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Quantum spin-ice represents a paradigmatic example of how the physics of frustrated magnets is related
to gauge theories. In the present work, we address the problem of approximately realizing quantum spin ice
in two dimensions with cold atoms in optical lattices. The relevant interactions are obtained by weakly
laser-admixing Rydberg states to the atomic ground-states, exploiting the strong angular dependence of van
der Waals interactions between Rydberg p states together with the possibility of designing steplike
potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be
demonstrated within state-of-the-art atomic Rydberg experiments. We numerically analyze the family of
resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder,
the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian
gauge theories using both s- and p-Rydberg states in exotic geometries, e.g., on a 4–8 lattice.
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I. INTRODUCTION

The ice model has been fundamental in furthering
our understanding of collective phenomena in condensed
matter and statistical physics: In 1935, Pauling provided an
explanation of the “zero-point entropy’ of water ice [1] as
measured by Giauque and Stout [2], while Lieb demon-
strated, with his exact solution of the ice model in two
dimensions [3], that there exist phase transitions with
critical exponents that are different from those of
Onsager’s solution of the Ising model. The experimental
discovery [4] of a classical spin version of the ice model [5]
has, in turn, generated much interest in the magnetism
community [6–9].
More recently, quantum-ice models [10–14] have

attracted a great deal of attention in the context of phases
exhibiting exotic types of orders, such as resonating
valence bond liquids [15,16] or quantum Coulomb phases
[12,17–19]. They form part of a broader family of models,
which also includes quantum dimer models or other
quantum vertex models [20], in which a hard constraint
is imposed locally, such as the ice rules defined below. Such
a constraint can then endow the configuration space with
additional structure—most prominently, an emergent

gauge field that can be the basis of the appropriate effective
description at low energies [20–22]. This is an important
phenomenon, as it is perhaps the simplest way of obtaining
gauge fields as effective degrees of freedom in condensed
matter physics. More broadly, this is part of a long-running
search for magnetic materials hosting quantum spin
liquids [7].
In the present work, we address the problem of physi-

cally realizing models of quantum spin-ice and quantum
dimer models in two spatial dimensions with ultracold
atoms in optical lattices. Our proposal builds on the recent
experimental advances, and opportunities in engineering
many-body interactions with laser-excited Rydberg states
[23–37]. In particular, this will allow us to develop a
Rydberg toolbox for the complex interactions required in
two-dimensional (2D) quantum-ice models [8]. Our inves-
tigation also fits into the broader quest for the realization
of synthetic gauge fields with cold atoms. While much
effort is being devoted to the generation of static gauge
fields [38], e.g., on optical flux lattices, here we follow
the strategy of generating a dynamical gauge field
[12,17–19,21,22,39–42] emerging upon imposition of the
ice rule.
While in condensed matter systems the interactions

underlying ice and spin ice arise naturally in a three-
dimensional (3D) context [see Fig. 1(a)], the 2D quantum
ice on a square lattice requires a certain degree of fine-
tuning of the relevant interactions [see Fig. 1(b)]. In 3D
spin-ice materials, for example, the ions of magnetic rare-
earth atoms reside on a pyrochlore lattice, representing a
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network of corner-sharing tetrahedra. Magnetic interactions
in combination with crystal fields give rise to a low-energy
manifold of states on each tetrahedron consisting of six
configurations, in which two spins point inward and two
spins point outward [compare Fig. 1(c)]. In a similar way,
in water ice each O2− atom in a tetrahedrally coordinated
framework has two protons attached to it, giving rise to a
manifold of energetically degenerate configurations. The
2D models of ice and spin ice can be understood as the
projection of the pyrochlore on a square lattice (see Fig. 1),
where again the low-energy configurations of spins resid-
ing on the links obey the “ice rule” 2 in and 2 out at each
vertex. While these 2D ice models play a fundamental role
in our theoretical understanding of frustrated materials, a
physical realization requires a precise adjustment of the
underlying interactions—different local configurations that
are symmetry distinct need to be at least approximately
degenerate; the required fine-tuning, however, needs to be
delicately directionally dependent, as in the pure ice model,
the ratio of some interactions between different pairs of

equidistant spins vanishes [see Fig. 1(b)]. Things are not all
hopeless, however, as there exist a number of settings in
which partial progress has been made to realizing such
models. In two dimensions, artificial structures using
nanomagnetic [43] or colloidal arrays [44] have been
proposed, including strategies for tuning the interactions
appropriately [45]. The present proposal with Rydberg
atoms is unique, however, as it combines both the pos-
sibilities of engineering the complex interactions using
Rydberg interactions with the accessibility of the quantum
regime in cold-atom experiments.
Alkali atoms prepared in their electronic ground state can

be excited by laser light to Rydberg states, i.e., states of high
principal quantum number n [46–49]. These Rydberg atoms
interact strongly via the van der Waals (vdW) interaction,
exhibiting the remarkable scaling VVdW ∼ n11, and exceed-
ing typical ground-state interactions of cold atoms by several
orders of magnitude. In an atomic ensemble, the large level
shifts associated with these interactions imply that only a
single atom can be excited to the Rydberg state, while
multiple excitations are suppressed within a blockade radius
determined by the van der Waals interactions and laser
parameters [50,51]. This blockade mechanism results in
novel collective and strongly correlated many-particle
phenomena such as the formation of superatoms and
Rydberg quantum crystals [46–49]. In present experiments,
the emphasis is on isotropic van der Waals interactions
[23–36], which, for example, can be obtained by exciting
Rydberg s states using a two-photon excitation scheme. In
contrast, we are interested below in excitations of Rydberg p
states, where the van der Waals interactions can be highly
anisotropic, as discussed in Refs. [52–55]. Below, we will
discuss in detail the controllability of the shape and range of
these anisotropic interactions via atomic and laser parame-
ters for the case of Rb atoms. In the present context, this will
provide us with the tools to engineer the required complex
interaction patterns for 2D quantum spin-ice and dimer
models. The setup we discuss will consist of cold atoms in
optical lattices, where the strong Rydberg interactions are
weakly admixed to the atomic ground states [56–60], thus
effectively dressing ground-state atoms to obtain the com-
plex interactions in atomic Hubbard models required for the
realization of 2D quantum spin-ice and dimer models.
We then proceed to numerically analyze the family of

Hamiltonians realizable with this toolbox. We verify that it
contains two phases exhibiting distinct types of order by
disorder [61,62]. Most remarkably, quantum order by
disorder—due to the presence of quantum dynamics in
the ice model—realizes the plaquette valence bond solid as
an unusual non-Néel phase of a frustrated magnet. This
terminates when classical degeneracy lifting takes over.
The latter phase is conventional in that it is diagnosed by

a conventional spin-order parameter, which would manifest
itself in a Bragg peak in the structure factor. By contrast, the
valence bond solid would be diagnosed by higher-order

FIG. 1. (a) In spin-ice materials, the magnetic moments (yellow
arrows) of rare-earth ions are located on the corners of a
pyrochlore lattice, which is a network of corner-sharing tetrahe-
dra. They behave as almost perfect Ising spins and point along
the line from the corner to the center of the tetrahedron, either
inward or outward. Because of the different Ising axes of the
spins, this results in an effectively antiferromagnetic interaction
that is frustrated. (b) Projecting the 3D pyrochlore lattice onto a
2D square lattice yields a checkerboard lattice, where tetrahe-
drons are mapped onto crossed plaquettes (light blue). Inter-
actions between two spins located on ⦁ or ▪ lattice sites have to be
steplike (as a function of the distance) and anisotropic, and they
require a bipartite labeling of the lattice sites. (c) Degenerate
ground-state configurations of spins on a crossed plaquette. They
obey the “ice rules,”which enforce two spins pointing inward and
two spins pointing outward at each vertex.
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“string” correlators, and it is thus fundamentally different
from some other instances of quantum order by disorder,
where finally the mechanism, but not quite so much the
order parameter, is exotic [62,63]. Notably, precisely such
order parameters have become accessible to experimental
measurements recently [64], so our proposal not only
covers the setting for realizing quantum order by disorder
but also the means for detecting it.
In addition, at finite temperature, we find that the

classically ordered state, even in the absence of quantum
dynamics, melts into a classical version of a Coulomb
phase, namely, a Coulomb gas in which thermally activated
plaquettes violating the ice rule play the role of positive and
negative charges. As these interact via an entropic two-
dimensional (logarithmic) Coulomb law, this phase is only
marginally confined [65,66].
While throughout the paper we will mostly be interested

in quantum-ice models, which require the development of
advanced interaction-pattern design, we will also discuss a
second strategy to implement constrained dynamics, and, in
particular, quantum dimer models, with Rydberg atoms. It
relies on combining simple interaction patterns, such as the
ones generated by s states, with complex lattice structures,
which can be realized either via proper laser combination or
by the recently developed optical lattice design with digital
micromirror devices [67]. These models extend the class of
dynamical gauge fields in atomic, molecular, and optical
physics (AMO) systems to nonhypercubic geometries.
Overall, the ability to synthetically design Abelian dynami-
cal gauge fields with discrete variables also establishes
interesting connections with high-energy physics, where
these theories are usually referred to as quantum link
models [68,69]. Within this context, the key developments
in engineering pure gauge theories can be combined with
other schemes (where dynamical matter is included), which
have already been proposed in the context of cold-atom
gases [69].
The paper is structured as follows. In Sec. II, we briefly

provide the background on quantum-ice models needed for
digesting the remainder of the material. Section III outlines
the implementation of a family of model Hamiltonians
approximating the quantum-ice model using atoms in optical
lattices that are weakly admixed with a Rydberg p state.
Our model Hamiltonians are then analyzed for their phase
diagram in Sec. IV. Section V presents strategies to imple-
ment simpler Abelian gauge theories using both s- and
p-Rydberg states in exotic geometries, e.g., a 4–8 lattice.
The paper closes with a summary and outlook in Sec. VI.

II. THE QUANTUM-ICE MODEL

This section provides a brief overview of the statistical
mechanics of the ice model, the emergence of a gauge
field, and the challenges in realizing such a model
experimentally.

A. The configuration space: Ice rules
and emergent gauge fields

The ice model on the square lattice, also known as the
six-vertex model or simply square ice [3], has Ising degrees
of freedom residing on the links of a square lattice. They
can either be thought of as fluxes, fŜzig, pointing in either
of the directions along the bond i [see layer (i) of Fig. 2(a)],
or equivalently, they can be mapped onto spins fSzig that
point up or down depending on the direction of the flux
[see layer (ii) of Fig. 2(a)].
Only configurations satisfying the ice rule are permitted,

which stipulates that the spins on each vertex add up to

zero—there are
�
4

2

�
¼ 6ways of arranging this [see panel

(i) of Fig. 2(b)]. The number of configurations satisfying
the ice rule grows exponentially with the size of the
system—for a lattice of N spins, there are ð4=3Þð3N=4Þ
ice states [3].
The origin of the emergent gauge field is transparent in

flux language, where it implies that the lattice divergence of
the flux field vanishes: Defining the xðyÞ component of a

FIG. 2. (a) The spins of the 2D ice model on a checkerboard
lattice can be interpreted as (i) “fluxes,” fŜzig, pointing either
inward or outward from a specific crossed plaquette. This
requires a bipartite labeling of the plaquettes (light blue and
light magenta plaquettes) since an outward-pointing flux vector
corresponds to an inward-pointing flux vector for the neighboring
plaquette. (ii) They can be interpreted as spins, fSzig, aligned
perpendicular to the plane, pointing either up (red arrows) or
down (black arrows). In the right inset, we identify a spin pointing
up, Szi ¼ þ 1

2
, with a flux vector pointing from the magenta to the

blue plaquette, Ŝzi ¼ þ 1
2
and vice versa. (iii) Spins, fSzig, can be

mapped onto hard-core bosons, ni ∈ f0; 1g. Here, e.g., a particle
(red circle), ni ¼ 1, corresponds to a spin pointing upward,
Szi ¼ þ 1

2
, while an empty lattice site (white circle), ni ¼ 0,

corresponds to a spin pointing downward, Szi ¼ − 1
2
. (b) The

six ice-rule states correspond to vertex configurations with two
hard-core bosons and two empty lattice sites.
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two-dimensional vector flux b to be the flux along the
corresponding links emanating from a vertex in the positive
xðyÞ direction, one has

∇ · b ¼ 0 ⇒ b ¼ ∇ × a: ð1Þ

Note that a gauge field a has appeared naturally as a
consequence of enforcing the ice rule, just as it does in
magnetostatics, where Maxwell’s law for the magnetic field
∇ ·B ¼ 0 leads to the introduction of the familiar vector
potential A.
In the present example in two dimensions, where the flux

is a two-component vector b, and the scalar constraint
∇ · b ¼ 0 fixes 1 degree of freedom, a only has one
physical degree of freedom left—it can be thought of as
a scalar, usually referred to as a height: a ¼ hz “in the z
direction” [65,66]. Defects in this height field—forbidden
in the six-vertex model but allowed when violating the ice
rule results in only a finite energy penalty—are then known
as charges or monopoles, which carry a gauge charge with
respect to the emergent gauge field.
Having enforced the ice rule, the natural degree of

freedom is thence an emergent gauge field a—it is in this
way that gauge fields quite generically emerge in con-
densed matter physics, with a constraint arising either from
the need to satisfy a dominant term in the Hamiltonian or
from a microscopic relation on the local Hilbert space [20].

B. Realization, and fine-tuning in d ¼ 2

The ice rule on a given vertex involves four spins, but it
can be enforced via a pairwise interaction: If all four spins
on a vertex interact antiferromagnetically and equally—
described by the Hamiltonian

Hice ¼ V
X
i;j∈þ

SziS
z
j; ð2Þ

where þ denotes a crossed plaquette in 2D or a tetrahedron
in 3D—the resulting ground states are those which obey the
ice rules [see panel (i) of Fig. 2(b)]. In three dimensions,
equality of the pairwise interactions can be symmetry
generated; by placing the spins on the corners of a
tetrahedron, any antiferromagnetic interaction depending
only on the distance between the spins will yield the ice
rule. By contrast, in two dimensions, a tetrahedron becomes
a square with interactions also across the diagonal (Fig. 1),
which are no longer symmetry equivalent to those along the
edges [70].
In particular, interactions, VijðrÞ, between two spins i

and j located on the bonds of a checkerboard lattice
separated by a distance r have to fulfill three demanding
properties [see Fig. 1(b)] in order to map onto the spin-ice
Hamiltonian of Eq. (2) 1. Anisotropy. Interactions have to
be strongly anisotropic. This is illustrated in panel (ii) of
Fig. 1(b). Particles that belong to the same vertex interact

strongly (red arrow), while particles that do not belong to
the same vertex do not interact (gray arrow). Thus, for ⦁
particles in panel (ii), one needs an interaction that satisfies
V⦁⦁ðϑ ¼ 0Þ ¼ 0 (gray arrow) and V⦁⦁ðϑ ¼ π=2Þ ¼ ~V0 (red
arrow), where the angle ϑ is defined in the inset. 2. Steplike
potentials. All four particles that belong to the same vertex
(enclosed by light blue squares) interact with the same
strength ~V0, independent of their distance, either a or
a

ffiffiffi
2

p
, where a is the lattice spacing. Obviously, an

interaction of the form 1=jrjα would not suffice. It is
therefore necessary to have steplike potentials that fulfill
Vijðjrj < rcÞ ¼ ~V0 ≠ 0 and Vijðjrj > rcÞ ¼ 0 for

ffiffiffi
2

p
a <

rc < 2a. 3. Bipartite-lattice structure. Furthermore, panel
(iii) of Fig. 1(b) shows that the desired interaction proper-
ties cannot be satisfied by a homogeneous interaction
pattern, but require a bipartite structure [squares and circles
in Fig. 1(b)] where the angular dependence on the inter-
action depends on the lattice bipartition. For example, in
the last paragraph, we enforced that V⦁⦁ðϑ ¼ 0Þ ¼ 0 [see
panel (ii)], but the opposite is true for ▪ particles [see panel
(iii)]. Here, V▪▪ðϑ ¼ π=2Þ ¼ 0 but V▪▪ðϑ ¼ 0Þ ¼ ~V0. On
top of that, mixed interactions between ⦁ and ▪ particles on
the 45-degree lines should obey V⦁▪ðϑ ¼ �π=4Þ ¼ ~V0 in
order to ensure that all six possible interactions at a specific
vertex are the same [see panel (i)].
It is these three countervailing requirements that we

manage to satisfy approximately by using Rydberg dressed
atoms to engineer an appropriate quantum Hamiltonian
(Sec. III).

C. Adding quantum dynamics, and quantum
order by disorder

While the properties of the two-dimensional ice model
were broadly understood a long time ago, the question of
what a quantum version would look like was not posed
until much later [10]. Unlike in, say, a transverse-field Ising
model, where the simplest quantum dynamics consists of
reversing a single spin, the ice model does not permit such
single-site configuration changes, as these would lead to a
violation of the ice rule.
The smallest cluster that may flip consists of a closed

flux loop around an empty square plaquette, denoted by □

(see Fig. 3),

H□ ¼ −tX
j
i□

k
l

ðSþi S−j Sþk S−l þ H:c:Þ; ð3Þ

and this will be the second ingredient that our work will
implement (Sec. III). What this amounts to in the language
of gauge theory is the addition of a field conjugate to the
height-gauge field a ¼ hz—or in more familiar parlance of
electromagnetism, the appearance of an (emergent) mag-
netic field alongside an (emergent) electric one [22].
In two dimensions, adapting a celebrated result by

Polyakov (which does not apply straightforwardly as it
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is based on Lorentz invariance which does not hold a priori
for our emergent field), it is known that the (emergent)
electromagnetism is confining. As a consequence, the
emergent excitations cannot spread freely over the system,
being bounded by an effective string tension due to the
gauge fields. Concretely, one finds a phenomenon known
as order by disorder [62]. The quantum dynamics mixes
the degenerate ice states into a superposition to form the
quantum ground state. Even though the quantum dynamics
induces fluctuations (“disorder”), the resulting ground state
exhibits long-range order. This order takes the form known
as a plaquette valence bond solid (Fig. 3) [71], which
breaks translational symmetry. Such valence bond solids
occur frequently in the theory of quantum magnets, but
they are not commonly realized in experiment.
In Sec. IV, we show that the model Hamiltonian for

which we provide a recipe does exhibit this kind of order-
by-disorder plaquette phase, and we discuss how to detect
this kind of exotic order. In addition, we find that for weak
quantum dynamics, a different, classical type of symmetry
breaking occurs [see Fig. 3(c)]. This happens because
different ice states are only approximately degenerate for
our engineered Hamiltonian, and the residual energy
differences are sufficient to select a particular ordered
configuration.

D. Relation between quantum-ice, Bose-Hubbard
models, and dimer models

As a starting point for our implementation, we consider a
hard-core extended Bose-Hubbard Hamiltonian on a 2D
checkerboard lattice:

H ¼ −Jh
X
hi;ji

ðb†i bj þ H:c:Þ þ
X
i;j

~Vijninj: ð4Þ

Here, b†i (bi) is an operator that creates (annihilates) a hard-
core boson on site i, which obeys an on-site constraint
b2i ¼ b†2i ¼ 0. The rate Jh is the nearest-neighbor (NN)
hopping amplitude, and V describes a repulsion between
all atoms sitting close to the same vertex. The operator
ni ¼ b†i bi counts the number of bosons at site i and can be
either zero or one, ni ∈ f0; 1g. The summation runs over
nearest neighbors only. The hard-core boson model can
be mapped to a spin-1=2 model using the transformation
[72] b†i → Sþi , bi → S−i , ni → Szi þ 1=2, Jh → J⊥ and
Vij → Jij, which yields

H ¼ −J⊥
X
hiji

ðSþi S−j þ H:c:Þ

þ
X
hiji

Jij

�
Szi þ

1

2

��
Szj þ

1

2

�
: ð5Þ

Expanding the last term gives the two-body interaction
proportional to JijS

z
i S

z
j and an additional magnetic-field

term proportional to JijS
z
i , which is constant after fixing an

initial number of particles. This will fix the gauge sector in
the gauge-theory description [20].
In order to implement the constrained model of Eq. (2),

we demand (i) anisotropic and (ii) steplike interactions
between (iii) two species of particles, as discussed in
Sec. II B; that is, ~Vij has to fulfillX

ij

~Vijninj ¼ ~V0

X
þ

X
i;j∈þ

ninj; ð6Þ

with ~V0 a constant interaction between all particles
belonging to the same vertex denoted by þ. Under these
assumptions, in the limit ~V0 ≫ Jh, the Bose-Hubbard
Hamiltonian of Eq. (4) maps onto the spin-ice
Hamiltonian of Eq. (2). The specific form of Vij ensures
that all six interactions between particles that belong to the
same vertex are equal, and interactions between particles
that do not belong to the same vertex vanish. In the case of
total half-filling of the initial bosons, N ¼ L=2, one hasP

iS
z
i ¼ 0: This fixes the effective dynamics on the afore-

mentioned ice manifold of interest. When different initial
fillings are considered, one has access to different quantum
dynamics: A notable case is the N ¼ L=4 case, which
defines a constrained dynamics on a manifold where a
single boson sits close to each vertex [10]. The effective
description is then the same as hard-code quantum dimer
models on a square lattice.

III. QUANTUM ICE WITH RYDBERG-DRESSED
ATOMS: EXPLOITING p STATES

We now turn to the realization of the extended 2D
Bose-Hubbard Hamiltonian of Eq. (4) with cold atoms in
optical lattices. The key challenge is the implementation of
the interactions ~Vij with constraints represented in Eq. (6).

FIG. 3. (a) Cartoon state of a plaquette RVB solid. An
alternating pattern of plaquettes (shaded red circles) are resonat-
ing; i.e., they are in an eigenstate j⊚i [see panel (b)] of the
plaquette Hamiltonian of Eq. (3), H□j⊚i ¼ −tj⊚i. The GS in
the thermodynamic limit is twofold degenerate, reflecting the
different coverings of the square lattice with alternating
plaquettes. (c) Cartoon of one of the degenerate ground states
with ð−π=2; π=2Þ order. Along the bottom-left and top-right
diagonals, there is antiferromagnetic order. Along the other, the
order has a double period, ↑↑↓↓.
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We show below that this can be achieved via the very
anisotropic Rydberg interactions involving laser-excited p
states of Rubidium atoms.

A. Single-particle Hamiltonian on a bipartite lattice

In our setup, we consider Rubidium 87Rb atoms prepared
in an internal ground state, which we choose as
jgi≡ jF ¼ 2; mF ¼ 2i. The atoms are trapped in a 2D
square optical lattice in the xz plane created by two pairs of
counterpropagating laser beams of wavelength λ and wave
vector k ¼ 2π=λ, and strongly confined in the y direction
by an additional laser. [We note that these external
coordinates should not be confused with the internal spin
coordinates, e.g., in Eq. (2) and Fig. 2]. By tilting the laser
beams by an angle α, we can adjust the lattice spacing in
the xz plane to any value a ¼ λ=½2 sinðα=2Þ� ≥ λ=2 [73]
(see below). Quantum tunneling allows the atoms to hop
between different lattice sites, thus realizing the kinetic
energy term with hopping amplitude Jh of the single-band
Hubbard model (4). Furthermore, we work in the hard-core
boson limit, i.e., U ≫ Jh, in which multiple occupancy in a
single site is energetically prohibited.
As already discussed in the context of Fig. 1(b), we want

to distinguish between ⦁ and ▪ sites in the 2D lattice. This
bipartite labeling of the optical lattice is essential for
realizing the complex interaction pattern ~V⦁⦁, ~V⦁▪, and
~V▪▪ discussed in Sec. II B, which underlies the second term
of the extended Bose-Hubbard Hamiltonian (4). In our
scheme, we assume that atoms on lattice sites ⦁ are excited
by laser light to the Rydberg 2P3=2 state jr⦁i ¼ jn2P3=2;

m ¼ 3=2iz, whereas atoms at sites ▪ are excited to
jr▪i ¼ jn2P3=2; m ¼ 3=2ix. Here, the subscripts x and z
indicate the different local quantization axes for the ⦁ and ▪
sites. Note that the Rydberg states of interest are the
stretched states of the fine-structure manifold, i.e., states
with a maximum m ¼ 3=2 value for the given angular
momentum j ¼ 3=2. We will show in the next section that
the van der Waals interactions between these polarized
Rydberg p states naturally realize the complex interaction
pattern required by Eq. (6) for quantum spin-ice. By weakly
admixing these Rydberg states to the atomic ground state
with a laser [see Sec. III C], the ground-state atoms will
inherit these interaction patterns, thus realizing the inter-
action term in the extended Bose-Hubbard model of
Eq. (4), including the constraints enforced by the inter-
actions satisfying Eq. (6).
It is essential in our scheme that we energetically isolate

the stretched states jn2P3=2; m ¼ 3=2ix;z from the other m
states in the given fine-structure manifold. This is necessary
to protect these states from mixing with other Zeeman m
levels. Such unwanted couplings can be induced by van der
Waals interactions (see Sec. III B below) or via the light
polarization of the Rydberg laser. This energetic protection
requires an (effective) local magnetic field, which for the ⦁
and ▪ sites, points in the x and z directions, respectively.
Strong local fields with spatial resolution on the scale given
by the lattice spacing can be obtained via AC-Stark shifts,
combining the m dependence of atomic AC tensor polar-
izabilities with spatially varying polarization gradients.
Figure 4 outlines a scheme where we superimpose two

FIG. 4. We consider 87Rb atoms loaded in a square optical lattice with lattice spacing a and lattice sites alternately labeled as ⦁ and ▪.
Additional AC-Stark lasers (magenta and light-blue arrows) with wave vectors k1 ¼ �2π=λACẑ and k2 ¼ �2π=λACx̂, respectively,
form two pairs of standing waves, each with periodicity b ¼ λAC=2, which are rotated by 45 degrees with respect to the initial lattice. In
order to create local quantization axes along ẑ or x̂ for ⦁ or ▪ lattice sites, respectively, we require that atoms located on a ⦁ lattice site
only feel the intensity maxima of the light-blue laser with k1 ∼ z, while those located on a ▪ lattice site only feel the intensity maxima of
the magenta laser with k2 ∼ x̂. This can be achieved by adjusting the initial trapping lattice by tilting the corresponding trapping lasers at
an angle α such that a ¼ λ=½2 sinðα=2Þ� ≥ λ=2 [73] in order to fulfill b ¼ ffiffiffi

2
p

a. The two AC-Stark lasers have a polarization σþ and
resonantly couple the n2P3=2 manifold to a lower-lying n0D3=2 manifold, thereby inducing an AC-Stark shift on each Zeeman m level in
the n2P3=2 manifold except for the maximum stretched jn2P3=2; 3=2iz;x states. This locally isolates the jn2P3=2; 3=2iz and jn2P3=2; 3=2ix
states at lattice sites ⦁ and ▪, respectively, in energy, by at least EAC (see left and right panels). A global Rydberg laser (dark-blue arrow)
with detuning Δr ≪ EAC propagating along the y direction then selectively admixes the states jn2P3=2; 3=2iz and jn2P3=2; 3=2ix at
lattice sites ⦁ and ▪, respectively, to the ground state jgi.
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pairs of counterpropagating laser beams of wavelength
λAC (light-blue and magenta arrows). They create a
standing-wave pattern (light-blue and magenta gradients),
such that ⦁ lattice sites only see the intensity maxima of the
standing wave propagating along the z direction (light-blue
laser), while ▪ lattice sites see the intensity maxima of
the standing wave propagating along the x direction
(magenta laser).
The AC-Stark lasers have polarization σþ and resonantly

couple the nP3=2 manifold to a lower-lying n0D3=2 manifold
(see magenta and blue arrows in the left and right panels of
Fig. 4, respectively). This induces an AC-Stark shift on
each Zeeman m level in the n2P3=2 manifold. The Rabi

frequency is proportional to ΩAC ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − 3

2
Þðmþ 5

2
Þ

q
hnP3=2∥r∥n0D3=2iE, with E the electric-field strength of
the AC-Stark lasers. In this configuration, the stretched
states jn2P3=2; m ¼ 3=2iz;x of interest are not affected by
the AC-Stark lasers. The minimum shift (as a function of
m ≠ 3=2) is denoted EAC, which has to obey EAC ≫ Voff
and EAC ≫ Δr in order to suppress mixing between
different m states due to van der Waals interactions and
the excitation laser. Here, Voff is the largest off-diagonal
van der Waals matrix element in the n2P3=2 manifold (see
Appendix C).
The AC-Stark lasers will create an additional trapping

potential, VACðriÞjgihgji, for ground-state atoms with
minima that are not commensurate with the initial trapping
lattice. In order not to distort the desired lattice structure,
this additional potential must not be larger than the initial
lattice potential (see Appendix A).
It is then possible to dress the ground-state atoms with

either the jr⦁i ¼ jn2P3=2; m ¼ 3=2iz or the jr▪i ¼ jn2P3=2;
m ¼ 3=2ix Rydberg state by a single, global laser with
Rabi frequency Ωr and detuning Δr propagating in the
direction perpendicular to the plane, i.e., kr ∼ y (dark-blue
arrow in Fig. 4). In the local x and z bases, this laser will
couple to all four jmiz;x levels with different weights (see
Appendix B). Since the states jm ≠ 3=2iz;x are energeti-
cally separated by at least EAC from the jm ¼ 3=2i state, a
laser with detuning Δr ≪ EAC and wave vector k ∼ y will
selectively admix the states j3=2iz and j3=2ix at lattice sites
⦁ and ▪, respectively, to the ground state jgi with an
effective Rabi frequency Ω0

r ¼ Ωr=ð2
ffiffiffi
2

p Þ. The single-
particle Hamiltonian describing the laser dressing in a
frame rotating with the laser frequency for an atom i then
becomes

Hi ¼ −Δrjrαiihrαi ji þ
1

2
Ω0

rðjgihrαi ji þ jrαiihgjiÞ; ð7Þ

where αi ∈ f⦁; ▪g depends on the lattice site of the ith
atom. In the weakly dressing regime, Δr ≫ Ωr, the new
dressed ground states are j⦁ii ≡ jgii þΩr=ð2ΔrÞjr⦁ii or
j▪ii ≡ jgii þ Ωr=ð2ΔrÞjr▪ii if αi ¼ ⦁ or ▪, respectively.

Thus, each ground-state atom gets a small admixture of one
of the Rydberg states, depending on the sublattice. Because
of the weak admixture of the Rydberg states, the dressed
ground states get a comparatively small decay rate
~Γ ¼ ðΩr=2ΔrÞ2Γ, where Γ is the decay rate of the bare
Rydberg state, which has to be much smaller than the
relevant system’s energy scales discussed below.

B. Interactions between p states

We consider the van der Waals interactions, V⦁⦁, V⦁▪,
and V▪▪, between pairs of atoms prepared in the bare
Rydberg states jr⦁i¼jn2P3=2;m¼3=2iz and jr▪i¼jn2P3=2;
m¼3=2ix. For Rubidium atoms excited to Rydberg p
states, these van der Waals forces are strongly anisotropic
[52–55]. Figure 5(a) shows the angular part of the van der
Waals interaction, V⦁⦁, for different n values, which is a
very good approximation proportional to

V⦁⦁ðr; ϑÞ ∼
ðea0Þ4n11

r6
sin4ϑ; ð8Þ

while the actual strength depends on the principal quantum
number n and scales as n11 away from the Förster resonance
at n ¼ 38. A detailed discussion of this scaling behavior and
of the resonance origin can be found in Ref. [54]. Similarly,
one finds for the interaction between jr▪i ¼ jn2P3=2; m ¼
3=2ix Rydberg states,

V▪▪ðr;ϑÞ ∼
ðea0Þ4n11

r6
cos4 ϑ; ð9Þ

which can be obtained by rotating the coordinate system
by π=2. Mixed interactions such as

V⦁▪ðr;ϑÞ ∼
ðea0Þ4n11

r6
ð3 sin 2ϑþ 2Þ2 ð10Þ

are shown in Fig. 16 (Appendix D) and have two asymmetric
maxima at ϑ ¼ �π=4. The Rydberg states jr⦁i and jr▪i
therefore realize the desired angular interaction properties,
as discussed in Sec. II B. Together with the possibility of
creating soft-core potentials (see the following subsection),
the anisotropy of these interactions naturally leads to the
desired interaction pattern illustrated in Fig. 1(b) and
demanded by Eq. (6). These interactions underly our
realization of the Bose-Hubbard Hamiltonian (4).
We now detail the physical mechanism that generates

these anisotropic interactions, and we describe how to
derive the aforementioned results. Van der Waals inter-
actions between two atoms i and j prepared in a given
Rydberg state arise from the exchange of virtual photons:
Atom i in a Rydberg state jrii can, for example, virtually
undergo a dipole-allowed transition to a lower-lying elec-
tronic state jαi while emitting a photon. If this virtual
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photon reaches atom j during its lifetime, it can excite the
second atom to an electronic state jβi. This then leads to
correlated oscillations of instantaneously induced dipoles
in both atoms, which give rise to the nonretarded van der
Waals force [74]. For the familiar case of s states, these
interactions are isotropic, VVdWðrÞ ¼ C6=r6, with the van
der Waals coefficient C6 scaling as C6 ∼ n11 [52–55]. Here,
n is the principal quantum number and r the distance
between atoms. These van der Waals interactions between
Rydberg states exceed ground-state interactions by several
orders of magnitude and have been observed and explored
in recent experiments [23–37].
In the case of Rydberg p states, the angular distribution

of these emission and absorption processes of virtual
photons, in combination with the angular momentum
structure of the atomic orbitals, leads to nontrivial aniso-
tropic van der Waals interactions [52–55]. We now focus on
the van der Waals interaction V⦁⦁ between both atoms in
the jr⦁i ¼ jn2P3=2; m ¼ 3=2iz Rydberg state with the
quantization axis along the z direction. Mixed interactions
V⦁▪ and interactions between both atoms in the jr▪i ¼
jn2P3=2; m ¼ 3=2ix Rydberg state, V▪▪, will be derived
in Appendix C. The latter can simply be obtained by
rotating the xz plane by 90 degrees, i.e., V▪▪ðr; ϑÞ ¼
V⦁⦁ðr; ϑ − π=2Þ, while in order to calculate mixed inter-
actions, one has to calculate off-diagonal matrix elements
in the n2P3=2 manifold.
In general, van der Waals interactions arise as a second-

order process from the dipole-dipole interaction V̂ðijÞ
dd ðrÞ ¼

ðdðiÞ · dðjÞ − 3ðdðiÞ · nÞðdðjÞ · nÞÞ=r3, where Vdd couples
the initial Rydberg states jri; rji to virtual intermediate

states jα; βi and back. Here, dðiÞ is the dipole operator of the
ith atom, and r ¼ rn ¼ ðr;ϑ;φÞ is the relative distance
between atom i and atom j, with n a unit vector and
ðr; ϑ;φÞ the spherical coordinates. It is convenient to
rewrite the latter expression in a spherical basis [75]

V̂ðijÞ
dd ðrÞ ¼ −

ffiffiffiffiffiffiffiffi
24π

5

r
1

r3
X
μ;ν

C1;1;2
μ;ν;μþνY

μþν
2 ðϑ;φÞ�dðiÞμ dðjÞν ;

ð11Þ

with dðiÞμ the spherical components (μ; ν ∈ f−1; 0; 1g) of
dðiÞ, Cj1;j2;J

m1;m2;M
the Clebsch-Gordan coefficients, and Ym

l the
spherical harmonics.
Because of the dipole selection rules, states in the n2P3=2

manifold can only couple to states in a n0S1=2, n0D5=2 or
n0D3=2 manifold. It turns out that for 87Rb, the dominating
channel is P3=2 þ P3=2⟶S1=2 þ S1=2, which can be
explicitly seen from Table I for various n levels. In order
to simplify the following discussion, we will first focus on
this channel and neglect all other channels, including D3=2

and D5=2 states which lead to small imperfections, as
discussed in Appendix C.
For a single atom, the jn2P3=2;

3
2
i state is a stretched state

that reads, in the uncoupled basis, jn2P3=2;
3
2
i≡ jnp; 1i ⊗

j 1
2
; 1
2
i. Thus, it can be factorized into an angular and a spin

degree of freedom. Since the dipole-dipole interaction
V̂ddðrÞ does not couple spin degrees of freedom, the
angular dependence of the van der Waals interaction is

FIG. 5. (a) Angular part, AðnÞ
m1;m2

ðϑÞ, of the van der Waals interaction, VðnÞ
m1;m2

ðr; ϑÞ ¼ hm1; m2jV̂vdWjm1; m2i ¼
ðn − δnljÞ11AðnÞ

m1;m2
ðϑÞ=r6, between a pair of 87Rb atoms in the j3=2; 3=2iz ≡ jn2P3=2; 3=2iz ⊗ jn2P3=2; 3=2iz state (solid lines) and

in the j1=2; 1=2iz ≡ jn2P3=2; 1=2iz ⊗ jn2P3=2; 1=2iz state (dashed lines). We plot the angular part of the rescaled interaction energy,

AðnÞ
m1;m2

, as a function of the angle ϑ for various values of the principal quantum number n in atomic units. Here, AðnÞ
3=2;3=2 (solid lines)

corresponds to the angular part of the interaction, V⦁⦁, between two atoms excited to the jr⦁i Rydberg state, and it shows a characteristic
∼ sin4 ϑ shape due to the dominant S1=2 channel. Residual interactions at ϑ ¼ 0 are very small and arise from channels coupling to
virtual D states (see Table I). (b) The angular characteristic of the interaction between two atoms, both in the “stretched” Rydberg state,
jr⦁i ¼ jn2P3=2; 3=2iz ¼ jnp; 1izj 12 12iz, can be qualitatively understood from its angular part jnp; 1iz and the dominating S channel:
Atom A prepared in a jnp; 1iz state can make a virtual transition to a lower-lying jns; 0iz state (red arrow in the lower left panel) while
emitting a photon. If this photon propagates along the z direction, it has polarization σþ and cannot be absorbed by atom B. Therefore,
atom A and atom B will not interact, i.e., V⦁⦁ðϑ ¼ 0Þ ¼ 0. If this photon propagates along the x direction, it is linearly polarized with a
polarization vector along the y direction. In the frame of atom C, this photon will drive both σþ and σ− transitions and thus can be
absorbed. Hence, atom A can interact with atom C, i.e., V⦁⦁ðϑ ¼ π=2Þ ≠ 0.
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determined solely by the angular part of the wave function,
which is jnp; 1i.
Figure 5(b) illustrates the interaction between two atoms

initially prepared in a jnp; 1i state as a function of ϑ for
ϑ ¼ 0 (atoms A and B) and ϑ ¼ π=2 (atoms A and C). We
first consider atom A in the lower left corner of Fig. 5(b).
Initially prepared in a jnp; 1i state, it can make a virtual
transition to a lower-lying jns; 0i state [red arrow in the
lower left panel of Fig. 5(b)] while emitting a photon. The
corresponding angular distribution of the spontaneously
emitted photon has the same characteristic as light emitted
by a classical dipole tracing out a circular trajectory in the
x-y plane [75]. In general, it is elliptically polarized with
cylindrical symmetry, but in particular, there are two
specific directions: (i) Light emitted along the z direction
(ϑ ¼ 0) is circularly polarized, rotating in the same way as
the dipole. Thus, a photon emitted in the z direction has
polarization σþ and carries one unit of angular momentum
such that the total angular momentum of the combined
atom-photon system is conserved. A second atom, labeled
as atom B in Fig. 5(b), located on the z axis (ϑ ¼ 0), cannot
absorb this photon [see red arrow in the upper left panel of
Fig. 5(b)] since only a jn0s; 0i state is available. The same
result can be derived from Eq. (11), which for ϑ ¼ 0
simplifies to

V̂ðijÞ
dd ðϑ ¼ 0Þ ¼ − 2

r3
X
μ

dðiÞμ dðjÞ−μ
ð1 − μÞ!ð1þ μÞ! ð12Þ

and couples only states with initial magnetic quantum
number m1, m2 to states with m1 � 1, m2∓1, such that the
total angular momentum M ¼ m1 þm2 is conserved.
Therefore, the dipole-dipole matrix element vanishes,
hnp1; np1jV̂ðABÞ

dd ðϑ ¼ 0Þjns0; n0s0i ¼ 0, and hence, atoms
A and B do not interact. (ii) Light emitted into the x-y plane
(ϑ ¼ π=2) is linearly polarized, with a polarization vector
lying in the x-y plane and perpendicular to the emission
direction. A third atom, labeled as atom C in Fig. 5(b),
located on the x axis is able to absorb this linearly polarized

photon emitted by atom A, which in the frame of atom C
corresponds to a superposition of σþ and σ− polarized light
[see red arrows in the right panel of Fig. 5(b)]. For ϑ ¼ π=2,
Eq. (11) contains a sum over cos½ðπ=2Þðμþ νÞ�, and the
only nonvanishing combinations for μ ¼ −1 are ν ¼ �1.
Thus, the dipole matrix element hnp1; np1jV̂ðACÞ

dd ðϑ ¼
π=2Þjns0; n0s0i is nonzero, and atoms A and C will
interact.
In general, for the dominant channel P3=2 þ P3=2⟶

S1=2 þ S1=2, only the term dð1Þ−1d
ð2Þ
−1 with μ ¼ ν ¼ −1 in

Eq. (11) can contribute to the dipole-dipole matrix element,
and thus, the van der Waals interaction between both atoms

in a n2P3=2; m ¼ 3=2 states becomes VðnÞ
3
2
;3
2

ðr; ϑ;φÞ ∼
ðY−2

2 Þ2 ∼ sin4 ϑ for this channel. Residual interactions at
ϑ ¼ 0 and π come from couplings to D3=2;5=2 channels
which are small (see Table I). Thus, using Rubidium n2P3=2

states with mj ¼ 3=2 allows an almost perfect realization
of an anisotropic interaction with a vanishing interaction
along one axis and a large interaction along a perpendicular
axis. Note that interactions between two atoms in
jn2P3=2; m ¼ 3=2i are negative (attractive) for n > 38

and positive (repulsive) for n < 38, where a Förster
resonance at 38P3=2 þ 38P3=2⟶38S1=2 þ 39S1=2 changes
the sign of the interaction [52–55]. Figure 5(a) shows the
result of the full calculation of the van der Waals inter-
actions between n2P3=2; 3=2 states including all channels
and summing over n0 and n00 levels between n� 10. The
full calculation agrees well with the simplified picture
discussed above and illustrated in Fig. 5(b) since the
dominating channel is the one coupling to S1=2 states.
Moreover, it is in full agreement with previous studies on
anisotropic interactions between Rb Rydberg states [54].

C. Soft-core potentials

In the previous section, we showed how to engineer
the anisotropic part of the interactions required by Eq. (6).
We now briefly review how to create soft-core potentials by

TABLE I. Two atoms, both in the jr⦁i ¼ jn2P3=2; 3=2iz ¼ jnp; 1izj 12 12iz state, can couple to six channels. Each channel ν has a

characteristic angular dependency ðDνÞ3
2
3
2
that contributes with weight CðνÞ

6 . The total interaction can be obtained by summing over all

channels, i.e., V⦁⦁ðr; ϑÞ ¼ 2
P

νC
ðνÞ
6 h3

2
3
2
jDνðϑÞj 32 32i=r6. It turns out that two atoms in the jr⦁i Rydberg state dominantly couple to the

S1=2 þ S1=2 channel with a characteristic angular dependence ∼ sin4 ϑ.

CðνÞ
6 (A.U.)

Channel ν n ¼ 26 n ¼ 28 n ¼ 30 n ¼ 32 n ¼ 34 h3
2
3
2
jDνðϑÞj 32 32i

S1=2 þ S1=2 1.58 × 1017 5.07 × 1017 1.60 × 1018 4.88 × 1018 1.61 × 1019 sin4 ϑ=4
S1=2 þD3=2 6.38 × 1015 1.60 × 1016 3.72 × 1016 8.15 × 1016 1.70 × 1017 ð2þ cos 2ϑÞ sin2 ϑ=50
S1=2 þD5=2 6.46 × 1015 1.62 × 1016 3.76 × 1016 8.26 × 1016 1.72 × 1017 ð209þ 84 cos 2ϑþ 27 cos 4ϑÞ=2400
D3=2 þD3=2 −1.17 × 1015 −2.71 × 1015 −5.85 × 1015 −1.20 × 1016 −2.34 × 1016 ð5þ 2 cos 2ϑþ cos 4ϑÞ=1250
D3=2 þD5=2 −1.06 × 1015 −2.43 × 1015 −5.20 × 1015 −1.06 × 1016 −2.05 × 1016 ð358þ 186 cos 2ϑ − 27 cos 4ϑÞ=15000
D5=2 þD5=2 −9.50 × 1014 −2.15 × 1015 −4.56 × 1015 −9.16 × 1015 −1.76 × 1016 3ð1745 − 876 cos 2ϑþ 27 cos 4ϑÞ=20000
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weakly admixing the Rydberg states to the atomic ground
state [56,59]. This guarantees that interactions between
atoms sitting on a square lattice at different distances a
and

ffiffiffi
2

p
a experience the same interaction potential [76], as

required by Eq. (6) and illustrated in Fig. 1(b).
The single-atom configuration we have in mind was

introduced in Sec. III A and is governed by the Hamiltonian
of Eq. (7). Pairwise interactions [see Fig. 6(a)] between
N atoms, both excited to the Rydberg states jriijrji, are
described by

HijðrijÞ ¼ VijðrÞjriihrij ⊗ jrjihrjj; ð13Þ
where VijðrijÞ ¼ Aijðϑij;φijÞ=r6ij is the van der Waals
interaction potential between the Rydberg states of atom
i and atom j discussed in the previous section and
ðrij; ϑij;φijÞ are the spherical coordinates of the relative
vector.
Following the s-state case [57–60], Brillouin-Wigner

perturbation theory up to fourth order in the small param-
eter Ωr=ð2ΔrÞ ≪ 1 results in a sum of binary interactions
between the dressed ground state atoms of the form

~Vij ¼ 2Δr

�
Ωr

2Δr

�
4 r6cðϑij;φijÞ
r6cðϑij;φijÞ þ r6ij

; ð14Þ

with

rcðϑij;φijÞ ¼
�
Aijðϑij;φijÞ

2jΔrj
�

1=6

ð15Þ

being the Condon radius. In the case of p-Rydberg states,
where the interactions are anisotropic, the Condon radius
depends on the angular pattern of the van der Waals
interaction Aðϑ;φÞ, which can be tuned by choosing a
particular Rydberg state. Additionally, the Condon radius
can be scaled by changing the detuning Δr of the dressing
laser. Figure 6(b) shows typical examples of the dressed
ground-state potential ~Vij for red detuning Δr < 0 and

repulsive interactions Vij > 0, for different Condon radii
rc. For large distances, r ≫ rc, the dressed ground-state
potential is proportional to the Rydberg interaction, ~Vij ¼
Ω4

r=ð2ΔrÞ4Vij ∼ 1=r6ij, reduced by a factor ½Ωr=ð2ΔrÞ�4
arising from the small probability to excite both atoms to
the Rydberg state. However, for small distances, r < rc,
when two atoms are within the Condon radius, the excitation
to the Rydberg states becomes ineffective because of the
large total detuning jΔrj þ Vij (dipole blockade), and the
effective ground-state interaction, ~Vij ≈ ~V0½1 − ðr=rcÞ6� for
r < rc, saturates at a constant value ~V0 ¼ Ω4

r=ð2ΔrÞ3,
which is independent of the strength or form of the
Rydberg-Rydberg interactions. The presence of a plateau
at short distances r < rc and a rapid decrease of the potential
at r ∼ rc, where ~Vij ∼ 1=r6ij, allows us to engineer approx-
imately equal interactions between atoms within rc inde-
pendent of their specific distance. At the same time, long-
range interactions, between, e.g., next-nearest-neighbors
(NNN), are substantially suppressed.
Combining the steplike ground-state potentials of

Eq. (14) with anisotropic interactions discussed in the
previous section leads to figure-eight-shaped plateau poten-
tials shown in Fig. 6(c). Here, atoms (black circles) interact
with J, J0, and J00 along the�45-degree lines, the x axis and
the z axis, respectively, with the atom in the middle (yellow
circle). It is possible to tune the interaction strength J, J0,
and J00 over a large range by, e.g., changing the detuningΔr
or the principal quantum number n of the Rydberg state.
In particular, one can realize an interaction pattern where
atoms sitting at different distances, a and

ffiffiffi
2

p
a, interact

with equal strength, that is, J ≈ J0, while J00 ≪ J, thus
realizing a frustrated J − J0 model. Note that the interaction
symmetry in this case is triangular on top of a square lattice.

D. Explicit numbers and discussion of imperfections

As an explicit example, we consider the 292P3=2
Rydberg manifold of 87Rb. We resonantly couple the
292P3=2 manifold to the lower-lying 72D3=2 manifold, as

FIG. 6. (a) Qualitative sketch of the energy levels (black lines) and lasers (thick solid dark-blue arrows) required for the Rydberg
dressing scheme. The ground state jgi of each atom is off-resonantly coupled to a Rydberg state jriiwith a continuous wave laser of Rabi
frequency Ωr and detuning Δr (see also Fig. 4). Pairwise interactions between the energetically well-isolated Rydberg states can be
anisotropic, i.e., VijðrÞ ¼ AðϑÞ=r6. (b) Energy eigenvalues ~VðrÞ of Eq. (14) (dressed Born-Oppenheimer potential surfaces) of Rydberg-
dressed ground-state atoms for different values of the Condon radius rc defined in Eq. (15). The potential has a steplike shape and
saturates for small distances at ~V0, while the onset of the steep slope is given by rc. (c) Contour plot of the dressed ground-state
interaction ~VijðrÞ= ~V0 between the atom in the middle (yellow circle) and the surrounding atoms (black circles) arranged on a square
lattice, all in the jr⦁i Rydberg state. In this case, AðϑÞ ∼ sin4 ϑ, which gives rise to a figure-eight-shaped interaction plateau (yellow
dashed lines). Residual interactions along ϑ ¼ 0 come from virtual transitions toD states (see Sec. III B). (d) Labeling of the lattice sites
for the example of Sec. III D.
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illustrated in Fig. 4 (n ¼ 29 and n0 ¼ 7), with a laser of
wavelength λAC ¼ 3.296 μm. This results in a lattice
spacing a¼ λAC=ð2

ffiffiffi
2

p Þ¼1.16 μm, which can be adjusted
by tilting the trapping lasers by an angle α ¼ 39 degrees
(see Sec. III A).
For the van der Waals interactions between the Rydberg

states jr⦁i ¼ j292P3=2; 3=2iz and jr▪i ¼ j292P3=2; 3=2ix,
we find

V⦁⦁ðr; ϑÞ ¼ 2π ×
25.4 − 31.9 cos 2ϑþ 8.2 cos 4ϑ

ðr=μmÞ6 MHz;

V▪▪ðr; ϑÞ ¼ 2π ×
25.4þ 31.9 cos 2ϑþ 8.2 cos 4ϑ

ðr=μmÞ6 MHz;

V⦁▪ðr; ϑÞ ¼ 2π ×
16.8 − 8.2 cos 4ϑþ 20.3 sin 2ϑ

ðr=μmÞ6 MHz;

ð16Þ
including all channels of Table I and summing over �10 n
values (see Appendixes C and D). They are plotted in
Figs. 5(a) and 16. The largest off-diagonal matrix element
coupling different Zeeman m levels is VoffðaÞ ¼
h3
2
3
2
jV̂vdWða; π=2Þj 12 12i ¼ 2π × 11.2 MHz. Using an AC-

Stark laser with power P ¼ 1.0 mW focused on an area
A ¼ 50 μm2 yields a Rabi frequency ΩAC ¼ 2d7D−29P
EAC=ℏ ¼ 2π × 205.5 MHz, where d7D−29P ¼ h7D3=2;
3=2jdj29P3=2; 1=2i ¼ 0.065ea0 is the smallest transition

dipole moment and EAC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P=cϵ0A

p
is the electric-field

strength. The AC-Stark lasers will create an additional
ground-state potential with depth VAC ¼ 2π × 27.8 kHz;
thus, the initial trapping potential V trap must be larger than
VAC (see Appendix A).
Adjusting the detuning Δr of the Rydberg laser allows us

to tune the length scale and the imperfections in Eq. (14).
These are as follows: (i) small long-range interactions
between nearest-neighbor lattice sites and (ii) deviations
from the constraint model of Eq. (6). Here, for example, we
use Δr¼2π×400kHz, which yields the following interac-
tion pattern between particles labeled in Fig. 6(d): ~V14= ~V0 ¼
~V23= ~V0 ¼ 0.96, ~V13= ~V0 ¼ ~V24= ~V0 ¼ 0.80, ~V12= ~V0 ¼
~V34= ~V0 ¼ 0.70 around a vertex and small imperfect inter-
actions between different vertices, e.g., ~V15= ~V0¼ ~V28=
~V0¼ 0.09, and next-nearest-neighbor interactions, e.g.,
~V16= ~V0 ¼ ~V27= ~V0 ¼ 0.12 or ~V18= ~V0 ¼ ~V25= ~V0 ¼ 0.01.
By varying the Rabi frequency of the Rydberg laser

Ωr¼2π×ð120;160;200Þ kHz, one obtains ϵ ¼ Ωr=2Δr ¼
ð0.15; 0.20; 0.25Þ, which gives rise to an effective ground-
state interaction ~V0¼Ω4

r=8Δ3
r ¼2π×ð405;1280;3125ÞHz.

This is much larger than the effective decay rate from the
dressed ground state ~Γ ¼ ϵ2Γ ¼ 2π × ð74; 132; 206Þ Hz,
and larger than a corresponding tunneling rate between the
minima. Here, Γ ¼ 2π × 3.3 kHz is the decay rate from the
Rydberg states.
There is ample choice in the parameter regimes available

as a function of the n level. Away from the Förster

resonance at n ¼ 38, it is possible to engineer infrared
lattices that allow for comparable time scales between the
interactions induced by the dressing and the tunneling
matrix elements of the atoms on the original square lattice.
Going higher in n, closer to the Förster resonance, allows
for faster time scales and slower decays; however, in this
case, the infrared laser has a strong influence on the
underlying lattice, excluding the possibility of using con-
ventional single-particle tunneling to induce quantum
fluctuations. On the other hand, one can profit here from
the richness of the Rydberg manifolds involved, realizing
the hopping matrix element as a spin-exchange coupling
between different atoms sitting at different potential min-
ima [77]. In both cases above, the interaction pattern will
depend on the specific targeted n, as discussed in Sec. III B.
As the qualitative (and in many respects, quantitative, as
indicated in Table I and Fig. 7) shape of the interactions
will be very similar in the interval of interest n ¼ 25–37,
we will focus, in the following, on a single-case sample to
underpin the stability of the many-body effects in which we
are interested.

IV. NUMERICAL RESULTS

In this section, we consider the properties of the
approximate realization of the quantum spin-ice model
Hamiltonian proposed above. We demonstrate that, as a
function of the strength of the quantum dynamics, the
ground state has two regimes reflecting two distinct
forms of ordering (Sec. IV B). One, stabilized via a
quantum order-by-disorder mechanism, generates the
above-mentioned plaquette phase for sufficiently strong
quantum dynamics. As it is weakened, there is a transition
into a phase with classical ordering, which is stabilized by
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FIG. 7. Soft-core potentials (in units of ~V0) of Eq. (14) bet-
ween n2P3=2, mj ¼ 3=2 Rydberg states with (a) n ¼ 25,
Aððπ=2Þ; 0Þ ¼ 2π × 6.3 MHz μm6 (b) n ¼ 30, Aððπ=2Þ; 0Þ ¼
2π × 114.8 MHz μm6, (c) n ¼ 36, Aððπ=2Þ; 0Þ ¼ 2π×
4.8 GHz μm6, and (d) n ¼ 38, Aððπ=2Þ;0Þ¼2π×
390.0GHzμm6. Here, ~x ¼ x=rcððπ=2Þ; 0Þ and ~z ¼ z=rc
ððπ=2Þ; 0Þ are dimensionless, with rc defined in Eq. (15).
Residual interactions along the z direction come from virtual
transitions to D channels and depend on the principal quantum
number n (see Table I).
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the long-range parts of the dipolar couplings and which
breaks translational symmetry in a different way. In
addition, we show that even without quantum dynamics,
there is an interesting thermal phase transition to an
approximate realization of a (classical) Coulomb phase,
with only a very small density of defects (plaquettes
violating the ice rule) of around 5% (Sec. IV C 2). We
discuss signatures of these items in various quantities, in
particular, proposing a simple correlation function in which
the quantum plaquette order will be visible, and which
should be accessible in cold-atom experiments via in situ
parity measurements [33,78,79].

A. General definitions and conventions

We begin with some general definitions and technical
details of our numerical study. We consider both the
unconstrained spin-1=2 model H from Eq. (5) and the
projected model H2 inside the spin-ice manifold:

H ¼
X
i<j

JijS
z
i S

z
i þ J⊥

X
hiji

ðSþi S−j þ S−i Sþj Þ

H2 ¼
X
i<j

JijS
z
i S

z
j − t

X
j
i□

k
l

ðSþi S−j Sþk S−l þ H:c:Þ:

Here, hiji denote nearest-neighbor (NN) sites on the 2D
checkerboard lattice, and ðijklÞ label, clockwise, the four
sites around empty square plaquettes. Note that only the
empty plaquettes with alternating up-down spins (or
“flippable” plaquettes) contribute to the second term of
H2. In our exact diagonalizations (ED), we have considered
finite-size clusters with periodic boundary conditions
and N ¼ 16, 32, 36, 64, and 72 sites (see details in

Appendix E). To treat these clusters with ED, we exploit
translational symmetry and point-group operations (the
model has C2v symmetry), as well as spin inversion
(Sz → −Sz) inside the total magnetization sector Sz ¼ 0.
Consequently, the eigenstates are labeled by linear momen-
tum k, the irreducible representations of the point group of
k, and the parity under spin inversion.
We note that, whereas the quantum phase is quite robust,

the classical phase is considerably less so, reflecting the
many nearly degenerate classical ice states. We illustrate
this in Appendix F by imposing a variable cutoff on the
long-range aspect of the dipolar couplings Jij: By neglect-
ing terms weaker than a cutoff Jc, we find a set of states
with different classical orders, which settle down into the
correct ground state without truncation for Jc no larger
than 0.001.

B. The two zero-temperature phases: Low-energy
spectroscopy and ground-state diagnostics

Figure 8 shows the low-energy spectra ofH as a function
of J⊥ for N ¼ 32 (a) and N ¼ 36 (b), and that of H2 as a
function of t for N ¼ 64 (c). All spectra correspond to the
total magnetization sector Sz ¼ 0 and a cutoff value of
Jc ¼ 0.001. In all spectra, there is a manifold of low-lying
states that is well separated from higher-energy excitations.
Provided they become degenerate in the thermodynamic
limit, these states are the finite-size fingerprints of the
spontaneously symmetry-broken phases [80–84]: Their
multiplicities and symmetry content reveal the nature of
the ground state (GS). The structure of the low-lying energy
states consistently shows two qualitatively different phases.
One is adiabatically connected to the classical limit J⊥ ¼ 0,
and the other is stabilized for large enough J⊥ or t.

-

FIG. 8. (a,b) Low-energy spectra ofH (in units of ~V0) versus J⊥ for N ¼ 32 (a) and 36 (b), in the total magnetization sector Sz ¼ 0 and
for the cutoff Jc ¼ 0.001. (c) Low-energy spectra of the constrained, spin-ice model H2 versus t for 64 sites. The eigenstates are labeled
by linear momentum k, the irreducible representations of the point group of k (the point group of the model is C2v), and parity under
spin inversion (“Sze” and “Szo” stand for even and odd parity, respectively). Numbers inside parentheses give the multiplicity of each
energy level.
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We begin with the classical phase, focusing on the
N ¼ 32 (a) and N ¼ 64 (c) results first. Here, we find
four low-lying states that become exactly degenerate as
J⊥ → 0. We find translational symmetry breaking with
ordering wave vector Q ¼ ð−π=2; π=2Þ, as illustrated in
Fig. 3(c). The nature of this phase is revealed by the spin-
spin correlation profiles of Figs. 9(a) and 9(b), with
alternating up-down spins along one of the two diagonal
directions of the lattice. The vanishing of correlations on
every second diagonal line arises because of the existence
of two states that are compatible with the nonvanishing
correlations on the other diagonals. For a finite cluster,
these appear with equal weight and thus average out, while
in the thermodynamic limit, symmetry breaking sponta-
neously selects one of the two. Finally, the N ¼ 36 cluster
cannot accommodate the Q ¼ ð−π=2; π=2Þ phase (see
Appendix F), which is why the low-lying sector of
Fig. 8(b) has a different structure (and, in fact, higher
GS energy per site; see Table II).
Turning to the quantum phase, the N ¼ 32- and 64-site

spectra give the onset of this phase around J⊥ ≃ 0.23 and
t≃ 0.28, respectively. Beyond this point, the spin-structure
factor (not shown) is completely structureless, indicative
of the absence of magnetic (classical) ordering. Since the
imperfections in the present spin-ice model are expected to
become irrelevant for large enough J⊥, this phasemust be the
plaquettephaseof thepurespin-icemodel [11,71]and thepure
Heisenberg model [85]. The standard diagnostics for this
phase are the dimer-dimer (or energy-energy) correlations,
and indeed, the correlation profiles of Fig. 9(c) show a strong
Q ¼ ðπ; πÞ response within one sublattice of empty pla-
quettes. This is consistent with the structure of the low-lying
spectra that show two low-lying states with momenta k ¼ 0

and ðπ; πÞ,whichcomealmostontopofeachother forN ¼ 64

[see Fig. 8(c)]. Note that forN ¼ 32, there is a third low-lying
state (with k ¼ 0), which is, however, not related to the
physics at the thermodynamic limit, but it is specific to the
special topology of this cluster [86].
Further information about the two phases is given in

Fig. 10, which shows the GS expectation values of the
longitudinal and transverse NN spin-spin correlations for
all symmetry-inequivalent bonds, as well as the square

P

FIG. 9. Ground-state diagnostics of the classical (a,b) and the QM plaquette (c) phases: Spin-spin correlation profiles (of the
type hSzi Szji, where i is the reference site, indicated by a filled black square) in the ground state of (a) H for N ¼ 32 and J⊥ ¼ 0.1,
and (b) H2 for N ¼ 64 and t ¼ 0.1. Filled blue (open red) circles correspond to positive (negative) amplitude. (c) Connected
energy correlation profiles [of the type hSzi SzjSzkSzl i − hSzi SzjihSzkSzl i, where the reference bond ðijÞ is indicated by the thick black
segment] in the ground state of H2 for N ¼ 64 and t ¼ 1. Solid blue (dashed red) bonds indicate positive (negative) amplitudes,
while the width of each bond scales with the magnitude. All data correspond to the symmetry sector “0.A1.Sze” and are taken for
the cutoff Jc ¼ 0.001.

FIG. 10. Various expectation values in the ground state ofH for
N ¼ 16 (left column) and 32 (right column), for the cutoff
Jc ¼ 0.001. The first two panels in each column show the NN
spin-spin correlations for all symmetry-inequivalent bonds (inset)
in the longitudinal and transverse (xy) channel. The bottom
panels show the square of the total magnetization per crossed
plaquette, which is a measure of the weight from states outside
the spin-ice manifold.
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magnetization of crossed plaquettes. The expectation val-
ues describe how the energy is distributed over the bonds
and over the different directions in spin space, while the
square magnetization is a measure of the admixture from
states outside the spin-ice manifold. First, the NN corre-
lations show that the spins fluctuate mostly along the z axis
for small J⊥, as expected. More importantly, most of the
energy comes from antiferromagnetic bonds along one of the
two diagonal directions (bonds labeled “s1c2” in the inset of
Fig. 10), which is a clear signature of the presence of
strongly asymmetric spin-spin correlations in this regime.
This asymmetry, which is inherited by the point-group
symmetry (C2v) of the model, is more directly revealed in
the spin-structure factor discussed above. In addition, the
qualitative change in the behavior of the NN correlations
around J⊥ ∼ 0.2 reflects the presence of the phase transition

in this region. Finally, the square of the total magnetization
per crossed plaquette reveals that the spin-ice manifold
remains well protected up to relatively high J⊥.

C. Further insights in the classical limit J⊥ ¼ 0

1. Momentum-space minimization

The nature of the classical phase and the role of the
dipolar couplings can be understood in more detail by a
closer examination of the limit J⊥ ¼ 0 using a classical
minimization treatment in momentum space [87–90].
The checkerboard lattice has a square Bravais lattice
with two sites per unit cell. In the following, sites are
labeled as i → ð R; αÞ, where R gives the position of the
unit cell and α ¼ 1–2. For J⊥ ¼ 0, we can replace
Szi →

1
2
σi, where σi ¼ �1. The total energy then reads

E ¼ 1
4
E0, where

TABLE II. Results for the classical ground state at t ¼ 0 from the classical minimization method of Sec. IV C 1, and exact
diagonalizations. Here, Nints is the total number of interaction terms (of the type Szi S

z
j) in the Hamiltonian, Q is the minimum of λ1ð kÞ

over the BZ, and v1ð QÞ and λ1ð QÞ are the corresponding eigenvector [dashes indicate when the eigenvectors v1ð QÞ cannot satisfy the
spin-length constraint] and eigenvalue, respectively. The last line for each givenN gives the corresponding ground-state energies per unit
cell (multiplied by a factor of 4 to account for the unit spin length) as found by ED. Bold numbers indicate the cases with NintsðNÞ <
Nintsð∞Þ (for the given cutoff Jc) due to the finite size, showing that it is not safe to decrease the cutoff further.

N Cutoff ¼ 0.3 0.1 0.01 0.001

16 Nints=N 3 5 6.5 7.5
Q ðπ; πÞ ð0; πÞ; ðπ; 0Þ �ð−π=2; π=2Þ �ð−π=2; π=2Þ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
(1,0), (0,1) ð1;∓iÞ= ffiffiffi

2
p ð1;∓iÞ= ffiffiffi

2
p

λ1ð QÞ −2.211504 −1.97784 −2.011411 −1.995727
ED −2.211504 −1.97784 −2.011411 −1.995727

32 Nints=N 3 7 10.5 15.5
Q ðπ; πÞ ð0; πÞ; ðπ; 0Þ �ð−π=2; π=2Þ �ð−π=2; π=2Þ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
(1,0), (0,1) ð1;∓iÞ= ffiffiffi

2
p ð1;∓iÞ= ffiffiffi

2
p

λ1ð QÞ −2.211504 −2.271598 −2.089309 −2.056628
ED −2.211504 −2.271598 −2.089309 −2.056628

36 Nints 3 7 11.5 16.5
Q ðπ; πÞ �ð−π; π=3Þ �ðπ=3;−π=3Þ �ðπ=3;−π=3Þ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
— — —

λ1ð QÞ −2.211504 −2.03528 −1.95403 −1.94119
ED −2.211504 −1.8845151 −1.8803936 −1.8731703

64 Nints=N 3 7 12 25.5
Q ðπ; πÞ ð0; πÞ; ðπ; 0Þ �ð−π=2; π=2Þ �ð−π=2; π=2Þ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
(1,0), (0,1) ð1;∓iÞ= ffiffiffi

2
p ð1;∓iÞ= ffiffiffi

2
p

λ1ð QÞ −2.211504 −2.271598 −2.166198 −2.108984
ED −2.211504 −2.271598 2.166198 −2.108984

72 Nints=N 3 7 12 27.5
Q ðπ; πÞ ð0; πÞ; ðπ; 0Þ �ð2π=3;−π=3Þ �ð2π=3;−π=3Þ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
(1,0), (0,1) — —

λ1ð QÞ −2.211504 −2.271598 −2.075198 −2.03849
ED −2.211504 −2.271598 −2.04433866 −2.0137376

∞ Nints=N 3 7 12 31
Q ðπ; πÞ ð0; πÞ, ðπ; 0Þ �0.473296ð−π; πÞ �0.4573374ð−π; πÞ

v1ð QÞ ð1; 1Þ= ffiffiffi
2

p
(1,0), (0,1) — —

λ1ð QÞ −2.211504 −2.27159 −2.17273 −2.11938
λ1ð−π=2; π=2Þ −1.93452 −1.93452 −2.16620 −2.10609
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E0 ¼ 1

2

X
R R0;αα0

J Rα; R0α0σ R;ασ R0;α0 :

Using σ R;α ¼ 1ffiffiffiffiffiffi
Nuc

p
P

ke
i k· Rσ k;α (where Nuc ¼ N=2 is

the number of unit cells) and J Rα; R0α0 ¼ J R− R0;αα0 (from
translational invariance) yields

E0 ¼ 1

2

X
k

X
αα0

σ k;αΛαα0 ð kÞσ− k;α0 ;

where the 2 × 2 interaction matrix Λð kÞ is given by

Λαα0 ð kÞ≡
X
r

J r;αα0e−i k· r:

Let us denote by λ1;2ð kÞ and v1;2ð kÞ the eigenvalues
and the corresponding (normalized) eigenvectors of
Λð kÞ, with λ1ð kÞ ≤ λ2ð kÞ. Minimizing λ1ð kÞ over
the entire Brillouin zone (BZ) of the model provides
a lower bound for the energy [87–90]. The correspond-
ing eigenvector is a faithful ground state, provided it
satisfies the spin-length constraint at all sites.
The minimization can be done both for the infinite lattice

and for the finite lattices studied by ED by simply scanning
through the allowed momenta of each cluster. The latter are
discussed in Appendix F and are useful for clarifying the
various finite-size effects in our ED data. Here, we focus on
the infinite-lattice case. Figure 11 shows the momentum
dependence of the low-energy branch λ1ð kÞ for cutoff
values Jc ¼ 0.3, 0.1, 0.01, and 0.001. For Jc ¼ 0.3, which

amounts to keeping only the dominant NN couplings (i.e.,
three couplings per site), the minimum sits at Q ¼ ðπ; πÞ
and corresponds to the well-known Néel phase with
antiferromagnetic (AFM) correlations along both the hori-
zontal and the vertical directions of the lattice. This phase is
stabilized by the imbalance in the NN imperfections, which
favors the first two vertex configurations in Fig. 2(b).
However, further-neighbor interactions destabilize the Néel
phase and lead to a different minimum. For Jc ¼ 0.1, which
amounts to keeping seven interactions per site, the mini-
mum of λ1ð kÞ now sits at the two M points of the BZ,
Q ¼ ðπ; 0Þ and ð0; πÞ, which correspond to a stripy AFM
alignment of the spins in the horizontal or the vertical
direction of the lattice.
Lowering Jc further shifts the minimum to two incom-

mensurate (IC) positions,� QIC, which are extremely close
to the commensurate �ð−π=2; π=2Þ points. For example,
for Jc ¼ 0.01 (12 interactions per site), Jc ¼ 0.001 (31
interactions per site), and Jc ¼ 10−6 (299 couplings per
site), the minima sit, respectively, at QIC ¼ 0.473ð−π; πÞ,
0.457ð−π; πÞ, and 0.462ð−π; πÞ. At the same time, the
corresponding eigenvector v1ð QICÞ cannot be used to
construct a state satisfying the spin-length constraint at
all sites of the system simultaneously. This means that
the present method cannot deliver the true ground state of
the system and that λ1ð QICÞ serves only as a lower
energy bound.
Physically, the system may accommodate the tendency

for incommensurate correlations by forming long-
wavelength modulations of the local ð−π=2; π=2Þ order

FIG. 11. Dispersion of the lowest eigenvalue λ1ð kÞ (in units of ~V0) of the dipolar interaction matrix Λð kÞ (in the thermodynamic
limit) for four different cutoff values.
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parameter, in analogy, e.g., to the anisotropic Ising model
with competing interactions (the so-called ANNNI model)
[91–94]. We should remark, however, that the energy
landscape around the IC minimum is very flat, and its
distance from ð−π=2; π=2Þ is very small; thus, in principle,
such discommensurations (if any) should appear at much
longer distances than the ones considered in our finite-
lattice calculations and, indeed, at length scales over which
cold-atom realizations are not uniform (in both density and
interaction patterns) on account of the parabolic confining
potential. To confirm this point, we have performed
classical Monte Carlo (CMC) simulations on N ¼ 2×
L × L-site clusters with periodic boundary conditions
(see details in Appendix G). All results up to L ¼ 36
consistently give the ð−π=2; π=2Þ state without any sign of
domain-wall discommensurations, implying that, at least
for these distances, the system locks in to the closest
commensurate Q ¼ ð−π=2; π=2Þ phase.

2. Thermal phase transition into a classical
Coulomb phase

Given the finite energy gap above the commensurate
Q ¼ ð−π=2; π=2Þ state at J⊥ ¼ 0 (see Fig. 8), one expects
that this phase survives against thermal fluctuations up to a
finite temperature TC. To confirm this picture, and to find
the numerical value of TC, we have performed classical MC
simulations at finite temperatures. The first two panels of
Fig. 12 show the T dependence of the structure factor
Sð QÞ at Q ¼ ð−π=2; π=2Þ and the specific heat per site
for systems up to N ¼ 2 × 28 × 28 sites. The results
demonstrate clearly the thermal phase transition, with
TC ≃ 0.185. The third panel shows the T dependence of
the three different types of crossed plaquette configurations:
the ice-rule 2 in - 2 out states and the defective 3 in - 1 out

(or 3 out - 1 in) states and 4-in (or 4-out). The defects are
almost entirely of the 3 up - 1 down type, but their density
remains very small up to the transition temperature (about
5%). So, the classical phase gives way to a Coulomb gas
[65,66], an approximate realization of a classical Coulomb
phase, with only a very small density of defects. This phase
is marginally confined on account of the logarithmic nature
of the interactions between the defects; given the non-
vanishing defect density above TC, their correlations are
expected to exhibit a screened (Debye) form [95].

V. QUANTUM DIMER MODELS WITH RYDBERG
ATOMS: BEYOND QUANTUM ICE

A. Simple interactions, complicated lattices

As we have shown in the spin-ice example, weakly
Rydberg-dressed atoms in optical lattices provide a perfect
platform to investigate quantum magnetism in AMO
settings. The procedure can be extended to a series of
2D and 3D models using isotropic interactions, either with
s states (whose corresponding frozen regimes have already
been accessed in a series of experiments [23–37,96]) or p
states (with out-of-plane polarization in the 2D case)
combined with complicated lattice structures. This way,
the complication of realizing a fine-tuned interaction
pattern is transferred to a complicated lattice geometry,
which might be realized if the corresponding light pattern is
realizable.
The fundamental features of those complicated lattices

include the fact that isotropic interactions with a sharp
plateau are sufficient to define a classical limit where there
is a set of degenerate classical ground states, increasing
extensively with system size. Given the shape of the
interactions, one can identify the possible lattices as
follows. First, we define b as the largest distance between

FIG. 12. Temperature dependence of the structure factor SðQÞ (left panel); the specific heat per site, in units of Boltzmann’s constant
kB (middle panel), and the monopole densities for systems up to N ¼ 2 × 28 × 28 sites (right panel), for J⊥ ¼ 0 and the cutoff
Jc ¼ 0.001. Temperature is given in units of ~V0.
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sites belonging to the same simplices [8] (or gauge cell),
that is, the unit cell where the Gauss law of interest is
defined (in the spin-ice case, these are the squares with
crosses). Second, we define c as the smallest distance
between sites that do not belong to the same gauge cell. It is
then clear that, in the case where b < c, a plateau
interaction in the range b < rbc < c can generate the
desired constraint in each gauge cell. In the case that this
is not true (like, e.g., in the square-ice case), additional
features are needed, such as angular dependence.
Some examples of the lattices that satisfy the previous

property are illustrated in Fig. 13, together with the corre-
sponding gauge cells. The list includes several 2D lattices
that have already been realized in AMO settings, such as the
Kagome lattice with triangular gauge cells (but not with
hexagonal gauge cells), the ruby lattice, and the honeycomb

lattice. In the 3D case, a simple example is the pyrochlore
lattice, already discussed in Ref. [39] in the context of polar
gases. Interestingly, in this former case, dipolar interactions
behave in a very similar manner to simple plateaulike ones
because of their symmetry content [97].
Once taken at a filling factor of an integer number of

particles per gauge cell for the underlying Bose-Hubbard
Hamiltonian, all of those lattices generate quantum dimer
or quantum loop models [8] in perturbation theory. These
are naturally described by emergent gauge theories:
However, the gauge symmetry itself is not always straight-
forwardly determined, given the gauge symmetry of the
microscopic constituents [98]. The procedure to derive the
proper dimer-model dynamics, given a lattice and an Ising
constraint, is outlined in Ref. [8]. Below, we illustrate a
simple example of how complicated lattices can meet
simple interactions to let a quantum dimer model emerge
by focusing on the concrete example of the 4–8 lattice.

B. Emergent quantum dimer dynamics on a 4–8
lattice from an XXZ model

The 4–8 lattice (also known as the CAVO lattice)
[99] represents a useful example to illustrate how the
combination of a complicated lattice with simple Ising
interactions can lead to intriguing quantum dynamics.
The lattice structure for the underlying bosons from which
we start is the squagome lattice [100,101], illustrated in
Fig. 14: Once the triangles are identified as the gauge cells,
it is easy to see that b ¼ a, c ¼ ffiffiffi

2
p

a, so a plateau
interaction in the range 1 < r=a <

ffiffiffi
2

p
can indeed enforce

constraints on the gauge cells. Since each site is shared by

FIG. 14. Configuration space of the squagome lattice and gauge-invariant dynamics: (a) Atoms are trapped into a squagome pattern
(filled-black circles) and interact with NN atoms (red arrows), which are all the same distance apart (yellow dashed circle). Triangular
gauge cells are indicated as shaded areas, in an alternating pattern of light blue and violet. Panel (b) describes possible gauge-invariant
configurations [from Eq. (18)], including one with two flux vectors pointing outwards (inwards) on a light-blue (violet) gauge-cell map
onto a configuration where a single site on each triangle is occupied (red circle) and two lattice sites are unoccupied (white circles). Here,
an arrow pointing from a violet triangle to a light-blue triangle corresponds to an occupied lattice site and, vice versa, to an empty lattice
site. This can be further mapped to a quantum dimer model on the 4–8 lattice. The new sites are defined at the center of each triangle: The
bond variable between them is either empty (thin blue line) or a dimer (thick blue line), depending on the original occupation of the site
shared by the triangles. Panel (c) illustrates a full gauge-invariant configuration. Quantum fluctuations induce nontrivial dynamics
around both the square (d) and octagonal (e) plaquettes, described by Eqs. (20) and (21). Panel (f) shows the optical lattice pattern of
Eq. (22), as described in the text. Darker areas correspond to deeper potentials.

FIG. 13. Lattices possessing the properties discussed in Sec. V
A: Panel (a) shows a Kagome lattice with triangles as gauge cells
(shaded area), and panel (b) shows a honeycomb lattice with
hexagons as gauge cells. In both cases, the maximal intraplaquette
Euclidean distance (yellow dashed circle) is smaller than the
minimal interplaquette distance (gray arrow). The radius of the
needed plateaulike interaction is described by the yellow circles.
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three gauge cells, a filling fraction of n ¼ 1=3 atoms per
site, combined with the plateau interactions, will generate a
degenerate manifoldH4–8 of classical ground states, where
for each triangle, a single site is occupied [see Fig. 14(b)].
When formulated in spin language with Szj ¼ nj − 1=2,

the Hamiltonian

HIs
4–8 ¼ Jz

X
Δ

X
fi;jg∈Δ

SzjS
z
i ð17Þ

has (trivially) a set of Uð1Þ-like conserved charges at each
triangle, that is,

GΔ ¼
X
j∈Δ

Szj þ 1=2; GΔjψi ¼ 0; ∀ jψi ∈ H4–8:

ð18Þ

Once an additional small term inducing quantum fluctua-
tions is introduced,

(19)

tunneling between the different classical degenerate min-
ima becomes possible within perturbation theory, while still
preserving the set of conserved charges in Eq. (18). Notice
that we used two different matrix elements for particle
tunneling around the squares (J) and around the octagons
( ~J). Two kinds of moves are allowed. At second order, two
particles sitting along a diagonal of a square plaquette can
resonantly flip to sit on the other diagonal:

H□ ≃− J2

Jz
ðSþ1 S−2 Sþ3 S−4 þ H:c:Þ; ð20Þ

where we have numbered the sites of the square plaquette in
clockwise order. The next nonvanishing contribution takes
place at fourth order, where particles sitting at the edges of
each octagonal plaquette can be rearranged via an extended
ring exchange:

(21)

where we have numbered the sites of the octagonal
plaquette in clockwise order. The two terms are illustrated
in Figs. 14(d) and 14(e). We now reformulate the problem
in terms of dimer models, which allows us to set up a proper
description in terms of effective degrees of freedom. In
order to do that, we follow the procedure exemplified in
Refs. [8,102–104] and illustrated in Figs. 14(b) and 14(c):
We define a new lattice, the so-called simplex lattice, whose
vertices are the middle points of each gauge cell and whose
bonds connect vertices of gauge cells that share a single

site—each bond sits on a vertex of the original lattice.
Then, we introduce dimer variables on the bonds as
follows: (i) If a bond sits on a site that is occupied by a
boson, we draw a dimer; (ii) if not, we leave the bond
empty. Thus, the Gauss law of Eq. (18) is easily reformu-
lated as a conservation law of a single dimer at each vertex.
The lattice on top of which the quantum dimer model is

defined is then a 4–8 lattice: As it is bipartite, the
corresponding low-energy theory is a Uð1Þ gauge theory,
which can then display different confined phases as a
function of the two kinetic energy terms for the dimers
and H□. This setup might then constitute a perfect setting
for the investigation of the competition between different
RVB solid orders and the transitions between them. The
corresponding periodic structure can either be realized
using digital-micromirror-devices (DMD) [67] or by using
an optical potential of the form

Vðx; zÞ ¼ 4V1ðxþ z; x − zÞ þ V2ðx; zÞ; ð22Þ

where

V1ðx; zÞ ¼ cosðπxÞ2 þ cosðπzÞ2
− 2 cosð0.55Þ cosðπxÞ cosðπzÞ ð23Þ

is a 2D lattice created by two 1D standing waves with a
phase difference ϕ ¼ 0.55 and antiparallel polarizations
e1 · e2 ¼ −1. The second 2D lattice is created by lasers
with 3 times the frequency and orthogonal polarization,

V2ðx; zÞ ¼ cosð3πxÞ2 þ cosð3πzÞ2: ð24Þ

Both lattices are rotated by 45 degrees, respectively. The
full lattice structure is illustrated in Fig. 14(f), and it realizes
the squagome lattice potential of interest.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have shown how dynamical gauge fields
emerging from frustration can be ideally realized in cold-
atom systems by employing optical lattices combined with
Rydberg interactions. This allows us to probe gauge-theory
phenomena in a variety of models. In particular, we
analyzed in detail the case of quantum square ice, a
paradigmatic example of frustrated statistical mechanics,
both at the few-body level and at the many-body level.
From the atomic-physics side, the key element of our

implementation is the tunable interaction pattern generated
by Rydberg p states and local polarizations due to tensor
polarizabilities. Prominent atomic-physics features can be
exploited in order to generate (repulsive) anisotropic
interactions that allow us to enforce the complex gauge
constraints of square-ice models. The possibility of gen-
erating such anisotropic interaction patterns enriches the
cold-atom Hubbard toolbox of yet another potential feature,
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which can find different applications in many-body physics
even beyond engineering complicated and fine-tuned lattice
constraints. It paves the way for the realization of different
constrained dynamics, in particular, quantum dimer models
on complicated lattices.
From the many-body side, we have provided numerical

evidence that typical imperfections generated by the
Rydberg interactions still allow the observation of a non-
trivial state of matter, a plaquette valence bond crystal.
Moreover, we have shown how a cold-atom-suited detec-
tion technique can be identified, by performing parity
measurements along the plaquettes, which directly identi-
fies the spontaneous symmetry breaking of a discrete lattice
symmetry. Even in the absence of quantum dynamics, the
engineered interactions stabilize a magnetically ordered
state with a large unit cell at low temperatures, which gives
way to a classical Coulomb gas, a marginally confining
two-dimensional Coulomb phase with a small but nonzero
density of charges in the form of thermally activated
plaquettes violating the ice rule.
Different directions can be pursued further, following the

lines discussed here. A first, interesting extension would be
to understand whether different kinds of anisotropic inter-
actions can play a significant role in engineered Ising
constraints in cold-atom systems. In particular, anisotropic
interactions between Rydberg d states of 87Rb atoms have
recently been demonstrated in Ref. [37]: As their angular
dependence differs from the one discussed here, it can
constitute yet another tool in order to realize complicated,
fine-tuned interaction patterns. Additionally, the present
proposal, which generates pure gauge theories, can be
combined in a modular way with previous ones [105] in
such a way that either fermionic or bosonic matter can be
included in the dynamics. This would extend the toolkit of
quantum simulation of lattice gauge theories within the
quantum-link model formalism. On the one hand, quantum
simulation of QED3 models with different flavor degrees of
freedom could be foreseen [106]. On the other hand, the
combination of bosonic fields (as, e.g., in Ref. [105]) with
the current proposal would allow for the exploration of
the Fradkin-Shenker scenario of Higgs physics in 2D [107]
and possibly in more exotic geometries. Finally, cold-atom
realizations can also provide a suitable platform for the
investigation of dynamical effects in quantum dimer
models and gauge theories in general; it would be interest-
ing to see whether simple observables and experimental
procedures can be implemented to describe complex many-
body phenomena such as string dynamics [108] in the
presence of static charges [40], or the dynamical properties
of thermally activated monopoles on top of a vacuum state.
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APPENDIX A: EFFECT OF THE AC-STARK
LASERS ON THE GROUND STATE

The AC-Stark lasers introduced in Sec. III A create an
additional trapping potential, VACðriÞjgihgji, for ground-
state atoms with minima that are not commensurate
with the initial trapping lattice. In order not to distort
the desired lattice structure, this additional potential must
not be larger than the initial trapping potential. The
dominant effect comes from a second-order Stark effect
by off-resonantly coupling the 5S state to the first excited
state 5P, and it is given by VAC¼Ω2

5s5p=ð2Δ5s5pÞ, with
Rabi frequency Ω5s5p ¼ 2d5s5pE=ℏ and detuning Δ5s5p ¼
2πcðλ−15s5p − λ−1ACÞ. Here, d5s5p ¼ h5Sjdj5Pi is the transition
dipole matrix element and λ5s5p the transition wavelength.
Figure 15(a) shows the desired trapping lattice created
by two counterpropagating laser beams which form a
ground-state potential V trapðz; xÞ ¼ cos2 kzþ cos2 kx.
The dashed black lines indicate the 0.9-level lines of the
AC-Stark potential VACðz; xÞ ¼ cos2½kACðx − yÞ= ffiffiffi

2
p �þ

sin2½kACðxþ yÞ= ffiffiffi
2

p �, with kAC ¼ k=
ffiffiffi
2

p
. The maxima

are localized at the ⦁ and ▪ lattice sites, respectively, as
required in Sec. III A. Figure 15(b) shows the total
potential, V tot ¼ V trap þ αVAC, in the case of equal
strength, i.e., α ¼ 1. The insets on top show the 1D

(a) (b)

FIG. 15. Contour plots of the total trapping potential V totðx; zÞ,
(a) without the AC-Stark potential (α ¼ 0) and (b) with the AC-
Stark potential (α ¼ 1). The black dashed lines in (a) show the
0.9-level lines of the AC-Stark potential VAC. The insets (i) and
(ii) show the 1D potential along the red dotted lines for (i) ky ¼ 0
and (ii) ky ¼ −0.5.
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potential along the (i) ky ¼ 0 and (ii) ky ¼ −0.5 lines [red
dotted lines in Figs. 15(a) and 15(b)]. In the case of equal
strength of the trapping lattice and the additional lattice
created by the AC-Stark lasers, the potential minima are
still located at the same position, but slightly elongated.
Note that the potential barrier between neighboring lattice
sites is about half as small as without the additional
AC-Stark laser. This will lead to higher tunneling rates
compared to the case without the AC-Stark laser.

APPENDIX B: GLOBAL RYDBERG
LASER EXCITATION

In the following, we show that it is possible to weakly
admix the locally polarized Rydberg states of Sec. III A to
the electronic ground state jgi using a single laser with a
wave vector k ∼ y and polarization σþ (see Fig. 4),

HL ¼ ΩR

2
½jgiyyhnP3=2; 3=2j þ H:c:�: ðB1Þ

In the local x and z bases, this laser will couple to all four
mj levels with different weights, i.e.,����32
�

y
¼ 1

2
ffiffiffi
2

p
	����32

�
z
þ i

ffiffiffi
3

p ����12
�

z
− ffiffiffi

3
p ����− 1

2

�
z
− i

����− 3

2

�
z



;

ðB2Þ
���� 32
�

y
¼ 1

2
ffiffiffi
2

p
	
e−3iπ=4

���� 32
�

x
þ

ffiffiffi
3

p
e−iπ=4

���� 12
�

x

þ
ffiffiffi
3

p
eiπ=4

���� − 1

2

�
x
þ e3iπ=4

���� − 3

2

�
x



; ðB3Þ

where we used the irreducible representation of a rotation in
the j ¼ 3=2 subspace, D½Rðα; β; γÞ� ¼ e−iαJze−iβJye−iγJz .
Since the states jm ≠ 3=2iz;x are energetically separated

by at least EAC from the jm ¼ 3=2i state, a laser with
detuning ΔR ≪ EAC and wave vector k ∼ y will selectively
admix the states j3=2iz and j3=2ix at lattice sites ⦁ and ▪,
respectively, to the ground state jgi with an effective Rabi
frequency ΩR=ð2

ffiffiffi
2

p Þ.

APPENDIX C: VAN DER
WAALS INTERACTIONS

In this appendix, we briefly summarize the technical
details in order to calculate the angular-dependent van der
Waals interactions of Sec. III B. Because of the odd parity

of the electric dipole operators dðiÞμ and dðjÞν , the dipole-
dipole interaction Vdd of Eq. (11) can only couple states
with initial angular (total) momentum l (j) to states with
new angular (total) momentum l� 1 (j or j� 1).

Therefore, the number of possible “channels” nljm1 þ
nljm2⟶n0l0j0m0 þ n00l00j00m00 for which the matrix

element hnljm1; nljm2jVðijÞ
dd jn0l0j0m0; n00l00j00m00i is non-

zero are limited. While there is no selection rule for
possible final principal quantum numbers n0 and n00 which
solely determine the overall strength of the matrix element,
the dipole-dipole matrix element is only nonzero if the
magnetic quantum numbers and the spherical component of
the dipole operator fulfill m1 þ μ ¼ m0 and m2 þ ν ¼ m00.
If the energy difference δαβ ¼ EðαÞ þ EðβÞ − 2EðnljÞ
between the initial states nlj and the intermediate states
α≡ nαlαjαmα and β≡ nβlβjβmβ of the atoms is larger
than the dipole-dipole matrix element connecting those
states, the dominant interaction is of van der Waals type,
which arises from Vdd in second-order perturbation,

V̂vdW ¼ P̂12

X
αβ

V̂ddQ̂α;βV̂dd

δαβ
P̂34: ðC1Þ

Here, V̂vdW is an operator acting in the degenerate manifold
of magnetic sublevels, with P̂ij ¼ jnljmi; nljmji
hnljmi; nljmjj a projector into the nlj manifold and
Q̂α;β ¼ jα; βihα; βj a projector on a specific state in the
complementary space. The sum is over all two-atom energy
levels, where the indices α≡ nαlαjαmα and β≡ nβlβjβmβ

denote a full set of quantum numbers that specify the states.
Because of the electric dipole selection rules discussed
above, this sum can be split up into channels denoted by
ν ¼ ðlα; jα;lβ; jβÞ. Equation (C1) can be written as

V̂vdW ¼ P
νC

ðνÞ
6 Dνðϑ;φÞ=r6, whereCðνÞ

6 contains the radial
part of the matrix elements,

CðνÞ
6 ¼

X
nα;nβ

Rα
1R

β
2R

α
3R

β
4

δαβ
; ðC2Þ

which accounts for the overall strength of the interaction
and is independent of the magnetic quantum numbers.
Here,Rj

i ¼
R
drr2ψni;li;jiðrÞ�rψnj;lj;jjðrÞ is the radial inte-

gral calculated with radial wave functions ψnj;lj;jjðrÞ
obtained using the model potential from Ref. [109]. The
matrix

Dνðϑ;φÞ ¼ P̂12

X
mα;mβ

MνQ̂α;βMνP̂34; ðC3Þ

on the other hand, is a matrix in the subspace of magnetic
quantum numbers, which contains the relative angles
between the two atoms (s ¼ 1=2),
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hm1; m2jMνjmα; mβi ¼ ð−Þs−m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
i¼1;α

ð2li þ 1Þð2ji þ 1Þ
s �

l1 lα 1

jα j1 s

��
lα 1 l1

0 0 0

�

× ð−Þs−m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
i¼2;β

ð2li þ 1Þð2ji þ 1Þ
s �

l2 lβ 1

jβ j2 s

��
lβ 1 l2

0 0 0

�

×

�
−

ffiffiffiffiffiffiffiffi
24π

5

r X
μ;ν

C1;1;2
μ;ν;μþν

�
jα 1 j1
mα μ −m1

��
jβ 1 j2
mβ ν m2

�
Yμþν
2 ðϑ;φÞ�

�
: ðC4Þ

As an example, we show the D1 matrix for the first channel P3=2 þ P3=2⟶S1=2 þ S1=2,

D1 ¼

0
BBBBBB@

1
4
sin4ϑ − 1

2
ffiffi
3

p cos ϑsin3ϑ sin2ϑ
24

ffiffi
3

p ð3 cos 2ϑþ 1Þ 0

− 1

2
ffiffi
3

p cosϑsin3ϑ 1
12
ðsin4ϑþ sin22ϑÞ − 1

9
cos ϑ sinϑ sin2ϑ

24
ffiffi
3

p ð3 cos 2ϑþ 1Þ
sin2ϑ
24

ffiffi
3

p ð3 cos 2ϑþ 1Þ − 1
9
cos ϑ sinϑ 1

864
ð12 cos 2ϑ − 27 cos 4ϑþ 47Þ − sin 2ϑ

24
ffiffi
3

p ð3 cos 2ϑþ 1Þ
0 sin2ϑ

24
ffiffi
3

p ð3 cos 2ϑþ 1Þ − sin 2ϑ
24

ffiffi
3

p ð3 cos 2ϑþ 1Þ 1
144

ð3 cos 2ϑþ 1Þ2

1
CCCCCCA

ðC5Þ

in the subspace of states j 3
2
; 3
2
i, j 3

2
; 1
2
i, j 3

2
;− 1

2
i, and

j 3
2
;− 3

2
i, where the first atom is fixed in the m ¼ 3=2

state. In general, one has to diagonalize the operator
V̂vdW in the degenerate Zeeman subspace in order to
obtain the new eigenenergies and eigenstates in the
presence of interactions. If an external electric or
magnetic field separates an initial two-atom state
jm1; m2i from all other Zeeman sublevels such that
the energy difference is larger than the vdW coupling
matrix elements, then it is possible to simply take

expectation values of VðnÞ
m1;m2

ðrÞ ¼ hm1; m2jV̂vdWjm1; m2i
in order to obtain the interaction potential of two atoms
initially in the jm1; m2i state.

APPENDIX D: MIXED INTERACTIONS

In the following, we show how to calculate the mixed
interactions V⦁▪ðr; ϑÞ introduced in Sec. III B between
the locally polarized Rydberg states j⦁i≡ jnP3=2; 3=2iz
and j▪i≡ jnP3=2; 3=2ix. Here, the indices z and x denote
the local quantization axis of the state. We work in the z
basis. Rotating the latter state into the z basis using the
irreducible representation Dð3=2Þ½Rðŷ; π=2Þ�−1 of a rota-
tion around y by an angle of π=2 in the j ¼ 3

2
space

yields

j▪i ¼ 1

2
ffiffiffi
2

p
	���� 32

�
z
− ffiffiffi

3
p ���� 12

�
z
þ

ffiffiffi
3

p ���� − 1

2

�
z
−
���� − 3

2

�
z



;

ðD1Þ
where jmiz ≡ jnP3=2; miz. The state j▪i¼ jnP3=2;3=2ix ¼P

mcmjnP3=2;miz is thus a superposition of different mj

states in the z basis. Interactions between two atoms in a

j▪⦁i or j▪▪i state can be calculated by evaluating the
corresponding matrix elements of Eq. (C1), which
requires us to compute van der Waals interactions
between atoms in different mj states, e.g.,

h⦁▪jVvdWj⦁▪i ¼
X
m;m0

cm0c�m



3

2
; mjVvdWj

3

2
; m0

�
: ðD2Þ

The angular dependence of the van der Waals interaction
between two Rydberg atoms in a j⦁⦁i or in a j▪▪i state,
V⦁⦁ðr; ϑÞ ¼ V▪▪ðr;ϑ − π=2Þ ∼ sin4ϑ=r6, is the same up
to a rotation by 90 degrees and shows the typical
anisotropic behavior discussed in Sec. III B [see solid
lines in Fig. 5(a)]. On the other hand, the angular
dependence of the mixed interactions between two
Rydberg atoms in a j▪⦁i state, shown in Fig. 16(a),
exhibits two asymmetric maxima at ϑ ¼ �π=4. The
asymmetry arises from off-diagonal matrix elements,
e.g., h3

2
; 1
2
jV̂vdWj32 ;− 1

2
i ∼ sin 2ϑ. Note that the actual

strength of the interaction only affects the Condon
radius rc [see Eq. (15) and not the energy shift ~V0

[see Eq. (14) and discussion thereof] for r → 0. Panel (c)
of Fig. 16 shows a contour plot of the mixed inter-
action, ~V⦁▪= ~V0 of Eq. (14), between the dressed ground-
state atoms j⦁i in the middle and the surrounding j▪i
atoms. Interactions with the neighboring j▪i atoms (red
solid arrows) are strong, ∼ ~V0, while interactions with
next-nearest-neighbor j▪i atoms (red dotted arrows) are
strongly suppressed because of the plateau structure of
the potential.
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APPENDIX E: FINITE-SIZE CLUSTERS

In our exact diagonalizations, we have considered the following checkerboard clusters with periodic boundary
conditions:

N T1 T2 G1 G2 DSz¼0
full Dspin-ice

16 (2,2) ð−2; 2Þ ðπ=2; π=2Þ ð−π=2; π=2Þ 12870 90
32 (4,0) (0,4) ðπ=2; 0Þ ð0; π=2Þ 601080390 2970
36 (3,3) ð−3; 3Þ ðπ=3; π=3Þ ð−π=3; π=3Þ 9075135300 6840
64 (4,4) ð−4; 4Þ ðπ=4; π=4Þ ð−π=4; π=4Þ 1832624140942590534 2891562
72 (6,0) (0,6) ðπ=3; 0Þ ð0; π=3Þ 442512540276836779204 16448400

where N is the number of lattice sites, T1;2 are the
spanning vectors of the cluster, G1;2 are the reciprocal

vectors, DSz¼0
full is the size of the full Hilbert space in the

total magnetization Sz ¼ 0 sector, and Dspin-ice is the
dimensionality of the spin-ice manifold. Note that, in order
to evaluate Jij across the periodic boundaries in a consistent
manner [110], we keep the maximum amplitude among the
set fJi;jþϵ1 T1þϵ2 T2

; ϵ1;2 ¼ −1; 0; 1g, where T1 and T2 are
the spanning vectors of the cluster.

APPENDIX F: CLASSICAL MINIMIZATION

Table II summarizes the main results from the classical
minimization procedure of Sec. IV C 1 for the finite clusters
considered in our ED study but also for the thermodynamic
limit (last line). The main findings are as follows:
(i) Jc ¼ 0.3, all clusters.—Here, the minimum sits at
Q¼ðπ;πÞ, with v1ð QÞ¼ 1ffiffi

2
p ð1;1Þ and λ1ð QÞ < λ2ð QÞ.

The minimum energy is achieved by

σ k;α ¼
ffiffiffiffiffiffiffiffiffiffi
2Nuc

p
v1αð QÞδ k; Q ⇒ σ R;α ¼

ffiffiffi
2

p
v1αð QÞei Q· R;

where Nuc ¼ N=2 stands for the number of unit cells, and
the constants have been chosen to satisfy the spin-length

constraint. The energy is given by E0=Nuc ¼ λ1ð QÞ.
(ii) Jc ¼ 0.1, all clusters except N ¼ 36.—Here, we have
two optimal wave vectors, Q1 ¼ ð0; πÞ and Q2 ¼ ðπ; 0Þ,
with λ1ð Q1Þ ¼ λ1ð Q2Þ and v1ð Q1Þ ¼ ð1; 0Þ, v1ð Q2Þ ¼
ð0; 1Þ, and λ1ð QjÞ < λ2ð QjÞ. Then, the solutions that
satisfy the spin-length constraint are

σ R;1 ¼ �ei Q1· R; σ R;2 ¼ �ei Q2· R;

i.e., we have four ground states, with energy E0=Nuc ¼
λ1ð Q1Þ. (iii) Jc ≤ 0.01, all clusters except N ¼ 36 and
72.—Here, the minima sit at � Q ¼ �ð−π=2; π=2Þ, with
eigenvectors v1ð QÞ ¼ ð1;∓iÞ= ffiffiffi

2
p

, and again λ1ð QÞ <
λ2ð QÞ. Let us try the ansatz

σ k;α ¼
ffiffiffiffiffiffiffiffi
Nuc

p ffiffiffi
2

p ðv1αð QÞδ k; Q þ v�1αð QÞδ k;− QÞ

⇒ σ R;α ¼
1ffiffiffi
2

p ½v1αð QÞei Q· R þ v1αð− QÞe−i Q· R�

¼
ffiffiffi
2

p
Re½v1αð QÞei Q· R�

¼
�
cosðm − nÞ π

2
; sinðm − nÞ π

2

�
;

FIG. 16. (a) Angular part AðnÞ
⦁▪ ðϑÞ of the van der Waals interaction, VðnÞ

⦁▪ ðr; ϑÞ ¼ ðn − δnljÞ11AðnÞ
⦁▪ ðϑÞ=r6, between a pair of 87Rb atoms

in the jr⦁i ¼ jnP3=2; 3=2iz and jr▪i ¼ jnP3=2; 3=2ix Rydberg states of 87Rb (solid lines). We plot the rescaled interaction energy AðnÞ
⦁▪ ðϑÞ

as a function of the angle ϑ for various values of the principal quantum number n, with δ the quantum defect. (b) Cartoon of the states

and definition of the angle ϑ. (c) Contour plot of the effective interaction ~VðnÞ
⦁▪ ðr; ϑÞ= ~V0 between the dressed ground-state atom j⦁i in the

middle and the NN j▪i atoms (red arrows) and the NNN j▪i atoms (red dotted arrows).
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where we labeled R ¼ n ex þm ey, and n,m are integers. This ansatz does not satisfy the spin-length constraint at all sites.
Another ansatz is σ R;α ¼ ð− sinðm − nÞπ=2; cosðm − nÞπ=2Þ, which results from the first ansatz by replacing
v1ð QÞ → i v1ð QÞ. To get a solution that satisfies the spin constraint, we combine the two:

σ k;α ¼
ffiffiffiffiffiffiffiffi
Nuc

p ffiffiffi
2

p ððϵ1 þ iϵ2Þv1αð QÞδ k; Q þ ðϵ1 − iϵ2Þv�1αð QÞδ k;− QÞ

⇒ σ R;α ¼
1ffiffiffi
2

p ½ðϵ1 þ iϵ2Þv1αð QÞei Q· R þ ðϵ1 − iϵ2Þv1αð− QÞe−i Q· R� ¼
ffiffiffi
2

p
Re½ðϵ1 þ iϵ2Þv1αð QÞei Q· R�

¼
�
ϵ1 cosðm − nÞ π

2
− ϵ2 sinðm − nÞ π

2
; ϵ1 sinðm − nÞ π

2
þ ϵ2 cosðm − nÞ π

2

�
;

where ϵ1;2 ¼ �1; i.e., we have four possible solutions, all
with energy E0=Nuc ¼ λ1ð QÞ. (iv) All remaining cases.—
Here, we cannot satisfy the spin-length constraint. This is
what happens, e.g., for N ¼ 36 and Jc ≤ 0.1, for N ¼ 72
and Jc ≤ 0.01, and for N ¼ ∞ and Jc ≤ 0.01. In these
cases, λ1ð QÞ serves only as a lower bound of the energy
(see comparison with ED data in Table II). From these
results, we can infer that the best choice for the cutoff is
0.001, and the best finite-size cluster for the investigation of
the t ¼ 0 ground states is the N ¼ 64 cluster, whose
ground-state energy per unit cell, E0=Nuc ¼ −2.108984,
is very close to the one for N ¼ ∞ (E0=Nuc ¼ −2.11938).
The next good cluster (again in terms of energy) is N ¼ 32,
which has E0=Nuc ¼ −2.056628.

APPENDIX G: TECHNICAL DETAILS ON
CLASSICAL MONTE CARLO SIMULATIONS

Low-energy configurations are generated by thermal
annealing consisting of a million sweeps per site, using
a combination of single-spin flip and long-loop updates.
The former can annihilate all types of defects (3 up - 1
down, 3 down - 1 up, 4-up, and 4-down) but suffers from
very low acceptance ratios at low temperatures, while the
loop updates have much higher acceptance ratios (around
16%) and can annihilate all defects except the 3 up - 1 down
(or 3 down - 1 up). So, combining both types of updates
gives sufficiently large acceptance ratios and can annihilate
all defects.

APPENDIX H: ENERGY SCALES AND POSSIBLE
EFFECTS OF DISSIPATION

Here, we briefly comment on other possible imperfec-
tions of Rydberg experiments.
Energy scales and state preparation.—The large energy

scales provided by dressed Rydberg interactions allow us to
engineer RVB plaquette solids with gaps of order of a
few hundred Hz. Those are 1 order of magnitude larger
than typical exchange energy scales currently employed
in bosonic cold-atom experiments, allowing for the

investigation of ground-state physics within current tem-
perature regimes.
Beyond a direct cooling within the gauge-invariant

manifold protected by such energy scales, the plaquette
RVB solid can also be reached via an adiabatic ramp. A first
possibility consists of starting directly in the solid phase at
J⊥ ¼ 0 and switching on the tunneling adiabatically (which
corresponds to lowering the optical lattice potential). The
ramp has to be performed sufficiently slowly with respect
to the energy gap in Fig. 8 in order to limit the number of
proliferating defects. Alternatively, adiabatic engineering
of small RVB samples has already been experimentally
demonstrated in coupled double-well systems [111]:
Starting from such a state, one could melt the different
RVB cells following a similar procedure as in Ref. [112],
that is, merging the different cells by using an additional
pair of superlattice potentials in the x-y plane. A possible
drawback is represented by spontaneous emission
described in Sec. III, which, despite being strongly sup-
pressed by the dressing technique, might still play a
detrimental role in establishing the correct ground-state
physics. A straightforward way to further minimize the
effects of losses would be to address Rydberg p states with
higher principal quantum number n, as interactions (∼n11)
and decay times (∼n3) both scale favorably as a function of
the principal quantum number. Next, we comment on the
expected influence of gauge-variant dissipative dynamics.
For, e.g., n ¼ 32, the diagonal interaction between both

atoms in the mj ¼ 3=2 state is V3
2
3
2
ðaÞ ¼ 2π · 150.53 MHz,

while the largest off-diagonal matrix element is
VoffðaÞ ¼ 2π · 65.40 MHz. Using an AC-Stark laser with
P ¼ 10 mW, one obtains a Rabi frequency of ΩAC ¼ 2π ·
325 MHz ≫ VoffðaÞ on the 32P3=2 − 7D3=2 transition. The
same laser creates an AC-Stark effect on the ground state
5S of VAC ¼ 2π · 279.5 kHz, which has to be smaller than
the actual lattice trapping the atoms, V trap. The optimal
dressed potentials (with respect to NNN imperfections) are
obtained with a detuning Δr ¼ 2π · 2475 kHz (which sets
the Condon radius of the steplike interaction) of the
Rydberg laser coupling 5S − 32P. The decay rate of
32P is Γ ¼ 2π · 2.4 kHz. With a Rabi frequency of
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Ωr ¼ 2π · ð500; 625; 750Þ kHz, one obtains ϵ ¼ Ω=2Δ ¼
ð0.10; 0.13; 0.15Þ. The effective decay rate is ϵ2Γ ¼
2π · ð24; 38; 55Þ Hz, and the soft-core potential is ~V0 ¼
ϵ3Ω ¼ 2π · ð515; 1258; 2610Þ Hz. While in this specific
case direct tunneling will be suppressed because of the deep
lattice potential, one could, nevertheless, demonstrate
experimentally the classical order-by-disorder mechanism
discussed in Sec. Vor exploit internal spin exchange within
the Rydberg manifold [77].
Effects of spontaneous emission.—The influence of

dissipative dynamics which explicitly violates Gauss con-
straints has been numerically investigated in Ref. [113] for
a series of both Abelian and non-Abelian discrete gauge
theories in one dimension. In particular, when the energy
scales of dissipative and coherent dynamics are well
separate, the influence of dissipative effects is quantita-
tively negligible as long as low-order observables, such as,
e.g., correlation functions, are considered (as is the case
here). Because of the stability of the plaquette order
(protected by a large energy gap) with respect to
Hamiltonian imperfection, we expect a similar stability
in the gauge theory studied here. A detailed numerical
study on the specific model could shed further light on the
effects of spontaneous emission, furthering the understand-
ing on how the low-energy physics affects the open-system
dynamics (along the lines discussed in Ref. [114]).
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