

Real-time vehicle detection using low-cost sensors

by

Konstantinos Kourantidis

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

May 2019

© Konstantinos Kourantidis (2019)

i

Abstract

Improving road safety and reducing the number of accidents is one of the top

priorities for the automotive industry. As human driving behaviour is one of the top

causation factors of road accidents, research is working towards removing control

from the human driver by automating functions and finally introducing a fully

Autonomous Vehicle (AV). A Collision Avoidance System (CAS) is one of the key

safety systems for an AV, as it ensures all potential threats ahead of the vehicle are

identified and appropriate action is taken. This research focuses on the task of

vehicle detection, which is the base of a CAS, and attempts to produce an effective

vehicle detector based on the data coming from a low-cost monocular camera.

Developing a robust CAS based on low-cost sensor is crucial to bringing the cost of

safety systems down and in this way, increase their adoption rate by end users.

In this work, detectors are developed based on the two main approaches to vehicle

detection using a monocular camera. The first is the traditional image processing

approach where visual cues are utilised to generate potential vehicle locations and at

a second stage, verify the existence of vehicles in an image. The second approach is

based on a Convolutional Neural Network, a computationally expensive method that

unifies the detection process in a single pipeline. The goal is to determine which

method is more appropriate for real-time applications. Following the first approach, a

vehicle detector based on the combination of HOG features and SVM classification

is developed. The detector attempts to optimise performance by modifying the

detection pipeline and improve run-time performance. For the CNN-based approach,

six different network models are developed and trained end to end using collected

data, each with a different network structure and parameters, in an attempt to

determine which combination produces the best results.

The evaluation of the different vehicle detectors produced some interesting findings;

the first approach did not manage to produce a working detector, while the CNN-

based approach produced a high performing vehicle detector with an 85.87% average

precision and a very low miss rate. The detector managed to perform well under

different operational environments (motorway, urban and rural roads) and the results

ii

were validated using an external dataset. Additional testing of the vehicle detector

indicated it is suitable as a base for safety applications such as CAS, with a run time

performance of 12FPS and potential for further improvements.

iii

Acknowledgements

This thesis would not have been possible without the contribution and continuous

support of many people. Throughout the years, the people by my side guided and

supported me and I would like, through a few words at least, thank them for their

help.

Foremost, I would like to express my gratitude to my supervisor, Professor

Mohammed Quddus for his guidance and support throughout the duration of my

studies. Without him, continuously encouraging and motivating me, helping me

improve myself, I would not have been able to climb this mountain.

Special acknowledgements to those who supervised and guided me, even for a short

period of time. Dr Marianna Imprialou, supervisor and friend, always available to

provide help, guidance and listen to my concerns. Professor Abigail Bristow and Dr.

Lucy Budd, who even for a while, assisted me in this effort.

I am also thankful to the researchers in the Transport Studies Group, colleagues and

friends alike, who assisted me in various times by helping me with my work and

providing feedback when I needed it.

Special thanks to my partner, Vivi, who was always there for me. Her patience, love

and support made this all possible and more enjoyable. I thank her for going through

this when it was the hardest and for putting up with my quirks!

I am grateful to all my good friends, for their constant support and making life in

Loughborough better. Dimitris, Elli, Vasilis, Thanos thank you all!

Last but not least, I have to thank my parents, Giannis and Katerina, as well as my

sister Chrysa, for their help throughout the years. They encouraged me always,

supported my choices and without them, I would not be here today. I cannot repay

their love enough and I dedicate this thesis to them.

iv

Contents

Abstract ... i

Acknowledgements ... iii

Contents .. iv

List of Figures ... viii

List of Tables ... xii

Abbreviations .. xiii

1 Introduction .. 1

1.1 Background ... 1

1.2 Problem statement ... 4

1.3 Research importance ... 6

1.4 Aim and objectives .. 7

1.5 Thesis outline .. 7

2 Literature Review .. 9

2.1 Introduction ... 9

2.2 Initial vehicle detection (Hypothesis Generation) 10

2.2.1 Motion-based approaches .. 10

2.2.2 Appearance-based approaches ... 11

2.3 Hypothesis Verification .. 17

2.3.1 Template matching .. 18

v

2.3.2 Object classifier methods ... 18

2.4 Image feature extraction .. 25

2.5 Histogram of Oriented Gradients (HOG) and vehicle detection 28

2.5.1 HOG feature extraction .. 28

2.5.2 HOG-based vehicle detection .. 36

2.6 Convolutional Neural Networks and vehicle detection 42

2.6.1 Architecture of a Convolutional Neural Network (CNN) 42

2.6.2 CNN-based vehicle detection .. 51

2.7 Range estimation using a monocular camera .. 59

2.8 Knowledge gap .. 61

3 Methodology .. 64

3.1 Introduction ... 64

3.2 Vehicle detection I – Histogram of Oriented Gradients (HOG) and Support

Vector Machine (SVM) classification ... 64

3.2.1 Hypothesis Generation (HG) ... 66

3.2.2 Hypothesis Verification ... 83

3.3 Vehicle detection II – Convolutional Neural Network (CNN) 85

3.4 Range estimation using perspective geometry .. 99

4 Data collection and pre-processing .. 101

4.1 Introduction ... 101

4.2 Data collection .. 101

vi

4.3 HOG based detector training data ... 106

4.3.1 Training set .. 106

4.3.2 Validation set ... 108

4.4 CNN-based detector training data ... 108

4.5 Testing dataset ... 112

4.6 Limitations of the dataset .. 113

4.7 Summary ... 113

5 Results .. 115

5.1 Introduction ... 115

5.2 HOG-based detector and SVM classification results 116

5.3 CNN-based vehicle detector results .. 136

5.4 Summary of results ... 159

6 Application of the Detector and Discussion .. 161

6.1 Introduction ... 161

6.2 Discussion on vehicle detection models ... 161

6.3 Discussion on the processing time .. 164

6.4 Potential application of the detector .. 167

6.5 Discussion summary ... 173

7 Conclusions .. 175

7.1 Introduction ... 175

7.2 Achieving the aim and objectives ... 177

vii

7.3 Contribution to knowledge .. 178

7.4 Study limitations ... 180

7.5 Extensions and suggestions for future research .. 182

References .. 184

viii

List of Figures

Figure 2-1: Original image (a), shadow segmentation (b). .. 12

Figure 2-2: Edge detection ... 15

Figure 2-3: Rear light detection ... 17

Figure 2-4: ANN (n inputs, 2 hidden layers, 1 output) .. 20

Figure 2-5: Example of hyperplane separating two feature classes 22

Figure 2-6: Sample image .. 26

Figure 2-7: Gabor features (5 scales/8 orientations) .. 27

Figure 2-8: Gabor output .. 27

Figure 2-9: HOG descriptor generation ... 29

Figure 2-10: HOG cell/block performance .. 30

Figure 2-11: Bin size effect on miss rate ... 32

Figure 2-12: Bin size effect on accuracy/computational time 32

Figure 2-13: Example of a 9-bin HOG histogram for a cell 33

Figure 2-14: Effect of normalisation schemes ... 34

Figure 2-15: Summary of steps for HOG extraction .. 36

Figure 2-16: Effect of bin size and signed/unsigned orientation 37

Figure 2-17: Vertical HOG (v-HOG) structure .. 38

Figure 2-18: Effect of bin size on detection rate .. 39

Figure 2-19: Regular NN (left) - CNN (right) ... 43

ix

Figure 2-20: Hyperbolic tangent function ... 46

Figure 2-21: Sigmoid function ... 46

Figure 2-22: Rectified Linear Unit function .. 47

Figure 2-23: Example of max pooling operation ... 48

Figure 2-24: Pooling operation .. 49

Figure 2-25: R-CNN flowchart .. 52

Figure 2-26: Fast R-CNN flowchart .. 53

Figure 2-27: The RPN in Faster R-CNN .. 54

Figure 2-28: Faster R-CNN flowchart ... 54

Figure 2-29: R-FCN flowchart ... 55

Figure 2-30: YOLO detection system .. 57

Figure 2-31: SSD network architecture .. 57

Figure 3-1: Detection system ... 65

Figure 3-2: Sample image .. 67

Figure 3-3: Sample image with Sobel filter applied .. 67

Figure 3-4: Sample image with Canny filter applied ... 67

Figure 3-5: Proposed HG system ... 70

Figure 3-6: HOG visualisation ... 73

Figure 3-7: Individual rose plot ... 74

Figure 3-8: Cell with strong horizontal elements .. 75

Figure 3-9: Example of cell processing ... 76

x

Figure 3-10: 4 and 8-way connectivity .. 78

Figure 3-11: CC clustering output ... 79

Figure 3-12: Improved object separation output .. 80

Figure 3-13: Original bounding boxes ... 82

Figure 3-14: Bounding boxes after small object removal .. 82

Figure 3-15: Image feature extraction process .. 83

Figure 3-16: Example of successful vehicle detection .. 84

Figure 3-17: Summary of developed CNNs .. 87

Figure 3-18: Reference network architecture .. 88

Figure 4-1: Loughborough University instrumented vehicle 102

Figure 4-2: Locations of M1 motorway, Loughborough and Nottingham 103

Figure 4-3: Image dataset samples ... 104

Figure 4-4: Variables measured by the radar sensor .. 105

Figure 4-5: Examples of positive training images ... 107

Figure 4-6: Examples of negative training samples (a) ... 107

Figure 4-7: Examples of negative training images (b) .. 108

Figure 4-8: Example of data augmentation .. 111

Figure 5-1: Confusion matrix - SVM linear kernel 128x128 119

Figure 5-2: ROC curve - SVM linear kernel 128x128 .. 119

Figure 5-3: TPR/FNR - SVM linear kernel 128x128 .. 120

Figure 5-4: Confusion matrix - SVM F.Gaussian kernel 128x128.......................... 121

xi

Figure 5-5: ROC curve - SVM F.Gaussian kernel 128x128 122

Figure 5-6: TPR/FNR - SVM F.Gaussian kernel 128x128 122

Figure 5-7: Confusion matrix - SVM linear kernel 256x256 123

Figure 5-8: ROC curve - SVM linear kernel 256x256 .. 124

Figure 5-9: TPR/FNR - SVM linear kernel 256x256 .. 124

Figure 5-10: CNN vehicle search window .. 137

Figure 5-11: FP detections in testing image .. 140

Figure 5-12: Model 2 output image ... 141

Figure 5-13: Model 4 output image ... 143

Figure 5-14: Model 6 Precision/Recall curve .. 146

Figure 5-15: Model 6 output images .. 147

Figure 5-16: Precision/Recall curve for dash cam videos 157

Figure 5-17: Detector output for dash cam video - Sunny 158

Figure 5-18: Detector output for dash cam video – Urban 158

Figure 6-1: CNN detector search space ... 165

Figure 6-2: Reduced search space ... 166

Figure 6-3: Range estimation - Video 1 ... 169

Figure 6-4: Range estimation - Video 2 ... 170

Figure 6-5: Range estimation - Video 3 ... 171

Figure 6-6: Range estimation - Video 4 ... 172

xii

List of Tables

Table 1-1: Advantages and disadvantages of active and passive sensors 5

Table 2-1: Features and classifiers in the literature ... 40

Table 3-1: Vector file size comparison .. 72

Table 5-1: Linear SVM classifier (128x128) performance 118

Table 5-2: F.Gaussian SVM classifier (128x128) performance 120

Table 5-3: Linear SVM classifier (256x256) performance 123

Table 5-4: HOG-based detector performance .. 126

Table 5-5: AP performance for CNN models .. 139

Table 5-6: Precision by environment type ... 148

Table 6-1: Run-time performance 1 ... 165

Table 6-2: Run-time performance 2 ... 166

Table 6-3: Range estimation for camera and radar .. 168

xiii

Abbreviations

ABS: Anti-lock Braking System

ACC: Adaptive Cruise Control

AV: Autonomous Vehicle

ADAS: Advanced Driver Assistance Systems

CAS: Collision Avoidance System

LIDAR: Light Detection and Ranging

CNN/ConvNN: Convolutional Neural Network

HG: Hypothesis Generation

HV: Hypothesis Verification

HOG: Histogram of Oriented Gradients

ROI: Region of Interest

IR: Infrared

ANN: Artificial Neural Network

SVM: Support Vector Machine

NN: Neural Network

PCA: Principal Component Analysis

SIFT: Scale-Invariant Feature Transform

TP, FP, TN, FN: True Positive, False Positive, True Negative, False Negative

RGB: Red, Green, Blue (colour images)

xiv

ReLU: Rectified Linear Unit

FC: Fully Connected

R-CNN: Regions with Convolutional Neural Network

R-FCN: Region-based Fully Convolutional Neural Network

SSD: Single Shot Detector

YOLO: You Only Look Once

SS: Selective Search

RPN: Region Proposal Network

AP/ mAP: Average Precision/ mean Average Precision

FPS: Frames per second

TTC: Time to Collision

AdaBoost: Adaptive Boosting

CC: Connected Components

NIR: Near Infrared

FOV: Field of View

ROC curve: Receiver Operation Characteristic curve

FNR/FPR/TPR: False Negative Rate/ False Positive Rate/ True Positive Rate

IoU: Intersection over Union

PR curve: Precision/Recall curve

1

1 Introduction

1.1 Background

The introduction of the motor vehicle in the late 19th century brought a revolution in

human mobility and completely transformed human societies. Motorised transport

became the predominant means of moving people and goods and it is estimated that

by the end of 2016, the global vehicle population stood at 1.32 billion cars and trucks

(Petit, 2019).

As with other technologies, this increase in mobility brought new challenges in

safety, pollution and energy demand. Vehicles have become one of the leading

causes of deaths around the world, with road traffic fatalities reaching 1.35 million in

2016 according to the World Health Organisation (World Health Organisation, 2018).

Despite efforts to reduce the number of fatalities, the number remains unacceptably

high, with traffic deaths now being the leading cause of death for children and young

adults aged 5-29 years (World Health Organisation, 2018).

According to Haddon (1980), vehicle collisions are the outcome of vehicle,

environmental and human factors and to tackle this problem, a systematic approach

is required at each stage (pre-crash, crash, post-crash stages). In addition to other

interventions such as educational campaigns, enforcement etc., technological

solutions can contribute to reduce the number of accidents happening in the first

place. This need, to enhance vehicle safety has driven the development of safety

systems throughout the years. Initially, passive safety systems such as seatbelts

(introduced in the 1960s), crush zone (1970s) and airbags (1980s) improved the

crashworthiness of vehicles and reduced the passenger fatalities and injuries. Active

systems such as ABS (introduced in the 1970s), traction control (1980s), brake assist

(1990s) and ACC (Adaptive Cruise Control)/blind spot detection/ lane departure

detection systems is the 2000s brought further improvements in road transport. Now,

even more advanced systems such as autonomous (driverless) intelligent vehicles are

developed and are expected to revolutionise vehicular safety over the next few years

(Eskandarian, 2012).

2

An autonomous -or driverless- vehicle (AV) is a vehicle capable of fulfilling the

need to transport people or goods with little or no human input. Also known as a

robotic vehicle, it is designed to travel between destinations without a human

operator. To qualify as fully autonomous, it must be able to navigate without human

intervention to a predetermined destination over roads that have not been adapted for

its use. To clearly define the different levels of autonomy in vehicles, the Society of

Automobile Engineers (SAE) introduced the following classification (SAE

International, 2016):

Level 0 – No automation: The driver controls all aspects of the dynamic driving

task, even when enhanced by warning or intervention systems.

Level 1 – Driver assistance: Driving mode-specific execution by a driver assistance

system of either steering or acceleration/deceleration using information about the

environment. The driver maintains control and performs all other aspects of the

driving task.

Level 2 – Partial automation: Driving mode-specific execution by one or more

driver assistance systems of both steering and acceleration/decelaration using

information about the driving environment. The driver maintains control and

performs all remaining aspects of the driving task.

Level 3 – Conditional automation: Driving mode-specific performance by an

automated driving system of all aspects of the driving task with the expectation that

the human driver will respond appropriately to a request to intervene.

Level 4 - High automation: Driving mode-specific performance by an automated

driving system of all aspects of the driving task, even if a human driver does not

respond appropriately to a request to intervene.

Level 5 – Full automation: Full-time performance by an automated driving system

of all aspects of the driving task under all roadway and environmental conditions that

can be managed by a human driver.

3

Autonomy is envisaged as the solution to many of the problems caused by the large

number of vehicles in the streets today. Autonomous vehicles are expected to bring

improvements in areas such as road safety, congestion, environmental pollution and

energy consumption (Eskandarian, 2012; Litman, 2019). More specifically, some of

the benefits expected from the introduction of higher levels of autonomy are:

• Improved traffic safety, by an overall reduction in the number and severity

of crashes, improved reliability and faster reaction times compared to human

drivers

• Improvements in the traffic flow, leading to reduced congestion, higher

speed limits and reduced travel time

• Fuel efficiency by optimising fuel consumption, reducing stop & go driving

and emissions

• Time savings, leading to reduced travel time, time required to find a parking

space and manoeuvre the vehicle into spot

• Removal of constraints related to human driving impairment, such as

disabilities, fatigue or sleepiness while driving, drink/drug driving

• Economic benefits. Not considering a higher initial cost to manufacture an

AV compared to traditional vehicles, accident-related costs are expected to

drop, along with fuel, maintenance and insurance costs.

By introducing Advanced Driver Assistance Systems (ADAS) and automating

vehicle functionality, the ill-effects of human driving behaviour that leads to

accidents (recognition errors, decision and performance errors) can be limited

(NHTSA, 2015).

ADAS refers to the vehicle functions that an intelligent vehicle provides either

completely autonomously or assists the driver with during driving. ADAS includes

but is not limited to, systems such as ACC, Automatic Parking, Blind spot

monitoring, Collision Avoidance Systems (CAS), Lane Change Assistance,

Pedestrian protection systems and others.

Active safety systems such as CAS are designed to reduce the probability of an

accident (Mukhtar et al., 2015). The Collision Avoidance functionality involves

4

detecting obstacles on the road that threaten the operation of the vehicle, the safety of

the passengers/cargo as well as the vehicles and pedestrians in the surrounding

environment. The system can either warn the user of the imminent collision or take

longitudinal and lateral control of the vehicle in order to avoid the collision.

1.2 Problem statement

A robust and reliable detection system is a crucial element for CAS. Obstacle

detection is achieved by processing the data provided by environmental sensors (such

as radar, cameras, LIDARs etc.) using detection and classification algorithms.

Sensors in CAS can be classified in two main categories: active and passive. Active

sensors emit signals into the surrounding environment and capture the reflection to

identify obstacles/targets. Sensors of this type are radar systems (emitting radar

waves) and LIDAR (Light Detection and Ranging)/laser systems that use infrared

signals or laser beams. Sensors of this type are able to measure distance directly

without requiring high computational resources, are able to detect objects in larger

distances compared to optical sensors and finally, their performance is robust in

foggy or rainy conditions and during nigh time. Their main drawbacks are the high

cost compared to vision systems; their increased power requirements (since they emit

signals) and that same-type sensors interfere with each other (Sivaraman and Trivedi,

2013; Mukhtar et al., 2015; Eskandarian, 2012).

The most common passive sensor used for detection is the optical system

(monocular/stereo camera). Cameras are low-cost solutions that are easier to install

and maintain, offer higher resolutions and provide descriptive information and are

also free from the interference problems active sensors face. Vision-based detection

depends highly on the quality of acquired image (with quality depending on lighting

and weather conditions) and requires more computing power to process the images.

The table below gives a brief comparison between active and passive sensor systems:

5

Table 1-1: Advantages and disadvantages of active and passive sensors

Type of sensor Advantages Disadvantages

Active sensors

(radar, LIDAR,

laser)

1. Direct distance measurements

2. Longer detection range

compared to camera

3. Robustness against

environmental conditions (fog,

rain), during night time and

complex shadows

1. Higher cost compared to

vision systems

2. Lower spatial resolution

3. Interference between

sensors of the same type

Passive sensors

(camera)

1. Higher resolution and

increased Field of View

2. Lower cost compared to active

sensors

3. Useful descriptive information

can be extracted from images

1. Quality of acquired data

dependent on lighting and

weather conditions

2. Increased computational

resources required to

process images

Currently, AV development efforts from automotive and technology companies such

as Google, Tesla, Mercedes-Benz (Ziegler et al., 2014) or universities (Urmson et al.,

2008; Broggi et al., 2014; Berlin Team et al., 2007; Wille et al., 2010; Rauskolb et al.,

2009) make use of multiple or high cost sensors to achieve their functionality.

The robustness of the systems comes from fusing data obtained from multiple

sources and eliminating the errors associated with the sensor systems. CAS that use

multiple sensors lead to systems that are more reliable than those using only a single

sensor (Premebida et al., 2007; Kmiotek and Ruichek, 2008; Chavez-garcia and

Aycard, 2015; Bertozzi et al., 2008; García et al., 2017). For vehicle detection, it is

6

possible to fuse data from both active and passive sensors. During the fusion process,

either the various sensor systems perform detection of objects/obstacles at the same

time and validate each other or the system is built around one main system while the

other secondary sensors validate the results of the main system (Rodriguez F. et al.,

2010; Garcia et al., 2012).

While this approach increases the overall system’s robustness, makes it more reliable

and manages to collect the maximum amount of information from the surrounding

environment, there are two major drawbacks to this approach.

The first one is that, due to the sheer number of sensors used for fusion, the total cost

of the system rises significantly. Active sensors (radar but especially LIDAR systems)

are significantly more expensive than vision systems. Despite costs dropping year by

year due to the inevitable mass production of sensor systems, the total cost of full

sensor suite is prohibitive making the mass adoption of safety systems in commercial

vehicles much more difficult. The second significant drawback is that different

sensor systems require different approaches and algorithms, making the whole

system more complex and computationally expensive. Since different sensors

generate data of different types from the surrounding environment, it is necessary to

process them separately in order to fuse the information. For example, the point

cloud generated by a LIDAR sensor cannot be directly used in conjunction with the

video stream of a camera. Instead, it needs to be converted into a usable form before

any object detection/classification process takes place.

1.3 Research importance

This thesis will attempt to develop a simple and robust vehicle detector, able to

perform under different environmental conditions. The detection system will be

based on a vision sensor (a monocular camera in this case), which will act as the sole

sensor system.

In the race to produce the first fully Autonomous Vehicle, cost is often overlooked

and ADAS systems are offered at a premium to the end user. Cost however, is an

important factor for the adoption of systems such as CAS in vehicles and therefore,

7

the goal should be to achieve the desired functionality with the lowest possible cost

and at the same time, keep power and processing requirements low.

For that reason, it is essential to maximise the camera-based system’s detection

performance, producing the best possible results. Performance in this case will be

measured by the system’s ability to detect all vehicles on the road ahead, minimising

any false detections and doing so in the most computationally efficient way.

This research project is meaningful, as the success in developing such a system will

indicate that it is possible to achieve CA functionality in Intelligent and Autonomous

Vehicles using low-cost sensors and pave the way for mass adoption of safety

systems of this type in vehicles.

1.4 Aim and objectives

The aim of this PhD research is to develop a reliable detector for identifying vehicles

in real-time, based on a low-cost sensor, such as a monocular camera.

This aim will be fulfilled through the following objectives:

• To investigate existing vision-based approaches to vehicle detection

• To identify the methods that are more likely to produce the desired

performance, given the limitations of the existing methods

• To collect, synthesise and process the data required to develop a vehicle

detector

• To develop a method for detecting vehicles based on a low-cost monocular

camera

• To assess and validate the performance of the developed vehicle detector

1.5 Thesis outline

This thesis is organised in seven chapters. This section provides an outline of each

chapter:

8

Chapter 2 conducts an extensive and critical literature review of vision-based vehicle

detection. The review explores both traditional image processing-based vehicle

detection as well as Convolutional Neural Network (CNN) based detection. Every

stage of the two approaches is reviewed and the main findings of this review are

discussed.

Chapter 3 presents the methodology of this thesis. Two vehicle detectors are

developed, one following the traditional image processing approach (where the

image is processed into a form where useful information can be extracted) and the

other following CNN-based vehicle detection. Both attempt to optimise existing

methods and improve detection performance. The approach followed to estimate

distance to a moving vehicle ahead is also presented in this chapter.

Chapter 4 presents the data which are employed to build the models. The type of data

used is presented along with a description of the collection process. The pre-

processing of the dataset and its limitations are also discussed in this chapter.

Chapter 5 reveals the results for all the examined models. The developed detectors

are evaluated based on established evaluation metrics and the best-performing

detector is identified.

Chapter 6 discusses the findings of the Results chapter (Chapter 5). It also explores

the run-time performance of the highest performing detector and determines whether

it is suitable for real-time application. A simple range measurement application is

developed and serves as a test to determine whether the developed vehicle detector

can be the foundation upon which a complete CAS is based.

Finally, Chapter 7 summarises the findings of this research, discusses whether the

goals originally set out are achieved and the limitations of this work. This is followed

by a discussion for future research and improvements.

9

2 Literature Review

2.1 Introduction

Active safety systems such as a Collision Avoidance System (CAS) are designed to

reduce the probability of an accident (Mukhtar et al., 2015). The Collision Avoidance

functionality involves detecting obstacles on the road that threaten the safe operation

of the vehicle, the safety of the passengers/cargo as well as the vehicles and

pedestrians in the surrounding environment. The system can either warn the user of

the imminent collision or take longitudinal and lateral control of the vehicle in order

to avoid the collision.

A robust and reliable obstacle detection system is a crucial element for CAS.

Obstacle detection is achieved by processing the data provided by environmental

sensors (such as radars, cameras, LIDARs etc.) using detection and classification

algorithms. Current high-performance detection systems use multiple or high-cost

sensors to achieve their functionality. This study aims to develop a vehicle detection

system based around a single low-cost sensor, in this case a monocular camera.

The process of detection using a camera-based system consists of two stages:

Hypothesis Generation (HG) and Hypothesis Verification (HV). This chapter

discusses each of the vehicle detection systems that comprise the detection process.

First, the Hypothesis Generation (HG) stage is introduced. This sub-system is

responsible for generating the object candidate locations in an image (initial

detection). The second stage presented, Hypothesis Verification (HV) is responsible

for verifying the existence of an object in the image and classifying it as vehicle,

pedestrian or other object (Sun, Miller, et al., 2002; Li and Guo, 2013; Kanjee and

Carroll, 2015; Mukhtar et al., 2015).

The main methods used for each stage of the detection process are presented here,

with the focus given on those used for the proposed detection systems. The

remainder of the review is structured as follows: Section 2.2 presents the method

used to generate potential vehicle locations (HG) while Section 2.3 focuses on the

verification of those potential locations (HV). Section 2.4 explores the topic of

10

feature extraction from images while Section 2.5 focuses on the use of HOG features

in vehicle detection. Section 2.6 presents the architecture of Convolutional Neural

Networks and their use in vehicle detection and Section 2.7 is a short review of range

estimation techniques. Finally, Section 2.8 summarises this review and identifies the

gap in research.

2.2 Initial vehicle detection (Hypothesis Generation)

This first stage of the detection process involves identifying potential vehicle

locations in the captured images. Potential location or regions of interest (a ROI is a

portion of an image on which an operation is performed; multiple ROIs can exist in

an image) in images can be determined using two methods: motion-based techniques

that analyse a sequence of image frames to detect moving objects based on their

optical flows or appearance-based (also known as knowledge-based) techniques that

analyse single image frames to find visual cues that indicate vehicle existence (Sun,

Miller, et al., 2002; Khammari et al., 2005; Sivaraman and Trivedi, 2013; Mukhtar et

al., 2015).

2.2.1 Motion-based approaches

In motion-based approaches, optical flow fields for moving vehicles are calculated

by matching feature points or specific pixels between consecutive image frames.

Vehicle corners is the tracked feature by Smith (1995), while Heisele and Ritter

(1995) track the colour blobs of the vehicles. Jazayeri et al. (2011) track multiple

low-level features such as corners, horizontal line segments and intensity peaks. To

create the optical flow fields in motion-based approaches, it is necessary to track the

selected features across several frames. Usually, a fixed number of frames are

selected. In Jazayeri et al. (2011) the minimum tracking duration is 50 frames.

Yanpeng et al. (2008) use optical flow optimisation to track overtaking vehicles.

Their findings show that detection accuracy depends on the relative speed between

host and overtaking vehicle, with vehicles overtaking the host vehicle with small

relative speed (less than 10km/h) proving difficult to detect (with a 69.1% detection

rate). Kuo et al. (2011) use an appearance-based method and motion flow on an

11

embedded system to detect and track vehicles on a highway. Preceding and

overtaking vehicles are detected at a rate of 95.8% and 90.6% respectively, with

large vehicles causing false negatives in the detection.

Motion-based monocular camera detection is less common than appearance-based

methods as it requires the analysis of several frames to detect moving objects. Since

monocular vision lacks direct depth measurements that are important for motion flow

methods, it is difficult to use such methods without introducing significant

inaccuracies. Instead, for a monocular camera-based detection, it is simpler to

analyse single frames to find visual cues. For motion-based detection, using a stereo

vision system is more appropriate, as it is more accurate in calculating distance to

objects.

2.2.2 Appearance-based approaches

In appearance-based approaches, specific characteristics of a vehicle or of its

adjacent environment are sought by the image processing algorithm. In this way

regions of interest are created and are further examined for the presence of vehicles.

Usually, a vehicle detection system looks for a combination of features in an image,

as one feature on its own is unreliable and not sufficient to detect a vehicle (Chan et

al., 2012). The main features that appear in the literature are:

i. Shadows

ii. Edges

iii. Corners

iv. Symmetry

v. Texture

vi. Colour

vii. Vehicle back lights

i) Shadows on a paved road hint to the existence of a vehicle on the road. Cheon et al.

(2012) detect the boundaries of the road region by outlining the lowest homogenous

region in the lower part of an image. Areas with colour intensities under a specific

threshold are declared shadow regions, their edges are detected and in that way,

12

possible vehicle locations are declared. Li and Guo (2013) segment the shadows

underneath vehicles using histogram analysis and combine the horizontal and vertical

edge features of the shadows to generate the possible vehicle locations. (Baek et al.,

2014; Yu et al., 2016; Di and He, 2016) follow a similar approach to exploit shadows

generated under the vehicle for ROI generation and combine them with other visual

cues to enhance detection performance.

Figure 2-1b is the output of shadow region detection process performed on a sample

image (Figure 2-1a). The shadows underneath the vehicles are visible in white,

separating them from the surrounding environment:

Figure 2-1: Original image (a), shadow segmentation (b). Source: Li and Guo (2013)

Shadow region detection does not come without limitations. It is greatly affected by

the illumination conditions of the environment and by the shadows cast by nearby

objects.

ii) Detecting the edges of a vehicle is one of the most common methods for

generating a ROI. The reason is that the rear view of a vehicle usually forms a

rectangular shape with horizontal and vertical edges and specific aspect ratios,

ranging between 0.4 and 1.6, depending on the size of the vehicle (Teoh, 2011). This

common characteristic allows for efficient vehicle detection, minimising the

probability for missed detections due to an irregular shape.

Edge detection aims to identify points in a digital image where there are sharp

changes in image brightness. Such changes in an image usually correspond to

discontinuities in depth or surface orientation, changes in material properties or

variations in local illumination. The boundaries (edges) of an object are examples of

such change in image brightness.

13

The most common ways to perform edge detection is to use filters allowing the

detection of object boundaries. Such filters (e.g. Sobel filter, Canny edge detector)

are not only used for the particular application but are widely used in image

processing to extract useful structural properties of objects.

The Sobel operator (or filter) is a discrete differentiation operator, used to compute

an approximation of the gradient of the image intensity function. The operator makes

use of 2 3X3 sized kernels (one for horizontal and one for vertical changes) which

are convoluted with the input greyscale image to calculate approximations of the two

derivatives (Sobel, 1990; Fisher et al., 2003a). The two kernels are:

[
−1 0 1
−2 0 2
−1 0 1

] in the 𝑥 (horizontal) direction, and

[
1 2 1
0 0 0

−1 −2 −1
] in the 𝑦 (vertical) direction.

After the convoluting the image with the kernels, the resulting components

𝐺𝑥 , 𝐺𝑦 can be used to compute the gradient magnitude and direction:

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐴 (2.1)

𝐺𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] ∗ 𝐴 (2.2)

Where * here denotes the 2-dimensional convolution operation.

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (2.3)

𝜃 = tan−1(
𝐺𝑦

𝐺𝑥
) (2.4)

The Canny edge detection filter takes the Sobel operator and improves it to produce

better results (Canny, 1986). The Canny edge filter is a multi-stage algorithm:

14

i. First, the input image is smoothed using a 5X5 Gaussian filter to remove

noise.

ii. The second step is to find the intensity gradients of the smoothed image,

using the Sobel operator described above.

iii. After computing the gradient magnitudes and orientations, a process called

non-maximum suppression is used to remove any unwanted pixels which

may not be part of an edge. Every pixel is checked if it is a local maximum in

its neighbourhood in the direction of the gradient. If so, it is stored for

consideration in the next step, otherwise it is suppressed (its value is set to 0).

This operation results in an image with “thin” edges.

iv. This final stage decides which edges detected during the previous stages are

really edges or not. During this stage, a process called hysteresis thresholding

takes place. Two threshold values, one minimum and one maximum are used

to detect true edges. Any edges with intensity gradient higher than the

maximum threshold values are considered “sure” edges and are retained.

Edges below the minimum value are labelled “false edges” and are discarded.

The edges that have intensity gradients in between the threshold values are

retained if they are connected to “sure” edges above the maximum threshold

value, otherwise they are discarded as well. Apart from classifying edges, this

stage also removes individual pixels (noise) assuming that edges are long

lines.

Vertical and horizontal edge structures are detected and processed in Sun, Miller, et

al.(2002) in order to generate ROIs. Teoh (2011) uses a Canny edge detector to

generate an edge image, while Baek and Lee (2014) also use a Canny filter along

with shadow region detection for the HG stage. Deng et al. (2014) use edges to detect

vehicles in the same lane as the ego-vehicle, while (Yu et al., 2016; Di and He, 2016)

perform ROI generation by utilising Sobel filters along with shadow region detection.

Figure 2-2 below presents edge information on an image of a vehicle’s rear view:

15

Figure 2-2: Edge detection Source: Teoh (2011)

Edge detection is not robust enough to be used on its own. It is limited by

interference from outlier edges while it is difficult to select an optimum threshold for

the process itself (Mukhtar et al., 2015).

iii) In general, the shape of a vehicle is rectangular with four corners. Corners can be

detected by identifying edge pixels at the positions corresponding to vehicle’s sides.

Detected corners can be clustered based on their type and location. These clusters

can be used as inputs for a classifier (identifies objects) to determine whether the

corners belong to a vehicle (Jinhui and Meng, 2010). Corner detection fails to

perform in complex and cluttered environments (e.g. urban) and thus, is severely

limited in its application.

iv) Most vehicles’ front and rear views are symmetrical over a vertical centre line.

With that in mind, the estimation of the location of a vehicle in an image by detecting

regions with high horizontal symmetry is possible. A symmetry value is calculated

based on pixel characteristics including grey colour values, gradients, colour and

feature points. To locate a vehicle, it is necessary to determine the symmetry axis

(centreline) of the vehicle, which can be found using grey level symmetry, contour

and horizontal line symmetry (Kuehnle, 1991). Bensrhair et al. (2001) experiment

with both monocular and stereo vision setups for vehicle detection and use symmetry

as the main visual cue. Grey level symmetry is exploited initially, before symmetry

properties are computed in horizontal and vertical edges are computed in order to

enhance detection robustness. Dai et al. (2007) exploit vehicles’ symmetric

16

properties in multi-scale windows for same lane vehicle detection (in highway

environment), while Teoh (2011) use symmetry in a generated edge image for

vehicle detection, after reducing the effective search space of the image to improve

performance.

The drawback of Symmetry detection as a visual cue is that it is processor intensive

and highly dependent on the vehicle’s surrounding environment.

v and vi) Colour and texture of a vehicle. Most vehicles have a homogenous body

colour that is different from road surface or a background object. The same applies

for the texture of a vehicle, which is different from its surroundings. This information

can be used to segment vehicles from the images acquired by a camera system. The

limitation of using colour as a visual cue is its poor performance in a background of

matching colours and its dependence on good illumination conditions.

vii) Detection of head or rear lights of a vehicle is usually performed to detect a

vehicle in low-light conditions, where other feature detection techniques have low

reliability. Chen et al. (2006) segment and cluster bright objects in an image, and the

target regions are verified using symmetric properties (shape of lights, texture and

relative position). Schamm et al. (2010) use a perspective blob filter to separate front

from rear lights and in this way distinguish vehicles going the same or opposite way.

Despite various night time detection techniques, such as the one described above,

using an IR (infrared) camera is a more efficient way to detect vehicles and extract

their features. Figure 2-3 below presents the result of rear light detection, where the

lights are identified and stand out from the rest of the image using rectangular

bounding boxes:

17

Figure 2-3: Rear light detection Source: Schamm et al. (2010)

Vehicle detection using vehicles’ lights is inefficient when other sources of light

such as street lights or shop bulbs exist in a scene.

This section presents the dominant visual features used for appearance-based vehicle

detection and their limitations. The literature indicates that all of them are used with

varying levels of effectiveness. The most common ones appear to be edge detection

(which is easy to implement due to the existence of various filters from other image

processing applications), shadow region detection (usually rectangular-shaped

shadows are formed underneath vehicles) and symmetry (due to the specific

rectangular shape of vehicles’ rear view).

To increase robustness and ensure improved detection performance, a combination of

visual cues is usually used to generate the sub-images necessary for the next part of

the detection process.

2.3 Hypothesis Verification

Hypothesis Verification (HV) is the second part of the detection process, tasked with

validating the identified image areas as objects of interest (e.g. vehicle, pedestrian) or

not.

There are two types of verification techniques:

• Template matching (correlation based approaches)

18

• Object classifier methods, probability distribution methods (learning based

approaches)

2.3.1 Template matching

Template matching involves measuring the similarity between the ROI extracted

from an image and a predefined template by calculating their correlation. Since

vehicles come in different models with various appearances, a general template with

features common to all vehicles is used. Common features may include rear window

and plate, rectangular-shaped box with specific aspect ratio and an object with one

horizontal and two vertical edges (U-shape) (Parodi and Piccioli, 1995; Handmann et

al., 1998; Bensrhair et al., 2001).

A dynamic template that updates the initial template increases the robustness and of

the matching technique. After the initial verification using a generic template

described above, a cropped image of the detected vehicle becomes the new template

and the updated template to accurately verify the vehicle across different frames

(Betke et al., 1997). A dynamic template was also used by Lin and Xu, (2006) and

its reliability was measured using edges, area and aspect ratio of the target to match

the result to a vehicle, with a 95.7% performance rate reported for tracking.

While template matching has been used in vehicle detection, the method appears to

have serious limitations that affect its usefulness. Detection failure when there are

changes in scene illumination as well as problems when an object is rotated

(resulting in low correlation coefficient) indicate limited robustness. Another

problem to be considered is the need to generate a large number of templates to cover

all vehicle cases on the road (Nath and Deb, 2010).

2.3.2 Object classifier methods

Object classifiers use two classes of images to discern vehicles from non-vehicle

objects. A classifier learns the characteristics of a vehicle’s appearance from a set of

training images that includes images of both vehicles and non-vehicles. The classifier

training is a supervised learning approach and the larger the set of images used, the

better the classifier performs. The most common classifiers include Artificial Neural

19

Networks (ANN), Support Vector Machines (SVM), AdaBoost and Mahalanobis

distance. Another way to classify objects is to model the probability distribution of

features belonging in each class (methods using the Bayes rule assuming Gaussian

distribution such as a Dynamic Bayesian Network) (Sun, Miller, et al., 2002;

Khammari et al., 2005; Sun et al., 2006; ; Haselhoff et al., 2007; Sivaraman and

Trivedi, 2013; Kanjee and Carroll, 2015; ; Mukhtar et al., 2015; Chavez-garcia and

Aycard, 2015).

i) Artificial Neural Networks (Schmidhuber, 2015; Hornik et al., 1989) are a family

of models inspired by biological neural networks and are used to estimate or

approximate functions that can depend on a large number of inputs (generally

unknown). They are presented as a series of interconnected nodes (neurons) which

exchange information with each other. The connectors between the nodes have

numeric weights assigned to them, which can be adjusted, making the network

adaptive to inputs and capable of learning.

The basic structure of an ANN consists of one input layer, one output layer and one

or more hidden layers between them. The number of inputs is equal to the number of

features used for the classification and the number of outputs is the number of classes

to be classified. For example, if there were 3 potential vehicle classes for objects to

be classified into (e.g. car, truck, motorcycle), then the output layer would have 3

outputs. The hidden layers between the input and output layers is where the learning

process is taking place. There is no specific rule to determine the number of hidden

layers. A small number may result in inaccurate classification while a large one

increases classification accuracy but increases computational load as well. In practice,

the optimal number of hidden layers/nodes is determined through extensive

experimentation. An example of an ANN with simple topology with n inputs

(features), 1 output and 2 hidden layers (processing layers) is given in Figure 2-4:

20

Figure 2-4: ANN (n inputs, 2 hidden layers, 1 output) Source: Teoh (2011)

Each connector is associated with a weight, 𝑤 and a bias, b. These values hold the

‘knowledge’ of the network and they are acquired through learning. In each node, the

weighted sum of each input from the previous layer plus the bias term is calculated.

The result is then transformed to the output using an activation function, 𝑔(𝑥). The

learning process aims to minimise the output error. After an initial output and its

error are calculated using the various inputs, the weights of the connectors are

adjusted so that the classification error is reduced. This process is repeated for a fixed

number of iterations or until the desired minimum error is achieved.

ii) Support Vector Machines (SVMs) (Vapnik, 1998; Müller et al., 2001) are

supervised learning models with associated learning algorithms used to analyse and

recognise patterns. They can be used to solve both classification and regression

problems.

21

In supervised learning, models are taught what conclusions or predictions they

should come up with. This is possible by providing the model with labelled prior

knowledge (known output). The supervised learning model then uses the training

data to “learn” a link between the input and outputs. By comparison, unsupervised

learning models are left on their own to model the hidden structure or underlying

structure in the data in order to learn more about the data. In this case, there is no

labelled prior knowledge. A common example of unsupervised models is clustering

methods.

The Support Vector Machine is a two-class classifier and its aim is to find the

frontier which best segregates the two classes. It maps the training data of two object

classes from the input space into a higher dimensional feature space, using a

mapping function, φ. Then an optimal separating hyperplane with maximum margin

is constructed in the feature space to separate the two classes. After the optimal

hyperplane is determined, new data samples are assigned into one category or the

other. The coordinates of each data item are called Support Vectors. A simple

example of classification using a linear SVM is given in Figure 2-5 below:

22

Figure 2-5: Example of hyperplane separating two feature classes Source: Teoh (2011)

Given a set of 𝑙 labelled training samples (input – output pairs):

(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑙

Where:

𝑥𝑖 ∈ 𝑅𝑁 are the N-dimensional input feature vectors and 𝑦𝑖 {−1, +1} are the labels

for Class 1 and Class 2.

The decision function is:

𝑓(𝑥) = ∑ 𝑦𝑖 𝑎𝑖
𝑙
1 𝑘(𝑥, 𝑥𝑖) + 𝑏 (2.5)

For an unknown data 𝑥, it can be classified into:

Class 1 if 𝑓 (𝑥) > 0 or Class 2 if 𝑓 (𝑥) < 0

23

The coefficients, 𝑎𝑖 and bias, 𝑏 are estimated from the training data, by solving the

constrained optimisation problem with the aim of finding a separating hyperplane

with maximum margin. The support vectors from Classes 1 and 2 are the training

data that sit on the boundary in the hyperspace (𝑎𝑖 ≠ 0), as can be seen in Figure 2-

5.

𝑘(𝑥, 𝑥𝑖) is the kernel function that we use in order to avoid calculating the mapping

function φ which, in many cases, is not an easy task. The kernel function may be

linear, polynomial, sigmoid etc. (Teoh, 2011; Chen et al., 2013;) :

Linear: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (2.6)

(Gaussian) Radial Basis Function: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , 𝛾 > 0 (2.7)

Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝜄
𝑇𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0 (2.8)

Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

 (2.9)

Where: 𝛾, 𝑟 𝑎𝑛𝑑 𝑑 are the kernel parameters, 𝑇 is the transposed matrix.

iii) Mahalanobis distance (Mahalanobis, 1936) is a measure that is used to assess

the dissimilarity between two sets of variables. It is different than Euclidean distance

in that it considers the correlation between the variables when calculating the

distance. That is a useful characteristic because most of the variables used for

classification are dependant to each another. It is used as a minimum distance

classifier where the distances between an unknown sample and several object’s

classes are calculated. The sample is then classified into a class with the shortest

distance.

The Mahalanobis distance, 𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 between an N-dimensional vector 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 and a group of vectors with mean μ= (𝜇1, 𝜇2, … , 𝜇𝑛)𝑇 and covariance

matrix S is:

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠= √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) (2.10)

24

𝜇 and S represent the vehicle’s class distribution. In order to classify a test image,

the 𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 between the image and the μ of each vehicle class is calculated. If

the distance is below a certain threshold, the image is classified as a vehicle. By

using varying thresholds, different values of true detection and false detection rates

can be calculated.

iv) AdaBoost (Freund and Schapire, 1999) (short for Adaptive Boosting) is a

boosting method used to improve the performance of several “weak” classifiers by

combining them into a “strong” classifier. A weak classifier is a classifier that

performs poorly, but still better than random guessing (over 50% correct

classification). The output of these classifiers is combined into a weighted sum that

represents the output of the final boosted classifier.

The equation for the boosted (strong) classifier is:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑡ℎ𝑡(𝑥)𝑇
1) (2.11)

Where T is the number of weak classifiers, ℎ𝑡(𝑥) is the output of the weak classifier

t and 𝑎𝑡 the weight applied to classifier t by AdaBoost. The final output is a linear

combination of all the weak classifiers and the classification decision is made by

looking at the sign of this sum.

The output weight 𝑎𝑡 for the first classifier is given by: 𝑎𝑡 =
1

2
ln

(1−𝑒𝑡)

𝑒𝑡
 where 𝑒𝑡 is

the classifier’s error rate. After computing the first alpha, the training example

weights are calculated again using the following formula: 𝐷𝑡+1(𝑖) =

𝐷𝑡(𝑖)exp (−𝑎𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
 where 𝐷𝑡 is a vector of weights, with one weight for each

training example. 𝐷𝑡 is a distribution which means that each weight 𝐷 represents the

probability that each training example 𝑖 will be selected as part of the training set. 𝑍𝑡

is the sum of all weights and it is used in the division so that the weights are

normalised and the probabilities all add up to 1 (Viola and Jones, 2001; Haselhoff et

al., 2007; Matas and Sochman, 2009).

25

Classification accuracy depends on many factors so determining which classifier

performs the best is not a trivial task. It is a combination of application requirements,

balancing performance and processing speed and the quality of data.

For example, SVM classification performance depends on the selection of kernel

function and its parameters, which are empirically determined, after experimentation

and validation of produced results. A Neural Network’s discrimination ability is

largely dependent on the topology of the network, with the number of hidden layers

and the number of training cycles affecting performance. Similarly, empirical

evaluation determines the optimal number of hidden layers and training cycles. In

the same way, AdaBoost performance is affected by the number of “weak” classifiers

that make up the system (Sun et al., 2006; Teoh, 2011).

The quality and size of input data is equally important for successful classification

results. Extracted images features affect the classifier’s discriminative ability and the

size of training data (positive and negative training samples) is also of significant

importance.

Detailed information on the use and performance of classifiers in vehicle detection

follows in section 2.5.2.

2.4 Image feature extraction

Instead of feeding a classifier raw image data, an image processing stage is involved

(feature extraction). The purpose of this processing is to remove irrelevant and

redundant data, which would make the classification process harder and more

computationally intensive. In order to obtain those specific information that will be

used as input to the classifier, training images are processed to extract descriptive

features of the object to be classified. A good selection of features is important to

capture the variability in the appearance of a vehicle and achieve good classification

results. The most common features used for classification are:

• Gabor features

• Principal Component Analysis (PCA) features

26

• Haar wavelets

• Histogram of Oriented Gradients (HOG)

i) The Gabor filter is a linear filter used for edge detection in image processing.

Representations of Gabor filters are reminiscent of the human visual system and they

are used for texture analysis, object segmentation and classification. A 2D Gabor

filter is a Gaussian function that can be viewed as a sinusoidal plane of particular

frequency and orientation. Gabor filters respond to lines or edges with different

widths and orientations depending on the filters’ parameters, so in order to obtain

good descriptive from an image, using different orientation and scales of the filter is

required (Sun, Bebis, et al., 2002; Teoh, 2011).

An example of a Gabor filter (sample image (a), features -5 scales/8 orientations-(b)

and output (c) can be seen in the figures below. Figure 2-6 is a sample image, Figure

2-7 is the features used (5 scales/8 orientations) and finally, Figure 2-8 is the output

when the filters are applied. It can be observed that each of the filters produces a

different output, highlighting the varying orientations:

Figure 2-6: Sample image Source: Stackoverflow (2016)

27

Figure 2-7: Gabor features (5 scales/8 orientations) Source: Stackoverflow (2016)

Figure 2-8: Gabor output Source: Stackoverflow (2016)

ii) Principal Component Analysis (PCA) (Jolliffe, 2002; Fodor, 2002) is a common

technique used to reduce features’ dimension. It is a statistical procedure that

converts a set of observations of possibly correlated variables into uncorrelated

values. At first, the covariance matrix C of the n-dimensional feature set is calculated.

After that, all the eigenvectors and eigenvalues of the C matrix are calculated and

sorted. The eigenvectors with the highest eigenvalues are called Principal

Components. Each of the Principal Components consists of n coefficients and each

coefficient is associated with a feature of the original feature space (Truong and Lee,

2009; Teoh, 2011).

iii) Haar-like features consider adjacent regions in an image, sum the pixel

intensities in each region and calculate the difference between the sums of these

28

regions. The difference is used to categorise those sections of the image based on a

threshold that separates objects from non-objects. Haar features are “weak”

classifiers, so a large number are required to accurately describe an object (Viola and

Jones, 2001).

iv) The Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) is a

feature descriptor used in image processing with the purpose of identifying objects in

an image. The primary idea behind HOG features is that they can be used to describe

object appearance and shape by their distribution of intensity gradients or edge

directions (in image processing, an edge is considered a point where image

brightness changes abruptly) (Zhiqian Chen et al., 2013). More details on HOG and

HOG based-vehicle detection are presented in the next section.

2.5 Histogram of Oriented Gradients (HOG) and vehicle

detection

2.5.1 HOG feature extraction

HOG operates similarly to other descriptors such as edge orientation histograms

(Freeman and Roth, 1995), SIFT (Scale-Invariant Feature Transform) descriptors

(Lowe, 1999) and shape contexts (Belongie and Malik, 2000), the difference being

that HOG describes a whole image and produces a single feature vector used to

describe an object compared to other methods that operate locally around specific

interest points and produce a collection of feature vectors to represent the same

object. Compared to HOG, edge orientation histograms only take into consideration

the gradient of pixels that correspond to edges, while SIFT and shape context

descriptors measure shape similarity (by identifying interesting points in an object

and measuring the relative position between them) (Lowe, 1999; Belongie and Malik,

2000).

The descriptive power of HOG comes from calculating gradients over a dense grid of

small image areas (cells) and contrast-normalising them in larger groups (blocks)

(Dalal and Triggs, 2005).

29

Cells are small connected regions that contain the pixels that make up the image.

Cells are rectangular in traditional HOG with a number of pixels that can be defined

(e.g. 8X8, 16X16 pixels cells.). A block is the name given to the superset of cells

upon which normalisation takes place.

HOG features were described and used for the first time in Dalal and Triggs (2005),

in which they were used to detect pedestrians, outperforming Haar wavelets, SIFT

descriptors and shape context descriptors.. Research with HOG features has since

expanded to detecting other objects, including vehicles.

The general flow of calculating the HOG feature vector is the following (Figure 2-9):

1. Gradient computation for each pixel in a small area (cell)

2. Spatial/orientation binning

3. Normalisation and descriptor blocks

Figure 2-9: HOG descriptor generation Source: Ballesteros and Salgado (2014)

Since HOG is calculated over small image areas called cells, determining the cell

size is the first step. Dalal and Triggs (2005) experimented with various cell sizes

and concluded that there is a trade-off between detection accuracy and computational

cost when deciding on cell and block size. The results of their experimentation are

presented in Figure 2-10:

30

Figure 2-10: HOG cell/block performance Source: Dalal and Triggs (2005)

They determined that rectangular 6x6 pixel cells, organised in 3x3 blocks perform

best, with a misdetection rate of 10.4%. However, this was not the combination they

used in their research, instead using 8x8 pixel cells in 2x2 blocks. This option was

selected based on its performance and it is a close second in terms of minimum miss

rate.

Gradient vectors are then computed for every pixel within each cell. In image

processing, a gradient is a directional change in the intensity or colour in an image

and is measured by the change in pixel values along each direction (x and y). Pixel

value is a number that indicates the brightness of the pixel. For greyscale images,

pixel value ranges between 0 and 255; this is the size of a byte (8 bits). 0 is the value

representing black, while 255 represents white. Colour images have three separate

components (RGB – Red, Green, and Blue) each component taking a value from 0-

255.

The gradient is given by the formula:

∇𝑓 = [
𝑓𝑥

𝑓𝑦
] (2.12)

Where 𝑓𝑥 and 𝑓𝑦 are the derivatives with respect to x and y directions respectively:

𝑓𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦) (2.13)

31

𝑓𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1) (2.14)

It is necessary to compute the magnitude and the angle of the vector. Magnitude

represents the strength of the edge:

|∇𝑓(𝑥, 𝑦)| = √𝑓𝑥
2 + 𝑓𝑦

2 (2.15)

The gradient orientation 𝜃 represents the direction of the edge for each pixel and is

given by:

𝜃(𝑥, 𝑦) = tan−1 (
𝑓𝑦

𝑓𝑥
) (2.16)

The next step is the creation of the histograms for each cell. Each pixel calculates a

weighted vote for an orientation-based histogram, based on the orientation of the

gradient of that specific pixel. The cells can either be rectangular or radial in shape

(rectangular cells offered better performance according to Dalal and Triggs (2005),

and are better suited for vehicle detection due to the vehicle geometry) and the

histogram bins are evenly spread over 0-180 degrees or 0-360 degrees, depending on

whether “unsigned” or “signed” orientation has been selected. In the original paper,

unsigned (0-180) orientation and 9 bins were found to perform the best for the

specific task (human detection). Fine orientation is essential for good performance,

but not at the expense of computational time. Performance improved by increasing

the number of bins, but made little difference after 9 bins. Figures 2-11,2- 12 and 2-

18 show the effect of bin size on accuracy and computational time from various

researchers experimenting with HOG parameters, with miss rate decreasing as the

number of bins increased. Computing time also increases significantly. (Dalal and

Triggs, 2005; Tae Young Lee et al., 2015; Seung Hyun Lee et al., 2015). It is also

argued that signed orientation might offer better performance in other tasks such as

vehicle detection. However, other researchers have found that is not the case (Teoh,

2011).

32

Figure 2-11: Bin size effect on miss rate Source: Dalal and Triggs (2005)

Figure 2-12: Bin size effect on accuracy/computational time Source: Lee et al. (2015a)

33

Figure 2-13: Example of a 9-bin HOG histogram for a cell Source: McCormick (2003)

This histogram doesn’t actually represent the frequency distribution of the vectors’

orientation. Instead, the magnitudes of pixels are added and binned.

A weighted vote means that the contribution of each pixel to the histogram via the

gradient’s magnitude is split between the two closest bins it falls in. That happens

because it is very rare for a gradient to fall exactly at the centre of a bin (e.g.

orientation angle 110 degrees). The vote is bilinearly interpolated between the

centres of the two closest bins.

For example, if the angle of a gradient vector is 85 degrees, then we add 1/4th of its

magnitude to the bin centred at 70 degrees, and 3/4ths of its magnitude to the bin

centred at 90 degrees (distance to bin 70 is 15 degrees, distance to bin 90 is 5

degrees). It would be possible to change the way votes are cast using another method

(Gaussian for example, to downweight the effect of pixels near the edges).

After this step, comes the normalisation of the histograms. Gradients are grouped in

blocks and normalised locally to make them invariant to illumination changes (e.g.

shadowing, contrast/brightness etc.). Dalal and Triggs (2005) evaluated 4

normalisation schemes:

• L2 norm: 𝑣 →
𝑣

√||𝜐||+𝜀2
 (2.17)

34

• L2-Hys: L-2 norm followed by clipping (limiting the maximum values of 𝑣 to

0.2) and renormalizing

• L1 norm: 𝑣 →
𝑣

||𝑣||+𝜀
 (2.18)

• L1-sqrt: 𝑣 → √
𝑣

||𝑣||+𝜀
 (2.19)

where 𝑣 is the unnormalised descriptor vector, ||𝑣|| its k-norm (magnitude) and ε a

small constant.

Results show that L2 norm, L2-Hys and L1-sqrt offer comparable performance while

L1 norm is slightly worse by about 5%. All normalisation schemes offered better

performance compared to non-normalised data. The results can be seen in the figure

below, where it is obvious that miss rate and False Positives decrease when

normalisation is used:

Figure 2-14: Effect of normalisation schemes Source: Dalal and Triggs (2005)

The key characteristic of the HOG descriptor is the block overlap in normalisation

that creates redundancy and improves the detection performance. In their paper,

Dalal and Triggs (2005) experimented with various levels of overlap before

implementing a 50% overlap on the blocks. The effect of overlap is that each cell

35

appears multiple times in the final descriptor, though each time normalised by a

different set of neighbouring cells. In 2x2 cell blocks with 50% overlap, corner cells

appear once, other edge cells appear twice, while interior cells appear four times each.

This leads to a final vector file (descriptor) that is much longer compared to a non-

overlap descriptor. This leads to increased processing time as a side-effect of higher

detection accuracy.

In the original implementation of HOG for human detection, a very dense detection

window was created due to overlapping, and this redundancy led to improved

performance by 5%. This dense window was beneficial for detecting the shape of

humans, but may not be necessary for vehicles, where shape presents smaller

variation (usually a rectangular shape). There was no comparison in performance

between overlapping and non-overlapping HOG detection in the original study.

Another study by Ma et al., (2011) (again, for pedestrian detection) showed that

non-overlapping HOG had a 3% increased miss rate compared to overlapping HOG

but around 40% increase in processing speed.

While it is not clear why block normalisation was chosen in the original research as

opposed to normalising across the whole image, it is probably due to the fact that it is

more probable for changes in contrast to occur over small regions within the image.

So instead of normalising across the whole image, normalisation happens in a small

region around the cell.

The final HOG descriptor is the concatenation of all normalised cell histograms from

all blocks in the image in a vector. So, the final vector has a size:

Descriptor size = Total no. of blocks * cells per block * no. of bins per histogram.

So for example, a 32X32 pixel image produces a 324 long vector (9 bins, 9 blocks in

total, 4 cells per block).

The 64x128 images used by Dalal and Triggs (2005), produce 3,780 values (7 blocks

horizontally, 15 blocks vertically, 9 bins, 4 cells per block). Figure 2-15 below

summarises and visualises the steps for HOG feature extraction:

36

Figure 2-15: Summary of steps for HOG extraction Source: Teoh (2011)

2.5.2 HOG-based vehicle detection

HOG and its variations are widely used in image processing for object identification.

While its original application was pedestrian detection, it has been used to detect

other objects that share common characteristics with each other, such as road

vehicles.

In his research on vehicle detection, Teoh (2011) experimented with HOG

parameters (i.e. bin size, signed/unsigned orientation, gradient computation) and

concluded that HOG outperforms Gabor features in detection accuracy as well as

computational efficiency. The results of this extensive experimenting with HOG

features can be seen in Figure 2-16 below:

37

Figure 2-16: Effect of bin size and signed/unsigned orientation Source: Teoh (2011)

Li and Guo (2013) and Chen et al. (2013) use a combination of HOG coupled with a

SVM classifier to detect vehicles. A shadow edge detection technique and a brute

force approach are used respectively to achieve their results, with the first one

claiming 96.87% detection rate on very low resolution images (24X24 pixels)

without commenting on real-time performance, while the second claims real-time

operation though without providing detection rates. Hu et al.(2013)use HOG features

for verifying vehicle existence while utilising Haar wavelets and AdaBoost for ROI

generation, achieving 93.3% classification accuracy. Yc Chen et al. (2013) use

perspective geometry to solve the problem of slow sliding window approach and

their adaptive scan approach results in 7 times faster vehicle search compared to the

brute force approach. Similarly, Kim et al. (2013) use adaptive window but their

overall system performance fails to meet real-time requirements. Laopracha et al.

(2014) use a modified version of HOG called v-HOG, which is less accurate but

faster than traditional HOG and experiment with HOG parameters and kernel

functions. Their method results in up to 100% classification accuracy, though using

only a set of low-resolution vehicle images (64x64 pixels). The structure of v-HOG

can be seen in Figure 2-17 below:

38

Figure 2-17: Vertical HOG (v-HOG) structure Source: Laopracha et al. (2014)

Kim et al. (2014) use SVM and HOG combined with a method to determine the

vehicle size, in order to reduce the size of ROIs for classification and the total

computational time due to the sliding window approach. Shadow and edge detection

are used by Baek and Lee (2014) to determine ROI and a HOG+SVM verification

process. Their paper reports 15ms candidate generation and 60ms vehicle verification

time. Deng et al. (2014) use lane detection to limit the search space and improve

performance. Their system is only able to detect vehicles directly ahead of the ego-

vehicle. Ballesteros and Salgado (2014) experiment with HOG parameters for a

pose-based vehicle verification system. By removing interpolation and HOG overlap

and using only specific cells in the descriptor, it is claimed that computational cost is

reduced by 60% while retaining the same level of accuracy as traditional HOG.

Alencar et al. (2015) and Chavez-garcia and Aycard (2015) use a multi-sensor fusion

system (radar and radar/LIDAR respectively) to improve detection performance,

though both systems exhibit false detections in many cases. Kim et al. (2015) use

πHOG (a variation of traditional HOG) to include position and intensity information

and increase its descriptive ability. The resulting feature vector is longer than HOG

and reduced search space is required to reduce computational time. Lee et al. (2015)

detect shadow region for the HG part of the process, reporting 92% detection rate but

the system fails completely when the shadow area is not properly detected.

39

Figure 2-18: Effect of bin size on detection rate Source: Lee et al. (2015b)

Sun and Watada (2015) use boosted HOG+SVM classifier to detect pedestrians and

vehicles in static images. HOG features are boosted using Adaboost and shadow

detection is used for ROI generation. Vehicle detection accuracy is not reported,

though pedestrian detection is reported lower than traditional HOG (75% to 86%).

The detection process is also limited to daytime operation. Yu et al. (2016) detail a

vision-based lane marking and vehicle detection system with shadows and vertical

edges used for ROI generation. SVM+HOG are used for verification, with no

quantitative results provided, though problems with the accuracy of the classifier and

computation time are reported. Finally, Di (2016) use HOG and an Adaboost

classifier, with edges and shadow providing ROIs. Fine direction separation is used

(20 directions per histogram) for every cell. To reduce running time, feature values

are grouped before they are used by AdaBoost’s “weak” classifiers (for example, 4

adjacent directions are grouped into 1 for the first “weak” classifier).Detection

accuracy is 91.37% with a false positive rate of 3.09%, although the Adaboost

classifier proves to be too computationally expensive for real-time applications.

Classifier performance using other feature descriptors

The performance of various combinations of classifiers and feature sets has been

examined in the literature before. In the majority of cases, performance is measured

by the detection rate (DR) metric, which indicates the proportion of correct vehicle

detections out of the total number of vehicle instances. The results of the most

relevant classification methods are presented in Table 2-1 below:

40

Table 2-1: Features and classifiers in the literature

Methodology Results Image resolution /

additional information

AdaBoost + Haar like features

(Haselhoff et al., 2007)

88.5-93% DR

(detection rate)

24x18 resolution images

AdaBoost + Haar like features

(Wu et al., 2009)

71% DR

38 fps

30x25 / 40x40 images

Detecting occluded

vehicles

AdaBoost + HOG features

(Chavez-garcia and Aycard, 2015)

90% DR No info on resolution

Performance varies

depending on traffic

scenario / (high FP)

Random Decision Forest + HOG

features

(Alencar et al., 2015)

392 FP/430 FN

(1922 cars)

128x64 images

General detector

SVM classifier + Haar wavelets

(Papageorgiou, 2000)

90% DR

28 fps

32x32 images

Low refresh rate

SVM classifier + Haar wavelets

(Sun, Miller, et al., 2002)

10 Hz sampling rate 64x64 images

SVM classifier + Gabor features

(Sun, Bebis, et al., 2002)

94.8% DR

30 fps

64x64 images

NN + PCA features

SVM + PCA features

NN + Gabor features

SVM + Gabor features

NN + wavelet features

SVM + wavelet features

NN + combined Gabor/wavelets

SVM + combined Gabor/wavelets

(Sun et al., 2006)

18% average error

9.09% error

16% average error

6% average error

16.4% error

8.5% average error

11.54% error

4% average error

32x32 images

SVM classifier + PCA analysis

(Truong and Lee, 2009)

95% DR 64x64 images

SVM classifier + HOG features

(Rybski et al., 2010)

88% DR 50x60 images

Orientation detection

Mahalanobis distance + Gabor

features

Mahalanobis distance + HOG

features

ANN + Gabor features

ANN + HOG features

SVM + Gabor features

SVM + HOG features

(Teoh, 2011)

65.2% DR

78.1% DR

89.4% DR

96.5% DR

96.3% DR

98.4% DR

32x32 images

Gabor high processing

time

SVM classifier + HOG features

(Li and Guo, 2013)

96.87% DR 24x24 images

AdaBoost + Haar(HG)/HOG (HV)

(Hu et al., 2013)

93.3% DR 64x64 images

41

Methodology Results Image resolution /

Additional information

SVM classifier + HOG features

(Baek et al., 2014)

98.75% DR No resolution reported

15ms ROI generation

60ms verification time

SVM + adapted HOG features

(Ballesteros and Salgado, 2014)

98.69% DR on

average

64x64 resolution images

Static images

SVM classifier + HOG features

(Tae Young Lee et al., 2015)

92.09% DR 64x64 images

AdaBoost + HOG features

(Di and He, 2016)

91.37% DR

3.09% FP

64x64 images

No real-time performance

ELM + HOG features

ELM + v.HOG features

SVM + HOG features

SVM + v.HOG features

(Laopracha et al., 2014)

98.76% DR

98.90% DR

77-100% DR

96.87-100% DR

64x64 images

Static images

No processing time

reported

Α camera/radar fusion system to perform vehicle detection is described in Haselhoff

et al. (2007), where a method to use mutual information from the two sensors and

eliminate redundant features is used. The radar here is used to generate ROIs while

the camera verifies the existence of obstacles by extracting rectangular Haar features

and classifying using AdaBoost. Subimage resolution is normalised to 24x18 and

contrast/variance normalisation is used on the images to improve detection results.

The detection rates (88.5-93%) presented vary depending on the level of data

elimination. The AdaBoost detection system in Wu et al. (2009) scans for partially

occluded cars and buses using images of different resolution (very low resolution up

to 40x40 pixels) for the two classes. The detection of occluded vehicles using Haar-

like features here requires significant pre-processing to produce sample images,

while the system can only detect specific cases of occluded vehicles. Results show

good performance in static images but detection rates in video lag behind.

 In Sun et al. (2002b) and Sun et al. (2002a) a SVM classifier with different feature

sets is used to perform classification. The Gabor features used in Sun et al. (2002a)

give improved results compared to Haar wavelets in Sun et al. (2002b) although the

classification process only takes place in subimages in Sun et al. (2002a). In the

second study, the performance in complex scenes is explored, with a multi-scale

edge detection process taking place to generate ROIs. Sun et al. (2006) test a series

42

of classifiers to determine which performs better at vehicle classification. The same

multi-scale edge detection process is used, where the original image is downsampled

to increase process speed. Results display the superiority of using SVM combined

with HOG features, compared with other classifiers and features sets (Neural

Network, Mahalanobis distance / Gabor features). Truong and Lee (2009) use long

horizontal and vertical line detection for HG and PCA features combined with a

SVM classifier. The most important features (i.e. Principal Components) that

describe a vehicle are chosen manually and the image resolution is reduced in this

study as well. Rybski et al. (2010) fuse camera and LIDAR data to detect vehicle

orientation and a classifier with different image resolution to achieve their results.

Their system is trained on 8 possible orientations and is able to correctly predict

vehicle orientation with an accuracy of 88%, though testing concluded that using an

orientation-independent classifier produces better results than attempting to

determine individual vehicles through their orientation.

2.6 Convolutional Neural Networks and vehicle detection

This section discusses the use of Convolutional Neural Networks (CNNs) as vehicle

detectors in detail. The section begins by providing an introduction to the CNN, its

architecture and building blocks. Different classification/detection algorithms based

on CNN are presented and finally, the differences between traditional approaches to

vehicle detection and CNN-based methods are discussed.

2.6.1 Architecture of a Convolutional Neural Network (CNN)

A CNN (or ConvNN) is a type of Neural Network that has successfully been used to

analyse visual information. It is a feed-forward network, meaning that information

always moves towards one direction in the network; it never moves backwards as in

recurrent neural networks. While CNNs are similar to ordinary Neural Networks

(they are made up of neurons with learnable weights and biases), they make the

assumption that the input data are images and therefore their architecture is arranged

accordingly, with their parameters set to make the learning process more efficient

(LeCun et al., 2010; Karpathy and Li, 2019b).

43

Unlike regular NNs, neurons in CNNs are arranged in 3 dimensions: width, height

and depth (with depth referring to the third dimension of an activation

volume/number of filters used to produce the feature maps) with each neuron

connected to a small region of the layer before it, called receptive field. An example

of the difference between a regular and a ConvNN can be seen in Figure 2-19 below.

In the CNN, each layer transforms the 3D input image (width x height x 3 (for RGB

images) to a 3D output volume:

Figure 2-19: Regular NN (left) - CNN (right) Source: Karpathy and Li (2019b)

As described earlier, a Neural Network is a series of layers, one after the other,

where the output of one layer is transformed in the next through a differentiable

function. In a CNN, there are four main operations taking place, each in its own layer:

1. Convolution (Convolution Layer)

2. Introducing non-linearity

3. Pooling or sub-sampling (Pooling Layer)

4. Classification (Fully Connected Layer)

The four main types of layers are supplemented by others, performing other

functions such as normalisation or dropout (Krizhevsky and Hinton, 2012; LeCun et

al., 2010; Bishop, 2007; Plemakova, 2018; Karpathy and Li, 2019b). Additionally, a

loss layer at the end of the network is used to calculate probability scores for

different object classes. The sum of the probability scores for all mutually exclusive

object classes is 1.

The structure and operation of a CNN is detailed extensively in the literature (LeCun

et al., 1989; LeCun et al., 1998; Bishop, 2007; Plemakova, 2018; Karpathy and Li,

2019b) :

44

Convolution layer

The convolution layer is the core building block of the CNN and the whole network

takes its name after the specific operation. The primary purpose of convolution is the

extraction of features from the input image. Essentially, it serves the same purpose as

other feature descriptors used in image processing (HOG, SIFT, Haar wavelets etc.)

(Zhao et al., 2019).

As discussed before, every image is a matrix of values, which indicate the brightness

of a pixel. For greyscale images, pixel values range from 0 to 255 (with 0 indicating

black colour, 255 white colour and values in between them different scales of grey).

For RGB colour image, values range from 0-255 for each of the colour channels

(Red, Green and Blue).

To perform convolution, small sized 2D matrices (e.g. 3x3 pixel size) called filters

(or alternatively, kernels) are used on the 2D image matrix to compute the dot

product:

i. The filter is slid across the input (image) matrix by a fixed number of

pixels (e.g. 1 pixel) which is called stride.

ii. For every position, an element-wise multiplication is performed

between the two matrices

iii. The multiplication outputs are summed to get the final integer, which

forms a single element of the output matrix.

Since the filter is limited in size compared to the input matrix, the filter only “covers”

a part of the image in each stride (receptive field). The final product of this process is

called convoluted feature or feature map. The output feature map varies,

depending on the filter used for convolution. In image processing, different filters are

used for different operations, such as edge detection, sharpening or blurring an image

etc.

Before training a CNN, parameters such as number of filters, filter size and stride

need to be specified for the convolution layer:

45

i. The number of filters determines the “depth” of the convolution layer, i.e. the

number of feature maps produced through the convolution operation. For

example, if the number of filters is set to 5, 5 different maps containing

different information will be produced.

ii. Filter size, which is the size of the filter matrix (3x3, 5x5 etc.).

iii. Stride, which is the number of pixels by which the filter matrix slides over

the input matrix. A larger stride will produce a smaller feature map, making

the training process faster, but running the risk of missing useful information

from the image.

Additionally, it is possible to add zero values around the input matrix (zero-padding),

which allows the filter to be applied on border pixels of the input image as well.

Introducing non-linearity to the network

The convolution layer is followed by a layer tasked with introducing non-linearity in

the CNN. Since convolution is a linear operation (matrix multiplication and addition)

and most real-world data is non-linear, it is necessary to introduce non-linearity to

the network. Non-linear means that the output cannot be reproduced from a linear

combination of the inputs. Modern neural network models use non-linear activation

functions that allow the model to create complex mappings between the network’s

inputs and outputs. That way, the network can learn and model complex data such as

images, videos or other datasets which are non-linear or have high dimensionality.

Linear functions are avoided in neural networks, because network models with linear

activation functions are effectively only one layer deep, regardless of how complex

their architecture is (the last layer of the network becomes a linear function of the

first layer). Essentially, a neural network with linear activations is a linear regression

model, with limited power and ability to handle complex input data.

The most common non-linear functions used in CNNs are:

46

The hyperbolic tangent 𝑓(𝑥) = tanh (𝑥) function,

Figure 2-20: Hyperbolic tangent function

The sigmoid 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 function,

Figure 2-21: Sigmoid function

or some other function such as the ReLU function.

The function usually used in convolutional networks is the ReLU function or

Rectified Linear Units function (Nair and Hinton, 2010):

𝑓(𝑥) = max (0, 𝑥) (2.20)

47

Figure 2-22: Rectified Linear Unit function

which replaces all negative values in the feature map with zero.

The ReLU function is preferred over others, because it has been found to train the

neural network faster, with no significant penalty to accuracy. Its convergence rate is

approximately 6 times faster compared to the 𝑡𝑎𝑛ℎ function (Krizhevsky and Hinton,

2012).

Pooling layer

The pooling function (also known as subsampling or downsampling) aims to reduce

the size of the feature map after the convolution and ReLU layers, while at the same

time retaining the most important information. It is also helpful to avoid overfitting

while training the network by reducing the number of parameters and computations

and provides an almost scale invariant representation of the image (making detection

of objects in an image easier, no matter where the object may be located). Among the

various types, such as average, max, sum etc., Max pooling is the most common

function to perform subsampling as it has proven to work better in practice

(Krizhevsky and Hinton, 2012; Simonyan and Zisserman, 2014; Girshick, 2015).

In the case of Max pooling, the rectified feature map is partitioned into non-

overlapping rectangles, and for each such rectangle, the maximum value is taken as

representative for that region. Pooling operates along both width and height of the

feature map and for every depth slice (Nagi et al., 2011).

48

The size of the pooling window is defined beforehand. An example of a max pooling

operation on a 4X4 input feature map using a 2X2 window can be seen in the figure

below. The max operation is performed over 4 values with only 1 remaining, so in

this case, 75% of the information is discarded:

Figure 2-23: Example of max pooling operation

The pooling windows are usually kept small in size (usually 2X2) because of their

destructive nature (larger receptive fields discard a large amount of possibly useful

data).

Figure 2-24 below is indicative of how pooling operates within the structure of a

Neural Network, where the depth of the convolution layer is 3 (3 feature maps

produced):

49

Figure 2-24: Pooling operation

Classification and Fully Connected Layers

The Fully Connected Layer acts as the high-level reasoning part of the Neural

Network and is responsible for classifying the input image into various object classes

based on the data the network was trained on.

This layer is a traditional neural network layer that uses an activation function to

produce its output and takes its name from the fact that every neuron in the previous

layer is connected to every neuron in this one. Similarly to neurons in regular neural

networks, the connections here have associated weight and bias values.

In comparison, other layers in the CNN such as convolutional or pooling layers are

only partially connected, with each neuron in a convolutional layer only connected to

a few local neurons in the previous layer. Classic neural network architecture (where

all layers are fully connected) was found to be inefficient for computer vision tasks.

Images represent such a large input for a neural network that would require a huge

number of connections and network parameters. A CNN addresses this problem by

considering the type of input data (images) and adapting to it, by having layers that

are used for the extraction of useful features (convolutional, pooling) that are only

partially connected. The fact that an image is composed of smaller details or features

that can be processed individually to reach a decision about the image as a whole

makes this possible.

50

The FC layer uses as input the output from all previous network layers before it

(convolutional, ReLU and pooling). This input, in addition to the connection weights

and the bias value are used to produce the output probabilities for each of the object

classes in the dataset.

The FC layer is followed by an output layer. In classification problems, the softmax

function is commonly used and is tasked with predicting a single class out of K

mutually exclusive classes (it is multinomial logistic regression used for multi-class

classification). Other classifiers, such as SVM, can also be used for this task with

their performance being comparable. Softmax is usually preferred because it converts

an output of arbitrary real-valued scores into probabilities that add up to 1, which is

more intuitive. In comparison, SVM treats the output as uncalibrated scores that are

difficult to interpret (Qi et al., 2017).

The output softmax function is:

𝑦𝑟(𝑥) =
exp (𝑎𝑟(𝑥))

∑ exp (𝑎𝑗(𝑥))𝑘
𝑗=1

 (2.21)

Where 0 ≤ 𝑦𝑟 ≤ 1 , ∑ 𝑦𝑗
𝑘
𝑗=1 = 1 and 𝑎𝑟 is the conditional probability of the sample

class 𝑟.

For multi-class classification problems, the softmax output function is:

𝑃(𝑐𝑟|𝑥, 𝜃) =
𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟)

∑ 𝑃(𝑥, 𝜃|𝑐𝑗)𝑃(𝑐𝑗)𝑘
𝑗=1

=
exp (𝑎𝑟(𝑥,𝜃))

∑ exp (𝑎𝑗(𝑥,𝜃))𝑘
𝑗=1

 (2.22)

Where 0 ≤ 𝑃(𝑐𝑟|𝑥, 𝜃) ≤ 1 and ∑ 𝑃(𝑐𝑗|𝑥, 𝜃) = 1𝑘
𝑗=1 . Moreover, 𝑎𝑟 =

ln(𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟)) , 𝑃(𝑥, 𝜃|𝑐𝑟) is the conditional probability of the sample given

class 𝑟 and 𝑃(𝑐𝑟) is the class posterior probability.

The softmax classifier attempts to minimise the classification error (target probability

– output probability) by minimising the cross-entropy between the “true” distribution

p and an estimated distribution q:

H(p, q) = − ∑ p(x)logq(x)x (2.23)

51

More information on the softmax function can be found in Bishop (2007).

To summarise, the training of a Convolutional Neural Network is as follows:

- The network structure is defined and all filters and parameters initialised with

random values.

- The network takes the first training image as input, goes through the complete

process and calculates the output probabilities for each object class (since

weights are randomly assigned in the beginning, output probabilities are also

random).

- The total error at the output layer is calculated.

- Using back propagation (LeCun et al., 1989; Bishop, 2007), the gradients of

the error are calculated and gradient descent is used to update all filter values

and weights to minimise the output error (the weights are adjusted in

proportion to their contribution to the total error).

Now, if the same image is used again, the output probabilities will be closer to the

target, as the weights and parameters of the network have been optimised to correctly

classify that image. The same process (except initialising the parameters) is used for

every image in the training set and the end product is a Neural Network that, given a

large enough training dataset (so that its parameters are well adjusted), is accurate

enough to correctly classify new images.

2.6.2 CNN-based vehicle detection

Vehicle detection using deep convolutional networks is currently being researched

extensively. Inspired by the success of CNNs in image classification (Krizhevsky

and Hinton, 2012), several detection models have emerged. Most CNN-based

detectors are based on the R-CNN (or Regions with Convolutional Neural Network)

(Girshick et al., 2014) and its evolutions, Fast R-CNN (Girshick, 2015) and Faster R-

CNN (Ren et al., 2015). Others, such as R-FCN (Region-based Fully Convolutional

Networks) (Dai et al., 2016) , SSD (Single Shot Multibox Detector) (Liu et al., 2016)

and YOLO and its variations (Redmon et al., 2016; Redmon and Farhadi, 2017)

52

brought changes in the architecture with the goal of optimising real-time

performance.

When it was initially introduced in 2014, R-CNN produced state of the art

performance by combining the classification method Alexnet (Krizhevsky and

Hinton, 2012) with an external Region Proposal method to generate candidate object

locations. RP methods such as Selective Search (SS, used in the original

implementation of R-CNN) (Uijlings et al., 2013), EdgeBoxes (Zitnick and Dollár,

2014) and others could be used to generate the region proposals which were then fed

to the Alexnet network. On the final layer of the CNN, a SVM classifier (used to

determine the object class) and a linear regression model (used to improve the

bounding box coordinates) were added. While outperforming traditional detection

methods, R-CNN was very slow (SS produced around 2,000 region proposals that

each had to pass through Alexnet) and it was impossible to achieve real-time

performance. Training the network is also expensive in memory space, as the

extracted features from all region proposals need to be stored. The operation

flowchart of R-CNN can be seen in Figure 2-25 below:

Figure 2-25: R-CNN flowchart Source: Girshick et al. (2014)

Fast R-CNN significantly reduced the computational cost by sharing the feature map

generated for the entire image for the region proposals. Now the feature map is only

calculated once in the beginning. A fixed-length feature vector is extracted from each

region proposal with a ROI pooling layer. Each vector is fed into the FC layers

before branching into two output layers. The two output layers, a Softmax layer

53

producing probability scores, and a bounding box regressor layer are now

incorporated into the model instead of being separate as before (Girshick, 2015). The

operation flowchart for the Fast-RCNN model can be seen in Figure 2-26 below:

Figure 2-26: Fast R-CNN flowchart Source: Girshick (2015)

Faster R-CNN further improved computational speed by including an RPN (Region

Proposal Network) into the Fast R-CNN model, instead of relying on an external

process. The region proposals are now generated straight from the convolution map,

effectively minimising computations. Region proposals are generated in different

sizes and scales and each of the boxes is given an objectness score (Ren et al., 2015).

The RPN is a fully convolutional sub-network, able to predict object bounds and

probability scores at each position simultaneously. Using one convolutional layer’s

output (conv feature map), object proposal boxes are generated in different sizes and

scales, which then serve as additional input data to the classification layer. A sliding

window moves across the feature map and generates 9 region proposals in every

position (3 scales and 3 sizes). The region proposals are called anchor boxes, since

they are centred on a fixed point. The produced vectors are fed into two sibling FC

layers, the box-classification (cls) layer and box-regression (reg) layer, which score

and generate object bounds respectively. The RPN in Faster R-CNN can be seen in

Figure 2-27 below:

54

Figure 2-27: The RPN in Faster R-CNN Source: Ren et al. (2015)

The output of the RPN then returns to main network for classification. The structure

of the Faster R-CNN model can be seen in Figure 2-28 below:

Figure 2-28: Faster R-CNN flowchart Source: Ren et al. (2015)

55

With the inclusion of a built-in region proposal unit, the CNN can be trained without

the need for external region proposal processes. Training takes place in four stages.

The first 2 train the region proposal network (RPN) and CNN while the other 2

combine the output of the first 2 stages and fine-tune the network:

Stage 1: Training a Region Proposal Network (RPN)

Stage 2: Training a Fast RCNN Network using the RPN from stage 1

Stage 3: Re-training RPN using weight sharing with Fast RCNN

Stage 4: Re-training Fast RCNN using updated RPN

Faster R-CNN was originally tested on the Pascal VOC 2007/2012 (Everingham et

al., 2010) and MS COCO (Lin et al., 2014) datasets for detection and achieved very

good detection accuracy at 5FPS when using the deep VGG-16 model (Simonyan

and Zisserman, 2014) for feature extraction.

The R-FCN model, developed by Dai et al. (2016), is similar to Faster R-CNN using

a RPN but eschews Fully Connected layers completely to become a fully

convolutional network. Figure 2-29 shows the architecture of the system. In R-FCN,

the last convolutional layer produces position-sensitive scores for every object class.

The ROIs produced by the RPN are applied and a final score is calculated for each

generated ROI. In the end, a softmax classifier assigns classes to the objects.

Figure 2-29: R-FCN flowchart Source: Dai et al. (2016)

56

The methods described above all follow the traditional two-stage object detection

pipeline, where region proposals are generated (Hypothesis Generation – HG) and

then proposals are verified (Hypothesis Verification – HV) by assigning probability

scores and bounding boxes. Other methods treat object detection as a

regression/classification problem, adopting a unified framework to achieve their

results (class categories and locations) directly, without the use of generated region

proposals. The best-known methods following this approach are YOLO and its

variations (Redmon et al., 2016; Redmon and Farhadi, 2017) and SSD (Liu et al.,

2016).

With YOLO, Redmon et al. (2015) proposed a novel framework for object detection

which makes use of the whole feature map produced for an image to predict

confidence scores for multiple categories and bounding boxes. The basic idea behind

YOLO is to divide the input image into a grid and predict the object that exists in

each grid cell. Each grid cell predicts multiple bounding boxes and their

corresponding confidence scores, along with conditional class probabilities. The

highest scoring boxes are retained as the final detection results. The YOLO network

consists of 24 convolutional layers and 2 Fully Connected layers and in its first

iteration managed to process 45FPS. A subsequent iteration, YOLOv2 by Redmon

and Farhadi (2017) added some improvements such as batch normalisation, anchor

boxes and multi-scale training to improve the detection result. An inherent problem

with YOLO is their issue with detecting small objects or objects close to the camera,

as it is constrained by the one object/grid cell rule.

57

Figure 2-30: YOLO detection system Source: Redmon et al. (2015)

Similarly to YOLO, SSD (Liu et al., 2016) uses the entire feature map for its

predictions but forgoes grid cells, instead using a set of default anchor boxes. To

handle objects of various sizes, the network fuses predictions from multiple feature

maps with different resolutions. SSD uses the VGG-16 (Simonyan and Zisserman,

2014) network for feature extraction but adds several layers to the end of the network

to calculate confidence scores and predict the bounding boxes. The SSD network

achieves 59FPS using 300x300 resolution images but still suffers when dealing with

small objects, requiring further modifications. The SSD architecture can be seen in

Figure 2-31 below:

Figure 2-31: SSD network architecture Source: Liu et al. (2016)

58

The models presented above spurred research in vehicle detection using CNNs, with

advances in vehicle detection using both static and moving cameras. In the majority

of cases, it is opted to use pre-trained network models as feature extractors as a

starting point for vehicle detection. This approach is called transfer learning; it is

essentially the re-purposing of a model trained to perform one task to work on a

different task. It is possible to either use a CNN as is (as a feature extractor) and only

replace the final FC layer with one better suited to the new task or fine-tune the

network fully (all layers) or partially (the last layers that should be specific to the

new task) with a new dataset. The most common CNN architectures used for transfer

learning are AlexNet (Krizhevsky and Hinton, 2012), VGG (Simonyan and

Zisserman, 2014), ZF-net (Zeiler and Fergus, 2013), ResNet (He et al., 2016) and

GoogleNet (Inception) (Smoluk, 2015).

A CNN (Alexnet) is used in Yao et al. (2017) as a classifier to identify vehicles in

traffic videos. First, region proposals are generated by combining three visual cues

(multiscale saliency to distinguish vehicles from the background, edge density and

colour contrast) into a Bayesian classifier. A pre-trained Alexnet model then

classifies the vehicles. A detection rate of 93% on average is reported, with 5sec of

processing required for each frame. Hsu (2018) use a sliding window approach to

generate ROIs and Fast R-CNN as a classifier for vehicle detection. High precision

and recall rates are reported, though run-time performance is not discussed.

Prabhakar et al. (2017) use Faster R-CNN with a pre-trained ZF-net (Zeiler and

Fergus, 2013) on a Titan X GPU to achieve a 71.7% mAP (mean Average Precision)

on the KITTI dataset (Geiger et al., 2012). Several parameters of the Faster R-CNN

model are tested in Fan et al. (2016), where the effects of image size, number of

proposals and additional training stages are explored. Accuracy ranges from 52-83%

on the KITTI dataset, with a run-time of just 2FPS when tested on an 1800x543

resolution image.

 The RPN in Faster R-CNN is modified in Gao et al. (2017) to enhance small object

detection. By adding additional scales for the anchor boxes (for a total of 15 instead

of the default 9) and modifying the CNN architecture, precision is improved.

However, no run-time performance is reported, although the modifications should

59

bring an extra computational load that impacts performance. Zhang et al. (2017)

attempt to implement a real-time vehicle detection and tracking system based on

Faster R-CNN. The KITTI dataset is used to train the VGG-based network while a

combination of Camshift and Kalman filter is used for tracking. The reported

computation time for target detection and tracking is 0.935s and 0.0244s respectively,

making it unsuitable for real-time application. He and Li (2018) fuse camera and

radar data to detect vehicles in traffic videos. The results of the YOLOv2 model are

improved by fusing radar detections and the final system has an accuracy of 96% at

38FPS. A SSD based model, fine-tuned to identify small objects more efficiently is

used by Kim et al. (2016) to detect vehicles, pedestrians and cyclists. Tested on the

KITTI dataset, the best-performing model tested manages 70.7-86.7% accuracy for

the vehicle class. Gu et al. (2017) develop a CNN that includes Inception modules,

inspired by GoogleNet (Smoluk, 2015) for vehicle detection. The system is tested on

the VOC 2007+2012 dataset (Everingham et al., 2010) and achieves 63.5% mAP at

46FPS. In He and Lam (2018), a deep residual network is used to extract image

features while a lateral network is used to improve localisation of the final output.

The proposed LateralCNN is evaluated on the DETRAC (Wen et al., 2015) traffic

camera benchmark and achieves an accuracy of 67.25% on average at 28FPS.

2.7 Range estimation using a monocular camera

Accurate range estimation is a crucial task for safety-critical applications such as

ACC and CAS. Systems using active sensors (radar, LIDAR) can accurately measure

distances due to the way they operate (measuring the reflection of emitted signals for

radar or laser beams for LIDAR systems) without requiring advanced processing

methods. Range estimation using a monocular camera however, is challenging since

the camera image is subject to perspective distortions and limited accuracy (Joglekar

et al., 2011; Eskandarian, 2012; Mukhtar et al., 2015; Huang et al., 2019). To

overcome those limitations, the main approaches to produce accurate measurements

are the use of filters (e.g. Kalman) to update measurements and avoid large

deviations or the introduction of methods to reduce the associated errors.

Also known as linear quadratic estimation (LQE), a Kalman Filter (Kalman, 1960) is

an algorithm widely used for guidance, navigation and control of vehicles. It uses a

60

series of measurements observed over time, containing noise and other inaccuracies,

and produces estimates of unknown variables that tend to be more precise than those

based on a single measurement alone. The version of the filter used for non-linear

processes is called Extended Kalman Filter.

In Stein et al. (2003), range is measured using the camera parameters and perspective.

To increase the accuracy of the measurement, two cues are used: size of the vehicle

in the image and position of the bottom of the vehicle. The estimate is more accurate

when the geometry of the road and the range rate are considered in the calculation.

Finally, the output of a radar sensor is used as ground truth. In Han et al., (2016), the

distance to a detected vehicle can be estimated by calculating the width of the vehicle

and using lane markings as reference. The method is accurate on the assumption that

lane width remains constant but fails if the road environment changes or roads are

not structured. In Salari and Ouyang (2013), a SVM is utilised to estimate the

position of a vehicle. By considering the width or height of the vehicle known, it is

possible to estimate the distance and calculate TTC by measuring the vehicles width

change in a sequence of images. The system is not accurate when the vehicle is far

from the camera and the detected change in width is small. Moreover, the SVM is

slow and not suitable for real-time application. An estimation based on camera height

position, focal length, coordinates of the vehicle bottom and horizon is used in Park

and Hwang (2014) but the calculation is not accurate when there is any variance in

the horizon position. Lim et al. (2019) propose the use of CNN-based detector

(YOLO) and a nested Kalman filter to first stabilise distance data from the camera

and then use this filtered data in the Kalman filter again to calculate relative velocity.

This way, TTC is calculated based on distance over relative velocity. Joglekar et al.

(2011) estimate depth using a monocular camera by applying perspective geometry

and correcting errors in the calculation of in-path and oblique distances to an object.

Their approach to error calculation gives accurate distance measurements up to 70m

from the camera. Christiansen et al. (2018) use a CNN to produce bounding boxes

for vehicles and a Kalman filter to correct the distance measurements for the

bounding box width and the distance to the ground. A LIDAR system is used as

ground truth for the proposed system. Huang et al. (2019) utilise a CNN-based

approach to detect vehicles and segment them from the surrounding environment. A

61

different NN calculates the vehicles’ actual dimensions and pose. A geometric model

then estimates the distance to the vehicle.

2.8 Knowledge gap

This chapter reviews the most common methods used for vehicle detection based on

a monocular camera. The two approaches (traditional image processing and CNN-

based detection) are explored and the main findings are discussed in this section:

Image processing approach

The section about Hypothesis Generation focuses on appearance-based methods, as

the proposed system is based on a monocular camera, identifying the prominent

visual cues used for ROI generation and highlighting their shortcomings. Object

classifiers are the focus of the Hypothesis Verification section, given that they are

more adaptable compared to template matching methods.

As seen in the literature, the Support Vector Machine (SVM) and AdaBoost

classifiers are the most common methods for image segment classification. Paired

with the appropriate feature set, they appear to be the most efficient and produce the

best results (Khammari et al., 2005; Teoh, 2011; Burlet and Dalla Fontana, 2012;

Chavez-garcia and Aycard, 2015).

Compared to other descriptors, HOG features are computationally expensive but they

are highly adaptable and descriptive and well suited for this application, providing

good detection results (Teoh, 2011; Li and Guo, 2013; Zhiqian Chen et al., 2013).

Another advantage of using an SVM-HOG combination is its versatility in that it can

be employed for pedestrian detection as well. After reviewing the some of the most

recent literature on vehicle detection using HOG features, some conclusions can be

drawn:

The main problem to be addressed is the minimising of computational time so that

camera-based detection systems are implemented in real-time. The accuracy level in

most cases is very good, the reason being that computationally complex methods

62

(classifiers combined with feature descriptors) are used for detection. It is obvious

that the problem’s solution lies with efficiently balancing detection accuracy and

speed, or the implementation of a new, intelligent method.

In most cases, the run-time problem is attempted to be solved either with

experimenting with feature descriptor parameters (in the case of HOG, bin size,

block size etc.) altering the descriptive power of the feature descriptor or by reducing

the search space in Hypothesis Verification, so that the total number of calculations

is reduced.

The common theme across all relevant research is that traditional feature descriptors

(and their variations) are used for classification purposes (combined with a classifier

function). They are all focused on the second part of the detection process (HV),

while for the first part (HG), other methods are used. A new way of using existing

tools, such as classifiers and feature descriptors could lead to improved results, as far

as detection performance is concerned. This study will attempt to optimise

performance by modifying the detection pipeline.

CNN-based detection

The review of different network models that can be used for vehicle detection

(Huang et al., 2017; Zhao et al., 2019) has led to some interesting findings:

• CNNs have managed to combine every aspect of object detection (ROI

generation, feature extraction and verification) into one unified pipeline, as

opposed to traditional image processing object detection where each stage is

largely separate.

• Region proposal based methods, such as Faster R-CNN and R-FCN generally

perform better compared to regression/classification based approaches

(YOLO, SSD etc.) due to the fact that regression approaches produce

increased localisation errors.

• Regression/classification methods have trouble locating small objects, which

may be an issue when detecting vehicles that are far away from the camera.

63

• R-FCN and SSD models are faster on average but Faster R-CNN is more

accurate.

• Input image resolution impacts accuracy. Low resolutions hurt accuracy

significantly, though at the same time inference time is reduced.

• Training complex and deeper networks used for feature extraction such as

ResNet (He et al., 2016) takes more time, but this time consumption can be

reduced by adding as many layers into shared fully convolutional layers as

possible.

• Region proposal based models can be modified to improve run-time and

achieve real-time performance with the introduction of “tricks” such as batch

normalisation (Ioffe and Szegedy, 2015) or modifying the detection

parameters (for example, reducing the number of generated proposals).

The common theme in CNN-based detection is the reliance on deep pre-trained

network structures, especially for feature extraction. The potential to achieve the

same level of performance using simpler and more efficient structures is not explored

sufficiently well; this study will explore the detection performance of a simpler

network structure.

In search of a robust vehicle detector built around the capabilities of a monocular

camera, two separate detectors can be developed and their performance explored:

i) A detector following the traditional image processing approach using HOG feature

extraction and SVM classification, modified in an attempt to improve run-time

operation.

ii) A CNN-based detector built on the Faster R-CNN model, with the goal to improve

its performance and achieve real-time detection. The particular model (Faster R-

CNN) was selected as, even though it is not the fastest compared to others, it is high-

performance and with no inherent disadvantages. Real-time operation can be

achieved by modifying the network structure as to find a good balance between

accuracy and speed.

64

3 Methodology

3.1 Introduction

The previous section described the main approaches used in a camera-based vehicle

detection system. This chapter presents the two methods used for vehicle detection in

this project. The two methods will be tested on a vehicle dataset to determine which

is better in terms of detection performance and whether they are suitable for real time

application.

The end goal is to develop a vehicle detection system with:

• High detection rate, minimising false positive (FP) and false negative (FN)

detections

• Real-time performance (computationally efficient for use in a practical

application)

• Versatility, so that additional functionality can be added without seriously

impacting performance

• Ability to perform under different conditions (urban environment, motorway,

varying weather conditions)

The system is built around a NIR (Near Infrared) monocular camera that provides the

data feeding into the detector. It is necessary to maximise the detection system’s

performance, as the camera is the only available environmental sensor and its

capabilities are limited compared to a system utilising an array of sensors.

3.2 Vehicle detection I – Histogram of Oriented Gradients

(HOG) and Support Vector Machine (SVM) classification

The first method of vehicle detection is based on a combination of HOG features and

SVM classification. The traditional image processing method is modified so that

HOG features are also used to generate Regions of Interest (ROIs), instead of using a

sliding window approach or using HOG solely for classification. It will be examined

65

whether this approach (using information not coming directly from the raw image

data) is suitable for ROI generation.

The flow chart below (Figure 3-1) presents the detection process that is the centre of

the detection system. The complete process is presented in more detail in the next

section:

Figure 3-1: Detection system

66

The detection process is divided in two parts:

• Hypothesis Generation (HG)

• Hypothesis Verification (HV)

3.2.1 Hypothesis Generation (HG)

The first part of the detection process is Hypothesis Generation that follows an

appearance-based approach. Specific visual characteristics are sought for in an image

in order to detect a potential object. This approach is preferred over a motion-based

approach since a monocular camera is used. While there are methods to compensate

for the lack of depth measurements for cameras of this type, motion-based

approaches are better suited to stereo vision cameras and are more resource intensive.

Additionally, it would be highly desirable to detect slow moving objects as well;

something a motion-based system has issues with (Mukhtar et al., 2015).

The proposed detection algorithm exploits the feature vector generated from HOG

extraction to detect strong horizontal elements in an image. Instead of using filters

that are most commonly used to detect edges such as Canny (Canny, 1986) or Sobel

(Sobel, 1990), HOG gradients can be used to indicate horizontality in an object. Due

to their shape, vehicles exhibit areas with strong horizontal elements (edges), mainly

but not exclusively, their roof and bottom.

A sample image, taken using the instrumented vehicle’s NIR camera can be seen

below. The same image, after the application of Sobel and Canny filters follows next.

67

Figure 3-2: Sample image

Figure 3-3: Sample image with Sobel filter applied

Figure 3-4: Sample image with Canny filter applied

68

Instead of using traditional visual cues (edges using filters and shadow detection

being the most common, this method proposes that the HOG feature extraction

process, usually employed for verifying the existence of objects is used to generate

vehicle candidate locations. The reason for choosing the particular detection cue is

that it may lead to shorter processing time. The potential benefit from using HOG as

a ROI estimator lies with the ability to reduce the different functions required for the

detection process. Instead of using shadows, corners etc., the same process used for

classification is also utilised for initial detection.

The goal is to maximise detection accuracy using this HOG-based detector. To

support the main HOG-based detector, another visual feature can be implemented, if

the required performance levels (detection rate, false positive rate) are not met. The

system is flexible enough so that other visual cues can be added if necessary. The

main considerations for selecting a particular visual cue (for example edges,

symmetry etc.) are the limitations imposed by the data and the processing time they

require (Teoh, 2011; Mukhtar et al., 2015). For this study, edge detection using the

Canny filter was utilised to improve object separation in one of the image processing

steps.

The HG stage results in image parts (sub-images) that are smaller than the original

image recorded by the camera. Ideally, the sub-images contain the vehicle with as

little unnecessary information (surrounding environment) as possible. The potential

vehicle is highlighted in the image by a rectangular box.

The sub-images are used as input information for the next stage of the vehicle

detection process, where the system confirms the presence of a vehicle in the image

or not. The process of generating the bounding boxes for candidate vehicle locations

can be divided in several steps:

i. Image (raw data) pre-processing

ii. HOG feature extraction

iii. Feature vector processing

iv. Clustering/Segmentation

v. Effective vehicle-environment separation

69

vi. Bounding box generation

The proposed Hypothesis Generation (HG) system is presented in Figure 3-5 below.

First, the input colour image extracted from videos recorded during data collection

runs is converted to grayscale and scaled down to a lower resolution. HOG features

are extracted from the reduced resolution and the strong horizontal edges are

detected. The resulting horizontal edge image is further processed to separate objects

of interest from clutter. Finally, the bounding box around each hypothesized location

is estimated and drawn on the original processed image. The final output is a ROI for

which the HOG features required for classification have already been extracted.

Each part of the Hypothesis Generation process will be presented in more detail in

Figure 3-5 below:

70

Figure 3-5: Proposed HG system

71

Image pre-processing

The collection of raw data and its features is described extensively in Chapter 4. The

first step after acquiring the raw data from the camera (video file that is transformed

into individual frames) is to convert each frame from colour to grayscale. The NIR

camera installed in the instrumented vehicle produces video and images in the RGB

colour space, though the image properties indicate that each pixel carries the same

value across all colour channels. The image is converted from RGB to grayscale

using the following formula, which is a weighted sum of the 3 colour channels. Each

pixel in an image has a numeric value (0-255) for each of the colour channels. Every

value is multiplied with the corresponding coefficient:

0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 (3.1)

Where the coefficients 0.2989, 0.5870 and 0.1140 are the weights for converting

from RGB to NTSC, according to the Rec. 601 format (International

Telecommunication Union, 2011).

Converting the image from RGB to grayscale reduces the computational load, as

many functions in the detection process perform their operation individually for each

colour channel. For example, HOG feature extraction is performed for every colour.

Having only one colour to consider, the whole operation becomes much faster. In

addition, since each pixel carries the same value for all three colours, considering

colour as an additional visual cue in the current vehicle detector and benefiting from

it, is not possible.

Next, the images are resized into a lower resolution, another operation that takes

place to reduce the computational cost. The original size of the images recorded is

2048x2048 pixels (4 MPixels). Using a lower resolution image, the size of the

feature vector file when producing HOG features is reduced significantly:

72

Table 3-1: Vector file size comparison

Image size Feature vector size Size reduction Avg. processing

time

2048x2048 2,340,900 - 0.46 sec

1024x1024 580,644 75.20% 0.19 sec

512x512 142,884 93.90% 0.1 sec

The size of the original image’s produced feature vector prohibits any thought of

real-time application. Using a lower resolution image is required. No significant

descriptive information is lost, while the resulting feature vector becomes much more

manageable. Additionally, the required time to extract HOG features is reduced

significantly when the image is downscaled. The produced vector sizes in Table 3-1

are based on the default HOG extraction options (8x8 pixel cell size, 2x2 cell blocks,

50% block overlap, 9 orientation bins). Any configuration adjustment modifies the

final size accordingly.

To summarise, the conversion to grayscale and downscaling the image to a lower

resolution results in a reduced computational load, which is a requirement for real-

time operation. At the same time, there is no loss of useful information in the

resulting image compared to the original as the resolution remains high enough to

ensure this (every object remains easily discernible, no blurring occurring in the

image).

HOG feature extraction

The second part of the process involves the extraction of HOG features from the

images. The idea behind HOG features is that they can be used to describe object

appearance and shape by their distribution of intensity gradients or edge directions

(Dalal and Triggs, 2005). The descriptive power of HOG is entirely dependent on the

level of detail desired. Even though there is a trade-off between accuracy and

computational load, it has been reported that after a certain point, there is no gain in

descriptive power (only an increase in computational requirements) (Seung Hyun

Lee et al., 2015; Teoh, 2011). The extraction process has been detailed extensively in

section 2.5.1 of the literature review.

73

The MATLAB software was used for the extraction of HOG features from the

sequence of images. The extraction process allows for a certain level of

parameterisation depending on the level of detail required. It is possible to change

the size of the HOG cell (default size: 8x8 pixels), the number of cells in a block

(default size: 2x2 cells), the number of overlapping cells between adjacent blocks

(default option: block size/2), the number of orientation histogram bins (default value:

9) and finally, the selection of using signed orientation or not (the default option is to

use unsigned orientation from 0-180o).

Apart from the produced feature vector, it is possible to produce the visualisation of

the extracted features for presentation purposes. Figures 3-6 and 3-7 below present

the visualisation of HOG features. The visualisation is a grid of uniformly spaced

rose plots. The grid dimensions (number of rose plots) are determined by the defined

cell size and the image resolution. Each of the rose plots shows the distribution of

gradient orientations within a HOG cell. The length of each petal is scaled to indicate

the contribution each orientation makes to the cell histogram (magnitude of the

vectors, where stronger gradients have a bigger impact on the histogram). The plot

displays the edge directions, which are normal to the gradient directions. When

viewing the plot with the edge directions it is possible to better understand the shape

and contours encoded by HOG. Figure 3-6 presents a grid of such rose plots in an

image area, while Figure 3-7 is an individual rose plot zoomed in. The number of

petals in each of the rose plots is twice the number of bins selected.

Figure 3-6: HOG visualisation

74

Figure 3-7: Individual rose plot

In order to perform some initial testing, the default parameters were used for the

extraction of HOG features. Since the default settings were used for pedestrian

detection for the first time, the possibility of tweaking the parameters to improve

performance was explored. This was necessary, since the nature of this application

(ROI generation based on horizontality) may require a different parameter set.

In the end, the default extraction parameters were selected due to the balance

between descriptive ability and computational cost. The detection system has been

tested with modified parameters as well.

- A larger cell size reduced the size of the feature vector. This may result into

lower computational load, but the loss of significant descriptive information

is a serious side effect.

- Removing the overlap between blocks completely also reduced the

descriptive information significantly, rendering the info useless.

- Increasing the number of orientation bins from 9 to 12 did not offer any

performance advantages, with the end result not significantly different.

- Using signed orientation makes no difference, as the direction of the edges is

of no interest.

75

Feature vector processing

The next step is to process the resulting vector in a way that produces the desired

feature. From the HOG feature vector, the useful information required is the gradient

values that indicate areas with strong horizontality. A process is implemented to

determine which areas of an image contain long horizontal elements (in vehicles,

such parts would be bumpers, windshields, roof etc.).

Processing takes place at the cell level. The values contained in the feature vector are

re-arranged and assigned to the correct cell/block. That way, the HOG values are

formatted from a 1D vector into an array that resembles the original image. The

largest value (magnitude) corresponds to the strongest gradient. This information is

isolated and selected to represent the specific cell. The cells exhibiting strong

horizontality are this way identified. A cell is considered to exhibit strong

horizontality is one where the strongest gradient is horizontal or close to horizontal

(± 20o), as in Figure 3-8:

Figure 3-8: Cell with strong horizontal elements

 An example of the produced output, a logical matrix where white (value = 1)

indicates strong horizontality can be seen in Figure 3-9 below, beside the original

sample image:

76

Figure 3-9: Example of cell processing

It is expected that this process will produce several erroneous results, due to other

objects in the background exhibiting similar characteristics. Identifying the correct

objects and extracting them from background noise is required before the

classification process (Hypothesis Verification).

Clustering / segmentation

The output of the previous step is a logical matrix (containing 0 and 1) used as input

in a clustering process to form the objects that exhibit strong horizontal edges. A

value of 1 indicates a cell of pixels in which the horizontal gradient is the strongest

(± 20o). A large number of cells in sequence with said value indicate areas of the

image with strong horizontality. The length of each horizontal segment is measured

and only the continuous segments are retained.

The method used to cluster and label the areas is called connected components (CC)

(He et al., 2017). CC groups and labels areas based on connectivity between the

elements of the matrix. It is able to function with both images (which are represented

by matrices containing each pixel’s intensity value) and binary matrices the ones

produced by processing the feature vector.

77

Other methods, such as superpixel segmentation (Achanta et al., 2010) and K-means

clustering for image segmentation (Dhanachandra et al., 2015) were also

implemented in an attempt to find the optimal clustering method.

Superpixel segmentation groups neighbouring pixels in an image by similarity in

colour or gray scales. The advantages of grouping pixels into larger areas in an image

are:

• To compute features in more meaningful regions compared to computing

features for individual pixels

• To reduce the number of inputs for any subsequent process (i.e. classification)

Using Superpixels did not produce any valuable results in terms of clustering into

interesting areas. The reason behind this failure is that it is practically impossible to

define the number of interesting objects for every image containing vehicles and also,

because the size of vehicles in every image varies, depending on the distance from

the camera.

K-means clustering is a popular type of unsupervised learning, where data points in a

dataset are clustered together based on feature similarity. The algorithm works

iteratively to assign each data point to one of K clusters based on the features

provided. K, the number of clusters is defined beforehand, based on the number of

groups desired.

The use of k-means clustering failed for the same reasons as superpixel clustering. It

is very difficult to define the number of k interesting objects in an image from the

start given that every image is different, containing one or more vehicles. Applying

k-means to the original image to distinguish objects also proved impossible due to

the image pixels exhibiting little variation in intensity levels.

The segmentation method producing the most promising results was the Connected

Components (CC) method. CC scans the matrix (or image) and checks if the value

of a matrix cell is shared by its neighbours as well (intensity values for pixels in an

image, respectively). If yes, the cells are labelled as belonging to the same cluster.

78

For a 2D matrix, connectivity scans can be 4-way or 8-way (Fisher et al., 2003b), as

can be seen in Figure 3-10 below:

Figure 3-10: 4 and 8-way connectivity

In 4-way connectivity, pixels are connected if their edges touch. The pixels are part

of the same object if they are both on and connected along the horizontal or vertical

direction. In 8-way connectivity, pixels can be connected if their edges or corners

touch. They are part of the same object if they are on and connected along through

any of the horizontal, vertical or diagonal directions.

Both configurations were considered during testing, though no meaningful

differences in performance were observed. In the end, 4-way connectivity was used

in the segmentation/labelling process.

The output of the CC clustering is matrix of region labels. The properties of all

labelled regions, such as area size, centroid, find the region’s extreme points,

orientation and perimeter can be measured. At this stage, it is also possible to draw a

bounding box around each area as a way to distinguish between different regions.

Finally, it is useful to remove all objects (connected components) that measure less

than a specified size from the output. In that way, very small objects that cannot be

part of a vehicle in the image are removed and are not considered for further

processing. All objects measuring less than 50 pixels in size were removed from the

output.

79

Figure 3-11 below presents the output of CC clustering, with colour-coded clusters in

RGB for visualisation purposes. The resulting output is a very dense image, where

discerning individual objects is extremely difficult. The object of interest in this case

is the vehicle in the centre of the image. To improve object separation, additional

processing is required:

Figure 3-11: CC clustering output

Vehicle – environment separation

An enhancing process is required in order to reduce the number of errors in the initial

detection of horizontal elements and the segmentation of objects.

Its aim is to improve object-environment separation. The problem with the whole

process up to this point is that sometimes, the object (vehicle) is not effectively

separated from its surrounding environment. The reasons for this are several:

• Another vehicle in close proximity, creating long horizontal edges that cannot

be separated

• Vehicle’s horizontal elements aligned with detail in the background such as

signs, horizontal lines on the road, horizon line

• Random error, due to the quality of the input image

One solution to the above problems would be to use a higher resolution image, so

that more fine detail would be retained. However, that would introduce performance

80

issues as the computational cost to process the images would be significantly higher.

That would lead to increased run time as well.

To improve object separation, an averaging operation is introduced. The 2D 3x3

filter [
1 1 1
1 1 1
1 1 1

] is applied, calculating averages along horizontal lines and then a

threshold is applied to retain only the strongest horizontal elements in every image

area. When the values in the resulting matrix are clustered again, the improvement in

object segmentation is significant.

Figure 3-12 below presents the improved output of the separation process, after re-

clustering to form new objects. The improvement from the previous step (in Figure

3-11) is evident in Figure 3-12 below:

Figure 3-12: Improved object separation output

Similarly to the previous step where another connectivity type was used, another

configuration using a larger 5x5 filter was tested. Between the different sized filters,

the smaller 3x3 one proved to be more effective as the larger 5x5 filter led to loss of

useful information. After this step, the vehicle in the centre of the image is more

clearly discernible.

To further enhance the output and ensure proper object/background separation,

additional visual cues were incorporated into the ROI generation algorithm. Out of

81

the possible options for enhancing the result in appearance-based approaches, some

had to be excluded due to the constraints imposed by the use of the specific input

data.

• The option of using the useful colour cue had to be excluded due to the image

data being grayscale.

• Using shadows as an additional visual cue would be ineffective, due to the

quality of the input images (with intensity values close in many image areas

where the vehicle was located) and its sensitivity to illumination conditions.

• Vehicle back lights could not be considered due to the images being

grayscale

• Texture-based segmentation was also ineffective, incapable of distinguishing

between vehicle and other objects in the background.

• Advanced symmetry detection methods would be not as cost-effective as

simpler image processing methods, in addition to symmetry being sensitive to

illumination, occlusion and other symmetric objects in the image.

The Sobel (Sobel, 1990) and Canny (Canny, 1986) edge detection filters were

implemented in separate occasions as additional methods to separate a vehicle from

its surrounding environment. The filters were applied on the original downscaled

images. The output of the edge filters is an output binary image (logical array of 0-1

values) of the same size as the input image matrix, where the presence of an edge is

signified with a 1, with 0 elsewhere in the image. In the end, the Canny filter was

selected to improve vehicle-environment separation.

The logical array (edge filter output) is superimposed with the output of the

clustering process. The end result is an array containing labelled areas that are

considered as Regions of Interest (ROIs).

Bounding box generation

Objects and areas of interest are highlighted in the image by drawing a rectangular

box (known as a bounding box) around them. The bounding box drawn is the

smallest rectangle containing the labelled region that is used as input for

82

classification. Along with the bounding box, useful information such as area size,

coordinates of the bounding box, region centre etc. are retained.

Figures 3-13 and 3-14 below present the generated bounding box for the sample

image, before and after small object removal (objects containing less than 50 pixels).

All generated bounding boxes that do not resemble vehicles (due to small/very large

size, irregular aspect ratio) should be removed, so that the number of candidate

locations is as low as possible and therefore making the classification process faster:

Figure 3-13: Original bounding boxes

Figure 3-14: Bounding boxes after small object removal

83

3.2.2 Hypothesis Verification

For the second phase of the detection process, which involves verifying the existence

of an object in an image and classifying it as a vehicle, a pedestrian or an object, a

SVM classifier is employed. The sub-images generated by the HG phase (bounding

boxes – ROIs) are utilised in this second stage of the detection algorithm.

Before the SVM is able to distinguish between vehicles and non-vehicles in real-time

data streams, it is necessary to train it to identify what visual characteristics are

distinct to vehicles. The training process utilises a dataset of positive (vehicle) and

negative (non-vehicle) images, from which the describing elements of objects

(feature vectors) are extracted. The image feature extraction process is presented in

Figure 3-15 below:

Figure 3-15: Image feature extraction process

The samples images contained in the training dataset are processed before the feature

extraction. A histogram equalisation process takes place first; to mitigate the effect of

differing lightning and contrast conditions have in performance. Next, the images are

scaled to a fixed size resolution, common for all, so that all extracted feature vectors

are equal in size. This is a necessary process, as the SVM classifiers can only be

trained with images of the same size. After that, the HOG extraction process takes

place, using parameters determined after experimentation with HOG extraction

settings. Finally, the resulting feature vectors are stored in a feature file, ready to be

used for classifier training.

The same process takes place for input data in real-time conditions. Using the

extracted feature vectors, sub-images are classified into vehicles or non-vehicles. A

successful detection, where only the vehicle is verified and other ROIs are discarded,

can be seen in Figure 3-16 below (the sample image in Figure 3-2 was used):

84

Figure 3-16: Example of successful vehicle detection

As mentioned before, SVMs rely on a kernel function to perform classification.

There are several kernel functions that may be used and there is only one restriction

as to which one to use. The kernel must satisfy the Mercer condition (it must be a

continuous symmetrical kernel of a positive integral operator).

According to the Mercer theorem in Mathematics, if 𝛫: [𝑎, 𝑏]2 → 𝑅 (where K is the

kernel function) is a symmetric, non-negative definite function, then there exists a

countable sequence of functions {𝜑𝑖}𝑖∈𝑁 (mapping function φ, as in section 2.3.2 on

SVM) and a sequence of positive real numbers {𝜆𝑖}𝑖∈𝑁 such that,

𝐾(𝑠, 𝑡) = ∑ 𝜆𝑖𝜑𝜄(𝑠)𝜑𝑖(𝑡)∞
𝑖=1 (3.2)

Cortes and Vapnik, (1995) has shown that if the kernel function 𝑘 is positive definite,

the existence of 𝜑 is guaranteed. This allows for the kernel to be used instead of

calculating the mapping function φ, as mentioned in section 2.3.2.

Some initial testing was required in order to determine which kernel is more

appropriate for the particular task. Dalal and Triggs, 2005, in their work on human

detection, experimented with two kernels: a linear and a Fine Gaussian kernel and

determined that the slightly improved performance for the F. Gaussian SVM came at

the expense of much higher computational cost and therefore longer run-time.

85

200 vehicle images, a small sample size, were used to perform the kernel and

parameter test. HOG features in different resolutions (64x64, 128x128, and 256x256)

were extracted using the default parameters in MATLAB. During the training

process, a portion of the data (20%) is used for validating the results.

In the end, the linear kernel and the Fine Gaussian kernel were selected for training

the SVM classifier with the complete training dataset. Maximum classification

accuracy was 88.7% for the F.Gaussian kernel and 74.6% for the linear one. The

trade-off between them was a significant increase in training time.

The SVM classifier was trained on the training dataset on 2 different resolutions

(128x128 and 256x256) to determine whether there are any differences in

classification performance.

3.3 Vehicle detection II – Convolutional Neural Network (CNN)

This second method focuses on the detection of vehicles using a variant of CNN,

called Faster R-CNN (also known as Region-Based CNN). Faster R-CNN is

detection and classification method that combines a CNN and a Region Proposal

Network (RPN), which is a separate convolutional network designed to generate

potential Regions of Interest (ROI) for objects. Instead of using a pre-trained multi-

layer network, as is common in most classifiers, the Neural Network is trained from

scratch, using own collected image data. Vehicle instances were manually annotated

and used to train the network to detect the vehicle object class. The goal is to

explore the feasibility of using a CNN with few convolutional layers as a vehicle

detector, using a limited amount of collected data instead of readily available datasets.

The performance of the examined network models will offer insights as to what kind

of conditions such networks can operate in, given there are data size and image

quality constraints and whether they can be used in safety critical applications. The

performance in terms of detection accuracy and run-time will be compared to the

traditional HOG+SVM method proposed in the above section.

For the purposes of this project, and to examine what kind of optimisations are

required to produce an efficient CNN-based vehicle detector, six different network

86

models are examined. All of them are based on the Faster R-CNN algorithm, which

was selected for its high performance compared to other methods (Huang et al.,

2017), but are modified so as to determine which network topology and which

parameters are the most efficient for detecting vehicles in the dataset. The

modifications included are changes to the RPN network, introducing batch

normalisation, increasing the learn rate of the network and increasing the network

depth, all of which affect detection performance. The examined networks were

developed, trained and tested using Matlab R2018a.

All the basic building blocks of a CNN are present (Convolution layer, non-linear

conversion layer, pooling layer, classification layer) with the addition of dedicated

normalisation layer in one of the models. Dropout layers are not utilised and the task

of regularisation and avoiding overfitting is handled by dedicated normalisation

layers (where applicable), L2 regularisation and the size of the model itself.

The CNN vehicle detectors are all trained from scratch, without the use of pre-

trained networks (e.g. Alexnet, Google Net etc.) and their pre-calculated weight

values. Initially, all networks are trained using a base 5,000 image samples and

additional training data (obtained through data augmentation) are added in 5,000

image batches until a maximum of 20,000 training images. Compared to pre-trained

networks trained on large databases (e.g. ImageNet containing 374,000 images for

the vehicle class), this is a small amount of data. The process of acquiring,

processing and augmenting the image data for the CNN-based detector is detailed in

Chapter 4.

Due to the number of available training images, the use of a deep network structure

would lead to overfitting problems. The model would be well adjusted to the training

dataset (essentially memorising the dataset features) but would not generalise well

with new data. With that in mind, it was essential that the networks used would be

relatively shallow (compared to pre-trained classification networks such as ResNet,

GoogleNet etc.) in addition to using regularisation as an additional measure to reduce

potential overfitting problems.

The six convolutional networks are the following:

87

Figure 3-17: Summary of developed CNNs

Model 1: A reference network structure using the following 11 layers:

i. Input layer (32x32x3 images)

ii. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. ReLU (Rectified Linear Unit)

iv. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

v. ReLU

vi. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

vii. Fully Connected layer 64 fully connected layer

viii. ReLU

ix. Fully Connected layer 2 fully connected layer

x. Softmax layer

xi. Classification output Crossentropyex

Layer no. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1 Input layer Input layer Input layer Input layer Input layer Input layer

2 Conv layer Conv layer Conv layer Conv layer Conv layer Conv layer

3 ReLU ReLU Batch normalisation ReLU ReLU ReLU

4 Conv layer Conv layer ReLU Conv layer Conv layer Conv layer

5 ReLU ReLU Conv layer ReLU ReLU ReLU

6 Max pooling Conv layer Batch normalisation Max pooling Conv layer Conv layer

7 Fully Connected layer ReLU ReLU Fully Connected layer ReLU ReLU

8 ReLU Max pooling Max pooling ReLU Max pooling Max pooling

9 Fully Connected layer Fully Connected layer Fully Connected layer Fully Connected layer Fully Connected layer Conv layer

10 Softmax ReLU ReLU Softmax ReLU ReLU

11 Classsification layer Fully Connected layer Fully Connected layer Classsification layer Fully Connected layer Max pooling

12 Softmax Softmax Softmax Fully Connected layer

13 Classsification layer Classsification layer Classsification layer ReLU

14 Fully Connected layer

15 Softmax

16 Classsification layer

88

The architecture of the reference network can be seen in Figure 3-18 below:

Figure 3-18: Reference network architecture

Additional details regarding each of the network’s layers are given below:

Image input layer: The image input layer introduced the image to the neural

network and is able to normalise the image data before any further processing takes

place. The original input image is segmented into smaller parts and this is the layer

where the size of these image patches is set. For object detection tasks, this size is set

as approximately the size of the smallest object that needs to be detected. Since

vehicle sizes in an image can vary and also depend on the distance from the ego-

vehicle, a relatively low value (32x32 pixels) is used. Zero-centre normalisation

(Karpathy and Li, 2019a) is applied in this layer, so that the mean of the image data

lies on zero (mathematically, this is achieved by calculating the mean in the data, and

subtracting each data item with that mean). Regarding image patch size, it is possible

to reduce the minimum size of the patch, that would however, increase the number of

sub-images that need to be processed by the CNN and so lead to an increase in

processing time. In purely classification tasks, this size is set as the fixed size of a

training image.

Convolution layer: Initially, the size and number of filters is set. This determines

the size of the produced feature maps as well as the depth of the convolution layer. In

89

this case, the layer has a depth of 32 (32 different feature maps produced), while the

size of the convolution matrix is set to 3x3.

In both convolution layers in this CNN, the step size for traversing the input image

(stride) is set to 1 pixel in both x and y direction, while additionally, 1 row of

padding is added to all sides of the input matrix (top, bottom, left, right sides). Stride

is the number of pixels the filter shifts over the input image. Its value affects the size

of the resulting feature map (and the encoded features), with a smaller stride

resulting in a larger feature map (and more useful information) and a larger stride in

a smaller feature map but faster processing.

Adding padding to the image increases its size and gives the opportunity to border

pixels to better interact with the filters, as they can now be at the centre of the filter.

This results in more features to be detected by the filter and an output feature map

that has the same shape as the input image.

It is possible to manually set additional parameters for each of the convolution layers

such as weight learn factor and bias learn factor, though in this case the final trained

network determines weights and biases for each layer based on the training dataset

without any manual initialisation.

ReLU layer: The function used to introduce non-linearity to the networks is the

ReLU function (used widely in CNNs) which replaces all negative pixel values in the

feature map produced by the convolutional layer with 0:

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (2.20)

Pooling layer: The options available for the pooling layer are similar to those for the

convolution layers. The size of the pooling window is determined along with step

size (stride) and possible padding around the convoluted feature maps.

In this case, a max pooling layer is used to downsample the output of the

convolutional layers and reduce the number of connections to the following layers.

The pooling layer comes after 2 convolution + ReLU operations and uses a 3x3 size

window with a stride of 2 across the x and y directions. Note that the stride size is

smaller than the actual pooling window. That indicates that there is some overlap

90

between pooling regions. No padding is added to input borders in any direction as it

is not required.

Fully Connected Layer: The Fully Connected layer is a traditional Neural Network

layer, in that it uses an activation function to produce its output. Every neuron in this

layer is connected to every neuron of the previous layer and each of these

connections has an associated weight and bias factor.

Here, it is possible to define the number of the output neurons and also initialise

weight, bias and learn factor bias values. Usually, the network initialises those values

by assigning random values for the first training example and then auto-adjusts them

based on the error of the output probability for the expected object class.

The output size of the first fully connected layer is 64 neurons while for the second

layer of this type, the network needs to produce a number of outputs equal to the

number of object classes and background. Since, this a single-class vehicle detector,

the number of output neurons is 2: one for the vehicle object class and one for the

background.

Softmax layer: The Softmax loss function is used as the classifier (others, such as

SVM can be used) to predict a class out of K mutually exclusive classes. The output

softmax function is:

𝑦𝑟(𝑥) =
exp (𝑎𝑟(𝑥))

∑ exp (𝑎𝑗(𝑥))𝑘
𝑗=1

 (3.3)

Where 0 ≤ 𝑦𝑟 ≤ 1 , ∑ 𝑦𝑗
𝑘
𝑗=1 = 1 and 𝑎𝑟 is the conditional probability of the sample

class 𝑟.

Classification layer: The classification layer is the output layer of the neural

network and takes its name from the loss function used for training the network and

calibrating the weight and bias values.

This layer uses the cross entropy loss function.

91

Model 2: The second network model is a 13 layer structure, adding an

additional set of Conv + ReLU layers on the reference model and increasing the

number of convolution kernels to 64.

i. Input layer (32x32x3 images)

ii. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. ReLU (Rectified Linear Unit)

iv. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

v. ReLU

vi. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

vii. ReLU

viii. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

ix. Fully Connected layer 64 fully connected layer

x. ReLU

xi. Fully Connected layer 2 fully connected layer

xii. Softmax layer

xiii. Classification output Crossentropyex

Adding additional convolution layers (which is the core building block of a CNN)

increases the depth size and the generalisation ability of the network. The network is

able to recognise more complex image features and therefore better understand the

relationship between the input image and the class it belongs to. However, there is a

trade-off. Increasing the network depth results in a network that is difficult and slow

to train and test. Additionally, a very deep network is more prone to overfitting on

the dataset it was trained on. A balance between network size and runtime speed is

required. The increased number of kernels (64) used in this network model means a

larger number of feature maps will be produced from the convolution process,

resulting in additional salient features that benefit the detection/classification process.

92

Model 3: A network structure containing the original 11 layers, with the

addition of batch normalisation layers to reduce network sensitivity during

initialisation.

i. Input layer (32x32x3 images)

ii. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. Batch normalisation layer

iv. ReLU (Rectified Linear Unit)

v. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

vi. Batch normalisation layer

vii. ReLU

viii. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

ix. Fully Connected layer 64 fully connected layer

x. ReLU

xi. Fully Connected layer 2 fully connected layer

xii. Softmax layer

xiii. Classification output Crossentropyex

A batch normalisation layer normalises the activations of each input channel across

the mini-batches of images used for training, speeding up the training process and

reducing the sensitivity to network initialisation. The output of the convolution layer

is normalised by subtracting the mini-batch mean and dividing by the mini-batch

standard deviation. The effect of the batch normalisation layer on performance will

be examined.

93

Model 4: A reference structure containing the original 11 layers, with a

modification in the RPN producing a maximum of 1000 ROIs per image.

i. Input layer (32x32x3 images)

ii. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. ReLU (Rectified Linear Unit)

iv. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

v. ReLU

vi. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

vii. Fully Connected layer 64 fully connected layer

viii. ReLU

ix. Fully Connected layer 2 fully connected layer

x. Softmax layer

xi. Classification output Crossentropyex

The Region Proposal Network (RPN) of Faster R-CNN network uses a maximum of

2000 proposals to generate the training samples for the network. By reducing this

number, the aim is to speed up training and testing. It is expected that a small impact

on detection accuracy will occur.

94

Model 5: A network structure, based on the second model (13 layers and 64

convolution kernels) with a modified learning rate for each training step.

i. Input layer (32x32x3 images)

ii. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. ReLU (Rectified Linear Unit)

iv. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

v. ReLU

vi. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

vii. ReLU

viii. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

ix. Fully Connected layer 64 fully connected layer

x. ReLU

xi. Fully Connected layer 2 fully connected layer

xii. Softmax layer

xiii. Classification output Crossentropyex

For this model, the learning rates for each of the training stages of the CNN (training

and fine-tuning the Region Proposal Network – RPN and the CNN) have been

modified to have the network parameters change faster compared to the other

configurations. The rationale behind this modification is to explore the possibility of

the network converging faster at an optimal solution, and even achieving a superior

result after the end of the training epochs.

The learning rate for the first two training stages is set at 5x e-4 (0.0005) and for the

fine-tuning stages at 1e-5 (0.00001). The values have been selected after

experimenting with different rates, where even higher values would make it

impossible for the CNN to finish training and converge to a solution.

95

Model 6: A deeper network structure, where an additional Conv + ReLU set of

layers is added, and a variable number of filters is used.

i. Input layer (32x32x3 images)

ii. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

iii. ReLU (Rectified Linear Unit)

iv. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

v. ReLU

vi. Convolution layer (32 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

vii. ReLU

viii. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

ix. Convolution layer (64 3x3 convolutions with stride [1 1]

and padding [1 1 1 1])

x. ReLU

xi. Max pooling layer (3x3 max pooling with stride [2 2] and

padding [0 0 0 0])

xii. Fully Connected layer 64 fully connected layer

xiii. ReLU

xiv. Fully Connected layer 2 fully connected layer

xv. Softmax layer

xvi. Classification output Crossentropyex

For this model, the depth of the network has been increased with the addition of extra

layers. It is expected that there will be some performance gain in terms of accuracy,

at the expense of training and testing time. To offset the increased processing time,

the number of convolution kernels has been reduced to 32 for the first 3 convolution

layers, with the last convolution layer retaining the full 64 kernels.

96

Region Proposal Network (RPN)

The Region Proposal Network (RPN) is common across all examined models as part

of the Faster R-CNN algorithm (Ren et al., 2015). It is tasked with generating the

Regions of Interest (ROIs) for the CNN, without the need for an external function.

Essentially, it operates as a shallow NN accepting the feature map produced by the

main network as input. ROIs are produced in various scales on the feature map

before a classification and a regression layer assign probability scores to each ROI

and generate bounding boxes for them respectively. The output of the RPN is

returned to the main CNN for classification.

Training and testing the CNN detector

The vehicle detector training process can be separated in 4 distinct stages. The first

two train the Region Proposal Network (RPN) while the last two combine the output

of the first two stages and fine-tune the network.

Stage 1: Training a Region Proposal Network (RPN)

Stage 2: Training a Fast RCNN network using the RPN from stage 1

Stage 3: Re-training RPN using weight sharing with Fast RCNN

Stage 4: Re-training Fast RCNN using updated RPN

The parameters used to train the different models are the following:

Max epochs: the number of epochs used for training. An epoch is a full pass of the

training algorithm over the training set. An epoch is divides into iterations, which are

the steps taken in the gradient descent algorithm towards minimising the loss

function using a mini batch. The number of epochs used for every training stage is 10.

Minibatch size: is a subset of the training set that is used to evaluate the gradient of

the loss function and update the weights. It is used in each training iteration. The size

is set 128 for the first and third training stages and 64 for stages two and four (the

97

reference model uses 128 images for all four training stages – the change was

necessary to avoid running into memory problems for the larger models).

Initial Learning Rate: The learning rate determines how quickly the network

parameters change. For the first two training stages, the learning rate is 1e-5 (0.00001)

while for the final two, 1e-6 (0.000001). The learning rate is lower in fine-tuning

stages so that smaller adjustments are made.

L2 regularisation: Regularisation (or weight decay) is added to reduce overfitting.

A regularisation term for the weights is added to the loss function𝐸(𝜃). The loss

function with the added term takes the form:

𝐸𝑅(𝜃) = 𝛦(𝜃) + 𝜆𝛺(𝑤) (3.4)

Where 𝑤 is the weight vector, 𝜆 is the regularisation coefficient and the

regularisation function 𝛺(𝑤) is 𝛺(𝑤) =
1

2
𝑤𝑇𝑤.

The L2 regularisation coefficient is 1e-4 (0.0001).

The detection parameters are set as follows:

Positive overlap range: Bounding box overlap ratio for positive training samples.

The anchor boxes that are generated by the RPN for an image have varying levels of

overlap with the ground truth objects in the particular image. Region proposals that

overlap with ground truth bounding boxes within the specified range are used as

positive training samples. Other boxes with lower values can be used as negative

samples or even discarded completely if they fall between the ranges specified for

positive/negative samples. This process is necessary for the detector to learn what a

correct detection is and what is not. The choice to have ‘neutral’ proposals that do

not contribute to the training process (proposals between the positive/negative ranges)

and disregard them was due to the fact that a large number of negative samples exist

already in an image and it is not necessary to process them all. The value used for

positive samples for the vehicle detector was [0.6-1]. The overlap ratio used is

defined as union (area of intersection between two bounding boxes divided by the

area of the union of the two).

98

Negative overlap range: Bounding box overlap ratio for negative training samples.

Similar to the positive range, values range from 0-1 and the value used was [0-0.3].

Number of strongest regions: Maximum number of strongest region proposals to

use for generating training samples. The default value for this option is 2000

proposals. Reducing this value leads to reduced processing time at the cost of

training accuracy.

Smallest image dimension: This option sets the smallest dimension (either width or

height) when it is necessary to resize training images. Resizing images into smaller

sizes reduces computational cost. For all the models tested, training images retain

their original size (512x512).

To summarise, the training parameters used for training and testing the CNN

detector are as follows:

• Original image size is 512x512. The image is segmented into smaller parts

for detection purposes, with the segment size set at 32x32 pixels.

• The convolution matrix is 3x3 in size with 1 pixel stride. The number of

convolution kernels is 32, except for the models, where the number of

convolution kernels is 64.

• The pooling matrix has a size of 3x3 and stride 2 across both dimensions.

• The output size of the first Fully Connected layer is 64, while the output for

the second one is 2, since there are only 2 object classes (vehicle and

background).

• The network is trained for 10 epochs for each of the Faster R-CNN training

stages (RPN, Neural Network, fine-tuning). The number of training epochs

was selected to be 10 and not higher, to avoid overfitting issues in the trained

model. When a model is trained many for many cycles, it tends to over-fit to

the training data and loses its generalisation ability. As a rule, training a CNN

model should stop when the error rate in the validation data is minimised.

After that point, the model starts to over-fit.

• The initial learning rate is set at 1e-5 and for the fine-tuning process at 1e-6.

99

• The Region Proposal Network (RPN) generates 2,000 candidate regions for

each input image by default.

The performance of the two vehicle detectors will be assessed in terms of accuracy

and precision in a complex dataset, containing vehicle instances of various sizes in

different types of environment. The desired outcome is a vehicle detector that is able

to detect all vehicle instances in a set of images or video while at the same time

producing the lowest number of False Positive (FP) detections possible. The run-time

performance of the most accurate detector will also be assessed, in order to

determine whether it is suitable for application in the real world.

3.4 Range estimation using perspective geometry

This section describes the method used to estimate distance from a vehicle ahead.

The method uses simple perspective geometry using the monocular camera’s

parameters to estimate the distance to the centre of a bounding box generated by the

vehicle detector. Because of the simple geometric calculation, the bounding box is

considered to be on the surface of the road. Accurate computation of a location in 3D

space is not possible and would require a stereo camera system or an active sensor

(radar, LIDAR). Additionally, there is no consideration for error compensation so the

system cannot be considered accurate for use in safety critical application. This

merely serves as a test to determine the inaccuracies of the measurement and

determine whether the developed detector produces workable results. The method is

based on the work in (Stein et al., 2003).

Figure 3-18 is a schematic diagram of the imaging geometry. The camera is mounted

on a vehicle at height 𝐻𝑐 . The rear of the vehicle is at a distance 𝑍 from the camera

while 𝑓 is the focal length of the camera. The point of contact between the vehicle

and the road projects onto the image plane at a position𝑦. The focal length and point

y are typically in pixels and are not drawn to scale here. The distance 𝑍 is derived

directly from the similarity of triangles:

100

𝑍 =
𝑓 𝐻𝑐

𝑦
 (3.5)

All required values are available: the height 𝐻𝑐, focal length 𝑓 and principal point of

the camera are known and determined through camera calibration. The pitch of the

camera that specifies the angle (tilt) from the horizontal position and is a potential

source of error is also determined during the calibration process. The bounding box

and the location of the centre of the bottom side are produced by the vehicle detector.

Figure 3-19: Range estimation based on bottom of b. box Source: Christiansen et al. (2018)

This simple calculation only gives a rough estimate of the distance between the ego

and target vehicle, with the limitations being numerous:

• The surface of the road is considered flat

• The distance is calculated to the surface of the road and not the actual vehicle

• The distance is calculated from a single image. An approach using

information from a sequence of images would reduce the associated distance

error and provide more accurate distance measurements.

101

4 Data collection and pre-processing

4.1 Introduction

The performance of applications such as camera-based Collision Avoidance rely on

robust detection algorithms that have been trained on datasets containing large

amounts of quality data which in this case is image samples. The data need to be

collected and pre-processed before any part of the detection process takes place.

This chapter describes the process of collection, the features and limitations of the

datasets used in this project. Pre-processing for each of the detection methods will be

described in its own discrete section, as different processes need to be employed.

4.2 Data collection

The most common data collection method for images is recording video sequences

from a moving vehicle in the desired environment and then processing the video files

to extract the image dataset. All the data utilised in this project were collected using

an instrumented vehicle belonging to the School of Architecture, Building and Civil

Engineering of Loughborough University. The vehicle is equipped with the

following set of sensors:

• A PointGrey Grasshopper3 –U3-41C6NIR-C Near Infrared (NIR) camera

(mono sensor, 4.1MP resolutions)

• A Continental ARS 308-2 77GHz long range automotive radar

• A U-blox NEO M8L GNSS and 3D Dead Reckoning system

• A Mobileye 560 forward collision warning and lane departure unit

• A weather station collecting wind speed, humidity and other environmental

data

• An Arduino microcontroller connected to the CAN bus exporting information

about the status of the vehicle.

The instrumented vehicle along with the installed sensors can be seen below:

102

Figure 4-1: Loughborough University instrumented vehicle

103

For this particular project, the NIR camera was used to record the videos required,

while the ARS radar was used to provide the readings used as ground truth for range

estimation.

The camera records video at 4MP resolution (2048x2048) while the frame rate was

set at 15FPS (Frames per second). The recording frame rate was set at 15FPS to

reduce the size of the produced video files. The resulting file from this frame rate

setting is around 2 GB in size for every 10 minutes of recorded video. Using a higher

frame rate (e.g. 30FPS) would result in even larger files that would be require

additional time to process. The images collected include various vehicle types

(private cars, light duty vehicles, buses) and were taken in various operational

environments (urban roads, rural roads, motorways) as well as different weather

conditions (sunny, overcast, rain) so as to ensure representative samples. The same

level of variability is used for both training and testing datasets. The videos were

recorded around the town of Loughborough in Leicestershire (UK), the rural areas

around it, the M1 motorway connecting London and Leeds in the UK and the city of

Nottingham (UK).

Figure 4-2: Locations of M1 motorway, Loughborough and Nottingham

104

 In total, several hours’ worth of data was recorded, resulting in a large pool of

images from which the training and validation datasets were extracted. Samples of

the images collected can be seen in Figure 4-3 below:

Figure 4-3: Image dataset samples

The radar sensor detects objects that reflect radar waves up to 200m (long range, 17o

Field of View) and 60m for short range (56o Field of View). The radar is able to

distinguish between targets (objects that reflect radio waves) and objects (targets that

are detected more than once and tracked).

The variables of interest from the radar output are:

105

• Number of objects traced in this measurement cycle (NoOfObjectsY and

NoOfObjectsTime)

• Dynamic property of each object (Obj_DynPropTime and Obj_DynPropY)

that categorises each object’s movement; 0: unclassified, 1: standing, 2:

stopped (never moved before) and 4: oncoming.

• Longitudinal displacement of an object (Obj_LongDisp [m]) which will

provide the ground truth measurement of the distance between the ego-

vehicle and a vehicle ahead.

• Lateral displacement of an object (Obj_LatDisp [m]) which will help with

identifying different vehicles in an image. Negative value means that the

object is located to the right of the camera, while positive value means that

the object is on the left.

Figure 4-4: Variables measured by the radar sensor Source: Schnieder (2017)

106

4.3 HOG based detector training data

This section describes the type of data and processing required for the development

of the HOG based detector described extensively in section 3.2 of the Methodology

chapter.

4.3.1 Training set

Due to the large variability of vehicles (size and type) on the road, a large training

sample was required in order to train and evaluate the SVM classifier. To train a

classifier, the dataset needs to be separated into positive and negative samples.

Positive samples need to exhibit enough variation so that the classifier is able to

correctly identify all types of vehicles, while negative samples need to cover as many

as possible of non-vehicle objects that appear on the road.

The training set consists of 2,135 positive image samples and 2,779 negative samples.

Positive samples are appropriately cropped vehicle’s front and rear view images,

straight on or slightly angled. Vehicles include not only passenger vehicles but also

light trucks, lorries and buses. Negative samples include various objects such as

traffic signs and lights, poles, lane markings, railings, trees and other vegetation,

buildings or parts of buildings and other random objects.

The number of negative samples was augmented by flipping the images horizontally

and using the produced symmetric images as additional training samples (for a total

of 5,558 images). The total size of the dataset is 7,693 images for a ratio of 1:2.6

positive/negative samples. The dataset was tested and no issues regarding

imbalanced dataset were observed. Using this dataset produced slightly better

classification results compared to using the more balanced dataset.

Examples of positive and negative training images are shown in Figures 4-5, 4-6 and

4-7 below:

107

Figure 4-5: Examples of positive training images

Figure 4-6: Examples of negative training samples (a)

108

Figure 4-7: Examples of negative training images (b)

4.3.2 Validation set

An early indication of the performance of the trained SVM classifier is given by

performing cross-validation on the training data. However, a smaller independent

(not used in training) dataset was used to verify the results of the cross-validation

process and ensure the generated classifier performs as expected on unseen data. The

size of this smaller dataset is 300 images, with 100 being positive (vehicle) samples

and 200 negative (non-vehicle) image samples.

4.4 CNN-based detector training data

In this section, the processing and augmentation of data required for the development

of the CNN-based detector (described extensively in section 3.3 of the Methodology

chapter) is presented.

The most common issue with training CNNs is the generation of large amounts of

data required for this particular task. The amount of data required to effectively train

a CNN is highly dependent on the complexity/depth of the network and the task it

performs. Structures containing many layers require large amounts of data to perform,

as is evident by image classification networks such as VGGNet, which was trained

on 1.2 million images (with assigned label for each of the 1000 classes) (Jia Deng et

al., 2009).

109

Simpler tasks such as single-class object detection which is performed here, do not

require this amount of data, although a combination of small dataset and deep

network would result in overfitting problems (the network memorising features of

the training dataset and does not generalise well in unknown data). A balance is

required between network complexity and dataset size, especially when not using

pre-trained networks where many of the learnable parameters have fixed values and

are not trained on new data.

In order to generate the data required for a vehicle detector, it is necessary to

manually annotate a large number of images and provide ground truth labels for them.

Although the task is simple it is very time-consuming given the vast amount of data

required. To reduce annotating time, various tools such as automatic image labellers

can be used to automate the process, though not without limitations and with the

human presence still being essential to validate the generated labels. Another way to

overcome the data collection and annotating issue is the use of a virtual environment

in which, it is possible to generate a vast amount of data, label them using custom-

made tools and then develop a CNN detector. However, the applicability of virtual

data in real-world simulations and the transferability of the method have not been

proven yet and remain to be examined (Filipowicz et al., 2017; Martinez et al., 2018).

In this study, 5,000 images were selected and annotated manually. Even though the

detector is focused on vehicles and other objects are disregarded, the number of

images is still far from the many thousands of images usually used to train a CNN. In

order to reduce the time and cost required to collect and label more images, it is

necessary to increase the size of the training dataset artificially or, “augment” the

dataset.

Data augmentation is a common technique used to increase the amount of relevant

data with samples that differ, even if the differences are minor in many cases. It is

usually performed to reduce overfitting in models, using information already in the

existing dataset. When using images as input data, common ways to augment the

data is by using operations such as resizing, rotation, reflection etc. These operations

produce instances of the same object (albeit slightly altered) that can be used as

110

additional input data. However, they are linear transformations of the same image

and do not bring any new visual features that could improve the learning abilities of

the model (Mikołajczyk and Grochowski, 2018). For example, reflection essentially

retains the same pixel values in a sample image albeit in a mirror image, generating

the same features. Therefore, the dataset size would increase without significant

gains in the learning ability of the CNN detector. They are also more appropriate for

classification purposes, i.e. when the object of interest occupies the whole or a large

part of the image (Wang and Perez, 2017).

The network operates as a detector in this case and its input data are scene images

containing vehicles in various locations on the road, along with their bounding box

coordinates. To augment the data and increase the vehicle instances in the dataset,

the following approach called translation was utilised:

• The size (width, height) of the bounding box in the original annotated image

is kept constant

• To generate new vehicle instances, the bounding box is offset by a relatively

small number of pixels in both 𝑥 and 𝑦 directions.

• New bounding boxes are generated for the image, containing the object of

interest (vehicle)

The maximum number of pixels used as offset in both directions is kept at a low +5

or -5 pixel, with the actual value generated randomly. The random generation of the

offset value ensures the low probability of two identical boxes generated for the same

object, while at the same time, the low maximum offset value ensures that:

i. the object remains within the newly generated box (offset less than 1% of the

width/height of the image – vehicle remains in focus) and

ii. the newly generated box contains the vehicle along with a slightly different

view of the surrounding environment (new pixel values for the surrounding

environment, bringing new information to the model).

111

Arguably, generating additional vehicle instances using this augmentation method

resembles annotation of the same image by different people or even annotating the

same object in a different frame of the same second in the video file.

The original dataset of 5,000 images was increased in size to reach 20,000 images for

training purposes. With each image containing two vehicle instances or more on

average, the total number of vehicles contained is around 50,000. If the detector was

intended to classify multiple objects (multi-class) as opposed to vehicle only, the

dataset would have to increase in size to reflect the need to train on other objects too.

An example of the original and additional bounding boxes can be seen in Figure 4-8

below:

Figure 4-8: Example of data augmentation

112

4.5 Testing dataset

The dataset used to evaluate the real-world performance of the two detection

methods consists of 1,000 images containing multiple vehicle instances (1,853 in

total). It is a dataset independent from the two sets used to train the SVM classifier

and CNN-based detector but has the same level of variability (vehicle types,

operating environment, and weather conditions).

Similarly to the training dataset, the resolution of the testing images is 512x512

pixels. To ensure the dataset is varied enough, the KITTI dataset benchmark for

difficulty is used (Geiger et al., 2012). According to the difficulty levels defined in

this benchmark, the challenge for the detector to correctly identify vehicles in the

testing dataset ranges across all three categories (easy, medium and hard) with many

small bounding boxes and many occluded vehicles. The three difficulty categories

are:

• Easy: Minimum bounding box height: 40 pixels, occlusion level: Fully visible,

Maximum truncation: 15%

• Medium: Minimum bounding box height: 25 pixels, occlusion level: partly

occluded, Maximum truncation: 30%

• Hard: Minimum bounding box height: 25 pixels, occlusion level: difficult to

see, Maximum truncation: 50%

The minimum bounding box height defines the size of the vehicle in the image, with

smaller boxes being a challenge for the detector. The level of occlusion is an

additional difficulty factor, with vehicles being obscured by other objects in the

medium and hard difficulty categories. Finally, the level of truncation is also

considered, meaning it is possible that only parts of vehicles are visible in an image

(with vehicles being at the edges of the image, entering or exiting the scene).

113

4.6 Limitations of the dataset

All three datasets were developed to include as many environmental conditions

(sunny, overcast, rain, dusk) as possible, the goal being to produce a robust vehicle

detector that is invariant to environmental or operational conditions. While the

datasets used manage to include a good amount of variety, there are inherent

limitations to the datasets that need to be considered when examining the

performance of the vehicle detectors:

• The dataset used for training the CNN detector is constrained in size, as it

was necessary in order to examine the detection performance using a limited

amount of data.

• The image quality in the dataset varies, and this was purposefully done to

examine the effect of degraded and noisy images to detector performance.

• Images are grayscale and contain no colour information, thus limiting the

ability to use additional useful information as visual cues to detect vehicles.

• Lightning conditions are varied, with many images being dark or

overexposed, thus introducing another layer of difficulty for the developed

detectors.

4.7 Summary

This chapter presented the types of data used in this study, the collection and pre-

processing that was necessary to generate the datasets.

Three different datasets were employed; two datasets used for training the SVM

classifier and CNN detector, and a testing dataset upon which vehicle detection

performance will be measured. The first one (SVM classifier) is comprised of

positive and negative training samples that are necessary to train the classifier and

validate its results. Its size (training + small validation set) is around 8,000 images.

The second dataset is made up from 20,000 images. 5,000 images were selected and

annotated manually, before an augmentation process increased the total number of

samples to 20,000. Both detectors will be evaluated on an independent dataset

114

containing 1,000 images with multiple vehicle instances in many cases. The number

of vehicles in this dataset is over 1,800.

Finally, radar data are used as ground truth in range measurement using a monocular

camera. This data will be used to determine whether the camera is sufficiently

accurate to compute surrogate safety measures such as TTC.

115

5 Results

5.1 Introduction

This chapter presents the results for the two vehicle detection methods: (1) the HOG-

based detector with SVM (Support Vector Machine) classification and (2) the deep

learning based detector – convolutional neural network. As the aim is to produce a

high-precision vehicle detector that is able to operate in real-time, the two methods

need to be compared and their performance discussed.

The methods are tested on an independent dataset consisting of 1000 images with

multiple vehicle instances in them. The images that make up both training and

testing datasets were collected over different data collection runs using the

instrumented vehicle. That way, it became possible to collect data in different

operational (e.g. motorway, urban, rural) and weather (e.g. clear sky, overcast, rainy)

conditions.

Initially, the performance of the HOG-based detector is assessed. Since the detection

process is separated in two stages, Hypothesis Generation (HG) and Hypothesis

Verification (HV), it is essential that both perform equally well. If that is the case,

the detection process operates robustly, otherwise (if one or both stages are found to

be under performing) the detection process cannot be considered successful.

The following section examines the performance of the CNN-based vehicle detector.

In this case, a unified detection pipeline handles both generation of ROIs and their

classification in an efficient manner. This efficient and high-performing process is

one of the reasons why Deep Neural Networks have substituted traditional image

processing methods in object detection and classification.

The results clearly show the superiority of the CNN-based vehicle detector. The

proposed HOG-based method does not perform sufficiently well to be considered a

robust solution. The reasons for this result will be discussed extensively in the next

section, with examples provided to highlight the problems that developed.

116

5.2 HOG-based detector and SVM classification results

This section investigates the performance of a vehicle detector that generates

Regions of Interest (ROIs) based on information derived from the extraction of HOG

features. While established methods make use of various visual cues for ROI

generation (e.g. extracting salient features from the raw image data) and utilise HOG

features for classification of objects, the method presented here attempts to use HOG

features to extract the necessary information for the ROI generation part of the

detection process.

Hypothesis Verification (SVM classification) results

Classification of the extracted regions takes place using a Support Vector Machine

(SVM) that is trained using a dataset consisting of positive and negative training

samples. Initial testing has indicated that two of the available kernel functions (linear

and Fine Gaussian kernel) were the most likely to produce the best classification

results.

The SVM classifiers were tested on two image resolutions as well, in order to

identify differences in classification performance. The two resolutions used for the

training dataset were 128x128 and 256x256 pixels.

The training dataset consists of 7,693 images in total. Out of this number, 2,135

images are positive training samples (vehicle instances) while 5,558 images are

negative samples (which do not contain vehicles or parts of vehicles). The ratio

between positive and negative training samples is around 1:2.6. The dataset was

tested and no issues regarding imbalanced dataset were observed. An increased

number of negative training samples can be used to increase the variability of the

non-vehicle object class (Dalal and Triggs, 2005; Li and Guo, 2013; Teoh, 2011).

Validation

A trained classifier may have good performance on the training dataset but fail to

perform on a validation set. An estimate of its performance can be provided by cross

validating. For 𝑣-fold validation, the data is divided in 𝑣 number of sub-sets. 𝑣 − 1

117

sub-sets are used for training the classifier, while the last sub-set is used for

validation internally. The process is repeated for 𝑣 times, each with a different sub-

set of data used for validation. It is then followed by calculating the average of all

validation results which is used as a measure of the SVM classifier’s performance

(Teoh, 2011).

The results are further validated by a small independent dataset generated for this

purpose, consisting of 300 image samples (100 positive/200 negative samples).

ROC (Receiver Operation Characteristic) curve

The ROC curve is another measure that is commonly used for assessing the

performance of a classifier (Godil et al., 2014). It is a plot of points showing the

trade-off between the classifier’s true positive (TP) and false positive (FP) rate. A

classifier is considered to have better performance compared to another when its

operating point lies closer to the top left corner of the graph (essentially maximising

the Area Under Curve – AUC).

The four terms commonly used to describe correct and incorrect classification results

are the following:

Positive (P): Positive case in the data (vehicle)

Negative (N): Negative case in the data (non-vehicle)

True Positive (TP): Vehicle correctly identified as present in a frame (vehicle

present in ground truth)

False Positive (FP): Object incorrectly identified as vehicle (vehicle not present in

ground truth) – False Alarm

True Negative (TN): Object correctly identified as non-vehicle (vehicle not present

in ground truth)

False Negative (FN): Vehicle not identified in frame (vehicle present in ground truth)

– Missed detection

118

Key metrics that can be used to more accurately measure classifier performance are

(Godil et al., 2014):

The accuracy (ACC) metric is an actual measure of performance with regards to

correctly identifying targets. It is the ratio of the sum of TP and TN detections

relative to the total number of objects.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 (5.1)

Recall (or sensitivity or True Positive Rate) is the ratio of true positives to the sum of

TP and false negatives (FN) in the classifiers, based on the ground truth.

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5.2)

Miss rate (or False Negative Rate) is the ratio of false negatives to the sum of FP and

True Negatives (FN).

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 (5.3)

False Positive Rate is the ratio of FP detections over the sum of FP and TN.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (5.4)

The results for the different combinations for SVM classification are presented below:

SVM model 1 – 128x128 pixels – Linear kernel function

This first SVM produced a vehicle classifier with an accuracy of 94.2%. The

confusion matrix and ROC curve for the classifier can be seen below:

Table 5-1: Linear SVM classifier (128x128) performance

Classifier TP FP TN FN Total

SVM linear

(128x128)

1834 145 5413 301 7693

119

Figure 5-1: Confusion matrix - SVM linear kernel 128x128

Figure 5-2: ROC curve - SVM linear kernel 128x128

120

The results show that the SVM classifier achieves an accuracy of 94.2% (which is

high), a True Positive Rate of 0.86 (miss rate of 0.14). False positive rate is at a low

0.025 or 2.5%.

Figure 5-3: TPR/FNR - SVM linear kernel 128x128

SVM model 2 – 128x128 pixels – Fine Gaussian kernel function

This SVM classifier using the F.Gaussian kernel produced a completely unworkable

classifier compared to the one using a linear kernel. The confusion matrix and ROC

curve for the particular SVM classifier can be seen below:

Table 5-2: F.Gaussian SVM classifier (128x128) performance

Classifier TP FP TN FN Total

SVM F. Gaussian

(128x128)

0 0 5558 2135 7693

121

Figure 5-4: Confusion matrix - SVM F.Gaussian kernel 128x128

The accuracy rate for this trained classifier is 72.2%. The result is not indicative of

its performance at all, as the confusion matrix shows an inability to correctly classify

vehicles (no TP instances out of a total of 2,135). The classifier trained here using a

F.Gaussian kernel is unsuitable for vehicle detection, producing incorrect

classification results. The ROC curve is also a testament to this issue.

122

Figure 5-5: ROC curve - SVM F.Gaussian kernel 128x128

Figure 5-6: TPR/FNR - SVM F.Gaussian kernel 128x128

123

SVM model 3 – 256x256 pixels – Linear kernel function

Finally, the last SVM classifier was trained using 256x256 pixel image patches, a

rather large size given that most vehicles in an image frame should be smaller than

this size. Only vehicles close to the camera should be close to this size (or higher).

The aim for using this image resolution was to test whether there is any difference in

classification accuracy.

The resulting confusion matrix and ROC curve can be seen below:

Table 5-3: Linear SVM classifier (256x256) performance

Classifier TP FP TN FN Total

SVM linear

(256x256)

1848 125 5433 287 7693

Figure 5-7: Confusion matrix - SVM linear kernel 256x256

124

The accuracy rate for the classifier trained on higher resolution image patches is

94.6%. True Positive rate stands at 0.87 (with a miss rate of 0.13) while the False

Positive Rate is 0.022 (2.2%).

Figure 5-8: ROC curve - SVM linear kernel 256x256

Figure 5-9: TPR/FNR - SVM linear kernel 256x256

125

It is clear that the SVM classifiers trained using a linear function kernel perform

better compared to the F.Gaussian ones. While initial testing using a smaller dataset

suggested that the F.Gaussian kernel in the SVM resulted in better classification

accuracy, this is not the case when the classifier is trained using a much larger

training dataset.

Between the two different resolutions, the difference in performance is small (0.4%

in accuracy). For that reason, and also due to the increased processing time for the

higher resolution image patches (SVM processes 110 observations at 128x128

resolution, while only 17 at 256x256 pixels), the SVM classifier trained on 128x128

pixel images is elected to be used in the vehicle detector.

Overall detector performance is highly dependent on the quality and the number of

generated ROIs from the proposed HOG-based generation process. The following

section presents the output of the ROI generation process.

Hypothesis Generation (ROI generation) results

The ROI generation process has been in described in section 3.2 of the Methodology

chapter. The method explores the possibility of using the horizontal gradients of the

produced HOG feature vector to detect long horizontal edges in vehicles. Through

them, a bounding box can be generated around the vehicle in the image frame and

subsequently used as ROI for classification.

The vehicle detector (ROI generation+ SVM classifier) is tested on a dataset

consisting of 1000 images. The output of the detector is a location of the vehicle and

its predicted label (vehicle label: 1 and non-vehicle label: 0) from the SVM classifier.

The final results indicate a high number of False Negative (FN) detections, with the

detector missing the majority of vehicles in the dataset. The detector manages to

correctly classify most of the generated ROIs, but the problem lies with the high miss

rate. For the purpose of reviewing the results and identifying problems, TN

detections are included in the images.

126

Table 5-4: HOG-based detector performance

Vehicle detector TP FP TN FN Total

HOG-based

detector +SVM

367 High High 1486 1853

The Recall rate for the current detector is at a low 20%.

Examples of the ROI generation process are provided below. While there are a

number of successful detections, it is obvious that the results are less than ideal,

given the high miss rate. Despite the high number of generated bounding boxes, there

are cases where vehicles are not correctly detected or misclassified by the SVM

classifier. The reasons for this sub-optimal performance will be explained further. FN

detections in the following images are indicated by red bounding boxes.

Number of ground

truth vehicles: 3

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

Other bounding

boxes correctly

classified as non-

vehicles (0).

127

Number of ground

truth vehicles: 1

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

No FP or TN

detections

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

No FP detections in

the image. Other

bounding boxes

correctly classified

as non-vehicles.

128

Number of ground

truth vehicles: 1

TP detections: 1

One False Positive

(FP) detection in the

image.

The image quality is

severely

downgraded due to

pixelation artefacts.

The vehicle

detection system

should be able to

handle such cases,

where there are

visibility issues,

faulty recordings or

connection issues.

Number of ground

truth vehicles: 2

TP detections: 2

One TN detection in

the image.

The bottom half of

the image is very

dark, making

discerning objects in

it difficult.

Illumination

conditions like this

make it difficult for

a camera system to

operate.

129

Number of ground

truth vehicles: 1

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

No FP or TN

detections

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

1 TN detection in

the image.

The partial vehicle

on the left of the

image not detected

(FN).

130

Number of ground

truth vehicles: 3

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

1 TN detection,

missed detections

not critical for a

safety application.

Number of ground

truth vehicles: 1

TP detections: 1

The vehicle is

correctly identified.

1 FP, 2TN

detections. The ROI

generation module

generates additional

candidate locations

in a structured

environment where

there are more

objects with long

horizontal edges.

131

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

3 TN detections

correctly identified

as non-vehicles.

The long horizontal

overpass is

identified as a

potential vehicle

location, as it is

designed to detect

horizontal edges.

Number of ground

truth vehicles: 1

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

A FP and a TN

detection appear in

the image.

132

Number of ground

truth vehicles: 1

TP detections: 0

The vehicle is not

identified. A ROI is

generated around the

vehicle but contains

a significant amount

of background

information. The

SVM classifier

cannot validate the

existence of a

vehicle.

Number of ground

truth vehicles: 2

TP detections: 0

The vehicle is not

identified. In this

case, the bounding

box is smaller than

the actual vehicle.

Similarly to the

previous case, the

SVM classifier

cannot correctly

identify the vehicle.

133

Number of ground

truth vehicles: 1

TP detections: 0

The vehicle is not

identified. The ROI

generation process

has failed to identify

a vehicle, possibly

because it is unable

to separate it from

its surrounding

environment.

A large number of

bounding boxes

generated in this

image indicate large

horizontal objects.

The classifier

successfully

identifies them as

non-vehicles.

Number of ground

truth vehicles: 1

TP detections: 0

The vehicle is not

identified. A ROI is

generated around the

vehicle but contains

a significant amount

of background

information. The

SVM classifier

cannot validate the

existence of a

vehicle.

134

Number of ground

truth vehicles: 3

TP detections: 1

The vehicle closest

to the ego-vehicle is

correctly identified.

The SVM classifier

fails to identify a

vehicle on the right,

while the ROI

generation module

misses the vehicle

on the left

completely.

The information

sign on the left is

identified as a

potential vehicle

location.

Number of ground

truth vehicles: 1

TP detections: 0

The detector misses

completely the

vehicle on the left

side of image. The

weather is rainy on

this occasion and the

low contrast of the

image is possibly the

reason the vehicle

cannot be separated

from the

environment.

135

The detection results clearly show that this combination of ROI generation and

classification is unsuitable for vehicle detection. While the initial processing stages

of an image show there is potential in using HOG bin orientation as a visual cue for

vehicle detection, the end result does not justify the use of this particular method as

is and needs to be improved in order to become usable.

The additional use of a Canny filter as a segmentation tool to improve the clustering

(see Methodology section 3.2.1 on vehicle-environment separation) of image areas

into objects works but is clearly not enough to produce a consistent result. The

problem lies with the fact that each image requires a different approach in order to

isolate the vehicle from its surrounding environment and there is no universal set of

parameters that works for every image in the dataset. The end result shows, that in

some images the size of the bounding box around the vehicle is smaller than

necessary for a correct classification result, while for others the opposite is true.

It is also apparent that there is a high number of generated ROIs that do not belong to

a vehicle, especially where there are rectangular objects in the background (bridges,

railings, buildings in urban areas). While this is not ideal, the SVM classifiers

manages, in most cases, to correctly classify these objects as non-vehicle with the

only drawback being the additional CPU time required to process these image areas.

The issues discussed here are intensified by the intrinsic limitations of the dataset

used:

• The quality of the images is a limitation factor. While the image resolution is

high enough to extract salient image information, they are all grayscale, thus

immediately limiting the available methods that can be used to detect vehicles.

• Lightning conditions are in many cases poor, with many images being dark or

low contrast, leading to difficulty detecting shadows or separating the vehicle

from its surrounding environment and others suffering from lens flare effect.

Both these issues are common problems associated with camera-based

detection.

136

It is possible that, without the issues mentioned here, vehicle-environment separation

would be better and the detection results improved. However, since the aim is to

build a robust vehicle detector that is able to detect vehicles across different

environment and in different conditions, and not a situation-specific detector, it can

be concluded that this vehicle detector does not meet the requirements set.

5.3 CNN-based vehicle detector results

In the current section, the performance and capabilities of the developed CNN-based

detector models are explored. Each of the CNN models is assessed through

appropriate quantitative metrics while, similarly to the previous section, sample

images are provided and discussed where necessary.

In total, 6 network models with different number of layers and detection parameters

are examined. The first model is used as reference and another five building on the

structure of the base one with modifications that aim to determine which set of

options and parameters maximise vehicle detection performance.

As described previously, the detectors were trained end to end, initially using 5,000

manually annotated images as a base training set, with the detectors re-trained in

successive steps (each step adding 5,000 additional training images) until a total of

20,000 images is used for training. With every image containing two vehicles on

average, the total number of vehicle instances contained is around 50,000. If the

detector was intended to classify multiple objects (multi-class) as opposed to vehicle

only, the dataset would have to increase in size to reflect the need to train on other

objects too. The performance of the detectors is examined at each training step to

determine the effect of using augmented data on the system’s detection ability.

The CNN detectors are evaluated using the same 1,000 image dataset used for the

HOG based detector. The images used for testing are representative of different

environmental conditions and of varying difficulty for an object detector. The results

for the top-performing detector are disaggregated by environment type to identify

potential strengths or weaknesses of the selected detector.

137

The detectors’ output is the locations of vehicles in an image along with the

confidence values for every detection. Since CNN-based detection is a resource

intensive process (run-time on CPU is usually high, with the system requiring a

capable GPU to perform adequately), it was decided to reduce the search window for

vehicles and thus, improve run-time in order to be able to operate in real time.

Essentially, the search window is a rectangle as wide as the image frame, but with

the top and bottom areas removed. The top area is the sky, while the bottom is part of

the car bonnet. The size has been selected so that there no vehicle misdetections.

Figure 5-10 below presents the search area in a sample image:

Figure 5-10: CNN vehicle search window

The performance of CNN-based detectors is commonly measured using the Average

Precision (AP) metric (Huang et al., 2017; Ren et al., 2015; Wei et al., 2019).

Precision (P) is the ratio of True Positive (TP) detections over all object instances in

the detector (True Positives and False Positives) and AP is measured over all

detection results, averaging the precision results at different recall levels. Recall, as

138

mentioned before, is the ratio of true positives to the sum of true positives and false

negatives (FN) in the detector, based on the ground truth.

Precision (P) =
TP

TP+FP
 (5.5)

The AP metric summarises the shape of the precision/recall curve and was first

formalised in the Pascal Visual Objects Challenge (VOC) (Everingham et al., 2010).

At 11 equally spaced recall values Recalli = (0, 0.1, … , 1), the value of AP is:

AP =
1

11
 ∑ Precision(Recalli)Recalli

 (5.6)

Other measures of performance are the Recall and miss rate metrics. In this study,

there are no TN detections, as this is not a classification task but a two-class (vehicle-

background) detector and the test dataset only contains images with vehicle instances.

A detection is considered True Positive (TP) if the Intersection over Union (IoU) of

detected bounding box and ground truth is ≥0.5.

In addition to the above metrics, the Precision-Recall curve (PR curve) is also

indicative of the detector’s performance. The PR curve is plotted by varying the

confidence value. In pattern recognition and information retrieval, precision is the

fraction of retrieved instances that are relevant, while recall (or sensitivity) is the

fraction of relevant instances that are retrieved. Therefore, both metrics are measures

of relevance.

The six models detailed in Methodology section 3.3 are the following:

Model 1 – Reference model (11 layers)

Model 2 – 13 layer structure (64 convolution kernels)

Model 3 – Reference structure with the addition of batch normalisation layers

Model 4 - Reference structure with modified Region Proposal Network

Model 5 – 13 layers structure (M2) with increased learn rate

Model 6 – 16 layer structure with modified number of kernels

139

The AP results for the six CNN models are presented in the table below:

Table 5-5: AP performance for CNN models

 AP performance (%)

No. of training

images

5,000 10,000 15,000 20,000

Model 1

(Reference)

46.53% 54.31% 35.91% 56.35%

Model 2 46.57% 67.01% 67.34% 69.24%

Model 3 43.42% 47.68% 49.11% 36.44%

Model 4 50.66% 54.16% 64.71% 61.67%

Model 5 0 0 0 0

Model 6 76.82% 83.04% 84.64% 85.87%

The results in Table 5-5 reflect the effect of CNN structure change on the final

precision result, as well as the effect of adding training data during the training

process. At first glance, the gradual increase in training data size brings

improvements in detection performance, although that appears to be not true for

some cases. Additionally, the change in structure and the size of the training dataset

affects the model training time, with network model training taking 4-6 days (to

reach 20,000 training images) depending on the complexity of the structure. In any

case, the best-performing model will be selected for further testing, to identify its

weaknesses and finally use it for application in real-time.

Model 1 (Reference)

The reference model, containing 11 layers in total, exhibits relatively low

performance (46.53 %) in the AP metric after training with 5,000 images. The result

is inferior comparable to the performance of other detectors using the Faster R-CNN

method, although that is expected due to the low number of training images used and

the fact that other models are based on architectures pre-trained with a large number

of images (Huang et al., 2017; Lee et al., 2016).

140

The result indicates that there is a large number of FP detections, hence the low

precision score. A sample image with high-confidence FP detections can be seen

below:

Figure 5-11: FP detections in testing image

Detection performance gradually improves as training data is added, with the

exception of the 3rd step (15,000 images) where performance drops significantly.

The drop in precision can be attributed to an increase in FP detections, while the

number of correct detections remains the same.

The final vehicle detector based on the reference model has a 56.35% precision rate,

an almost 10% increase over the base model. The detector does not perform

sufficiently well for any kind of application, safety-critical or other.

Model 2 (13 layer structure with 64 filters for each convolutional layer)

Model 2 benefits significantly from the addition of another convolution layer and the

increased number of filters, as observed by the improved AP score. It confirms that

141

the increased information extracted from the image dataset benefited the detection

process and improved the detector’s generalisation ability. However, the trade-off

was apparent, as the training time required was approximately twice that of the

reference model.

While the detector performs identically in the first training step (46.57% precision),

the jump is quite significant afterwards, highlighting the benefits brought by the

larger dataset. The jump is slightly over 20% during this step and remains relatively

constant, with the 20,000 image detector reaching 69.24% precision.

Using the same sample image as before, it is obvious that the number of FP

detections is now reduced. There is a single FP detection with a low confidence score:

Figure 5-12: Model 2 output image

Model 3 (Reference structure with batch normalisation layers)

The addition of batch normalisation layers offers nothing to the vehicle detector. On

the contrary, their addition seems to degrade the detector significantly. Maximum

142

average precision for this type of models is 49.11% which makes them behave worse

than the base model.

This level of degrading leads to the conclusion that this type of layers is completely

unnecessary and its use should be avoided in the final detector used for application.

The total number of detections (TP+FP) for the 20,000 image model 3 was also high

which leads to the conclusion that there is a very high number of False Positive

detections in order to achieve such a low precision score.

Model 4 (Reference structure with modifications to the RPN to produce a lower

number of ROIs)

This series of models were developed to explore the relationship between detection

performance and run-time, if a modification in the RPN to generate half the number

of Regions of Interest per image (1,000 down from 2,000) impacts the end result and

the detection run-time.

The outcome of this experimentation was that there is no discernible difference in

performance compared to the reference model. In fact, the precision scores appear to

be slightly higher in comparison, with the end 20,000 image model scoring around 5%

higher compared to the respective reference detector (61.67% and 56.35%

respectively).

Detection time was also not affected significantly, with this model being around 5%

faster (time unit is seconds) during detection compared to the reference detector.

The sample image below shows the detected vehicle along with a detection of a

partial vehicle ahead of it:

143

Figure 5-13: Model 4 output image

Model 5 (Model 2 with increased weight learn rate)

This model network was developed with the goal of determining whether a higher

learn rate for the network parameters would lead to a faster/better convergence to the

optimal result.

The learn rates selected for each training stage were part of a process of manually

testing various settings, from which several were proven to be very high and the

Neural Network failed to train. The learning rate for the first two training stages is

set at 5x e-4 (0.0005) and for the fine-tuning stages at 1e-5 (0.00001).

While using these settings the network managed to finish training, the detection

process revealed that the network did not converge (or even diverged significantly)

to a solution and thus, failed to perform its task.

144

Model 6 (16 layer structure with variable number of filters)

This final model of the series proved to be the highest performing out of all the

models tested in this study. The network structure is enhanced by an additional

convolutional layer, a max pooling layer to down-sample the output of the

convolutional layers and differing number of Conv filters for each convolutional

layer).

The vehicle detector trained using the 20,000 image dataset manages to achieve an

Average Precision rate of 85.87% and is by far the best performing model of the ones

tested. Its result is comparable to other state of the art detectors that operate using

deeper networks (containing a much higher number of convolutional layers and

millions of parameters) such as Res-Net, GoogleNet/Inception and others and are

pre-trained using many thousands (or even millions) of image samples (Jia Deng et

al., 2009).

By comparison, this is a single-purpose detector tasked only with detecting vehicles

and not multi-class detectors/classifiers and therefore, does not require the deep

structure or million training samples as the aforementioned high-performance (and

complexity) Neural Networks.

Since this is a detector trained end to end and given the size of the training dataset,

the selected network depth is sufficient to avoid potential overfitting issues. That

means that the detector retains its generalisation ability and performs well with new

data. Overfitting in a network means that its parameters are tuned to the training data

to such an extent, that instead of learning the complex relationships in the data

structures, it memorises them. When overfitting occurs, the network appears to

perform well but, when encountered with new, never seen before data, its actual

performance is significantly lower.

The performance of the model will be examined in more detail below:

To evaluate the performance of a vehicle detector, especially when used in safety-

critical application there a few key points that need to be considered:

145

• The most important issue in vehicle detectors used in safety-critical

applications is the number of False Negative (FN) or missed detections. For a

Collision Avoidance system, that is the difference between safe and unsafe

conditions. Unsafe conditions can lead to the vehicle colliding with other

vehicles or objects in general, posing a risk for fatality or injury or even

property damage. The highest priority would be to minimise the number of

missed detections in a Collision Avoidance System.

• A good object detector is able to identify only relevant objects quickly

(producing a low number of FP – high precision) while at the same time find

all ground truth objects (low number of FN - high Recall). Usually there is a

trade-off between precision and recall, as it is necessary to increase the

number of detected objects in order to find the ground truth objects. The

Precision/Recall curve helps visualise this trade-off. The higher the curve

(precision) as Recall increases, the better the detector performs its task.

• False Positive (FP) detections are important as they are False Alarms,

indicating the presence of a vehicle when there is not actually one there.

They are however, less important than missed detections (FN), as they pose a

real danger to the vehicle.

146

Figure 5-14: Model 6 Precision/Recall curve

The 1,000 image testing dataset contains a total of 1,853 ground truth vehicle

instances. The detector manages to detect a total of 1,837 vehicles, with 16 missed

detections (FN) across the whole dataset.

The miss rate for the dataset is very low, at 0.008 while Recall at this rate is

approximately 0.991 (99.1%).

Sample images of the detector output can be seen below:

147

Figure 5-15: Model 6 output images

To evaluate the robustness of the detector irrespective of traffic environment, the

dataset was disaggregated by environment type (Urban, Motorway and Rural) and

the precision was calculated for each type.

Even though the splitting the dataset into the 3 categories does not produce equally

sized subsets, there is a good indication of performance by environment type. The

number of images per type is:

148

• Urban: 461 images

• Motorway: 373 images

• Rural: 166 images

Table 5-6: Precision by environment type

The results demonstrate a robustness of the detector irrespective of operational

environment. The difference in precision for each type is negligible and consistent

with the overall result. A good indication of strong performance is the precision for

the urban environment (86.66%) which is considered the most challenging, given its

density. Given that the highest number of FP detections are expected in urban

environments, the results show promise that the vehicle detector can handle difficult

conditions well.

To summarise the results, the vehicle detector achieves a high Average Precision

score (85.87%) which indicates a low number of FP detections. It also achieved a

very low miss rate (0.8%) which indicates that almost all vehicle instances are

identified in a scene. Additional testing validates its performance across all

operational environments tested, with similarly high AP scores.

Missed detections

The CNN detector’s missed detections (FN) are presented over the next few pages.

In total, only 16 vehicles were not identified across the whole dataset (1,853 vehicle

instances). FN detections are indicated by red bounding boxes:

Environment type Urban Motorway Rural Average Precision (total)

Model 6 (20K images) 86.66% 85.53% 85.56% 85.87%

149

Number of ground

truth vehicles: 3

TP detections: 2

The vehicle closest to

the ego-vehicle is

correctly identified.

The lorry on the left is

included in the ground

truth vehicles but is not

detected. It poses no

threat though due to its

distance from the ego-

vehicle.

Number of ground

truth vehicles: 3

TP detections: 2

The vehicle closest to

the ego-vehicle is

correctly identified.

The vehicle on the

right side of the image

(opposite direction) is

included in the ground

truth.

It is far from the

vehicle so there is no

threat present.

150

Number of ground

truth vehicles: 3

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

A vehicle and a lorry

are not detected (both

are part of the ground

truth).

No threat present.

A partial vehicle on the

opposite direction is

detected.

Number of ground

truth vehicles: 3

TP detections: 2

The vehicle closest to

the ego-vehicle is

correctly identified.

The detector does not

manage to detect a

small white van.

No threat present.

151

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The vehicle ahead

(same lane) is not

identified by the

detector.

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The vehicle on the

right hand side is not

detected.

A FP detection in the

image and an

additional detection

that should have been

suppressed.

152

Number of ground

truth vehicles: 3

TP detections: 2

The vehicle closest to

the ego-vehicle is

correctly identified.

The lorry on the left

side of the image is not

detected.

There are additional

detections (vehicle

partials) that do not

belong in the ground

truth.

No threat present.

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The vehicle in the

same lane is not

detected.

The lighting conditions

are challenging (dark

image).

No threat present.

153

Number of ground

truth vehicles: 1

TP detections: 0

The vehicle in the

image is not identified.

The lighting conditions

are especially

challenging for the

camera.

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle on the

oncoming direction is

identified.

The vehicle in the

same lane is not

detected

154

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The lorry is not

detected.

No threat present.

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle on the left

is identified, although

its irregular shape is a

challenge for the

detector.

The vehicle on the

right is not identified

due to the condition of

the road.

155

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The lorry ahead is not

identified.

No threat present.

Number of ground

truth vehicles: 2

TP detections: 1

The ahead is detected

but an additional

bounding box exists.

The vehicle on the

right is not detected.

No threat present.

156

Number of ground

truth vehicles: 2

TP detections: 1

The vehicle closest to

the ego-vehicle is

correctly identified.

The lorry that is far on

the left is not

identified.

No threat present.

Detection results for an independent dataset

To further validate the performance of the produced vehicle detector, additional

independent data were used to test the detector. The average precision was calculated

for two short dash cam videos with characteristics different to the data used to train

and test the vehicle detector.

The two dash cam videos from the Caltech LISA vehicle dataset were used. Both

videos are colour and of different resolution than the data (704x480) (Sivaraman and

Trivedi, 2010).

The AP for vehicle detection calculated for the two sample videos is 0.8204. To

visualise the result, the Precision/Recall curve was plotted in Figure 5-16 below:

157

Figure 5-16: Precision/Recall curve for dash cam videos

Sample images from the test utilising independently collected data are presented in

Figures 5-17 and 5-18 below:

158

Figure 5-17: Detector output for dash cam video - Sunny

Figure 5-18: Detector output for dash cam video – Urban

159

5.4 Summary of results

This chapter presented the results of the two methods developed to detect vehicles on

the road. The first method follows a traditional image processing approach for

detection, where specific visual features are identified in an image to generate

potential vehicle locations and then a classifier verifies the existence of a vehicle in

the image. The method proposed here attempts to utilise the gradients produced by

the extraction of HOG features to detect horizontal edges and through them, generate

the desired Regions of Interest (ROIs). The produced ROIs are then passed on to a

SVM classifier that decides whether a vehicle is present or not. Three SVM

classifiers were trained using 7,639 images. Two of them were trained on a linear

and F.Gaussian kernel on 128x128 pixels image patches, while the third one was

trained on a linear kernel at 256x256 resolution images. The performance of the

particular method, when tested on a 1,000 image test dataset, was found lacking.

While the selected SVM classifier performed as expected, the ROI generation

method failed to generate ROIs robustly enough to be used effectively as part of a

vehicle detection system. The detection rates were low, resulting in a high number of

missed detections that do not allow the developed system to be used in any kind of

automotive application.

For the second method, six different CNN networks were developed, each with its

own network depth and settings. All of them are based on the Faster RCNN

architecture, where an RPN that generates ROIs is incorporated into the network,

negating the need to generate candidate locations externally. All models were trained

end to end, without the use of pre-trained networks, using own collected data. It was

attempted to identify which network model performed the best in terms of detection

precision and produced the lowest number of missed detections as possible, given

that the available training dataset was limited. The models were trained gradually in

four steps, where each step added additional training images. Starting at a low of

5,000 image samples, until a maximum of 20,000 images was reached in the final

step, performance gains were observed. The 5,000 base images were collected and

annotated manually and an augmentation method was used to increase the training

dataset size.

160

The same 1,000 image dataset containing images from various environmental

conditions was used for testing. One of the detectors tested produced good results,

with good precision and high detection rates, only missing a low number of vehicles

across the testing dataset. To validate its performance, it was tested on an

independent dataset, consisting of images from dash cam videos. The detector

produced good results on that dataset as well, demonstrating its capabilities as an

effective vehicle detector.

The main finding of this testing process was that an efficient vehicle detector can be

developed without the use of vast amounts of data or complex architectures. It is of

course expected that in a Neural Network, the increase in training data will improve

results and detection performance, though even with small datasets, vehicle detectors

aimed at specific applications can be produced.

161

6 Application of the Detector and Discussion

6.1 Introduction

This chapter discusses the outcomes of the development process and examines the

performance and application of the highest-performing vehicle detector presented in

Chapter 5. The second section discusses the detectors developed using the two

different approaches while sections 3 and 4 examine the performance of the detector

which is the most suitable for application.

 The highest-performing CNN-based detector (Model 6, AP = 85.87%, high recall

rate) is examined with respect to its application for developing different safety

surrogate measures. It should be noted that any potential application involving

vehicle detection shall have the lowest miss rate and lowest number of generated

False Positive (FP) detections. The detector developed using the traditional image

processing approach (HOG+SVM combination) is excluded from this test, as it

under-performed and is therefore completely unsuitable for any kind of application.

6.2 Discussion on vehicle detection models

The main part of the thesis was dedicated to exploring two approaches to vehicle

detection and identifying the best solution for real-time implementation. Initially, the

combination of HOG features and SVM classification that has been successfully used

before for pedestrian and vehicle detection was modified in an attempt to improve its

efficiency and run-time performance. Instead of using an established method for

generating vehicle candidate locations such as sliding windows (brute force approach

that generates numerous proposals), EdgeBoxes or Selective Search (that reduce the

number of generated proposals), ROI generation was based on the output of HOG

feature extraction. The HOG feature vector is processed to identify regions that

contain strong horizontal elements. The concept behind this was to use high-level

features for ROI generation, coming from a process commonly used in the

classification process.

162

The results from this first method indicate that the developed vehicle detector does

not perform adequately to be considered for any kind of application. In many cases,

the ROI generation method does not generate the appropriate candidate locations and

therefore the results are poor with many missed detections. The recall rate for this

detector is low, at 20% while the number of FP detections is also high. The detector’s

main issue is the lack of effective vehicle-environment segmentation, resulting in

erroneous candidate locations. This problem is particularly apparent in environments

with poor lighting conditions or complex and cluttered environments such as urban

areas, where objects are either difficult to discern or exhibit strong horizontal edges

respectively. The main finding from the use of this particular method to generate

candidate locations is that using this kind of aggregate information (horizontal edges

based extracted from HOG bins), coming from a previous processing step (HOG

vector) is not sufficient to produce a working result. Too much information is lost in

the process and without a doubt, an additional visual cue is required to generate

vehicle candidate locations robustly.

To test the CNN-based approach, six network models based on the Faster RCNN

architecture were developed. The choice of architecture is justified by the all-around

good performance of Faster R-CNN, which has no inherent disadvantages (with

other architectures such as YOLO or SSD struggling with small objects and

producing localisation errors). Compared to other architectures, it is slower in run

time, but can be modified to achieve real-time performance. The first model served

as a base upon which the other five were built. Each of the models tested introduces

another element that affects detection performance. That is either modifying the

network size or modifying a parameter that impacts performance and detection speed.

The common elements across all tested models are:

• The models were trained end to end, without making use of pre-trained

network structures

• Limited amount of training data available (5,000-20,000 images for each

model), which is low in comparison to existing databases. Data augmentation

was used to overcome this limitation

163

• The RPN structure is common across all examined network models and is

based on the Faster RCNN architecture. The feature extraction part of the

CNN is different (different number of layers), but for all models, it is not as

deep as other CNN detectors.

The results for each model present the effect each of the modified parameters has on

detection performance:

• Using batch normalisation did not benefit detection performance at all,

instead producing inferior results.

• Modifying the output of the RPN network produced improved results by

about 5% compared to the base model at 20,000 training images.

• Modifying the learning rate for training the network without the use of an

optimiser can have unexpected results. In this case, the network did not

manage to converge and failed to produce a working detector.

The highest performing detector (AP = 85.87%, low miss rate) is a simple structure

that performed well on the test dataset. No inherent problems were identified, with

the detector managing to perform well under all examined environments (motorway,

urban, rural), in both simple and complex scenes containing multiple vehicles. The

results were validated on an independent dataset, thus proving the effectiveness of

this simple structure in a specific task.

The results demonstrate that, for a given task (in this case vehicle detection), a

simple well-structured network can perform better even when the available data is

limited. The dataset size deficiency can be overcome by augmenting the dataset

using the translation method proposed here (see section 4.4 on Data collection and

pre-processing). The research here does not overlook the benefit of using deeper

structures or transfer learning for complex tasks such as multi-class identification.

Instead it provides an alternative solution to vehicle detection, especially when there

are limitations in the quantity and quality of data.

164

6.3 Discussion on the processing time

The highest performing CNN-based detector (Model 6) was tested on an Intel i7

desktop computer, equipped with 16GB of RAM and an Nvidia GTX1080 GPU. The

detector was developed and tested on Matlab 2018a without any software

optimisations. The use of a fast GPU accelerator is required for training and testing a

Deep Neural Network (DNN) and currently, even top of the line CPUs are unable to

perform as good as even moderately powered GPUs. CNNs’ training and inference

are processes made up of numerous simple mathematical operations that take

advantage of the hundreds of simple processing cores in a GPU. By comparison,

CPUs contain few very complex cores, designed to handle complex tasks, making

them unsuitable for CNN training and inference.

The CNN detector was tested on a series of short video streams. Processing the video

files includes converting the video into frames, running the vehicle detector, saving

the output frames and creating an output video file. The reported processing time

therefore, does not include the detection process solely, but every associated image

processing operation. The resolution of the video files is 512x512 pixels (same as the

training data) but, similarly to the testing process, the search window is limited in

size (height of the search area is 300 pixels) without any impact on the detection

accuracy. The effective search area does not include the bottom and top parts of the

image (vehicle and part of the sky) where no vehicles are located. The size of the

search window can be seen in Figure 6-1 below:

165

Figure 6-1: CNN detector search space

The average processing time for each image frame in the videos is 90ms. The system

frame rate is therefore around 11.1 FPS.

Table 6-1: Run-time performance 1

 Average time per frame System FPS

Model 6 (16 layer CNN) 90ms 11.1 FPS

There are many possible ways to improve run-time performance. By adjusting the

search space just slightly by 50 pixels in height, the improvement in speed is around

7%, bringing the system’s speed at 12FPS. The new search space can be seen in

Figure 6-2 below. The road is still completely covered by the area where the detector

operates:

166

Figure 6-2: Reduced search space

Table 6-2: Run-time performance 2

 Average time per frame System FPS

Model 6 (16 layer CNN) 84ms 12 FPS

It is obvious from the results that the developed detector is not the fastest CNN-based

detector, especially compared to detectors developed using the YOLO (Redmon et al.,

2016) or SSD (Liu et al., 2016) models. However, the result is a detector that

performs well with good accuracy and low miss rate at a good speed for

implementation. In addition, there is room for improvement in speed, given that the

code is unoptimised and written in a high-level language such as Matlab as opposed

to using a dedicated framework for CNNs such as Caffe (Jia et al., 2014).

167

Ways to improve run-time performance:

• Transfer detector to a dedicated framework for Neural Networks, such as

TensorFlow, Caffe or Keras. These frameworks contain tools and software

libraries useful for the development of Neural Networks, offering the

opportunity to develop advanced models in an efficient way.

• Implement adaptable search space process to speed up detection. By

identifying the operational conditions, an algorithm could dynamically

modify the search window to reduce the computations required for fast

detection. A fixed size search window was implemented in the present thesis.

• Optimise processes not directly related to the CNN detection (image pre-

processing). Unoptimised software code can impact the run-time operation of

the vehicle detector. Streamlining the pre-processing stage can yield

improvements in run-time operation.

• Transfer the developed vehicle detector to a platform optimised for Intelligent

Vehicle applications (FPGA platforms or embedded systems). FPGA

platforms are flexible hardware configurations that can be optimised to run

CNNs for vision based applications. Exploring these hardware options is not

in scope of the present work.

6.4 Potential application of the detector

This section explores the possibility of using the developed vehicle detector to

estimate the longitudinal distance from other vehicles for use in a safety application

such as Adaptive Cruise Control (ACC) or Autonomous Emergency Braking (AEB).

Accurate estimation of range offers the possibility to calculate safety surrogate

measures such as TTC (Time to Collision) or distance to collision which is a key

variable in most vehicle-based active safety systems.

To estimate the distance, a simple perspective geometry calculation takes place. It

does not offer the accuracy of more advanced methods or systems, but it serves as a

good indication of the errors associated with range measurement using a single

monocular camera. Such camera systems do not possess the capability for direct

168

range estimation that other systems such as radar or stereo cameras have and

therefore, advanced methods are required to compensate for this deficiency.

The system is tested in short video clips (5-10 seconds each, up to 150 frames) where

the ego-vehicle travels on the M1 motorway. The distance between the ego vehicle

and the target vehicle varies and changes through time. During the same data

collection trips, radar data were also collected. This radar data is used here as ground

truth, to compare the accuracy of the camera and radar systems. The camera and

radar data were synchronised (15FPS and 15Hz respectively) to provide an accurate

comparison.

Table 6-3: Range estimation for camera and radar

 Video 1 Video 2 Video 3 Video 4

Radar range

(avg)

29.53m 29.99 m 27.45 m 27.92 m

Camera

range (avg)

28.79 m 27.20 m 28.13m 55.59 m

Camera

range (min)

21.74m 19.19 m 14.85 m 40.55 m

Camera

range (max)

43.23m 46.28 m 41.28 m 71.5 m

Max

deviation

16.43m 17.48 m 13.68 m 44.6 m

169

Video clip 1 – Both target and ego vehicles travel in the middle lane of the

motorway.

Figure 6-3: Range estimation - Video 1

The distance between ego and target vehicle decreases at a slow rate (the longitudinal

distance measured by the radar is used as ground truth). The range estimated by the

camera is not consistent but deviates significantly from the radar readings. The

maximum difference between camera and radar is 16.43m.

170

Video 2 – Target and ego vehicles in the middle lane of the motorway. Target

vehicle decelerates and changes lane.

Figure 6-4: Range estimation - Video 2

The distance between ego and target vehicle decreases at a slow rate. The range

estimated by the camera is not consistent but deviates significantly from the radar

readings and tends to overestimate the longitudinal distance. The maximum

difference between camera and radar is 17.48m.

171

Video 3 – Ego vehicle in the middle lane of the motorway. Target vehicle on the

right lane increasing speed.

Figure 6-5: Range estimation -Video 3

The distance between ego and target vehicle increases at a slow rate. The distance

between the two vehicles is overestimated by the camera. The maximum difference

between camera and radar is 13.68m.

172

Video 4 - Ego vehicle follows a target vehicle in the middle lane of the motorway.

Figure 6-6: Range estimation - Video 4

The distance between ego and target vehicle remains relatively constant. The

distance between the two vehicles is greatly overestimated by the camera. The

maximum difference between camera and radar is 44.6m.

It is clear from the graphs that the camera system does not produce consistent range

measurements. While it is expected that a camera would be less accurate compared

to the radar system, there are a lot of inconsistencies in the camera’s produced

measurements. The reason for this is the various limitations of measuring

longitudinal distance with a monocular camera using only simple homography:

• The camera system returns the centre location of the bottom of the detector’s

bounding box. It is only able to accurately compute distances along the

surface of the road. If the vehicle detector successfully detects the vehicle

173

ahead but the produced bounding box is slightly higher, the vehicle is

assumed to be further away than it actually is. This is the reason for the

spikes in the graphs. So while the detection is successful, the range

measurement is not. Computation of an arbitrary location in 3D space

requires a stereo camera system or another type of sensor (such as radar).

• The conversion between the camera coordinate system and the real world

coordinates assumes a flat road. Roads that are not flat introduce errors in the

computation, with the error increasing the higher the distance.

• The range measurement system would produce more accurate results by

using a more sophisticated method, either accounting for the error in

measurements and including the distance rate change in the computation or

by using tracking (for example a Kalman filter) to estimate the actual distance

instead of measuring range from a single snapshot.

The difference is range estimation between radar (used as ground truth) and camera

is simply too large. The system cannot be used for TTC calculation as is; and cannot

be used for anything else other than as a sanity check (to actually see that distances

that make some sense can be calculated). The method is simple and the limitations

too many for this to be used in a safety application.

6.5 Discussion summary

This section discussed the results presented in Chapter 5 and tested the suitability of

the highest performing detector for real-time application. Regarding the detection

performance of the examined detector, the metrics used to evaluate CNN-based

detectors indicate a very good model (high AP, low miss rate). The employment of a

simple architecture, trained end to end with a limited amount of data manages to

produce results that are comparable with state of the art detectors for this specific

task (vehicle detection). The discussion of run-time performance indicated that the

produced vehicle detector, while not as fast as other state of the art object detectors

(YOLO, SSD) still manages to perform well despite a lack of significant

optimisations. The gap in speed between the proposed detector and other models is

due to the structure of the Faster R-CNN architecture and the way detections are

174

generated. Any discussion about performance should acknowledge the limitations of

each architecture and that there is a trade-off between accuracy and speed. The

potential for improvements is there though, to achieve an improved detection speed

using the proposed model. Finally, the simple distance calculation highlighted the

inherent issues with estimating distance using a monocular camera. The lack of any

error correction results in significantly inferior results compared to the more accurate

camera system.

175

7 Conclusions

7.1 Introduction

Vehicle collisions are one of the most significant problems in transport, as they are

one of the leading causes of deaths and injuries around the world. Collisions are

attributed on environmental, vehicle and human factors, with human errors (either

recognition, decision or performance errors) being the dominant causation factor of

accidents.

To mitigate the effect of human errors in accidents, the automotive industry is

moving towards removing the human element from driving. Research from both

industry and academic institutions is heavily invested in bringing every necessary

component (hardware, software, methods) together to reach that stage where a

human driver is not required to handle any driving-related task. Either by revolution

(going from 0 to full autonomy via high-tech solutions) or evolution (slowly

improving and automating driving functions until full autonomy is achieved), soon

human driving behaviour will no longer be a liability and a threat to safety.

A safe trip with an Autonomous Vehicle is ensured by the presence of an effective

CAS, which ensures all potential threats ahead of the vehicle are correctly identified

and every danger avoided. Usually, AVs use multiple sensors to scan the surrounding

environment, collect information and detect targets; and that means that the hardware

cost and system complexity is high. Data from multiple sensors (active and passive)

need to be collected, processed and fused together to confidently produce an accurate

detection along with its classification as pedestrian, vehicle or other object.

This research focuses on the task of vehicle detection and attempts to produce an

accurate vehicle detector based on the data coming from a single low-cost monocular

camera. Current literature regarding the subject of object detection using vision

systems favours two approaches. The first one follows traditional image processing

principles where specific visual cues identifying potential targets are sought for in an

image and then a classifier trained with relevant data is used to verify each object’s

class. The second approach uses a specific type of Neural Network modified to

176

process image data, the CNN, to unify the detection pipeline (ROI generation and

classification) in a single process. While this approach was introduced some years

ago (LeCun et al., 1989), the high computational requirements and need for large

amounts of data meant that only the last few years has it been made a viable option

for object detection, with a rise in computing performance and deep learning making

it possible.

The data used for this research were collected using Loughborough University’s

instrumented vehicle. Both training and testing data were manually annotated with

ground truth labels while radar data were used as ground truth for the camera’s range

measurements. The relevant literature on object detection does not usually follow

this approach. Particularly for CNN-based detection, readily available datasets are

preferred over processing raw data; in addition to using transfer learning (pre-trained

CNN networks) as opposed to training a new network from scratch. The reason for

this is the effort required to collect and manually annotate large amounts of data and

also possibly, a concern that the amount of data collected will not be sufficient to

efficiently train a network end to end.

This PhD can serve as a guide to developing object detectors using end to end

training. It demonstrates that, for specific applications, complex structures or the

reliance on out of the box solutions are not a requirement. An alternative and

efficient solution to vehicle detection, especially when there are limitations in the

data, is proposed here.

Additionally, the developed detector can be used as a base for more complex tasks

such as TTC calculation for a CAS. The simple calculation performed here gives

only a rough estimate of range, but it can be improved by accounting for range error

and indicates that a complete CAS is possible using a camera sensor.

177

7.2 Achieving the aim and objectives

To achieve the aim of this study, which is the development of a reliable vehicle

detection system based on a monocular camera, the following five objectives were

necessary to be accomplished. This section presents these objectives and discusses

how they were met in the thesis.

Objective 1: Investigate existing vision-based approaches to vehicle detection.

An extensive and critical literature review was conducted in Chapter 2 focusing on

vehicle detection using a monocular camera. More specifically, the review explores

both the traditional image processing approach to detection as well as the CNN-

based approach with the stages and findings of each approach being discussed.

Objective 2: Identify the methods most likely to produce the desired performance,

given the limitations of existing methods.

Based on the literature review, the methods most likely to produce the highest

detection performance were identified. Both approaches to detection are explored in

this thesis by developing different detectors, one based on the mature method of

using HOG features and SVM classification in an attempt to optimise it; the second

based on high-performance CNN architecture. Instead of following the traditional

approach though, where pre-trained networks are used, the detector is trained end to

end with own collected data.

Objective 3: Collect, synthesize and process the data required to develop a vehicle

detector

The necessary data for training and testing the developed detectors were collected

using Loughborough University’s instrumented vehicle. The data used in this

research are camera data representative of traffic in various operational environments

(urban roads, motorway, rural roads) as well as radar data used as ground truth for

range measurements. Processing the data included manual annotations and ground

truth labels for image data as well as using data augmentation to increase the size of

178

the dataset. The process of collecting and processing the data is described in Chapter

4 of this thesis.

Objective 4: Develop a robust and high-performing vehicle detector based on a low-

cost monocular camera

The operation of the HOG-based detector is described, and a new ROI generation

method is proposed for use with a traditional SVM classifier. For the CNN-based

approach, six models are developed in total, each modified in structure or parameters

in order to determine the highest performing vehicle detector. The development

process of the camera-based detectors is detailed in Chapter 3 (Methodology).

Objective 5: Assess and validate the performance of the developed vehicle detector

The performance of all developed detectors was assessed using appropriate metrics

established in the literature. The goal was to determine which detector performed

more effectively in terms of detection rate and number of missed or false detections;

this detector was further tested to assess its suitability for real time applications

(Chapters 5 and 6).

7.3 Contribution to knowledge

The results of this work have produced outcomes that can be used as insight when

developing CA systems. The main contributions to knowledge of this research are:

1. Network complexity – performance relationship

This research has examined the role of network depth and end to end training in

feature extraction for CNN based detection. Relevant research on the topic of object

detection relies on deep network structures for feature extraction. The outcomes of

this analysis indicate that a structure with relatively few layers and filters can

perform well when faced with a specific task. More specifically, the results indicate

that enough descriptive information is generated by the network to correctly classify

vehicles in images. This does not contradict the common practice of using pre trained

179

networks for feature extraction, but merely indicates that another option is available

for performing a given task.

Looking forward, this finding shows the potential of using multiple CNNs for

different tasks, each assigned to perform a specific function. To provide an example,

in a vehicle system, different CNNs could be assigned each of the following tasks:

object detection, navigation and range estimation, monitoring and tracking. This is an

approach gaining traction in hardware systems designed to handle multiple CNNs

concurrently, where the performance of each CNN in its task does not affect another

handing a different task.

2. Significance of dataset size on detection performance

One of the most significant factors affecting CNN performance is the size of the

training dataset. The classification/detection performance of deep NNs increases as

the number of observations increases. In comparison, classifiers such as SVMs do

not benefit from an increase in data after a point. For this research, a dataset limited

in size was used to train the CNN network. 5,000 images were used initially; data

augmentation and iterative training allowed each CNN model to reach 20,000 images.

Compared to databases such as ImageNet, containing around 374,000 images for the

vehicle class category and even smaller databases such as Stanford University’s Cars

dataset containing over 16,000 training images (8,144 used for training), the size of

the initial dataset in this study is considered small.

Still, the final detector model developed manages to perform well (AP = 85.87%,

low miss rate) and complete its task successfully. The increase in detection

performance occurs during the jump for 5,000 to 10,000 images. After this point,

performance gains are smaller. This indicates a limit to the effectiveness of data

augmentation. It should be expected that after the 20,000 image step, the gains will

be minimal without the use of new data.

The detection performance of the last model indicates a good balance between

dataset size and network depth and is something to consider in the design of CNN

180

architectures in the future. An imbalance between dataset size and network can lead

to problems such as overfitting when the network is deep and the dataset small.

7.4 Study limitations

This research presented in this thesis does not come without its limitations. The most

important of them are outlined below:

• Dataset size limitations: The data used in this study come from several data

collection runs using an instrumented vehicle. Collecting data this way

provides practically unlimited raw data (camera and radar) that can be used.

However, the need to process them and provide the required ground truth

information (positive and negative training samples for SVM training, ground

truth coordinates and labels for CNN training) can be an extremely daunting

task, one that practically has no end as the influx of data is constant. While

SVM classifier performance is not affected by the amount of data after a

point, the same does not apply for CNN training. NN performance benefits

with the addition of training data, which is why NNs are used to process big

data. Automatic labelling is possible is some cases, though in this study it

proved to be ineffective. The original training dataset size was 5,000 images

with data augmentation used to artificially increase the size to 20,000 images.

This limit was selected due to concerns that after this point, the same images

would be fed to the network.

• Data quality: Image data was grayscale and in many cases in poor lighting

conditions. This introduces some constrains as to which methods can be used

to process the images. It also means that a robust detector trained under these

limitations should perform better under more favourable conditions.

• Performance of transfer learning approaches: The performance of the

developed CNN based detector was not compared to a transfer learning

method. Using the same dataset, it would be possible to fine-tune a deeper

pre-trained network for feature extraction. However, the focus of this

181

research was end to end training and the produced vehicle detector produced

good results nonetheless.

• Detector transferability: The performance of the detector was evaluated on

an independent dataset collected from driving trips. The detector performance

has not been evaluated using the benchmarking challenges that are available,

an example of which is the Pascal VOC challenge (Everingham et al., 2010).

Benchmarking the detector in the vehicle class category of such a challenge

would enhance the results and give a better picture of the detector’s potential.

It has to be stressed however, that the detector has been tested with

independent dash cam videos with success, which is a good indicator of its

performance in a CA system. By comparison, the images contained in such

benchmarking challenges are not directly relevant to vehicle detection in real

world scenarios.

• Optimal CNN architecture: The search for an optimal CNN architecture is a

non-trivial task. Experimenting with layer depth and width, layer sequence

and parameter optimisation is essentially a never ending process. This study

identified a layer structure and a set of parameters that, given the limitations

in dataset size, offers a good balance in detection performance and run-time

speed. It does recognise however, that there is potential to improve

performance by further adjusting network parameters.

• Range estimation: Range estimation is based on simple perspective

geometry from the calibrated monocular camera. This introduces significant

deviation from the radar measurements used as ground truth. For this study,

range estimation is mainly used as sanity check, to identify in which cases the

estimation is particularly problematic and where the measured distance is

closer to the real value. Introducing a more complex calculation or a tracking

function would increase the accuracy of the measurement.

182

• Generated bounding box size: The CNN detector generates bounding boxes

of variable size along with class probabilities. While this is not an issue for

vehicle detection, it introduces additional error during the range estimation

process as the position of the box affects the measurement. It is possible that

the introduction of fixed size bounding boxes will increase the accuracy of

the range estimation.

• Software limitations: The detector models were all trained and tested on a

high-level language such as Matlab. Irrespective of hardware improvements,

optimising the code and using a dedicated framework should improve run-

time performance.

7.5 Extensions and suggestions for future research

The work presented in this thesis can contribute to the further improvement of object

detection methods. While the final detector developed here is task specific to vehicle

detection, the approach to its development can be extended to generalised object

detection. Building robust detectors using end to end training with the use of data

from a low-cost sensor system is possible, even with limited amounts of data.

Considering the limitations presented in the previous section, there are some

improvements that can be implemented to improve overall performance and

functionality.

The current detector is dedicated to vehicle detection and the proposed structure suits

the particular application well. It would be useful to add functionality by using this

simple network structure to detect other object classes such as pedestrians and

cyclists. This would further validate the approach of using simple CNNs and not rely

completely on transfer learning.

Improving detection performance would require additional training data. Since

manually processing data to train a classifier or CNN is a demanding task, the option

to use simulated data could be explored. The advance in graphics engines during the

last few years indicates that simulated data can now be used for this purpose, with

183

the potential to solve the issue of generating the large amounts of data required for

deep learning.

Range estimation can be improved by accounting for distance error in the calculation.

Calculating the distance error rate or implementing a tracking filter to limit extreme

errors can significantly improve the measurements and provide a robust alternative to

using additional sensors for this task.

Run-time performance can be improved further by implementing various methods.

Optimising the search area dynamically instead of using a static window would yield

significant speed benefits. Identifying the bottlenecks and improving the structure of

the RPN (proposal network) is also a priority, as this stage is one of the most

processor intensive of the detection process. One of the most significant upgrades

would be to transfer the developed CNN detector onto a hardware platform

optimised for CNN inference. Such lower power platforms are becoming available

and their combination with low-cost sensors such as cameras would drive mass

adoption of CA systems.

Finally, optimising and assessing a CNN detector’s performance is a constant

process and should continue beyond this study. Through this, it will become possible

to develop a high-integrity system, for use in any kind of safety critical ADAS

application.

184

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A. (2010) SLIC superpixels. Lausanne.

Alencar, F.A.R., Rosero, L.A., Filho, C.M., Osorio, F.S., Wolf, D.F. (2015) Fast

Metric Tracking by Detection System: Radar Blob and Camera Fusion. In 2015 12th

Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on

Robotics (LARS-SBR). pp. 120–125.

Baek, J.W., Kwon, K.-K., Lee, S.-I. (2014) Mono-camera based Vehicle Detection

Using Effective Candidate Generation. In IEEE International Cpnference on

Software Engineering. Hyderabad, India, pp. 1–2.

Ballesteros, G., Salgado, L. (2014) HISTOGRAMS OF ORIENTED GRADIENTS

FOR FAST ON-BOARD VEHICLE VERIFICATION. In International Conference

on Image Processing (ICIP). Paris, pp. 1638–1642.

Belongie, S., Malik, J. (2000) Matching with shape contexts. In in Proceedings -

IEEE Workshop on Content-Based Access of Image and Video Libraries, CBAIVL

2000. Hilton Head Island, South Carolina, pp. 20–26.

Bensrhair, A., Bertozzi, M., Broggi, A., Michc, P., Mousset, S., Toulminet, G. (2001)

A Cooperative Approach to Vision-based Vehicle Detection. In 2001 IEEE

Intelligent Transportation Systems Conference Proceedings - Oakland (CA), USA -

August 25-29, 2001 A. pp. 207–212.

Berlin Team, Gunnarsson, K., Simon, M., Wiesel, F., Ruff, F., Wolter, L., Zilly, F.,

Ganjineh, T., Sarkohi, A., Ulbrich, F., Latotzky, D., Jankovic, B., Hohl, G.,

Wisspeintner, T., May, S., Pervölz, K., Nowak, W., Maurelli, F., Dröschel, D., Iais,

F.G., Augustin, S. (2007) Spirit of Berlin : An Autonomous Car for the DARPA

Urban Challenge Hardware and Software Architecture. , 1–25.

Bertozzi, M., Bombini, L., Cerri, P., Medici, P., Antonello, P.C., Miglietta, M. (2008)

Obstacle detection and classification fusing radar and vision. In in Intelligent

Vehicles Symposium (IV). Eindhoven, pp. 608–613.

185

Betke, M., Haritaoglu, E., Davis, L.S. (1997) Highway scene analysis in hard real-

time. In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC.

Boston, pp. 812–817.

Bishop, C.M. (2007) Pattern Recognition and Machine Learning. M. Jordan, J.

Kleinberg, & B. Scholkopf, eds. Cambridge: Springer.

Broggi, A., Cerri, P., Debattisti, S., Laghi, M.C., Medici, P., Panciroli, M., Prioletti,

A. (2014) PROUD – Public ROad Urban Driverless test : architecture and results. In

In IEEE Intelligent Vehicles Symposium (IV). Dearborn, Michigan, pp. 648–654.

Burlet, J., Dalla Fontana, M. (2012) Robust and efficient multi-object detection and

tracking for vehicle perception systems using radar and camera sensor fusion. IET

and ITS Conference on Road Transport Information and Control (RTIC 2012), 24–

24.

Canny, J. (1986) A computational approach to edge detection. IEEE transactions on

pattern analysis and machine intelligence. 8(6), 679–698.

Chan, Y.-M., Huang, S.-S., Fu, L.-C., Hsiao, P.-Y., Lo, M.-F. (2012) Vehicle

detection and tracking under various lighting conditions using a particle filter. IET

Intelligent Transport Systems. 6(1), 1.

Chavez-garcia, R.O., Aycard, O. (2015) Multiple Sensor Fusion and Classification

for Moving Object Detection and Tracking. IEEE Transactions on Intelligent

Transportation Systems, 1–10.

Chen, Yc, Su, T., Lai, S. (2013) Efficient vehicle detection with adaptive scan based

on perspective geometry. In in IEEE International Conference on Image Processing.

Melbourne, pp. 3321–3325.

Chen, Yen-lin, Chen, Yuan-hsin, Chen, C., Wu, B. (2006) Nighttime Vehicle

Detection for Driver Assistance and Autonomous Vehicles. In 2006 IEEE

Proceedings of the 18th International Conference on Pattern Recognition. Hong

Kong, pp. 18–21.

186

Chen, Zhiqian, Chen, K., Chen, J. (2013) Vehicle and Pedestrian Detection Using

Support Vector Machine and Histogram of Oriented Gradients Features. 2013

International Conference on Computer Sciences and Applications, 365–368.

Cheon, M., Lee, W., Yoon, C., Park, M. (2012) Vision-Based Vehicle Detection

System With Consideration of the Detecting Location. IEEE Transactions on

Intelligent Transportation Systems. 13(3), 1243–1252.

Christiansen, R.H., Hsu, J., Gonzalez, M., Wood, S.L. (2018) Monocular vehicle

distance sensor using HOG and Kalman tracking. Conference Record of 51st

Asilomar Conference on Signals, Systems and Computers, ACSSC 2017. 2017-

Octob, 178–182.

Cortes, C., Vapnik, V. (1995) Support Vector Networks. Machine Learning. 20(3),

273–297.

Dai, B., Fu, Y., Wu, T. (2007) A vehicle detection method via symmetry in multi-

scale Windows. ICIEA 2007: 2007 Second IEEE Conference on Industrial

Electronics and Applications, 1827–1831.

Dai, J., Li, Y., He, K., Sun, J. (2016) R-FCN: Object Detection via Region-based

Fully Convolutional Networks. In NIPS’16 Proceedings of the 30th International

Conference on Neural Information Processing Systems. Barcelona, pp. 379–387.

Dalal, N., Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection.

CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) - Volume 1, 886–893.

Deng, Y., Liang, H., Wang, Z., Huang, J. (2014) An integrated forward collision

warning system based on monocular vision. 2014 IEEE International Conference on

Robotics and Biomimetics, IEEE ROBIO 2014, 1219–1223.

Dhanachandra, N., Manglem, K., Chanu, Y.J. (2015) Image Segmentation Using K-

means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia

Computer Science. 54, 764–771.

187

Di, Z., He, D. (2016) Forward Collision Warning system based on vehicle detection

and tracking. In Proceedings - 2016 International Conference on Optoelectronics and

Image Processing, ICOIP 2016. Warsaw, pp. 10–14.

Eskandarian, A. (2012) Handbook of intelligent vehicles. Second Edi. A.

Eskandarian, ed. London, UK: Springer.

Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A. (2010) The

PASCAL Visual Object Classes (VOC) Challenge. International Journal of

Computer Vision. 88(2), 303–338.

Fan, Q., Brown, L., Smith, J. (2016) A closer look at Faster R-CNN for vehicle

detection. IEEE Intelligent Vehicles Symposium, Proceedings. 2016-Augus(Iv),

124–129.

Filipowicz, A., Liu, J., Kornhauser, A. (2017) Learning to Recognize Distance to

Stop Signs Using the VirtualWorld of Grand Theft Auto 5. Transportation Research

Board, 96th Annual Meeting. (January 2017), 1–16.

Fisher, R., Perkins, S., Walker, A., Wolfart, E. (2003a) Feature Detectors - Sobel

Edge Detector. [online]. Available from:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm [Accessed August 14, 2017].

Fisher, R., Perkins, S., Walker, A., Wolfart, E. (2003b) Pixel Connectivity. [online].

Available from: http://homepages.inf.ed.ac.uk/rbf/HIPR2/connect.htm [Accessed

May 16, 2019].

Fodor, I.K. (2002) A survey of dimension reduction techniques. Livermore, CA.

Freeman, W.T., Roth, M. (1995) Orientation histograms for hand gesture recognition.

In International Workshop on Automatic Face and Gesture Recognition. Zurich, pp.

296–301.

Freund, Y., Schapire, R.E. (1999) A Short Introduction to Boosting. Journal of

Japanese Society for Artificial Intelligence. 14(5), 771–780.

188

Gao, Y., Guo, S., Huang, K., Chen, J., Gong, Q., Zou, Y., Bai, T., Overett, G. (2017)

Scale optimization for full-image-CNN vehicle detection. In IEEE Intelligent

Vehicles Symposium, Proceedings. Redondo Beach, pp. 785–791.

Garcia, F., Cerri, P., Broggi, A., de la Escalera, A., Armingol, J.M. (2012) Data

fusion for overtaking vehicle detection based on radar and optical flow. 2012 IEEE

Intelligent Vehicles Symposium, 494–499.

García, F., Martín, D., De La Escalera, A., Armingol, J.M. (2017) Sensor Fusion

Methodology for Vehicle Detection. IEEE Intelligent Transportation Systems

Magazine. 9(1), 123–133.

Geiger, A., Lenz, P., Urtasun, R. (2012) Are we ready for autonomous driving? the

KITTI vision benchmark suite. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. Providence, pp. 3354–

3361.

Girshick, R. (2015) Fast R-CNN. In Proceedings of the IEEE International

Conference on Computer Vision. pp. 1440–1448.

Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014) Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition. pp.

580–587.

Godil, A., Bostelman, R., Shackleford, W., Hong, T., Shneier, M. (2014)

Performance Metrics for Evaluating Object and Human Detection and Tracking

Systems.

Gu, X.F., Chen, Z.W., Ma, T.S., Li, F., Yan, L. (2017) Real-Time vehicle detection

and tracking using deep neural networks. 2016 13th International Computer

Conference on Wavelet Active Media Technology and Information Processing,

ICCWAMTIP 2017, 167–170.

Haddon, W. (1980) Advances in the epidemiology of injuries as a basis for public

policy. Public health reports (Washington, D.C. : 1974). 95(5), 411–21.

189

Han, J., Heo, O., Park, M., Kee, S., Sunwoo, M. (2016) Vehicle Distance Estimation

using a mono-camera for FCW/AEB systems. International Journal of Automotive

Technology. 17(3), 483–491.

Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.. (1998) An image

processing system for driver assistance. In IEEE International Conference on

Intelligent vehicles. Stuttgart, pp. 1–6.

Haselhoff, A., Kummert, A., Schneider, G. (2007) Radar-vision fusion for vehicle

detection by means of improved haar-like feature and adaboost approach. In

European Signal Processing Conference. pp. 2070–2074.

He, C.H., Lam, K.M. (2018) Fast Vehicle Detection with Lateral Convolutional

Neural Network. In ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings. Calgary: IEEE, pp. 2341–2345.

He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep residual learning for image

recognition. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. pp. 770–778.

He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y. (2017) The connected-

component labeling problem: A review of state-of-the-art algorithms. Pattern

Recognition. 70, 25–43.

Heisele, B., Ritter, W. (1995) Obstacle detection based on color blob flow. In in

Proceedings of the Intelligent Vehicles ’95 Symposium. Detroit, pp. 282–286.

Hornik, K., Stinchcombe, M., White, H. (1989) Multilayer feedforward networks are

universal approximators. Neural Networks. 2(5), 359–366.

Hsu, S. (2018) Vehicle Detection using Simplified Fast R-CNN. In International

Workshop on Advanced Image Technology (IWAIT). Chiang Mai, pp. 3–5.

Hu, Y., He, Q., Zhuang, X., Wang, H., Li, B., Wen, Z., Leng, B., Guan, G., Chen, D.

(2013) Algorithm for vision-based vehicle detection and classification. 2013 IEEE

International Conference on Robotics and Biomimetics, ROBIO 2013. (December),

190

568–572.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna,

Z., Song, Y., Guadarrama, S., Murphy, K. (2017) Speed/accuracy trade-offs for

modern convolutional object detectors. In Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017. Honolulu, pp. 3296–3305.

Huang, L., Zhe, T., Wu, J., Wu, Q., Pei, C., Chen, D. (2019) Robust inter-vehicle

distance estimation method based on monocular vision. IEEE Access. 7, 1–1.

International Telecommunication Union (2011) Recommendation ITU-R BT.601-7.

Geneva.

Ioffe, S., Szegedy, C. (2015) Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In ICML’15 Proceedings of the 32nd

International Conference on International Conference on Machine Learning. Lille, pp.

448–456.

Jazayeri, A., Cai, H., Zheng, J.Y., Tuceryan, M. (2011) Vehicle Detection and

Tracking in Car Video Based on Motion Model. IEEE Transactions on Intelligent

Transportation Systems. 12(2), 1–13.

Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, Li Fei-Fei (2009) ImageNet: A

large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision

and Pattern Recognition, 248–255.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,

S., Darrell, T. (2014) Caffe: Convolutional Architecture for Fast Feature Embedding.

In Proceedings of the 22nd ACM international conference on Multimedia. Orlando,

pp. 675–678.

Jinhui, L., Meng, Z. (2010) A New Vehicle Detection Algorithm for Real-time

Image Processing System. International Conference on Computer Application and

System Modeling. (Iccasm), V10-1-V10-4.

Joglekar, A., Joshi, D., Khemani, R., Nair, S., Sahare, S. (2011) Depth Estimation

191

Using Monocular Camera. International Journal of Computer Science and

Information Technolgies. 2(4), 1758–1763.

Jolliffe, I.T. (2002) Principal Component Analysis. Second. New York: Springer.

Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems 1.

Journal of Basic Engineering. 82(Series D), 35–45.

Kanjee, R., Carroll, J. (2015) A Three-Step Vehicle Detection Framework for Range

Estimation Using a Single Camera. In IEEE Symposium Series on Computational

Intelligence. pp. 442–448.

Karpathy, A., Li, F.F. (2019a) CS231n Convolutional Neural Networks for Visual

Recognition. [online]. Available from: http://cs231n.github.io/neural-networks-2/.

Karpathy, A., Li, F.F. (2019b) CS231n COnvolutional Neural Networks for Visual

Recognition. [online]. Available from: http://cs231n.github.io/convolutional-

networks/ [Accessed April 24, 2019].

Khammari, A., Nashashibi, F., Abramson, Y., Laurgeau, C. (2005) Vehicle detection

combining gradient analysis and AdaBoost classification. IEEE Conference on

Intelligent Transportation Systems, Proceedings, ITSC. 2005, 1084–1089.

Kim, Huieun, Lee, Y., Yim, B., Park, E., Kim, Hakil (2016) On-road object detection

using Deep Neural Network. In 2016 IEEE International Conference on Consumer

Electronics-Asia (ICCE-Asia). IEEE, pp. 1–4.

Kim, J., Baek, J., Kim, D.Y., Kim, E. (2013) On-Road Vehicle Detection based on

Effective Hypothesis Generation. In IEEE RO-MAN: The 22nd IEEE International

Symposium on Robot and Human Interactive Communication. Gyeongju, pp. 252–

257.

Kim, J., Baek, J., Kim, E. (2015) A Novel On-Road Vehicle Detection Method Using

πHOG. Ieee Transactions on Intelligent Transportation Systems. 16(6), 3414–3429.

Kim, J., Baek, J., Kim, E. (2014) On-road precise vehicle detection system using

192

ROI estimation. 17th International IEEE Conference on Intelligent Transportation

Systems (ITSC), 2251–2252.

Kmiotek, P., Ruichek, Y. (2008) Multisensor fusion based tracking of coalescing

objects in urban environment for an autonomous vehicle navigation. 2008 IEEE

International Conference on Multisensor Fusion and Integration for Intelligent

Systems, 52–57.

Krizhevsky, A., Hinton, G.E. (2012) ImageNet Classification with Deep

Convolutional Neural Networks. In NIPS’12 Proceedings of the 25th International

Conference on Neural Information Processing Systems. Lake Tahoe, pp. 1097–1105.

Kuehnle, A. (1991) Symmetry-based recognition of vehicle rears. Pattern

Recognition Letters. 12(April), 249–258.

Kuo, Y.C., Pai, N.S., Li, Y.F. (2011) Vision-based vehicle detection for a driver

assistance system. Computers and Mathematics with Applications. 61(8), 2096–2100.

Laopracha, N., Thongkrau, T., Sunat, K., Songrum, P., Chamchong, R. (2014)

Improving vehicle detection by adapting parameters of HOG and kernel functions of

SVM. 2014 International Computer Science and Engineering Conference, ICSEC

2014, 372–377.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,

Jackel, L.D., Laboratories, T.B. (1989) Handwritten digit recognition with a back-

propagation network. Advances In Neural Information Processing Systems 2 (NIPS).

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998) Gradient-Based Learning

Applied to Document Recognition. In Proceedings of the IEEE. pp. 1–46.

LeCun, Y., Kavukcuoglu, K., Farabet, C. (2010) Convolutional networks and

applications in vision. In ISCAS 2010 - 2010 IEEE International Symposium on

Circuits and Systems: Nano-Bio Circuit Fabrics and Systems. pp. 253–256.

Lee, C., Kim, H.J., Oh, K.W. (2016) Comparison of faster R-CNN models for object

detection. In International Conference on Control, Automation and Systems. pp.

193

107–110.

Lee, Seung Hyun, Bang, M., Jung, K.H., Yi, K. (2015) An efficient selection of

HOG feature for SVM classification of vehicle. In Proceedings of the International

Symposium on Consumer Electronics, ISCE. pp. 1–2.

Lee, Tae Young, Oh, J.S., Kim, J.H. (2015) On-road vehicle detection based on

appearance features for autonomous vehicles. ICCAS 2015 - 2015 15th International

Conference on Control, Automation and Systems, Proceedings. (Iccas), 1720–1723.

Li, X., Guo, X. (2013) A HOG Feature and SVM Based Method for Forward Vehicle

Detection with Single Camera. 5th International Conference on Intelligent Human-

Machine Systems and Cybernetics. 2(1), 263–266.

Lim, Q., He, Y., Tan, U.X. (2019) Real-Time Forward Collision Warning System

Using Nested Kalman Filter for Monocular Camera. 2018 IEEE International

Conference on Robotics and Biomimetics, ROBIO 2018, 868–873.

Lin, M., Xu, X. (2006) Multiple Vehicle Visual Tracking from a Moving Vehicle.

Sixth International Conference on Intelligent Systems Design and Applications. 2,

373–378.

Lin, T., Zitnick, C.L., Doll, P. (2014) Microsoft COCO : Common Objects in

Context. In European Conference on Computer VIsion - ECCV 2014. Zurich, pp.

740–755.

Litman, T. (2019) Autonomous vehicle implementation predictions : Implications for

Transport Planning. Victoria.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C. (2016)

SSD: Single shot multibox detector. In Proceedings of the European Conference on

Computer Vision (ECCV). pp. 21–37.

Lowe, D.G. (1999) Object recognition from local scale-invariant features.

Proceedings of the Seventh IEEE International Conference on Computer Vision.

2([8), 1150–1157.

194

Ma, Y., Chen, X., Chen, G. (2011) Pedestrian detection and tracking using HOG and

oriented-LBP features. In IFIP International Conference on Network and Parallel

Computing (NPC 2011). pp. 176–184.

Mahalanobis, P.C. (1936) On the Generalized Distance in Statistics. In Proceedings

of the National Institute of Sciences of India. p. pp.49-55.

Martinez, M., Sitawarin, C., Finch, K., Meincke, L., Yablonski, A., Kornhauser, A.

(2018) Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep

Learning in Self Driving Cars. Washington.

Matas, J., Sochman, J. (2009) AdaBoost presentation.

McCormick, C. (2003) HOG Person Detector tutorial. [online]. Available from:

http://mccormickml.com/2013/05/09/hog-person-detector-tutorial/ [Accessed

January 19, 2017].

Mikołajczyk, A., Grochowski, M. (2018) Data augmentation for improving deep

learning in image classification problem. In 2018 International Interdisciplinary PhD

Workshop (IIPhDW). Swinoujście, Poland: IEEE, pp. 117–122.

Mukhtar, A., Xia, L., Tang, T.B. (2015) Vehicle Detection Techniques for Collision

Avoidance Systems: A Review. IEEE Transactions on Intelligent Transportation

Systems. 16(5), 1–21.

Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B. (2001) An introduction

to kernel-based learning algorithms. IEEE Transactions on Neural Networks. 12(2),

181–201.

Nagi, J., Ducatelle, F., Di Caro, G.A., Cireşan, D., Meier, U., Giusti, A., Nagi, F.,

Schmidhuber, J., Gambardella, L.M. (2011) Max-pooling convolutional neural

networks for vision-based hand gesture recognition. 2011 IEEE International

Conference on Signal and Image Processing Applications, ICSIPA 2011, 342–347.

Nair, V., Hinton, G.E. (2010) Rectified Linear Units Improve Restricted Boltzmann

Machines. In Proc. 27th International Conference on Machine Learning. Haifa.

195

Nath, R.K., Deb, S.K. (2010) On Road Vehicle / Object Detection And Tracking

Using Template. Indian Journal of Computer Science and Engineering. 1(2), 98–107.

NHTSA (2015) Traffic Safety Facts - Published by NHTSA’s National Center for

Statistics and Analysis. Washington DC.

Papageorgiou, C. (2000) A Trainable System for Object Detection in Images and

Video Sequences. International Journal of Computer Vision. 38(1685), 15–33.

Park, K.-Y., Hwang, S.-Y. (2014) Robust Range Estimation with a Monocular

Camera for Vision-Based Forward Collision Warning System. The Scientific World

Journal. 2014, 1–9.

Parodi, P., Piccioli, G. (1995) A feature-based recognition scheme for traffic scenes.

Intelligent Vehicles Symposium (IV), 1995 IEEE, 229–234.

Petit, S. (2019) World Vehicle Population Rose 4.6% in 2016. [online]. Available

from: https://subscribers.wardsintelligence.com/analysis/world-vehicle-population-

rose-46-2016 [Accessed May 7, 2019].

Plemakova, V. (2018) Vehicle Detection Based on Convolutional Neural Networks.

University of Tartu.

Prabhakar, G., Kailath, B., Natarajan, S., Kumar, R. (2017) Obstacle detection and

classification using deep learning for tracking in high-speed autonomous driving.

2017 IEEE Region 10 Symposium (TENSYMP), 1–6.

Premebida, C., Monteiro, G., Nunes, U., Peixoto, P. (2007) A Lidar and vision-based

approach for pedestrian and vehicle detection and tracking. IEEE Conference on

Intelligent Transportation Systems, Proceedings, ITSC, 1044–1049.

Qi, X., Wang, T., Liu, J. (2017) Comparison of Support Vector Machine and

Softmax Classifiers in Computer Vision. Proceedings - 2017 2nd International

Conference on Mechanical, Control and Computer Engineering, ICMCCE 2017,

151–155.

196

Rauskolb, F.W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J., Form,

T., Graefe, F., Ohl, S., Schumacher, W., Wille, J.M., Hecker, P., Nothdurft, T.,

Doering, M., Homeier, K., Morgenroth, J., Wolf, L., Basarke, C., Berger, C., Gülke,

T., Klose, F., Rumpe, B. (2009) Caroline: An autonomously driving vehicle for

urban environments. Springer Tracts in Advanced Robotics. 56, 441–508.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016) You Only Look Once:

Unified, Real-Time Object Detection. In CVPR ’16: Proceedings of the 2016 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’16). pp. 1–10.

Redmon, J., Farhadi, A. (2017) YOLO9000: Better, faster, stronger. Proceedings -

30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,

6517–6525.

Ren, S., He, K., Girshick, R., Sun, J. (2015) Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 39(6), 1137–1149.

Rodriguez F., S.A., Fremont, V., Bonnifait, P., Cherfaoui, V. (2010) Visual

confirmation of mobile objects tracked by a multi-layer lidar. 13th International

IEEE Conference on Intelligent Transportation Systems, 849–854.

Rybski, P.E., Huber, D., Morris, D.D., Hoffman, R. (2010) Visual classification of

coarse vehicle orientation using histogram of oriented gradients features. IEEE

Intelligent Vehicles Symposium, Proceedings, 921–928.

SAE International (2016) Automated Driving -SAE International Standard J3016.

Salari, E., Ouyang, D. (2013) Camera-based Forward Collision and lane departure

warning systems using SVM. Midwest Symposium on Circuits and Systems, 1278–

1281.

Schamm, T., von Carlowitz, C., Zollner, J.M. (2010) On-road vehicle detection

during dusk and at night. In 2010 IEEE Intelligent Vehicles Symposium. San Diego,

pp. 418–423.

197

Schmidhuber, J. (2015) Deep Learning in neural networks: An overview. Neural

Networks. 61, 85–117.

Schnieder, M. (2017) Development of an improved time-to-collision algorithm.

P16CVC002_2 European Short Research Project.

Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-

Scale Image Recognition. In International Conference on Learning Representations.

San Diego, pp. 1–14.

Sivaraman, S., Trivedi, M.M. (2010) A general active-learning framework for on-

road vehicle recognition and tracking. IEEE Transactions on Intelligent

Transportation Systems. 11(2), 267–276.

Sivaraman, S., Trivedi, M.M. (2013) Looking at vehicles on the road: A survey of

vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions

on Intelligent Transportation Systems. 14(4), 1773–1795.

Smith, S.M. (1995) Real-Time Motion Segmentation and Shape Tracking. Ieee

Transactions on Pattern Analysis and Machine Intelligence. 17(8), 814–820.

Smoluk, G. (2015) Google net. In CVPR ’15: Proceedings of the 2016 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’15). pp. 1–9.

Sobel, I. (1990) An isotropic 3 by 3 image gradient operator. Machine Vision for

three-demensional Sciences. 1(1), 23–34.

Stackoverflow (2016) Gabor feature extraction. [online]. Available from:

https://stackoverflow.com/questions/20608458/gabor-feature-extraction [Accessed

March 6, 2019].

Stein, G.P., Mano, O., Shashua, A. (2003) Vision-based ACC with a single camera:

Bounds on range and range rate accuracy. In IEEE Intelligent Vehicles Symposium,

Proceedings. pp. 120–125.

198

Sun, D., Watada, J. (2015) Detecting pedestrians and vehicles in traffic scene based

on boosted HOG features and SVM. In WISP 2015 - IEEE International Symposium

on Intelligent Signal Processing, Proceedings. pp. 1–4.

Sun, Z., Bebis, G., Miller, R. (2006) Monocular precrash vehicle detection: Features

and classifiers. IEEE Transactions on Image Processing. 15(7), 2019–2034.

Sun, Z., Bebis, G., Miller, R. (2002) On-road vehicle detection using Gabor filters

and support vector machines. 2002 14th International Conference on Digital Signal

Processing Proceedings. DSP 2002. 2, 1019–1022.

Sun, Z., Miller, R., Bebis, G., DiMeo, D. (2002) A real-time precrash vehicle

detection system. In Proceedings of IEEE Workshop on Applications of Computer

Vision. pp. 171–176.

Teoh, S.S. (2011) Development of a Robust Monocular-Based Vehicle Detection and

Tracking System - PhD Thesis. University of Western Australia.

Truong, Q.B., Lee, B.R. (2009) Vehicle Detection Algorithm Using Hypothesis

Generation and Verification. In Emerging Intelligent Computing Technology and

Applications - ICIC 2009. pp. 534–543.

Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M. (2013)

Selective Search for Object Recognition. International Journal of Computer Vision.

104(2), 154–171.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.N., Dolan, J.,

Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M.,

Howard, T.M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N.,

Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.-W., Singh,

S., Snider, J., Stentz, A., Whittaker, W. “Red”, Wolkowicki, Z., Ziglar, J. (2008)

Autonomous Driving in Urban Environments: Boss and the Urban Challenge.

Journal of Field Robotics. 25(8), 425–466.

Vapnik, V.N. (1998) Statistical Learning Theory. New York: John Wiley & Sons.

199

Viola, P., Jones, M.J. (2001) Robust Real-time Object Detection. In Second

International Workshop of Statistics and Computational Theories of Vision -

Modeling, Learning, Computing and Sampling. pp. 1–25.

Wang, J., Perez, L. (2017) The Effectiveness of Data Augmentation in Image

Classification using Deep Learning. Unpublished.

Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z. (2019) Enhanced Object

Detection With Deep Convolutional Neural Networks for Advanced Driving

Assistance. IEEE Transactions on Intelligent Transportation Systems. PP, 1–12.

Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M., Qi, H., Lim, J., Yang, M., Lyu, S. (2015)

UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and

Tracking. eprint arXiv:1511.04136, 1–18.

Wille, J.M., Saust, F., Maurer, M. (2010) Stadtpilot: Driving autonomously on

Braunschweig’s inner ring road. 2010 IEEE Intelligent Vehicles Symposium, 506–

511.

World Health Organisation (2018) Global Status Report on Road Safety 2018.

Geneva: World Health Organisation.

Wu, C., Duan, L., Miao, J., Fang, F., Wang, X. (2009) Detection of front-view

vehicle with occlusions using AdaBoost. In Proceedings - 2009 International

Conference on Information Engineering and Computer Science, ICIECS 2009. pp. 2–

5.

Yanpeng, C., Renfrew, A., Cook, P. (2008) Vehicle Motion Analysis Based on a

Monocular Vision System. RTIC 2008 and ITS United Kingdom Members’

Conference, 1–6.

Yao, Y., Tian, B., Wang, F.Y. (2017) Coupled Multivehicle Detection and

Classification with Prior Objectness Measure. IEEE Transactions on Vehicular

Technology. 66(3), 1975–1984.

Yong, H., Liangqun, L. (2018) A Novel Multi-source Vehicle Detection Algorithm

200

based on Deep Learning - IEEE Conference Publication. In 2018 14th IEEE

International Conference on Signal Processing (ICSP). IEEE, pp. 979–982.

Yu, H., Yuan, Y., Guo, Y., Zhao, Y. (2016) Vision-based lane marking detection and

moving vehicle detection. In Proceedings - 2016 8th International Conference on

Intelligent Human-Machine Systems and Cybernetics, IHMSC 2016. pp. 574–577.

Zeiler, M.D., Fergus, R. (2013) Visualizing and understanding convolutional

networks. In European Conference on Computer VIsion. pp. 818–833.

Zhang, Y., Wang, J., Yang, X. (2017) Real-time vehicle detection and tracking in

video based on faster R-CNN. Journal of Physics: Conference Series. 887, 2–7.

Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X. (2019) Object Detection With Deep

Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems.

14(8), 1–21.

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T.,

Franke, U., Appenrodt, N., Keller, C.G., Kaus, E., Herrtwich, R.G., Rabe, C.,

Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knoppel, C., Hipp, J.,

Haueis, M., Trepte, M., Brenk, C., Tamke, A., Ghanaat, M., Braun, M., Joos, A.,

Fritz, H., Mock, H., Hein, M., Zeeb, E. (2014) Making bertha drive-an autonomous

journey on a historic route. IEEE Intelligent Transportation Systems Magazine. 6(2),

8–20.

Zitnick, C.L., Dollár, P. (2014) Edge boxes: Locating object proposals from edges. In

European Conference on Computer VIsion - ECCV 2014. pp. 391–405.

