki . java : 1 4 0) − > make group−l e a d e r . sky TARGET=sky
∗∗∗ S e t t i n g up f1611 IO !

32 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /
examples / ipv6 / rpl −border−r o u t e r / border−r o u t e r . sky

∗∗∗ S e t t i n g up f1611 IO !
34 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−g l / group−l e a d e r . sky
∗∗∗ S e t t i n g up f1611 IO !

36 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−g l group −2/group−l e a d e r . sky

∗∗∗ S e t t i n g up f1611 IO !
38 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−g l group −3/group−l e a d e r . sky
∗∗∗ S e t t i n g up f1611 IO !

40 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−g l group −4/group−l e a d e r . sky

∗∗∗ S e t t i n g up f1611 IO !
42 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−g l group −5/group−l e a d e r . sky
∗∗∗ S e t t i n g up f1611 IO !

44 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm/ group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
46 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm/ group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

48 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm/ group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
50 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm/ group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

52 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm/ group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
54 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm/ group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

56 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −2/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
58 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −2/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

60 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −2/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
62 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −2/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

64 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −2/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
66 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −2/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

68 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −3/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
70 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −3/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

72 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −3/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 260

74 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −3/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
76 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −3/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

78 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −3/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
80 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −4/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

82 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −4/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
84 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −4/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

86 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −4/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
88 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −4/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

90 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −4/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
92 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −5/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

94 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −5/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
96 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −5/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

98 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −5/group−member . sky

∗∗∗ S e t t i n g up f1611 IO !
100 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/

trendy−gm group −5/group−member . sky
∗∗∗ S e t t i n g up f1611 IO !

102 INFO [main] (MspMote . java : 2 1 6) − Loading f irmware from : /home/ t a l a l / sen s inode −c o n t i k i /work/
trendy−gm group −5/group−member . sky

INFO [main] (GUI . java : 1 7 6 8) − V i s u a l i z e d p l u g i n was not s t a r t e d : c l a s s s e . s i c s . c o o j a . p l u g i n s .
SimControl

104 INFO [main] (GUI . java : 1 7 6 8) − V i s u a l i z e d p l u g i n was not s t a r t e d : c l a s s s e . s i c s . c o o j a . p l u g i n s .
L o g L i s t e n e r

INFO [main] (S e r i a l S o c k e t S e r v e r . java : 1 1 9) − L i s t e n i n g on port : 60001
106 INFO [main] (ScriptRunner . java : 4 2 1) − Test s c r i p t d e a c t i v a t e d

INFO [main] (LogScriptEngine . java : 2 6 3) − S c r i p t timeout i n 8600000 ms
108 INFO [main] (ScriptRunner . java : 3 7 8) − Test s c r i p t a c t i v a t e d

INFO [main] (GUI . java : 1 7 6 8) − V i s u a l i z e d p l u g i n was not s t a r t e d : c l a s s s e . s i c s . c o o j a . p l u g i n s .
V i s u a l i z e r

110 INFO [main] (GUI . java : 1 7 6 8) − V i s u a l i z e d p l u g i n was not s t a r t e d : c l a s s s e . s i c s . c o o j a . p l u g i n s .
V i s u a l i z e r

INFO [Thread −2] (S i m ul at i on . java : 2 5 2) − S im ul a t i on main loop s t a r t e d , system time :
1362927241931

112 INFO : c o m p i l i n g with CoAP−07
TARGET not d e f i n e d , u s i n g t a r g e t ’ nat ive ’

114 sudo . . / . . / t o o l s / t u n s l i p 6 −a 1 2 7 . 0 . 0 . 1 aaaa : : 1 / 6 4
i f c o n f i g tun0 i n e t ‘ hostname ‘ up

116 INFO [Thread −3] (S e r i a l S o c k e t S e r v e r . java : 1 7 8) − Forwarder : s o c k e t −> s e r i a l port
i f c o n f i g tun0 add aaaa : : 1 / 6 4

118 i f c o n f i g tun0 add f e 8 0 : : 0 : 0 : 0 : 1 / 6 4
i f c o n f i g tun0

120
tun0 Link encap :UNSPEC HWaddr 00−00−00−00−00−00−00−00−00−00−00−00−00−00−00−00

122 i n e t addr : 1 2 7 . 0 . 0 . 1 P−t−P : 1 2 7 . 0 . 0 . 1 Mask : 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5
i n e t 6 addr : f e 8 0 : : 1 / 6 4 Scope : Link

124 i n e t 6 addr : aaaa : : 1 / 6 4 Scope : Global
UP POINTOPOINT RUNNING NOARP MULTICAST MTU: 1 5 0 0 Metric : 1

126 RX p a c k e t s : 0 e r r o r s : 0 dropped : 0 o ver run s : 0 frame : 0
TX p a c k e t s : 0 e r r o r s : 0 dropped : 0 o ver run s : 0 c a r r i e r : 0

128 c o l l i s i o n s : 0 t xq u eu el e n : 5 0 0
RX bytes : 0 (0 . 0 B) TX bytes : 0 (0 . 0 B)

130
S e r v e r IPv6 a d d r e s s e s :

132 aaaa : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1
r o u t e 1 : 0101

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 261

134 f e 8 0 : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1
r o u t e 2 : 0101

136 S e r v e r IPv6 a d d r e s s e s :
aaaa : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1

138 r o u t e 1 : 0101
f e 8 0 : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1

140 r o u t e 2 : 0101
event−r −1: 03−>03 −273

142 r −2: 05−>05 −273
r −3: 0 f −>05 −265

144 r −4: 02−>02 −272
r −5: 11−>02 −257

146 r −6: 0a−>05 −256
r −7: 04−>04 −277

148 r −8: 1 f −>06 −271
r −9: 0c−>02 −276

150 r −10: 08−>03 −267
r −11: 06−>06 −276

152 r −12: 1a−>06 −256
r −13: 18−>04 −267

154 r −14: 1e−>05 −264
r −15: 15−>06 −270

156 r −16: 21−>03 −266
r −17: 1c−>03 −267

158 r −18: 07−>02 −257
r −19: 20−>02 −257

160 r −20: 13−>04 −267
r −21: 19−>05 −267

162 r −22: 1b−>02 −256
r −23: 17−>03 −265

164 r −24: 14−>05 −257
r −25: 10−>06 −269

166 r −26: 0e−>04 −267
r −27: 23−>05 −264

168 r −28: 0b−>06 −269
r −29: 12−>03 −266

170 r −30: 09−>04 −267
r −31: 24−>06 −270

172 r −32: 0d−>03 −268
r −33: 22−>04 −265

174 r −34: 1d−>04 −266
r −35: 16−>02 −264

176 Incoming r e q u e s t from / trendy / rep / trendy / rep
Added Resource : URL[trendy / g l] ; [,] ; Cache [for 0 minutes at 1362927409057]

178 ∗∗∗

180 A n a l y s i s o f R e g i s t r y for Grouping :

182 ∗∗∗
New GL: so c h e c k i n g

184 Node Node{URI [/ trendy / rep] , g l I P [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] Active [true (1)] trendy [1 / 1]
GlChanged [f a l s e] l o c a t i o n [jmf04] b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e
[1 3 6 2 9 2 7 4 0 9 0 4 5] }

186 ∗∗∗
Incoming r e q u e s t from / trendy / rep / trendy / rep

188 Added Resource : URL[trendy / g l] ; [,] ; Cache [for 0 minutes at 1362927412931]
∗∗∗

190
A n a l y s i s o f R e g i s t r y for Grouping :

192
∗∗∗

194 New GL: so c h e c k i n g
Node Node{URI [/ trendy / rep] , g l I P [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] Active [true (1)] trendy [1 / 1]

GlChanged [f a l s e] l o c a t i o n [rut03] b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e
[1 3 6 2 9 2 7 4 1 2 9 2 2] }

196
∗∗∗

198 Incoming r e q u e s t from / trendy / rep / trendy / rep
Added Resource : URL[trendy / g l] ; [,] ; Cache [for 0 minutes at 1362927417711]

200 ∗∗∗

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 262

B.2 COOJA Log

The COOJA generates following log files for a 6LoWPAN running in its environment.
This section explains the log files briefly and presents few examples.

B.2.1 Case-x-packet.pcap

This file holds all the network traffic sniffed in a 6LoWPAN. The network traffic
validation is done by checking different details of the sniffed traffic using Wire-
shark [98]. Figure B.1 shows a snapshot to illustrate the coarse detail of each
packet in a Wireshark GUI.

Figure B.1: Sniffed traffic of a 6LoWPAN

B.2.2 Lowpan-detail.log

This file holds all the log details generated by each SA for debugging and validation.
An example is shown in Listing B.2.

Listing B.2: 6LoWPAN detailed log carrying all output of 35 SAs for Validation
Random seed : −1948817365486295399

2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Time : calculated_energy_consumption calculated_cpu_energy_consumption

calculated_lpm_energy_consumption calculated_l isten_energy_consumption
calculated_transmit_energy_consumption

4 #Time : i energy_value [i] cpu_value [i] lpm_value [i] l i s t e n _ v a l u e [i] transmit_value [i]
#Time : Total Trendy Packets : UPD GROUPING

6 #Time : Node−ID : Total Trendy Packets : UPD GROUPING

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 263

8 2 at 281872: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 2 . 0 . 2 . 2 . 2

10 6 at 283119: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 6 . 0 . 6 . 6 . 6

12 19 at 291251:MAC 0 0 : 1 2 : 7 4 : 1 3 : 0 0 : 1 3 : 1 3 : 1 3 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 1 9 .

14 2 at 292046:MAC 0 0 : 1 2 : 7 4 : 0 2 : 0 0 : 0 2 : 0 2 : 0 2 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 2 .

16 6 at 293291:MAC 0 0 : 1 2 : 7 4 : 0 6 : 0 0 : 0 6 : 0 6 : 0 6 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 6 .

18 27 at 293331: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 2 7 . 0 . 2 7 . 2 7 . 2 7

20 19 at 298739:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

22 2 at 299467:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

24 6 at 300714:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

26 27 at 305099:MAC 0 0 : 1 2 : 7 4 : 1 b : 0 0 : 1 b : 1 b : 1 b C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 2 7 .

28 27 at 312586:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

30 2 at 313978: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 2 : 0 0 0 2 : 0 2 0 2

32 19 at 314543: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 1 3 : 0 0 1 3 : 1 3 1 3

34 2 at 314981: S t a r t i n g ’GL’

36 14 at 315067: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 1 4 . 0 . 1 4 . 1 4 . 1 4

38 6 at 315225: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 6 : 0 0 0 6 : 0 6 0 6

40 19 at 315546: S t a r t i n g ’GM’

42 6 at 316228: S t a r t i n g ’GL’

44 14 at 325603:MAC 0 0 : 1 2 : 7 4 : 0 e : 0 0 : 0 e : 0 e : 0 e C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 1 4 .

46 27 at 328394: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 1 b : 0 0 1 b : 1 b1b

48 27 at 329397: S t a r t i n g ’GM’

50 14 at 333090:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

52 36 at 337112: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 3 6 . 0 . 3 6 . 3 6 . 3 6

54 14 at 347678: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 e : 0 0 0 e : 0 e0e

56 14 at 348681: S t a r t i n g ’GM’

58 36 at 348876:MAC 0 0 : 1 2 : 7 4 : 2 4 : 0 0 : 2 4 : 2 4 : 2 4 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 3 6 .

60 36 at 356363:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

62 8 at 361327: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 8 . 0 . 8 . 8 . 8

64 12 at 361714: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 1 2 . 0 . 1 2 . 1 2 . 1 2

66 8 at 371503:MAC 0 0 : 1 2 : 7 4 : 0 8 : 0 0 : 0 8 : 0 8 : 0 8 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 8 .

68 36 at 372165: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 2 4 : 0 0 2 4 : 2 4 2 4

70 12 at 372259:MAC 0 0 : 1 2 : 7 4 : 0 c : 0 0 : 0 c : 0 c : 0 c C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 1 2 .

72 36 at 373172: S t a r t i n g ’GM’

74 8 at 378924:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

76 12 at 379747:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

78 34 at 390495: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 3 4 . 0 . 3 4 . 3 4 . 3 4

80 8 at 393437: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 8 : 0 0 0 8 : 0 8 0 8

82 12 at 394338: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 c : 0 0 0 c : 0 c0c

84 8 at 394440: S t a r t i n g ’GM’

86 12 at 395341: S t a r t i n g ’GM’

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 264

88 34 at 402255:MAC 0 0 : 1 2 : 7 4 : 2 2 : 0 0 : 2 2 : 2 2 : 2 2 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 3 4 .

90 34 at 409742:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

92 34 at 425547: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 2 2 : 0 0 2 2 : 2 2 2 2

94 34 at 426551: S t a r t i n g ’GM’

96 13 at 432660: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 1 3 . 0 . 1 3 . 1 3 . 1 3

98 13 at 443208:MAC 0 0 : 1 2 : 7 4 : 0 d : 0 0 : 0 d : 0 d : 0 d C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 1 3 .

100 13 at 450695:CSMA ContikiMAC , channel check r a t e 8 Hz , r a d i o channel 26

102 7 at 453583: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 7 . 0 . 7 . 7 . 7

104 7 at 463762:MAC 0 0 : 1 2 : 7 4 : 0 7 : 0 0 : 0 7 : 0 7 : 0 7 C o n t i k i 2 . 6 s t a r t e d . Node i d i s set to 7 .

106 13 at 465283: Tentat ive l i n k −l o c a l IPv6 a d d r e s s f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 2 1 2 : 7 4 0 d : 0 0 0 d : 0 d0d

108 3 at 466279: Rime s t a r t e d with a d d r e s s 0 . 1 8 . 1 1 6 . 3 . 0 . 3 . 3 . 3

110 13 at 466286: S t a r t i n g ’GM’
.

112 .
.

114 1 at 109235400: S e r v e r IPv6 a d d r e s s e s :

116 1 at 109241677: aaaa : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1

118 1 at 109243638: r o u t e 1 : 0101

120 1 at 109249930: f e 8 0 : : 2 1 2 : 7 4 0 1 : 1 : 1 0 1

122 1 at 109251891: r o u t e 2 : 0101

124 1 at 109255367: event−r −1: 03−>03 −273

126 1 at 109258519: r −2: 05−>05 −273

128 1 at 109261588: r −3: 0 f −>05 −265

130 1 at 109264739: r −4: 02−>02 −272

132 1 at 109268113: r −5: 11−>02 −257

134 1 at 109271183: r −6: 0a−>05 −256

136 1 at 109274263: r −7: 04−>04 −277

138 1 at 109277639: r −8: 1 f −>06 −271

140 1 at 109280791: r −9: 0c−>02 −276

142 1 at 109284228: r −10: 08−>03 −267

144 1 at 109287748: r −11: 06−>06 −276

146 1 at 109291492: r −12: 1a−>06 −256

148 1 at 109295317: r −13: 18−>04 −267

150 1 at 109299061: r −14: 1e−>05 −264

152 1 at 109302826: r −15: 15−>06 −270

154 1 at 109306568: r −16: 21−>03 −266

156 1 at 109310312: r −17: 1c−>03 −267

158 1 at 109313749: r −18: 07−>02 −257

160 1 at 109317491: r −19: 20−>02 −257

162 1 at 109321315: r −20: 13−>04 −267

164 1 at 109325058: r −21: 19−>05 −267

166 1 at 109328839: r −22: 1b−>02 −256

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 265

168 1 at 109332582: r −23: 17−>03 −265

170 1 at 109336406: r −24: 14−>05 −257

172 1 at 109340149: r −25: 10−>06 −269

174 1 at 109343669: r −26: 0e−>04 −267

176 1 at 109347412: r −27: 23−>05 −264

178 1 at 109350932: r −28: 0b−>06 −269

180 1 at 109354674: r −29: 12−>03 −266

182 1 at 109358194: r −30: 09−>04 −267

184 1 at 109361939: r −31: 24−>06 −270

186 1 at 109365416: r −32: 0d−>03 −268

188 1 at 109369159: r −33: 22−>04 −265

190 1 at 109372904: r −34: 1d−>04 −266

192 1 at 109376664: r −35: 16−>02 −264

194 5 at 128798244: p (l=JMF04 , b=0,mgm=12 , r=trendy / g l) l (30/30) to

196 5 at 129033677: t =420

198 5 at 129034883: t420

200 5 at 129036884: newrep 21 1| 1

202 4 at 131968960: p (l=RUT03, b=0,mgm=12 , r=trendy / g l) l (30/30) to

204 4 at 132204991: t =420

206 4 at 132206192: t420

208 4 at 132208193: newrep 33 5| 1

210 2 at 135317971: p (l=INB01 , b=0,mgm=12 , r=trendy / g l) l (30/30) to

212 2 at 135676994: t =420

214 2 at 135678194: t420

216 2 at 135680267: newrep 41 5| 1

218 6 at 141319263: p (l=SSB05 , b=0,mgm=12 , r=trendy / g l) l (30/30) to

220 6 at 141553669: t =420
.

222 .
.

224 −−−−−−−−−−−−−−−−Time = 4201308746−−−−−−−−−
Total Nodes = 3 5 :

226 Total r e p o r t s = 3 5 :
Total Update Messages =184

228 Total Grouping Messages =60
Total CPU Consumption =2239 [4%] Total LPM Consumption =1135 [2%] Total LISTEN Consumption

=58981 [93%] Total TRANSMIT Consumption =1405 [2%] Total Energy Consumption
=63.76076319272461 J o u l e s [m i l l i :63760.76319272461−−−−−−−−−

230 l A l l E n e r g y D e s c f i l e : 4 2 0 0 63760.76319272461 2239.430923461914 1134.8447906249999
58981.22314453125 1405.2643341064456

l A l l P a c k e t D e s c f i l e : 4 2 0 0 244 184 60

B.2.3 l-energy-all.log

It contains aggregated energy values (transmit, listening, Low Power listening
and CPU) for 35 SAs at the end of each time window. An example is shown in
Listing B.3.

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 266

Listing B.3: 6LoWPAN log for aggregated energy consumption of 35 SAs in each
time window

1
Format (s e p a r a t e d by tabs) :

3 Seconds : 420
Total Energy Consumption : 8105 m i l l i j o u l e s

5 Energy spent by CPU: 316
Energy spent during LPM: 112

7 Energy spent during L i s t e n i n g : 6933
Energy spent during Transmitt ing : 742

9 −−
420 8105.504205926513 316.25917053222656 112.99217894897458 6933.3306884765625

742.9221679687498
11 840 14572.623792242432 552.2787322998047 226.4046973937988 12910.039672851562

883.9006896972656
1260 20905.71028399658 771.89208984375 339.91303363037105 18786.626586914062

1007.2785736083985
13 1680 26942.38112759399 975.0123138427734 453.5077663879394 24477.330322265625

1036.5307250976562
2100 33135.47928929443 1187.9664459228516 567.0529831420898 30265.517578125

1114.9422821044918
15 2520 39211.80095956421 1393.7349243164062 680.6337140808105 35980.294189453125

1157.1381317138673
2940 45349.58579152222 1603.0055694580078 794.1971989929197 41737.81494140625

1214.5680816650388
17 3360 51494.22161099853 1815.6357879638672 907.7424514526366 47486.21887207031

1284.6244995117188
3780 57521.531957537845 2019.6591796875 1021.3347224304201 53172.27355957031

1308.2644958496094
19 4200 63760.76319272461 2239.430923461914 1134.8447906249999 58981.22314453125

1405.2643341064456
4620 69760.76371766967 2442.6050720214844 1248.4407440368655 64643.37890625

1426.3389953613282
21 5040 75846.91823616944 2651.5826568603516 1362.00530892334 70358.22875976562

1475.1015106201176
5460 82036.11023864135 2869.404739379883 1475.5217346130373 76140.12817382812

1551.055590820312
23 5880 87991.41860117798 3071.8158416748047 1589.1219367492677 81769.37255859375

1561.108264160156
6300 94287.65106833496 3297.1075744628906 1702.601230078125 87620.30456542969

1667.637698364258
25 6720 100253.06200737305 3501.946060180664 1816.1882463867187 93252.38159179688

1682.546109008789
7140 106425.43900129394 3719.647018432617 1929.7102995117184 99021.96350097656

1754.118182373047
27 7560 112524.26618941041 3934.2019958496094 2043.2941953918455 104740.17700195312

1806.5929962158207
7980 118534.7614795166 4143.127258300781 2156.8605884033204 110407.45422363281

1827.3194091796877
29 8400 124783.54844002075 4365.155868530273 2270.360759967041 116223.25927734375

1924.7725341796872

B.2.4 l-energy-ind.log

It carrys the individual energy values for each of the 35 SAs at the end of each
time window. An example is shown in Listing B.4.

Listing B.4: 6LoWPAN log for individual energy for 35 SAs in each time window
1

S i m i l a r format l i k e l−energy−a l l . l o g
3 Only second column r e p r e s e n t s node number here

−−
5 420 2 294.65434200439455 12.94683837890625 3.2083703247070314 246.6943359375

31.804797363281253
420 6 286.28680442504884 12.582366943359375 3.2101168029785154 243.065185546875

27.429135131835935
7 420 19 221.25385037841795 8.291336059570312 3.232118811035156 190.9954833984375

18.734912109375003
420 27 217.24769946899414 8.09454345703125 3.233157843017578 187.7215576171875

18.198440551757812

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 267

9 420 14 217.15902416381834 8.29083251953125 3.2321442810058594 186.024169921875
19.61187744140625

420 36 215.18124539794923 8.013427734375 3.2335708374023433 187.3297119140625
16.604534912109376

11 420 8 214.82246350708007 8.112579345703125 3.233053106689453 185.9600830078125
17.516748046875

420 12 218.85444497680663 7.95574951171875 3.233885284423828 190.777587890625
16.887222290039062

13 420 34 220.88778381958008 8.424636840820312 3.2314392150878906 188.6004638671875
20.631243896484378

420 13 222.65375192871096 8.373733520507812 3.2317212890625 191.220703125
19.827593994140628

15 420 7 212.47223981323242 7.7936553955078125 3.2349931091308592 185.2606201171875
16.182971191406253

420 3 284.5271376708984 12.743820190429688 3.2092696289062497 239.794921875
28.779125976562497

17 420 32 228.00281817626953 8.849990844726562 3.229228088378906 193.79150390625
22.132095336914062

420 21 227.58744158935545 8.330429077148438 3.2319179077148434 199.8724365234375
16.15265808105469

19 420 11 218.19248501586915 8.262222290039062 3.2322951965332027 186.895751953125
19.802215576171875

420 22 218.1124487915039 8.476593017578125 3.231827453613281 183.7664794921875
22.637548828125

21 420 30 229.02147634277344 8.974868774414062 3.2285106445312497 193.319091796875
23.499005126953126

420 35 222.21827649536135 8.667205810546875 3.230791754150391 185.8026123046875
24.51766662597656

23 420 5 287.69299608764646 12.948394775390625 3.208373895263672 240.6866455078125
30.84958190917969

420 31 216.99980755004884 8.057418823242188 3.2333463684082027 187.7545166015625
17.954525756835938

25 420 16 219.3703544494629 8.466888427734375 3.231212603759766 186.1541748046875
21.51807861328125

420 20 214.85796419677735 7.9071807861328125 3.234111657714844 188.34228515625
15.374386596679688

27 420 24 219.11335708007815 8.179092407226562 3.232714379882812 189.708251953125
17.99329833984375

420 4 290.0420869812012 13.089889526367188 3.207461737060547 243.343505859375
30.401229858398438

29 420 28 218.6559445678711 8.349884033203125 3.2318112670898436 186.9195556640625
20.154693603515625

420 10 225.17402451782226 8.395111083984375 3.231602032470703 192.5445556640625
21.00275573730469

31 420 23 217.70547147216797 8.06744384765625 3.2332851928710933 189.5379638671875
16.866778564453128

420 15 235.88801070556642 8.603622436523438 3.230512536621094 206.180419921875
17.873455810546876

33 420 33 230.9490939147949 9.13165283203125 3.227752972412109 194.410400390625
24.17928771972656

420 26 216.2316277404785 8.088180541992188 3.2331749816894533 186.9635009765625
17.946771240234376

35 420 17 237.27476727905272 9.469985961914062 3.2259238952636715 199.3414306640625
25.2374267578125

420 29 218.02615773925783 8.253067016601562 3.23231923828125 186.8865966796875
19.6541748046875

37 420 25 226.89658725585937 8.563613891601562 3.2307120117187496 192.7276611328125
22.374600219726563

420 9 241.7110942199707 9.192169189453125 3.2274363830566406 205.8270263671875
23.464462280273438

39 420 18 219.77912620239258 8.310745239257812 3.232016217041015 189.1094970703125
19.12686767578125

B.2.5 l-packet-all.log

It holds the total TRENDY packets sent by all the 35 SAs for every time window.
An example is shown in Listing B.5.

Listing B.5: 6LoWPAN log for total TRENDY messages for all 35 SAs in each
time window

1
Format (s e p a r a t e d by tabs) :

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 268

3 Seconds : 420
Total TRENDY messages : 97

5 Total UPDs : 37
Total Grouping : 60

7 −−
420 97 37 60

9 840 130 70 60
1260 151 91 60

11 1680 170 110 60
2100 184 124 60

13 2520 201 141 60
2940 213 153 60

15 3360 222 162 60
3780 234 174 60

17 4200 244 184 60
4620 254 194 60

19 5040 266 206 60
5460 276 216 60

21 5880 281 221 60
6300 293 233 60

23 6720 300 240 60
7140 307 247 60

25 7560 314 254 60
7980 324 264 60

27 8400 329 269 60

B.2.6 l-packet-ind.log

It stores the TRENDY packets information separately for each SA. An example is
shown in Listing B.6.

Listing B.6: 6LoWPAN log for total TRENDY messages for each 35 SAs in each
time window

1
S i m i l a r format l i k e l−packet−a l l . l o g

3 Only second column r e p r e s e n t s node number here
−−

5 420 2 13 1 12
420 6 14 2 12

7 420 19 1 1 0
420 27 1 1 0

9 420 14 1 1 0
420 36 1 1 0

11 420 8 1 1 0
420 12 1 1 0

13 420 34 1 1 0
420 13 1 1 0

15 420 7 1 1 0
420 3 13 1 12

17 420 32 1 1 0
420 21 1 1 0

19 420 11 1 1 0
420 22 1 1 0

21 420 30 1 1 0
420 35 1 1 0

23 420 5 14 2 12
420 31 1 1 0

25 420 16 1 1 0
420 20 1 1 0

27 420 24 1 1 0
420 4 13 1 12

29 420 28 1 1 0
420 10 1 1 0

31 420 23 1 1 0
420 15 1 1 0

33 420 33 1 1 0
420 26 1 1 0

35 420 17 1 1 0
420 29 1 1 0

37 420 25 1 1 0
420 9 1 1 0

39 420 18 1 1 0

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 269

B.3 DA Log

The DA generates few log files to record different level of details. This section
explains the log files briefly and presents few examples.

B.3.1 daperformance.log

It contains very general information about the results, which is used for graphs
after some processing. Following is an example of such a log file. An example is
shown in Listing B.7.

Listing B.7: DA Log for graph generation after further processing
1

Format (s e p a r a t e d by tabs) :
3 Seconds : 420

Total UPD r e c e i v e d : 37
5 Total grouping messages s e n t : 30

Total nodes r e g i s t e r e d : 35
7 Total GLs : 5

Nodes i n groups : 30
9 −−

420 37 30 0 35 5 30
11 840 40 30 0 35 5 30

1260 43 30 0 35 5 30
13 1680 45 30 0 35 5 30

2100 48 30 0 35 5 30
15 2520 50 30 0 35 5 30

2940 50 30 0 35 5 30
17 3360 54 30 0 35 5 30

3780 55 30 0 35 5 30
19 4200 55 30 0 35 5 30

4620 56 30 0 35 5 30
21 5040 59 30 0 35 5 30

5460 60 30 0 35 5 30
23 5880 60 30 0 35 5 30

6300 61 30 0 35 5 30
25 6720 63 30 0 35 5 30

7140 64 30 0 35 5 30
27 7560 65 30 0 35 5 30

7980 65 30 0 35 5 30
29 8400 65 30 0 35 5 30

B.3.2 da-detail.log

This file holds some details about the status of the DA including number of nodes
registers at certain time (every minute) etc. Following is an example of this log
file. An example is shown in Listing B.8.

Listing B.8: Some of the DA detail
1 Only Showing some o f the l o g

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 2013/03/10 1 4 : 5 3 : 5 9

Time : 0 , Updates : 0 , Grouping Messages : 0 , Trendy Change Messages : 0 , Total Nodes : 0 , Total GLs : 0 , Nodes
i n groups : 0

5
Mode=4[Basic SD : with t imer and grouping] : TimeWindow{420} Grouping {true} Trendy {1 ,9} Adaptive {

Enabled [true] , t h r e s h o l d [1] , s t e p [2] , Limit [1] , RetainThreshold [1] } PPUB{ Enabled [f a l s e] ,
Threshold [0] , Limit [0] , RetainThreshold [0] }

7 Time : 7 0 , Updates : 0 , Grouping Messages : 0 , Trendy Change Messages : 0 , Total Nodes : 0 , Total GLs : 0 , Nodes
i n groups : 0

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 270

9 Time : 1 4 1 , Updates : 0 , Grouping Messages : 0 , Trendy Change Messages : 0 , Total Nodes : 0 , Total GLs : 0 ,
Nodes i n groups : 0

11 Time : 2 1 1 , Updates : 1 0 , Grouping Messages : 5 , Trendy Change Messages : 0 , Total Nodes : 1 0 , Total GLs : 5 ,
Nodes i n groups : 5

13 Time : 2 8 2 , Updates : 2 8 , Grouping Messages : 2 3 , Trendy Change Messages : 0 , Total Nodes : 2 8 , Total GLs : 5 ,
Nodes i n groups : 2 3

15 Time : 3 5 2 , Updates : 3 5 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

17 Time : 4 2 3 , Updates : 3 5 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

19 Time : 4 9 4 , Updates : 3 6 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

21 Mode=4[Basic SD : with t imer and grouping] : TimeWindow{420} Grouping {true} Trendy {1 ,9} Adaptive {
Enabled [true] , t h r e s h o l d [1] , s t e p [2] , Limit [1] , RetainThreshold [1] } PPUB{ Enabled [f a l s e] ,
Threshold [0] , Limit [0] , RetainThreshold [0] }

23 Time : 4 2 0 , Updates : 3 7 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

25 Time : 5 6 4 , Updates : 3 7 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

27 Time : 6 3 5 , Updates : 3 9 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

29 Time : 7 0 5 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

31 Time : 7 7 6 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

33 Time : 8 4 7 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

35 Time : 9 1 7 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

37 Time : 9 8 8 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

39 Mode=4[Basic SD : with t imer and grouping] : TimeWindow{420} Grouping {true} Trendy {1 ,9} Adaptive {
Enabled [true] , t h r e s h o l d [1] , s t e p [2] , Limit [1] , RetainThreshold [1] } PPUB{ Enabled [f a l s e] ,
Threshold [0] , Limit [0] , RetainThreshold [0] }

41 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 d : d : d0d] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 8 : 8 : 8 0 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 7 : 1 7 : 1 7 1 7] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 2 : 1 2 : 1 2 1 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 c : 1 c : 1
c1c] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 1 : 2 1 : 2 1 2 1] ,

43 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 e : 1 e : 1 e1e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 9 : 1 9 : 1 9 1 9] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 3 : 2 3 : 2 3 2 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 a : a : a0a] , 5 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 4 : 1 4 : 1 4 1 4] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 f : f : f 0 f] ,

45 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 f : 1 f : 1 f 1 f] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 a : 1 a : 1 a1a] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 4 : 2 4 : 2 4 2 4] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 0 : 1 0 : 1 0 1 0] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 b : b :
b0b] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 5 : 1 5 : 1 5 1 5] ,

47 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 e : e : e0e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 8 : 1 8 : 1 8 1 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 3 : 1 3 : 1 3 1 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 2 : 2 2 : 2 2 2 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 d : 1 d : 1
d1d] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 9 : 9 : 9 0 9] ,

49 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 7 : 7 : 7 0 7] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 1 : 1 1 : 1 1 1 1] , 3 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 c : c : c0c
] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 b : 1 b : 1 b1b] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6] , 6 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 0 : 2 0 : 2 0 2 0] ,

51 Time : 8 4 0 , Updates : 4 0 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

53 Time : 1 0 5 8 , Updates : 4 1 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 271

55 Time : 1 1 2 9 , Updates : 4 1 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

57 Time : 1 2 0 0 , Updates : 4 1 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

59 Time : 1 2 7 0 , Updates : 4 1 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

61 Time : 1 3 4 1 , Updates : 4 2 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

63 Time : 1 4 1 1 , Updates : 4 3 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

65 Time : 1 4 8 2 , Updates : 4 3 , Grouping Messages : 3 0 , Trendy Change Messages : 0 , Total Nodes : 3 5 , Total GLs : 5 ,
Nodes i n groups : 3 0

67 Mode=4[Basic SD : with t imer and grouping] : TimeWindow{420} Grouping {true} Trendy {1 ,9} Adaptive {
Enabled [true] , t h r e s h o l d [1] , s t e p [2] , Limit [1] , RetainThreshold [1] } PPUB{ Enabled [f a l s e] ,
Threshold [0] , Limit [0] , RetainThreshold [0] }

69 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 d : d : d0d] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 8 : 8 : 8 0 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 7 : 1 7 : 1 7 1 7] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 2 : 1 2 : 1 2 1 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 c : 1 c : 1
c1c] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 1 : 2 1 : 2 1 2 1] ,

71 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 e : 1 e : 1 e1e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 9 : 1 9 : 1 9 1 9] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 3 : 2 3 : 2 3 2 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 a : a : a0a] , 5 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 4 : 1 4 : 1 4 1 4] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 f : f : f 0 f] ,

73 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 f : 1 f : 1 f 1 f] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 a : 1 a : 1 a1a] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 4 : 2 4 : 2 4 2 4] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 0 : 1 0 : 1 0 1 0] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 b : b :
b0b] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 5 : 1 5 : 1 5 1 5] ,

75 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 e : e : e0e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 8 : 1 8 : 1 8 1 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 3 : 1 3 : 1 3 1 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 2 : 2 2 : 2 2 2 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 d : 1 d : 1
d1d] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 9 : 9 : 9 0 9] ,

77 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 7 : 7 : 7 0 7] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 1 : 1 1 : 1 1 1 1] , 3 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 c : c : c0c
] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 b : 1 b : 1 b1b] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6] , 6 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 0 : 2 0 : 2 0 2 0] ,

79 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 d : d : d0d] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 8 : 8 : 8 0 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 7 : 1 7 : 1 7 1 7] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 2 : 1 2 : 1 2 1 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 c : 1 c : 1
c1c] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 1 : 2 1 : 2 1 2 1] ,

81 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 e : 1 e : 1 e1e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 9 : 1 9 : 1 9 1 9] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 3 : 2 3 : 2 3 2 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 a : a : a0a] , 5 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 4 : 1 4 : 1 4 1 4] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 f : f : f 0 f] ,

83 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 f : 1 f : 1 f 1 f] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 a : 1 a : 1 a1a] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 4 : 2 4 : 2 4 2 4] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 0 : 1 0 : 1 0 1 0] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 b : b :
b0b] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 5 : 1 5 : 1 5 1 5] ,

85 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 e : e : e0e] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 8 : 1 8 : 1 8 1 8] , 3 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 1 3 : 1 3 : 1 3 1 3] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 2 : 2 2 : 2 2 2 2] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 d : 1 d : 1
d1d] , 6 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 9 : 9 : 9 0 9] ,

87 GL[aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2 / aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] : 6 GMs Active for GL: 1 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 7 : 7 : 7 0 7] , 2 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 1 : 1 1 : 1 1 1 1] , 3 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 c : c : c0c
] , 4 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 b : 1 b : 1 b1b] , 5 th [/ aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6] , 6 th [/ aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 2 0 : 2 0 : 2 0 2 0] ,

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 272

B.3.3 daFullDetail.log

This file contains the most of the log of different classes in the DA. It is used for
the debugging and validation. Following code snippet shows an example of this
log file. An example is shown in Listing B.9.

Listing B.9: Full log generated by DA classes
1 Log for a l l o f the DA c l a s s e s . Again j u s t showing the one page as an example

−−
3 2013−03−10 1 4 : 5 3 : 5 9 [u t i l . Log] INFO − ==[START−UP

]==
2013−03−10 1 4 : 5 6 : 4 9 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] : 5 6 8 3#−−
5 2013−03−10 1 4 : 5 6 : 4 9 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep

2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − S t r i n g payload [l=JMF04 , b=0,mgm=12 , r=
trendy / g l] , s i z e (3 0)

7 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Context [JMF04]
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Battery [0]

9 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − gm [1 2]
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 1

11 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Locat ion (JMF04) has 1 r e c o r d s :

13 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Byte [0] : 164
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Byte [1] : 1

15 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420

17 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Resource : URL[trendy / g l] ; [,] ; Cache [for
0 minutes at 1362927409057]

2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Making i t GL
19 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − New GL: GL{ IP [/ aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] , l o c a t i o n [jmf04] , maxGM[1 2] , conf irmed GM[0] , c a p a b i l i t y [1 2 2 . 0] ,
rank [0 . 0]

21 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − as Node : Node{URI [/ trendy / rep] , g l I P [/
aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] Active [true (0)] trendy [1 / 1] GlChanged [f a l s e] l o c a t i o n [jmf04]
b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e [1 3 6 2 9 2 7 4 0 9 0 4 5] }

23 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Node ’ s UPD Message # 1 o f 1
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − trendy = 1

25
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Sending code =65

27 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − New GL added
2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − Asking for Normal behaviour = 0

29 2013−03−10 1 4 : 5 6 : 4 9 [trendy . da . ReportResource] INFO − payload ([B@11c55bb) o f 3 bytes
2013−03−10 1 4 : 5 6 : 4 9 [l a y e r s . TokenLayer] INFO − Responding r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 5 : 5 : 5 0 5] : 5 6 8 3#−−
31 2013−03−10 1 4 : 5 6 : 5 2 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] : 5 6 8 3#−−
2013−03−10 1 4 : 5 6 : 5 2 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep

33 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − S t r i n g payload [l=RUT03, b=0,mgm=12 , r=
trendy / g l] , s i z e (3 0)

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Context [RUT03]
35 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Battery [0]

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − gm [1 2]
37 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 2

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :
39 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Locat ion (RUT03) has 1 r e c o r d s :

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Byte [0] : 164
41 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Byte [1] : 1

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420
43

2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Resource : URL[trendy / g l] ; [,] ; Cache [for
0 minutes at 1362927412931]

45 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Making i t GL
2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − New GL: GL{ IP [/ aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] , l o c a t i o n [rut03] , maxGM[1 2] , conf irmed GM[0] , c a p a b i l i t y [1 2 2 . 0] ,
rank [0 . 0]

47
2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − as Node : Node{URI [/ trendy / rep] , g l I P [/

aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] Active [true (0)] trendy [1 / 1] GlChanged [f a l s e] l o c a t i o n [rut03]
b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e [1 3 6 2 9 2 7 4 1 2 9 2 2] }

49
2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Node ’ s UPD Message # 1 o f 2

51 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − trendy = 1

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 273

53 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Sending code =65
2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − New GL added

55 2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − Asking for Normal behaviour = 0
2013−03−10 1 4 : 5 6 : 5 2 [trendy . da . ReportResource] INFO − payload ([B@1d31859) o f 3 bytes

57 2013−03−10 1 4 : 5 6 : 5 2 [l a y e r s . TokenLayer] INFO − Responding r e q u e s t : [aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 4 : 4 : 4 0 4] : 5 6 8 3#−−

2013−03−10 1 4 : 5 6 : 5 7 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] : 5 6 8 3#−−

59 2013−03−10 1 4 : 5 6 : 5 7 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep
2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − S t r i n g payload [l=INB01 , b=0,mgm=12 , r=

trendy / g l] , s i z e (3 0)
61 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Context [INB01]

2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Battery [0]
63 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − gm [1 2]

2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 3
65 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :

2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Locat ion (INB01) has 1 r e c o r d s :
67 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Byte [0] : 164

2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Byte [1] : 1
69 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420

71 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Resource : URL[trendy / g l] ; [,] ; Cache [for
0 minutes at 1362927417711]

2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Making i t GL
73 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − New GL: GL{ IP [/ aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] , l o c a t i o n [inb01] , maxGM[1 2] , conf irmed GM[0] , c a p a b i l i t y [1 2 2 . 0] ,
rank [0 . 0]

75 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − as Node : Node{URI [/ trendy / rep] , g l I P [/
aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] Active [true (0)] trendy [1 / 1] GlChanged [f a l s e] l o c a t i o n [inb01]
b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e [1 3 6 2 9 2 7 4 1 7 7 0 3] }

77 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Node ’ s UPD Message # 1 o f 3
2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − trendy = 1

79
2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Sending code =65

81 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − New GL added
2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − Asking for Normal behaviour = 0

83 2013−03−10 1 4 : 5 6 : 5 7 [trendy . da . ReportResource] INFO − payload ([B@15a07bf) o f 3 bytes
2013−03−10 1 4 : 5 6 : 5 7 [l a y e r s . TokenLayer] INFO − Responding r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 2 : 2 : 2 0 2] : 5 6 8 3#−−
85 2013−03−10 1 4 : 5 7 : 0 5 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] : 5 6 8 3#−−
2013−03−10 1 4 : 5 7 : 0 5 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep

87 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − S t r i n g payload [l=SSB05 , b=0,mgm=12 , r=
trendy / g l] , s i z e (3 0)

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Context [SSB05]
89 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Battery [0]

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − gm [1 2]
91 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 4

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :
93 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Locat ion (SSB05) has 1 r e c o r d s :

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Byte [0] : 164
95 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Byte [1] : 1

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420
97

2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Resource : URL[trendy / g l] ; [,] ; Cache [for
0 minutes at 1362927425199]

99 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Making i t GL
2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − New GL: GL{ IP [/ aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] , l o c a t i o n [ssb05] , maxGM[1 2] , conf irmed GM[0] , c a p a b i l i t y [1 2 2 . 0] ,
rank [0 . 0]

101
2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − as Node : Node{URI [/ trendy / rep] , g l I P [/

aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] Active [true (0)] trendy [1 / 1] GlChanged [f a l s e] l o c a t i o n [ssb05]
b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e [1 3 6 2 9 2 7 4 2 5 1 8 9] }

103
2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Node ’ s UPD Message # 1 o f 4

105 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − trendy = 1

107 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Sending code =65
2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − New GL added

109 2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − Asking for Normal behaviour = 0
2013−03−10 1 4 : 5 7 : 0 5 [trendy . da . ReportResource] INFO − payload ([B@8f3d27) o f 3 bytes

111 2013−03−10 1 4 : 5 7 : 0 5 [l a y e r s . TokenLayer] INFO − Responding r e q u e s t : [aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 6 : 6 : 6 0 6] : 5 6 8 3#−−

2013−03−10 1 4 : 5 7 : 1 4 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa
: 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] : 5 6 8 3#−−

113 2013−03−10 1 4 : 5 7 : 1 4 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 274

2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − S t r i n g payload [l=HSG02 , b=0,mgm=12 , r=
trendy / g l] , s i z e (3 0)

115 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Context [HSG02]
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Battery [0]

117 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − gm [1 2]
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 5

119 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Locat ion (HSG02) has 1 r e c o r d s :

121 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Byte [0] : 164
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Byte [1] : 1

123 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420

125 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Resource : URL[trendy / g l] ; [,] ; Cache [for
0 minutes at 1362927434372]

2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Making i t GL
127 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − New GL: GL{ IP [/ aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] , l o c a t i o n [hsg02] , maxGM[1 2] , conf irmed GM[0] , c a p a b i l i t y [1 2 2 . 0] ,
rank [0 . 0]

129 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − as Node : Node{URI [/ trendy / rep] , g l I P [/
aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] Active [true (0)] trendy [1 / 1] GlChanged [f a l s e] l o c a t i o n [hsg02]
b a t t e r y L e v e l [0] currentNumberOfResources [1] Active S i n c e [1 3 6 2 9 2 7 4 3 4 3 6 3] }

131 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Node ’ s UPD Message # 1 o f 5
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − trendy = 1

133
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Sending code =65

135 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − New GL added
2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − Asking for Normal behaviour = 0

137 2013−03−10 1 4 : 5 7 : 1 4 [trendy . da . ReportResource] INFO − payload ([B@1e6f0ef) o f 3 bytes
2013−03−10 1 4 : 5 7 : 1 4 [l a y e r s . TokenLayer] INFO − Responding r e q u e s t : [aaaa

: 0 : 0 : 0 : 2 1 2 : 7 4 0 3 : 3 : 3 0 3] : 5 6 8 3#−−
139 2013−03−10 1 4 : 5 7 : 2 0 [l a y e r s . TokenLayer] INFO − Incoming r e q u e s t : [aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 e : e : e0e

] : 5 6 8 3#−−
2013−03−10 1 4 : 5 7 : 2 0 [endpoint . LocalEndpoint] INFO − Disp atching e x e c u t i o n : / trendy / rep

141 2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − S t r i n g payload [l=RUT03, b=0, r=l i g h t ;
humid ; temp ;] , s i z e (3 1)

2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Context [RUT03]
143 2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Battery [0]

2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Total R e g i s t r y Nodes = 5
145 2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − DA R e g i s t r y Nodes :

2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Locat ion (RUT03) has 2 r e c o r d s :
147 2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Byte [0] : 164

2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − Byte [1] : 1
149 2013−03−10 1 4 : 5 7 : 2 0 [trendy . da . ReportResource] INFO − DEBUG chk Timer bytes to i n t = 420

B.4 UA Log

The UA generates following log files:

B.4.1 uaperformance-processed.log

It contains very general information about the results, which is used for graphs
after some processing. An example is shown in Listing B.10.

Listing B.10: UA log for graph generation after further processing
1 Format :

Query#
3 S e r v i c e Discovery delay :

S e r v i c e i n v o c a t i o n delay :
5 Optimal S e r v i c e s e l e c t i o n :

Group query :
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 21.507398 576.7593153500001 1 0
9 2 19.485132 500.78959975 1 0

3 14.615253 687.337319 1 0
11 4 17.641199 319.83119405 1 0

5 16.978385 527.99205795 1 0

APPENDIX B. LOGS FOR VALIDATION AND DEBUGGING 275

13 6 20.059484 347.14612509999995 1 0
7 22.514677 1287.6573075 1 0

15 8 14.014749 1084.5305371499999 1 0
9 23.075649 572.03808725 1 0

17 10 23.555236 428.37224069999996 1 0

B.4.2 ua-detail.log

This file holds some details about the status of the UA including the details of
queries and responses. An example is shown in Listing B.11.

Listing B.11: Full UA log including detail of queries and responses
−−−

2 2013/03/10 1 4 : 5 8 : 5 9
Query [l o c a t i o n=INB01&type=humid] : Response#1 : aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6 ; / humid ; r t =; i n f o =; ,

4
Query [l o c a t i o n=INB01&type=humid] : Response#1 : { 2 3 7 : 7 9 5 } 3 0

6
Time : 1 , I n t e r v a l : 1 s e c s , Query#: 1 , INB01 , S e r v i c e Discovery Delay : 2 1 . 5 0 7 3 9 8 , S e r v i c e I n v o c a t i o n

Delay : 6 7 8 . 5 4 0 3 7 1 , Optimal S e r v i c e S e l e c t i o n : true , Group S e r v i c e S e l e c t i o n : f a l s e
8

Query [l o c a t i o n=INB01&i n f o=l i g h t] : Response#2 : aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6 ; / l i g h t ; r t =; i n f o =; ,
10

Query [l o c a t i o n=INB01&i n f o=l i g h t] : Response#2 : { 7 1 : 2 6 2 } 1 0
12

Time : 9 , I n t e r v a l : 7 s e c s , Query#: 2 , INB01 , S e r v i c e Discovery Delay : 1 9 . 4 8 5 1 3 2 , S e r v i c e I n v o c a t i o n
Delay : 5 8 9 . 1 6 4 2 3 5 , Optimal S e r v i c e S e l e c t i o n : true , Group S e r v i c e S e l e c t i o n : f a l s e

14
Query [l o c a t i o n=INB01&i n f o=l i g h t] : Response#3 : aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 1 6 : 1 6 : 1 6 1 6 ; / l i g h t ; r t =; i n f o =; ,

16
Query [l o c a t i o n=INB01&i n f o=l i g h t] : Response#3 : { 3 2 8 : 1 0 2 5 } 1 0

18
Time : 1 7 , I n t e r v a l : 7 s e c s , Query#: 3 , INB01 , S e r v i c e Discovery Delay : 1 4 . 6 1 5 2 5 3 , S e r v i c e I n v o c a t i o n

Delay : 8 0 8 . 6 3 2 1 4 , Optimal S e r v i c e S e l e c t i o n : true , Group S e r v i c e S e l e c t i o n : f a l s e
20

Query [l o c a t i o n=HSG02&i n f o=humid] : Response#4 : aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 2 1 : 2 1 : 2 1 2 1 ; / humid ; r t =; i n f o =; ,
22

Query [l o c a t i o n=HSG02&i n f o=humid] : Response#4 : { 2 5 7 : 7 9 5 } 3 0
24

Time : 2 3 , I n t e r v a l : 6 s e c s , Query#: 4 , HSG02 , S e r v i c e Discovery Delay : 1 7 . 6 4 1 1 9 9 , S e r v i c e I n v o c a t i o n
Delay : 3 7 6 . 2 7 1 9 9 3 , Optimal S e r v i c e S e l e c t i o n : true , Group S e r v i c e S e l e c t i o n : f a l s e

26
Query [l o c a t i o n=RUT03&type=l&i n f o=l i g h t] : Response#5 : aaaa : 0 : 0 : 0 : 2 1 2 : 7 4 0 9 : 9 : 9 0 9 ; / l i g h t ; r t =; i n f o

=; ,
28

Query [l o c a t i o n=RUT03&type=l&i n f o=l i g h t] : Response#5 : { 2 8 0 : 8 6 9 } 1 0

Appendix C

Automation for statistics
processing and graph generation

This chapter covers the detail of automation of raw statistics processing and the
generation of graphs.

C.1 Data Processing

A bash script is written to process all the collected raw log files generated by the
simulations to calculate the means and standard deviations for a set of experiments.
Listing C.1 presents the code.

Listing C.1: Bash Script to process generated log files for mean and standard
deviation values
#! / bin / bash

2
noOfArgumentsReqd =3;

4 i f [" $#" −ne " $noOfArgumentsReqd "] ; then
echo " Usage : Need $noOfArgumentsReqd arguments "

6 exit 1
f i

8
totalSimTime=$1

10 t o p o l o g i e s=$2
numOfQueryVariations=$3

12
i f [" $4 " == " "] ; then

14 numOfCases=4
echo " Number o f Cases : $numOfCases "

16 e l s e
numOfCases=$4

18 echo " Number o f Cases : $numOfCases "
f i

20
i f [" $5 " == " "] ; then

22 bFDIR=$PWD
echo " D i r e c t o r y f o r : $bFDIR "

24 e l s e
bFDIR=$5

26 echo " D i r e c t o r y f o r : $bFDIR "
f i

28
c l e a n A l l R e s u l t s=" " ;

30 c l e a n I n d R e s u l t s=" " ;
c l e an U a R e s u lt s=" " ;

276

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 277

32 c leanDaResults=" " ;

34 #C o n f i g u r i n g a t t r i b u t e s
for ((i = 1 ; i <= $ t o p o l o g i e s ; i ++)) ; do

36 case " $ i " i n

38 " 1 ")
tFDIR=$bFDIR/ " top1 " ;

40 ; ;
" 2 ")

42 tFDIR=$bFDIR/ " top2 " ;
; ;

44 " 3 ")
tFDIR=$bFDIR/ " top3 " ;

46 ; ;
∗)

48 echo " Ending "
; ;

50 e s a c
for ((j = 1 ; j <= $numOfQueryVariations ; j++)) ; do

52
case " $ j " i n

54
" 1 ")

56 qFDIR=$tFDIR/ " q100 " ;
numberOfQueries =100;

58 ; ;
" 2 ")

60 qFDIR=$tFDIR/ " q1000 " ;
numberOfQueries =1000;

62 ; ;
∗)

64 echo " Ending "
; ;

66 e s a c

68 #−−−−−−−−−−−−−−−−−−−−P r o c e s s i n g f o r each case−−−−−−−−−−−−−−−−−−−−−−−−−−−
for ((k = 1 ; k <= $numOfCases ; k++)) ; do

70
NUMBEROFNODES=35

72 SIMNAMEFORMATTED=" case−$k "

74 gFDIR=$qFDIR ;
cd $gFDIR

76 echo " D i r e c t o r y : $gFDIR case−$k : P r e s s e e n t e r to c o n t i n u e " ; #read l i n e

78 # Creat ing d i r e c t o r i e s
g n u r e s u l t s=$gFDIR " /gnu− f i l e s "

80 mkdir −p $ g n u r e s u l t s

82 a l l g n u r e s u l t s=$ g n u r e s u l t s " / a l l "
mkdir −p $ a l l g n u r e s u l t s

84
i n d g n u r e s u l t s=$ g n u r e s u l t s " / ind "

86 mkdir −p $ i n d g n u r e s u l t s

88 u a g n u r e s u l t s=$ g n u r e s u l t s " /ua "
mkdir −p $ u a g n u r e s u l t s

90
d a g n u r e s u l t s=$ g n u r e s u l t s " /da "

92 mkdir −p $ d a g n u r e s u l t s

94 a r e s u l t s=$gFDIR " / a l l "
mkdir −p $ a r e s u l t s

96 echo " Created : " $ a r e s u l t s
c l e a n A l l R e s u l t s=" $ a r e s u l t s " ;

98
a m r e s u l t s=$ a r e s u l t s " /mean "

100 mkdir −p $ a m r e s u l t s

102 i r e s u l t s=$gFDIR " / ind "
mkdir −p $ i r e s u l t s

104 c l e a n I n d R e s u l t s=" $ i r e s u l t s " ;

106 i d r e s u l t s=$ i r e s u l t s " / i n d i "
mkdir −p $ i d r e s u l t s

108
i d s r e s u l t s=$ i r e s u l t s " / s e l e c t e d "

110 mkdir −p $ i d s r e s u l t s

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 278

112 i m r r e s u l t s=$ i r e s u l t s " /mean−raw "
mkdir −p $ i m r r e s u l t s

114
i m r e s u l t s=$ i r e s u l t s " /mean "

116 mkdir −p $ i m r e s u l t s

118 i a g m r r e s u l t s=$ i r e s u l t s " /mean−aggr "
mkdir −p $ i a g m r r e s u l t s

120
u a r e s u l t s=$gFDIR " /ua "

122 mkdir −p $ u a r e s u l t s
c l e an U a R e s u lt s=" $ u a r e s u l t s " ;

124
u a m r r e s u l t s=$ u a r e s u l t s " /mean−raw "

126 mkdir −p $ u a m r r e s u l t s

128 uamresults=$ u a r e s u l t s " /mean "
mkdir −p $uamresults

130
uamaresults=$ u a r e s u l t s " /mean−aggr "

132 mkdir −p $uamaresults

134 d a r e s u l t s=$gFDIR " /da "
mkdir −p $ d a r e s u l t s

136 c leanDaResults=" $ d a r e s u l t s " ;

138 damresults=$ d a r e s u l t s " /mean "
mkdir −p $damresults

140
damaresults=$ d a r e s u l t s " /mean−aggr "

142 mkdir −p $damaresults

144 #−−−−−−−−−−−−−−−−P r o c e s s i n g s t a r t e d −−−−−−−−−−−−−−−

146 LOGENERGYALL=$SIMNAMEFORMATTED"−energy−a l l "
LOGPACKETALL=$SIMNAMEFORMATTED"−packet−a l l "

148 LOGENERGYIND=$SIMNAMEFORMATTED"−energy−ind "
LOGPACKETIND=$SIMNAMEFORMATTED"−packet−ind "

150 LOGUA=$SIMNAMEFORMATTED"−uaperformance−p r o c e s s e d "
LOGDA=$SIMNAMEFORMATTED"−daperformance "

152
echo " S e p a r a t i n g f i l e s w. r . t . time : P r e s s e e n t e r to c o n t i n u e " ;

154
awk −v " l e a l l =$LOGENERGYALL" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " a l l / " f "−" l e a l l " . l o g " } ’

$LOGENERGYALL’ . dat ’
156 awk −v " l p a l l=$LOGPACKETALL" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " a l l / " f "−" l p a l l " . l o g " } ’

$LOGPACKETALL’ . dat ’
awk −v " l e i n d=$LOGENERGYIND" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " ind / " f "−" l e i n d " . l o g " } ’

$LOGENERGYIND’ . dat ’
158 awk −v " l p i n d=$LOGPACKETIND" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " ind / " f "−" l p i n d " . l o g " } ’

$LOGPACKETIND’ . dat ’

160 #echo " Have you s e l e c t e d i n d i v i d u a l f i l e s ? : P r e s s e e n t e r to c o n t i n u e " ; read l i n e
cp −f $ i r e s u l t s " / $totalSimTime−" ∗ " . l o g " $ i d s r e s u l t s

162
awk −v " l e i n d=$LOGENERGYIND" −F " " ’{ c l o s e (f) ; f=$2 ; t=$1 }{ p r i n t > " ind / i n d i / " t "−" l e i n d "−

" f " . l o g " } ’ ’ ind / s e l e c t e d / ’∗ ’ − ’$LOGENERGYIND’ . log ’
164 awk −v " l p i n d=$LOGPACKETIND" −F " " ’{ c l o s e (f) ; f=$2 ; t=$1 }{ p r i n t > " ind / i n d i / " t "−" l p i n d "−

" f " . l o g " } ’ ’ ind / s e l e c t e d / ’∗ ’ − ’$LOGPACKETIND’ . log ’

166 awk −v " logua=$LOGUA" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " ua/ " logua "−" f " . l o g " } ’ $LOGUA’ . log ’
awk −v " logda=$LOGDA" −F " " ’{ c l o s e (f) ; f=$1 }{ p r i n t > " da/ " logda "−" f " . l o g " } ’ $LOGDA’ . log ’

168
#−−−−−−−−−−−−−−−−Aggregated energy and packet s t a t i s t i c s −−−−−−−−−−−−−−−

170 FILES=$ a r e s u l t s /∗ " case−$k " ∗
for f i leName i n $FILES

172 do

174 f i l e =$fi leName
s=$fi leName

176 f i l e c =${ s##∗/}
f i l e =${ f i l e c %. l o g }

178
echo " Going to p r o c e s s : " $ f i l e

180
awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$ f i l e " −v " i s g r o u p i n g=$ i s g r o u p i n g " ’{

182
cVal=$2 ;

184
a r r [NR]= cVal ;

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 279

186 i f (NR==1) {min=max=cVal }
i f (cVal>max) {max=cVal }

188 i f (cVal<min) {min=cVal }
t o t+=cVal ;

190
a s o r t (a r r)

192 mid= (NR/2) +0.5;
i f ((mid%1)!=0) {

194 mid= i n t (mid) ;
med=(a r r [mid]+ a r r [mid +1]) /2

196 } e l s e {
med=a r r [mid]

198 }

200 for (i =1; i<=NF; i ++){
a l l n o d e s v a l u e s [i]= ($ i) ; #populate the array data

202 sum [i]=sum [i] + ($ i) ;

204 }
for (i =1; i<=NF; i ++){

206 mean [i]=sum [i] / (NR) ;
}

208 for (i =1; i<=NF; i ++){
sumsq [i]=sumsq [i] + (($ i)−mean [i]) ^2 ;

210 }
} END {

212
p r i n t simnamef " \ t " mean [2] " \ t " s q r t (sumsq [2] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [3] " \ t " mean [4]

" \ t " mean [5] " \ t " mean [6] " \ t " mean [7] " \ t "NR > " a l l /mean/ " f i l e t o p r o c e s s "−mean−stdev . l o g " ;
214

} ’ ’ a l l / ’ ${ f i l e } ’ . log ’
216

218 #∗− a l l −energy−mean . l o g : [1] Time : [2 , 3] Total−E−mean : stdev [4 , 5] E−CPU : stdev [6 , 7] E−LPM : stdev
[8 , 9] E−L i s t e n : stdev [1 0 , 1 1] E−Transmit : stdev

#∗− a l l −packet−mean . logTime : [2 , 3] Total−Packets−mean : stdev [4 , 5]UPD : stdev [6 , 7]GRP : stdev
220

done #a l l
222

#−−−−−−−−−−−−−−−−I n d i v i d u a l node energy and packet s t a t i s t i c s −−−−−−−−−−−−−−−
224 FILES=$ i d r e s u l t s /∗ " $totalSimTime " ∗ " case−$k " ∗

for f i leName i n $FILES
226 do

228 f i l e =$fi leName
s=$fi leName

230 f i l e c =${ s##∗/}
f i l e =${ f i l e c %. l o g }

232
echo " Going to p r o c e s s : " $ f i l e

234 echo " P r e s s e e n t e r to c o n t i n u e " ;
thisFILENAME=$ f i l e

236
awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$thisFILENAME " −v " i s g r o u p i n g=

$ i s g r o u p i n g " ’{
238

cVal=$3 ;
240

a r r [NR]= cVal ;
242 i f (NR==1) {min=max=cVal }

i f (cVal>max) {max=cVal }
244 i f (cVal<min) {min=cVal }

t o t+=cVal ;
246

a s o r t (a r r)
248 mid= (NR/2) +0.5;

i f ((mid%1)!=0) {
250 mid= i n t (mid) ;

med=(a r r [mid]+ a r r [mid +1]) /2
252 } e l s e {

med=a r r [mid]
254 }

256 for (i =1; i<=NF; i ++){
sum [i]=sum [i] + ($ i) ;

258 }
for (i =1; i<=NF; i ++){

260 mean [i]=sum [i] / (NR) ;
}

262 for (i =1; i<=NF; i ++){

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 280

sumsq [i]=sumsq [i] + ($i−mean [i]) ^2 ;
264 }

} END {
266

p r i n t mean [1] " \ t " mean [2] " \ t " mean [3] " \ t " s q r t (sumsq [3] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [4] " \
t " mean [5] " \ t " mean [6] " \ t " mean [7] " \ t " mean [1] > " ind /mean−raw/ " f i l e t o p r o c e s s "−mean−stdev . l o g
" ;

268
} ’ ’ ind / i n d i / ’ ${thisFILENAME } ’ . log ’

270
done #ind

272
Combining f i l e s

274 caseEnergyFileName=" $totalSimTime−case−$k−ind−energy " ;
casePacketFileName=" $totalSimTime−case−$k−ind−packet " ;

276 p a s t e −s " ind /mean−raw/ " ∗ " $totalSimTime " ∗ " case−$k " ∗ " energy " ∗ > " ind /mean/ $caseEnergyFileName .
l o g "

p a s t e −s " ind /mean−raw/ " ∗ " $totalSimTime " ∗ " case−$k " ∗ " packet " ∗ > " ind /mean/ $casePacketFileName .
l o g "

278
s o r t −r −n −k3 " ind /mean/ $caseEnergyFileName . l o g " −o " ind /mean/ $caseEnergyFileName . l o g "

280
#−−−−−−−−−−−−−−−−UA s t a t i s t i c s −−−−−−−−−−−−−−−

282 awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$newUAFileName " ’{
i f (NR<6){

284 p r i n t simnamef " \ t " $2 " \ t " $3 " \ t " $4 > " gnu− f i l e s / ind / " simnamef "−b u s i e s t −top −5. l o g " ;
}

286 } ’ " ind /mean/ $caseEnergyFileName . l o g "

288 #c at " $qFDIR/gnu− f i l e s / ind / a l l −c a s e s −b u s i e s t −top −5. l o g "
#’ echo "DEBUG: s o r t e d f i l e $qFDIR/gnu− f i l e s / ind / a l l −c a s e s −b u s i e s t −top −5. l o g " ; read l i n e

290
f a r r a y =(" $caseEnergyFileName " " $casePacketFileName ")

292
for fname i n $ { ! f a r r a y [∗] }

294 do
printf " %s \n " " ${ f a r r a y [$fname] } "

296
awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=${ f a r r a y [$fname] } " ’{

298
cVal=$3 ;

300
a r r [NR]= cVal ;

302 i f (NR==1) {min=max=cVal }
i f (cVal>max) {max=cVal }

304 i f (cVal<min) {min=cVal }
t o t+=cVal ;

306
a s o r t (a r r)

308 mid= (NR/2) +0.5;
i f ((mid%1)!=0) {

310 mid= i n t (mid) ;
med=(a r r [mid]+ a r r [mid +1]) /2

312 } e l s e {
med=a r r [mid]

314 }

316 for (i =1; i<=NF; i ++){
sum [i]=sum [i] + ($ i) ;

318 }
for (i =1; i<=NF; i ++){

320 mean [i]=sum [i] / (NR) ;
}

322 for (i =1; i<=NF; i ++){
sumsq [i]=sumsq [i] + ($i−mean [i]) ^2 ;

324 }
} END {

326
p r i n t simnamef " \ t " mean [1] " \ t " mean [3] " \ t " s q r t (sumsq [3] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [3] "

\ t " mean [4] " \ t " mean [5] " \ t " mean [6] " \ t " mean [7] " \ t "NR > " ind /mean−aggr / " f i l e t o p r o c e s s " . l o g "
; } ’ " ind /mean/${ f a r r a y [$fname] } . l o g "

328 done
#echo "DEBUG: P r e s s e e n t e r to c o n t i n u e " ; read l i n e

330
awk −v " simnamef "=$SIMNAMEFORMATTED −v " g n u r e s u l t s "=$ g n u r e s u l t s −v " numberOfQueries "=

$numberOfQueries ’{
332 i f ($3==0) { cVal+=1}

} END {
334 i f (l e n g t h (cVal) == 0) { cVal=0}

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 281

p r i n t simnamef " \ t " cVal " \ t " cVal /(NR/ numberOfQueries) " \ t " numberOfQueries " \ t "NR > g n u r e s u l t s " /ua
/ " simnamef "−cache−h i t s . l o g " ;

336
} ’ ${qFDIR} ’/ ’ ${SIMNAMEFORMATTED}’− uaperformance−p r o c e s s e d . log ’

338

340 FILES=$ u a r e s u l t s /∗ " case−$k " ∗
for f i leName i n $FILES

342 do

344 f i l e =$fi leName
s=$fi leName

346 f i l e c =${ s##∗/}
f i l e =${ f i l e c %. l o g }

348
thisFILENAME=$ f i l e

350 echo " Going to p r o c e s s : " $thisFILENAME

352 awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$thisFILENAME " −v " i s g r o u p i n g=
$ i s g r o u p i n g " ’{

354 cVal=$2 ;

356 a r r [NR]= cVal ;
i f (NR==1) {min=max=cVal }

358 i f (cVal>max) {max=cVal }
i f (cVal<min) {min=cVal }

360 t o t+=cVal ;

362 a s o r t (a r r)
mid= (NR/2) +0.5;

364 i f ((mid%1)!=0) {
mid= i n t (mid) ;

366 med=(a r r [mid]+ a r r [mid +1]) /2
} e l s e {

368 med=a r r [mid]
}

370
cVal2=$3 ;

372
a r r 2 [NR]= cVal2 ;

374 i f (NR==1) {min2=max2=cVal2 }
i f (cVal2>max2) {max2=cVal2 }

376 i f (cVal2<min2) {min2=cVal2 }
t o t 2+=cVal2 ;

378
a s o r t (a r r 2)

380 mid2= (NR/2) +0.5;
i f ((mid2%1)!=0) {

382 mid2= i n t (mid2) ;
med2=(a r r 2 [mid2]+ a r r 2 [mid2 +1]) /2

384 } e l s e {
med2=a r r 2 [mid2]

386 }

388 for (i =1; i<=NF; i ++){
sum [i]=sum [i] + ($ i) ;

390 }
for (i =1; i<=NF; i ++){

392 mean [i]=sum [i] / (NR) ;
}

394 for (i =1; i<=NF; i ++){
sumsq [i]=sumsq [i] + ($i−mean [i]) ^2 ;

396 }
} END {

398
p r i n t mean [1] " \ t " mean [2] " \ t " s q r t (sumsq [2] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [3] " \ t " s q r t (

sumsq [3] / (NR)) " \ t " min2 " \ t " max2 " \ t " med2 " \ t " mean [4] " \ t " mean [5] " \ t " $6 > " ua/mean−raw/ "
f i l e t o p r o c e s s " mean−stdev . l o g " ;

400
} ’ ’ ua / ’ ${thisFILENAME } ’ . log ’

402
done #End o f INDividual f i l e s mean and stddev c a l c u l a t i o n s " ind /mean/ $newIndsFileName . l o g "

404
newUAFileName=" case−$k−uaperformance−p r o c e s s e d " ;

406 p a s t e −s " ua/mean−raw/ " ∗ " case−$k " ∗ > " ua/mean/$newUAFileName . l o g "

408 awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$newUAFileName " ’{

410 cVal=$2 ;

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 282

412 a r r [NR]= cVal ;
i f (NR==1) {min=max=cVal }

414 i f (cVal>max) {max=cVal }
i f (cVal<min) {min=cVal }

416 t o t+=cVal ;

418 a s o r t (a r r)
mid= (NR/2) +0.5;

420 i f ((mid%1)!=0) {
mid= i n t (mid) ;

422 med=(a r r [mid]+ a r r [mid +1]) /2
} e l s e {

424 med=a r r [mid]
}

426
cVal2=$7 ;

428 i f (cVal2==0){
c a c h e h i t = c a c h e h i t +1;

430 p r i n t " cache HIT" ;
}

432 a r r 2 [NR]= cVal2 ;
i f (NR==1) {min2=max2=cVal2 }

434 i f (cVal2>max2) {max2=cVal2 }
i f (cVal2<min2) {min2=cVal2 }

436 t o t 2+=cVal2 ;

438 a s o r t (a r r 2)
mid2= (NR/2) +0.5;

440 i f ((mid2%1)!=0) {
mid2= i n t (mid2) ;

442 med2=(a r r 2 [mid2]+ a r r 2 [mid2 +1]) /2
} e l s e {

444 med2=a r r 2 [mid2]
}

446
for (i =1; i<=NF; i ++){

448 sum [i]=sum [i] + ($ i) ;
}

450 for (i =1; i<=NF; i ++){
mean [i]=sum [i] / (NR) ;

452 }
for (i =1; i<=NF; i ++){

454 sumsq [i]=sumsq [i] + ($i−mean [i]) ^2 ;
}

456 } END {
i f (c a c h e h i t==" ") {

458 c a c h e h i t =0;
}

460 p r i n t simnamef " \ t " mean [2] " \ t " s q r t (sumsq [2] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [7] " \ t " s q r t (
sumsq [7] / (NR)) " \ t " min2 " \ t " max2 " \ t " med2 " \ t " c a c h e h i t > " ua/mean−aggr / " f i l e t o p r o c e s s " . l o g "
; } ’ " ua/mean/$newUAFileName . l o g "

462 #−−−−−−−−−−−−−−−−DA s t a t i s t i c s −−−−−−−−−−−−−−−
FILES=$ d a r e s u l t s /∗ " case−$k " ∗

464 for f i leName i n $FILES
do

466
f i l e =$fi leName

468 s=$fi leName
f i l e c =${ s##∗/}

470 f i l e =${ f i l e c %. l o g }

472 echo " Going to p r o c e s s : " $ f i l e

474 awk −v " simnamef "=$SIMNAMEFORMATTED −v " f i l e t o p r o c e s s=$ f i l e " −v " i s g r o u p i n g=$ i s g r o u p i n g " ’{

476 cVal=$2 ;

478 a r r [NR]= cVal ;
i f (NR==1) {min=max=cVal }

480 i f (cVal>max) {max=cVal }
i f (cVal<min) {min=cVal }

482 t o t+=cVal ;

484 a s o r t (a r r)
mid= (NR/2) +0.5;

486 i f ((mid%1)!=0) {
mid= i n t (mid) ;

488 med=(a r r [mid]+ a r r [mid +1]) /2

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 283

} e l s e {
490 med=a r r [mid]

}
492

for (i =1; i<=NF; i ++){
494 a l l n o d e s v a l u e s [i]= ($ i) ; #populate the array data

sum [i]=sum [i] + ($ i) ;
496

}
498 for (i =1; i<=NF; i ++){

mean [i]=sum [i] / (NR) ;
500 }

for (i =1; i<=NF; i ++){
502 sumsq [i]=sumsq [i] + (($ i)−mean [i]) ^2 ;

}
504 } END {

506 p r i n t simnamef " \ t " mean [1] " \ t " mean [2] " \ t " s q r t (sumsq [2] / (NR)) " \ t " min " \ t "max" \ t "med " \ t " mean [3]
" \ t " mean [4] " \ t " mean [5] " \ t " mean [6] " \ t " mean [7] " \ t "NR > " da/mean/ " f i l e t o p r o c e s s " mean−stdev .
l o g " ;

} ’ ’ da / ’ ${ f i l e } ’ . log ’
508 done #a l l da

510 d a f i l e=" case−$k−daperformance "

512 newDAFileName=" case−$k−da−performance " ;
p a s t e −s " da/mean/ " ∗ " case−$k " ∗ > " da/mean−aggr / case−$k−da−performance . l o g "

514
p a s t e −s " a l l /mean/ " ∗ " case−$k " ∗ "−energy " ∗ " . l o g " > $ a l l g n u r e s u l t s " / a l l −case−$k−energy−mean . l o g "

516 p a s t e −s " a l l /mean/ " ∗ " case−$k " ∗ "−packet " ∗ " . l o g " > $ a l l g n u r e s u l t s " / a l l −case−$k−packet−mean . l o g "
s o r t −n −k2 " ind /mean/ $totalSimTime−case−$k−ind−energy . l o g " > $ i n d g n u r e s u l t s " / $totalSimTime−

ind−case−$k−energy−mean . l o g "
518 s o r t −n −k2 " ind /mean/ $totalSimTime−case−$k−ind−packet . l o g " > $ i n d g n u r e s u l t s " / $totalSimTime−

ind−case−$k−packet−mean . l o g "
p a s t e −s " da/mean/ case−$k " ∗ " " ∗ " . l o g " > $ d a g n u r e s u l t s " / case−$k−daperformance−mean . l o g "

520 s o r t −n +0 −1 " ua/mean/ case−$k " ∗ " " ∗ " . l o g " > $ u a g n u r e s u l t s " / case−$k−uaperformance−mean . l o g "

522 done #End o f one Unique S i mu la t io n − Loop f o r a l l s i m u l a t i o n s

524 #−−−−−−−−−−−−Combining s t a t i s t i c s f i l e s f o r graph automation−−−−−−−−−−−−−−−
#For energy and packet d e t a i l s o f a a l l c a s e s

526 p a s t e −s " a l l /mean/ $totalSimTime−c a s e " ∗ "−energy " ∗ " . l o g " > $ a l l g n u r e s u l t s " / $totalSimTime−a l l −
c a s e s −a l l −energy−mean . l o g "

p a s t e −s " a l l /mean/ $totalSimTime−c a s e " ∗ "−packet " ∗ " . l o g " > $ a l l g n u r e s u l t s " / $totalSimTime−a l l −
c a s e s −a l l −packet−mean . l o g "

528 s o r t −n +1 −1 " $ i a g m r r e s u l t s / $totalSimTime−c a s e " ∗ "−energy . l o g " > $ i n d g n u r e s u l t s " /
$totalSimTime−a l l −c a s e s −ind−avg−node−energy−mean . l o g "

s o r t −n +1 −1 " $ i a g m r r e s u l t s / $totalSimTime−c a s e " ∗ "−packet . l o g " > $ i n d g n u r e s u l t s " /
$totalSimTime−a l l −c a s e s −ind−avg−node−packet−mean . l o g "

530
p a s t e −s " $ i a g m r r e s u l t s / c a s e " ∗ "−energy " ∗ " . l o g " > $ i n d g n u r e s u l t s " / a l l −c a s e s −ind−avg−node−energy

−mean . l o g "
532 p a s t e −s " $ i a g m r r e s u l t s / c a s e " ∗ "−packet " ∗ " . l o g " > $ i n d g n u r e s u l t s " / a l l −c a s e s −ind−avg−node−packet

−mean . l o g "

534 s o r t −n +1 −1 $ d a g n u r e s u l t s " / case−" ∗ " . l o g " > $ d a g n u r e s u l t s " / a l l −c a s e s −daperformance−aggr−mean .
l o g "

p a s t e −s $uamaresults " / case−" ∗ " . l o g " > $ u a g n u r e s u l t s " / a l l −c a s e s −uaperformance−aggr−mean . l o g "
536 p a s t e −s $ u a g n u r e s u l t s " / case−" ∗ "−cache−h i t s . l o g " > $ u a g n u r e s u l t s " / a l l −c a s e s −cache−h i t s −mean .

l o g "

538 awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −1−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−1−uaperformance−mean . log ’

awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −2−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−2−uaperformance−mean . log ’

540 awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −3−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−3−uaperformance−mean . log ’

awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −4−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−4−uaperformance−mean . log ’

542 awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −5−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−5−uaperformance−mean . log ’

awk −v " d i r=$ u a g n u r e s u l t s " −F " " ’{ c l o s e (f) ; f=$14 }{ p r i n t > d i r " / " f "−case −6−uaperformance−
mean . l o g " } ’ $ u a g n u r e s u l t s ’ / case−6−uaperformance−mean . log ’

544
#D e l e t e a l l unneeded f i l e s

546 rm −r f $ c l e a n A l l R e s u l t s ;
rm −r f $ c l e a n I n d R e s u l t s ;

548 rm −r f $c leanUaResults ;
rm −r f $c leanDaResults ; #read l i n e

550 done

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 284

552
done

C.2 GNUPLOT graphs generation

The GNUPLOT scripts are used to automate the graph generation from the
processed statistics data. Listings C.2 and C.3 show two example scripts used to
generate graphs for one set of experiments.

Listing C.2: Gnuplot Code to generate histogram graphs
1 #C o n f i g u r a t i o n s

set term post eps s i z e 6 ,3 enhanced c o l o r
3 set s t y l e histogram e r r o r b a r s l i n e w i d t h 1

set g r i d y
5 set s t y l e histogram e r r o r b a r s

set s t y l e data histograms
7 set s t y l e f i l l s o l i d 0 . 3 # Make the bars semi−t r a n s p a r e n t so that the e r r o r b a r s a re e a s i e r to

s e e .
set key width −1 o u t s i d e below c e n t e r v e r t i c a l maxrows 3

9
A t t r i b u t e s

11 top1q100=" Topo1 − 100 "
top2q100=" Topo2 − 100 "

13 top3q100=" Topo3 − 100 "
top1q1000=" Topo1 − 1000 "

15 top2q1000=" Topo2 − 1000 "
top3q1000=" Topo3 − 1000 "

17 dtop1q100=" Topology 1 − 100 q u e r i e s "
dtop2q100=" Topology 2 − 100 q u e r i e s "

19 dtop3q100=" Topology 3 − 100 q u e r i e s "
dtop1q1000=" Topology 1 − 1000 q u e r i e s "

21 dtop2q1000=" Topology 2 − 1000 q u e r i e s "
dtop3q1000=" Topology 3 − 1000 q u e r i e s "

23
#−−−−−−−−−−−−−−−−−−−Energy−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 set y l a b e l " Energy Consumption i n J o u l e s (J) "
set yrange [0 : ∗]

27 set key o u t s i d e below c e n t e r h o r i z o n t a l
set x l a b e l " S c e n a r i o s "

29 set t i t l e " "
set output " a l l −tops −8400−energy−a l l −mean−c a s e s −a l l . eps "

31 p l o t ’ top1 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \

’ top2 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top2q100 f s p a t t e r n 2 l c rgb " blue " , \

33 ’ top3 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top3q100 f s p a t t e r n 2 l c rgb " red " , \

’ top1 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " , \

35 ’ top2 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top2q1000 f s p a t t e r n 3 l c rgb " blue " , \

’ top3 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($2 /1000) : ($3 /1000) :
x t i c (1) t i t l e top3q1000 f s p a t t e r n 3 l c rgb " red " ;

37
set output " a l l −tops −8400−energy−ind−mean−c a s e s −a l l . eps "

39 p l o t ’ top1 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c
(1) t i t l e top1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \

’ top2 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c
(1) t i t l e top2q100 f s p a t t e r n 2 l c rgb " blue " , \

41 ’ top3 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c (1)
t i t l e top3q100 f s p a t t e r n 2 l c rgb " red " , \

’ top1 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c (1)
t i t l e top1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " ,\

43 ’ top2 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c (1)
t i t l e top2q1000 f s p a t t e r n 3 l c rgb " blue " ,\

’ top3 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−energy−mean . log ’ u s i n g 3 : 4 : x t i c (1)
t i t l e top3q1000 f s p a t t e r n 3 l c rgb " red " ;

45
#−−−−−−−−−−−−−−−−−−−S e r v i c e I nvoca t ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

47 set key width −1 o u t s i d e below c e n t e r v e r t i c a l maxrows 3

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 285

set y l a b e l " S e r v i c e I n v o c a t i o n Delay i n m i l l i seconds "
49 set x l a b e l " S c e n a r i o s "

set t i t l e " "
51 set output " a l l −tops−ua−s i −delay−mean−a l l −c a s e s . eps "

p l o t ’ top1 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1)
t i t l e dtop1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \

53 ’ top2 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1) t i t l e
dtop2q100 f s p a t t e r n 2 l c rgb " blue " , \

’ top3 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1) t i t l e
dtop3q100 f s p a t t e r n 2 l c rgb " red " , \

55 ’ top1 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1) t i t l e
dtop1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " , \

’ top2 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1) t i t l e
dtop2q1000 f s p a t t e r n 3 l c rgb " blue " , \

57 ’ top3 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −uaperformance−aggr−mean . log ’ u s i n g 7 : 8 : x t i c (1) t i t l e
dtop3q1000 f s p a t t e r n 3 l c rgb " red " ;

59 #−−−−−−−−−−−−−−−−−−−Packets−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
set y l a b e l " Total number o f p a c k e t s "

61 set x l a b e l " S c e n a r i o s "
set t i t l e " "

63 set output " a l l −tops−da−8400−mean−a l l −c a s e s . eps "
p l o t "< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top1 / q100 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−

aggr−mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \
65 "< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top2 / q100 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−aggr−

mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop2q100 f s p a t t e r n 2 l c rgb " blue " , \
"< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top3 / q100 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−aggr−

mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop3q100 f s p a t t e r n 2 l c rgb " red " , \
67 "< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top1 / q1000 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−aggr−

mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " , \
"< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top2 / q1000 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−aggr−

mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop2q1000 f s p a t t e r n 3 l c rgb " blue " , \
69 "< awk ’{ i f ($2==8400) { p r i n t $0 }} ’ top3 / q1000 /gnu− f i l e s /da/ a l l −c a s e s −daperformance−aggr−

mean . l o g " u s i n g 3 : 4 : x t i c (1) t i t l e dtop3q1000 f s p a t t e r n 3 l c rgb " red " ;

71 set output " a l l −tops −8400−packet−ind−avg−node−mean−c a s e s −a l l . eps "
p l o t ’ top1 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c

(1) t i t l e top1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \
73 ’ top2 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c (1)

t i t l e top2q100 f s p a t t e r n 2 l c rgb " blue " , \
’ top3 / q100 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c (1)

t i t l e top3q100 f s p a t t e r n 2 l c rgb " red " , \
75 ’ top1 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c (1)

t i t l e top1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " , \
’ top2 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c (1)

t i t l e top2q1000 f s p a t t e r n 3 l c rgb " blue " , \
77 ’ top3 / q1000 /gnu− f i l e s / ind /8400− a l l −c a s e s −ind−avg−node−packet−mean . log ’ u s i n g 3 : 4 : x t i c (1)

t i t l e top3q1000 f s p a t t e r n 3 l c rgb " red " ;

79 set output " a l l −tops −8400−packet−a l l −mean−c a s e s −a l l . eps "
p l o t ’ top1 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \
81 ’ top2 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop2q100 f s p a t t e r n 2 l c rgb " blue " , \
’ top3 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop3q100 f s p a t t e r n 2 l c rgb " red " , \
83 ’ top1 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop1q1000 f s p a t t e r n 3 l c rgb " f o r e s t −green " , \
’ top2 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop2q1000 f s p a t t e r n 3 l c rgb " blue " , \
85 ’ top3 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 2 : 3 : x t i c (1) t i t l e

dtop3q1000 f s p a t t e r n 3 l c rgb " red " ;

87 #−−−−−−−−−−−−−−−−−−−Cache h i t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
set s t y l e histogram

89
set y l a b e l " Number o f Cache h i t s "

91 set x l a b e l " "
set t i t l e " "

93 set output " a l l −tops−cache−h i t s −a l l −c a s e s −a l l −mean . eps "
p l o t ’ top1 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e

dtop1q100 f s p a t t e r n 2 l c rgb " f o r e s t −green " , \
95 ’ top2 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e dtop2q100 f s

p a t t e r n 2 l c rgb " blue " , \
’ top3 / q100 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e dtop3q100 f s

p a t t e r n 2 l c rgb " red " , \
97 ’ top1 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e dtop1q1000

f s p a t t e r n 3 l c rgb " f o r e s t −green " , \
’ top2 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e dtop2q1000

f s p a t t e r n 3 l c rgb " blue " , \

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 286

99 ’ top3 / q1000 /gnu− f i l e s /ua/ a l l −c a s e s −cache−h i t s −mean . log ’ u s i n g 3 : x t i c (1) t i t l e dtop3q1000
f s p a t t e r n 3 l c rgb " red " ;

101 #−−−−−−−−−−−−−−−−−−−Further d e t a i l s o f energy and packets−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
set s t y l e data histogram

103 set s t y l e histogram rowstack gap 1
set boxwidth 0 . 7 5 a b s o l u t e

105 set s t y l e f i l l s o l i d 1 . 0 0 border −1
set y l a b e l " Energy Consumption i n J o u l e s (J) "

107 set yrange [0 : ∗]
set key o u t s i d e below c e n t e r h o r i z o n t a l

109 set x t i c s nomirror r o t a t e by −45 s c a l e 1
set x l a b e l " " o f f s e t 0,−2

111
set t i t l e " "

113 set output " a l l −tops −8400−energy−d e t a i l s −a l l −c a s e s −a l l −mean . eps "
p l o t for [i =1:20] newhistogram top1q100 l t 1 , \

115 ’ top1 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3 t "
L i s t e n + Receive " , \

’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 t " Transmit " , \
117 ’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 t "CPU" , \

’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 t "LPM" , \
119 newhistogram top2q100 l t 1 , \

’ top2 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3
n o t i t l e , \

121 ’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 n o t i t l e , \
’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 n o t i t l e , \

123 ’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 n o t i t l e , \
newhistogram top3q100 l t 1 , \

125 ’ top3 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3
n o t i t l e , \

’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 n o t i t l e , \
127 ’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 n o t i t l e , \

’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 n o t i t l e , \
129 newhistogram top1q1000 l t 1 , \

’ top1 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3
n o t i t l e , \

131 ’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 n o t i t l e , \
’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 n o t i t l e , \

133 ’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 n o t i t l e , \
newhistogram top2q1000 l t 1 , \

135 ’ top2 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3
n o t i t l e , \

’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 n o t i t l e , \
137 ’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 n o t i t l e , \

’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 n o t i t l e , \
139 newhistogram top3q1000 l t 1 , \

’ top3 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −energy−mean . log ’ u s i n g ($9 /1000) f s p a t t e r n 3
n o t i t l e , \

141 ’ ’ u s i n g ($10 /1000) f s p a t t e r n 2 n o t i t l e , \
’ ’ u s i n g ($7 /1000) f s p a t t e r n 1 n o t i t l e , \

143 ’ ’ u s i n g ($8 /1000) : x t i c (1) f s p a t t e r n 4 n o t i t l e ;

145 set key a u t o t i t l e columnheader
set key o u t s i d e below c e n t e r h o r i z o n t a l

147 set y l a b e l " Number o f Packets "
set t i t l e " "

149 set output " a l l −tops −8400−packet−d e t a i l s −a l l −c a s e s −a l l −mean . eps "
p l o t newhistogram top1q100 l t 1 , \

151 ’ top1 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 t " Updates "
, \

’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 t " Grouping " , \
153 newhistogram top2q100 l t 1 , \

’ top2 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 n o t i t l e , \
155 ’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 n o t i t l e , \

newhistogram top3q100 l t 1 , \
157 ’ top3 / q100 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 n o t i t l e , \

’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 n o t i t l e , \
159 newhistogram top1q1000 l t 1 , \

’ top1 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 n o t i t l e , \
161 ’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 n o t i t l e , \

newhistogram top2q1000 l t 1 , \
163 ’ top2 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 n o t i t l e , \

’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 n o t i t l e , \
165 newhistogram top3q1000 l t 1 , \

’ top3 / q1000 /gnu− f i l e s / a l l /8400− a l l −c a s e s −a l l −packet−mean . log ’ u s i n g 7 f s p a t t e r n 3 n o t i t l e , \
167 ’ ’ u s i n g 8 : x t i c (1) f s p a t t e r n 1 n o t i t l e ;

169 #−−−−−−−−−−−−−−−−−−−Energy : Top f i v e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
set s t y l e histogram c l u s t e r e d gap 1 t i t l e o f f s e t 2 , 0 . 2 5

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 287

171 set s t y l e data histograms
set s t y l e histogram e r r o r b a r s

173 set s t y l e f i l l s o l i d 0 . 7
set boxwidth 2

175 set x l a b e l " " o f f s e t 0,−2
set y t i c s

177 set auto y
set y l a b e l " Energy Consumption (mJ) "

179 set key o u t s i d e below c e n t e r h o r i z o n t a l
set x t i c s (" 100 q u e r i e s " 9 , " 1000 q u e r i e s " 29)

181 set output " a l l −tops−a l l −c a s e s −ind−top −5. eps "
p l o t newhistogram " Case−1" l t 1 , \

183 ’ top1 / q100 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 t " Topology #1" , \
’ top2 / q100 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 t " Topology #2" , \

185 ’ top3 / q100 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 t " Topology #3" , \
newhistogram " Case−2" l t 1 , \

187 ’ top1 / q100 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q100 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

189 ’ top3 / q100 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−3" l t 1 , \

191 ’ top1 / q100 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q100 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

193 ’ top3 / q100 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−4" l t 1 , \

195 ’ top1 / q100 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q100 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

197 ’ top3 / q100 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−1" l t 7 , \

199 ’ top1 / q1000 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q1000 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

201 ’ top3 / q1000 /gnu− f i l e s / ind /case−1−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−2" l t 7 , \

203 ’ top1 / q1000 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q1000 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

205 ’ top3 / q1000 /gnu− f i l e s / ind /case−2−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−3" l t 7 , \

207 ’ top1 / q1000 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q1000 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

209 ’ top3 / q1000 /gnu− f i l e s / ind /case−3−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
newhistogram " Case−4" l t 7 , \

211 ’ top1 / q1000 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \
’ top2 / q1000 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e , \

213 ’ top3 / q1000 /gnu− f i l e s / ind /case−4−b u s i e s t −top −5. log ’ u 3 : 4 n o t i t l e ;

Listing C.3: Gnuplot Code to generate Linepoint graphs
1 #C o n f i g u r a t i o n s

set term post eps s i z e 6 ,3 enhanced c o l o r
3 set g r i d y

5 set s t y l e l i n e 1 l t 1 pt 1 l c 1 lw 2
set s t y l e l i n e 2 l t 1 pt 1 l c rgb " f o r e s t −green " lw 2

7 set s t y l e l i n e 3 l t 1 pt 1 l c 3 lw 2
set s t y l e l i n e 4 l t 1 pt 1 l c rgb " dark−magenta " lw 2

9 set s t y l e l i n e 5 l t 2 pt 6 l c 1 lw 2
set s t y l e l i n e 6 l t 2 pt 6 l c rgb " f o r e s t −green " lw 2

11 set s t y l e l i n e 7 l t 2 pt 6 l c 3 lw 2
set s t y l e l i n e 8 l t 2 pt 6 l c rgb " dark−magenta " lw 2

13 set s t y l e l i n e 9 l t 3 pt 3 l c 1 lw 2
set s t y l e l i n e 10 l t 3 pt 3 l c rgb " f o r e s t −green " lw 2

15 set s t y l e l i n e 11 l t 3 pt 3 l c 3 lw 2
set s t y l e l i n e 12 l t 3 pt 3 l c rgb " dark−magenta " lw 2

17
set s t y l e l i n e 16 l c rgb ’#808080 ’ l t 0 lw 1

19 set g r i d back l s 16

21 #A t t r i b u t e s
top1c1=" Topology 1 − case −1"

23 top1c2=" Topology 1 − case −2"
top1c3=" Topology 1 − case −3"

25 top1c4=" Topology 1 − case −4"
top2c1=" Topology 2 − case −1"

27 top2c2=" Topology 2 − case −2"
top2c3=" Topology 2 − case −3"

29 top2c4=" Topology 2 − case −4"
top3c1=" Topology 3 − case −1"

31 top3c2=" Topology 3 − case −2"
top3c3=" Topology 3 − case −3"

33 top3c4=" Topology 3 − case −4"

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 288

35
set key o u t s i d e below c e n t e r h o r i z o n t a l

37 set s t y l e f i l l s o l i d 1 . 0 0 border 1
set key width −2 o u t s i d e below c e n t e r v e r t i c a l maxrows 3

39
#−−−−−−−−−−−−−−−−−−−−−Energy−−−−−−−−−−−−−−−−−−−−−−−−−

41 set y l a b e l " "
set x l a b e l " Energy consumption i n m i l l i J o u l e s (mJ) "

43
set output " 8400− energy−tops−case−a l l −q1000−ind−c d f . eps "

45 p l o t " top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e
top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \

" top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c1
with l i n e s p o i n t s l s 5 smooth cumulative , \

47 " top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c1
with l i n e s p o i n t s l s 9 smooth cumulative , \

" top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c2
with l i n e s p o i n t s l s 2 smooth cumulative , \

49 " top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c2
with l i n e s p o i n t s l s 6 smooth cumulative , \

" top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c2
with l i n e s p o i n t s l s 10 smooth cumulative , \

51 " top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c3
with l i n e s p o i n t s l s 3 smooth cumulative , \

" top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c3
with l i n e s p o i n t s l s 7 smooth cumulative , \

53 " top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c3
with l i n e s p o i n t s l s 11 smooth cumulative , \

" top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c4
with l i n e s p o i n t s l s 4 smooth cumulative , \

55 " top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c4
with l i n e s p o i n t s l s 8 smooth cumulative , \

" top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c4
with l i n e s p o i n t s l s 12 smooth cumulative

57
set output " 8400− energy−tops−case−a l l −q100−ind−c d f . eps "

59 p l o t " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e
top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \

" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c1
with l i n e s p o i n t s l s 5 smooth cumulative , \

61 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −1−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c1
with l i n e s p o i n t s l s 9 smooth cumulative , \

" top1 / q100 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c2
with l i n e s p o i n t s l s 2 smooth cumulative , \

63 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c2
with l i n e s p o i n t s l s 6 smooth cumulative , \

" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −2−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c2
with l i n e s p o i n t s l s 10 smooth cumulative , \

65 " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c3
with l i n e s p o i n t s l s 3 smooth cumulative , \

" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c3
with l i n e s p o i n t s l s 7 smooth cumulative , \

67 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −3−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c3
with l i n e s p o i n t s l s 11 smooth cumulative , \

" top1 / q100 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c4
with l i n e s p o i n t s l s 4 smooth cumulative , \

69 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c4
with l i n e s p o i n t s l s 8 smooth cumulative , \

" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −4−energy−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c4
with l i n e s p o i n t s l s 12 smooth cumulative

71
#−−−−−−−−−−−−−−−−−−−−−Packets−−−−−−−−−−−−−−−−−−−−−−−−−

73 set y l a b e l " "
set x l a b e l " Number o f p a c k e t s "

75 set t i t l e " "

77 set output " 8400− packet−tops−case−a l l −q1000−ind−c d f . eps "
p l o t " top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e

top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \
79 " top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c1

with l i n e s p o i n t s l s 5 smooth cumulative , \
" top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c1

with l i n e s p o i n t s l s 9 smooth cumulative , \
81 " top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c2

with l i n e s p o i n t s l s 2 smooth cumulative , \
" top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c2

with l i n e s p o i n t s l s 6 smooth cumulative , \
83 " top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c2

with l i n e s p o i n t s l s 10 smooth cumulative , \

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 289

" top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c3
with l i n e s p o i n t s l s 3 smooth cumulative , \

85 " top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c3
with l i n e s p o i n t s l s 7 smooth cumulative , \

" top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c3
with l i n e s p o i n t s l s 11 smooth cumulative , \

87 " top1 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c4
with l i n e s p o i n t s l s 4 smooth cumulative , \

" top2 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c4
with l i n e s p o i n t s l s 8 smooth cumulative , \

89 " top3 / q1000 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c4
with l i n e s p o i n t s l s 12 smooth cumulative

91 set output " 8400− packet−tops−case−a l l −q100−ind−c d f . eps "
p l o t " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e

top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \
93 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c1

with l i n e s p o i n t s l s 5 smooth cumulative , \
" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c1

with l i n e s p o i n t s l s 9 smooth cumulative , \
95 " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c2

with l i n e s p o i n t s l s 2 smooth cumulative , \
" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c2

with l i n e s p o i n t s l s 6 smooth cumulative , \
97 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c2

with l i n e s p o i n t s l s 10 smooth cumulative , \
" top1 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c3

with l i n e s p o i n t s l s 3 smooth cumulative , \
99 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c3

with l i n e s p o i n t s l s 7 smooth cumulative , \
" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c3

with l i n e s p o i n t s l s 11 smooth cumulative , \
101 " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c4

with l i n e s p o i n t s l s 4 smooth cumulative , \
" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c4

with l i n e s p o i n t s l s 8 smooth cumulative , \
103 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c4

with l i n e s p o i n t s l s 12 smooth cumulative

105 #−−−−−−−−−−−−−−−−−−−−−S e r v i c e I n v o c a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−
set y l a b e l " "

107 set x l a b e l " S e r v i c e I n v o c a t i o n (SI) de lay i n m i l l i seconds "

109 set output " 8400− packet−tops−case−a l l −q100−ind−c d f . eps "
p l o t " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e

top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \
111 " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c2

with l i n e s p o i n t s l s 2 smooth cumulative , \
" top1 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c3

with l i n e s p o i n t s l s 3 smooth cumulative , \
113 " top1 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top1c4

with l i n e s p o i n t s l s 4 smooth cumulative , \
" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c1

with l i n e s p o i n t s l s 5 smooth cumulative , \
115 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c2

with l i n e s p o i n t s l s 6 smooth cumulative , \
" top2 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c3

with l i n e s p o i n t s l s 7 smooth cumulative , \
117 " top2 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top2c4

with l i n e s p o i n t s l s 8 smooth cumulative , \
" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −1−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c1

with l i n e s p o i n t s l s 9 smooth cumulative , \
119 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −2−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c2

with l i n e s p o i n t s l s 10 smooth cumulative , \
" top3 / q100 /gnu− f i l e s / ind /8400− ind−case −3−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c3

with l i n e s p o i n t s l s 11 smooth cumulative , \
121 " top3 / q100 /gnu− f i l e s / ind /8400− ind−case −4−packet−mean . l o g " u s i n g ($3) : (1 . / 3 5 .) t i t l e top3c4

with l i n e s p o i n t s l s 12 smooth cumulative

123
set key width −1 o u t s i d e below c e n t e r v e r t i c a l maxrows 3

125 set t i t l e " "
set y l a b e l " "

127 set x l a b e l " S e r v i c e I n v o c a t i o n (SI) de lay i n m i l l i seconds "
set output " a l l −tops−ua−s i −delay−a l l −c a s e s −1000− q u e r i e s −c d f . eps "

129 p l o t "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q1000 /gnu− f i l e s /ua/ case −1−uaperformance−mean .
l o g " u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q1000 /gnu− f i l e s /ua/ case −1−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top2c1 with l i n e s p o i n t s l s 5 smooth cumulative , \

APPENDIX C. AUTOMATION FOR STATISTICS AND GRAPHS 290

131 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q1000 /gnu− f i l e s /ua/ case −1−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top3c1 with l i n e s p o i n t s l s 9 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q1000 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top1c2 with l i n e s p o i n t s l s 2 smooth cumulative , \

133 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q1000 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top2c2 with l i n e s p o i n t s l s 6 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q1000 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top3c2 with l i n e s p o i n t s l s 10 smooth cumulative , \

135 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q1000 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top1c3 with l i n e s p o i n t s l s 3 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q1000 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top2c3 with l i n e s p o i n t s l s 7 smooth cumulative , \

137 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q1000 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top3c3 with l i n e s p o i n t s l s 11 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q1000 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top1c4 with l i n e s p o i n t s l s 4 smooth cumulative , \

139 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q1000 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top2c4 with l i n e s p o i n t s l s 8 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q1000 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 0 .) t i t l e top3c4 with l i n e s p o i n t s l s 12 smooth cumulative

141
set output " a l l −tops−ua−s i −delay−a l l −c a s e s −100− q u e r i e s −c d f . eps "

143 p l o t "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q100 /gnu− f i l e s /ua/ case −1−uaperformance−mean .
l o g " u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top1c1 with l i n e s p o i n t s l s 1 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q100 /gnu− f i l e s /ua/ case −1−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top2c1 with l i n e s p o i n t s l s 5 smooth cumulative , \

145 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q100 /gnu− f i l e s /ua/ case −1−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top3c1 with l i n e s p o i n t s l s 9 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q100 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top1c2 with l i n e s p o i n t s l s 2 smooth cumulative , \

147 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q100 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top2c2 with l i n e s p o i n t s l s 6 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q100 /gnu− f i l e s /ua/ case −2−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top3c2 with l i n e s p o i n t s l s 10 smooth cumulative , \

149 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q100 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top1c3 with l i n e s p o i n t s l s 3 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q100 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top2c3 with l i n e s p o i n t s l s 7 smooth cumulative , \

151 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q100 /gnu− f i l e s /ua/ case −3−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top3c3 with l i n e s p o i n t s l s 11 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top1 / q100 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top1c4 with l i n e s p o i n t s l s 4 smooth cumulative , \

153 "< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top2 / q100 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top2c4 with l i n e s p o i n t s l s 8 smooth cumulative , \

"< awk ’{ i f ($7 <=3000) { p r i n t $0 }} ’ top3 / q100 /gnu− f i l e s /ua/ case −4−uaperformance−mean . l o g "
u s i n g ($7) : (1 . / 1 0 0 .) t i t l e top3c4 with l i n e s p o i n t s l s 12 smooth cumulative

155

157 #−−−−−−−−−−−−−−−−−−−−−DA−−−−−−−−−−−−−−−−−−−−−−−−−
set x t i c s 1000

159 set x l a b e l " Time "
set y l a b e l " Number o f Packets "

161
set output " a l l −tops−da−a l l −c a s e s −q1000−l i n e . eps "

163 p l o t " top1 / q1000 /gnu− f i l e s /da/ case −1−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top1c1 with
l i n e s p o i n t s l s 1 , \
" top2 / q1000 /gnu− f i l e s /da/ case −1−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top2c1 with

l i n e s p o i n t s l s 5 , \
165 " top3 / q1000 /gnu− f i l e s /da/ case −1−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top3c1 with

l i n e s p o i n t s l s 9 , \
" top1 / q1000 /gnu− f i l e s /da/ case −2−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top1c2 with

l i n e s p o i n t s l s 2 , \
167 " top2 / q1000 /gnu− f i l e s /da/ case −2−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top2c2 with

l i n e s p o i n t s l s 6 , \
" top3 / q1000 /gnu− f i l e s /da/ case −2−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top3c2 with

l i n e s p o i n t s l s 10 , \
169 " top1 / q1000 /gnu− f i l e s /da/ case −3−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top1c3 with

l i n e s p o i n t s l s 3 , \
" top2 / q1000 /gnu− f i l e s /da/ case −3−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top2c3 with

l i n e s p o i n t s l s 7 , \
171 " top3 / q1000 /gnu− f i l e s /da/ case −3−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top3c3 with

l i n e s p o i n t s l s 11 , \
" top1 / q1000 /gnu− f i l e s /da/ case −4−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top1c4 with

l i n e s p o i n t s l s 4 ,\
173 " top2 / q1000 /gnu− f i l e s /da/ case −4−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top2c4 with

l i n e s p o i n t s l s 8 ,\
" top3 / q1000 /gnu− f i l e s /da/ case −4−daperformance−mean . l o g " u s i n g 2 : 3 : 4 t i t l e top3c4 with

l i n e s p o i n t s l s 12

	Abstract
	Acknowledgements
	Publications
	Acronyms
	Introduction
	Motivation
	Research Challenges
	Aims and Objectives
	Research Methodology
	Original Contributions
	Thesis structure

	From the Internet of Things (IoT) to the Web of Things (WoT)
	Introduction
	6LoWPAN (IPv6 over Low power Wireless Personal Area Networks)
	Architecture
	Design Considerations

	RPL (IPv6 Routing Protocol for Low power and Lossy Networks)
	Protocol and Topology Construction

	Application Protocol Paradigms
	End-to-End
	Real-time streaming and sessions
	Publish/Subscribe
	Web service
	Simple Object Access Protocol (SOAP)
	Representational state transfer (REST)

	CoAP (Constrained Application Protocol)
	Transaction ID and messages types
	Methods
	Options
	Message Format
	UDP binding
	Interaction Model
	Synchronous response
	Asynchronous response

	Resource discovery
	Caching and Proxying

	Protocol Integration Approaches
	Gateway approach
	Compression approach

	Technologies for Experiments
	Operating System: CONTIKI
	Simulator: COOJA

	Summary

	Service Discovery (SD) in Literature
	Introduction
	SD Objectives
	SD Entities
	SD Classifications
	Centralised architectures
	SLP (Service Location Protocol)
	SLP-based adaptations and optimised solutions
	JINI (Java Intelligent Network Interface)
	Salutation
	FRODO (Framework for Robust and Resource-aware Discovery)
	SLEEPER
	Splendor

	Distributed architectures
	Domain Name Server (DNS) based
	Clustering based
	Hash-based P2P

	Directory-less architectures
	Cross-layer design
	Discussion from 6LoWPAN's perspective
	Service Discovery (SD) Process
	Service description
	Service advertisement/registration
	Service discovery
	Service selection
	Service Invocation

	Challenges
	Scalability
	Energy, Memory and Bandwidth Constraints
	Reliability and accuracy
	Heterogeneity and resource-awareness
	Security and privacy

	New perspectives
	Context Awareness
	Adaptability

	Summary and Discussion

	Service Discovery for the IoT: A Requirement Analysis
	Introduction
	Scenario
	User Interactions
	IoT Service Discovery Requirements
	Heterogeneity and Interoperability
	Context-awareness
	Adaptability
	Constrained networks

	Summary

	A Context-aware Service Discovery Protocol (SDP) for the IoT
	Introduction
	Architecture
	Directory Agent (DA)
	Service Agent (SA)
	User Agent (UA)

	Communication Protocol
	Service Description
	Context awareness
	Registration and Status maintenance
	Provision of the DA's IP
	Status maintenance

	Service Discovery
	Service Selection
	Service Inovcation
	Overall framework
	Message Formats
	UPD (Update) for registration
	UPD (Update) message for Status maintenance
	SDR (Service Discovery Request)

	Summary and Discussion

	Experimental Design and Performance Metric
	Introduction
	Performance Metrics
	Control packet overhead
	Service Discovery Delay
	Service Invocation Delay and cache hits
	Energy Efficiency and Network lifetime
	Scalability factor: Packets to the DA
	Reliability and Accuracy

	Experimental Setup
	Topology

	Experimental Design
	TRENDY's Service Selection Experiments
	Introduction
	Control packet overhead
	Service Invocation Delay
	Energy Consumption and network lifetime
	Packets at the DA: a scalability factor
	Reliability and Accuracy

	Summary and Discussion

	Adaptive Reporting Timer
	Introduction
	Aims
	Adaptive Timer Process
	Design
	Example Scenario

	Message Formats
	Updated TRENDY reporting message

	Experiments and Results
	Introduction
	Control packet overhead
	Energy Consumption and network lifetime
	Scalability factor: Packets to the DA
	Service Invocation Delay
	Reliability and Accuracy

	Summary and Discussion

	Context-aware Grouping
	Introduction
	Aims
	Architecture
	Group Member (GM)
	Group Leader (GL)

	Grouping Process
	Best GL Selection
	Message Formats
	UPD (Update) for GL registration
	Grouping Messages
	YGM (Your Group member)
	RGM (Remove Group member)
	YGL (Your Group Leader)

	Reporting Messages
	UPD (Update) message for Status maintenance
	NRP (Not reported)
	SSC (Some Service Changed)
	GLD (Group Leader Done)

	Discovery Messages
	FWD (Forward Query)

	Experiments: Group Scalability
	Introduction
	Control packet overhead
	Energy Consumption and network lifetime
	Scalability factor: Packets to the DA
	Service Invocation Delay
	Reliability and Accuracy

	Experiments: Grouping with different groups
	Introduction
	Control packet overhead
	Energy Consumption and network lifetime
	Scalability factor: Packets to the DA
	Service Invocation Delay
	Reliability and Accuracy

	Summary and Discussion

	Adaptive Piggybacked Publishing (APPUB): An Algorithm for Adaptive Caching
	Introduction
	Aims
	Design
	APPUB Process
	DA's role
	SA's role
	Cache Format

	Message Format
	Update for TRENDY's UPD reporting message

	Experiments and Results
	Introduction
	Service Invocation Delay and Cache hits
	Energy Consumption and network lifetime
	Control packet overhead
	Scalability factor: Packets to the DA
	Reliability and Accuracy

	Summary and Discussion

	TRENDY: a Trend-based Service Discovery Solution for the IoT
	Introduction
	TRENDY Protocol with Adaptive Techniques
	Message Format
	SA roles
	Policies
	Framework

	Experiments and results
	Introduction
	Service Invocation Delay and Cache hits
	Control packet overhead
	Scalability factor: Packets to the DA
	Energy Consumption and Network Lifetime
	Memory Requirements

	Summary and Discussion

	Comparison with other solutions
	Introduction
	Context-awareness
	Extensibility
	Interoperability
	Constraints Considerations
	Dependencies
	Performance Metrics
	Service Discovery delay
	Service Invocation support
	Scalability
	Energy Consumption

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendices
	Automation of experiments
	Scenarios automation
	Script for 6LoWPAN data gathering

	Logs for validation and debugging
	Simulation Log
	COOJA Log
	Case-x-packet.pcap
	Lowpan-detail.log
	l-energy-all.log
	l-energy-ind.log
	l-packet-all.log
	l-packet-ind.log

	DA Log
	daperformance.log
	da-detail.log
	daFullDetail.log

	UA Log
	uaperformance-processed.log
	ua-detail.log

	Automation for statistics processing and graph generation
	Data Processing
	GNUPLOT graphs generation

