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Introduction

In the bidding context, collusion (or bid rigging as it is sometimes
known) occurs when businesses that would otherwise be expected
to be genuinely competing for work secretly conspire to raise prices
or sometimes to lower the quality of goods or services for pur-
chasers in a bid process (OECD 2009). Collusive bids can be
particularly damaging in public procurement, since in Organization
for Economic Cooperation and Development (OCED) countries,
for example, public procurement represents about 15% of gross
domestic product (GDP; OECD 2007), a value even higher in other
countries (Aoyagi and Fréchette 2009). Collusive practices also
absorb resources from procurers and taxpayers, since this action
usually undermines the advantages of a competitive market and
diminishes public confidence in the competitive process (Marshall
and Marx 2009; Anderson and Cau 2011). Moreover, these are il-
legal in many countries, involving considerable resources dedicated
to prosecuting those companies involved (Bajari and Summers
2002; Hendricks et al. 2008).

So-called bid-covering or cover bidding is the most recurrent
form of collusive arrangement in sealed bid auctions (Ishii 2008).
It occurs when individuals or firms agree to submit bids in which
either (1) a competitor agrees to submit a bid that is higher than the
bid of the designated winner, (2) a competitor submits a bid that
is known to be insufficiently competitive to be accepted from the
technical standpoint, or (3) a competitor submits a bid that contains
special contractual terms that are known to be unacceptable to the
auctioneer (OECD 2007). Cover bids are also used in the well-
known collusive arrangement of bid rotation (Porter and Zona
1993; Ishii 2009), which involves participating firms continuing
to bid while taking turns to be the winning bidder.

Thus, classifying bids as abnormal and combating collusion
are primary concerns for auctioneers as those bidders who manage
to form a viable cartel or bidding ring (i.e., a group of companies
planning to restrict the amount of actual competition among the
participants in one or several auctions) can seriously affect winning
bid values (Blume and Heidhues 2008; Hu et al. 2011). As a result,
Klemperer (2002) and Anderson et al. (2012) regard that collusion,
as well as other competition policy issues, is being more important
in the design of practical auctions than the budget-constraint, affili-
ation, and risk-aversion issues that are often addressed in the main-
stream theory of auctions.

The literature proposes some forms of auction rules to discour-
age collusion, such as establishing a reserve price that is a function
of cartel size (Graham and Marshall 1987), selecting efficient auc-
tion mechanisms depending on the amount of correlation between
colluders (Laffont and Martimort 2000), exploiting informational
asymmetries concerning potential colluders and including a nontri-
vial probability of not selling the object auctioned (Che and Kim
2006, 2008), and including both effective ceiling and reserve prices
(Chowdhury 2008). However, collusion schemes are always diffi-
cult to detect as they are typically negotiated in a strictly secretive
way and are not usually evident from the results of a single auction,
as cover bids have to give the appearance of genuinely competitive
bids (Bajari and Summers 2002). An additional problem is that an
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effective strategy for avoiding collusion usually requires the auc-
tioneer to be able to predict the distribution function from which
bidders are assumed to draw their values and be aware of which
bidders belong to which cartel (Bajari and Summers 2002), while
obtaining such information is intricate, if not impossible, in practice
(Hu et al. 2011).

A collusive arrangement is often revealed only upon the appear-
ance of a steady pattern of distrustful or abnormal behavior from
several bidders over a period of time (OECD 2009). However, the
existence of such patterns does not necessarily act as evidence
of collusion, as there may simply be decreasing returns to scale
of bidders’ cost functions or a change in market conditions. For
example, lower marginal costs occur with firms with idle capacity
(low current workload) and hence, when reflected in the bid, are
relatively more likely to win the auction (Porter and Zona 1993;
Porter 2005). Despite this cautionary note, sets of tools that help
identify particular bid behaviors as being collusive, or at least ab-
normal, can be of use to auctioneers (Rasch and Wambach 2009).

In this paper, we aim at identifying abnormal bids in either pub-
lic or private sealed-bid auctions, as well as in auctions in which
other nonprice criteria in addition to the economic bid value may be
involved. These nonprice criteria are increasingly common in both
public sector procurement auctions (Perng et al. 2006; Tan et al.
2006; Bergman and Lundberg 2013) and private sector auctions
(Bajari and Summers 2002; Gayle and Richard 2008).

The paper makes three major contributions, as follows: (1) it
extends a recent model developed by Ballesteros–Pérez et al.
(2013b) for detecting abnormal bids in capped auctions (where an
upper bid limit is set by the auctioner) to the more conventional
uncapped auctions (where no such limits are set), (2) it presents
a new method for estimating the bid distribution supports or bounds
of bids by an approach associated with the solution to the German
Tank problem (a well-known statistical case study that shares
several characteristics with bidding), and (3) a new abnormal-
probability metric named Pabn for highlighting abnormal bids is
proposed for use in combination with the extended Ballesteros–
Pérez et al. (2013b) model. The three components of the model
are applied and evaluated to a sample of real construction bid data,
and shown to detect cover bids with a high level of accuracy,
despite being conceived as a rough detection tool.

Background

A large body of economic theory demonstrates that the existence of
both competitive and collusive bid strategies depends very much on
the cost structure of the bidders (Curtis and Maines 1973; Maskin
and Riley 2000), and rules of the auction (Porter and Zona 1993,
1999; Baldwin et al. 1997; Pesendorfer 2000). Theories of collu-
sion in auctions also highlight the importance of preauction meet-
ings among bidders, in which incentives or compensations are
generally provided by the winner to the losers. The McAfee and
McMillan (1992) static scheme characterizes efficient collusion
when no side transfer is possible, and in which the designated
winner is independent of history. Subsequently, this analysis was
extended by Aoyagi (2003) and Skrzypacz and Hopenhayn (2004)
to a repeated framework in which, as opposed to the McAfee and
McMillan (1992) static bid rotation (Porter and Zona 1999), bid
coordination is based on past history within a dynamic bid rotation
scheme.

In contrast to the theoretical literature, although there has been
a great deal of empirical work aimed at detecting collusion in
procurement auctions (J. E. Harrington, “Detecting cartels,” Work-
ing Paper, Johns Hopkins University, Baltimore; Paha 2011), little

attention has been paid in the literature relating to the inner working
of the bidding rings or collusive bid groups (McAfee and McMillan
1992; Hendricks et al. 2008). Related work includes the Porter
and Zona (1993, 1999) modeling of the probability of a bidder win-
ning by assuming a bid function linear in observable cost factors.
Subsequent work (P. Bajari and L. Ye, “Competition versus collu-
sion in procurement auctions: Identification and testing,” Working
Paper, Stanford University, Stanford, California, 2003) consistently
observes the violation of the so-called conditional independence
and exchangeability conditions, which must always be satisfied
by a competitive bid strategy.

Finally, Ballesteros–Pérez et al (2012a, 2013a, 2014) introduce
a bid tender forecasting model that is partially reconfigured to
detect extreme abnormal bidders in capped auctions (Ballesteros–
Pérez et al. 2013b). This method, which the writers term the
Ballesteros–González–Cañavate method, is aimed at identifying
bidders whose behavior is not conditionally independent and ex-
changeable, that is, not in accordance with a regular or predictable
pattern. In short, this approximate but quick method assumes that
individual bids are in accordance with a uniform distribution in the
absence of some kind of abnormal behavior among the bidders
involved.

In this connection, multiple statistical distributions have been
used to analyze bid patterns, the main ones of which in the context
of construction contract auctions are the uniform, normal, lognor-
mal, gamma, and Weibull densities (Skitmore 2014).

Therefore, in the absence of any generally agreed distribution,
the uniform distribution continues to be used in this paper for three
reasons, as follows: (1) several previous researchers consider it to
be accurate enough to depict construction bid data, (2) the method
is intended to be sufficiently robust for the uniform distribution to
generate reasonably approximate results, and (3) any other statis-
tical distribution can be rescaled into a uniform distributionUð0; 1Þ
by using its cumulative distribution probability values if necessary.

However, a problem concerning finite distributions such as the
uniform density is to estimate the value of the supports (upper and
lower bounds) involved, as these are different for each auction and
each auction happens only once. Of the several estimators available
for this, one known as the solution to the German Tank problem
provides a simple yet relatively accurate method and is presented
in more detail in the next section.

In sum, noncompetitive bids have become a major concern in
both public and private procurement auctions, and several models
have been developed to help identify collusive bidders. However,
most of these models require complex calculations and extensive
information that is difficult to obtain in real-life situations. There-
fore, the implementation of other simpler but less accurate models
similar to the Ballesteros–González–Cañavate model should help
in highlighting noncompetitive bid behaviors in the large amount
of auctions that are handled daily by contracting authorities all
around the world.

Thus, the research objectives of this paper are three-fold, as
follows: (1) to extend the Ballesteros–González–Cañavate capped
auction model to the uncapped auction, since this is the more wide-
spread procurement approach in many countries, the United States
included; (2) since the extension of the Ballesteros–González–
Cañavate model will require working with an underlying bid dis-
tribution then, assuming that this distribution is well-represented
by the Uniform density, a method will also be proposed to estimate
the value of the supports involved; and (3) a new metric named Pabn
to identify abnormal bids will also be introduced. This metric will
help in focusing the extended Ballesteros–González–Cañavate
model to those bids or combinations of bids with higher values
of Pabn.
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Methodology

Analysis of Individual Bid Distributions

This subsection deals with extending the Ballesteros–González–
Cañavate capped auction model for use in uncapped auctions.
Therefore, here a “bidder’s bid” Biwill be the monetary bid made
by a given bidder i in an uncapped auction, where 0< Bi < þ∞.

First and similarly to the Ballesteros–González–Cañavate
model, the method developed needs to quantify how many bidders
are involved in the auction to study the bidders’ relative economic
bid distances from each other (in other words, the expected average
bid gap between two consecutive bids) so as to be contrasted with a
standard pattern distribution. Aiming to do this, there is an exten-
sive literature focusing on predicting the potential number of bid-
ders in auctions (e.g., Ngai et al. 2002; Carr 2005). However, when
the request for proposals deadline is reached, the number of par-
ticipating bidders is disclosed ex post and then the standard pattern
distribution to which the bids will have to be compared can be
defined.

Likewise, assuming bids are randomly and uniformly distrib-
uted, then the expected difference in probability and value between
the ith and iþ 1th of the N ranked bids in an auction is a constant.
Therefore, the probability of surpassing the nth bid (Pnth) can be
easily expressed in terms of the subsequent straightforward linear
expression

Pnth ¼ 1 − N − iþ0.5
N

¼ i−0.5
N

ð1Þ

where i¼ 1 is the most economical bid (lowest bid); and i¼ N is
the most expensive bid (highest bid). Therefore, the variable Pnth
also represents the bidder’s nth position performance by means of
a coefficient that ranges from 1=2N to 1 − ð1=2NÞ, the distance
between bid iand bid iþ 1 being always the value 1=N (see the
y values in Fig. 1).

The next step is to correlate every bid (Bi) with its respective
probability of being surpassed, Pnth. Aiming to simplifying future
calculations, using the same interval of variation as Pnth is again
preferred, as an alternative to the range [Bmin (lowest bid, most eco-
nomical), Bmax (highest bid, most expensive)], since the true bid
distribution supports are not known. Therefore, the mathematical
expression for rescaling the bids from their natural range ½Bmin;
Bmax&, in monetary-unit basis, to the range ½1=2N; 1 − ð1=2NÞ&,
in per-unit basis, which will allow calculating what is named stan-
dard bids, B 0

i, is as per

B 0
i ¼

1

2N
þ N − 1

N
·

Bi− Bmin

Bmax − Bmin
ð2Þ

In Fig. 2, Eq. (2) assigns x-axis values ranging from 1=2N, if
Bi¼ Bmin, to 1 − ð1=2NÞ, if Bi¼ Bmax, but keeps intact the origi-
nal relative distances between bids on the x-axis. That is, unlike
y-axis Pnth values, the distance between bidder iand bidder iþ 1
will not usually be 1=N, but proportional to the original relative
distance when previously expressed in monetary bid values.

Therefore, beginning with a group of bids which took part in an
uncapped auction and whose values have been previously ordered
from lowest to highest (B 0

i; i), a new set of (B 0
i;Pnth) values can be

obtained by using Eqs. (1) and (2). If these latter points fall approx-
imately on a straight line, from (1=2N; 1=2N) to ½1 − ð1=2NÞ;
1 − ð1=2NÞ&, this indicates that the bids can be treated as perfectly
in accordance with a uniform distribution, and when other comple-
mentary conditions are also fulfilled, no abnormal bids should be
present.

Hence, after every participating bid has been ordered and
converted into a standard bid value (B 0

i) and its respective Pnth
is also calculated, it is necessary to compare this set of standardized
bid values to the standard pattern distribution (SPD) whose math-
ematical expression is just a straight line

Ypattern ¼ B 0
i ð3Þ

In short, Eq. (3) means a cumulative distribution function
whose representation is a bisector line no matter the number
of bids, and whose valid range of values will be from 1=2N to
1 − ð1=2NÞ in both horizontal and vertical axes. This standard line
suggests that any two adjacently ranked bids will be placed on
average a 1=N value from each other, both in their B 0

i values and
Pnth values.

Nevertheless, as mentioned previously, perfect matching be-
tween the SPD and each group of (B 0

i;Pnth) points is difficult to
achieve; thus, to delimit a band in which the recently calculated
set of (B 0

i;Pnth) points can be classified as close enough to the SPD,
a new couple of boundary lines, named standard pattern upper and
lower limit lines, have to be defined. The mathematical expressions
of these boundary lines are these, and Fig. 1 shows that they are
located at a 1=2N distance just over and below the SPD

Y lower ¼ B 0
i−

1

2N
ð4Þ

Yupper ¼ B 0
iþ

1

2N
ð5Þ

There is therefore a (B 0
i;Pnth) set of points that lie on a line with

N − 1 segments and, since this composite line could be partially
inside and partially outside the band defined by Eqs. (4) and (5),
it is more appropriate to represent the group of (B 0

i;Pnth) values by
its regression straight line. This way, whenever the regression line
is completely within the boundaries defined by the lower and upper
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Fig. 1. Elements of a standard bid graph (modified from Ballesteros-
Pérez et al. 2013b)
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limit lines, it will be possible to assume that the bid distribution is
actually close enough to the SPD. The band limit width 1=N (from
−1=2N toþ1=2N) coincides with the distorting effect equivalent to
one nonexistent bidder that one or several collusive bidders may
generate over the bids distribution. The upper and lower limit lines
then define a band in which the B 0

i regression line (least-squares)
should be squeezed in as long as the exchangeability condition is
granted. Notwithstanding, there is another condition to fulfill; the
coefficient of determination, R2, of this least-squares line must be
close enough to 1, in order to claim that the standard bids set is
well-represented by its regression curve. Ballesteros–Pérez et al.
(2013b) suggest that R2 should be above 0.90 (a 0.10 distance from
1.0), but it seems to be more appropriate to set its level according
to the number of bids actually analyzed (in this case, a 1=N value
from 1.0). Therefore, the R2 will be required to be above R2

min ¼
ðN − 1Þ=N, since, by fulfilling this condition, the least-squares re-
gression line should explain the equivalent percentage of variabil-
ity, which means that the actual Pnth values should not be separated
by more than a 1=N value from the regression line y values due to
uncontrolled data variability.

In addition, the condition of conditional independence is also to
be granted whenever bids represent genuine competition. This con-
dition can be broken down into two more verifications, as follows:
(1) the residuals (the difference between B 0

i’s Pnth and Ypattern val-
ues as in Fig. 1) have to be in accordance with a normal distribution,
and hence a Student’s t-test should be carried out on the residuals
dataset; and (2) the mean of the B 0

i standard bids, B 0
m, should be

nearly 0.5.
Condition 2, when embedded in Eq. (2), is equivalent to

B 0
m ¼ Pnth¼N=2 ¼ 0.5 which means that whenever there are no

collusive or abnormal bids, the bid distributions are symmetrical
around their B 0

m value, as also originally stated in Ballesteros–Pérez
et al. (2013b). Hence, a new coefficient that monitors B 0

m deviations
has been created. This coefficient, named B 0

m distortion, is able to

measure the distance of B 0
m from 0.5 in multiples of 1=N.

Therefore, the mathematical expression of the standard mean bid
distortion is

B 0
m distortion ¼

jB 0
m −0.5j
0.5

. 1

N
¼ N

jB 0
m −0.5j
0.5

¼ Nj2B 0
m − 1j

¼ N
!!!!2

Bm − Bmin

Bmax − Bmin
− 1

!!!! ð6Þ

Measuring this B 0
m deviation as Eq. (6) proposes also has the

advantage of revealing how many bidder positions the B 0
m value

has been dislodged in 1=N multiples. Values lower than 1.0 are
required to grant the conditional independence condition; that is,
to ensure there is not a subset of bids that are in accordance with
a different distribution and quite probably have a different
mean value.

To sum up, to guarantee conditional independence as well as
exchangeability, whenever a set of auction bids is analyzed, the
following four mathematical conditions must be satisfied:
1. The (B 0

i;Pnth) least-squares line must be completely inside the
zone bounded by the lines defined by Eqs. (4) and (5);

2. The regression straight line’s coefficient of determination must
be above R2

min, i.e., actual R
2 > R2

min ¼ ðN − 1Þ=N;
3. The differences between B 0

i’s Pnth, and Ypattern values (resi-
duals) must be in accordance with a normal distribution, which
means checking the condition tstudentðα¼5%Þ < tstudentB 0

I
; and

4. The mean standard bid B 0
m must have been displaced less than

a 1=N value from 0.5, which is equivalent to B 0
m distortion < 1.

These four conditions are already included in the original
Ballesteros–González–Cañavate model, but here they have been
refined with two partially reformulated conditions in order to in-
crease their effectiveness in uncapped auctions. Therefore, any
group of bidders that do not comply with any of these four con-
ditions means that at least one bidder participated with an abnormal
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Fig. 2. Curves of the bid distribution support positions a and b: (a) probability density function curve; (b) cumulative distribution function curve
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bid generating an effect that adds up to 1=N. Nonetheless, in prac-
tice, the bidders should always be allowed to justify their respective
economic bids (since they may possible have been unintentionally
estimated incorrectly). However, when a bidder exhibits a steady
abnormal behavior detected in this way, it would qualify as poten-
tially collusive and worthy of further investigation. The method
could therefore be used for every auction as soon as the bids are
disclosed, since it would act as a quick, but preliminary, collusion-
detection mechanism.

Estimation of Distribution Supports

While the previous subsection extended the original Ballesteros–
González–Cañavate model for abnormal bid detection to uncapped
auctions, this section refines this further by including a second con-
tribution of this paper in estimating the distribution supports.

Estimating the values of the supports of finite bid distribu-
tions requires simple but not obvious reasoning that has not been
previously applied to auctions to date. Assuming that bids are in
accordance with a continuous uniform distribution, Uða; bÞ, it is
expected that the true lower boundary, a, will always be a little
below the observed Bmin, whereas the true upper limit, b, will al-
ways be little above the observed Bmax. The distance between the
observed boundary values (Bmin and Bmax) and the true values (a
and b) can then be calculated by using the German Tank problem
solution.

In the statistical theory of estimation, the problem of estimating
the maximum of a discrete uniform distribution from sampling
without replacement is known as the German Tank problem due to
its application in World War 2 to the estimation of the number of
German tanks (Goodman 1954). During the course of the war, the
Western Allies made sustained efforts to determine the extent of
production of German Panther tanks. To do this they made use
of the gearbox serial numbers printed on captured or destroyed
German tanks (Ruggles and Brodie 1947). This provided the sol-
ution to the problem that can be understood intuitively as “the pop-
ulation maximum equals the sample maximum plus the average gap
between observations in the sample,” the gap between the ranked
observations being added to compensate for the negative bias of the
sample maximum as an estimator for the population maximum.

Although the individual bid distribution is effectively continu-
ous instead of the discrete German Tank problem version, the same
principle can be used to obtain the bounds a and b by translating the
German Tank problem into auction bids, as follows:
• The maximum of a uniform distribution (b) equals the sample

maximum (Bmax) plus the average gap (there are N − 1 gaps
between Bmax and Bmin) between the ranked observations in the
sample, and

• the minimum of a uniform distribution (a) equals the sample
minimum (Bmin) minus the average gap (N − 1 again) between
observations in the sample.
Therefore, a and b are estimated as

a ¼ Bmin − Bmax − Bmin

N − 1
ð7Þ

b ¼ Bmax þ
Bmax − Bmin

N − 1
ð8Þ

Additionally, two major parameters allow the analysis of future
auction bid distributions, as follows: (1) the mean, ðaþ bÞ=2, and
(2) the standard deviation (SD), ðb − aÞ=

ffiffiffiffiffi
12

p
, which can be

immediately calculated by Eqs. (7) and (8).
However, in order to prove that the boundary estimates of a and

b are accurate, it is necessary to check if the mean and the SD really

fit the actual auction bid data. In platykurtic distributions, such as
the uniform distribution, despite both the sample mean and the
sample median are unbiased estimators of the midpoint, neither is
as efficient as the sample midrange, i.e., the arithmetic mean of
the sample maximum and the sample minimum (which is also the
maximum likelihood estimate). Therefore, on this occasion, the
mean value is not useful, since by definition ðBmax þ BminÞ=2≈
ðaþ bÞ=2. Then, if

b − a ¼ Bmax þ
Bmax − Bmin

N − 1
− Bmin þ

Bmax − Bmin

N − 1

¼
#
1þ 2

N − 1

$
ðBmax − BminÞ ¼

N þ 1

N − 1
ðBmax − BminÞ

ð9Þ

the SD (σ) should be equal to

σ ¼ b − affiffiffiffiffi
12

p ¼ N þ 1

N − 1
·
Bmax − Bminffiffiffiffiffi

12
p ð10Þ

To date, the bid SD has been a difficult parameter to predict,
with highest coefficients of determination around 0.7 (Ballesteros-
Pérez et al. 2012a, b), mostly because no researcher has consid-
ered including the number of bids N involved in Eq. (10), since
it was counterintuitive. Therefore, if Eqs. (7)–(9) constitute a rea-
sonable approximation of the uniform bounds and dispersion
parameters representing the bid distribution, the coefficient of de-
termination in the actual bid dataset proposed should be noticeably
above 0.7. This issue will be addressed in the Method Validation
section.

Metric for Abnormal Bids

Specific bids can be tested for abnormality by checking Conditions
1–4 mentioned previously. However, doing this comprehensively
would involve 2N individual and group combinations of bidders,
a value that becomes too high as the number of bids N increases.
Hence, the third contribution of this paper is an alternative way for
identifying bids that are more likely to be abnormally higher or
lower than others, in addition to the lowest and highest ones. This
is achieved by a simplified probabilistic analysis, unlike the origi-
nal Ballesteros–González–Cañavate method, which just checks
the four conditions for the lowest and highest bids. This involves
considering how likely it is that one bid could have fallen outside
the supports limits ½a; b&. Nevertheless, since the true values of
the supports are not known but estimated by Eqs. (7) and (8), it is
necessary to obtain the general statistical distributions of a and b,
which at the same time are expressed as a function of the variables
N, Bmax, and Bmin.

The number of bidders, N, is known. However, the lowest (Bmin)
and the highest (Bmax) bids have to be expressed in terms of the
first-order and last-order statistics, respectively. In extreme-value
theory, these order statistics are in accordance with a beta distribu-
tion for the uniform distribution, as per David and Nagaraja (2003)

Bmin ¼ betaðBi;α ¼ 1;β ¼ NÞ ð11Þ

Bmax ¼ betaðBi;α ¼ N; β ¼ 1Þ ð12Þ

Introducing Eqs. (11) and (12), into Eqs. (7) and (8), results
in the curves represented in Fig. 2, which were obtained by
simulation.

These curves (Fig. 2) take on values within the range ½̆a; ȃ& ¼
½1=ð1 − NÞ; 1& in the case of the lower support a and within ½̆b; b̑& ¼
½0; N=ðN − 1Þ& in the case of the upper support b, but if they are
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rescaled within the intervals ½̆a; ȃ& ¼ ½0; 1& and ½̆b; b̑& ¼ ½0; 1&,
respectively, the result is as shown in Fig. 3.

This series of curves with the same domain, even though not
corresponding to beta distributions, are very accurately approxi-
mated by this type of curve as

a ≈ betaðBi;α ¼ A; β ¼ BÞ ð13Þ

b ≈ betaðBi;α ¼ B;β ¼ AÞ ð14Þ

where parameters A and B can be estimated by the method of
moments as

A ¼ μ
%
μ ð1 − μÞ

υ
− 1

&
ð15Þ

B ¼ ð1 − μÞ
%
μ ð1 − μÞ

υ
− 1

&
ð16Þ

where

μ ¼ 1

N
ð17Þ

υ ¼ N − 1

NðN þ 1ÞðN þ 2Þ
ð18Þ

where the mean μ is exact; and the variance υ of these distributions
was obtained by the simulation, and always results in p-values
below 1%, when approximating Eqs. (7) and (8) by Eqs. (13)
and (14), respectively.

Now, with the supports a and b distributions closely approxi-
mated, the next step is to compare the actual bid values Bi with
the probability curves of the supports and obtain the probabili-
ties of falling outside the range ½a; b&. In order to check this last
condition, two probability-related values are defined, as follows:
(1) Pabn low, which is the lower bound of the probability that a Bi
value is less than the lower support a; and (2) Pabn high, which is the
lower bound of the probability that a Bi value is more than the
upper support b. By means of the cumulative distribution functions
[Eqs. (13) and (14)], these probabilities are easily calculated for
every Bi as

Pabn low ¼ 1 − beta ðBi; α ¼ A; β ¼ BÞ ð19Þ

Pabn high ¼ beta ðBi; α ¼ B; β ¼ AÞ ð20Þ

However, these probabilities are only lower bounds, i.e., they
will always underestimate the probability since the true values of
the supports are only approximated. However, they serve their pur-
pose since high values of these coefficients always helps shed light
on those bids worth checking in more detail among the number of
2N possible combinations of bid groups.

The following two probabilities result: (1) the closer are these
probabilities to unity, the higher is the probability that if that bid
was removed from the original set of bid values, Conditions 1–4
will be fulfilled; and (2) when the probability is closer to zero, the
more unlikely a bid will be capable of complying with the four
conditions and therefore the less likely it will qualify as abnormally
low or high.

Nevertheless, to provide an unequivocal interpretation, these
two probabilities can be merged into one that represents in a single
value the lower bound of the probability that every bid falls outside
the range ½a; b&. This probability is

Pabn ¼ Pabn low þ Pabn high ð21Þ

The interpretation of Eq. (21) is analogous to the interpretations
given for probabilities Pabn low and Pabn high.

However, lower Pabn values do not necessarily indicate that a bid
would be abnormal if it is located well within the bid distribution
instead of near the extremes, this being a task for the Ballesteros–
González–Cañavate model presented previously.

Fig. 4 shows the calculations involved for Auction No. 33 taken
from the construction bid dataset introduced in the next section.
Additionally, the original bid values Bi also have to be rescaled
between ½a; b& using a per-unit scale (as the third row in the top
left of the Fig. 4 shows) to allow their comparisons with Eqs. (13)
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Fig. 3. Rescaled probabilistic curves of the support positions

Fig. 4. Example of Auction No. 33 complete preliminary analysis for detecting abnormal bids
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and (14), as performed in the simulation curves, which are used
afterwards in Eqs. (19) and (21), and which also range from
0 to 1.

The highest values of the lower bound of probabilities Pabn for
this auction shows that the lowest bid (i¼ 1), as well as the three
higher ones [(1) i¼ 4, (2) i¼ 5, and (3) i¼ 6] are those worth
checking for compliance with the four conditions. However, as will
be seen subsequently in Table 1, in this auction, only Bids 4–6
satisfy the four conditions when they are individually removed,
so they are the ones that become classified as abnormal (abnormally
high in this case).

The major feature of this third contribution of the paper, there-
fore, is that metric Pabn is extremely simple and quick to calculate,
and is capable of detecting abnormal bids located nearer the ex-
tremes of the distribution. This feature, together with the ability
to detect abnormal bids located near the bid distribution average
by the extended Ballesteros–González–Cañavate model, consti-
tutes a valuable improvement. Nonetheless, broadly speaking,
any collusive bidder that aspires to effectively leverage the bid
distribution will need to be abnormally high or abnormally low
to exert sufficient influence, particularly when cartel bids do not
comprise the larger part of the bids, a situation that increases
the probability of being detected.

Validation

Method

As described, this paper presents three different but complementary
contributions, but they have to be analyzed mostly as a group.
The first contribution is the extension of the original Ballesteros–
González–Cañavate capped auction model to uncapped auctions.
Two of the original four conditions have been refined to increase
its accuracy whereas the variables of the four conditions have been
transformed for use with bids values, unlike the dimensionless bids
in the original model. The manner in which this extended model
will be tested requires applying the reformulated four conditions
to an uncapped auction dataset, with some known cover bids of
one bidder, and observe the ratio of their correct and incorrect
detections as abnormal bids.

The second contribution is to propose a new estimator of the
bid distribution supports. This involves using Eq. (10) to estimate
the bid SD. If this provides a reasonably good approximation of the
true bid SDs, then the true supports a and b will also be well-
approximated since Eq. (10) is linearly proportional to the differ-
ence b − a, and therefore the coefficient of determination will be
close to unity.

The third contribution constitutes a new metric named Pabn to
help focus the Ballesteros–González–Cañavate model on bidders
located near the extremes being more likely to be abnormally high
or low (remember that Pabn is almost useless for abnormal bids not
located near Bmin or Bmax). In this case, metric Pabn will also be
tested against the bid dataset but only in combination with the
refined Ballesteros–González–Cañavate model.

Auction Dataset

To evaluate the practical application of the method, the Skitmore
and Pemberton (1994) set of uncapped auction bid data is analyzed.
These were donated by a construction company (encoded as Bidder
304) operating in the London area of the United Kingdom (U.K.)
and covered this company’s building contract bid activities during a
12-month period in the early 1980s for a total of 86 contracts.
The 51 resulting auctions for which a full set of bids were available

are given an auction identifier (ID) according to the original bid
dataset numbering and are presented in Table 1 along with the num-
ber of participating bidders (Column 2) and Bidder 304’s position.
Column 6 indicates whether Bidder 304’s bids are genuine or cover
bids according to the information provided by the donating com-
pany. The is a series of auctions where the sole awarding criterion
was the lowest bid, with no abnormally low bid criterion applied
preset in the auction specifications by the auctioner and with no
knowledge of whether other bidders entered cover bids. This data-
set therefore constitutes a very robust test to the method due to the
following:
• The existence of an abnormally low bid criterion greatly con-

ditions the way collusive bidders act (which makes it easier to
discriminate between bids that are only abnormal, and those that
are both abnormal and also potentially collusive), and

• Other bids might also be cover bids and therefore generate extra
noise in the data.

Calculations and Validating Results

Table 1 reflects the application of the method in 50 out of the 51
auctions (Auction No. 16 was not taken into account because, as
the original Ballesteros–González–Cañavate model, the minimum
number of bidders to be analyzed must be greater than 3). The
second block in Table 1 (Columns 4–7) contains the method’s
predictions concerning whether Bidder 304’s bid was genuine
or cover. In short, Conditions 1–4 were checked when Bidder
304 (alone or in combination with other bidders) was removed.
The resulting percentage of correct/incorrect predictions is no-
ticeably high (86% versus 14%), especially taking into account
the absence of information concerning any other cover bidders
involved. Furthermore, the model also detected two out of three
abnormal bids not located near the extremes (Auction Nos. 9, 15,
and 40); this fact is mentioned since detection is very difficult in
this situation.

Bidder 304’s abnormal bids, being cover bids, are always
high, which leaves the ability of the method to detect abnormally
low bids untested. However, as deduced from the model’s four
conditions, the approach to detecting abnormally low bids is
equivalent to that of abnormally high bids, suggesting that since
abnormally high bids have been successfully detected, abnor-
mally low bids should be equivalently so, since they are symmet-
rical cases.

Block 3 in Table 1 shows the SD values of the observed bids
(Column 8, σ actual) as well as the estimated values obtained by
applying Eq. (10) [Column 9, σ, Eq. (10)]. Eq. (10) was expressed
as a function of N (Column 2) as well as Bmax and Bmin (not pre-
sented due to the lack of space). The coefficient of determination
(R2) is 0.988, very close to 1, leading to the conclusion that
Eq. (10), as well as the support estimators proposed in Eqs. (7)
and (8), constitute a very good approximation of the bid distribu-
tion boundaries.

The last block on the right-hand side of Table 1 (last 10 col-
umns) presents the Pabn values for all bids in which the positions
occupied by Bidder 304 have been underlined. The sequence of
calculations performed to obtain these values was identical to
the one described in Fig. 4 for Auction No. 33. That is, Bi, N,
Bmax, and Bmin were used to obtain supports a and b from Eqs. (7)
and (8). The original Bi values were then rescaled within the in-
terval [a, b] and with these rescaled values (from 0–1), μ, υ, A,
and B were easily obtained from Eqs. (15)–(18). Finally, Pabn low
and Pabn high were calculated by Eqs. (19) and (20), and the final
Pabn values obtained by Eq. (21).
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If a tentative threshold is set at Pabn ¼ 0.25, a quick count from
the last 10 columns of Table 1 reveals that whenever Bidder 304’s
bids were genuine. The metric Pabn was above a value of 0.25 on 19
occasions (right predictions, 56%) out of 34 (15 wrong predictions,
44%). However, when Bidder 304’s bids were actually cover bids,
the results were slightly better, with Pabn > 0.25 in 10 auctions
(62.5% right predictions) out of 16 auctions (37.5% wrong predic-
tions). This is a first approach by setting a Pabn value at 0.25, but
seems clear that this metric has at least a moderate-to-weak corre-
lation with the predictions generated by the extended Ballesteros–
González–Cañavate model at the cost of very simple and quick
calculations.

In short, unlike the previous two research components devel-
oped previously, metric Pabn is not a stand-alone abnormal bid
detection component but a complementary coefficient whose main
goal is to rank suspect bids for applying other abnormal bid detec-
tion methods such as the Ballesteros–González–Cañavate model.
This is especially the case when the number of possible combi-
nations of bidders is very high, complicating the application of
the model mentioned previously to all possible scenarios, i.e., sub-
groups of bidders’ bids. However, there is still way to go concern-
ing the accuracy of this metric.

Another conclusion concerning these results is that the standard
bids are well-represented by their respective regression straight
lines once the abnormal bidders have been removed (if there are
any) since their regression lines are always within the limit lines
representing a good fit with the uniform distribution (otherwise
not all the four conditions would have been satisfied). However,
the validation carried out in this paper represents only a tentative
outcome since more bid datasets such as the one used would be
necessary to ensure the wider application of the method proposed,
bid datasets that are unfortunately very difficult to obtain in
practice.

Discussion

The complete extended Ballesteros–González–Cañavate model is
potentially able to detect all abnormal bids in addition to solely
abnormally expensive or cheap bids as in the original model.
Furthermore, the empirical test in the paper shows the model to be
remarkably accurate at detecting abnormal bids in the form of cover
bids in a set of real bid data, even in the most difficult situation
where competition is purely on bid value. This demonstrates that
the extended model developed in this paper is robust to the uniform
distribution assumption for uncapped and capped auctions. In ad-
dition, using the German Tank solution quite surprisingly results in
the estimated uniform distribution supports being expressed solely
as a function of the number of bidders involved.

The assumption of uniformly distributed bids is also not neces-
sarily restrictive. Where another distribution is involved, the bid
values can be transformed into a uniform distribution by using the
probability values of the cumulative distribution without loss of
generality.

Previous simpler models have been applied to only relatively
simple bid situations, where a smart cartel might avoid being de-
tected by using the very same tests that check exchangeability and
conditional independence in reverse, by trying different bid values
until they simulate real competition, while still fulfilling their
hidden intentions. Therefore, despite cartel bids being generally
more highly correlated than truly competitive bids (Porter and
Zona 1993), provided the tests can be used by either the auction-
eer or the cartel itself, competitive bidding might always be
compromised.Ta
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Conclusions

This paper extends and substantially refines the Ballesteros–
González–Cañavate model for detecting both abnormally high and
low bids, provides mathematical expressions to approximate the
bid distribution supports involved, and proposes a new metric to
focus on potentially collusive bidders in uncapped auctions. This
abnormal bid detection model partially avoids several drawbacks
that other models suffer since it does not need any information con-
cerning the bidders involved (apart from all the bids entered) nor
about the contract, and the necessary statistical procedure is quite
straightforward while the data generated allow attention to be
drawn to deviations in 1=N multiples, which may eventually indi-
cate a potentially abnormal behavior. However, for bid pricing de-
cisions the influence of several other factors are acknowledged,
such as market conditions, current workloads, and the relationship
between the bidder and the owner or engineer; these might not
always be well-represented by the method developed in this paper
and may eventually generate unexpected deviations, or false abnor-
mal bid alerts.

In the case study of the research reported in this paper, the ap-
plication described performed sufficiently well overall, with almost
every bid identified as abnormal by the method being an actual
cover bid. However, the proposed method has not been extensively
tested, since these bid datasets, such as the one analyzed in this
paper, are extremely difficult to obtain so that it is unlikely that
further validation tests will be possible. In practical terms, there-
fore, although particularly potentially useful for sifting the great
amount of bid data with which contracting authorities have to work,
it is unlikely that the method could be implemented beyond a first
and quick check. In the case where several contract auctions are
found to contain repetitive abnormal bid behavior, the additional
use of other more accurate yet complex and time-consuming
existing methods will always be needed.

Finally, the discovery of the central role of the number of bid-
ders in the German Tank solution, together with the success of its
use in uncapped abnormal bid detection, suggests that it may be
reasonable to believe that the bid SD might not be the only param-
eter influenced by the number of bidders in the auction. The next
logical step, therefore, is to find which other parameters may also
be expressed as a function of the number of bidders and try to pre-
dict the number of bidders itself for future construction contract
auctions.
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