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Abstract—With widespread applications of 3D technology,
measuring quality of experience (QoE) for 3D multimedia content
plays an increasingly important role. In this paper, we propose a
full reference stereo image quality assessment (SIQA) framework
which focuses on the innovation of binocular visual properties
and applications of low-level features. On one hand, based on
the fact that human visual system (HVS) understands an image
mainly according to its low-level features, local phase andlocal
amplitude extracted from phase congruency (PC) measurement
are employed as primary features. Considering the less prominent
performance of amplitude in IQA, visual saliency is applied
into the modification on amplitude. On the other hand, by
fully considering binocular rivalry phenomena, we create the
cyclopean amplitude map and cyclopean phase map. With this
method, both image features and binocular visual properties are
mutually combined with each other. Meanwhile, a novel binocular
modulation function in spatial domain is also adopted into the
overall quality prediction of amplitude and phase. Extensive
experiments demonstrate that the proposed framework achieves
higher consistency with subjective tests than relevant SIQA
metrics.

Index Terms—Stereo image quality assessment, Amplitude and
phase, Phase congruency, Binocular visual properties, Human
visual system

I. I NTRODUCTION

T HE wave of 3D technology greatly enriches the way we
perceive the world. With a large number of 3D films

coming out and finally achieving commercial success, 3D
technology has gained much more attention in creating a better
psychological perception. The applications of 3D technology
cover a wide range, including entertainments and scientific
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research fields [1]–[5]. At the same time, we are also aware
of the fact that all kinds of distortion types introduced during
the process of transmission, processing and display will lead
to the decrease of quality and great visual discomfort [6],
[7]. Therefore designing an effective SIQA method is still a
challenging area in image processing due to the complex and
non-intuitive interactions of multiple 3D visual cues including
depth perception, visual comfort and 2D-IQA related issues
[8].

IQA mainly contains two aspects: subjective tests and
objective tests. Compared with subjective tests which require
numerous duplicate tests with a great number of participants
[9], objective tests have great convenience and practicability,
and achieved reliable prediction of perceived image quality.
Therefore it attracts considerable attention of scholars and
experts.

In practical applications, many 2D-IQA indexes largely de-
pend on the availability of image features related to perceptual
distortion, and then compute the overall quality from these
features to depict the distribution of quality degradation, such
as the Multi-Scale Structural Similarity Index Measurement
(MS-SSIM) [10], and the Visual Information Fidelity (VIF)
[11]. There are also a number of deep learning based blind
image quality assessment (BIQA) frameworks (e.g., [12]–[14])
and natural scene statistics based IQA metrics which focus on
the applications of quality-aware features (e.g., [15]–[18]).

However, it has been proved that 2D-IQA methods are not
applicable to SIQA. Youet al. investigated the appropriateness
of ten well-known 2D-IQA metrics in SIQA [19]. The authors
in [20] presented an evaluation of twelve 2D-IQA metrics to
predict the quality of images synthesized by depth image-
based rendering (DIBR) [21]. The performance of these 2D-
IQA metrics is moderate for measuring the quality of 3D
images and they are not appropriate to assess the perceived
depth, because of the weak correlation to stereo perception
created by joint efforts of both views [8], [22].

Therefore, how to get a full understanding of the perceptual
distortion on stereopairs under the assumption of various
binocular visual properties is still the focus of SIQA [23],
[24]. For example, the two views of the stereoscopic images
may contain different distortion types due to the asymmetric
processing in the 3DTV system such as capture, coding
and transmission. The asymmetric distortion in stereoscopic
images exists with different intensity, locations and texture
structures. Then the binocular fusion or rivalry may occur in
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different locations [25]. With this purpose, both the availability
of distortion-relevant image features and binocular visual
models need further analysis.

On one hand, the new challenges of SIQA come mainly
from the interactions between the two eyes. Aiming at a
better simulation of cyclopean images, Levelt has proved that
binocular rivalry/suppression is mainly governed by low-level
sensory factors, and stimuli that are higher in contrast tend
to dominate the rivalry [26]. Maaloufet al. integrated the left
and right views into a cyclopean image, by simulating the
brain perception, and used the contrast sensitivity coefficients
as the basis of evaluation [27]. In subsequent work, Chenet
al. proposed a full reference metric which focused on the
highly relevant phenomena of binocular rivalry [28]. Linet
al. applied binocular frequency integration into measuring the
quality of stereoscopic images, with the help of traditional 2D
metrics [24]. In [29], a new full-reference SIQA framework
was proposed by learning binocular receptive field properties
in line with visual perception. These metrics do quite well
in predicting perceptual quality of stereo images. Inspired by
these positive results, a synthesized framework which takes
binocular rivalry into consideration is proposed.

On the other hand, the HVS understands an image mainly
based on its low-level features, such as edges and zero cross-
ings [30], [31]. Accordingly, perceptible image degradation
will lead to perceptible changes in image low-level features.
As illustrated in [32], image features such as step edges, lines
and Mach bands all give rise to the points where the Fourier
components of an image are maximal in phase. Inspired by this
conclusion, Phase Congruency (PC) measurement is employed
into practical applications.

The PC model is a frequency-based model of visual process-
ing. It supposes that, instead of processing visual data spatially,
the visual system is capable of performing calculations using
the phase and amplitude of the individual frequency compo-
nents in a signal [32]. In [33], Liu and Laganière put a local
cross-correlation of PC map into the calculation between a
reference image and a distorted one, and the averaged cross-
correlation values provided a quantitative assessment of the
overall image similarity. In [34], PC was extended to phase
coherence which can be used to characterize the image blur.
Based on [34], Hassenet al. proposed a sharpness measure
where sharpness was identified as strong local phase coherence
[35]. In [22], Shaoet al. applied the PC calculation together
with the log-Gabor filter into the description of local amplitude
and phase features. However, amplitude can not reflect as
much detailed information as phase through the analysis on
image construction, and therefore receives a lower weight-
ing coefficient. The authors in [36] carried out experiments
to investigate the visual impact of distortion on phase and
amplitude of an image. It was found that the distortion in
phase had a bigger impact on the visual appearance of image
and its quality [37].

It seems to be a general consensus that phase plays a more
prominent role in characterizing the signal properties. Howev-
er, to highlight the importance of amplitude in determining
visual quality, we integrate amplitude with visual saliency
information.

When catching sight of an image, our eyes attempt to
recognize certain regions perceptually important in orderto
speed up the recognition process and to extract the significant
objects from complex backgrounds [38]. Saliency detection
comes into being exactly in accordance with this thought [39]–
[43]. There are several saliency detection models succeeding
in highlighting the locations that attract human attention,
while weakening the parts that HVS is insensitive to, such
as the widely accepted bottom-up method named Graph-
Based Visual Saliency (GBVS) [39], the saliency detection
model using Maximum Symmetric Surround (MSS) [40], the
model using Low-level Features based on Wavelet Transform
(LFWT) [41] and the model based on the Image Signature
(IS) [42]. Zhanget al. used visual saliency as primary features
when computing the local quality map of distorted images [3].
Furthermore, visual saliency can be employed as a weighting
function to reflect the importance of a local region in the
pooling procedure [8]. At the same time, the emerging appli-
cations of stereoscopic display require new saliency detection
models for salient region extraction. Fanget al. took the depth
feature into account in saliency detection for stereoscopic
images and proposed a saliency detection model based on the
feature contrast of color, luminance, texture, and depth [44].
According to this characteristic, visual saliency is adopted
into the modification on amplitude to bridge the gap between
amplitude and visual quality.

Inspired by previous work, a full reference SIQA framework
based on the cyclopean amplitude map and the cyclopean
phase map is proposed. The contributions are as follows:

1) Considering the less prominent role of amplitude in IQA,
visual importance map which contains efficient saliency and
depth information, is creatively adopted into the modification
on amplitude maps.

2) Local amplitude (phase) maps extracted from PC mea-
surement of both views are synthesized as one cyclopean
amplitude (phase) map which represents the perceptual degra-
dation of stereopairs after binocular rivalry process.

3) By comparing the matching error in binocular disparity,
stereoscopic images are classified into non-correspondingand
corresponding regions, and a modulation function in spatial
domain is applied into the quality prediction.

4) Through comprehensive experiments and comparison, we
analyze the contribution of amplitude and phase in determining
visual quality. Results show that our metric correlates well
with subjective tests on both symmetrically and asymmetri-
cally distorted stereoscopic images.

The rest of this paper is organized as follows. Section
II illustrates the related work of creating cyclopean phase
and amplitude maps, including image features and binocular
visual properties. Section III presents the detailed computation
procedures of proposed SIQA framework. The experimental
results are analyzed in Section IV. Finally in Section V, we
conclude the paper with the imagination of future work.
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II. RELATED WORK

A. Definition of the Cyclopean Phase Map and Cyclopean
Amplitude Map

The purpose of cyclopean image is to give an intuitive
description of the perceived image acquired from both left and
right views. To achieve this goal, we have to extract useful
features that can effectively describe visual degradation. As
mentioned in Introduction, the phase and amplitude maps can
also be considered as perceptual representations from different
aspects, and therefore the integration between the two maps
and the cyclopean image is practicable. With this method, we
get a pair of cyclopean maps named cyclopean phase map
and cyclopean amplitude map. On one hand, the cyclopean
phase map plays the dominant role in expressing details of
the perceived image (e.g., structure information), and thus it
is reasonable to be taken into consideration. On the other hand,
the cyclopean amplitude map is deemed as another evaluation
factor, owing to the approximate reflection of visual saliency
after the integration with visual importance map. The detailed
information about modification on amplitude is given in the
following part. Figure. 1 shows examples of cyclopean phase
and cyclopean amplitude maps.

(a) (b)

(c) (d)

Fig. 1: An examples of cyclopean phase and cyclopean ampli-
tude maps. (a) Original left image. (b) Original right image.
(c) The cyclopean phase map. (d) The cyclopean amplitude
map. Note that all the original images come from LIVE 3D
Image Quality Database [45]

B. Modification on Amplitude

As shown in Fig. 2, there are several constructed im-
ages using the phase of reference images, and amplitude of
JPEG compressed, Gaussian blurred and fast faded images.
From the comparison among the original reference image and
constructed images, it can be observed that the constructed
images are degraded due to compression and blurring on
the amplitude, despite most details are preserved. Therefore
amplitude can also be used to reflect image degradation.
However, the connection between amplitude and visual quality
is still less prominent [22], [36], [37]. To solve this problem,
we integrated the amplitude with a saliency-based visual
importance map estimation (shown in Fig. 3) which did an

excellent job in reflecting certain regions with different visual
importance [6]. With this method, certain regions and objects
that are perceptually important in visual perception will be
highlighted in modified amplitude maps (shown in Fig. 4),
such as the parking space in image ”Bicycle” and the ground
in image ”Park”. In contrast, the original amplitude shows less
useful information.

(a) (b)

(c) (d)

Fig. 2: Examples of image reconstruction using the phase
of original left reference image ”Park” and amplitude of
corresponding distorted images. (a) Original left reference
image. (b) Image constructed using the amplitude of JPEG
compressed image. (c) Image constructed using the amplitude
of blurred image. (d) Image constructed using the amplitude
of fast faded image.

The detailed estimation procedure of visual importance map
is shown in Fig. 5. As an example, the GBVS model which
highlights low-level features in monocular view is employed
to compute the saliency map (SI ). Regarded as the crucial
difference to 2D IQA, disparity is used to compute the depth
saliency map (SD) after normalization [46], [47]. Finally, the
image saliency map and depth saliency map are integrated as
the visual importance map (S) by linear combination given by
S = λSI+(1−λ)SD, whereλ denotes the weighting factor of
the saliency map (in our experiment,λ = 0.5 ). The examples
of synthesized visual importance maps are shown in Fig. 3.

C. Binocular Spatial Modulation Function

The binocular suppression and rivalry properties occur when
the two views of stereoscopic images fall on the correspond-
ing retina locations. Therefore, each pixel in either view
should be divided into Corresponding Regions (CR) and Non-
Corresponding Regions (NCR), according to whether the
pixels have correspondences in the other view [25]. A novel
modulation function in spatial domain is adopted into the
pooling by considering the binocular suppression and rivalry
properties. The Binocular Spatial Modulation Function (M ) is
implemented in corresponding regions and non-corresponding
regions according to the disparity map, and it can be defined
as

M(x, y) = {
φ((S(x,y), S(x,y)/JND(x,y)), (x,y)∈NCR
φ((S(x,y), S(x,y)/BJND(x,y)), (x,y)∈CR (1)
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Fig. 5: Estimation procedure of Visual Importance Map introduced in [6].

(a) (b)

(c) (d)

(e) (f)
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Fig. 3: Examples of visual importance map estimation. (a)
Original left image ”Bicycle”. (b) Original left image ”Park”.
(c) Saliency map of (a). (d) Saliency map of (b). (e) Depth
saliency map of (a). (f) Depth saliency map of (b). (g) Visual
importance map of (a). (h) Visual importance map of (b). Note
that, in (g) and (h), visual importance values range from 0
(least importance, blue) to 1 (most importance, red).

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Modification on amplitude maps. (a) Original left image
”Bicycle”. (b) Original left image ”Park”. (c) Amplitude map
of (a). (d) Amplitude map of (b). (e) Modified amplitude map
of (a). (f) Modified amplitude map of (b).

whereJND andBJND denote the existing just-noticeable
difference model [48] and the binocular just-noticeable dif-
ference model [49] inNCR andCR, S denotes the visual
importance map, andφ is a nonlinear additive function [25].
Here, the functionφ is computed by

φ(x, y) = (x+ y)/2− κ ·min(x, y) (2)

whereκ is a parameter adjusting the penalization strength. In
the proposed framework, it is empirically set to 0.45 for all
types of distortion [50].
(B)JND means the tolerance for distortion, and thus it

can determine the minimum distortion that evoke binocular
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visible differences [49]. Intuitively, if a region has a significant
(B)JND value, it implies that the region can tolerate large
distortion, and importance of the region in the binocular
perception is low [50].

In summary, image features and binocular visual properties
analyzed in this section have major impacts on SIQA: 1) the
amplitude map allows better representation of image features,
and provides the basic identification of visual attention. 2)
the cyclopean amplitude and phase maps give an intuitive
description of visual degradation. 3) the binocular spatial
modulation function can also be used into SIQA for more
effective evaluation.

III. PROPOSED SIQA FRAMEWORK

The proposed SIQA framework mainly contains three se-
quential parts: the extraction of local amplitude and phase
maps, the computation of cyclopean amplitude and phase map-
s, and the pooling process, as shown in Fig. 6. Firstly, the local
amplitude and phase maps are extracted from the reference
stereopairs, as well as the distorted stereopairs; Secondly, local
amplitude maps between two views are synthesized as one
cyclopean amplitude map, and the same is true of the local
phase maps; At last, the similarities between two cyclopean
phase maps as well as two cyclopean amplitude maps are
applied into the pooling process respectively, and then a linear
regression is employed to combine the two similarity indexes
into the final quality. In order to facilitate understanding, the
summary of some important notations and variables is shown
in Table I.

A. Local Amplitude and Local Phase Maps Extracted from
PC

As analyzed above, the modified amplitude and phase maps
are important features in IQA. However, global phase from
the direct Fourier transform is not an effective means in
feature description, because different regions are evaluated
independently. Obviously, the constant frequency response is
not a good choice for feature description [22]. According to
the phase congruency theory, the local phase and amplitude
features can be extracted by maximizing the Fourier compo-
nents [51].

Morrone and Owens [52] proposed an image feature per-
ception model, which postulated that features were perceived
at the points where Fourier components were maximal in
phase [33]. Kovesi proposed a scheme to calculate the phase
congruency with logarithmic Gabor wavelets, which allows a
wide range of features to be detected within the framework
of a single model [32]. Inspired by these conclusions, PC
measurement is employed into practical applications. It has
been proved that simple cells in primary visual cortex can
be well modeled using log-Gabor filter in previous researches
[53]. A set of responses on different scales and along different
orientations, denoted as[ηs,o, ξs,o], can be obtained by apply-
ing the log-Gabor filterGs,o (denoted by spatial scale index
s and orientation indexo) in Fourier domain:

Gs,o(ω, θ) = exp[−
(log( ω

ωs
))

2

2σs
2

] · exp[−
(θ − θo)

2

2σo
2

] (3)

where parametersω andθ are the normalized radial frequency
and the orientation angle of the filter, andωs and θo are the
corresponding center frequency and orientation of the filter,
respectively. The parametersσs andσo determine the strength
of the filter. Then the local amplitude at locationx on scales
and along orientationo is given by

As,o(x) =

√

ηs,o(x)
2
+ξs,o(x)

2 (4)

and the local energy along orientationo is computed by

Eo(x) =

√

Fo(x)
2
+Ho(x)

2 (5)

whereFo(x) =
∑

s ηs,o(x) andHo(x) =
∑

s ξs,o(x). The PC
along orientationo is computed by

PCo(x) =
Eo(x)

ε+
∑

s As,o(x)
(6)

whereε is a small positive constant. The design of the filter
is based on the work in [54].

Different with [55], the PC is directly used into feature
description. The local phase is defined as the angle ofFo(x)
andHo(x) along the orientation with the maximum PC value:

LP (x) = arctan(Hom (x), Fom (x)) (7)

where o
m

denotes the orientation which corresponds to the
maximum PC value. Then the local amplitude is defined as the
sum of local amplitudes of all the scales along the orientation
om:

LA(x) =
∑

s
As,om(x) (8)

According to these definitions, local amplitude and phase
maps extracted from original images and corresponding dis-
torted versions are displayed in Fig. 7 and Fig. 8. In order
to facilitate visual examination, those regions with significant
changes are marked in red rectangles. As shown in Fig. 7,
distortion leads to visual degradation on key objects (e.g.,
the bicycle). There are also similar effects on local phase
maps which describe totally different visual contents from
local amplitude maps, for example, the structure information
is preserved.

In our experiment,ωs = 1/6, θo = 0, σs = 0.3, σo = 0.4,
and the numbers of scale and orientation of the filter are set
to 4.

B. Cyclopean Amplitude and Phase Maps

Figure. 9 shows how to compute the cyclopean phase and
amplitude maps. At the beginning, an image from either view
is decomposed into local phase and amplitude maps, and visual
importance map is also acquired. Secondly, synthesized by
corresponding visual importance map, the modified amplitude
maps are applied into the following procedures. Eventually,
the modified amplitude maps from two views are combined
into a cyclopean amplitude map, and the same is true of the
two phase maps. Both reference and distorted stereopairs are
applied into the computation.
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Fig. 6: Procedure of the proposed method.

TABLE I: Important notations and variables.

SI the saliency map LP, LA the local phase and local amplitude maps
SD the depth saliency map AL, AR the modified amplitude maps of left and right images
S the visual importance map G the complex 2D Gabor filter
λ the weighting factor of the saliency map GEL, GER the summation of convolution responses
M the binocular spatial modulation function of the left and right images toG

(B)JND the (binocular) just noticeable difference CP, CA the cyclopean phase and cyclopean amplitude
(N)CR the (Non-) Corresponding Region CM the cyclopean expression ofM

φ the function to computeM WL, WR the left and right weighting factors
Gs,o the log-Gabor filter on scales and along orientationo computed fromGEL, GER

ω the normalized radial frequency SA, SP feature similarity metrics for CP, CA
θ the orientation angle of the filter QA, QP the quality metrics of amplitude and phase

As,o the local amplitude on scales and along orientationo γ the weighting factor for cyclopean phase
Eo the local energy along orientationo Q the final quality
PCo PC along orientationo

(a) (b) (c)

Fig. 7: Examples of local amplitude maps extracted from original left image ”Bicycle” and corresponding distorted versions
(white noise and fast fading, respectively).

(a) (b) (c)

Fig. 8: Examples of local phase maps extracted from the original left image ”Bicycle” and corresponding distorted versions
(white noise and fast fading, respectively).



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 7

Fig. 9: Procedure of the cyclopean phase and amplitude computation.

The process of synthesized cyclopean phase and amplitude
maps is illustrated in the following part. According to [26],
[28], the energy of Gabor filter bank responses on the left
and right images can be used to model stimulus strength and
simulate rivalrous selection of cyclopean image quality. In
general, the complex 2D Gabor filter can be defined as

G(x, y, σx, σy, ζx, ζy, θ)

=
1

2πσxσy
e−(1/2)[(R1/σx)

2+(R2/σy)
2]ei(xζx+yζy) (9)

whereR1 = x cos θ + y sin θ and R2 = y cos θ − sin θ, σx

and σy are the standard deviations of an elliptical Gaussian
envelope alongx andy axes,ζx andζy are spatial frequencies,
and θ orients the filter. The design and parameter settings of
the Gabor filter are derived from the work conducted by Su
et al. [56]. The local energy is estimated by summing Gabor
filter magnitude responses over four orientations (horizontal,
both diagonals, and vertical) at a spatial frequency of 3.67cy-
cles/degree [28].

Given the Gabor filter response of each view, a linear model
is used to synthesize the cyclopean phase and amplitude maps:

CP (x, y) = WL(x, y)× LPL(x, y)

+WR((x + d), y)× LPR((x+ d), y)
(10)

CA(x, y) = WL(x, y)×AL(x, y)

+WR((x + d), y)×AR((x + d), y)
(11)

whereCP andCA represent the cyclopean phase map and
the cyclopean amplitude map,AL andAR are modified local
amplitude maps of the left and right image, and the same is
true of local phase mapsLPL andLPR. The weightsWL(x, y)

andWR(x + d, y) are computed from the normalized Gabor
filter magnitude responses computed by

WL(x, y) =
GEL(x, y)

GEL(x, y) +GER((x + d), y)
(12)

WR((x + d), y) =
GER((x+ d), y)

GEL(x, y) +GER((x + d), y)
(13)

where GEL and GER are the summation of convolution
responses of the left and right images to the complex 2D Gabor
filter.

Different from the model proposed by Levelt [26], the cyclo-
pean image is disparity-compensated in computation equation,
denoted as (x+ d). Accordingly, the cyclopean map is able to
reconstruct the perceptual image that matches HVS to a large
extent by taking binocular rivalry into consideration.

C. Quality Assessment Metric

Figure. 6 shows how the proposed framework works after
cyclopean phase and amplitude computation. Similar to the
definition of SSIM [57], the two feature similarity metrics for
CP andCA between reference stereopairs and distorted pairs
are adopted, denotes asSA andSP , which can be computed
as follows:

SA=
2CAref · CAdis + T1

CAref
2 + CAdis

2 + T2

(14)

SP=
2CPref · CPdis + T1

CPref
2 + CPdis

2 + T2

(15)

whereT1 andT2 are positive constants to avoid the denomina-
tor being zero. The subscriptsref anddis represent reference
and distorted stereopairs respectively.
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After computing the two similarity metrics of cyclopean
maps at each location, the binocular spatial modulation func-
tion is applied into the pooling procedure. More specifically,
the general mathematics forms of quality assessment metric
for amplitude and phase are given by

QA =

∑

x,y CM(x, y) · SA(x, y)
∑

x,y CM(x, y)
(16)

QP =

∑

x,y CM(x, y) · Sp(x, y)
∑

x,y CM(x, y)
(17)

where QA and QP are the amplitude quality metric and
phase quality metric respectively, andCM(x, y) denotes the
cyclopean binocular spatial modulation function based on
distorted stereopairs, which can also be defined as

CM(x, y) = WL(x, y)×ML(x, y)

+WR(x+ d, y)×MR(x, y)
(18)

Finally, in order to get the final qualityQ, a linear combi-
nation betweenQP andQA is employed, given by

Q = γQP + (1− γ)QA (19)

where γ is the weighting factor for adjusting the relative
importance of the two components. Analysis on how the
modified amplitude and phase maps influence the quality
assessment under the circumstances of different weights will
be presented in Section IV.

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Stereo Database

To verify the performance of the proposed method, the
LIVE 3D Image Quality Databases (Phase I and Phase II)
of the University of Texas at Austin are used [45]. Database
Phase I database contains 365 stereopairs with symmetric
distortion and Database Phase II contains 360 stereopairs with
both asymmetric and symmetric distortion, including JPEG
compression, JP2K compression, white noise (WN), Gaussian
blur(Blur) and fast fading(FF).

To further verify the proposed method, the IRCCyN 3D
Image Database is also adopted [58]. Six different stereoscopic
images are considered in this database which is composed
of the six reference images (undistorted) and fifteen distorted
versions of each source generated from three different pro-
cessings (JPEG compression, JP2K compression and blurring)
symmetrically to the stereopairs.

B. Performance Measure

For performance evaluation, four commonly used indicators
are adopted: Pearson Linear Correlation Coefficient (PLC-
C), Spearman Rank Order Correlation Coefficient (SROCC),
Kendall Rank-order Correlation Coefficient (KROCC), and
Root Mean Squared Error (RMSE) between subjective scores
and objective scores after nonlinear regression. For nonlinear
regression, we use a 4-parameter logistic mapping function
[23], [59]:

DMOSP =
β1 − β2

e(Q−β3)/|β4| + 1
+ β2 (20)

whereβ1,β2,β3 andβ4 are the parameters to be fitted. A better
match is expected to have higher PLCC, SROCC, and KROCC
values, while lower RMSE values.

In order to demonstrate its efficiency, the proposed method
is compared with several existing state-of-art IQA metrics,
including three 2D metrics (MS-SSIM [10], VIF [11] and
ADM [60]), and four 3D metrics (Benoit’s scheme [61], Lin’s
scheme [24], Chen’s scheme [28], Shao’s scheme-A [22] and
Shao’s scheme-B [29]). For Benoit’s scheme, we adopt the
d2 metric, in which SSIM is used and disparity distortion
is estimated using global correlation coefficient between the
original and disparity maps. For Lin’s scheme, the FI-PSNR
metric is adopted into the comparison. For Chen’s scheme,
the adopted 2D metric is MS-SSIM which performs the best.
For Shao’s schemes, experimental results in corresponding
references are directly adopted.

C. the Joint Contribution of Cyclopean Amplitude Map and
Cyclopean Phase Map

To better illustrate the relationship between the cyclopean
amplitude map and cyclopean phase map under the circum-
stances of different weights, the prediction curves on LIVE
3D Image Database are shown as an example in Fig. 10.
According to the fitting curves of Database Phase I, with the
increasing weight of cyclopean phase map (γ), the prediction
indicators seem to drop, except for RMSE. At the beginning
of the fitted curve (γ = 0), the cyclopean amplitude map
is given a full weight and the four prediction indicators
perform quite well. In the end, when the cyclopean phase
map is given a full weight (γ = 1), the performance of
four prediction indicators are not so excellent as others. The
difference reconfirms that the cyclopean amplitude takes effect
in SIQA, since the visual saliency information is taken into
account in the process of amplitude modification introduced
in Section II. Although there are minor differences in numeric
values, the other saliency detection models also show similar
performances. According to the fitting curves, whenγ equals
to 0.60, the four indicators achieve more accurate results.

However, the corresponding prediction curves on LIVE 3D
Image Database-Phase II show a relatively different trend from
the other one. There are significant peaks in PLCC, SROCC
and KROCC, and a valley in RMSE at the position close to
γ=0.75, which indicates that the cyclopean phase map still
plays a leading role.

Comparing the two groups of fitting curves in Fig. 10, there
are some difference between them. The prediction results on
symmetric distortion are more stable with varyingγ, and in
contrast, remarkable changes can be observed in the case of
Phase II. This may be explained by the following example.
As shown in Fig. 11, the modified amplitude maps of a
pair of asymmetrically distorted stereo images (fast fading
and JP2K compression, respectively) and the corresponding
cyclopean amplitude map are compared with the reference
images. When it comes to asymmetric distortion, the distortion
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Fig. 10: The joint contribution of cyclopean amplitude and cyclopean phase on LIVE 3D Image Databases under the
circumstances of different weights. Note: Blue fitting curves represent the results on Database Phase I, and red curves represent
the results on Database Phase II.

introduced by fast fading and JP2K compression are different
from each other in both locations and distortion levels (marked
in the red rectangle), and details can also be found in the
cyclopean amplitude map. Therefore, the quality assessment
of asymmetrically distorted images is a relatively difficult
task considering the joint effects of various factors. In this
case, only depending on the cyclopean amplitude maps to
reflect visual degradation would not be able to achieve a
better consistency with subjective assessment. As shown in
Fig. 10, the prediction curves on Database Phase II show a
relatively poorer performance at the beginning (e.g.,γ=0). In
addition, the phase maps (shown in Fig. 8,) which describe
totally different visual contents from the local amplitudemaps,
could be regarded as another factor to enhance the quality
assessment. According to this, the prediction curves show
remarkable changes and peak at nearlyγ=0.75. However, in
terms of symmetric distortion, images are degraded in a similar
degree in both views, and predicting the quality would be
comparatively easy. Thus the contribution of phase is less
significant and minor changes can be found on Database Phase
I.

In order to get a more general quality index for 3D images,
setting a reasonable parameter for the two components is
of vital importance. Considering the performances on two
databases, the parameter is adjusted asγ = 0.75, since the
corresponding performances on Database Phase I are still
competitive. In the following comparisons, the parameter in
the proposed method isγ = 0.75.

To demonstrate the advantage of jointly considering
cyclopean amplitude and cyclopean phase, Table II presents
the detailed results of the following scenarios:
1) Only cyclopean amplitude is used (γ = 0);
2) The best results on LIVE 3D Image Database Phase I
(γ = 0.6);
3) The best results on LIVE 3D Image Database Phase II
(γ = 0.75);
4) Only cyclopean phase is used (γ = 1);

The scatter plots on LIVE 3D Image Database are shown
in Fig. 12. The vertical axis denotes the human subjective
scores of perceptual quality and the horizontal axis denotes
the predicted scores. A better convergence of the points in
the scatter plot to the fitting curve means a better consistency
with the DMOS. The scatter plots demonstrate that the scatter

points of the proposed method are concentrated to the fitting
curve, which indicates a more prominent prediction.

D. Overall Performance on LIVE 3D Image Database

To better illustrate the experimental results, the values of
PLCC, SROCC, KROCC, and RMSE of each metric are
shown in Table III, where the indicator that gives the best
performance is highlighted in bold. At the same time, results
of the four saliency detection models adopted in the proposed
framework (GBVS, MSS, LFWT, and IS) are also shown in
Table III. As shown in the table, the four saliency detection
models show similar performances with each other, and the
overall performances of the proposed framework significantly
better compared with other IQA metrics on both databases.
Although in some cases, their performances slightly lag behind
the best, the overall prediction results are still competitive
among all the IQA metrics. The outstanding performance par-
tially demonstrates the reasonability of cyclopean amplitude
and cyclopean phase maps.

Although Lin’s scheme considered binocular integration
behaviors, the lack of disparity information may lead to the
unexpected performance. Known as the combination of 2D
image quality metrics with disparity maps, Benoit’s scheme
still lags behind the other metrics. In view of this, it can
be inferred that the quality of the estimated disparity maps
highly depends on the stereo matching algorithms and the 2D-
IQA metric for disparity maps does not coincide with human
perception of disparity [29]. As for Shao’s schemes, they
achieve reasonably accurate prediction results on Database
Phase I, while the performances on Database Phase II are not
so excellent as Chen’s scheme and the proposed schemes.

In addition to symmetric distortion, the following part
concentrate more on asymmetric distorted stereopairs. Ac-
cording to the experimental results on Database Phase II
which contains both symmetric and asymmetric distortion,
the proposed framework and Chen’s scheme overtake the
other metrics by a large extent. The significant difference
further confirms the previous conclusion that cyclopean images
can effectively predict the quality of stereoscopically viewed
images. However, it is worth noting that predicting the quality
of asymmetric distorted stereopairs still needs further improve-
ments, compared with symmetric distortion.

In spite of the good performance of overall quality pre-
diction, we also need to verify the performance of each
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Fig. 11: Modified amplitude maps from the left and right views, and corresponding cyclopean amplitude maps of the stereopair
”Bicycle”. Figures in the first row come from the original stereopair; figures in the second row come from the asymmetrically
distorted stereopair (JP2K compression for the left view and fast fading for the right view).

TABLE II: The joint contribution of cyclopean amplitude mapand cyclopean phase map
γ

LIVE 3D Image Database Phase I LIVE 3D Image Database Phase II
PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE

γ = 0 (cyclopean amplitude only) 0.9294 0.9320 0.7654 6.047 0.8553 0.8186 0.6526 5.848
γ = 0.6 0.9388 0.9347 0.7687 5.647 0.904 0.8887 0.7115 4.825
γ = 0.75 0.9366 0.9314 0.7631 5.744 0.9113 0.8935 0.7206 4.648

γ = 1 (cyclopean phase only) 0.9059 0.9001 0.7157 6.946 0.8831 0.8683 0.6863 5.296

TABLE III: Overall performances on LIVE 3D Image Database
Criteria LIVE 3D Image Database Phase I LIVE 3D Image Database Phase II

PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE
MS-SSIM [10] 0.9252 0.9233 0.7474 6.2245 0.7758 0.7707 0.6023 7.1221

VIF [11] 0.9117 0.9087 0.7220 6.7368 0.7865 0.7167 0.5427 6.9708
ADM [60] 0.9119 0.9083 0.7197 6.7314 0.7513 0.7242 0.5481 7.4496
Benoit [61] 0.8015 0.7936 0.5928 9.8058 0.7423 0.7258 0.5357 7.5632

Lin [24] 0.8645 0.8559 0.6559 8.2424 0.6584 0.6375 0.4701 8.4956
Chen [28] 0.9161 0.9153 0.7360 6.5740 0.9067 0.9068 0.7314 4.7587

Shao-A [22] 0.9245 0.9217 - 6.2522 0.7585 0.7451 - 7.3554
Shao-B [29] 0.9350 0.9251 - 5.8155 0.8628 0.8494 - 5.7058

Proposed-GBVS 0.9347 0.9295 0.7589 5.8299 0.8967 0.8805 0.7044 4.9954
Proposed-MSS 0.9324 0.9276 0.7563 5.9253 0.9031 0.8867 0.7125 4.8470

Proposed-LFWT 0.9366 0.9314 0.7631 5.7440 0.8984 0.8824 0.7057 4.9565
Proposed-IS 0.9242 0.9203 0.7415 6.2629 0.9113 0.8935 0.7206 4.6477

TABLE IV: Detailed performances on LIVE 3D Image Database Phase I
Distortion Criteria MS-SSIM [10] VIF [11] ADM [60] Benoit [61] Lin [24] Chen [28] Shao-A [22] Shao-B [29] Proposed

JP2K

PLCC 0.9188 0.9373 0.9333 0.7627 0.8381 0.9166 0.9238 0.9213 0.9520
SROCC 0.8917 0.9015 0.9008 0.7527 0.8388 0.8954 0.8752 0.8945 0.9127
KROCC 0.7006 0.7139 0.7158 0.5519 0.6386 0.7133 - - 0.7468
RMSE 6.8141 6.0168 6.2009 8.3767 7.0658 5.1771 - - 3.9631

JEPG

PLCC 0.6859 0.6779 0.6719 0.2164 0.2866 0.6356 0.6563 0.5200 0.7546
SROCC 0.6123 0.5807 0.5926 0.0754 0.0931 0.5632 0.6148 0.4951 0.7164
KROCC 0.4179 0.3908 0.4009 0.0507 0.2140 0.3749 - - 0.5161
RMSE 6.3445 6.4097 6.4578 6.3868 6.2650 5.0486 - - 4.2912

WN

PLCC 0.9320 0.9203 0.9211 0.9256 0.9280 0.9353 0.9410 0.9448 0.9266
SROCC 0.9320 0.9221 0.9235 0.9241 0.9284 0.9376 0.9431 0.9405 0.9289
KROCC 0.7753 0.7519 0.7608 0.7595 0.7614 0.7880 - - 0.7671
RMSE 8.0413 8.6781 8.6342 6.2971 6.1964 5.8874 - - 6.2569

Blur

PLCC 0.9435 0.9598 0.9607 0.8614 0.9475 0.9418 0.9513 0.9592 0.9583
SROCC 0.9261 0.9341 0.9303 0.7827 0.9345 0.9283 0.9375 0.9403 0.9332
KROCC 0.7677 0.7859 0.7859 0.6020 0.7859 0.7737 - - 0.7859
RMSE 6.3973 5.4161 5.3582 7.3504 4.6291 4.8641 - - 4.1371

FF

PLCC 0.8018 0.8600 0.8548 0.5360 0.7086 0.7583 0.8403 0.8594 0.8620
SROCC 0.7231 0.8042 0.8154 0.4641 0.4709 0.6882 0.7814 0.7963 0.8286
KROCC 0.5371 0.6188 0.6289 0.3333 0.4719 0.5131 - - 0.6403
RMSE 9.8997 8.4537 8.5971 10.4897 8.7671 8.1001 - - 6.2993
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Fig. 12: Scatter plots of objective scores versus subjective data (DMOS). (a) LIVE Database-Phase I. (b) LIVE Database-Phase
II.

distortion type. Table IV gives the detailed information of
individual distortion. According to the table, the proposed
method is either the best or at parity with the best one for
each distortion type. In predicting the quality of distortion
types JP2K compression, JPEG compression and Fast Fading,
the proposed method has the most significant advantage over
the others, especially in JPEG compressed stereo images. Such
an outstanding improvement further confirms its efficiency in
SIQA. However, it is worth noting that all the metrics seem
not to be applicable for JPEG compression, even though a
remarkable improvement. As for the prediction of distortion
Gaussian Blur, the proposed framework almost have the same
correlation coefficients as the best. In terms of distortion
White Noise, although the prediction results overtake 0.9,
the proposed framework is less prominent than the other 3D
metrics. Because the power spectral density of white noise is
distributed uniformly in the frequency domain, and localized
phase and amplitude maps cannot reflect the changes of image
quality. However, in most cases, the proposed framework
attains relatively competitive prediction. On the whole, the
proposed framework can predict the image quality consistently
across different types of distortion.

To verify the demonstration mentioned above, we also
report the performances on IRCCyN 3D Image Database
according to the corresponding settings. As shown in the
Table V, the proposed framework using IS saliency detection
model achieves the most competitive performance. The results
further confirm the demonstration that cyclopean amplitude
and cyclopean phase maps can effectively predict the quality
of stereoscopically viewed images under the circumstance of
γ = 0.75.

TABLE V: Overall performances on IRCCyN Database
Criteria PLCC SROCC KROCC RMSE

Benoit [61] 0.4642 0.4558 0.3716 19.5423
Lin [24] 0.6829 0.6196 0.4672 16.1171

Chen [28] 0.6779 0.6376 0.4737 16.2190
Proposed-GBVS 0.6764 0.6058 0.4557 16.2494
Proposed-MSS 0.6107 0.5403 0.3938 17.4700

Proposed-LFWT 0.6822 0.6184 0.4672 16.1313
Proposed-IS 0.7079 0.6435 0.4806 15.5825

To summarize, SIQA is a complicated process, not only
distortion-relevant image features but also binocular visual
properties should be taken into consideration. The proposed
method takes advantages of the two determinant factors to pre-
dict perceived quality from the aspects of cyclopean amplitude
and phase maps which innovatively combine image features
together with binocular visual properties. And the superiority
has been further confirmed by experiments.

V. CONCLUSIONS

In this paper, a full reference quality assessment framework
based on cyclopean amplitude and cyclopean phase is pro-
posed for stereo images, in which binocular visual properties
and image low-level features are taken into consideration.
Based on the fact that amplitude places an emphasis on image
degradation, we made further modification on amplitude with
the help of saliency detection models. At the same time, by
fully considering the binocular rivalry properties, we create
the cyclopean amplitude map and the cyclopean phase map.
With this method, image features and visual properties are
ingeniously integrated with each other. Experiments further
confirm the demonstration that cyclopean amplitude and cy-
clopean phase maps take effect in image quality determination.

In the future, we will pay much attention to the research on
binocular visual properties, and explore more effective ways
to describe image degradation. At the same time, predicting
the quality of asymmetrically distorted stereo images would
be another focus.
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