Quantum ergodicity for quantum graphs without back-scattering

2015-09-10T13:36:30Z (GMT) by Matthew Brammall Brian Winn
We give an estimate of the quantum variance for d-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity for these families of graphs. Our proof is based on a uniform control of an associated random walk on the bonds of the graph. We show that recent constructions of Ramanujan graphs, and asymptotically almost surely, random d-regular graphs, satisfy the necessary conditions to conclude that quantum ergodicity holds.