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Abstract 

Improving road safety and reducing the number of accidents is one of the top 

priorities for the automotive industry. As human driving behaviour is one of the top 

causation factors of road accidents, research is working towards removing control 

from the human driver by automating functions and finally introducing a fully 

Autonomous Vehicle (AV). A Collision Avoidance System (CAS) is one of the key 

safety systems for an AV, as it ensures all potential threats ahead of the vehicle are 

identified and appropriate action is taken.  This research focuses on the task of 

vehicle detection, which is the base of a CAS, and attempts to produce an effective 

vehicle detector based on the data coming from a low-cost monocular camera. 

Developing a robust CAS based on low-cost sensor is crucial to bringing the cost of 

safety systems down and in this way, increase their adoption rate by end users. 

In this work, detectors are developed based on the two main approaches to vehicle 

detection using a monocular camera. The first is the traditional image processing 

approach where visual cues are utilised to generate potential vehicle locations and at 

a second stage, verify the existence of vehicles in an image. The second approach is 

based on a Convolutional Neural Network, a computationally expensive method that 

unifies the detection process in a single pipeline. The goal is to determine which 

method is more appropriate for real-time applications. Following the first approach, a 

vehicle detector based on the combination of HOG features and SVM classification 

is developed. The detector attempts to optimise performance by modifying the 

detection pipeline and improve run-time performance. For the CNN-based approach, 

six different network models are developed and trained end to end using collected 

data, each with a different network structure and parameters, in an attempt to 

determine which combination produces the best results. 

The evaluation of the different vehicle detectors produced some interesting findings; 

the first approach did not manage to produce a working detector, while the CNN-

based approach produced a high performing vehicle detector with an 85.87% average 

precision and a very low miss rate. The detector managed to perform well under 

different operational environments (motorway, urban and rural roads) and the results 
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were validated using an external dataset. Additional testing of the vehicle detector 

indicated it is suitable as a base for safety applications such as CAS, with a run time 

performance of 12FPS and potential for further improvements. 
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1 Introduction 

1.1 Background 

The introduction of the motor vehicle in the late 19th century brought a revolution in 

human mobility and completely transformed human societies. Motorised transport 

became the predominant means of moving people and goods and it is estimated that 

by the end of 2016, the global vehicle population stood at 1.32 billion cars and trucks 

(Petit, 2019). 

As with other technologies, this increase in mobility brought new challenges in 

safety, pollution and energy demand. Vehicles have become one of the leading 

causes of deaths around the world, with road traffic fatalities reaching 1.35 million in 

2016 according to the World Health Organisation (World Health Organisation, 2018). 

Despite efforts to reduce the number of fatalities, the number remains unacceptably 

high, with traffic deaths now being the leading cause of death for children and young 

adults aged 5-29 years (World Health Organisation, 2018). 

According to Haddon (1980), vehicle collisions are the outcome of vehicle, 

environmental and human factors and to tackle this problem, a systematic approach 

is required at each stage (pre-crash, crash, post-crash stages). In addition to other 

interventions such as educational campaigns, enforcement etc., technological 

solutions can contribute to reduce the number of accidents happening in the first 

place. This need, to enhance vehicle safety has driven the development of safety 

systems throughout the years. Initially, passive safety systems such as seatbelts 

(introduced in the 1960s), crush zone (1970s) and airbags (1980s) improved the 

crashworthiness of vehicles and reduced the passenger fatalities and injuries. Active 

systems such as ABS (introduced in the 1970s), traction control (1980s), brake assist 

(1990s) and ACC (Adaptive Cruise Control)/blind spot detection/ lane departure 

detection systems is the 2000s brought further improvements in road transport. Now, 

even more advanced systems such as autonomous (driverless) intelligent vehicles are 

developed and are expected to revolutionise vehicular safety over the next few years 

(Eskandarian, 2012). 
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An autonomous -or driverless- vehicle (AV) is a vehicle capable of fulfilling the 

need to transport people or goods with little or no human input. Also known as a 

robotic vehicle, it is designed to travel between destinations without a human 

operator. To qualify as fully autonomous, it must be able to navigate without human 

intervention to a predetermined destination over roads that have not been adapted for 

its use. To clearly define the different levels of autonomy in vehicles, the Society of 

Automobile Engineers (SAE) introduced the following classification (SAE 

International, 2016): 

Level 0 – No automation: The driver controls all aspects of the dynamic driving 

task, even when enhanced by warning or intervention systems. 

Level 1 – Driver assistance: Driving mode-specific execution by a driver assistance 

system of either steering or acceleration/deceleration using information about the 

environment. The driver maintains control and performs all other aspects of the 

driving task. 

Level 2 – Partial automation: Driving mode-specific execution by one or more 

driver assistance systems of both steering and acceleration/decelaration using 

information about the driving environment. The driver maintains control and 

performs all remaining aspects of the driving task. 

Level 3 – Conditional automation: Driving mode-specific performance by an 

automated driving system of all aspects of the driving task with the expectation that 

the human driver will respond appropriately to a request to intervene. 

Level 4 - High automation: Driving mode-specific performance by an automated 

driving system of all aspects of the driving task, even if a human driver does not 

respond appropriately to a request to intervene. 

Level 5 – Full automation: Full-time performance by an automated driving system 

of all aspects of the driving task under all roadway and environmental conditions that 

can be managed by a human driver.  
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Autonomy is envisaged as the solution to many of the problems caused by the large 

number of vehicles in the streets today. Autonomous vehicles are expected to bring 

improvements in areas such as road safety, congestion, environmental pollution and 

energy consumption (Eskandarian, 2012; Litman, 2019). More specifically, some of 

the benefits expected from the introduction of higher levels of autonomy are: 

• Improved traffic safety, by an overall reduction in the number and severity 

of crashes, improved reliability and faster reaction times compared to human 

drivers 

• Improvements in the traffic flow, leading to reduced congestion, higher 

speed limits and reduced travel time 

• Fuel efficiency by optimising fuel consumption, reducing stop & go driving 

and emissions 

• Time savings, leading to reduced travel time, time required to find a parking 

space and manoeuvre the vehicle into spot 

• Removal of constraints related to human driving impairment, such as 

disabilities, fatigue or sleepiness while driving, drink/drug driving 

• Economic benefits. Not considering a higher initial cost to manufacture an 

AV compared to traditional vehicles, accident-related costs are expected to 

drop, along with fuel, maintenance and insurance costs. 

By introducing Advanced Driver Assistance Systems (ADAS) and automating 

vehicle functionality, the ill-effects of human driving behaviour that leads to 

accidents (recognition errors, decision and performance errors) can be limited 

(NHTSA, 2015). 

ADAS refers to the vehicle functions that an intelligent vehicle provides either 

completely autonomously or assists the driver with during driving. ADAS includes 

but is not limited to, systems such as ACC, Automatic Parking, Blind spot 

monitoring, Collision Avoidance Systems (CAS), Lane Change Assistance, 

Pedestrian protection systems and others.  

Active safety systems such as CAS are designed to reduce the probability of an 

accident (Mukhtar et al., 2015). The Collision Avoidance functionality involves 
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detecting obstacles on the road that threaten the operation of the vehicle, the safety of 

the passengers/cargo as well as the vehicles and pedestrians in the surrounding 

environment. The system can either warn the user of the imminent collision or take 

longitudinal and lateral control of the vehicle in order to avoid the collision. 

1.2 Problem statement 

A robust and reliable detection system is a crucial element for CAS. Obstacle 

detection is achieved by processing the data provided by environmental sensors (such 

as radar, cameras, LIDARs etc.) using detection and classification algorithms.  

Sensors in CAS can be classified in two main categories: active and passive. Active 

sensors emit signals into the surrounding environment and capture the reflection to 

identify obstacles/targets. Sensors of this type are radar systems (emitting radar 

waves) and LIDAR (Light Detection and Ranging)/laser systems that use infrared 

signals or laser beams. Sensors of this type are able to measure distance directly 

without requiring high computational resources, are able to detect objects in larger 

distances compared to optical sensors and finally, their performance is robust in 

foggy or rainy conditions and during nigh time. Their main drawbacks are the high 

cost compared to vision systems; their increased power requirements (since they emit 

signals) and that same-type sensors interfere with each other (Sivaraman and Trivedi, 

2013; Mukhtar et al., 2015; Eskandarian, 2012). 

The most common passive sensor used for detection is the optical system 

(monocular/stereo camera). Cameras are low-cost solutions that are easier to install 

and maintain, offer higher resolutions and provide descriptive information and are 

also free from the interference problems active sensors face. Vision-based detection 

depends highly on the quality of acquired image (with quality depending on lighting 

and weather conditions) and requires more computing power to process the images. 

The table below gives a brief comparison between active and passive sensor systems: 

 



   

5 

 

Table 1-1: Advantages and disadvantages of active and passive sensors 

Type of sensor Advantages Disadvantages 

Active sensors 

(radar, LIDAR, 

laser) 

1. Direct distance measurements 

2. Longer detection range 

compared to camera 

3. Robustness against 

environmental conditions (fog, 

rain), during night time and 

complex shadows 

1. Higher cost compared to 

vision systems 

2. Lower spatial resolution 

3. Interference between 

sensors of the same type 

Passive sensors 

(camera) 

1. Higher resolution and 

increased Field of View 

2. Lower cost compared to active 

sensors  

3. Useful descriptive information 

can be extracted from images 

1. Quality of acquired data 

dependent on lighting and 

weather conditions 

2. Increased computational 

resources required to 

process images 

 

Currently, AV development efforts from automotive and technology  companies such 

as Google, Tesla, Mercedes-Benz  (Ziegler et al., 2014) or universities (Urmson et al., 

2008; Broggi et al., 2014; Berlin Team et al., 2007; Wille et al., 2010; Rauskolb et al., 

2009) make use of multiple or high cost sensors to achieve their functionality.   

The robustness of the systems comes from fusing data obtained from multiple 

sources and eliminating the errors associated with the sensor systems. CAS that use 

multiple sensors lead to systems that are more reliable than those using only a single 

sensor (Premebida et al., 2007; Kmiotek and Ruichek, 2008; Chavez-garcia and 

Aycard, 2015; Bertozzi et al., 2008; García et al., 2017). For vehicle detection, it is 
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possible to fuse data from both active and passive sensors. During the fusion process, 

either the various sensor systems perform detection of objects/obstacles at the same 

time and validate each other or the system is built around one main system while the 

other secondary sensors validate the results of the main system (Rodriguez F. et al., 

2010; Garcia et al., 2012). 

While this approach increases the overall system’s robustness, makes it more reliable 

and manages to collect the maximum amount of information from the surrounding 

environment, there are two major drawbacks to this approach.  

The first one is that, due to the sheer number of sensors used for fusion, the total cost 

of the system rises significantly. Active sensors (radar but especially LIDAR systems) 

are significantly more expensive than vision systems.  Despite costs dropping year by 

year due to the inevitable mass production of sensor systems, the total cost of full 

sensor suite is prohibitive making the mass adoption of safety systems in commercial 

vehicles much more difficult. The second significant drawback is that different 

sensor systems require different approaches and algorithms, making the whole 

system more complex and computationally expensive. Since different sensors 

generate data of different types from the surrounding environment, it is necessary to 

process them separately in order to fuse the information. For example, the point 

cloud generated by a LIDAR sensor cannot be directly used in conjunction with the 

video stream of a camera. Instead, it needs to be converted into a usable form before 

any object detection/classification process takes place.  

1.3 Research importance 

This thesis will attempt to develop a simple and robust vehicle detector, able to 

perform under different environmental conditions. The detection system will be 

based on a vision sensor (a monocular camera in this case), which will act as the sole 

sensor system.  

In the race to produce the first fully Autonomous Vehicle, cost is often overlooked 

and ADAS systems are offered at a premium to the end user. Cost however, is an 

important factor for the adoption of systems such as CAS in vehicles and therefore, 
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the goal should be to achieve the desired functionality with the lowest possible cost 

and at the same time, keep power and processing requirements low.  

For that reason, it is essential to maximise the camera-based system’s detection 

performance, producing the best possible results. Performance in this case will be 

measured by the system’s ability to detect all vehicles on the road ahead, minimising 

any false detections and doing so in the most computationally efficient way. 

This research project is meaningful, as the success in developing such a system will 

indicate that it is possible to achieve CA functionality in Intelligent and Autonomous 

Vehicles using low-cost sensors and pave the way for mass adoption of safety 

systems of this type in vehicles. 

1.4 Aim and objectives 

The aim of this PhD research is to develop a reliable detector for identifying vehicles 

in real-time, based on a low-cost sensor, such as a monocular camera. 

This aim will be fulfilled through the following objectives: 

• To investigate existing vision-based approaches to vehicle detection 

• To identify the methods that are more likely to produce the desired 

performance, given the limitations of the existing methods 

• To collect, synthesise and process the data required to develop a vehicle 

detector 

• To develop a method for detecting vehicles based on a low-cost monocular 

camera 

• To assess and validate the performance of the developed vehicle detector 

   

1.5  Thesis outline 

This thesis is organised in seven chapters. This section provides an outline of each 

chapter: 
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Chapter 2 conducts an extensive and critical literature review of vision-based vehicle 

detection. The review explores both traditional image processing-based vehicle 

detection as well as Convolutional Neural Network (CNN) based detection.  Every 

stage of the two approaches is reviewed and the main findings of this review are 

discussed. 

Chapter 3 presents the methodology of this thesis. Two vehicle detectors are 

developed, one following the traditional image processing approach (where the 

image is processed into a form where useful information can be extracted) and the 

other following CNN-based vehicle detection. Both attempt to optimise existing 

methods and improve detection performance. The approach followed to estimate 

distance to a moving vehicle ahead is also presented in this chapter. 

Chapter 4 presents the data which are employed to build the models. The type of data 

used is presented along with a description of the collection process. The pre-

processing of the dataset and its limitations are also discussed in this chapter. 

Chapter 5 reveals the results for all the examined models. The developed detectors 

are evaluated based on established evaluation metrics and the best-performing 

detector is identified. 

Chapter 6 discusses the findings of the Results chapter (Chapter 5). It also explores 

the run-time performance of the highest performing detector and determines whether 

it is suitable for real-time application. A simple range measurement application is 

developed and serves as a test to determine whether the developed vehicle detector 

can be the foundation upon which a complete CAS is based. 

Finally, Chapter 7 summarises the findings of this research, discusses whether the 

goals originally set out are achieved and the limitations of this work. This is followed 

by a discussion for future research and improvements. 
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2 Literature Review 

2.1 Introduction 

Active safety systems such as a Collision Avoidance System (CAS) are designed to 

reduce the probability of an accident (Mukhtar et al., 2015). The Collision Avoidance 

functionality involves detecting obstacles on the road that threaten the safe operation 

of the vehicle, the safety of the passengers/cargo as well as the vehicles and 

pedestrians in the surrounding environment. The system can either warn the user of 

the imminent collision or take longitudinal and lateral control of the vehicle in order 

to avoid the collision. 

A robust and reliable obstacle detection system is a crucial element for CAS. 

Obstacle detection is achieved by processing the data provided by environmental 

sensors (such as radars, cameras, LIDARs etc.) using detection and classification 

algorithms. Current high-performance detection systems use multiple or high-cost 

sensors to achieve their functionality. This study aims to develop a vehicle detection 

system based around a single low-cost sensor, in this case a monocular camera. 

The process of detection using a camera-based system consists of two stages: 

Hypothesis Generation (HG) and Hypothesis Verification (HV). This chapter 

discusses each of the vehicle detection systems that comprise the detection process. 

First, the Hypothesis Generation (HG) stage is introduced. This sub-system is 

responsible for generating the object candidate locations in an image (initial 

detection). The second stage presented, Hypothesis Verification (HV) is responsible 

for verifying the existence of an object in the image and classifying it as vehicle, 

pedestrian or other object (Sun, Miller, et al., 2002; Li and Guo, 2013; Kanjee and 

Carroll, 2015; Mukhtar et al., 2015). 

The main methods used for each stage of the detection process are presented here, 

with the focus given on those used for the proposed detection systems. The 

remainder of the review is structured as follows: Section 2.2 presents the method 

used to generate potential vehicle locations (HG) while Section 2.3 focuses on the 

verification of those potential locations (HV). Section 2.4 explores the topic of 
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feature extraction from images while Section 2.5 focuses on the use of HOG features 

in vehicle detection. Section 2.6 presents the architecture of Convolutional Neural 

Networks and their use in vehicle detection and Section 2.7 is a short review of range 

estimation techniques. Finally, Section 2.8 summarises this review and identifies the 

gap in research. 

2.2 Initial vehicle detection (Hypothesis Generation) 

This first stage of the detection process involves identifying potential vehicle 

locations in the captured images. Potential location or regions of interest (a ROI is a 

portion of an image on which an operation is performed; multiple ROIs can exist in 

an image) in images can be determined using two methods: motion-based techniques 

that analyse a sequence of image frames to detect moving objects based on their 

optical flows or appearance-based (also known as knowledge-based) techniques that 

analyse single image frames to find visual cues that indicate vehicle existence (Sun, 

Miller, et al., 2002; Khammari et al., 2005; Sivaraman and Trivedi, 2013; Mukhtar et 

al., 2015). 

2.2.1 Motion-based approaches 

In motion-based approaches, optical flow fields for moving vehicles are calculated 

by matching feature points or specific pixels between consecutive image frames. 

Vehicle corners is the tracked feature by Smith (1995), while Heisele and Ritter 

(1995) track the colour blobs of the vehicles. Jazayeri et al. (2011) track multiple 

low-level features such as corners, horizontal line segments and intensity peaks. To 

create the optical flow fields in motion-based approaches, it is necessary to track the 

selected features across several frames. Usually, a fixed number of frames are 

selected. In Jazayeri et al. (2011) the minimum tracking duration is 50 frames. 

Yanpeng et al. (2008) use optical flow optimisation to track overtaking vehicles. 

Their findings show that detection accuracy depends on the relative speed between 

host and overtaking vehicle, with vehicles overtaking the host vehicle with small 

relative speed (less than 10km/h) proving difficult to detect (with a 69.1% detection 

rate). Kuo et al. (2011) use an appearance-based method and motion flow on an 
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embedded system to detect and track vehicles on a highway. Preceding and 

overtaking vehicles are detected at a rate of 95.8% and 90.6% respectively, with 

large vehicles causing false negatives in the detection. 

Motion-based monocular camera detection is less common than appearance-based 

methods as it requires the analysis of several frames to detect moving objects. Since 

monocular vision lacks direct depth measurements that are important for motion flow 

methods, it is difficult to use such methods without introducing significant 

inaccuracies. Instead, for a monocular camera-based detection, it is simpler to 

analyse single frames to find visual cues. For motion-based detection, using a stereo 

vision system is more appropriate, as it is more accurate in calculating distance to 

objects. 

2.2.2 Appearance-based approaches 

In appearance-based approaches, specific characteristics of a vehicle or of its 

adjacent environment are sought by the image processing algorithm. In this way 

regions of interest are created and are further examined for the presence of vehicles.  

Usually, a vehicle detection system looks for a combination of features in an image, 

as one feature on its own is unreliable and not sufficient to detect a vehicle (Chan et 

al., 2012). The main features that appear in the literature are: 

i. Shadows 

ii. Edges 

iii. Corners 

iv. Symmetry 

v.  Texture 

vi. Colour 

vii. Vehicle back lights 

i) Shadows on a paved road hint to the existence of a vehicle on the road. Cheon et al. 

(2012) detect the boundaries of the road region by outlining the lowest homogenous 

region in the lower part of an image. Areas with colour intensities under a specific 

threshold are declared shadow regions, their edges are detected and in that way, 
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possible vehicle locations are declared. Li and Guo (2013) segment the shadows 

underneath vehicles using histogram analysis and combine the horizontal and vertical 

edge features of the shadows to generate the possible vehicle locations. (Baek et al., 

2014; Yu et al., 2016; Di and He, 2016) follow a similar approach to exploit shadows 

generated under the vehicle for ROI generation and combine them with other visual 

cues to enhance detection performance.  

Figure 2-1b is the output of shadow region detection process performed on a sample 

image (Figure 2-1a). The shadows underneath the vehicles are visible in white, 

separating them from the surrounding environment: 

 

Figure 2-1: Original image (a), shadow segmentation (b). Source: Li and Guo (2013) 

Shadow region detection does not come without limitations. It is greatly affected by 

the illumination conditions of the environment and by the shadows cast by nearby 

objects. 

ii) Detecting the edges of a vehicle is one of the most common methods for 

generating a ROI. The reason is that the rear view of a vehicle usually forms a 

rectangular shape with horizontal and vertical edges and specific aspect ratios, 

ranging between 0.4 and 1.6, depending on the size of the vehicle (Teoh, 2011). This 

common characteristic allows for efficient vehicle detection, minimising the 

probability for missed detections due to an irregular shape. 

Edge detection aims to identify points in a digital image where there are sharp 

changes in image brightness. Such changes in an image usually correspond to 

discontinuities in depth or surface orientation, changes in material properties or 

variations in local illumination. The boundaries (edges) of an object are examples of 

such change in image brightness. 
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The most common ways to perform edge detection is to use filters allowing the 

detection of object boundaries. Such filters (e.g. Sobel filter, Canny edge detector) 

are not only used for the particular application but are widely used in image 

processing to extract useful structural properties of objects. 

The Sobel operator (or filter) is a discrete differentiation operator, used to compute 

an approximation of the gradient of the image intensity function. The operator makes 

use of 2 3X3 sized kernels (one for horizontal and one for vertical changes) which 

are convoluted with the input greyscale image to calculate approximations of the two 

derivatives (Sobel, 1990; Fisher et al., 2003a). The two kernels are: 

[
−1 0 1
−2 0 2
−1 0 1

] in the 𝑥 (horizontal) direction, and 

[
1 2 1
0 0 0

−1 −2 −1
] in the 𝑦 (vertical) direction. 

After the convoluting the image with the kernels, the resulting components 

𝐺𝑥 , 𝐺𝑦 can be used to compute the gradient magnitude and direction: 

𝐺𝑥 =  [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐴        (2.1) 

𝐺𝑦 =  [
1 2 1
0 0 0

−1 −2 −1
] ∗ 𝐴         (2.2) 

Where * here denotes the 2-dimensional convolution operation. 

𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2        (2.3) 

𝜃 =  tan−1(
𝐺𝑦

𝐺𝑥
)        (2.4) 

The Canny edge detection filter takes the Sobel operator and improves it to produce 

better results (Canny, 1986). The Canny edge filter is a multi-stage algorithm: 
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i. First, the input image is smoothed using a 5X5 Gaussian filter to remove 

noise. 

ii. The second step is to find the intensity gradients of the smoothed image, 

using the Sobel operator described above. 

iii. After computing the gradient magnitudes and orientations, a process called 

non-maximum suppression is used to remove any unwanted pixels which 

may not be part of an edge. Every pixel is checked if it is a local maximum in 

its neighbourhood in the direction of the gradient. If so, it is stored for 

consideration in the next step, otherwise it is suppressed (its value is set to 0). 

This operation results in an image with “thin” edges. 

iv. This final stage decides which edges detected during the previous stages are 

really edges or not. During this stage, a process called hysteresis thresholding 

takes place. Two threshold values, one minimum and one maximum are used 

to detect true edges. Any edges with intensity gradient higher than the 

maximum threshold values are considered “sure” edges and are retained. 

Edges below the minimum value are labelled “false edges” and are discarded. 

The edges that have intensity gradients in between the threshold values are 

retained if they are connected to “sure” edges above the maximum threshold 

value, otherwise they are discarded as well. Apart from classifying edges, this 

stage also removes individual pixels (noise) assuming that edges are long 

lines. 

Vertical and horizontal edge structures are detected and processed  in Sun, Miller, et 

al.(2002) in order to generate ROIs. Teoh (2011) uses a Canny edge detector to 

generate an edge image, while Baek and Lee (2014) also use a Canny filter along 

with shadow region detection for the HG stage. Deng et al. (2014) use edges to detect 

vehicles in the same lane as the ego-vehicle, while (Yu et al., 2016; Di and He, 2016) 

perform ROI generation by utilising Sobel filters along with shadow region detection. 

Figure 2-2 below presents edge information on an image of a vehicle’s rear view: 
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Figure 2-2: Edge detection Source: Teoh (2011) 

Edge detection is not robust enough to be used on its own. It is limited by 

interference from outlier edges while it is difficult to select an optimum threshold for 

the process itself (Mukhtar et al., 2015). 

iii) In general, the shape of a vehicle is rectangular with four corners. Corners can be 

detected by identifying edge pixels at the positions corresponding to vehicle’s sides. 

Detected corners can be clustered based on their type and location. These clusters 

can be used as inputs for a classifier (identifies objects) to determine whether the 

corners belong to a vehicle (Jinhui and Meng, 2010). Corner detection fails to 

perform in complex and cluttered environments (e.g. urban) and thus, is severely 

limited in its application. 

iv) Most vehicles’ front and rear views are symmetrical over a vertical centre line. 

With that in mind, the estimation of the location of a vehicle in an image by detecting 

regions with high horizontal symmetry is possible. A symmetry value is calculated 

based on pixel characteristics including grey colour values, gradients, colour and 

feature points. To locate a vehicle, it is necessary to determine the symmetry axis 

(centreline) of the vehicle, which can be found using grey level symmetry, contour 

and horizontal line symmetry (Kuehnle, 1991). Bensrhair et al. (2001) experiment 

with both monocular and stereo vision setups for vehicle detection and use symmetry 

as the main visual cue.  Grey level symmetry is exploited initially, before symmetry 

properties are computed in horizontal and vertical edges are computed in order to 

enhance detection robustness. Dai et al. (2007) exploit vehicles’ symmetric 
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properties in multi-scale windows for same lane vehicle detection (in highway 

environment), while Teoh (2011) use symmetry in a generated edge image for 

vehicle detection, after reducing the effective search space of the image to improve 

performance. 

The drawback of Symmetry detection as a visual cue is that it is processor intensive 

and highly dependent on the vehicle’s surrounding environment. 

v and vi) Colour and texture of a vehicle. Most vehicles have a homogenous body 

colour that is different from road surface or a background object. The same applies 

for the texture of a vehicle, which is different from its surroundings. This information 

can be used to segment vehicles from the images acquired by a camera system. The 

limitation of using colour as a visual cue is its poor performance in a background of 

matching colours and its dependence on good illumination conditions. 

vii) Detection of head or rear lights of a vehicle is usually performed to detect a 

vehicle in low-light conditions, where other feature detection techniques have low 

reliability. Chen et al. (2006) segment and cluster bright objects in an image, and the 

target regions are verified using symmetric properties (shape of lights, texture and 

relative position). Schamm et al. (2010) use a perspective blob filter to separate front 

from rear lights and in this way distinguish vehicles going the same or opposite way. 

Despite various night time detection techniques, such as the one described above, 

using an IR (infrared) camera is a more efficient way to detect vehicles and extract 

their features. Figure 2-3 below presents the result of rear light detection, where the 

lights are identified and stand out from the rest of the image using rectangular 

bounding boxes: 
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Figure 2-3: Rear light detection Source: Schamm et al. (2010) 

Vehicle detection using vehicles’ lights is inefficient when other sources of light 

such as street lights or shop bulbs exist in a scene. 

This section presents the dominant visual features used for appearance-based vehicle 

detection and their limitations. The literature indicates that all of them are used with 

varying levels of effectiveness. The most common ones appear to be edge detection 

(which is easy to implement due to the existence of various filters from other image 

processing applications), shadow region detection (usually rectangular-shaped 

shadows are formed underneath vehicles) and symmetry (due to the specific 

rectangular shape of vehicles’ rear view). 

To increase robustness and ensure improved detection performance, a combination of 

visual cues is usually used to generate the sub-images necessary for the next part of 

the detection process. 

2.3 Hypothesis Verification 

Hypothesis Verification (HV) is the second part of the detection process, tasked with 

validating the identified image areas as objects of interest (e.g. vehicle, pedestrian) or 

not. 

There are two types of verification techniques: 

• Template matching (correlation based approaches) 
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• Object classifier methods, probability distribution methods (learning based 

approaches) 

2.3.1 Template matching 

Template matching involves measuring the similarity between the ROI extracted 

from an image and a predefined template by calculating their correlation. Since 

vehicles come in different models with various appearances, a general template with 

features common to all vehicles is used. Common features may include rear window 

and plate, rectangular-shaped box with specific aspect ratio and an object with one 

horizontal and two vertical edges (U-shape) (Parodi and Piccioli, 1995; Handmann et 

al., 1998; Bensrhair et al., 2001). 

A dynamic template that updates the initial template increases the robustness and of 

the matching technique. After the initial verification using a generic template 

described above, a cropped image of the detected vehicle becomes the new template 

and the updated template to accurately verify the vehicle across different frames 

(Betke et al., 1997). A dynamic template was also used by Lin and  Xu, (2006) and 

its reliability was measured using edges, area and aspect ratio of the target to match 

the result to a vehicle, with a 95.7% performance rate reported for tracking. 

While template matching has been used in vehicle detection, the method appears to 

have serious limitations that affect its usefulness. Detection failure when there are 

changes in scene illumination as well as problems when an object is rotated 

(resulting in low correlation coefficient) indicate limited robustness. Another 

problem to be considered is the need to generate a large number of templates to cover 

all vehicle cases on the road (Nath and Deb, 2010). 

2.3.2 Object classifier methods 

Object classifiers use two classes of images to discern vehicles from non-vehicle 

objects. A classifier learns the characteristics of a vehicle’s appearance from a set of 

training images that includes images of both vehicles and non-vehicles. The classifier 

training is a supervised learning approach and the larger the set of images used, the 

better the classifier performs. The most common classifiers include Artificial Neural 
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Networks (ANN), Support Vector Machines (SVM), AdaBoost and Mahalanobis 

distance. Another way to classify objects is to model the probability distribution of 

features belonging in each class (methods using the Bayes rule assuming Gaussian 

distribution such as a Dynamic Bayesian Network) (Sun, Miller, et al., 2002; 

Khammari et al., 2005; Sun et al., 2006; ; Haselhoff et al., 2007; Sivaraman and 

Trivedi, 2013; Kanjee and Carroll, 2015; ; Mukhtar et al., 2015; Chavez-garcia and 

Aycard, 2015).  

i) Artificial Neural Networks (Schmidhuber, 2015; Hornik et al., 1989) are a family 

of models inspired by biological neural networks and are used to estimate or 

approximate functions that can depend on a large number of inputs (generally 

unknown). They are presented as a series of interconnected nodes (neurons) which 

exchange information with each other. The connectors between the nodes have 

numeric weights assigned to them, which can be adjusted, making the network 

adaptive to inputs and capable of learning. 

The basic structure of an ANN consists of one input layer, one output layer and one 

or more hidden layers between them. The number of inputs is equal to the number of 

features used for the classification and the number of outputs is the number of classes 

to be classified. For example, if there were 3 potential vehicle classes for objects to 

be classified into (e.g. car, truck, motorcycle), then the output layer would have 3 

outputs. The hidden layers between the input and output layers is where the learning 

process is taking place. There is no specific rule to determine the number of hidden 

layers. A small number may result in inaccurate classification while a large one 

increases classification accuracy but increases computational load as well. In practice, 

the optimal number of hidden layers/nodes is determined through extensive 

experimentation. An example of an ANN with simple topology with n inputs 

(features), 1 output and 2 hidden layers (processing layers) is given in Figure 2-4: 
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Figure 2-4: ANN (n inputs, 2 hidden layers, 1 output) Source: Teoh (2011) 

Each connector is associated with a weight, 𝑤 and a bias, b. These values hold the 

‘knowledge’ of the network and they are acquired through learning. In each node, the 

weighted sum of each input from the previous layer plus the bias term is calculated. 

The result is then transformed to the output using an activation function, 𝑔(𝑥). The 

learning process aims to minimise the output error. After an initial output and its 

error are calculated using the various inputs, the weights of the connectors are 

adjusted so that the classification error is reduced. This process is repeated for a fixed 

number of iterations or until the desired minimum error is achieved. 

ii) Support Vector Machines (SVMs) (Vapnik, 1998; Müller et al., 2001) are 

supervised learning models with associated learning algorithms used to analyse and 

recognise patterns. They can be used to solve both classification and regression 

problems.  
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In supervised learning, models are taught what conclusions or predictions they 

should come up with. This is possible by providing the model with labelled prior 

knowledge (known output). The supervised learning model then uses the training 

data to “learn” a link between the input and outputs. By comparison, unsupervised 

learning models are left on their own to model the hidden structure or underlying 

structure in the data in order to learn more about the data. In this case, there is no 

labelled prior knowledge. A common example of unsupervised models is clustering 

methods. 

The Support Vector Machine is a two-class classifier and its aim is to find the 

frontier which best segregates the two classes. It maps the training data of two object 

classes from the input space into a higher dimensional feature space, using a 

mapping function, φ. Then an optimal separating hyperplane with maximum margin 

is constructed in the feature space to separate the two classes. After the optimal 

hyperplane is determined, new data samples are assigned into one category or the 

other. The coordinates of each data item are called Support Vectors. A simple 

example of classification using a linear SVM is given in Figure 2-5 below: 
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Figure 2-5: Example of hyperplane separating two feature classes Source: Teoh (2011) 

Given a set of 𝑙 labelled training samples (input – output pairs): 

(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑙 

Where:  

𝑥𝑖  ∈ 𝑅𝑁 are the N-dimensional input feature vectors and 𝑦𝑖    {−1, +1} are the labels 

for Class 1 and Class 2. 

The decision function is: 

 

𝑓(𝑥) =  ∑ 𝑦𝑖 𝑎𝑖
𝑙
1 𝑘(𝑥, 𝑥𝑖) + 𝑏    (2.5) 

For an unknown data 𝑥, it can be classified into:  

Class 1 if 𝑓 (𝑥) > 0 or Class 2 if 𝑓 (𝑥) < 0 
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The coefficients, 𝑎𝑖 and bias, 𝑏 are estimated from the training data, by solving the 

constrained optimisation problem with the aim of finding a separating hyperplane 

with maximum margin. The support vectors from Classes 1 and 2 are the training 

data that sit on the boundary in the hyperspace (𝑎𝑖  ≠ 0 ), as can be seen in Figure 2-

5. 

𝑘(𝑥, 𝑥𝑖) is the kernel function that we use in order to avoid calculating the mapping 

function φ which, in many cases, is not an easy task. The kernel function may be 

linear, polynomial, sigmoid etc. (Teoh, 2011; Chen et al., 2013;) : 

Linear:   𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗       (2.6) 

(Gaussian) Radial Basis Function: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , 𝛾 > 0 (2.7) 

Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝜄
𝑇𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0     (2.8) 

Sigmoid:  𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)    

 (2.9) 

Where: 𝛾, 𝑟 𝑎𝑛𝑑 𝑑 are the kernel parameters, 𝑇 is the transposed matrix. 

iii) Mahalanobis distance (Mahalanobis, 1936) is a measure that is used to assess 

the dissimilarity between two sets of variables. It is different than Euclidean distance 

in that it considers the correlation between the variables when calculating the 

distance. That is a useful characteristic because most of the variables used for 

classification are dependant to each another. It is used as a minimum distance 

classifier where the distances between an unknown sample and several object’s 

classes are calculated. The sample is then classified into a class with the shortest 

distance.  

The Mahalanobis distance, 𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠  between an N-dimensional vector 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 and a group of vectors with mean μ= (𝜇1, 𝜇2, … , 𝜇𝑛)𝑇 and covariance 

matrix S is: 

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠= √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇)      (2.10) 



 

24 

 

𝜇  and S represent the vehicle’s class distribution. In order to classify a test image, 

the 𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 between the image and the μ of each vehicle class is calculated. If 

the distance is below a certain threshold, the image is classified as a vehicle. By 

using varying thresholds, different values of true detection and false detection rates 

can be calculated. 

iv) AdaBoost (Freund and Schapire, 1999) (short for Adaptive Boosting) is a 

boosting method used to improve the performance of several “weak” classifiers by 

combining them into a “strong” classifier. A weak classifier is a classifier that 

performs poorly, but still better than random guessing (over 50% correct 

classification). The output of these classifiers is combined into a weighted sum that 

represents the output of the final boosted classifier. 

The equation for the boosted (strong) classifier is: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑡ℎ𝑡(𝑥)𝑇
1 )        (2.11) 

Where T is the number of weak classifiers, ℎ𝑡(𝑥) is the output of the weak classifier 

t and 𝑎𝑡 the weight applied to classifier t by AdaBoost. The final output is a linear 

combination of all the weak classifiers and the classification decision is made by 

looking at the sign of this sum. 

The output weight 𝑎𝑡 for the first classifier is given by: 𝑎𝑡 =  
1

2
ln

(1−𝑒𝑡)

𝑒𝑡
 where 𝑒𝑡 is 

the classifier’s error rate. After computing the first alpha, the training example 

weights are calculated again using the following formula: 𝐷𝑡+1(𝑖) =

 
𝐷𝑡(𝑖)exp (−𝑎𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
 where 𝐷𝑡  is a vector of weights, with one weight for each 

training example. 𝐷𝑡 is a distribution which means that each weight 𝐷 represents the 

probability that each training example 𝑖 will be selected as part of the training set. 𝑍𝑡 

is the sum of all weights and it is used in the division so that the weights are 

normalised and the probabilities all add up to 1 (Viola and Jones, 2001;  Haselhoff et 

al., 2007; Matas and Sochman, 2009). 
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Classification accuracy depends on many factors so determining which classifier 

performs the best is not a trivial task. It is a combination of application requirements, 

balancing performance and processing speed and the quality of data. 

For example, SVM classification performance depends on the selection of kernel 

function and its parameters, which are empirically determined, after experimentation 

and validation of produced results. A Neural Network’s discrimination ability is 

largely dependent on the topology of the network, with the number of hidden layers 

and the number of training cycles affecting performance. Similarly, empirical 

evaluation determines the optimal number of hidden layers and training cycles.  In 

the same way, AdaBoost performance is affected by the number of “weak” classifiers 

that make up the system (Sun et al., 2006; Teoh, 2011). 

The quality and size of input data is equally important for successful classification 

results. Extracted images features affect the classifier’s discriminative ability and the 

size of training data (positive and negative training samples) is also of significant 

importance. 

Detailed information on the use and performance of classifiers in vehicle detection 

follows in section 2.5.2. 

2.4 Image feature extraction 

Instead of feeding a classifier raw image data, an image processing stage is involved 

(feature extraction). The purpose of this processing is to remove irrelevant and 

redundant data, which would make the classification process harder and more 

computationally intensive. In order to obtain those specific information that will be 

used as input to the classifier, training images are processed to extract descriptive 

features of the object to be classified. A good selection of features is important to 

capture the variability in the appearance of a vehicle and achieve good classification 

results. The most common features used for classification are: 

• Gabor features 

• Principal Component Analysis (PCA) features 
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• Haar wavelets 

• Histogram of Oriented Gradients (HOG) 

i) The Gabor filter is a linear filter used for edge detection in image processing. 

Representations of Gabor filters are reminiscent of the human visual system and they 

are used for texture analysis, object segmentation and classification. A 2D Gabor 

filter is a Gaussian function that can be viewed as a sinusoidal plane of particular 

frequency and orientation. Gabor filters respond to lines or edges with different 

widths and orientations depending on the filters’ parameters, so in order to obtain 

good descriptive from an image, using different orientation and scales of the filter is 

required (Sun, Bebis, et al., 2002; Teoh, 2011). 

An example of a Gabor filter (sample image (a), features -5 scales/8 orientations-(b)  

and output (c) can be seen in the figures below. Figure 2-6 is a sample image, Figure 

2-7 is the features used (5 scales/8 orientations) and finally, Figure 2-8 is the output 

when the filters are applied. It can be observed that each of the filters produces a 

different output, highlighting the varying orientations: 

 

 

 

Figure 2-6: Sample image Source: Stackoverflow (2016) 
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Figure 2-7: Gabor features (5 scales/8 orientations) Source: Stackoverflow (2016) 

 

Figure 2-8: Gabor output Source: Stackoverflow (2016) 

ii) Principal Component Analysis (PCA) (Jolliffe, 2002; Fodor, 2002) is a common 

technique used to reduce features’ dimension. It is a statistical procedure that 

converts a set of observations of possibly correlated variables into uncorrelated 

values. At first, the covariance matrix C of the n-dimensional feature set is calculated. 

After that, all the eigenvectors and eigenvalues of the C matrix are calculated and 

sorted. The eigenvectors with the highest eigenvalues are called Principal 

Components. Each of the Principal Components consists of n coefficients and each 

coefficient is associated with a feature of the original feature space (Truong and Lee, 

2009; Teoh, 2011). 

iii) Haar-like features consider adjacent regions in an image, sum the pixel 

intensities in each region and calculate the difference between the sums of these 
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regions. The difference is used to categorise those sections of the image based on a 

threshold that separates objects from non-objects. Haar features are “weak” 

classifiers, so a large number are required to accurately describe an object (Viola and 

Jones, 2001). 

iv) The Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) is a 

feature descriptor used in image processing with the purpose of identifying objects in 

an image. The primary idea behind HOG features is that they can be used to describe 

object appearance and shape by their distribution of intensity gradients or edge 

directions (in image processing, an edge is considered a point where image 

brightness changes abruptly) (Zhiqian Chen et al., 2013). More details on HOG and 

HOG based-vehicle detection are presented in the next section. 

2.5 Histogram of Oriented Gradients (HOG) and vehicle 

detection 

2.5.1 HOG feature extraction 

HOG operates similarly to other descriptors such as edge orientation histograms 

(Freeman and Roth, 1995), SIFT (Scale-Invariant Feature Transform) descriptors 

(Lowe, 1999) and shape contexts (Belongie and Malik, 2000), the difference being 

that HOG describes a whole image and produces a single feature vector used to 

describe an object compared to other methods that operate locally around specific 

interest points and produce a collection of feature vectors to represent the same 

object.  Compared to HOG, edge orientation histograms only take into consideration 

the gradient of pixels that correspond to edges, while SIFT and shape context 

descriptors measure shape similarity (by identifying interesting points in an object 

and measuring the relative position between them) (Lowe, 1999; Belongie and Malik, 

2000). 

The descriptive power of HOG comes from calculating gradients over a dense grid of 

small image areas (cells) and contrast-normalising them in larger groups (blocks) 

(Dalal and Triggs, 2005). 
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Cells are small connected regions that contain the pixels that make up the image. 

Cells are rectangular in traditional HOG with a number of pixels that can be defined 

(e.g. 8X8, 16X16 pixels cells.). A block is the name given to the superset of cells 

upon which normalisation takes place. 

HOG features were described and used for the first time in Dalal and Triggs (2005), 

in which they were used to detect pedestrians, outperforming Haar wavelets, SIFT 

descriptors and shape context descriptors.. Research with HOG features has since 

expanded to detecting other objects, including vehicles. 

The general flow of calculating the HOG feature vector is the following (Figure 2-9): 

1. Gradient computation for each pixel in a small area (cell) 

2. Spatial/orientation binning 

3. Normalisation and descriptor blocks 

 

Figure 2-9: HOG descriptor generation Source: Ballesteros and Salgado (2014) 

Since HOG is calculated over small image areas called cells, determining the cell 

size is the first step. Dalal and Triggs (2005) experimented with various cell sizes 

and concluded that there is a trade-off between detection accuracy and computational 

cost when deciding on cell and block size. The results of their experimentation are 

presented in Figure 2-10: 
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Figure 2-10: HOG cell/block performance  Source: Dalal and Triggs (2005) 

They determined that rectangular 6x6 pixel cells, organised in 3x3 blocks perform 

best, with a misdetection rate of 10.4%. However, this was not the combination they 

used in their research, instead using 8x8 pixel cells in 2x2 blocks. This option was 

selected based on its performance and it is a close second in terms of minimum miss 

rate. 

Gradient vectors are then computed for every pixel within each cell. In image 

processing, a gradient is a directional change in the intensity or colour in an image 

and is measured by the change in pixel values along each direction (x and y).  Pixel 

value is a number that indicates the brightness of the pixel. For greyscale images, 

pixel value ranges between 0 and 255; this is the size of a byte (8 bits). 0 is the value 

representing black, while 255 represents white. Colour images have three separate 

components (RGB – Red, Green, and Blue) each component taking a value from 0-

255. 

The gradient is given by the formula: 

∇𝑓 =  [
𝑓𝑥

𝑓𝑦
]         (2.12) 

Where 𝑓𝑥 and 𝑓𝑦 are the derivatives with respect to x and y directions respectively: 

𝑓𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)      (2.13) 
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𝑓𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1)       (2.14) 

It is necessary to compute the magnitude and the angle of the vector. Magnitude 

represents the strength of the edge: 

|∇𝑓(𝑥, 𝑦)| =  √𝑓𝑥
2 + 𝑓𝑦

2         (2.15) 

The gradient orientation 𝜃 represents the direction of the edge for each pixel and is 

given by: 

𝜃(𝑥, 𝑦) =  tan−1 (
𝑓𝑦

𝑓𝑥
)            (2.16) 

The next step is the creation of the histograms for each cell. Each pixel calculates a 

weighted vote for an orientation-based histogram, based on the orientation of the 

gradient of that specific pixel. The cells can either be rectangular or radial in shape 

(rectangular cells offered better performance according to Dalal and Triggs (2005), 

and are better suited for vehicle detection due to the vehicle geometry) and the 

histogram bins are evenly spread over 0-180 degrees or 0-360 degrees, depending on 

whether “unsigned” or “signed” orientation has been selected. In the original paper, 

unsigned (0-180) orientation and 9 bins were found to perform the best for the 

specific task (human detection). Fine orientation is essential for good performance, 

but not at the expense of computational time. Performance improved by increasing 

the number of bins, but made little difference after 9 bins. Figures 2-11,2- 12 and 2-

18 show the effect of bin size on accuracy and computational time from various 

researchers experimenting with HOG parameters, with miss rate decreasing as the 

number of bins increased. Computing time also increases significantly. (Dalal and 

Triggs, 2005; Tae Young Lee et al., 2015; Seung Hyun Lee et al., 2015). It is also 

argued that signed orientation might offer better performance in other tasks such as 

vehicle detection. However, other researchers have found that is not the case (Teoh, 

2011). 
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Figure 2-11: Bin size effect on miss rate Source: Dalal and Triggs (2005) 

 

Figure 2-12: Bin size effect on accuracy/computational time  Source: Lee et al. (2015a) 
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Figure 2-13: Example of a 9-bin HOG histogram for a cell  Source: McCormick (2003) 

This histogram doesn’t actually represent the frequency distribution of the vectors’ 

orientation. Instead, the magnitudes of pixels are added and binned. 

A weighted vote means that the contribution of each pixel to the histogram via the 

gradient’s magnitude is split between the two closest bins it falls in. That happens 

because it is very rare for a gradient to fall exactly at the centre of a bin (e.g. 

orientation angle 110 degrees). The vote is bilinearly interpolated between the 

centres of the two closest bins. 

For example, if the angle of a gradient vector is 85 degrees, then we add 1/4th of its 

magnitude to the bin centred at 70 degrees, and 3/4ths of its magnitude to the bin 

centred at 90 degrees (distance to bin 70 is 15 degrees, distance to bin 90 is 5 

degrees). It would be possible to change the way votes are cast using another method 

(Gaussian for example, to downweight the effect of pixels near the edges). 

After this step, comes the normalisation of the histograms. Gradients are grouped in 

blocks and normalised locally to make them invariant to illumination changes (e.g. 

shadowing, contrast/brightness etc.). Dalal and Triggs (2005) evaluated 4 

normalisation schemes: 

• L2 norm:  𝑣 →  
𝑣

√||𝜐||+𝜀2
      (2.17) 
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• L2-Hys: L-2 norm followed by clipping (limiting the maximum values of 𝑣 to 

0.2) and renormalizing 

• L1 norm: 𝑣 →
𝑣

||𝑣||+𝜀
       (2.18) 

• L1-sqrt: 𝑣 → √
𝑣

||𝑣||+𝜀
       (2.19) 

where 𝑣 is the unnormalised descriptor vector, ||𝑣|| its k-norm (magnitude) and ε a 

small constant. 

Results show that L2 norm, L2-Hys and L1-sqrt offer comparable performance while 

L1 norm is slightly worse by about 5%. All normalisation schemes offered better 

performance compared to non-normalised data. The results can be seen in the figure 

below, where it is obvious that miss rate and False Positives decrease when 

normalisation is used: 

 

Figure 2-14: Effect of normalisation schemes Source: Dalal and Triggs (2005) 

The key characteristic of the HOG descriptor is the block overlap in normalisation 

that creates redundancy and improves the detection performance. In their paper, 

Dalal and Triggs (2005) experimented with various levels of overlap before 

implementing a 50% overlap on the blocks. The effect of overlap is that each cell 
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appears multiple times in the final descriptor, though each time normalised by a 

different set of neighbouring cells. In 2x2 cell blocks with 50% overlap, corner cells 

appear once, other edge cells appear twice, while interior cells appear four times each. 

This leads to a final vector file (descriptor) that is much longer compared to a non-

overlap descriptor. This leads to increased processing time as a side-effect of higher 

detection accuracy. 

In the original implementation of HOG for human detection, a very dense detection 

window was created due to overlapping, and this redundancy led to improved 

performance by 5%. This dense window was beneficial for detecting the shape of 

humans, but may not be necessary for vehicles, where shape presents smaller 

variation (usually a rectangular shape). There was no comparison in performance 

between overlapping and non-overlapping HOG detection in the original study. 

Another study by Ma et al., (2011)  (again, for pedestrian detection) showed that 

non-overlapping HOG had a 3% increased miss rate compared to overlapping HOG 

but around 40% increase in processing speed. 

While it is not clear why block normalisation was chosen in the original research as 

opposed to normalising across the whole image, it is probably due to the fact that it is 

more probable for changes in contrast to occur over small regions within the image. 

So instead of normalising across the whole image, normalisation happens in a small 

region around the cell. 

The final HOG descriptor is the concatenation of all normalised cell histograms from 

all blocks in the image in a vector. So, the final vector has a size: 

Descriptor size = Total no. of blocks * cells per block * no. of bins per histogram. 

So for example, a 32X32 pixel image produces a 324 long vector (9 bins, 9 blocks in 

total, 4 cells per block). 

The 64x128 images used by Dalal and Triggs (2005), produce 3,780 values (7 blocks 

horizontally, 15 blocks vertically, 9 bins, 4 cells per block). Figure 2-15 below 

summarises and visualises the steps for HOG feature extraction: 
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Figure 2-15: Summary of steps for HOG extraction Source: Teoh (2011) 

 

2.5.2 HOG-based vehicle detection 

HOG and its variations are widely used in image processing for object identification. 

While its original application was pedestrian detection, it has been used to detect 

other objects that share common characteristics with each other, such as road 

vehicles.  

In his research on vehicle detection,  Teoh (2011) experimented with HOG 

parameters (i.e. bin size, signed/unsigned orientation, gradient computation) and 

concluded that HOG outperforms Gabor features in detection accuracy as well as 

computational efficiency. The results of this extensive experimenting with HOG 

features can be seen in Figure 2-16 below: 
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Figure 2-16: Effect of bin size and signed/unsigned orientation Source: Teoh (2011) 

Li and Guo (2013) and Chen et al. (2013) use a combination of HOG coupled with a 

SVM classifier to detect vehicles. A shadow edge detection technique and a brute 

force approach are used respectively to achieve their results, with the first one 

claiming 96.87% detection rate on very low resolution images (24X24 pixels) 

without commenting on  real-time performance, while the second claims real-time 

operation though without providing detection rates. Hu et al.(2013)use HOG features 

for verifying vehicle existence while utilising Haar wavelets and AdaBoost for ROI 

generation, achieving 93.3% classification accuracy. Yc Chen et al. (2013) use 

perspective geometry to solve the problem of slow sliding window approach and 

their adaptive scan approach results in 7 times faster vehicle search compared to the 

brute force approach. Similarly, Kim et al. (2013) use adaptive window but their 

overall system performance fails to meet real-time requirements. Laopracha et al. 

(2014) use a modified version of HOG called v-HOG, which is less accurate but 

faster than traditional HOG and experiment with HOG parameters and kernel 

functions. Their method results in up to 100% classification accuracy, though using 

only a set of low-resolution vehicle images (64x64 pixels). The structure of v-HOG 

can be seen in Figure 2-17 below: 
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Figure 2-17: Vertical HOG (v-HOG) structure Source: Laopracha et al. (2014) 

Kim et al. (2014) use SVM and HOG combined with a method to determine the 

vehicle size, in order to reduce the size of ROIs for classification and the total 

computational time due to the sliding window approach. Shadow and edge detection 

are used by Baek and Lee (2014) to determine ROI and a HOG+SVM verification 

process. Their paper reports 15ms candidate generation and 60ms vehicle verification 

time. Deng et al. (2014) use lane detection to limit the search space and improve 

performance. Their system is only able to detect vehicles directly ahead of the ego-

vehicle. Ballesteros and Salgado (2014) experiment with HOG parameters for a 

pose-based vehicle verification system. By removing interpolation and HOG overlap 

and using only specific cells in the descriptor, it is claimed that computational cost is 

reduced by 60% while retaining the same level of accuracy as traditional HOG. 

Alencar et al. (2015) and Chavez-garcia and Aycard (2015) use a multi-sensor fusion 

system (radar and radar/LIDAR respectively) to improve detection performance, 

though both systems exhibit false detections in many cases. Kim et al. (2015) use 

πHOG (a variation of traditional HOG) to include position and intensity information 

and increase its descriptive ability. The resulting feature vector is longer than HOG 

and reduced search space is required to reduce computational time. Lee et al. (2015) 

detect shadow region for the HG part of the process, reporting 92% detection rate but 

the system fails completely when the shadow area is not properly detected. 



 

39 

 

 

Figure 2-18: Effect of bin size on detection rate Source: Lee et al. (2015b) 

Sun and Watada (2015) use boosted HOG+SVM classifier to detect pedestrians and 

vehicles in static images. HOG features are boosted using Adaboost and shadow 

detection is used for ROI generation. Vehicle detection accuracy is not reported, 

though pedestrian detection is reported lower than traditional HOG (75% to 86%). 

The detection process is also limited to daytime operation. Yu et al. (2016) detail a 

vision-based lane marking and vehicle detection system with shadows and vertical 

edges used for ROI generation. SVM+HOG are used for verification, with no 

quantitative results provided, though problems with the accuracy of the classifier and 

computation time are reported. Finally, Di (2016) use HOG and an Adaboost 

classifier, with edges and shadow providing ROIs. Fine direction separation is used 

(20 directions per histogram) for every cell. To reduce running time, feature values 

are grouped before they are used by AdaBoost’s “weak” classifiers (for example, 4 

adjacent directions are grouped into 1 for the first “weak” classifier).Detection 

accuracy is 91.37% with a false positive rate of 3.09%, although the Adaboost 

classifier proves to be too computationally expensive for real-time applications. 

Classifier performance using other feature descriptors 

The performance of various combinations of classifiers and feature sets has been 

examined in the literature before. In the majority of cases, performance is measured 

by the detection rate (DR) metric, which indicates the proportion of correct vehicle 

detections out of the total number of vehicle instances.  The results of the most 

relevant classification methods are presented in Table 2-1 below: 
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Table 2-1: Features and classifiers in the literature 

Methodology Results Image resolution / 

additional information 

AdaBoost + Haar like features 

(Haselhoff et al., 2007) 

88.5-93% DR 

(detection rate) 

24x18 resolution images 

AdaBoost + Haar like features 

(Wu et al., 2009) 

71% DR 

38 fps 

30x25 / 40x40 images 

Detecting occluded 

vehicles 

AdaBoost + HOG features 

(Chavez-garcia and Aycard, 2015) 

90% DR No info on resolution 

Performance varies 

depending on traffic 

scenario / (high FP) 

Random Decision Forest + HOG 

features 

(Alencar et al., 2015) 

392 FP/430 FN 

(1922 cars) 

128x64 images 

General detector 

SVM  classifier + Haar wavelets 

(Papageorgiou, 2000) 

90% DR 

28 fps 

32x32 images 

Low refresh rate 

SVM classifier + Haar wavelets 

(Sun, Miller, et al., 2002) 

10 Hz sampling rate 64x64 images 

SVM classifier + Gabor features 

(Sun, Bebis, et al., 2002) 

94.8% DR 

30 fps 

64x64 images 

NN + PCA features 

SVM + PCA features 

NN + Gabor features 

SVM + Gabor features 

NN + wavelet features 

SVM + wavelet features 

NN + combined Gabor/wavelets 

SVM + combined Gabor/wavelets 

(Sun et al., 2006) 

18% average error 

9.09% error 

16% average error 

6% average error 

16.4% error 

8.5% average error 

11.54% error 

4% average error 

 

 

 

32x32 images 

SVM classifier + PCA analysis 

(Truong and Lee, 2009) 

95% DR 64x64 images 

SVM classifier + HOG features 

(Rybski et al., 2010) 

88% DR 50x60 images 

Orientation detection 

Mahalanobis distance + Gabor 

features 

Mahalanobis distance + HOG 

features 

ANN + Gabor features 

ANN + HOG features 

SVM + Gabor features 

SVM + HOG features 

(Teoh, 2011) 

65.2% DR 

78.1% DR 

89.4% DR 

96.5% DR 

96.3% DR 

98.4% DR 

 

 

 

32x32 images 

Gabor high processing 

time 

SVM classifier + HOG features 

(Li and Guo, 2013) 

96.87% DR 24x24 images 

AdaBoost + Haar(HG)/HOG (HV) 

(Hu et al., 2013) 

93.3% DR 64x64 images 
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Methodology Results Image resolution / 

Additional information 

SVM classifier + HOG features 

(Baek et al., 2014) 

98.75% DR No resolution reported 

15ms ROI generation 

60ms verification time 

SVM + adapted HOG features 

(Ballesteros and Salgado, 2014) 

98.69% DR on 

average 

64x64 resolution images 

Static images 

SVM classifier + HOG features 

(Tae Young Lee et al., 2015) 

92.09% DR 64x64 images 

AdaBoost + HOG features 

(Di and He, 2016) 

91.37% DR 

3.09% FP 

64x64 images 

No real-time performance 

ELM + HOG features 

ELM + v.HOG features 

SVM + HOG features 

SVM + v.HOG features 

(Laopracha et al., 2014) 

98.76% DR 

98.90% DR 

77-100% DR 

96.87-100% DR 

64x64 images 

Static images 

No processing time 

reported 

Α camera/radar fusion system to perform vehicle detection is described in Haselhoff 

et al. (2007), where a method to use mutual information from the two sensors and 

eliminate redundant features is used. The radar here is used to generate ROIs while 

the camera verifies the existence of obstacles by extracting rectangular Haar features 

and classifying using AdaBoost. Subimage resolution is normalised to 24x18 and 

contrast/variance normalisation is used on the images to improve detection results. 

The detection rates (88.5-93%) presented vary depending on the level of data 

elimination. The AdaBoost detection system in Wu et al. (2009) scans for partially 

occluded cars and buses using images of different resolution (very low resolution up 

to 40x40 pixels) for the two classes. The detection of occluded vehicles using Haar-

like features here requires significant pre-processing to produce sample images, 

while the system can only detect specific cases of occluded vehicles. Results show 

good performance in static images but detection rates in video lag behind. 

 In Sun et al. (2002b) and Sun et al. (2002a) a SVM classifier with different feature 

sets is used to perform classification. The Gabor features used in Sun et al. (2002a) 

give improved results compared to Haar wavelets in Sun et al. (2002b) although the 

classification process only takes place in subimages in Sun et al. (2002a). In the 

second study, the performance in complex scenes is explored, with a multi-scale 

edge detection process taking place to generate ROIs. Sun et al. (2006) test a series 
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of classifiers to determine which performs better at vehicle classification. The same 

multi-scale edge detection process is used, where the original image is downsampled 

to increase process speed. Results display the superiority of using SVM combined 

with HOG features, compared with other classifiers and features sets (Neural 

Network, Mahalanobis distance / Gabor features). Truong and Lee (2009) use long 

horizontal and vertical line detection for HG and PCA features combined with a 

SVM classifier. The most important features (i.e. Principal Components) that 

describe a vehicle are chosen manually and the image resolution is reduced in this 

study as well. Rybski et al. (2010) fuse camera and LIDAR data to detect vehicle 

orientation and a classifier with different image resolution to achieve their results. 

Their system is trained on 8 possible orientations and is able to correctly predict 

vehicle orientation with an accuracy of 88%, though testing concluded that using an 

orientation-independent classifier produces better results than attempting to 

determine individual vehicles through their orientation. 

2.6 Convolutional Neural Networks and vehicle detection 

This section discusses the use of Convolutional Neural Networks (CNNs) as vehicle 

detectors in detail. The section begins by providing an introduction to the CNN, its 

architecture and building blocks. Different classification/detection algorithms based 

on CNN are presented and finally, the differences between traditional approaches to 

vehicle detection and CNN-based methods are discussed. 

2.6.1 Architecture of a Convolutional Neural Network (CNN) 

A CNN (or ConvNN) is a type of Neural Network that has successfully been used to 

analyse visual information.  It is a feed-forward network, meaning that information 

always moves towards one direction in the network; it never moves backwards as in 

recurrent neural networks. While CNNs are similar to ordinary Neural Networks 

(they are made up of neurons with learnable weights and biases), they make the 

assumption that the input data are images and therefore their architecture is arranged 

accordingly, with their parameters set to make the learning process more efficient 

(LeCun et al., 2010; Karpathy and Li, 2019b). 
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Unlike regular NNs, neurons in CNNs are arranged in 3 dimensions: width, height 

and depth (with depth referring to the third dimension of an activation 

volume/number of filters used to produce the feature maps) with each neuron 

connected to a small region of the layer before it, called receptive field. An example 

of the difference between a regular and a ConvNN can be seen in Figure 2-19 below. 

In the CNN, each layer transforms the 3D input image (width x height x 3 (for RGB 

images) to a 3D output volume: 

 

Figure 2-19: Regular NN (left) - CNN (right) Source: Karpathy and Li (2019b) 

As described earlier, a Neural Network is a series of layers, one after the other, 

where the output of one layer is transformed in the next through a differentiable 

function. In a CNN, there are four main operations taking place, each in its own layer: 

1. Convolution (Convolution Layer) 

2. Introducing non-linearity 

3. Pooling or sub-sampling (Pooling Layer) 

4. Classification (Fully Connected Layer) 

The four main types of layers are supplemented by others, performing other 

functions such as normalisation or dropout (Krizhevsky and Hinton, 2012; LeCun et 

al., 2010; Bishop, 2007; Plemakova, 2018; Karpathy and Li, 2019b). Additionally, a 

loss layer at the end of the network is used to calculate probability scores for 

different object classes. The sum of the probability scores for all mutually exclusive 

object classes is 1. 

The structure and operation of a CNN is detailed extensively in the literature (LeCun 

et al., 1989; LeCun et al., 1998; Bishop, 2007; Plemakova, 2018; Karpathy and Li, 

2019b) : 
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Convolution layer 

The convolution layer is the core building block of the CNN and the whole network 

takes its name after the specific operation. The primary purpose of convolution is the 

extraction of features from the input image. Essentially, it serves the same purpose as 

other feature descriptors used in image processing (HOG, SIFT, Haar wavelets etc.) 

(Zhao et al., 2019). 

As discussed before, every image is a matrix of values, which indicate the brightness 

of a pixel. For greyscale images, pixel values range from 0 to 255 (with 0 indicating 

black colour, 255 white colour and values in between them different scales of grey). 

For RGB colour image, values range from 0-255 for each of the colour channels 

(Red, Green and Blue). 

To perform convolution, small sized 2D matrices (e.g. 3x3 pixel size) called filters 

(or alternatively, kernels) are used on the 2D image matrix to compute the dot 

product: 

i. The filter is slid across the input (image) matrix by a fixed number of 

pixels (e.g. 1 pixel) which is called stride. 

ii. For every position, an element-wise multiplication is performed 

between the two matrices  

iii. The multiplication outputs are summed to get the final integer, which 

forms a single element of the output matrix. 

Since the filter is limited in size compared to the input matrix, the filter only “covers” 

a part of the image in each stride (receptive field). The final product of this process is 

called convoluted feature or feature map.  The output feature map varies, 

depending on the filter used for convolution. In image processing, different filters are 

used for different operations, such as edge detection, sharpening or blurring an image 

etc.  

Before training a CNN, parameters such as number of filters, filter size and stride 

need to be specified for the convolution layer: 
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i. The number of filters determines the “depth” of the convolution layer, i.e. the 

number of feature maps produced through the convolution operation. For 

example, if the number of filters is set to 5, 5 different maps containing 

different information will be produced. 

ii. Filter size, which is the size of the filter matrix (3x3, 5x5 etc.). 

iii. Stride, which is the number of pixels by which the filter matrix slides over 

the input matrix. A larger stride will produce a smaller feature map, making 

the training process faster, but running the risk of missing useful information 

from the image. 

Additionally, it is possible to add zero values around the input matrix (zero-padding), 

which allows the filter to be applied on border pixels of the input image as well. 

Introducing non-linearity to the network 

The convolution layer is followed by a layer tasked with introducing non-linearity in 

the CNN. Since convolution is a linear operation (matrix multiplication and addition) 

and most real-world data is non-linear, it is necessary to introduce non-linearity to 

the network. Non-linear means that the output cannot be reproduced from a linear 

combination of the inputs. Modern neural network models use non-linear activation 

functions that allow the model to create complex mappings between the network’s 

inputs and outputs.  That way, the network can learn and model complex data such as 

images, videos or other datasets which are non-linear or have high dimensionality.  

Linear functions are avoided in neural networks, because network models with linear 

activation functions are effectively only one layer deep, regardless of how complex 

their architecture is (the last layer of the network becomes a linear function of the 

first layer). Essentially, a neural network with linear activations is a linear regression 

model, with limited power and ability to handle complex input data. 

The most common non-linear functions used in CNNs are: 
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The hyperbolic tangent 𝑓(𝑥) = tanh (𝑥) function, 

 

Figure 2-20: Hyperbolic tangent function 

The sigmoid 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 function, 

 

Figure 2-21: Sigmoid function 

or some other function such as the ReLU function. 

The function usually used in convolutional networks is the ReLU function or 

Rectified Linear Units function (Nair and Hinton, 2010): 

𝑓(𝑥) = max (0, 𝑥)        (2.20) 
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Figure 2-22: Rectified Linear Unit function 

which replaces all negative values in the feature map with zero. 

The ReLU function is preferred over others, because it has been found to train the 

neural network faster, with no significant penalty to accuracy. Its convergence rate is 

approximately 6 times faster compared to the 𝑡𝑎𝑛ℎ function (Krizhevsky and Hinton, 

2012).  

Pooling layer 

The pooling function (also known as subsampling or downsampling) aims to reduce 

the size of the feature map after the convolution and ReLU layers, while at the same 

time retaining the most important information. It is also helpful to avoid overfitting 

while training the network by reducing the number of parameters and computations 

and provides an almost scale invariant representation of the image (making detection 

of objects in an image easier, no matter where the object may be located). Among the 

various types, such as average, max, sum etc., Max pooling is the most common 

function to perform subsampling as it has proven to work better in practice 

(Krizhevsky and Hinton, 2012; Simonyan and Zisserman, 2014; Girshick, 2015). 

In the case of Max pooling, the rectified feature map is partitioned into non-

overlapping rectangles, and for each such rectangle, the maximum value is taken as 

representative for that region. Pooling operates along both width and height of the 

feature map and for every depth slice (Nagi et al., 2011). 
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The size of the pooling window is defined beforehand. An example of a max pooling 

operation on a 4X4 input feature map using a 2X2 window can be seen in the figure 

below. The max operation is performed over 4 values with only 1 remaining, so in 

this case, 75% of the information is discarded: 

 

Figure 2-23: Example of max pooling operation  

 

The pooling windows are usually kept small in size (usually 2X2) because of their 

destructive nature (larger receptive fields discard a large amount of possibly useful 

data). 

Figure 2-24 below is indicative of how pooling operates within the structure of a 

Neural Network, where the depth of the convolution layer is 3 (3 feature maps 

produced): 
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Figure 2-24: Pooling operation 

Classification and Fully Connected Layers 

The Fully Connected Layer acts as the high-level reasoning part of the Neural 

Network and is responsible for classifying the input image into various object classes 

based on the data the network was trained on. 

This layer is a traditional neural network layer that uses an activation function to 

produce its output and takes its name from the fact that every neuron in the previous 

layer is connected to every neuron in this one. Similarly to neurons in regular neural 

networks, the connections here have associated weight and bias values. 

In comparison, other layers in the CNN such as convolutional or pooling layers are 

only partially connected, with each neuron in a convolutional layer only connected to 

a few local neurons in the previous layer. Classic neural network architecture (where 

all layers are fully connected) was found to be inefficient for computer vision tasks. 

Images represent such a large input for a neural network that would require a huge 

number of connections and network parameters. A CNN addresses this problem by 

considering the type of input data (images) and adapting to it, by having layers that 

are used for the extraction of useful features (convolutional, pooling) that are only 

partially connected. The fact that an image is composed of smaller details or features 

that can be processed individually to reach a decision about the image as a whole 

makes this possible. 
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The FC layer uses as input the output from all previous network layers before it 

(convolutional, ReLU and pooling). This input, in addition to the connection weights 

and the bias value are used to produce the output probabilities for each of the object 

classes in the dataset. 

The FC layer is followed by an output layer. In classification problems, the softmax 

function is commonly used and is tasked with predicting a single class out of K 

mutually exclusive classes (it is multinomial logistic regression used for multi-class 

classification). Other classifiers, such as SVM, can also be used for this task with 

their performance being comparable. Softmax is usually preferred because it converts 

an output of arbitrary real-valued scores into probabilities that add up to 1, which is 

more intuitive. In comparison, SVM treats the output as uncalibrated scores that are 

difficult to interpret (Qi et al., 2017). 

The output softmax function is: 

𝑦𝑟(𝑥) =  
exp (𝑎𝑟(𝑥))

∑ exp (𝑎𝑗(𝑥))𝑘
𝑗=1

       (2.21) 

Where 0 ≤ 𝑦𝑟 ≤ 1 , ∑ 𝑦𝑗
𝑘
𝑗=1 = 1 and 𝑎𝑟 is the conditional probability of the sample 

class 𝑟. 

For multi-class classification problems, the softmax output function is: 

𝑃(𝑐𝑟|𝑥, 𝜃) =  
𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟)

∑ 𝑃(𝑥, 𝜃|𝑐𝑗)𝑃(𝑐𝑗)𝑘
𝑗=1

=  
exp (𝑎𝑟(𝑥,𝜃))

∑ exp (𝑎𝑗(𝑥,𝜃))𝑘
𝑗=1

     (2.22) 

Where 0 ≤ 𝑃(𝑐𝑟|𝑥, 𝜃) ≤ 1  and ∑ 𝑃(𝑐𝑗|𝑥, 𝜃) = 1𝑘
𝑗=1 . Moreover, 𝑎𝑟 =

ln(𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟)) , 𝑃(𝑥, 𝜃|𝑐𝑟) is the conditional probability of the sample given 

class 𝑟 and 𝑃(𝑐𝑟) is the class posterior probability. 

The softmax classifier attempts to minimise the classification error (target probability 

– output probability) by minimising the cross-entropy between the “true” distribution 

p and an estimated distribution q: 

H(p, q) =  − ∑ p(x)logq(x)x        (2.23) 
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More information on the softmax function can be found in Bishop (2007). 

To summarise, the training of a Convolutional Neural Network is as follows: 

- The network structure is defined and all filters and parameters initialised with 

random values. 

- The network takes the first training image as input, goes through the complete 

process and calculates the output probabilities for each object class (since 

weights are randomly assigned in the beginning, output probabilities are also 

random). 

- The total error at the output layer is calculated. 

- Using back propagation (LeCun et al., 1989; Bishop, 2007), the gradients of 

the error are calculated and gradient descent is used to update all filter values 

and weights to minimise the output error (the weights are adjusted in 

proportion to their contribution to the total error).  

 

Now, if the same image is used again, the output probabilities will be closer to the 

target, as the weights and parameters of the network have been optimised to correctly 

classify that image. The same process (except initialising the parameters) is used for 

every image in the training set and the end product is a Neural Network that, given a 

large enough training dataset (so that its parameters are well adjusted), is accurate 

enough to correctly classify new images. 

2.6.2 CNN-based vehicle detection 

Vehicle detection using deep convolutional networks is currently being researched 

extensively. Inspired by the success of CNNs in image classification (Krizhevsky 

and Hinton, 2012), several detection models have emerged. Most CNN-based 

detectors are based on the R-CNN (or Regions with Convolutional Neural Network) 

(Girshick et al., 2014) and its evolutions, Fast R-CNN (Girshick, 2015) and Faster R-

CNN (Ren et al., 2015). Others, such as R-FCN (Region-based Fully Convolutional 

Networks) (Dai et al., 2016) , SSD (Single Shot Multibox Detector) (Liu et al., 2016) 

and YOLO and its variations (Redmon et al., 2016; Redmon and Farhadi, 2017) 
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brought changes in the architecture with the goal of optimising real-time 

performance. 

When it was initially introduced in 2014, R-CNN produced state of the art 

performance by combining the classification method Alexnet (Krizhevsky and 

Hinton, 2012) with an external Region Proposal method to generate candidate object 

locations. RP methods such as Selective Search (SS, used in the original 

implementation of R-CNN) (Uijlings et al., 2013), EdgeBoxes (Zitnick and Dollár, 

2014) and others could be used to generate the region proposals which were then fed 

to the Alexnet network. On the final layer of the CNN, a SVM classifier (used to 

determine the object class) and a linear regression model (used to improve the 

bounding box coordinates) were added.  While outperforming traditional detection 

methods, R-CNN was very slow (SS produced around 2,000 region proposals that 

each had to pass through Alexnet) and it was impossible to achieve real-time 

performance. Training the network is also expensive in memory space, as the 

extracted features from all region proposals need to be stored. The operation 

flowchart of R-CNN can be seen in Figure 2-25 below: 

 

Figure 2-25: R-CNN flowchart Source: Girshick et al. (2014) 

Fast R-CNN significantly reduced the computational cost by sharing the feature map 

generated for the entire image for the region proposals. Now the feature map is only 

calculated once in the beginning. A fixed-length feature vector is extracted from each 

region proposal with a ROI pooling layer. Each vector is fed into the FC layers 

before branching into two output layers. The two output layers, a Softmax layer 
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producing probability scores, and a bounding box regressor layer are now 

incorporated into the model instead of being separate as before (Girshick, 2015). The 

operation flowchart for the Fast-RCNN model can be seen in Figure 2-26 below: 

 

Figure 2-26: Fast R-CNN flowchart Source: Girshick (2015) 

Faster R-CNN further improved computational speed by including an RPN (Region 

Proposal Network) into the Fast R-CNN model, instead of relying on an external 

process. The region proposals are now generated straight from the convolution map, 

effectively minimising computations. Region proposals are generated in different 

sizes and scales and each of the boxes is given an objectness score (Ren et al., 2015).  

The RPN is a fully convolutional sub-network, able to predict object bounds and 

probability scores at each position simultaneously. Using one convolutional layer’s 

output (conv feature map), object proposal boxes are generated in different sizes and 

scales, which then serve as additional input data to the classification layer. A sliding 

window moves across the feature map and generates 9 region proposals in every 

position (3 scales and 3 sizes). The region proposals are called anchor boxes, since 

they are centred on a fixed point. The produced vectors are fed into two sibling FC 

layers, the box-classification (cls) layer and box-regression (reg) layer, which score 

and generate object bounds respectively. The RPN in Faster R-CNN can be seen in 

Figure 2-27 below: 
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Figure 2-27: The RPN in Faster R-CNN Source: Ren et al. (2015) 

The output of the RPN then returns to main network for classification. The structure 

of the Faster R-CNN model can be seen in Figure 2-28 below: 

 

Figure 2-28: Faster R-CNN flowchart Source: Ren et al. (2015) 
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With the inclusion of a built-in region proposal unit, the CNN can be trained without 

the need for external region proposal processes. Training takes place in four stages. 

The first 2 train the region proposal network (RPN) and CNN while the other 2 

combine the output of the first 2 stages and fine-tune the network: 

Stage 1: Training a Region Proposal Network (RPN) 

Stage 2: Training a Fast RCNN Network using the RPN from stage 1 

Stage 3: Re-training RPN using weight sharing with Fast RCNN 

Stage 4: Re-training Fast RCNN using updated RPN 

Faster R-CNN was originally tested on the Pascal VOC 2007/2012 (Everingham et 

al., 2010) and MS COCO (Lin et al., 2014) datasets for detection and achieved very 

good detection accuracy at 5FPS when using the deep VGG-16 model (Simonyan 

and Zisserman, 2014) for feature extraction. 

The R-FCN model, developed by Dai et al. (2016), is similar to Faster R-CNN using 

a RPN but eschews Fully Connected layers completely to become a fully 

convolutional network. Figure 2-29 shows the architecture of the system. In R-FCN, 

the last convolutional layer produces position-sensitive scores for every object class. 

The ROIs produced by the RPN are applied and a final score is calculated for each 

generated ROI. In the end, a softmax classifier assigns classes to the objects. 

 

Figure 2-29: R-FCN flowchart  Source: Dai et al. (2016) 
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The methods described above all follow the traditional two-stage object detection 

pipeline, where region proposals are generated (Hypothesis Generation – HG) and 

then proposals are verified (Hypothesis Verification – HV) by assigning probability 

scores and bounding boxes. Other methods treat object detection as a 

regression/classification problem, adopting a unified framework to achieve their 

results (class categories and locations) directly, without the use of generated region 

proposals. The best-known methods following this approach are YOLO and its 

variations (Redmon et al., 2016; Redmon and Farhadi, 2017) and SSD (Liu et al., 

2016). 

With YOLO, Redmon et al. (2015) proposed a novel framework for object detection 

which makes use of the whole feature map produced for an image to predict 

confidence scores for multiple categories and bounding boxes. The basic idea behind 

YOLO is to divide the input image into a grid and predict the object that exists in 

each grid cell. Each grid cell predicts multiple bounding boxes and their 

corresponding confidence scores, along with conditional class probabilities. The 

highest scoring boxes are retained as the final detection results. The YOLO network 

consists of 24 convolutional layers and 2 Fully Connected layers and in its first 

iteration managed to process 45FPS. A subsequent iteration, YOLOv2 by Redmon 

and Farhadi (2017) added some improvements such as batch normalisation, anchor 

boxes and multi-scale training to improve the detection result. An inherent problem 

with YOLO is their issue with detecting small objects or objects close to the camera, 

as it is constrained by the one object/grid cell rule. 
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Figure 2-30: YOLO detection system Source: Redmon et al. (2015) 

Similarly to YOLO, SSD (Liu et al., 2016) uses the entire feature map for its 

predictions but forgoes grid cells, instead using  a set of default anchor boxes. To 

handle objects of various sizes, the network fuses predictions from multiple feature 

maps with different resolutions. SSD uses the VGG-16 (Simonyan and Zisserman, 

2014) network for feature extraction but adds several layers to the end of the network 

to calculate confidence scores and predict the bounding boxes. The SSD network 

achieves 59FPS using 300x300 resolution images but still suffers when dealing with 

small objects, requiring further modifications. The SSD architecture can be seen in 

Figure 2-31 below: 

 

Figure 2-31: SSD network architecture Source: Liu et al. (2016) 
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The models presented above spurred research in vehicle detection using CNNs, with 

advances in vehicle detection using both static and moving cameras. In the majority 

of cases, it is opted to use pre-trained network models as feature extractors as a 

starting point for vehicle detection. This approach is called transfer learning; it is 

essentially the re-purposing of a model trained to perform one task to work on a 

different task. It is possible to either use a CNN as is (as a feature extractor) and only 

replace the final FC layer with one better suited to the new task or fine-tune the 

network fully (all layers) or partially (the last layers that should be specific to the 

new task) with a new dataset. The most common CNN architectures used for transfer 

learning are AlexNet (Krizhevsky and Hinton, 2012), VGG (Simonyan and 

Zisserman, 2014), ZF-net (Zeiler and Fergus, 2013), ResNet (He et al., 2016) and 

GoogleNet (Inception) (Smoluk, 2015). 

A CNN (Alexnet) is used in Yao et al. (2017) as a classifier to identify vehicles in 

traffic videos. First, region proposals are generated by combining three visual cues 

(multiscale saliency to distinguish vehicles from the background, edge density and 

colour contrast) into a Bayesian classifier. A pre-trained Alexnet model then 

classifies the vehicles. A detection rate of 93% on average is reported, with 5sec of 

processing required for each frame. Hsu (2018) use a sliding window approach to 

generate ROIs and Fast R-CNN as a classifier for vehicle detection. High precision 

and recall rates are reported, though run-time performance is not discussed. 

Prabhakar et al. (2017) use Faster R-CNN with a pre-trained ZF-net (Zeiler and 

Fergus, 2013) on a Titan X GPU to achieve a 71.7% mAP (mean Average Precision) 

on the KITTI dataset (Geiger et al., 2012). Several parameters of the Faster R-CNN 

model are tested in Fan et al. (2016), where the effects of image size, number of 

proposals and additional training stages are explored. Accuracy ranges from 52-83% 

on the KITTI dataset, with a run-time of just 2FPS when tested on an 1800x543 

resolution image. 

 The RPN in Faster R-CNN is modified in Gao et al. (2017) to enhance small object 

detection. By adding additional scales for the anchor boxes (for a total of 15 instead 

of the default 9) and modifying the CNN architecture, precision is improved. 

However, no run-time performance is reported, although the modifications should 
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bring an extra computational load that impacts performance. Zhang et al. (2017) 

attempt to implement a real-time vehicle detection and tracking system based on 

Faster R-CNN. The KITTI dataset is used to train the VGG-based network while a 

combination of Camshift and Kalman filter is used for tracking. The reported 

computation time for target detection and tracking is 0.935s and 0.0244s respectively, 

making it unsuitable for real-time application. He and Li (2018) fuse camera and 

radar data to detect vehicles in traffic videos. The results of the YOLOv2 model are 

improved by fusing radar detections and the final system has an accuracy of 96% at 

38FPS. A SSD based model, fine-tuned to identify small objects more efficiently is 

used by Kim et al. (2016) to detect vehicles, pedestrians and cyclists. Tested on the 

KITTI dataset, the best-performing model tested manages 70.7-86.7% accuracy for 

the vehicle class. Gu et al. (2017) develop a CNN that includes Inception modules, 

inspired by GoogleNet (Smoluk, 2015) for vehicle detection. The system is tested on 

the VOC 2007+2012 dataset (Everingham et al., 2010) and achieves 63.5% mAP at 

46FPS. In He and Lam (2018), a deep residual network is used to extract image 

features while a lateral network is used to improve localisation of the final output. 

The proposed LateralCNN is evaluated on the DETRAC (Wen et al., 2015) traffic 

camera benchmark and achieves an accuracy of 67.25% on average at 28FPS. 

2.7 Range estimation using a monocular camera 

Accurate range estimation is a crucial task for safety-critical applications such as 

ACC and CAS. Systems using active sensors (radar, LIDAR) can accurately measure 

distances due to the way they operate (measuring the reflection of emitted signals for 

radar or laser beams for LIDAR systems) without requiring advanced processing 

methods. Range estimation using a monocular camera however, is challenging since 

the camera image is subject to perspective distortions and limited accuracy (Joglekar 

et al., 2011; Eskandarian, 2012; Mukhtar et al., 2015; Huang et al., 2019). To 

overcome those limitations, the main approaches to produce accurate measurements 

are the use of filters (e.g. Kalman) to update measurements and avoid large 

deviations or the introduction of methods to reduce the associated errors. 

Also known as linear quadratic estimation (LQE), a Kalman Filter (Kalman, 1960) is 

an algorithm widely used for guidance, navigation and control of vehicles. It uses a 
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series of measurements observed over time, containing noise and other inaccuracies, 

and produces estimates of unknown variables that tend to be more precise than those 

based on a single measurement alone. The version of the filter used for non-linear 

processes is called Extended Kalman Filter. 

In Stein et al. (2003), range is measured using the camera parameters and perspective. 

To increase the accuracy of the measurement, two cues are used: size of the vehicle 

in the image and position of the bottom of the vehicle. The estimate is more accurate 

when the geometry of the road and the range rate are considered in the calculation. 

Finally, the output of a radar sensor is used as ground truth. In Han et al., (2016), the 

distance to a detected vehicle can be estimated by calculating the width of the vehicle 

and using lane markings as reference. The method is accurate on the assumption that 

lane width remains constant but fails if the road environment changes or roads are 

not structured. In Salari and Ouyang (2013),  a SVM is utilised to estimate the 

position of a vehicle. By considering the width or height of the vehicle known, it is 

possible to estimate the distance and calculate TTC by measuring the vehicles width 

change in a sequence of images. The system is not accurate when the vehicle is far 

from the camera and the detected change in width is small. Moreover, the SVM is 

slow and not suitable for real-time application. An estimation based on camera height 

position, focal length, coordinates of the vehicle bottom and horizon is used in Park 

and Hwang (2014) but the calculation is not accurate when there is any variance in 

the horizon position. Lim et al. (2019) propose the use of CNN-based detector 

(YOLO) and a nested Kalman filter to first stabilise distance data from the camera 

and then use this filtered data in the Kalman filter again to calculate relative velocity. 

This way, TTC is calculated based on distance over relative velocity. Joglekar et al. 

(2011) estimate depth using a monocular camera by applying perspective geometry 

and correcting errors in the calculation of in-path and oblique distances to an object. 

Their approach to error calculation gives accurate distance measurements up to 70m 

from the camera. Christiansen et al. (2018) use a CNN to produce bounding boxes 

for vehicles and a Kalman filter to correct the distance measurements for the 

bounding box width and the distance to the ground. A LIDAR system is used as 

ground truth for the proposed system. Huang et al. (2019) utilise a CNN-based 

approach to detect vehicles and segment them from the surrounding environment. A 
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different NN calculates the vehicles’ actual dimensions and pose. A geometric model 

then estimates the distance to the vehicle. 

 

2.8 Knowledge gap 

This chapter reviews the most common methods used for vehicle detection based on 

a monocular camera. The two approaches (traditional image processing and CNN-

based detection) are explored and the main findings are discussed in this section: 

Image processing approach 

The section about Hypothesis Generation focuses on appearance-based methods, as 

the proposed system is based on a monocular camera, identifying the prominent 

visual cues used for ROI generation and highlighting their shortcomings. Object 

classifiers are the focus of the Hypothesis Verification section, given that they are 

more adaptable compared to template matching methods. 

As seen in the literature, the Support Vector Machine (SVM) and AdaBoost 

classifiers are the most common methods for image segment classification. Paired 

with the appropriate feature set, they appear to be the most efficient and produce the 

best results (Khammari et al., 2005; Teoh, 2011; Burlet and Dalla Fontana, 2012; 

Chavez-garcia and Aycard, 2015). 

Compared to other descriptors, HOG features are computationally expensive but they 

are highly adaptable and descriptive and well suited for this application, providing 

good detection results (Teoh, 2011; Li and Guo, 2013; Zhiqian Chen et al., 2013). 

Another advantage of using an SVM-HOG combination is its versatility in that it can 

be employed for pedestrian detection as well. After reviewing the some of the most 

recent literature on vehicle detection using HOG features, some conclusions can be 

drawn: 

The main problem to be addressed is the minimising of computational time so that 

camera-based detection systems are implemented in real-time. The accuracy level in 

most cases is very good, the reason being that computationally complex methods 
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(classifiers combined with feature descriptors) are used for detection. It is obvious 

that the problem’s solution lies with efficiently balancing detection accuracy and 

speed, or the implementation of a new, intelligent method. 

In most cases, the run-time problem is attempted to be solved either with 

experimenting with feature descriptor parameters (in the case of HOG, bin size, 

block size etc.) altering the descriptive power of the feature descriptor or by reducing 

the search space in Hypothesis Verification, so that the total number of calculations 

is reduced. 

The common theme across all relevant research is that traditional feature descriptors 

(and their variations) are used for classification purposes (combined with a classifier 

function). They are all focused on the second part of the detection process (HV), 

while for the first part (HG), other methods are used. A new way of using existing 

tools, such as classifiers and feature descriptors could lead to improved results, as far 

as detection performance is concerned. This study will attempt to optimise 

performance by modifying the detection pipeline. 

CNN-based detection 

The review of different network models that can be used for vehicle detection 

(Huang et al., 2017; Zhao et al., 2019) has led to some interesting findings: 

• CNNs have managed to combine every aspect of object detection (ROI 

generation, feature extraction and verification) into one unified pipeline, as 

opposed to traditional image processing object detection where each stage is 

largely separate. 

• Region proposal based methods, such as Faster R-CNN and R-FCN generally 

perform better compared to regression/classification based approaches 

(YOLO, SSD etc.) due to the fact that regression approaches produce 

increased localisation errors.  

• Regression/classification methods have trouble locating small objects, which 

may be an issue when detecting vehicles that are far away from the camera. 
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• R-FCN and SSD models are faster on average but Faster R-CNN is more 

accurate. 

• Input image resolution impacts accuracy. Low resolutions hurt accuracy 

significantly, though at the same time inference time is reduced. 

• Training complex and deeper networks  used for feature extraction such as 

ResNet (He et al., 2016) takes more time, but this time consumption can be 

reduced by adding as many layers into shared fully convolutional layers as 

possible. 

• Region proposal based models can be modified to improve run-time and 

achieve real-time performance with the introduction of “tricks” such as batch 

normalisation (Ioffe and Szegedy, 2015) or modifying the detection 

parameters (for example, reducing the number of generated proposals). 

The common theme in CNN-based detection is the reliance on deep pre-trained 

network structures, especially for feature extraction. The potential to achieve the 

same level of performance using simpler and more efficient structures is not explored 

sufficiently well; this study will explore the detection performance of a simpler 

network structure.  

In search of a robust vehicle detector built around the capabilities of a monocular 

camera, two separate detectors can be developed and their performance explored: 

i) A detector following the traditional image processing approach using HOG feature 

extraction and SVM classification, modified in an attempt to improve run-time 

operation. 

ii) A CNN-based detector built on the Faster R-CNN model, with the goal to improve 

its performance and achieve real-time detection. The particular model (Faster R-

CNN) was selected as, even though it is not the fastest compared to others, it is high-

performance and with no inherent disadvantages. Real-time operation can be 

achieved by modifying the network structure as to find a good balance between 

accuracy and speed. 
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3 Methodology 

3.1 Introduction 

The previous section described the main approaches used in a camera-based vehicle 

detection system. This chapter presents the two methods used for vehicle detection in 

this project. The two methods will be tested on a vehicle dataset to determine which 

is better in terms of detection performance and whether they are suitable for real time 

application. 

The end goal is to develop a vehicle detection system with: 

• High detection rate, minimising false positive (FP) and false negative (FN) 

detections 

• Real-time performance (computationally efficient for use in a practical 

application) 

• Versatility, so that additional functionality can be added without seriously 

impacting performance 

• Ability to perform under different conditions (urban environment, motorway, 

varying weather conditions) 

The system is built around a NIR (Near Infrared) monocular camera that provides the 

data feeding into the detector. It is necessary to maximise the detection system’s 

performance, as the camera is the only available environmental sensor and its 

capabilities are limited compared to a system utilising an array of sensors. 

3.2 Vehicle detection I – Histogram of Oriented Gradients 

(HOG) and Support Vector Machine (SVM) classification 

The first method of vehicle detection is based on a combination of HOG features and 

SVM classification. The traditional image processing method is modified so that 

HOG features are also used to generate Regions of Interest (ROIs), instead of using a 

sliding window approach or using HOG solely for classification. It will be examined 
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whether this approach (using information not coming directly from the raw image 

data) is suitable for ROI generation.  

The flow chart below (Figure 3-1) presents the detection process that is the centre of 

the detection system. The complete process is presented in more detail in the next 

section: 

 

Figure 3-1: Detection system 
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The detection process is divided in two parts: 

• Hypothesis Generation (HG) 

• Hypothesis Verification (HV) 

3.2.1 Hypothesis Generation (HG) 

The first part of the detection process is Hypothesis Generation that follows an 

appearance-based approach. Specific visual characteristics are sought for in an image 

in order to detect a potential object. This approach is preferred over a motion-based 

approach since a monocular camera is used. While there are methods to compensate 

for the lack of depth measurements for cameras of this type, motion-based 

approaches are better suited to stereo vision cameras and are more resource intensive. 

Additionally, it would be highly desirable to detect slow moving objects as well; 

something a motion-based system has issues with (Mukhtar et al., 2015). 

The proposed detection algorithm exploits the feature vector generated from HOG 

extraction to detect strong horizontal elements in an image. Instead of using filters 

that are most commonly used to detect edges such as Canny (Canny, 1986) or Sobel 

(Sobel, 1990), HOG gradients can be used to indicate horizontality in an object. Due 

to their shape, vehicles exhibit areas with strong horizontal elements (edges), mainly 

but not exclusively, their roof and bottom. 

A sample image, taken using the instrumented vehicle’s NIR camera can be seen 

below. The same image, after the application of Sobel and Canny filters follows next. 
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Figure 3-2: Sample image 

 

Figure 3-3: Sample image with Sobel filter applied 

 

Figure 3-4: Sample image with Canny filter applied 
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Instead of using traditional visual cues (edges using filters and shadow detection 

being the most common, this method proposes that the HOG feature extraction 

process, usually employed for verifying the existence of objects is used to generate 

vehicle candidate locations. The reason for choosing the particular detection cue is 

that it may lead to shorter processing time. The potential benefit from using HOG as 

a ROI estimator lies with the ability to reduce the different functions required for the 

detection process. Instead of using shadows, corners etc., the same process used for 

classification is also utilised for initial detection. 

The goal is to maximise detection accuracy using this HOG-based detector. To 

support the main HOG-based detector, another visual feature can be implemented, if 

the required performance levels (detection rate, false positive rate) are not met. The 

system is flexible enough so that other visual cues can be added if necessary. The 

main considerations for selecting a particular visual cue (for example edges, 

symmetry etc.) are the limitations imposed by the data and the processing time they 

require (Teoh, 2011; Mukhtar et al., 2015). For this study, edge detection using the 

Canny filter was utilised to improve object separation in one of the image processing 

steps. 

The HG stage results in image parts (sub-images) that are smaller than the original 

image recorded by the camera. Ideally, the sub-images contain the vehicle with as 

little unnecessary information (surrounding environment) as possible. The potential 

vehicle is highlighted in the image by a rectangular box.  

The sub-images are used as input information for the next stage of the vehicle 

detection process, where the system confirms the presence of a vehicle in the image 

or not. The process of generating the bounding boxes for candidate vehicle locations 

can be divided in several steps: 

i. Image (raw data) pre-processing 

ii. HOG feature extraction 

iii. Feature vector processing 

iv. Clustering/Segmentation 

v. Effective vehicle-environment separation 
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vi. Bounding box generation 

The proposed Hypothesis Generation (HG) system is presented in Figure 3-5 below. 

First, the input colour image extracted from videos recorded during data collection 

runs is converted to grayscale and scaled down to a lower resolution. HOG features 

are extracted from the reduced resolution and the strong horizontal edges are 

detected. The resulting horizontal edge image is further processed to separate objects 

of interest from clutter. Finally, the bounding box around each hypothesized location 

is estimated and drawn on the original processed image. The final output is a ROI for 

which the HOG features required for classification have already been extracted.  

Each part of the Hypothesis Generation process will be presented in more detail in 

Figure 3-5 below: 
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Figure 3-5: Proposed HG system 
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Image pre-processing 

The collection of raw data and its features is described extensively in Chapter 4. The 

first step after acquiring the raw data from the camera (video file that is transformed 

into individual frames) is to convert each frame from colour to grayscale. The NIR 

camera installed in the instrumented vehicle produces video and images in the RGB 

colour space, though the image properties indicate that each pixel carries the same 

value across all colour channels. The image is converted from RGB to grayscale 

using the following formula, which is a weighted sum of the 3 colour channels. Each 

pixel in an image has a numeric value (0-255) for each of the colour channels. Every 

value is multiplied with the corresponding coefficient: 

0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵     (3.1) 

Where the coefficients 0.2989, 0.5870 and 0.1140 are the weights for converting 

from RGB to NTSC, according to the Rec. 601 format (International 

Telecommunication Union, 2011). 

Converting the image from RGB to grayscale reduces the computational load, as 

many functions in the detection process perform their operation individually for each 

colour channel. For example, HOG feature extraction is performed for every colour. 

Having only one colour to consider, the whole operation becomes much faster. In 

addition, since each pixel carries the same value for all three colours, considering 

colour as an additional visual cue in the current vehicle detector and benefiting from 

it, is not possible. 

Next, the images are resized into a lower resolution, another operation that takes 

place to reduce the computational cost. The original size of the images recorded is 

2048x2048 pixels (4 MPixels). Using a lower resolution image, the size of the 

feature vector file when producing HOG features is reduced significantly: 
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Table 3-1: Vector file size comparison 

Image size Feature vector size Size reduction Avg. processing 

time 

2048x2048 2,340,900 - 0.46 sec 

1024x1024 580,644 75.20% 0.19 sec 

512x512 142,884 93.90% 0.1 sec 

The size of the original image’s produced feature vector prohibits any thought of 

real-time application. Using a lower resolution image is required. No significant 

descriptive information is lost, while the resulting feature vector becomes much more 

manageable. Additionally, the required time to extract HOG features is reduced 

significantly when the image is downscaled. The produced vector sizes in Table 3-1 

are based on the default HOG extraction options (8x8 pixel cell size, 2x2 cell blocks, 

50% block overlap, 9 orientation bins). Any configuration adjustment modifies the 

final size accordingly. 

To summarise, the conversion to grayscale and downscaling the image to a lower 

resolution results in a reduced computational load, which is a requirement for real-

time operation. At the same time, there is no loss of useful information in the 

resulting image compared to the original as the resolution remains high enough to 

ensure this (every object remains easily discernible, no blurring occurring in the 

image). 

HOG feature extraction 

The second part of the process involves the extraction of HOG features from the 

images. The idea behind HOG features is that they can be used to describe object 

appearance and shape by their distribution of intensity gradients or edge directions 

(Dalal and Triggs, 2005). The descriptive power of HOG is entirely dependent on the 

level of detail desired. Even though there is a trade-off between accuracy and 

computational load, it has been reported that after a certain point, there is no gain in 

descriptive power (only an increase in computational requirements) (Seung Hyun 

Lee et al., 2015; Teoh, 2011). The extraction process has been detailed extensively in 

section 2.5.1 of the literature review. 
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The MATLAB software was used for the extraction of HOG features from the 

sequence of images. The extraction process allows for a certain level of 

parameterisation depending on the level of detail required. It is possible to change 

the size of the HOG cell (default size: 8x8 pixels), the number of cells in a block 

(default size: 2x2 cells), the number of overlapping cells between adjacent blocks 

(default option: block size/2), the number of orientation histogram bins (default value: 

9) and finally, the selection of using signed orientation or not (the default option is to 

use unsigned orientation from 0-180o). 

Apart from the produced feature vector, it is possible to produce the visualisation of 

the extracted features for presentation purposes. Figures 3-6 and 3-7 below present 

the visualisation of HOG features. The visualisation is a grid of uniformly spaced 

rose plots. The grid dimensions (number of rose plots) are determined by the defined 

cell size and the image resolution. Each of the rose plots shows the distribution of 

gradient orientations within a HOG cell. The length of each petal is scaled to indicate 

the contribution each orientation makes to the cell histogram (magnitude of the 

vectors, where stronger gradients have a bigger impact on the histogram). The plot 

displays the edge directions, which are normal to the gradient directions. When 

viewing the plot with the edge directions it is possible to better understand the shape 

and contours encoded by HOG. Figure 3-6 presents a grid of such rose plots in an 

image area, while Figure 3-7 is an individual rose plot zoomed in. The number of 

petals in each of the rose plots is twice the number of bins selected. 

 

Figure 3-6: HOG visualisation 
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Figure 3-7: Individual rose plot 

In order to perform some initial testing, the default parameters were used for the 

extraction of HOG features. Since the default settings were used for pedestrian 

detection for the first time, the possibility of tweaking the parameters to improve 

performance was explored. This was necessary, since the nature of this application 

(ROI generation based on horizontality) may require a different parameter set. 

In the end, the default extraction parameters were selected due to the balance 

between descriptive ability and computational cost. The detection system has been 

tested with modified parameters as well.  

- A larger cell size reduced the size of the feature vector. This may result into 

lower computational load, but the loss of significant descriptive information 

is a serious side effect. 

- Removing the overlap between blocks completely also reduced the 

descriptive information significantly, rendering the info useless. 

- Increasing the number of orientation bins from 9 to 12 did not offer any 

performance advantages, with the end result not significantly different.  

- Using signed orientation makes no difference, as the direction of the edges is 

of no interest. 

 



 

75 

 

Feature vector processing 

The next step is to process the resulting vector in a way that produces the desired 

feature. From the HOG feature vector, the useful information required is the gradient 

values that indicate areas with strong horizontality. A process is implemented to 

determine which areas of an image contain long horizontal elements (in vehicles, 

such parts would be bumpers, windshields, roof etc.). 

Processing takes place at the cell level. The values contained in the feature vector are 

re-arranged and assigned to the correct cell/block. That way, the HOG values are 

formatted from a 1D vector into an array that resembles the original image. The 

largest value (magnitude) corresponds to the strongest gradient. This information is 

isolated and selected to represent the specific cell. The cells exhibiting strong 

horizontality are this way identified. A cell is considered to exhibit strong 

horizontality is one where the strongest gradient is horizontal or close to horizontal 

(± 20o), as in Figure 3-8: 

 

Figure 3-8: Cell with strong horizontal elements 

 An example of the produced output, a logical matrix where white (value = 1) 

indicates strong horizontality can be seen in Figure 3-9 below, beside the original 

sample image: 
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Figure 3-9: Example of cell processing 

It is expected that this process will produce several erroneous results, due to other 

objects in the background exhibiting similar characteristics. Identifying the correct 

objects and extracting them from background noise is required before the 

classification process (Hypothesis Verification). 

Clustering / segmentation 

The output of the previous step is a logical matrix (containing 0 and 1) used as input 

in a clustering process to form the objects that exhibit strong horizontal edges. A 

value of 1 indicates a cell of pixels in which the horizontal gradient is the strongest 

(± 20o). A large number of cells in sequence with said value indicate areas of the 

image with strong horizontality. The length of each horizontal segment is measured 

and only the continuous segments are retained. 

The method used to cluster and label the areas is called connected components (CC) 

(He et al., 2017). CC groups and labels areas based on connectivity between the 

elements of the matrix. It is able to function with both images (which are represented 

by matrices containing each pixel’s intensity value) and binary matrices the ones 

produced by processing the feature vector. 
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Other methods, such as superpixel segmentation (Achanta et al., 2010) and K-means 

clustering for image segmentation (Dhanachandra et al., 2015) were also 

implemented in an attempt to find the optimal clustering method. 

Superpixel segmentation groups neighbouring pixels in an image by similarity in 

colour or gray scales. The advantages of grouping pixels into larger areas in an image 

are: 

• To compute features in more meaningful regions compared to computing 

features for individual pixels 

• To reduce the number of inputs for any subsequent process (i.e. classification) 

Using Superpixels did not produce any valuable results in terms of clustering into 

interesting areas. The reason behind this failure is that it is practically impossible to 

define the number of interesting objects for every image containing vehicles and also, 

because the size of vehicles in every image varies, depending on the distance from 

the camera. 

K-means clustering is a popular type of unsupervised learning, where data points in a 

dataset are clustered together based on feature similarity. The algorithm works 

iteratively to assign each data point to one of K clusters based on the features 

provided. K, the number of clusters is defined beforehand, based on the number of 

groups desired. 

The use of k-means clustering failed for the same reasons as superpixel clustering. It 

is very difficult to define the number of k interesting objects in an image from the 

start given that every image is different, containing one or more vehicles. Applying 

k-means to the original image to distinguish objects also proved impossible due to 

the image pixels exhibiting little variation in intensity levels.  

The segmentation method producing the most promising results was the Connected 

Components (CC) method.  CC scans the matrix (or image) and checks if the value 

of a matrix cell is shared by its neighbours as well (intensity values for pixels in an 

image, respectively). If yes, the cells are labelled as belonging to the same cluster. 
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For a 2D matrix, connectivity scans can be 4-way or 8-way (Fisher et al., 2003b), as 

can be seen in Figure 3-10 below: 

 

Figure 3-10: 4 and 8-way connectivity 

In 4-way connectivity, pixels are connected if their edges touch. The pixels are part 

of the same object if they are both on and connected along the horizontal or vertical 

direction. In 8-way connectivity, pixels can be connected if their edges or corners 

touch. They are part of the same object if they are on and connected along through 

any of the horizontal, vertical or diagonal directions. 

Both configurations were considered during testing, though no meaningful 

differences in performance were observed. In the end, 4-way connectivity was used 

in the segmentation/labelling process. 

The output of the CC clustering is matrix of region labels. The properties of all 

labelled regions, such as area size, centroid, find the region’s extreme points, 

orientation and perimeter can be measured. At this stage, it is also possible to draw a 

bounding box around each area as a way to distinguish between different regions. 

Finally, it is useful to remove all objects (connected components) that measure less 

than a specified size from the output. In that way, very small objects that cannot be 

part of a vehicle in the image are removed and are not considered for further 

processing. All objects measuring less than 50 pixels in size were removed from the 

output. 
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Figure 3-11 below presents the output of CC clustering, with colour-coded clusters in 

RGB for visualisation purposes. The resulting output is a very dense image, where 

discerning individual objects is extremely difficult. The object of interest in this case 

is the vehicle in the centre of the image. To improve object separation, additional 

processing is required: 

 

Figure 3-11: CC clustering output 

Vehicle – environment separation 

An enhancing process is required in order to reduce the number of errors in the initial 

detection of horizontal elements and the segmentation of objects. 

Its aim is to improve object-environment separation. The problem with the whole 

process up to this point is that sometimes, the object (vehicle) is not effectively 

separated from its surrounding environment. The reasons for this are several:  

• Another vehicle in close proximity, creating long horizontal edges that cannot 

be separated 

• Vehicle’s horizontal elements aligned with detail in the background such as 

signs, horizontal lines on the road, horizon line 

• Random error, due to the quality of the input image 

One solution to the above problems would be to use a higher resolution image, so 

that more fine detail would be retained. However, that would introduce performance 
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issues as the computational cost to process the images would be significantly higher. 

That would lead to increased run time as well. 

To improve object separation, an averaging operation is introduced.  The 2D 3x3 

filter [
1 1 1
1 1 1
1 1 1

] is applied, calculating averages along horizontal lines and then a 

threshold is applied to retain only the strongest horizontal elements in every image 

area. When the values in the resulting matrix are clustered again, the improvement in 

object segmentation is significant. 

Figure 3-12 below presents the improved output of the separation process, after re-

clustering to form new objects. The improvement from the previous step (in Figure 

3-11) is evident in Figure 3-12 below: 

 

Figure 3-12: Improved object separation output 

Similarly to the previous step where another connectivity type was used, another 

configuration using a larger 5x5 filter was tested. Between the different sized filters, 

the smaller 3x3 one proved to be more effective as the larger 5x5 filter led to loss of 

useful information. After this step, the vehicle in the centre of the image is more 

clearly discernible.  

To further enhance the output and ensure proper object/background separation, 

additional visual cues were incorporated into the ROI generation algorithm. Out of 
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the possible options for enhancing the result in appearance-based approaches, some 

had to be excluded due to the constraints imposed by the use of the specific input 

data.  

• The option of using the useful colour cue had to be excluded due to the image 

data being grayscale. 

• Using shadows as an additional visual cue would be ineffective, due to the 

quality of the input images (with intensity values close in many image areas 

where the vehicle was located) and its sensitivity to illumination conditions. 

• Vehicle back lights could not be considered due to the images being 

grayscale 

• Texture-based segmentation was also ineffective, incapable of distinguishing 

between vehicle and other objects in the background. 

• Advanced symmetry detection methods would be not as cost-effective as 

simpler image processing methods, in addition to symmetry being sensitive to 

illumination, occlusion and other symmetric objects in the image. 

The Sobel (Sobel, 1990) and Canny (Canny, 1986) edge detection filters were 

implemented in separate occasions as additional methods to separate a vehicle from 

its surrounding environment.  The filters were applied on the original downscaled 

images. The output of the edge filters is an output binary image (logical array of 0-1 

values) of the same size as the input image matrix, where the presence of an edge is 

signified with a 1, with 0 elsewhere in the image. In the end, the Canny filter was 

selected to improve vehicle-environment separation. 

The logical array (edge filter output) is superimposed with the output of the 

clustering process. The end result is an array containing labelled areas that are 

considered as Regions of Interest (ROIs).  

Bounding box generation 

Objects and areas of interest are highlighted in the image by drawing a rectangular 

box (known as a bounding box) around them. The bounding box drawn is the 

smallest rectangle containing the labelled region that is used as input for 
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classification. Along with the bounding box, useful information such as area size, 

coordinates of the bounding box, region centre etc. are retained. 

Figures 3-13 and 3-14 below present the generated bounding box for the sample 

image, before and after small object removal (objects containing less than 50 pixels). 

All generated bounding boxes that do not resemble vehicles (due to small/very large 

size, irregular aspect ratio) should be removed, so that the number of candidate 

locations is as low as possible and therefore making the classification process faster: 

 

Figure 3-13: Original bounding boxes 

 

Figure 3-14: Bounding boxes after small object removal 
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3.2.2 Hypothesis Verification 

For the second phase of the detection process, which involves verifying the existence 

of an object in an image and classifying it as a vehicle, a pedestrian or an object, a 

SVM classifier is employed. The sub-images generated by the HG phase (bounding 

boxes – ROIs) are utilised in this second stage of the detection algorithm. 

Before the SVM is able to distinguish between vehicles and non-vehicles in real-time 

data streams, it is necessary to train it to identify what visual characteristics are 

distinct to vehicles. The training process utilises a dataset of positive (vehicle) and 

negative (non-vehicle) images, from which the describing elements of objects 

(feature vectors) are extracted. The image feature extraction process is presented in 

Figure 3-15 below: 

 

 

Figure 3-15: Image feature extraction process 

The samples images contained in the training dataset are processed before the feature 

extraction. A histogram equalisation process takes place first; to mitigate the effect of 

differing lightning and contrast conditions have in performance. Next, the images are 

scaled to a fixed size resolution, common for all, so that all extracted feature vectors 

are equal in size. This is a necessary process, as the SVM classifiers can only be 

trained with images of the same size.  After that, the HOG extraction process takes 

place, using parameters determined after experimentation with HOG extraction 

settings. Finally, the resulting feature vectors are stored in a feature file, ready to be 

used for classifier training. 

The same process takes place for input data in real-time conditions. Using the 

extracted feature vectors, sub-images are classified into vehicles or non-vehicles. A 

successful detection, where only the vehicle is verified and other ROIs are discarded, 

can be seen in Figure 3-16 below (the sample image in Figure 3-2 was used): 
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Figure 3-16: Example of successful vehicle detection 

As mentioned before, SVMs rely on a kernel function to perform classification. 

There are several kernel functions that may be used and there is only one restriction 

as to which one to use. The kernel must satisfy the Mercer condition (it must be a 

continuous symmetrical kernel of a positive integral operator). 

According to the Mercer theorem in Mathematics, if 𝛫: [𝑎, 𝑏]2 → 𝑅 (where K is the 

kernel function) is a symmetric, non-negative definite function, then there exists a 

countable sequence of functions {𝜑𝑖}𝑖∈𝑁 (mapping function φ, as in section 2.3.2 on 

SVM) and a sequence of positive real numbers {𝜆𝑖}𝑖∈𝑁 such that, 

𝐾(𝑠, 𝑡) =  ∑ 𝜆𝑖𝜑𝜄(𝑠)𝜑𝑖(𝑡)∞
𝑖=1                 (3.2) 

Cortes and Vapnik, (1995) has shown that if the kernel function 𝑘 is positive definite, 

the existence of 𝜑 is guaranteed. This allows for the kernel to be used instead of 

calculating the mapping function φ, as mentioned in section 2.3.2. 

Some initial testing was required in order to determine which kernel is more 

appropriate for the particular task. Dalal and Triggs, 2005, in their work on human 

detection, experimented with two kernels: a linear and a Fine Gaussian kernel and 

determined that the slightly improved performance for the F. Gaussian SVM came at 

the expense of much higher computational cost and therefore longer run-time. 
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200 vehicle images, a small sample size, were used to perform the kernel and 

parameter test. HOG features in different resolutions (64x64, 128x128, and 256x256) 

were extracted using the default parameters in MATLAB. During the training 

process, a portion of the data (20%) is used for validating the results. 

In the end, the linear kernel and the Fine Gaussian kernel were selected for training 

the SVM classifier with the complete training dataset. Maximum classification 

accuracy was 88.7% for the F.Gaussian kernel and 74.6% for the linear one. The 

trade-off between them was a significant increase in training time.  

The SVM classifier was trained on the training dataset on 2 different resolutions 

(128x128 and 256x256) to determine whether there are any differences in 

classification performance. 

3.3 Vehicle detection II – Convolutional Neural Network (CNN) 

This second method focuses on the detection of vehicles using a variant of CNN, 

called Faster R-CNN (also known as Region-Based CNN). Faster R-CNN is 

detection and classification method that combines a CNN and a Region Proposal 

Network (RPN), which is a separate convolutional network designed to generate 

potential Regions of Interest (ROI) for objects. Instead of using a pre-trained multi-

layer network, as is common in most classifiers, the Neural Network is trained from 

scratch, using own collected image data. Vehicle instances were manually annotated 

and used to train the network to detect the vehicle object class.  The goal is to 

explore the feasibility of using a CNN with few convolutional layers as a vehicle 

detector, using a limited amount of collected data instead of readily available datasets. 

The performance of the examined network models will offer insights as to what kind 

of conditions such networks can operate in, given there are data size and image 

quality constraints and whether they can be used in safety critical applications. The 

performance in terms of detection accuracy and run-time will be compared to the 

traditional HOG+SVM method proposed in the above section. 

For the purposes of this project, and to examine what kind of optimisations are 

required to produce an efficient CNN-based vehicle detector, six different network 
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models are examined. All of them are based on the Faster R-CNN algorithm, which 

was selected for its high performance compared to other methods (Huang et al., 

2017), but are modified so as to determine which network topology and which 

parameters are the most efficient for detecting vehicles in the dataset. The 

modifications included are changes to the RPN network, introducing batch 

normalisation, increasing the learn rate of the network and increasing the network 

depth, all of which affect detection performance. The examined networks were 

developed, trained and tested using Matlab R2018a. 

All the basic building blocks of a CNN are present (Convolution layer, non-linear 

conversion layer, pooling layer, classification layer) with the addition of dedicated 

normalisation layer in one of the models. Dropout layers are not utilised and the task 

of regularisation and avoiding overfitting is handled by dedicated normalisation 

layers (where applicable), L2 regularisation and the size of the model itself. 

The CNN vehicle detectors are all trained from scratch, without the use of pre-

trained networks (e.g. Alexnet, Google Net etc.) and their pre-calculated weight 

values. Initially, all networks are trained using a base 5,000 image samples and 

additional training data (obtained through data augmentation) are added in 5,000 

image batches until a maximum of 20,000 training images. Compared to pre-trained 

networks trained on large databases (e.g. ImageNet containing 374,000 images for 

the vehicle class), this is a small amount of data. The process of acquiring, 

processing and augmenting the image data for the CNN-based detector is detailed in 

Chapter 4. 

Due to the number of available training images, the use of a deep network structure 

would lead to overfitting problems. The model would be well adjusted to the training 

dataset (essentially memorising the dataset features) but would not generalise well 

with new data. With that in mind, it was essential that the networks used would be 

relatively shallow (compared to pre-trained classification networks such as ResNet, 

GoogleNet etc.) in addition to using regularisation as an additional measure to reduce 

potential overfitting problems. 

The six convolutional networks are the following: 
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Figure 3-17: Summary of developed CNNs 

 

Model 1: A reference network structure using the following 11 layers: 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (32 3x3 convolutions with stride [1 1]               

and padding [1 1 1 1]) 

iii. ReLU     (Rectified Linear Unit) 

iv. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

v. ReLU 

vi. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

vii. Fully Connected layer   64 fully connected layer 

viii. ReLU 

ix. Fully Connected layer  2 fully connected layer 

x. Softmax layer 

xi. Classification output  Crossentropyex 

 

 

Layer no. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1 Input layer Input layer Input layer Input layer Input layer Input layer

2 Conv layer Conv layer Conv layer Conv layer Conv layer Conv layer

3 ReLU ReLU Batch normalisation ReLU ReLU ReLU

4 Conv layer Conv layer ReLU Conv layer Conv layer Conv layer

5 ReLU ReLU Conv layer ReLU ReLU ReLU

6 Max pooling Conv layer Batch normalisation Max pooling Conv layer Conv layer

7 Fully Connected layer ReLU ReLU Fully Connected layer ReLU ReLU

8 ReLU Max pooling Max pooling ReLU Max pooling Max pooling

9 Fully Connected layer Fully Connected layer Fully Connected layer Fully Connected layer Fully Connected layer Conv layer

10 Softmax ReLU ReLU Softmax ReLU ReLU

11 Classsification layer Fully Connected layer Fully Connected layer Classsification layer Fully Connected layer Max pooling

12 Softmax Softmax Softmax Fully Connected layer

13 Classsification layer Classsification layer Classsification layer ReLU

14 Fully Connected layer

15 Softmax

16 Classsification layer
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The architecture of the reference network can be seen in Figure 3-18 below: 

 

 

Figure 3-18: Reference network architecture 

 

Additional details regarding each of the network’s layers are given below: 

 

Image input layer: The image input layer introduced the image to the neural 

network and is able to normalise the image data before any further processing takes 

place. The original input image is segmented into smaller parts and this is the layer 

where the size of these image patches is set. For object detection tasks, this size is set 

as approximately the size of the smallest object that needs to be detected. Since 

vehicle sizes in an image can vary and also depend on the distance from the ego-

vehicle, a relatively low value (32x32 pixels) is used. Zero-centre normalisation 

(Karpathy and Li, 2019a) is applied in this layer, so that the mean of the image data 

lies on zero (mathematically, this is achieved by calculating the mean in the data, and 

subtracting each data item with that mean). Regarding image patch size, it is possible 

to reduce the minimum size of the patch, that would however, increase the number of 

sub-images that need to be processed by the CNN and so lead to an increase in 

processing time. In purely classification tasks, this size is set as the fixed size of a 

training image. 

 

Convolution layer: Initially, the size and number of filters is set. This determines 

the size of the produced feature maps as well as the depth of the convolution layer. In 
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this case, the layer has a depth of 32 (32 different feature maps produced), while the 

size of the convolution matrix is set to 3x3. 

In both convolution layers in this CNN, the step size for traversing the input image 

(stride) is set to 1 pixel in both x and y direction, while additionally, 1 row of 

padding is added to all sides of the input matrix (top, bottom, left, right sides). Stride 

is the number of pixels the filter shifts over the input image. Its value affects the size 

of the resulting feature map (and the encoded features), with a smaller stride 

resulting in a larger feature map (and more useful information) and a larger stride in 

a smaller feature map but faster processing. 

Adding padding to the image increases its size and gives the opportunity to border 

pixels to better interact with the filters, as they can now be at the centre of the filter. 

This results in more features to be detected by the filter and an output feature map 

that has the same shape as the input image. 

It is possible to manually set additional parameters for each of the convolution layers 

such as weight learn factor and bias learn factor, though in this case the final trained 

network determines weights and biases for each layer based on the training dataset 

without any manual initialisation. 

 

ReLU layer: The function used to introduce non-linearity to the networks is the 

ReLU function (used widely in CNNs) which replaces all negative pixel values in the 

feature map produced by the convolutional layer with 0: 

 

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)         (2.20) 

 

Pooling layer: The options available for the pooling layer are similar to those for the 

convolution layers. The size of the pooling window is determined along with step 

size (stride) and possible padding around the convoluted feature maps. 

In this case, a max pooling layer is used to downsample the output of the 

convolutional layers and reduce the number of connections to the following layers. 

The pooling layer comes after 2 convolution + ReLU operations and uses a 3x3 size 

window with a stride of 2 across the x and y directions. Note that the stride size is 

smaller than the actual pooling window. That indicates that there is some overlap 
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between pooling regions. No padding is added to input borders in any direction as it 

is not required. 

 

Fully Connected Layer: The Fully Connected layer is a traditional Neural Network 

layer, in that it uses an activation function to produce its output. Every neuron in this 

layer is connected to every neuron of the previous layer and each of these 

connections has an associated weight and bias factor. 

Here, it is possible to define the number of the output neurons and also initialise 

weight, bias and learn factor bias values. Usually, the network initialises those values 

by assigning random values for the first training example and then auto-adjusts them 

based on the error of the output probability for the expected object class. 

The output size of the first fully connected layer is 64 neurons while for the second 

layer of this type, the network needs to produce a number of outputs equal to the 

number of object classes and background. Since, this a single-class vehicle detector, 

the number of output neurons is 2: one for the vehicle object class and one for the 

background. 

 

Softmax layer: The Softmax loss function is used as the classifier (others, such as 

SVM can be used) to predict a class out of K mutually exclusive classes. The output 

softmax function is:                  

𝑦𝑟(𝑥) =  
exp (𝑎𝑟(𝑥))

∑ exp (𝑎𝑗(𝑥))𝑘
𝑗=1

       (3.3) 

Where 0 ≤ 𝑦𝑟 ≤ 1 , ∑ 𝑦𝑗
𝑘
𝑗=1 = 1 and 𝑎𝑟 is the conditional probability of the sample 

class 𝑟. 

Classification layer: The classification layer is the output layer of the neural 

network and takes its name from the loss function used for training the network and 

calibrating the weight and bias values. 

This layer uses the cross entropy loss function. 
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Model 2: The second network model is a 13 layer structure, adding an 

additional set of Conv + ReLU layers on the reference model and increasing the 

number of convolution kernels to 64. 

 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

iii. ReLU (Rectified Linear Unit) 

iv. Convolution layer  (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

v. ReLU 

vi. Convolution layer   (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

vii. ReLU 

viii. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

ix. Fully Connected layer  64 fully connected layer 

x. ReLU 

xi. Fully Connected layer  2 fully connected layer 

xii. Softmax layer 

xiii. Classification output  Crossentropyex 

 

Adding additional convolution layers (which is the core building block of a CNN) 

increases the depth size and the generalisation ability of the network. The network is 

able to recognise more complex image features and therefore better understand the 

relationship between the input image and the class it belongs to. However, there is a 

trade-off. Increasing the network depth results in a network that is difficult and slow 

to train and test. Additionally, a very deep network is more prone to overfitting on 

the dataset it was trained on. A balance between network size and runtime speed is 

required. The increased number of kernels (64) used in this network model means a 

larger number of feature maps will be produced from the convolution process, 

resulting in additional salient features that benefit the detection/classification process. 
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Model 3: A network structure containing the original 11 layers, with the 

addition of batch normalisation layers to reduce network sensitivity during 

initialisation. 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

iii. Batch normalisation layer 

iv. ReLU     (Rectified Linear Unit) 

v. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

vi. Batch normalisation layer 

vii. ReLU 

viii. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

ix. Fully Connected layer  64 fully connected layer 

x. ReLU 

xi. Fully Connected layer  2 fully connected layer 

xii. Softmax layer 

xiii. Classification output  Crossentropyex 

 

A batch normalisation layer normalises the activations of each input channel across 

the mini-batches of images used for training, speeding up the training process and 

reducing the sensitivity to network initialisation. The output of the convolution layer 

is normalised by subtracting the mini-batch mean and dividing by the mini-batch 

standard deviation. The effect of the batch normalisation layer on performance will 

be examined.    
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Model 4: A reference structure containing the original 11 layers, with a 

modification in the RPN producing a maximum of 1000 ROIs per image. 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

iii. ReLU     (Rectified Linear Unit) 

iv. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

v. ReLU 

vi. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

vii. Fully Connected layer  64 fully connected layer 

viii. ReLU 

ix. Fully Connected layer  2 fully connected layer 

x. Softmax layer 

xi. Classification output  Crossentropyex 

 

The Region Proposal Network (RPN) of Faster R-CNN network uses a maximum of 

2000 proposals to generate the training samples for the network. By reducing this 

number, the aim is to speed up training and testing. It is expected that a small impact 

on detection accuracy will occur. 
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Model 5: A network structure, based on the second model (13 layers and 64 

convolution kernels) with a modified learning rate for each training step. 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

iii. ReLU     (Rectified Linear Unit) 

iv. Convolution layer  (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

v. ReLU 

vi. Convolution layer   (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

vii. ReLU 

viii. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

ix. Fully Connected layer  64 fully connected layer 

x. ReLU 

xi. Fully Connected layer  2 fully connected layer 

xii. Softmax layer 

xiii. Classification output  Crossentropyex 

 

For this model, the learning rates for each of the training stages of the CNN (training 

and fine-tuning the Region Proposal Network – RPN and the CNN) have been 

modified to have the network parameters change faster compared to the other 

configurations. The rationale behind this modification is to explore the possibility of 

the network converging faster at an optimal solution, and even achieving a superior 

result after the end of the training epochs.  

The learning rate for the first two training stages is set at 5x e-4 (0.0005) and for the 

fine-tuning stages at 1e-5 (0.00001). The values have been selected after 

experimenting with different rates, where even higher values would make it 

impossible for the CNN to finish training and converge to a solution. 
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Model 6: A deeper network structure, where an additional Conv + ReLU set of 

layers is added, and a variable number of filters is used. 

i. Input layer    (32x32x3 images) 

ii. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

iii. ReLU     (Rectified Linear Unit) 

iv. Convolution layer  (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

v. ReLU 

vi. Convolution layer   (32 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

vii. ReLU 

viii. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

ix. Convolution layer   (64 3x3 convolutions with stride [1 1] 

and padding [1 1 1 1]) 

x. ReLU 

xi. Max pooling layer  (3x3 max pooling with stride [2 2] and 

padding [0 0 0 0]) 

xii. Fully Connected layer  64 fully connected layer 

xiii. ReLU 

xiv. Fully Connected layer  2 fully connected layer 

xv. Softmax layer 

xvi. Classification output Crossentropyex 

 

For this model, the depth of the network has been increased with the addition of extra 

layers. It is expected that there will be some performance gain in terms of accuracy, 

at the expense of training and testing time. To offset the increased processing time, 

the number of convolution kernels has been reduced to 32 for the first 3 convolution 

layers, with the last convolution layer retaining the full 64 kernels.   
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Region Proposal Network (RPN) 

The Region Proposal Network (RPN) is common across all examined models as part 

of the Faster R-CNN algorithm (Ren et al., 2015). It is tasked with generating the 

Regions of Interest (ROIs) for the CNN, without the need for an external function. 

Essentially, it operates as a shallow NN accepting the feature map produced by the 

main network as input. ROIs are produced in various scales on the feature map 

before a classification and a regression layer assign probability scores to each ROI 

and generate bounding boxes for them respectively. The output of the RPN is 

returned to the main CNN for classification. 

Training and testing the CNN detector 

The vehicle detector training process can be separated in 4 distinct stages. The first 

two train the Region Proposal Network (RPN) while the last two combine the output 

of the first two stages and fine-tune the network. 

Stage 1: Training a Region Proposal Network (RPN) 

Stage 2: Training a Fast RCNN network using the RPN from stage 1 

Stage 3: Re-training RPN using weight sharing with Fast RCNN 

Stage 4: Re-training Fast RCNN using updated RPN 

The parameters used to train the different models are the following: 

Max epochs: the number of epochs used for training. An epoch is a full pass of the 

training algorithm over the training set. An epoch is divides into iterations, which are 

the steps taken in the gradient descent algorithm towards minimising the loss 

function using a mini batch. The number of epochs used for every training stage is 10. 

Minibatch size: is a subset of the training set that is used to evaluate the gradient of 

the loss function and update the weights. It is used in each training iteration. The size 

is set 128 for the first and third training stages and 64 for stages two and four (the 
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reference model uses 128 images for all four training stages – the change was 

necessary to avoid running into memory problems for the larger models). 

Initial Learning Rate: The learning rate determines how quickly the network 

parameters change. For the first two training stages, the learning rate is 1e-5 (0.00001) 

while for the final two, 1e-6 (0.000001). The learning rate is lower in fine-tuning 

stages so that smaller adjustments are made. 

L2 regularisation: Regularisation (or weight decay) is added to reduce overfitting. 

A regularisation term for the weights is added to the loss function𝐸(𝜃). The loss 

function with the added term takes the form: 

𝐸𝑅(𝜃) = 𝛦(𝜃) + 𝜆𝛺(𝑤)       (3.4) 

Where 𝑤 is the weight vector, 𝜆  is the regularisation coefficient and the 

regularisation function 𝛺(𝑤) is 𝛺(𝑤) =  
1

2
𝑤𝑇𝑤. 

The L2 regularisation coefficient is 1e-4     (0.0001). 

The detection parameters are set as follows: 

Positive overlap range: Bounding box overlap ratio for positive training samples. 

The anchor boxes that are generated by the RPN for an image have varying levels of 

overlap with the ground truth objects in the particular image. Region proposals that 

overlap with ground truth bounding boxes within the specified range are used as 

positive training samples. Other boxes with lower values can be used as negative 

samples or even discarded completely if they fall between the ranges specified for 

positive/negative samples. This process is necessary for the detector to learn what a 

correct detection is and what is not. The choice to have ‘neutral’ proposals that do 

not contribute to the training process (proposals between the positive/negative ranges) 

and disregard them was due to the fact that a large number of negative samples exist 

already in an image and it is not necessary to process them all. The value used for 

positive samples for the vehicle detector was [0.6-1]. The overlap ratio used is 

defined as union (area of intersection between two bounding boxes divided by the 

area of the union of the two). 
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Negative overlap range: Bounding box overlap ratio for negative training samples. 

Similar to the positive range, values range from 0-1 and the value used was [0-0.3]. 

Number of strongest regions: Maximum number of strongest region proposals to 

use for generating training samples. The default value for this option is 2000 

proposals. Reducing this value leads to reduced processing time at the cost of 

training accuracy. 

Smallest image dimension: This option sets the smallest dimension (either width or 

height) when it is necessary to resize training images. Resizing images into smaller 

sizes reduces computational cost. For all the models tested, training images retain 

their original size (512x512). 

To summarise, the training parameters used for training and testing the CNN 

detector are as follows: 

• Original image size is 512x512. The image is segmented into smaller parts 

for detection purposes, with the segment size set at 32x32 pixels. 

• The convolution matrix is 3x3 in size with 1 pixel stride. The number of 

convolution kernels is 32, except for the models, where the number of 

convolution kernels is 64. 

• The pooling matrix has a size of 3x3 and stride 2 across both dimensions. 

• The output size of the first Fully Connected layer is 64, while the output for 

the second one is 2, since there are only 2 object classes (vehicle and 

background). 

• The network is trained for 10 epochs for each of the Faster R-CNN training 

stages (RPN, Neural Network, fine-tuning). The number of training epochs 

was selected to be 10 and not higher, to avoid overfitting issues in the trained 

model. When a model is trained many for many cycles, it tends to over-fit to 

the training data and loses its generalisation ability. As a rule, training a CNN 

model should stop when the error rate in the validation data is minimised. 

After that point, the model starts to over-fit. 

• The initial learning rate is set at 1e-5 and for the fine-tuning process at 1e-6. 
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• The Region Proposal Network (RPN) generates 2,000 candidate regions for 

each input image by default. 

The performance of the two vehicle detectors will be assessed in terms of accuracy 

and precision in a complex dataset, containing vehicle instances of various sizes in 

different types of environment. The desired outcome is a vehicle detector that is able 

to detect all vehicle instances in a set of images or video while at the same time 

producing the lowest number of False Positive (FP) detections possible. The run-time 

performance of the most accurate detector will also be assessed, in order to 

determine whether it is suitable for application in the real world. 

 

3.4 Range estimation using perspective geometry 

This section describes the method used to estimate distance from a vehicle ahead. 

The method uses simple perspective geometry using the monocular camera’s 

parameters to estimate the distance to the centre of a bounding box generated by the 

vehicle detector. Because of the simple geometric calculation, the bounding box is 

considered to be on the surface of the road. Accurate computation of a location in 3D 

space is not possible and would require a stereo camera system or an active sensor 

(radar, LIDAR). Additionally, there is no consideration for error compensation so the 

system cannot be considered accurate for use in safety critical application. This 

merely serves as a test to determine the inaccuracies of the measurement and 

determine whether the developed detector produces workable results. The method is 

based on the work in (Stein et al., 2003). 

Figure 3-18 is a schematic diagram of the imaging geometry. The camera is mounted 

on a vehicle at height 𝐻𝑐 . The rear of the vehicle is at a distance 𝑍 from the camera 

while 𝑓 is the focal length of the camera. The point of contact between the vehicle 

and the road projects onto the image plane at a position𝑦. The focal length and point 

y are typically in pixels and are not drawn to scale here. The distance 𝑍 is derived 

directly from the similarity of triangles: 
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𝑍 =  
𝑓 𝐻𝑐

𝑦
           (3.5) 

All required values are available: the height 𝐻𝑐, focal length 𝑓 and principal point of 

the camera are known and determined through camera calibration. The pitch of the 

camera that specifies the angle (tilt) from the horizontal position and is a potential 

source of error is also determined during the calibration process. The bounding box 

and the location of the centre of the bottom side are produced by the vehicle detector. 

  

 

Figure 3-19: Range estimation based on bottom of b. box Source: Christiansen et al. (2018) 

 

This simple calculation only gives a rough estimate of the distance between the ego 

and target vehicle, with the limitations being numerous: 

• The surface of the road is considered flat 

• The distance is calculated to the surface of the road and not the actual vehicle 

• The distance is calculated from a single image. An approach using 

information from a sequence of images would reduce the associated distance 

error and provide more accurate distance measurements. 
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4 Data collection and pre-processing 

4.1 Introduction 

The performance of applications such as camera-based Collision Avoidance rely on 

robust detection algorithms that have been trained on datasets containing large 

amounts of quality data which in this case is image samples. The data need to be 

collected and pre-processed before any part of the detection process takes place. 

This chapter describes the process of collection, the features and limitations of the 

datasets used in this project. Pre-processing for each of the detection methods will be 

described in its own discrete section, as different processes need to be employed. 

4.2 Data collection 

The most common data collection method for images is recording video sequences 

from a moving vehicle in the desired environment and then processing the video files 

to extract the image dataset. All the data utilised in this project were collected using 

an instrumented vehicle belonging to the School of Architecture, Building and Civil 

Engineering of Loughborough University. The vehicle is equipped with the 

following set of sensors: 

• A PointGrey Grasshopper3 –U3-41C6NIR-C Near Infrared (NIR) camera 

(mono sensor, 4.1MP resolutions) 

• A Continental ARS 308-2 77GHz long range automotive radar 

• A U-blox NEO M8L GNSS and 3D Dead Reckoning system 

• A Mobileye 560 forward collision warning and lane departure unit 

• A weather station collecting wind speed, humidity and other environmental 

data 

• An Arduino microcontroller connected to the CAN bus exporting information 

about the status of the vehicle. 

The instrumented vehicle along with the installed sensors can be seen below: 
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Figure 4-1: Loughborough University instrumented vehicle 
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For this particular project, the NIR camera was used to record the videos required, 

while the ARS radar was used to provide the readings used as ground truth for range 

estimation. 

The camera records video at 4MP resolution (2048x2048) while the frame rate was 

set at 15FPS (Frames per second). The recording frame rate was set at 15FPS to 

reduce the size of the produced video files. The resulting file from this frame rate 

setting is around 2 GB in size for every 10 minutes of recorded video. Using a higher 

frame rate (e.g. 30FPS) would result in even larger files that would be require 

additional time to process. The images collected include various vehicle types 

(private cars, light duty vehicles, buses) and were taken in various operational 

environments (urban roads, rural roads, motorways) as well as different weather 

conditions (sunny, overcast, rain) so as to ensure representative samples. The same 

level of variability is used for both training and testing datasets. The videos were 

recorded around the town of Loughborough in Leicestershire (UK), the rural areas 

around it, the M1 motorway connecting London and Leeds in the UK and the city of 

Nottingham (UK). 

 

Figure 4-2: Locations of M1 motorway, Loughborough and Nottingham 
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  In total, several hours’ worth of data was recorded, resulting in a large pool of 

images from which the training and validation datasets were extracted. Samples of 

the images collected can be seen in Figure 4-3 below: 

 

 

Figure 4-3: Image dataset samples 

The radar sensor detects objects that reflect radar waves up to 200m (long range, 17o 

Field of View) and 60m for short range (56o Field of View). The radar is able to 

distinguish between targets (objects that reflect radio waves) and objects (targets that 

are detected more than once and tracked). 

The variables of interest from the radar output are: 
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• Number of objects traced in this measurement cycle (NoOfObjectsY and 

NoOfObjectsTime)  

• Dynamic property of each object (Obj_DynPropTime and Obj_DynPropY) 

that categorises each object’s movement; 0: unclassified, 1: standing, 2: 

stopped (never moved before) and 4: oncoming. 

• Longitudinal displacement of an object (Obj_LongDisp [m]) which will 

provide the ground truth measurement of the distance between the ego-

vehicle and a vehicle ahead.  

• Lateral displacement of an object (Obj_LatDisp [m]) which will help with 

identifying different vehicles in an image. Negative value means that the 

object is located to the right of the camera, while positive value means that 

the object is on the left. 

 

Figure 4-4: Variables measured by the radar sensor Source: Schnieder (2017) 
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4.3 HOG based detector training data 

This section describes the type of data and processing required for the development 

of the HOG based detector described extensively in section 3.2 of the Methodology 

chapter. 

4.3.1 Training set 

Due to the large variability of vehicles (size and type) on the road, a large training 

sample was required in order to train and evaluate the SVM classifier. To train a 

classifier, the dataset needs to be separated into positive and negative samples. 

Positive samples need to exhibit enough variation so that the classifier is able to 

correctly identify all types of vehicles, while negative samples need to cover as many 

as possible of non-vehicle objects that appear on the road.  

The training set consists of 2,135 positive image samples and 2,779 negative samples. 

Positive samples are appropriately cropped vehicle’s front and rear view images, 

straight on or slightly angled. Vehicles include not only passenger vehicles but also 

light trucks, lorries and buses. Negative samples include various objects such as 

traffic signs and lights, poles, lane markings, railings, trees and other vegetation, 

buildings or parts of buildings and other random objects. 

The number of negative samples was augmented by flipping the images horizontally 

and using the produced symmetric images as additional training samples (for a total 

of 5,558 images). The total size of the dataset is 7,693 images for a ratio of 1:2.6 

positive/negative samples. The dataset was tested and no issues regarding 

imbalanced dataset were observed. Using this dataset produced slightly better 

classification results compared to using the more balanced dataset. 

Examples of positive and negative training images are shown in Figures 4-5, 4-6 and 

4-7 below: 
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Figure 4-5: Examples of positive training images 

 

 

 

 

 

Figure 4-6: Examples of negative training samples (a) 
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Figure 4-7: Examples of negative training images (b) 

 

4.3.2 Validation set 

An early indication of the performance of the trained SVM classifier is given by 

performing cross-validation on the training data. However, a smaller independent 

(not used in training) dataset was used to verify the results of the cross-validation 

process and ensure the generated classifier performs as expected on unseen data. The 

size of this smaller dataset is 300 images, with 100 being positive (vehicle) samples 

and 200 negative (non-vehicle) image samples. 

4.4 CNN-based detector training data 

In this section, the processing and augmentation of data required for the development 

of the CNN-based detector (described extensively in section 3.3 of the Methodology 

chapter) is presented. 

The most common issue with training CNNs is the generation of large amounts of 

data required for this particular task. The amount of data required to effectively train 

a CNN is highly dependent on the complexity/depth of the network and the task it 

performs. Structures containing many layers require large amounts of data to perform, 

as is evident by image classification networks such as VGGNet, which was trained 

on 1.2 million images (with assigned label for each of the 1000 classes) (Jia Deng et 

al., 2009). 
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Simpler tasks such as single-class object detection which is performed here, do not 

require this amount of data, although a combination of small dataset and deep 

network would result in overfitting problems (the network memorising features of 

the training dataset and does not generalise well in unknown data). A balance is 

required between network complexity and dataset size, especially when not using 

pre-trained networks where many of the learnable parameters have fixed values and 

are not trained on new data. 

In order to generate the data required for a vehicle detector, it is necessary to 

manually annotate a large number of images and provide ground truth labels for them. 

Although the task is simple it is very time-consuming given the vast amount of data 

required. To reduce annotating time, various tools such as automatic image labellers 

can be used to automate the process, though not without limitations and with the 

human presence still being essential to validate the generated labels. Another way to 

overcome the data collection and annotating issue is the use of a virtual environment 

in which, it is possible to generate a vast amount of data, label them using custom-

made tools and then develop a CNN detector. However, the applicability of virtual 

data in real-world simulations and the transferability of the method have not been 

proven yet and remain to be examined (Filipowicz et al., 2017; Martinez et al., 2018). 

In this study, 5,000 images were selected and annotated manually. Even though the 

detector is focused on vehicles and other objects are disregarded, the number of 

images is still far from the many thousands of images usually used to train a CNN. In 

order to reduce the time and cost required to collect and label more images, it is 

necessary to increase the size of the training dataset artificially or, “augment” the 

dataset.  

Data augmentation is a common technique used to increase the amount of relevant 

data with samples that differ, even if the differences are minor in many cases. It is 

usually performed to reduce overfitting in models, using information already in the 

existing dataset. When using images as input data, common ways to augment the 

data is by using operations such as resizing, rotation, reflection etc. These operations 

produce instances of the same object (albeit slightly altered) that can be used as 
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additional input data. However, they are linear transformations of the same image 

and do not bring any new visual features that could improve the learning abilities of 

the model (Mikołajczyk and Grochowski, 2018).  For example, reflection essentially 

retains the same pixel values in a sample image albeit in a mirror image, generating 

the same features. Therefore, the dataset size would increase without significant 

gains in the learning ability of the CNN detector. They are also more appropriate for 

classification purposes, i.e. when the object of interest occupies the whole or a large 

part of the image (Wang and Perez, 2017). 

The network operates as a detector in this case and its input data are scene images 

containing vehicles in various locations on the road, along with their bounding box 

coordinates. To augment the data and increase the vehicle instances in the dataset, 

the following approach called translation was utilised:  

• The size (width, height) of the bounding box in the original annotated image 

is kept constant  

• To generate new vehicle instances, the bounding box is offset by a relatively 

small number of pixels in both 𝑥 and 𝑦 directions. 

• New bounding boxes are generated for the image, containing the object of 

interest (vehicle) 

The maximum number of pixels used as offset in both directions is kept at a low +5 

or -5 pixel, with the actual value generated randomly. The random generation of the 

offset value ensures the low probability of two identical boxes generated for the same 

object, while at the same time, the low maximum offset value ensures that:  

i. the object remains within the newly generated box (offset less than 1% of the 

width/height of the image – vehicle remains in focus) and  

ii. the newly generated box contains the vehicle along with a slightly different 

view of the surrounding environment (new pixel values for the surrounding 

environment, bringing new information to the model). 
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Arguably, generating additional vehicle instances using this augmentation method 

resembles annotation of the same image by different people or even annotating the 

same object in a different frame of the same second in the video file. 

The original dataset of 5,000 images was increased in size to reach 20,000 images for 

training purposes. With each image containing two vehicle instances or more on 

average, the total number of vehicles contained is around 50,000. If the detector was 

intended to classify multiple objects (multi-class) as opposed to vehicle only, the 

dataset would have to increase in size to reflect the need to train on other objects too.  

An example of the original and additional bounding boxes can be seen in Figure 4-8 

below: 

 

 

Figure 4-8: Example of data augmentation 
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4.5 Testing dataset 

The dataset used to evaluate the real-world performance of the two detection 

methods consists of 1,000 images containing multiple vehicle instances (1,853 in 

total). It is a dataset independent from the two sets used to train the SVM classifier 

and CNN-based detector but has the same level of variability (vehicle types, 

operating environment, and weather conditions).  

Similarly to the training dataset, the resolution of the testing images is 512x512 

pixels. To ensure the dataset is varied enough, the KITTI dataset benchmark for 

difficulty is used (Geiger et al., 2012). According to the difficulty levels defined in 

this benchmark, the challenge for the detector to correctly identify vehicles in the 

testing dataset ranges across all three categories (easy, medium and hard) with many 

small bounding boxes and many occluded vehicles. The three difficulty categories 

are: 

• Easy: Minimum bounding box height: 40 pixels, occlusion level: Fully visible, 

Maximum truncation: 15% 

• Medium: Minimum bounding box height: 25 pixels, occlusion level: partly 

occluded, Maximum truncation: 30% 

• Hard: Minimum bounding box height: 25 pixels, occlusion level: difficult to 

see, Maximum truncation: 50% 

The minimum bounding box height defines the size of the vehicle in the image, with 

smaller boxes being a challenge for the detector. The level of occlusion is an 

additional difficulty factor, with vehicles being obscured by other objects in the 

medium and hard difficulty categories. Finally, the level of truncation is also 

considered, meaning it is possible that only parts of vehicles are visible in an image 

(with vehicles being at the edges of the image, entering or exiting the scene). 
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4.6 Limitations of the dataset 

All three datasets were developed to include as many environmental conditions 

(sunny, overcast, rain, dusk) as possible, the goal being to produce a robust vehicle 

detector that is invariant to environmental or operational conditions. While the 

datasets used manage to include a good amount of variety, there are inherent 

limitations to the datasets that need to be considered when examining the 

performance of the vehicle detectors: 

• The dataset used for training the CNN detector is constrained in size, as it 

was necessary in order to examine the detection performance using a limited 

amount of data. 

• The image quality in the dataset varies, and this was purposefully done to 

examine the effect of degraded and noisy images to detector performance. 

• Images are grayscale and contain no colour information, thus limiting the 

ability to use additional useful information as visual cues to detect vehicles. 

• Lightning conditions are varied, with many images being dark or 

overexposed, thus introducing another layer of difficulty for the developed 

detectors. 

4.7 Summary 

This chapter presented the types of data used in this study, the collection and pre-

processing that was necessary to generate the datasets. 

Three different datasets were employed; two datasets used for training the SVM 

classifier and CNN detector, and a testing dataset upon which vehicle detection 

performance will be measured. The first one (SVM classifier) is comprised of 

positive and negative training samples that are necessary to train the classifier and 

validate its results. Its size (training + small validation set) is around 8,000 images. 

The second dataset is made up from 20,000 images. 5,000 images were selected and 

annotated manually, before an augmentation process increased the total number of 

samples to 20,000. Both detectors will be evaluated on an independent dataset 
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containing 1,000 images with multiple vehicle instances in many cases. The number 

of vehicles in this dataset is over 1,800. 

Finally, radar data are used as ground truth in range measurement using a monocular 

camera. This data will be used to determine whether the camera is sufficiently 

accurate to compute surrogate safety measures such as TTC. 
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5 Results 

5.1  Introduction 

This chapter presents the results for the two vehicle detection methods: (1) the HOG-

based detector with SVM (Support Vector Machine) classification and (2) the deep 

learning based detector – convolutional neural network. As the aim is to produce a 

high-precision vehicle detector that is able to operate in real-time, the two methods 

need to be compared and their performance discussed. 

The methods are tested on an independent dataset consisting of 1000 images with 

multiple vehicle instances in them.  The images that make up both training and 

testing datasets were collected over different data collection runs using the 

instrumented vehicle. That way, it became possible to collect data in different 

operational (e.g. motorway, urban, rural) and weather (e.g. clear sky, overcast, rainy) 

conditions.   

Initially, the performance of the HOG-based detector is assessed. Since the detection 

process is separated in two stages, Hypothesis Generation (HG) and Hypothesis 

Verification (HV), it is essential that both perform equally well. If that is the case, 

the detection process operates robustly, otherwise (if one or both stages are found to 

be under performing) the detection process cannot be considered successful. 

The following section examines the performance of the CNN-based vehicle detector. 

In this case, a unified detection pipeline handles both generation of ROIs and their 

classification in an efficient manner. This efficient and high-performing process is 

one of the reasons why Deep Neural Networks have substituted traditional image 

processing methods in object detection and classification. 

The results clearly show the superiority of the CNN-based vehicle detector. The 

proposed HOG-based method does not perform sufficiently well to be considered a 

robust solution. The reasons for this result will be discussed extensively in the next 

section, with examples provided to highlight the problems that developed. 
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5.2 HOG-based detector and SVM classification results  

This section investigates the performance of a vehicle detector that generates 

Regions of Interest (ROIs) based on information derived from the extraction of HOG 

features. While established methods make use of various visual cues for ROI 

generation (e.g. extracting salient features from the raw image data) and utilise HOG 

features for classification of objects, the method presented here attempts to use HOG 

features to extract the necessary information for the ROI generation part of the 

detection process.  

Hypothesis Verification (SVM classification) results 

Classification of the extracted regions takes place using a Support Vector Machine 

(SVM) that is trained using a dataset consisting of positive and negative training 

samples. Initial testing has indicated that two of the available kernel functions (linear 

and Fine Gaussian kernel) were the most likely to produce the best classification 

results. 

The SVM classifiers were tested on two image resolutions as well, in order to 

identify differences in classification performance. The two resolutions used for the 

training dataset were 128x128 and 256x256 pixels. 

The training dataset consists of 7,693 images in total. Out of this number, 2,135 

images are positive training samples (vehicle instances) while 5,558 images are 

negative samples (which do not contain vehicles or parts of vehicles). The ratio 

between positive and negative training samples is around 1:2.6. The dataset was 

tested and no issues regarding imbalanced dataset were observed. An increased 

number of negative training samples can be used to increase the variability of the 

non-vehicle object class (Dalal and Triggs, 2005; Li and Guo, 2013; Teoh, 2011). 

Validation 

A trained classifier may have good performance on the training dataset but fail to 

perform on a validation set. An estimate of its performance can be provided by cross 

validating. For 𝑣-fold validation, the data is divided in 𝑣 number of sub-sets. 𝑣 − 1 
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sub-sets are used for training the classifier, while the last sub-set is used for 

validation internally. The process is repeated for 𝑣 times, each with a different sub-

set of data used for validation. It is then followed by calculating the average of all 

validation results which is used as a measure of the SVM classifier’s performance 

(Teoh, 2011). 

The results are further validated by a small independent dataset generated for this 

purpose, consisting of 300 image samples (100 positive/200 negative samples). 

ROC (Receiver Operation Characteristic) curve 

The ROC curve is another measure that is commonly used for assessing the 

performance of a classifier (Godil et al., 2014). It is a plot of points showing the 

trade-off between the classifier’s true positive (TP) and false positive (FP) rate. A 

classifier is considered to have better performance compared to another when its 

operating point lies closer to the top left corner of the graph (essentially maximising 

the Area Under Curve – AUC). 

The four terms commonly used to describe correct and incorrect classification results 

are the following: 

Positive (P): Positive case in the data (vehicle) 

Negative (N): Negative case in the data (non-vehicle) 

True Positive (TP): Vehicle correctly identified as present in a frame (vehicle 

present in ground truth) 

False Positive (FP): Object incorrectly identified as vehicle (vehicle not present in 

ground truth) – False Alarm 

True Negative (TN): Object correctly identified as non-vehicle (vehicle not present 

in ground truth) 

False Negative (FN): Vehicle not identified in frame (vehicle present in ground truth) 

– Missed detection 
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Key metrics that can be used to more accurately measure classifier performance are 

(Godil et al., 2014): 

The accuracy (ACC) metric is an actual measure of performance with regards to 

correctly identifying targets. It is the ratio of the sum of TP and TN detections 

relative to the total number of objects. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
          (5.1) 

Recall (or sensitivity or True Positive Rate) is the ratio of true positives to the sum of 

TP and false negatives (FN) in the classifiers, based on the ground truth. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (5.2) 

Miss rate (or False Negative Rate) is the ratio of false negatives to the sum of FP and 

True Negatives (FN). 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑅𝑒𝑐𝑎𝑙𝑙          (5.3) 

False Positive Rate is the ratio of FP detections over the sum of FP and TN. 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
            (5.4) 

The results for the different combinations for SVM classification are presented below: 

SVM model 1 – 128x128 pixels – Linear kernel function 

This first SVM produced a vehicle classifier with an accuracy of 94.2%. The 

confusion matrix and ROC curve for the classifier can be seen below: 

Table 5-1: Linear SVM classifier (128x128) performance 

Classifier TP FP TN FN Total 

SVM linear 

(128x128) 

1834 145 5413 301 7693 
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Figure 5-1: Confusion matrix - SVM linear kernel 128x128 

 

Figure 5-2: ROC curve - SVM linear kernel 128x128 
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The results show that the SVM classifier achieves an accuracy of 94.2% (which is 

high), a True Positive Rate of 0.86 (miss rate of 0.14). False positive rate is at a low 

0.025 or 2.5%. 

 

Figure 5-3: TPR/FNR - SVM linear kernel 128x128 

 

SVM model 2 – 128x128 pixels – Fine Gaussian kernel function 

This SVM classifier using the F.Gaussian kernel produced a completely unworkable 

classifier compared to the one using a linear kernel. The confusion matrix and ROC 

curve for the particular SVM classifier can be seen below: 

Table 5-2: F.Gaussian SVM classifier (128x128) performance 

Classifier TP FP TN FN Total 

SVM F. Gaussian 

(128x128) 

0 0 5558 2135 7693 
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Figure 5-4: Confusion matrix - SVM F.Gaussian kernel 128x128 

The accuracy rate for this trained classifier is 72.2%. The result is not indicative of 

its performance at all, as the confusion matrix shows an inability to correctly classify 

vehicles (no TP instances out of a total of 2,135). The classifier trained here using a 

F.Gaussian kernel is unsuitable for vehicle detection, producing incorrect 

classification results. The ROC curve is also a testament to this issue. 
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Figure 5-5: ROC curve - SVM F.Gaussian kernel 128x128 

 

 

Figure 5-6: TPR/FNR - SVM F.Gaussian kernel 128x128 
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SVM model 3 – 256x256 pixels – Linear kernel function 

Finally, the last SVM classifier was trained using 256x256 pixel image patches, a 

rather large size given that most vehicles in an image frame should be smaller than 

this size. Only vehicles close to the camera should be close to this size (or higher). 

The aim for using this image resolution was to test whether there is any difference in 

classification accuracy. 

The resulting confusion matrix and ROC curve can be seen below: 

Table 5-3: Linear SVM classifier (256x256) performance 

Classifier TP FP TN FN Total 

SVM linear 

(256x256) 

1848 125 5433 287 7693 

 

 

Figure 5-7: Confusion matrix - SVM linear kernel 256x256 
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The accuracy rate for the classifier trained on higher resolution image patches is 

94.6%. True Positive rate stands at 0.87 (with a miss rate of 0.13) while the False 

Positive Rate is 0.022 (2.2%). 

 

Figure 5-8: ROC curve - SVM linear kernel 256x256 

 

Figure 5-9: TPR/FNR - SVM linear kernel 256x256 
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It is clear that the SVM classifiers trained using a linear function kernel perform 

better compared to the F.Gaussian ones. While initial testing using a smaller dataset 

suggested that the F.Gaussian kernel in the SVM resulted in better classification 

accuracy, this is not the case when the classifier is trained using a much larger 

training dataset.  

Between the two different resolutions, the difference in performance is small (0.4% 

in accuracy). For that reason, and also due to the increased processing time for the 

higher resolution image patches (SVM processes 110 observations at 128x128 

resolution, while only 17 at 256x256 pixels), the SVM classifier trained on 128x128 

pixel images is elected to be used in the vehicle detector.  

Overall detector performance is highly dependent on the quality and the number of 

generated ROIs from the proposed HOG-based generation process.  The following 

section presents the output of the ROI generation process. 

Hypothesis Generation (ROI generation) results 

The ROI generation process has been in described in section 3.2 of the Methodology 

chapter. The method explores the possibility of using the horizontal gradients of the 

produced HOG feature vector to detect long horizontal edges in vehicles. Through 

them, a bounding box can be generated around the vehicle in the image frame and 

subsequently used as ROI for classification. 

The vehicle detector (ROI generation+ SVM classifier) is tested on a dataset 

consisting of 1000 images. The output of the detector is a location of the vehicle and 

its predicted label (vehicle label: 1 and non-vehicle label: 0) from the SVM classifier. 

The final results indicate a high number of False Negative (FN) detections, with the 

detector missing the majority of vehicles in the dataset. The detector manages to 

correctly classify most of the generated ROIs, but the problem lies with the high miss 

rate. For the purpose of reviewing the results and identifying problems, TN 

detections are included in the images. 
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Table 5-4: HOG-based detector performance 

Vehicle detector TP FP TN FN Total 

HOG-based 

detector +SVM 

367 High High 1486 1853 

The Recall rate for the current detector is at a low 20%. 

Examples of the ROI generation process are provided below. While there are a 

number of successful detections, it is obvious that the results are less than ideal, 

given the high miss rate. Despite the high number of generated bounding boxes, there 

are cases where vehicles are not correctly detected or misclassified by the SVM 

classifier. The reasons for this sub-optimal performance will be explained further. FN 

detections in the following images are indicated by red bounding boxes. 

 

 

Number of ground 

truth vehicles: 3 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

Other bounding 

boxes correctly 

classified as non-

vehicles (0). 
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Number of ground 

truth vehicles: 1 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

No FP or TN 

detections 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

No FP detections in 

the image. Other 

bounding boxes 

correctly classified 

as non-vehicles. 
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Number of ground 

truth vehicles: 1 

 

TP detections: 1 

 

One False Positive 

(FP) detection in the 

image. 

 

The image quality is 

severely 

downgraded due to 

pixelation artefacts. 

 

The vehicle 

detection system 

should be able to 

handle such cases, 

where there are 

visibility issues, 

faulty recordings or 

connection issues. 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 2 

 

One TN detection in 

the image. 

 

The bottom half of 

the image is very 

dark, making 

discerning objects in 

it difficult. 

Illumination 

conditions like this 

make it difficult for 

a camera system to 

operate. 
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Number of ground 

truth vehicles: 1 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

No FP or TN 

detections 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

1 TN detection in 

the image. 

 

The partial vehicle 

on the left of the 

image not detected 

(FN). 
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Number of ground 

truth vehicles: 3 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

1 TN detection, 

missed detections 

not critical for a 

safety application. 

 

 

Number of ground 

truth vehicles: 1 

 

TP detections: 1 

 

The vehicle is 

correctly identified. 

 

1 FP, 2TN 

detections. The ROI 

generation module 

generates additional 

candidate locations 

in a structured 

environment where 

there are more 

objects with long 

horizontal edges. 
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Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

3 TN detections 

correctly identified 

as non-vehicles. 

 

The long horizontal 

overpass is 

identified as a 

potential vehicle 

location, as it is 

designed to detect 

horizontal edges. 

 

 

 

Number of ground 

truth vehicles: 1 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified. 

 

A FP and a TN 

detection appear in 

the image. 
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Number of ground 

truth vehicles: 1 

 

TP detections: 0 

 

The vehicle is not 

identified. A ROI is 

generated around the 

vehicle but contains 

a significant amount 

of background 

information. The 

SVM classifier 

cannot validate the 

existence of a 

vehicle. 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 0 

 

The vehicle is not 

identified. In this 

case, the bounding 

box is smaller than 

the actual vehicle. 

Similarly to the 

previous case, the 

SVM classifier 

cannot correctly 

identify the vehicle. 
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Number of ground 

truth vehicles: 1 

 

TP detections: 0 

 

The vehicle is not 

identified.  The ROI 

generation process 

has failed to identify 

a vehicle, possibly 

because it is unable 

to separate it from 

its surrounding 

environment. 

A large number of 

bounding boxes 

generated in this 

image indicate large 

horizontal objects. 

The classifier 

successfully 

identifies them as 

non-vehicles. 

 

 

Number of ground 

truth vehicles: 1 

 

TP detections: 0 

 

The vehicle is not 

identified. A ROI is 

generated around the 

vehicle but contains 

a significant amount 

of background 

information. The 

SVM classifier 

cannot validate the 

existence of a 

vehicle. 
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Number of ground 

truth vehicles: 3 

 

TP detections: 1 

 

The vehicle closest 

to the ego-vehicle is 

correctly identified.  

 

The SVM classifier 

fails to identify a 

vehicle on the right, 

while the ROI 

generation module 

misses the vehicle 

on the left 

completely.  

 

The information 

sign on the left is 

identified as a 

potential vehicle 

location. 

 

 

Number of ground 

truth vehicles: 1 

 

TP detections: 0 

 

The detector misses 

completely the 

vehicle on the left 

side of image. The 

weather is rainy on 

this occasion and the 

low contrast of the 

image is possibly the 

reason the vehicle 

cannot be separated 

from the 

environment. 
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The detection results clearly show that this combination of ROI generation and 

classification is unsuitable for vehicle detection. While the initial processing stages 

of an image show there is potential in using HOG bin orientation as a visual cue for 

vehicle detection, the end result does not justify the use of this particular method as 

is and needs to be improved in order to become usable. 

The additional use of a Canny filter as a segmentation tool to improve the clustering 

(see Methodology section 3.2.1 on vehicle-environment separation) of image areas 

into objects works but is clearly not enough to produce a consistent result. The 

problem lies with the fact that each image requires a different approach in order to 

isolate the vehicle from its surrounding environment and there is no universal set of 

parameters that works for every image in the dataset. The end result shows, that in 

some images the size of the bounding box around the vehicle is smaller than 

necessary for a correct classification result, while for others the opposite is true.  

It is also apparent that there is a high number of generated ROIs that do not belong to 

a vehicle, especially where there are rectangular objects in the background (bridges, 

railings, buildings in urban areas). While this is not ideal, the SVM classifiers 

manages, in most cases, to correctly classify these objects as non-vehicle with the 

only drawback being the additional CPU time required to process these image areas. 

The issues discussed here are intensified by the intrinsic limitations of the dataset 

used: 

• The quality of the images is a limitation factor. While the image resolution is 

high enough to extract salient image information, they are all grayscale, thus 

immediately limiting the available methods that can be used to detect vehicles. 

• Lightning conditions are in many cases poor, with many images being dark or 

low contrast, leading to difficulty detecting shadows or separating the vehicle 

from its surrounding environment and others suffering from lens flare effect. 

Both these issues are common problems associated with camera-based 

detection. 
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It is possible that, without the issues mentioned here, vehicle-environment separation 

would be better and the detection results improved. However, since the aim is to 

build a robust vehicle detector that is able to detect vehicles across different 

environment and in different conditions, and not a situation-specific detector, it can 

be concluded that this vehicle detector does not meet the requirements set.  

5.3 CNN-based vehicle detector results 

In the current section, the performance and capabilities of the developed CNN-based 

detector models are explored. Each of the CNN models is assessed through 

appropriate quantitative metrics while, similarly to the previous section, sample 

images are provided and discussed where necessary. 

In total, 6 network models with different number of layers and detection parameters 

are examined. The first model is used as reference and another five building on the 

structure of the base one with modifications that aim to determine which set of 

options and parameters maximise vehicle detection performance. 

As described previously, the detectors were trained end to end, initially using 5,000 

manually annotated images as a base training set, with the detectors re-trained in 

successive steps (each step adding 5,000 additional training images) until a total of 

20,000 images is used for training. With every image containing two vehicles on 

average, the total number of vehicle instances contained is around 50,000. If the 

detector was intended to classify multiple objects (multi-class) as opposed to vehicle 

only, the dataset would have to increase in size to reflect the need to train on other 

objects too. The performance of the detectors is examined at each training step to 

determine the effect of using augmented data on the system’s detection ability.  

The CNN detectors are evaluated using the same 1,000 image dataset used for the 

HOG based detector. The images used for testing are representative of different 

environmental conditions and of varying difficulty for an object detector. The results 

for the top-performing detector are disaggregated by environment type to identify 

potential strengths or weaknesses of the selected detector. 
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The detectors’ output is the locations of vehicles in an image along with the 

confidence values for every detection. Since CNN-based detection is a resource 

intensive process (run-time on CPU is usually high, with the system requiring a 

capable GPU to perform adequately), it was decided to reduce the search window for 

vehicles and thus, improve run-time in order to be able to operate in real time. 

Essentially, the search window is a rectangle as wide as the image frame, but with 

the top and bottom areas removed. The top area is the sky, while the bottom is part of 

the car bonnet. The size has been selected so that there no vehicle misdetections. 

Figure 5-10 below presents the search area in a sample image: 

 

Figure 5-10: CNN vehicle search window 

The performance of CNN-based detectors is commonly measured using the Average 

Precision (AP) metric (Huang et al., 2017; Ren et al., 2015; Wei et al., 2019). 

Precision (P) is the ratio of True Positive (TP) detections over all object instances in 

the detector (True Positives and False Positives) and AP is measured over all 

detection results, averaging the precision results at different recall levels. Recall, as 
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mentioned before, is the ratio of true positives to the sum of true positives and false 

negatives (FN) in the detector, based on the ground truth. 

Precision (P) =  
TP

TP+FP
       (5.5) 

The AP metric summarises the shape of the precision/recall curve and was first 

formalised in the Pascal Visual Objects Challenge (VOC) (Everingham et al., 2010). 

At 11 equally spaced recall values Recalli = (0, 0.1, … , 1), the value of AP is: 

AP =  
1

11
 ∑ Precision(Recalli)Recalli

                 (5.6) 

Other measures of performance are the Recall and miss rate metrics. In this study, 

there are no TN detections, as this is not a classification task but a two-class (vehicle-

background) detector and the test dataset only contains images with vehicle instances. 

A detection is considered True Positive (TP) if the Intersection over Union (IoU) of 

detected bounding box and ground truth is ≥0.5. 

In addition to the above metrics, the Precision-Recall curve (PR curve) is also 

indicative of the detector’s performance. The PR curve is plotted by varying the 

confidence value. In pattern recognition and information retrieval, precision is the 

fraction of retrieved instances that are relevant, while recall (or sensitivity) is the 

fraction of relevant instances that are retrieved. Therefore, both metrics are measures 

of relevance. 

The six models detailed in Methodology section 3.3 are the following: 

Model 1 – Reference model (11 layers) 

Model 2 – 13 layer structure (64 convolution kernels) 

Model 3 – Reference structure with the addition of batch normalisation layers 

Model 4 - Reference structure with modified Region Proposal Network 

Model 5 – 13 layers structure (M2) with increased learn rate 

Model 6 – 16 layer structure with modified number of kernels 
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The AP results for the six CNN models are presented in the table below: 

Table 5-5: AP performance for CNN models 

  AP performance (%) 

No. of training 

images 

5,000 10,000 15,000 20,000 

Model 1  

(Reference) 

46.53% 54.31% 35.91% 56.35% 

Model 2 46.57% 67.01% 67.34% 69.24% 

Model 3 43.42% 47.68% 49.11% 36.44% 

Model 4 50.66% 54.16% 64.71% 61.67% 

Model 5 0 0 0 0 

Model 6 76.82% 83.04% 84.64% 85.87% 

The results in Table 5-5 reflect the effect of CNN structure change on the final 

precision result, as well as the effect of adding training data during the training 

process. At first glance, the gradual increase in training data size brings 

improvements in detection performance, although that appears to be not true for 

some cases. Additionally, the change in structure and the size of the training dataset 

affects the model training time, with network model training taking 4-6 days (to 

reach 20,000 training images) depending on the complexity of the structure. In any 

case, the best-performing model will be selected for further testing, to identify its 

weaknesses and finally use it for application in real-time. 

 

Model 1 (Reference) 

The reference model, containing 11 layers in total, exhibits relatively low 

performance (46.53 %) in the AP metric after training with 5,000 images. The result 

is inferior comparable to the performance of other detectors using the Faster R-CNN 

method, although that is expected due to the low number of training images used and 

the fact that other models are based on architectures pre-trained with a large number 

of images (Huang et al., 2017; Lee et al., 2016). 
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The result indicates that there is a large number of FP detections, hence the low 

precision score. A sample image with high-confidence FP detections can be seen 

below: 

 

Figure 5-11: FP detections in testing image 

Detection performance gradually improves as training data is added, with the 

exception of the 3rd step (15,000 images) where performance drops significantly.  

The drop in precision can be attributed to an increase in FP detections, while the 

number of correct detections remains the same.  

The final vehicle detector based on the reference model has a 56.35% precision rate, 

an almost 10% increase over the base model. The detector does not perform 

sufficiently well for any kind of application, safety-critical or other.  

 

Model 2 (13 layer structure with 64 filters for each convolutional layer) 

Model 2 benefits significantly from the addition of another convolution layer and the 

increased number of filters, as observed by the improved AP score. It confirms that 
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the increased information extracted from the image dataset benefited the detection 

process and improved the detector’s generalisation ability. However, the trade-off 

was apparent, as the training time required was approximately twice that of the 

reference model. 

While the detector performs identically in the first training step (46.57% precision), 

the jump is quite significant afterwards, highlighting the benefits brought by the 

larger dataset. The jump is slightly over 20% during this step and remains relatively 

constant, with the 20,000 image detector reaching 69.24% precision. 

Using the same sample image as before, it is obvious that the number of FP 

detections is now reduced. There is a single FP detection with a low confidence score: 

 

Figure 5-12: Model 2 output image 

 

Model 3 (Reference structure with batch normalisation layers) 

The addition of batch normalisation layers offers nothing to the vehicle detector. On 

the contrary, their addition seems to degrade the detector significantly. Maximum 
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average precision for this type of models is 49.11% which makes them behave worse 

than the base model.  

This level of degrading leads to the conclusion that this type of layers is completely 

unnecessary and its use should be avoided in the final detector used for application. 

The total number of detections (TP+FP) for the 20,000 image model 3 was also high 

which leads to the conclusion that there is a very high number of False Positive 

detections in order to achieve such a low precision score. 

 

Model 4 (Reference structure with modifications to the RPN to produce a lower 

number of ROIs) 

This series of models were developed to explore the relationship between detection 

performance and run-time, if a modification in the RPN to generate half the number 

of Regions of Interest per image (1,000 down from 2,000) impacts the end result and 

the detection run-time. 

The outcome of this experimentation was that there is no discernible difference in 

performance compared to the reference model. In fact, the precision scores appear to 

be slightly higher in comparison, with the end 20,000 image model scoring around 5% 

higher compared to the respective reference detector (61.67% and 56.35% 

respectively). 

Detection time was also not affected significantly, with this model being around 5% 

faster (time unit is seconds) during detection compared to the reference detector. 

The sample image below shows the detected vehicle along with a detection of a 

partial vehicle ahead of it: 
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Figure 5-13: Model 4 output image 

 

Model 5 (Model 2 with increased weight learn rate) 

This model network was developed with the goal of determining whether a higher 

learn rate for the network parameters would lead to a faster/better convergence to the 

optimal result.  

The learn rates selected for each training stage were part of a process of manually 

testing various settings, from which several were proven to be very high and the 

Neural Network failed to train. The learning rate for the first two training stages is 

set at 5x e-4 (0.0005) and for the fine-tuning stages at 1e-5 (0.00001). 

While using these settings the network managed to finish training, the detection 

process revealed that the network did not converge (or even diverged significantly) 

to a solution and thus, failed to perform its task.   
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Model 6 (16 layer structure with variable number of filters) 

This final model of the series proved to be the highest performing out of all the 

models tested in this study. The network structure is enhanced by an additional 

convolutional layer, a max pooling layer to down-sample the output of the 

convolutional layers and differing number of Conv filters for each convolutional 

layer). 

The vehicle detector trained using the 20,000 image dataset manages to achieve an 

Average Precision rate of 85.87% and is by far the best performing model of the ones 

tested. Its result is comparable to other state of the art detectors that operate using 

deeper networks (containing a much higher number of convolutional layers and 

millions of parameters) such as Res-Net, GoogleNet/Inception and others and are 

pre-trained using many thousands (or even millions) of image samples (Jia Deng et 

al., 2009). 

By comparison, this is a single-purpose detector tasked only with detecting vehicles 

and not multi-class detectors/classifiers and therefore, does not require the deep 

structure or million training samples as the aforementioned high-performance (and 

complexity) Neural Networks. 

Since this is a detector trained end to end and given the size of the training dataset, 

the selected network depth is sufficient to avoid potential overfitting issues. That 

means that the detector retains its generalisation ability and performs well with new 

data. Overfitting in a network means that its parameters are tuned to the training data 

to such an extent, that instead of learning the complex relationships in the data 

structures, it memorises them. When overfitting occurs, the network appears to 

perform well but, when encountered with new, never seen before data, its actual 

performance is significantly lower. 

The performance of the model will be examined in more detail below: 

To evaluate the performance of a vehicle detector, especially when used in safety-

critical application there a few key points that need to be considered: 
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• The most important issue in vehicle detectors used in safety-critical 

applications is the number of False Negative (FN) or missed detections. For a 

Collision Avoidance system, that is the difference between safe and unsafe 

conditions. Unsafe conditions can lead to the vehicle colliding with other 

vehicles or objects in general, posing a risk for fatality or injury or even 

property damage. The highest priority would be to minimise the number of 

missed detections in a Collision Avoidance System. 

• A good object detector is able to identify only relevant objects quickly 

(producing a low number of FP – high precision) while at the same time find 

all ground truth objects (low number of FN - high Recall). Usually there is a 

trade-off between precision and recall, as it is necessary to increase the 

number of detected objects in order to find the ground truth objects. The 

Precision/Recall curve helps visualise this trade-off. The higher the curve 

(precision) as Recall increases, the better the detector performs its task. 

• False Positive (FP) detections are important as they are False Alarms, 

indicating the presence of a vehicle when there is not actually one there. 

They are however, less important than missed detections (FN), as they pose a 

real danger to the vehicle. 
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Figure 5-14: Model 6 Precision/Recall curve 

 

The 1,000 image testing dataset contains a total of 1,853 ground truth vehicle 

instances. The detector manages to detect a total of 1,837 vehicles, with 16 missed 

detections (FN) across the whole dataset. 

The miss rate for the dataset is very low, at 0.008 while Recall at this rate is 

approximately 0.991 (99.1%). 

Sample images of the detector output can be seen below: 
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Figure 5-15: Model 6 output images 

 

To evaluate the robustness of the detector irrespective of traffic environment, the 

dataset was disaggregated by environment type (Urban, Motorway and Rural) and 

the precision was calculated for each type. 

Even though the splitting the dataset into the 3 categories does not produce equally 

sized subsets, there is a good indication of performance by environment type. The 

number of images per type is: 
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• Urban: 461 images 

• Motorway: 373 images 

• Rural: 166 images 

Table 5-6: Precision by environment type 

 

The results demonstrate a robustness of the detector irrespective of operational 

environment. The difference in precision for each type is negligible and consistent 

with the overall result. A good indication of strong performance is the precision for 

the urban environment (86.66%) which is considered the most challenging, given its 

density. Given that the highest number of FP detections are expected in urban 

environments, the results show promise that the vehicle detector can handle difficult 

conditions well. 

To summarise the results, the vehicle detector achieves a high Average Precision 

score (85.87%) which indicates a low number of FP detections. It also achieved a 

very low miss rate (0.8%) which indicates that almost all vehicle instances are 

identified in a scene. Additional testing validates its performance across all 

operational environments tested, with similarly high AP scores. 

Missed detections 

The CNN detector’s missed detections (FN) are presented over the next few pages. 

In total, only 16 vehicles were not identified across the whole dataset (1,853 vehicle 

instances). FN detections are indicated by red bounding boxes: 

Environment type Urban Motorway Rural Average Precision (total)

Model 6 (20K images) 86.66% 85.53% 85.56% 85.87%
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Number of ground 

truth vehicles: 3 

 

TP detections: 2 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The lorry on the left is 

included in the ground 

truth vehicles but is not 

detected. It poses no 

threat though due to its 

distance from the ego-

vehicle. 

 

 

Number of ground 

truth vehicles: 3 

 

TP detections: 2 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The vehicle on the 

right side of the image 

(opposite direction) is 

included in the ground 

truth. 

 

It is far from the 

vehicle so there is no 

threat present. 



 

150 

 

 

 

Number of ground 

truth vehicles: 3 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

A vehicle and a lorry 

are not detected (both 

are part of the ground 

truth). 

 

No threat present. 

 

A partial vehicle on the 

opposite direction is 

detected. 

 

 

Number of ground 

truth vehicles: 3 

 

TP detections: 2 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The detector does not 

manage to detect a 

small white van. 

 

No threat present. 
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Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The vehicle ahead 

(same lane) is not 

identified by the 

detector. 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The vehicle on the 

right hand side is not 

detected. 

 

A FP detection in the 

image and an 

additional detection 

that should have been 

suppressed. 
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Number of ground 

truth vehicles: 3 

 

TP detections: 2 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The lorry on the left 

side of the image is not 

detected. 

 

There are additional 

detections (vehicle 

partials) that do not 

belong in the ground 

truth. 

 

No threat present. 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The vehicle in the 

same lane is not 

detected. 

 

The lighting conditions 

are challenging (dark 

image). 

 

 

No threat present. 
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Number of ground 

truth vehicles: 1 

 

TP detections: 0 

 

The vehicle in the 

image is not identified. 

 

The lighting conditions 

are especially 

challenging for the 

camera. 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle on the 

oncoming direction is 

identified. 

 

The vehicle in the 

same lane is not 

detected 
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Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The lorry is not 

detected. 

 

No threat present. 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle on the left 

is identified, although 

its irregular shape is a 

challenge for the 

detector. 

 

The vehicle on the 

right is not identified 

due to the condition of 

the road. 
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Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The lorry ahead is not 

identified. 

 

No threat present. 

 

 

 

Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The ahead is detected 

but an additional 

bounding box exists. 

 

The vehicle on the 

right is not detected. 

 

No threat present. 
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Number of ground 

truth vehicles: 2 

 

TP detections: 1 

 

The vehicle closest to 

the ego-vehicle is 

correctly identified. 

 

The lorry that is far on 

the left is not 

identified.  

 

No threat present. 

 

Detection results for an independent dataset 

To further validate the performance of the produced vehicle detector, additional 

independent data were used to test the detector. The average precision was calculated 

for two short dash cam videos with characteristics different to the data used to train 

and test the vehicle detector. 

The two dash cam videos from the Caltech LISA vehicle dataset were used. Both 

videos are colour and of different resolution than the data (704x480) (Sivaraman and 

Trivedi, 2010). 

The AP for vehicle detection calculated for the two sample videos is 0.8204. To 

visualise the result, the Precision/Recall curve was plotted in Figure 5-16 below: 
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Figure 5-16: Precision/Recall curve for dash cam videos 

 

Sample images from the test utilising independently collected data are presented in 

Figures 5-17 and 5-18 below: 
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Figure 5-17: Detector output for dash cam video - Sunny 

 

Figure 5-18: Detector output for dash cam video – Urban 
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5.4 Summary of results 

This chapter presented the results of the two methods developed to detect vehicles on 

the road.  The first method follows a traditional image processing approach for 

detection, where specific visual features are identified in an image to generate 

potential vehicle locations and then a classifier verifies the existence of a vehicle in 

the image. The method proposed here attempts to utilise the gradients produced by 

the extraction of HOG features to detect horizontal edges and through them, generate 

the desired Regions of Interest (ROIs). The produced ROIs are then passed on to a 

SVM classifier that decides whether a vehicle is present or not. Three SVM 

classifiers were trained using 7,639 images. Two of them were trained on a linear 

and F.Gaussian kernel on 128x128 pixels image patches, while the third one was 

trained on a linear kernel at 256x256 resolution images. The performance of the 

particular method, when tested on a 1,000 image test dataset, was found lacking. 

While the selected SVM classifier performed as expected, the ROI generation 

method failed to generate ROIs robustly enough to be used effectively as part of a 

vehicle detection system. The detection rates were low, resulting in a high number of 

missed detections that do not allow the developed system to be used in any kind of 

automotive application. 

For the second method, six different CNN networks were developed, each with its 

own network depth and settings. All of them are based on the Faster RCNN 

architecture, where an RPN that generates ROIs is incorporated into the network, 

negating the need to generate candidate locations externally. All models were trained 

end to end, without the use of pre-trained networks, using own collected data. It was 

attempted to identify which network model performed the best in terms of detection 

precision and produced the lowest number of missed detections as possible, given 

that the available training dataset was limited. The models were trained gradually in 

four steps, where each step added additional training images. Starting at a low of 

5,000 image samples, until a maximum of 20,000 images was reached in the final 

step, performance gains were observed. The 5,000 base images were collected and 

annotated manually and an augmentation method was used to increase the training 

dataset size. 
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The same 1,000 image dataset containing images from various environmental 

conditions was used for testing. One of the detectors tested produced good results, 

with good precision and high detection rates, only missing a low number of vehicles 

across the testing dataset. To validate its performance, it was tested on an 

independent dataset, consisting of images from dash cam videos. The detector 

produced good results on that dataset as well, demonstrating its capabilities as an 

effective vehicle detector. 

The main finding of this testing process was that an efficient vehicle detector can be 

developed without the use of vast amounts of data or complex architectures. It is of 

course expected that in a Neural Network, the increase in training data will improve 

results and detection performance, though even with small datasets, vehicle detectors 

aimed at specific applications can be produced. 
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6 Application of the Detector and Discussion 

6.1 Introduction 

This chapter discusses the outcomes of the development process and examines the 

performance and application of the highest-performing vehicle detector presented in 

Chapter 5. The second section discusses the detectors developed using the two 

different approaches while sections 3 and 4 examine the performance of the detector 

which is the most suitable for application. 

 The highest-performing CNN-based detector (Model 6, AP = 85.87%, high recall 

rate) is examined with respect to its application for developing different safety 

surrogate measures. It should be noted that any potential application involving 

vehicle detection shall have the lowest miss rate and lowest number of generated 

False Positive (FP) detections. The detector developed using the traditional image 

processing approach (HOG+SVM combination) is excluded from this test, as it 

under-performed and is therefore completely unsuitable for any kind of application. 

6.2 Discussion on vehicle detection models 

The main part of the thesis was dedicated to exploring two approaches to vehicle 

detection and identifying the best solution for real-time implementation. Initially, the 

combination of HOG features and SVM classification that has been successfully used 

before for pedestrian and vehicle detection was modified in an attempt to improve its 

efficiency and run-time performance. Instead of using an established method for 

generating vehicle candidate locations such as sliding windows (brute force approach 

that generates numerous proposals), EdgeBoxes or Selective Search (that reduce the 

number of generated proposals), ROI generation was based on the output of HOG 

feature extraction. The HOG feature vector is processed to identify regions that 

contain strong horizontal elements. The concept behind this was to use high-level 

features for ROI generation, coming from a process commonly used in the 

classification process. 
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The results from this first method indicate that the developed vehicle detector does 

not perform adequately to be considered for any kind of application. In many cases, 

the ROI generation method does not generate the appropriate candidate locations and 

therefore the results are poor with many missed detections. The recall rate for this 

detector is low, at 20% while the number of FP detections is also high. The detector’s 

main issue is the lack of effective vehicle-environment segmentation, resulting in 

erroneous candidate locations. This problem is particularly apparent in environments 

with poor lighting conditions or complex and cluttered environments such as urban 

areas, where objects are either difficult to discern or exhibit strong horizontal edges 

respectively. The main finding from the use of this particular method to generate 

candidate locations is that using this kind of aggregate information (horizontal edges 

based extracted from HOG bins), coming from a previous processing step (HOG 

vector) is not sufficient to produce a working result. Too much information is lost in 

the process and without a doubt, an additional visual cue is required to generate 

vehicle candidate locations robustly. 

To test the CNN-based approach, six network models based on the Faster RCNN 

architecture were developed. The choice of architecture is justified by the all-around 

good performance of Faster R-CNN, which has no inherent disadvantages (with 

other architectures such as YOLO or SSD struggling with small objects and 

producing localisation errors). Compared to other architectures, it is slower in run 

time, but can be modified to achieve real-time performance. The first model served 

as a base upon which the other five were built. Each of the models tested introduces 

another element that affects detection performance. That is either modifying the 

network size or modifying a parameter that impacts performance and detection speed. 

The common elements across all tested models are: 

• The models were trained end to end, without making use of pre-trained 

network structures 

• Limited amount of training data available (5,000-20,000 images for each 

model), which is low in comparison to existing databases. Data augmentation 

was used to overcome this limitation 
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• The RPN structure is common across all examined network models and is 

based on the Faster RCNN architecture. The feature extraction part of the 

CNN is different (different number of layers), but for all models, it is not as 

deep as other CNN detectors. 

The results for each model present the effect each of the modified parameters has on 

detection performance: 

• Using batch normalisation did not benefit detection performance at all, 

instead producing inferior results.  

• Modifying the output of the RPN network produced improved results by 

about 5% compared to the base model at 20,000 training images.   

• Modifying the learning rate for training the network without the use of an 

optimiser can have unexpected results. In this case, the network did not 

manage to converge and failed to produce a working detector. 

The highest performing detector (AP = 85.87%, low miss rate) is a simple structure 

that performed well on the test dataset. No inherent problems were identified, with 

the detector managing to perform well under all examined environments (motorway, 

urban, rural), in both simple and complex scenes containing multiple vehicles. The 

results were validated on an independent dataset, thus proving the effectiveness of 

this simple structure in a specific task. 

The results demonstrate that, for a given task (in this case vehicle detection), a 

simple well-structured network can perform better even when the available data is 

limited. The dataset size deficiency can be overcome by augmenting the dataset 

using the translation method proposed here (see section 4.4 on Data collection and 

pre-processing). The research here does not overlook the benefit of using deeper 

structures or transfer learning for complex tasks such as multi-class identification. 

Instead it provides an alternative solution to vehicle detection, especially when there 

are limitations in the quantity and quality of data.  
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6.3 Discussion on the processing time 

The highest performing CNN-based detector (Model 6) was tested on an Intel i7 

desktop computer, equipped with 16GB of RAM and an Nvidia GTX1080 GPU. The 

detector was developed and tested on Matlab 2018a without any software 

optimisations. The use of a fast GPU accelerator is required for training and testing a 

Deep Neural Network (DNN) and currently, even top of the line CPUs are unable to 

perform as good as even moderately powered GPUs. CNNs’ training and inference 

are processes made up of numerous simple mathematical operations that take 

advantage of the hundreds of simple processing cores in a GPU. By comparison, 

CPUs contain few very complex cores, designed to handle complex tasks, making 

them unsuitable for CNN training and inference. 

The CNN detector was tested on a series of short video streams. Processing the video 

files includes converting the video into frames, running the vehicle detector, saving 

the output frames and creating an output video file. The reported processing time 

therefore, does not include the detection process solely, but every associated image 

processing operation. The resolution of the video files is 512x512 pixels (same as the 

training data) but, similarly to the testing process, the search window is limited in 

size (height of the search area is 300 pixels) without any impact on the detection 

accuracy. The effective search area does not include the bottom and top parts of the 

image (vehicle and part of the sky) where no vehicles are located. The size of the 

search window can be seen in Figure 6-1 below:  
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Figure 6-1: CNN detector search space 

 

The average processing time for each image frame in the videos is 90ms. The system 

frame rate is therefore around 11.1 FPS. 

Table 6-1: Run-time performance 1 

 Average time per frame  System FPS 

Model 6 (16 layer CNN) 90ms 11.1 FPS 

There are many possible ways to improve run-time performance. By adjusting the 

search space just slightly by 50 pixels in height, the improvement in speed is around 

7%, bringing the system’s speed at 12FPS. The new search space can be seen in 

Figure 6-2 below. The road is still completely covered by the area where the detector 

operates: 
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Figure 6-2: Reduced search space 

 

Table 6-2: Run-time performance 2 

 Average time per frame  System FPS 

Model 6 (16 layer CNN) 84ms 12 FPS 

It is obvious from the results that the developed detector is not the fastest CNN-based 

detector, especially compared to detectors developed using the YOLO (Redmon et al., 

2016) or SSD (Liu et al., 2016) models. However, the result is a detector that 

performs well with good accuracy and low miss rate at a good speed for 

implementation. In addition, there is room for improvement in speed, given that the 

code is unoptimised and written in a high-level language such as Matlab as opposed 

to using a dedicated framework for CNNs such as Caffe (Jia et al., 2014). 
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Ways to improve run-time performance: 

• Transfer detector to a dedicated framework for Neural Networks, such as 

TensorFlow, Caffe or Keras. These frameworks contain tools and software 

libraries useful for the development of Neural Networks, offering the 

opportunity to develop advanced models in an efficient way. 

• Implement adaptable search space process to speed up detection. By 

identifying the operational conditions, an algorithm could dynamically 

modify the search window to reduce the computations required for fast 

detection. A fixed size search window was implemented in the present thesis. 

• Optimise processes not directly related to the CNN detection (image pre-

processing). Unoptimised software code can impact the run-time operation of 

the vehicle detector. Streamlining the pre-processing stage can yield 

improvements in run-time operation. 

• Transfer the developed vehicle detector to a platform optimised for Intelligent 

Vehicle applications (FPGA platforms or embedded systems). FPGA 

platforms are flexible hardware configurations that can be optimised to run 

CNNs for vision based applications. Exploring these hardware options is not 

in scope of the present work. 

6.4 Potential application of the detector 

This section explores the possibility of using the developed vehicle detector to 

estimate the longitudinal distance from other vehicles for use in a safety application 

such as Adaptive Cruise Control (ACC) or Autonomous Emergency Braking (AEB). 

Accurate estimation of range offers the possibility to calculate safety surrogate 

measures such as TTC (Time to Collision) or distance to collision which is a key 

variable in most vehicle-based active safety systems. 

To estimate the distance, a simple perspective geometry calculation takes place. It 

does not offer the accuracy of more advanced methods or systems, but it serves as a 

good indication of the errors associated with range measurement using a single 

monocular camera. Such camera systems do not possess the capability for direct 
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range estimation that other systems such as radar or stereo cameras have and 

therefore, advanced methods are required to compensate for this deficiency. 

The system is tested in short video clips (5-10 seconds each, up to 150 frames) where 

the ego-vehicle travels on the M1 motorway. The distance between the ego vehicle 

and the target vehicle varies and changes through time. During the same data 

collection trips, radar data were also collected. This radar data is used here as ground 

truth, to compare the accuracy of the camera and radar systems. The camera and 

radar data were synchronised (15FPS and 15Hz respectively) to provide an accurate 

comparison. 

Table 6-3: Range estimation for camera and radar 

 Video 1 Video 2 Video 3 Video 4 

Radar range 

(avg) 

29.53m 29.99 m 27.45 m 27.92 m 

Camera 

range (avg) 

28.79 m 27.20 m 28.13m 55.59 m 

Camera 

range (min) 

21.74m 19.19 m 14.85 m 40.55 m 

Camera 

range (max) 

43.23m 46.28 m 41.28 m 71.5 m 

Max 

deviation 

16.43m 17.48 m 13.68 m 44.6 m 
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Video clip 1 – Both target and ego vehicles travel in the middle lane of the 

motorway.  

 

Figure 6-3: Range estimation - Video 1 

 

The distance between ego and target vehicle decreases at a slow rate (the longitudinal 

distance measured by the radar is used as ground truth). The range estimated by the 

camera is not consistent but deviates significantly from the radar readings. The 

maximum difference between camera and radar is 16.43m. 
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Video 2 – Target and ego vehicles in the middle lane of the motorway. Target 

vehicle decelerates and changes lane. 

 

Figure 6-4: Range estimation - Video 2 

 

The distance between ego and target vehicle decreases at a slow rate. The range 

estimated by the camera is not consistent but deviates significantly from the radar 

readings and tends to overestimate the longitudinal distance. The maximum 

difference between camera and radar is 17.48m. 

 

 

 

 



 

171 

 

Video 3 – Ego vehicle in the middle lane of the motorway. Target vehicle on the 

right lane increasing speed. 

 

Figure 6-5: Range estimation -Video 3 

 

The distance between ego and target vehicle increases at a slow rate. The distance 

between the two vehicles is overestimated by the camera. The maximum difference 

between camera and radar is 13.68m. 
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Video 4 - Ego vehicle follows a target vehicle in the middle lane of the motorway. 

 

Figure 6-6: Range estimation - Video 4 

 

The distance between ego and target vehicle remains relatively constant. The 

distance between the two vehicles is greatly overestimated by the camera. The 

maximum difference between camera and radar is 44.6m. 

It is clear from the graphs that the camera system does not produce consistent range 

measurements. While it is expected that a camera would be less accurate compared 

to the radar system, there are a lot of inconsistencies in the camera’s produced 

measurements. The reason for this is the various limitations of measuring 

longitudinal distance with a monocular camera using only simple homography: 

• The camera system returns the centre location of the bottom of the detector’s 

bounding box. It is only able to accurately compute distances along the 

surface of the road. If the vehicle detector successfully detects the vehicle 
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ahead but the produced bounding box is slightly higher, the vehicle is 

assumed to be further away than it actually is. This is the reason for the 

spikes in the graphs. So while the detection is successful, the range 

measurement is not. Computation of an arbitrary location in 3D space 

requires a stereo camera system or another type of sensor (such as radar). 

• The conversion between the camera coordinate system and the real world 

coordinates assumes a flat road. Roads that are not flat introduce errors in the 

computation, with the error increasing the higher the distance. 

• The range measurement system would produce more accurate results by 

using a more sophisticated method, either accounting for the error in 

measurements and including the distance rate change in the computation or 

by using tracking (for example a Kalman filter) to estimate the actual distance 

instead of measuring range from a single snapshot. 

The difference is range estimation between radar (used as ground truth) and camera 

is simply too large. The system cannot be used for TTC calculation as is; and cannot 

be used for anything else other than as a sanity check (to actually see that distances 

that make some sense can be calculated). The method is simple and the limitations 

too many for this to be used in a safety application.  

6.5 Discussion summary 

This section discussed the results presented in Chapter 5 and tested the suitability of 

the highest performing detector for real-time application. Regarding the detection 

performance of the examined detector, the metrics used to evaluate CNN-based 

detectors indicate a very good model (high AP, low miss rate). The employment of a 

simple architecture, trained end to end with a limited amount of data manages to 

produce results that are comparable with state of the art detectors for this specific 

task (vehicle detection). The discussion of run-time performance indicated that the 

produced vehicle detector, while not as fast as other state of the art object detectors 

(YOLO, SSD) still manages to perform well despite a lack of significant 

optimisations. The gap in speed between the proposed detector and other models is 

due to the structure of the Faster R-CNN architecture and the way detections are 
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generated. Any discussion about performance should acknowledge the limitations of 

each architecture and that there is a trade-off between accuracy and speed. The 

potential for improvements is there though, to achieve an improved detection speed 

using the proposed model. Finally, the simple distance calculation highlighted the 

inherent issues with estimating distance using a monocular camera. The lack of any 

error correction results in significantly inferior results compared to the more accurate 

camera system.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

175 

 

7 Conclusions  

7.1 Introduction 

Vehicle collisions are one of the most significant problems in transport, as they are 

one of the leading causes of deaths and injuries around the world. Collisions are 

attributed on environmental, vehicle and human factors, with human errors (either 

recognition, decision or performance errors) being the dominant causation factor of 

accidents. 

To mitigate the effect of human errors in accidents, the automotive industry is 

moving towards removing the human element from driving. Research from both 

industry and academic institutions is heavily invested in bringing every necessary 

component (hardware, software, methods) together to reach that stage where a 

human driver is not required to handle any driving-related task. Either by revolution 

(going from 0 to full autonomy via high-tech solutions) or evolution (slowly 

improving and automating driving functions until full autonomy is achieved), soon 

human driving behaviour will no longer be a liability and a threat to safety. 

A safe trip with an Autonomous Vehicle is ensured by the presence of an effective 

CAS, which ensures all potential threats ahead of the vehicle are correctly identified 

and every danger avoided. Usually, AVs use multiple sensors to scan the surrounding 

environment, collect information and detect targets; and that means that the hardware 

cost and system complexity is high. Data from multiple sensors (active and passive) 

need to be collected, processed and fused together to confidently produce an accurate 

detection along with its classification as pedestrian, vehicle or other object. 

This research focuses on the task of vehicle detection and attempts to produce an 

accurate vehicle detector based on the data coming from a single low-cost monocular 

camera. Current literature regarding the subject of object detection using vision 

systems favours two approaches. The first one follows traditional image processing 

principles where specific visual cues identifying potential targets are sought for in an 

image and then a classifier trained with relevant data is used to verify each object’s 

class. The second approach uses a specific type of Neural Network modified to 
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process image data, the CNN, to unify the detection pipeline (ROI generation and 

classification) in a single process. While this approach was introduced some years 

ago (LeCun et al., 1989), the high computational requirements and need for large 

amounts of data meant that only the last few years has it been made a viable option 

for object detection, with a rise in computing performance and deep learning making 

it possible. 

The data used for this research were collected using Loughborough University’s 

instrumented vehicle. Both training and testing data were manually annotated with 

ground truth labels while radar data were used as ground truth for the camera’s range 

measurements. The relevant literature on object detection does not usually follow 

this approach. Particularly for CNN-based detection, readily available datasets are 

preferred over processing raw data; in addition to using transfer learning (pre-trained 

CNN networks) as opposed to training a new network from scratch. The reason for 

this is the effort required to collect and manually annotate large amounts of data and 

also possibly, a concern that the amount of data collected will not be sufficient to 

efficiently train a network end to end. 

This PhD can serve as a guide to developing object detectors using end to end 

training. It demonstrates that, for specific applications, complex structures or the 

reliance on out of the box solutions are not a requirement. An alternative and 

efficient solution to vehicle detection, especially when there are limitations in the 

data, is proposed here. 

Additionally, the developed detector can be used as a base for more complex tasks 

such as TTC calculation for a CAS. The simple calculation performed here gives 

only a rough estimate of range, but it can be improved by accounting for range error 

and indicates that a complete CAS is possible using a camera sensor.   
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7.2 Achieving the aim and objectives 

To achieve the aim of this study, which is the development of a reliable vehicle 

detection system based on a monocular camera, the following five objectives were 

necessary to be accomplished. This section presents these objectives and discusses 

how they were met in the thesis. 

Objective 1: Investigate existing vision-based approaches to vehicle detection. 

An extensive and critical literature review was conducted in Chapter 2 focusing on 

vehicle detection using a monocular camera. More specifically, the review explores 

both the traditional image processing approach to detection as well as the CNN-

based approach with the stages and findings of each approach being discussed. 

Objective 2: Identify the methods most likely to produce the desired performance, 

given the limitations of existing methods. 

Based on the literature review, the methods most likely to produce the highest 

detection performance were identified. Both approaches to detection are explored in 

this thesis by developing different detectors, one based on the mature method of 

using HOG features and SVM classification in an attempt to optimise it; the second 

based on high-performance CNN architecture. Instead of following the traditional 

approach though, where pre-trained networks are used, the detector is trained end to 

end with own collected data.  

Objective 3: Collect, synthesize and process the data required to develop a vehicle 

detector 

The necessary data for training and testing the developed detectors were collected 

using Loughborough University’s instrumented vehicle. The data used in this 

research are camera data representative of traffic in various operational environments 

(urban roads, motorway, rural roads) as well as radar data used as ground truth for 

range measurements. Processing the data included manual annotations and ground 

truth labels for image data as well as using data augmentation to increase the size of 
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the dataset. The process of collecting and processing the data is described in Chapter 

4 of this thesis. 

Objective 4: Develop a robust and high-performing vehicle detector based on a low-

cost monocular camera 

The operation of the HOG-based detector is described, and a new ROI generation 

method is proposed for use with a traditional SVM classifier. For the CNN-based 

approach, six models are developed in total, each modified in structure or parameters 

in order to determine the highest performing vehicle detector. The development 

process of the camera-based detectors is detailed in Chapter 3 (Methodology).  

Objective 5: Assess and validate the performance of the developed vehicle detector 

The performance of all developed detectors was assessed using appropriate metrics 

established in the literature. The goal was to determine which detector performed 

more effectively in terms of detection rate and number of missed or false detections; 

this detector was further tested to assess its suitability for real time applications 

(Chapters 5 and 6). 

7.3 Contribution to knowledge 

The results of this work have produced outcomes that can be used as insight when 

developing CA systems. The main contributions to knowledge of this research are: 

1. Network complexity – performance relationship 

This research has examined the role of network depth and end to end training in 

feature extraction for CNN based detection. Relevant research on the topic of object 

detection relies on deep network structures for feature extraction. The outcomes of 

this analysis indicate that a structure with relatively few layers and filters can 

perform well when faced with a specific task. More specifically, the results indicate 

that enough descriptive information is generated by the network to correctly classify 

vehicles in images. This does not contradict the common practice of using pre trained 
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networks for feature extraction, but merely indicates that another option is available 

for performing a given task.  

Looking forward, this finding shows the potential of using multiple CNNs for 

different tasks, each assigned to perform a specific function. To provide an example, 

in a vehicle system, different CNNs could be assigned each of the following tasks: 

object detection, navigation and range estimation, monitoring and tracking. This is an 

approach gaining traction in hardware systems designed to handle multiple CNNs 

concurrently, where the performance of each CNN in its task does not affect another 

handing a different task. 

2. Significance of dataset size on detection performance 

One of the most significant factors affecting CNN performance is the size of the 

training dataset. The classification/detection performance of deep NNs increases as 

the number of observations increases. In comparison, classifiers such as SVMs do 

not benefit from an increase in data after a point.  For this research, a dataset limited 

in size was used to train the CNN network. 5,000 images were used initially; data 

augmentation and iterative training allowed each CNN model to reach 20,000 images. 

Compared to databases such as ImageNet, containing around 374,000 images for the 

vehicle class category and even smaller databases such as Stanford University’s Cars 

dataset containing over 16,000 training images (8,144 used for training), the size of 

the initial dataset in this study is considered small. 

Still, the final detector model developed manages to perform well (AP = 85.87%, 

low miss rate) and complete its task successfully. The increase in detection 

performance occurs during the jump for 5,000 to 10,000 images. After this point, 

performance gains are smaller. This indicates a limit to the effectiveness of data 

augmentation. It should be expected that after the 20,000 image step, the gains will 

be minimal without the use of new data.  

The detection performance of the last model indicates a good balance between 

dataset size and network depth and is something to consider in the design of CNN 
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architectures in the future.  An imbalance between dataset size and network can lead 

to problems such as overfitting when the network is deep and the dataset small.  

7.4 Study limitations 

This research presented in this thesis does not come without its limitations. The most 

important of them are outlined below: 

• Dataset size limitations: The data used in this study come from several data 

collection runs using an instrumented vehicle. Collecting data this way 

provides practically unlimited raw data (camera and radar) that can be used. 

However, the need to process them and provide the required ground truth 

information (positive and negative training samples for SVM training, ground 

truth coordinates and labels for CNN training) can be an extremely daunting 

task, one that practically has no end as the influx of data is constant. While 

SVM classifier performance is not affected by the amount of data after a 

point, the same does not apply for CNN training. NN performance benefits 

with the addition of training data, which is why NNs are used to process big 

data. Automatic labelling is possible is some cases, though in this study it 

proved to be ineffective. The original training dataset size was 5,000 images 

with data augmentation used to artificially increase the size to 20,000 images. 

This limit was selected due to concerns that after this point, the same images 

would be fed to the network. 

 

• Data quality: Image data was grayscale and in many cases in poor lighting 

conditions. This introduces some constrains as to which methods can be used 

to process the images. It also means that a robust detector trained under these 

limitations should perform better under more favourable conditions. 

 

• Performance of transfer learning approaches: The performance of the 

developed CNN based detector was not compared to a transfer learning 

method. Using the same dataset, it would be possible to fine-tune a deeper 

pre-trained network for feature extraction. However, the focus of this 
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research was end to end training and the produced vehicle detector produced 

good results nonetheless. 

 

• Detector transferability: The performance of the detector was evaluated on 

an independent dataset collected from driving trips. The detector performance 

has not been evaluated using the benchmarking challenges that are available, 

an example of which is the Pascal VOC challenge (Everingham et al., 2010). 

Benchmarking the detector in the vehicle class category of such a challenge 

would enhance the results and give a better picture of the detector’s potential. 

It has to be stressed however, that the detector has been tested with 

independent dash cam videos with success, which is a good indicator of its 

performance in a CA system. By comparison, the images contained in such 

benchmarking challenges are not directly relevant to vehicle detection in real 

world scenarios. 

 

• Optimal CNN architecture: The search for an optimal CNN architecture is a 

non-trivial task. Experimenting with layer depth and width, layer sequence 

and parameter optimisation is essentially a never ending process. This study 

identified a layer structure and a set of parameters that, given the limitations 

in dataset size, offers a good balance in detection performance and run-time 

speed. It does recognise however, that there is potential to improve 

performance by further adjusting network parameters. 

 

 

• Range estimation: Range estimation is based on simple perspective 

geometry from the calibrated monocular camera. This introduces significant 

deviation from the radar measurements used as ground truth. For this study, 

range estimation is mainly used as sanity check, to identify in which cases the 

estimation is particularly problematic and where the measured distance is 

closer to the real value. Introducing a more complex calculation or a tracking 

function would increase the accuracy of the measurement. 
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• Generated bounding box size: The CNN detector generates bounding boxes 

of variable size along with class probabilities. While this is not an issue for 

vehicle detection, it introduces additional error during the range estimation 

process as the position of the box affects the measurement. It is possible that 

the introduction of fixed size bounding boxes will increase the accuracy of 

the range estimation. 

 

• Software limitations: The detector models were all trained and tested on a 

high-level language such as Matlab. Irrespective of hardware improvements, 

optimising the code and using a dedicated framework should improve run-

time performance. 

 

7.5 Extensions and suggestions for future research 

The work presented in this thesis can contribute to the further improvement of object 

detection methods. While the final detector developed here is task specific to vehicle 

detection, the approach to its development can be extended to generalised object 

detection. Building robust detectors using end to end training with the use of data 

from a low-cost sensor system is possible, even with limited amounts of data. 

Considering the limitations presented in the previous section, there are some 

improvements that can be implemented to improve overall performance and 

functionality. 

The current detector is dedicated to vehicle detection and the proposed structure suits 

the particular application well. It would be useful to add functionality by using this 

simple network structure to detect other object classes such as pedestrians and 

cyclists. This would further validate the approach of using simple CNNs and not rely 

completely on transfer learning. 

Improving detection performance would require additional training data. Since 

manually processing data to train a classifier or CNN is a demanding task, the option 

to use simulated data could be explored. The advance in graphics engines during the 

last few years indicates that simulated data can now be used for this purpose, with 
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the potential to solve the issue of generating the large amounts of data required for 

deep learning. 

Range estimation can be improved by accounting for distance error in the calculation. 

Calculating the distance error rate or implementing a tracking filter to limit extreme 

errors can significantly improve the measurements and provide a robust alternative to 

using additional sensors for this task.  

Run-time performance can be improved further by implementing various methods. 

Optimising the search area dynamically instead of using a static window would yield 

significant speed benefits. Identifying the bottlenecks and improving the structure of 

the RPN (proposal network) is also a priority, as this stage is one of the most 

processor intensive of the detection process. One of the most significant upgrades 

would be to transfer the developed CNN detector onto a hardware platform 

optimised for CNN inference. Such lower power platforms are becoming available 

and their combination with low-cost sensors such as cameras would drive mass 

adoption of CA systems. 

Finally, optimising and assessing a CNN detector’s performance is a constant 

process and should continue beyond this study. Through this, it will become possible 

to develop a high-integrity system, for use in any kind of safety critical ADAS 

application. 
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