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Condition monitoring of railway vehicles has been highteghby the railway industry as a key enabling
technology for future system development. The primary frsethis could be the improvement of mainte-
nance procedures and/or the identification of high riskalehiunning conditions. Advanced processing of
signals means these tasks could be accomplished withous¢hef cost prohibitive sensors.

This paper presents a system for the on-board detectiomoddiivesion conditions during the normal
operation of a railway vehicle. Two different processingtmoels are introduced. The first method is a model-
based approach that uses a Kalman-Bucy filter to estimagp dogces, with subsequent post processing
for interpretation in to adhesion levels. The second nonehbdsed method targets the assessment of
relationships between vehicle dynamic responses to obsery behavioural differences as a result of an
adhesion level change.

Both methods are evaluated in specific case studies usinigigshBRail (BR) Mark 3 coach, inclusive of
a BR BT-10 bogie, and a generic modern passenger vehiclel loasa contemporary bogie design. These
vehicles were chosen as typical application opportunitigisin the UK.

The results are validated with data generated by the mattitlsimulation software VAMPIRE for
realistic data inputs, representing a key scientific acresnt.
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1. Introduction

Low adhesion or the ‘leaves on the line’ problem is a largaeassften misunderstood by the industry and

general public alike. There is currently a lack of inforroatiabout the changing picture of areas of low
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adhesion with respect to short term trends (over a dailyggrand macro trends (across the seasons). The
generally established methods of identifying these arédmnwoadhesion involve mapping activations of
wheel slide and wheel slip protection systems to track lonat This represents a blind-spot in awareness
as adhesion cannot be assessed outside of braking or tracties, potentially resulting in application of
costly mitigation methods such as railhead cleaning andttible changes where none are needed.

The research described in this article has been performpdrasf a project commissioned by RSSB
in the UK and supported by the TSLG (Technology Strategy kestidp Group) to investigate methods
of detecting low adhesion. This research is a progressmm f feasibility study, also commissioned by
RSSB, to investigate advanced methods of detecting ardag/gfdhesion in real time using modest cost
inertial sensors mounted to in-service vehicles. Thisystionstrated that the motions of a railway vehicle
(in both lateral and yaw directions) vary as the adhesioritimms at the wheel/rail interface change (1).
Fundamentally, this means that if the changes in the rundymgmics as a result of low adhesion can be
observed and understood, the adhesion at all points acn@bkretwork can be inferred during normal
running, i.e. not only when slip/slide events are triggered

A number of methods have been proposed to analyse data pdobig inertial sensors mounted on
the wheelsets, bogie and vehicle body. The main focus ofebearch has been developing a model-based
approach (2; 3) that uses a fundamental understanding phiysics of a rail vehicle to estimate wheel-rail
creep forces that can not be measured directly. The applicafthis technique, including comparison work
and analysis of data produced by a high fidelity railway viehitynamics simulation, will be presented in

Section 2.
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The other stream of work highlighted in this paper is thedisnalysis of measured data in order to
identify any features in the relationships between compbdgnamic behavious as adhesion levels change.

The current findings of this work are presented in Section 3.

2. Model-based Estimator

The concept of using a model-based estimator to identifyfand failures or estimate systems parameters is
widely suggested in railway specific applications. Thessstamples of suspension parameter modelling (4;
5), suspension fault detection (6; 7), suspension comditionitoring (8) and wheel/rail condition monitoring
(9). The opportunities are broad for this style of invedimawith some publications including numerous
different examples of fault identification or condition nit@ning with model based methods (10; 11; 12).

In a similar fashion to the model-based estimation tectesduighlighted above, the concept of using
such an approach to approximate adhesion levels whithimkezl/rail interface has been developed and
tested against linear suspension models with complexJinear wheel/rail interface mechanics generated
in MATLAB/Simulink (1; 9). The work presented in this artecextends this previous study by applying the
creep force estimation method to more representative atinaldata. This data was supplied in the form of
outputs taken from the multi-body physics software (MBS)kaae VAMPIRE®, generated for this project
by DeltaRail (13). VAMPIRE is a well validated, specialist rail vehicle dynamics mtidglsoftware that
simulates multi-degree of freedom/multi-bodied intei@ats of a railway vehicle.

MBS packages (such as VAMPIRI[Eare currently the closest means of generating vehicle ina
data short of the costly process of full scale testing. Is gtudy, data produced from the MBS is treated

as a close representation of the data outputs from realexoccetters and yaw rate gyros mounted on the
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wheelset, bogies and body of railway vehicles. The addedradge from a MBS package is that the creep
forces are also available, enabling high fidelity validatid the estimation method.

By using VAMPIRE® simulation data generated, it is possible to treat the datfzuts as sensor readings
in order to verify any model based estimators created. Thgutsifrom these can then be compared against
those that are captured directly from VAMPIREThis use of MBS data is considered as an intermediate
step to prove the efficacy of the methods before the final aiatid occurs through full scale testing.

This section gives a brief overview to the generation of aehbdsed estimator and presents the results

when this estimator is applied to VAMPIREest data.

2.1. Methodology

The model-based estimator approach used previously isllzasend the well-known Kalman-Bucy filter
(14). In this method the filter requires a well validatedehnised plan view model of the vehicle suspension
system in order to estimate the total lateral force and yamanis at the wheel/rail interface (3; 9). It has
been shown (15; 16) that the yaw and lateral dynamic resgats#ain the dominant characteristics of the
motion when the adhesion levels are modified and that the syiséem dynamic responses can be neglected
due to their secondary importance.

The first step of the process is to create and validate a seepnesentative simulation model of the
system in question in MATLAB/Simulink. The linearised sasgion component from this model can then

be converted into state space form and used to form a Kalnuag-tter.
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2.2. Model Development and Validation

The vehicle chosen for this case study is a generic modesepgsr, Diesel Multiple Unit (DMU) vehicle,
that is based loosely on a British class 158 vehicle. Thisclelhepresents a typical example of a vehicle
likely to benefit from on-board adhesion detection.

Figure 1 shows a simplified plan-view linear representati@railway vehicle primary suspension. A set
of linear equations to describe the dynamics is derived ttisgeometry, by considering the force/moment

balance equations around the wheelset. The parametersugsadfined in table 1.

Calibration Data

Parameter Description
YFF wheelset lateral position
YrF wheelset yaw position
yB bogie lateral position
VB bogie yaw position
kz primary spring stiffness (longitudinal)
ky primary spring stiffness (lateral)
Kbz bush spring stiffness (longitudinal)
Kby bush spring stiffness (lateral)
lazlebox axlebox semi-spacing
lbushbox radius arm length
Lwhiset wheelset semi-spacing
Fry Ly creep forces at the right and left wheel/rail interface (lateral)
Fre/Lo creep forces at the right and left wheel/rail interface (longitudinal)
Fy ‘gravitational stiffness’ - resolved normal force due to weight anatact angle
My ‘gravitational stiffness’ - resolved moment due to weight and contagiea

Table 1. Parameters used for the primary suspension dynamic model

The linear and yaw dynamics of the wheelset are thereforaateby:

mipr = Fry + Fry + Fg + 2k, ((yo + Vuloush) — Yrr) 2

+ 2k (Yo + Vo (Lwniset — loush)) — (YrF + VrFlbush))
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Fig. 1. Plan-view, linear model of the Modern Vehicle primary suspensystem

wa'(LFF = RRyFRI - RLyFLx + Mg
+ 2kpy (Yo + Vo (Luoniset — loush)) — (Wrr + VEFlbush)) lbush (2.2)

+ 2(kr + kbr)("/)b - wFF)Faxlebom

where minor terms have been neglected.
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The equation set generated was used to form a dynamic linedelrim a MATLAB/Simulink environ-
ment. The model generated contains two selectable cowtaet flescriptions based on the works of Kalker
and Polach(17; 18). In addition, a VAMPIREest case, against which this Simulink model is to be vadidat
was generated whereby a whole vehicle model virtually tred@long a length of perfect track containing
a single 5mm lateral step after 1 second of travel.

A useful test to validate the linear model is to check thatuated component accelerations, as defined
in equations (2.1) and (2.2), are close to the equivalemiactions recorded in the VAMPIREImulations.
This would confirm that the set of equations formed by the iclamation of the force/moment balance of
the suspension components in a linear, plan-view senseisuffy match the suspension forces experienced
in the VAMPIRE® simulation. To perform this, the contact forces, bogie ame®iset dynamic responses
recorded in a VAMPIRE simulation are input into the linear Simulink model whichumn derives the total
wheelset lateral and yaw accelerations based on the nessitapension loading.

Figure 2 shows the so called ‘open loop’ response of the nmodehicle simulation model in dry
conditions and compares the output to the values simulataAMPIRE®. The solid blue lines show the
resultant derived wheelset accelerations in the laterlyaw directions from the linear Simulink model.
The green dashed line shows the acceleration values reciorttaMPIRE® . It can be seen that the matches
are close, but have a number of discrepancies that are & oéslifferences in the Force/Moment balance

equations. These differences between the models can berdeddor by:

«  The 3D suspension geometry of VAMPIREompared to the 2D plan view assumption of the Simulink

model.
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Fig. 2. Figures showing the derived values of lateral and yaw actielerverlaying the recorded VAMPIREvalues.
These are taken from the centre of mass of the front wheelset ofathielfogie - hence the ‘front front’ label.

Linearisation of components in the Simulink model comgate non-linear components of the

VAMPIRE® model.

Simplification of some suspension components in the Sitkutiodel.

In terms of application to a Kalman-Bucy filter, the diffecess shown above are small enough to allow

the linear model to form the basis of the estimator.
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2.3. Creep Force Estimation Technique

The linear suspension model generated for the modern ggesseshicle is converted into standard state
space form given by the state and output equations:
%X = Agx + Biu (23)
y = Cxx + Dxu (2.4)
Previous work has shown (9) that the Kalman-Bucy filter camligtinguish between the creep forces
and the resolved normal forces as separate states andtteeaied combined into one state, as defined by:
FFFZFLy—FFRy—FFy (25)
Mpp = RryFre — RpyFr. + M, (2.6)
The state space model is formed by choosing the states teelgo#ition and velocity of the wheelset
(in both lateral and yaw directions) along with the contactés:
x = [yrr, Yrr Vrr Yrr, Fre, Mpp]” (2.7)
The bogie position and velocity (in both lateral and yaw clins) are included here in the input vector

u, where:

u=[ypr.Upr, ¥or, Upr|" (2.8)
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The state equation (2.3) can now be satisfied by using eeqsafol) and (2.2) to populate the matrices
Ak andBK.

The Kalman-Bucy filter is formed from the equations:

X=Ak+Bu+K(y—7¥) (2.9)
¥y =CkX (2.10)

The derivative estimated statesire formed from two parts; the expected value, based on #pession
description defined as a function of Ak, Bk, the current sesiimate X, and the current inputs, and a
correction factor based on a scaled difference betweenseasuremengsand expected sensor outpgits
In this case, the values ¢fare the estimated states (defined by choo€lpdgn equation (2.10) accordingly)
andy represents the actual sensor values captured from a velmi¢lds configuration the measurements
required would be the leading wheelset and bogie positimsvalocities, in both the lateral and yaw
directions. These could be derived from accelerometerswrgyros to reduced measurement complexity.

The Kalman gainK, is derived by identifying a degree of certainty with eachhs state models (9).
By setting the creep force state models as highly uncertaimpared to the vehicle dynamics state models,
the filter can be used to approximate the creep forces byatixtgathem from the estimated state vector

Figure 3 shows an evaluation of this method at two differeméls of adhesion; ideal dry conditions
and low levels of adhesion. The actual values of frictionraelifor these levels were chosen to represent

different adhesion conditions at which the vehicle opexadey (1=0.56) and low (=0.072).
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Fig. 3. Figure showing the estimated lateral creep force and estimatedtetgl moment, overlaying the recorded
values.

In each case, VAMPIRE data was generated using the same section of track as inrs@c®i. Selected
states from this are then passed into the filter represeatjnyalent sensor data measured in real time.

It can be seen that the outputs of the model-based estimamaomktrate good agreement to the simu-
lated lateral contact forces and creep moments at bothslefeddhesion. This confirms that although the
linear approximations demonstrated in Figure 2 were nottexhey were good enough to facilitate the

implementation of the creep force estimation.
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2.4. Verification with VAMPIRE®

A number of simulations were produced in VAMPIRIE order to validate the capability of the Kalman-
Bucy filter in more demanding scenarios. In these simulatithe VAMPIRE® model of the modern DMU
virtually travelled a typical section of track under di#ert operating conditions. For the results presented in
this section, the track used contained irregularitiesg@0kph track) in both lateral and vertical directions,
as opposed to the previous test where there existed onlygéesiateral step input. These irregularities
are statistically similar to those of a typical high spee lfound in the UK. The vehicle travelled for 60
seconds at full line speed (defined here as 200kph) and titeopssvelocites and accelerations of the vehicle
components (wheelsets, bogies and vehicle body) alongthetbontact forces experienced were recorded.
As before, this allowed the Kalman-Bucy filter to use the rded quantities from VAMPIRE as if they
were sensor readings taken from the vehicle. This test weesated at three different levels of adhesion;
dry and low as before{=0.56 and 0.072 respectively), with the addition of a very tmndition (:=0.038)
which represents the state where even the use of defensiwegdmay not mitigate the operational risks
experienced. The performance of the estimator in theseittmmslis shown in Figure 4.

It can be seen that as the adhesion level falls, the overalldef creep force fall and the estimator
correctly follows this magnitude change. The best matcHdre estimation is seen in the dry condition
and the largest discrepancies exist at the very low adhesindition. As the creep forces become small,
the resultant wheelset deflections are not large enouglcteeithe required breakout forces (i.e. the static
friction part) of the suspension components. The lineamedion part of the Kalman-Bucy filter will still
predict a proportional deflection in the suspension whetkasion-linear VAMPIRE simulation these

breakout forces will not be exceeded, creating a differdsatereen estimated and actual sensor valgres (
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Fig. 4. Graphs showing the estimated creep forces (solid line) againattha creep forces (dashed line) over three

adhesion conditions.

andy). As a result, the contact information gets incorporateith wie modelling discrepancies within the

Kalman filter.
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However, the estimator successfully follows the overdllifalevel of creep force, particularly with

the reduction of creep moment with adhesion level. Figuredvs the performance of the estimator over

the three adhesion levels when a five second moving RMS isegipjgl both the measured values and the

estimated values.
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Fig. 5. Graphs comparing the measured creep moment to the estimadpdieoment over three adhesion levels.

The variations observed in the RMS creep moment throughoundividual run is attributed to the

naturally changing magnitude of irregularities experahapon the track during that particular window.

Normalising to track irregularities presents a challengelteey are difficult to measure onboard a stan-

dard railway vehicle and referring to stored informatiogasing track section presents a different set of

operational difficulties.
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In order to provide normalisation to the track irregularists were performed whereby the estimated
creep force RMS values were normalised by each of the onbnesasurable states (with a moving RMS
taken over the same window) and assessed to observe penfgnitavas found that normalising by wheelset
yaw acceleration provided the best results.

Because the conditions of each test run was known, the neghsaiio of My p(rass) tO &FF(RMS)
when averaged over the whole test run can be used as a dalibratue for level of adhesion. Therefore, if
the ratio of Mpp(gars) to @LFF(RMS) can be measured during a vehicle run the calibration valaese
used to populate a linear interpolation table from whichdineent level of adhesion being experienced can

be determined. The calibration data used is summarisedbie 2a

Calibration Data
Condition  p Mrpp(rMs) /VFFP(RMS)

Dry 0.56 3088
Low  0.072 1237
Very Low 0.038 900.6

Table 2. Calibration data for adhesion level with respect to Creep MonmamtA¥celeration ratio

This method is validated on further VAMPIREsimulations whereby a change in adhesion level part
way through the test run is introduced. In these tests, adiapge in adhesion is experienced after 30
seconds of travel. Figure 6 shows the actual adhesion ledetstimated adhesion level of two test runs.

It can be seen that the estimated adhesion level correciiyges from high levels of adhesion to the
lower levels. The discrepancy between actual and estinvaleds can be explained by the inability to scale
accurately to track irregularity. It is also possible to figetime lag in the estimator response to the step
change. This is due to the 5 second moving window over whicRMIS is taken. Although the adhesion

level is not accurately tracked, the overall change in dpegaonditions is identified.
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RMS plus Normalising Adhesion Estimation
Step Change Test
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Fig. 6. Graph showing adhesion estimation during a step change in adh&s@®dashed line show the actual level of
adhesion for each test.

2.5. Further Work

The model-based creep force estimation scheme used hebeé@ashown to provide good estimations of
the contact forces experienced in the wheel rail contachdBS test scenarios.

Having obtained estimations of creep forces and momensi Ipast processing has shown that it is
possible to attain a reasonable approximation of adhesi@n with a coarse linear interpolation method
based on only 3 points and an abstract method of normalisirtgeick irregularity. Future studies may focus
on the development of post-processing techniques to margately analyse the creep force data to better
estimate adhesion.

A limitation of this technique is that, in its current forniet creep force estimator loses accuracy at
low adhesion levels for suspension units with significamt-tioearity in their components. In a case study
with a British Rail (BR) Mk3 vehicle, fitted with a BT-10 bogi& was found that the estimation method

at low levels of adhesion was poor. The geometry of the sisperof this model is such that a linear
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plan view model does not sufficiently capture the dynamicthefvehicle, particularly when suspension
components are operating with small deflections. This s@naccurs either when there are small levels of
track irregularities, or when the adhesion level is low. Ashs vehicles with suspension dynamic response
characteristics, such as the BR Mk3 vehicle, would requireoze detailed mathematical model around

which to form a filter.

3. Direct Data Analysis

The method presented in this section aims to identify anyfea or relationships between measurable data
that can be used to signify a change in adhesion levels withewneed for the complexity of developing a
Newtonian based model. This approach has been used infidegtsuspension system faults (19; 20) by
observing changes in the system dynamic interactions oiffgreht frequency modes observed (21). All
these methods rely on calibration against a baseline mode¢ntify good operating conditions.

The vehicle used in this case study is a BR Mk3 vehicle. As imeat in section 2, the non-linear
characteristics inherent to this vehicle make it unsuidbi use with the model-based estimator technique
presented due to the manner in which the suspension respodeés very low adhesion levels for which
there are correspondingly low levels of creep force.

After aninitial search, the investigation followed twoestms; relationships between leading and trailing

bogie dynamic responses, and relationships between tpaduhtrailing wheelset dynamic responses.
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3.1. Leading and Trailing Wheelsets

Under high adhesion conditions it is known that during cusdsfic curving the forces and relative movements
of the leading wheelset are significantly larger than fortta#ing wheelset (15). It seems possible therefore
that a comparison between leading and trailing wheelsedmyndata may provide a useful indication for
low adhesion.

After an investigation on data produced by VAMPIREimulations for the Mk3 vehicle, the most
significant dynamic quantity of interest was the yaw velpcitmparison. Figure 7 shows the data recorded
over a one second interval on a test track that containsaladely disturbances. Figure 7a shows this test
under dry conditions and Figure 7b shows this under very lomdiions.

It can be seen that, at low adhesion conditions, the yaw iglotthe leading and trailing wheelsets,
and bogie converge and begin to move more as a single usitypiothesised that at low adhesion levels the
creep forces are not of a significant magnitude to overcom®itbakout forces of the stiff wheelset-bogie
yaw connections and the secondary yaw friction levels iahiein parts of the BT-10 suspension design. The
parts are therefore more likely to lock together and movelastarather than display independent dynamic
behaviour.

This analysis showed initially promising results as therainoticeable trend between the level of
adhesion and a correlation analysis of the dynamic resgoit®vever, when an identical simulation test
was performed with full track irregularities (i.e. verticaross level and gauge width irregularities), the
results were less satisfactory.

This analysis shows that this does not yet appear to be al irsdiftator for real-time adhesion detection.

It has nevertheless revealed that the yaw motions of the theelgets in response to lateral irregularities
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Fig. 7. Comparisons of bogie, leading wheelset and trailing wheelsetatain a) Dry conditions and b) Very low
adhesion conditions.

become increasingly similar as adhesion levels reduce.ufsup this investigation further, appropriate
normalisation or scaling factors would require to be stddgeattempt to clarify the correlation trends.
Initial testing on the modern DMU vehicle datasets show tékttionship identified for the Mk3 vehicle
does not remain true. Itis apparent that the suspensiamrésadf the BT-10 are such that the breakout forces
are not exceeded during the smaller impulses experiencidvery low adhesion levels, whereas in the
modern vehicle example they are. It remains to be seen if dyreamic measurements between wheelsets

could be used in a similar ways to see if similar traits ares@né that could be exploited to detect low

adhesion conditions.
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3.2. Leading and Trailing Bogie Dynamics

Similarly to the comparison of the leading and trailing wiseedynamic responses, it was considered that
a study to compare leading and trailing bogie dynamic respemay yield a useful indicator for levels of
adhesion. Once again, this study focused on the BR Mk3 \ehicl

This investigation began by comparing the correlation lafyhamic variables of the leading and trailing
bogies. The variables were compared when taken at the satamtinn time, and when the leading data
is delayed so the comparisons are made as the bogies traraghevsame piece of track. All the possible
dynamic measurements of the vehicle components were eesidt different adhesion levels to see if there
were observable differences in correlation as the frictioanges.

This was performed using the Matlab function "crosscor®) (Aat provides an estimate of the correlation

between two time series over a range of sample delays of.'[Blgs value for cross correlation is obtained

by:

Foy(k) = ﬂk =0,1,2,...(3.1)

wherer,, (k) is the estimate of the cross correlatien, (k) is the cross covariance function aggl
ands, are the sample standard devations. Figure 8 show the coossation analysis for the yaw dynamic
guantities of the leading and trailing bogie.

It was found that the biggest change in correlation with adirewas between the yaw angles of the two

bogies. At high levels of adhesion, the correlation was fbtmbe low ¢ ~ 0.2) whereas at low levels of
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Fig. 8. Figure showing the cross-correlation analysis of leading and tibtigie yaw position«), yaw velocity )
and yaw acceleration){) in both dry and very low adhesion conditions.

adhesion the correlation was high#£ 0.8). As with the results presented in section 3.1, it is thoubht
this relationship is once again a result of the levels ofcstattion within the Mk3 suspension components.
The trend between adhesion levels and agreement of bogi@gsition can therefore be exploited to
produce an adhesion estimator. The scheme developed ba#gd elationship is shown in Figure 9. Here,
the difference between leading and trailing bogie yaw aigfdtered by taking a RMS over a moving
window. This value is then normalised for the variances achrirregularity by scaling with the RMS of

the leading bogie yaw angle and then multiplied by the RMSefleading wheelset lateral acceleration.



23

Both these RMS are taken over the same moving window as theaggie. Testing concluded a 10 second

moving window provided reasonable results.

OO )

Va1

Fig. 9. Leading/Trailing bogie yaw comparison scheme where:
YB1, ¥B2 - bogie yaw position (leading and trailing)
iB1 - leading bogie lateral acceleration

Fourtestruns utilising this system are summarised in Tatitach simulation consists of an instantaneous
change in adhesion after 30 seconds in the direction higtelehin the third column of the table. The source
data for these tests were generated by VAMPIRENulations of the Mk3 vehicle

The resultant scaled RMS of the difference between yaw amtgdved from these test runs are shown

in Figure 10.
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Test Run Summary
Run No. Speekd (kph) Adhesion Change

1 200 High to V Low
2 200 V.Low to High
3 100 High to V. Low
4 100 V.Low to High

Table 3. Summary of conditions within the test runs. Adhesion change p&ee after 30s of travel

Scaled RMS of y, difference (m/s?)

Time (s)

Fig. 10. Graph showing the scaled RMS of the difference between leaddhyailing bogie yaw position for 4 test runs
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Figure 10 shows that there is a distinct change of the scalé8l & the difference between yaw angles
as adhesion levels change. Although this technique shooveigpe, there remains further investigations to

confirm its viability as an adhesion detection method.

3.3. Further Work

One area of concern with this method is that the relationaleptified relies on the specific suspension
characteristics of the chosen case-study vehicle. Aralnitise study on the modern DMU vehicle data
demonstrated that the relationship of bogie yaw angle aggaeto adhesion level was not as prominent as
shown for the Mk3 simulations, although the tehcnique wasfboto work with correlation analysis based
upon different variables (not included in this article) dlihlikelihood, different trends between correlation
patterns and adhesion levels will be observed for diffesespension design philosophies.

Furthermore, although a distinct difference is observevden the two extreme conditions of high
adhesion and very low adhesion, there is a requirementtiogiissh between low and very low conditions.
Although differences between these conditions can be wbdavithin certain test runs, they are not as clear

as the results shown above.

4. Conclusions

Two different methods have been demonstrated to estimbatsah levels in the wheel/rail interface during
the normal running of high fidelity model of a typical in-s& rail vehicle. The model-based estimation
technique demonstrates a good potential to provide acclatatral force and yaw moment estimations on the

modern style vehicle. Along with some basic post processingasonable estimate of current adhesion level
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is observed, albeit with a small processing delay. Thisn&pgle would benefit from further investigation
into post-processing methods to identify more accuratefastdr techniques of deriving adhesion.

Furthermore, the direct data analysis methods have priwdme potentially useful markers for identi-
fying low adhesion areas. As these methods approach thdidatty, an accurate linear model of a complex,
non-linear suspension model is not required. In the caslkeoMk3 vehicle where the suspension is trou-
blesome to model linearly, refinement of these techniquetdqarovide a solution where a model-based
estimator may not. Both this method and the model-basedappmvould benefit from testing on in-service
vehicles to prove their validity away from simulation.

One of the main findings is that, without direct knowledgeratk irregularity, it is not possible to obtain
an instant value of adhesion based on creep force estim&jmarationally this means that the output of an
adhesion estimator in this form will have limited use onloawehicle in terms of quickly advising a driver
of conditions or scheduling braking in an onboard anti-sbptroller. However, the output would be quick
enough to provide a real-time overview of the current rafivoek state if enough vehicles were equipped

with such a device.
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