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Abstract
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Condition monitoring of railway vehicles has been highlighted by the railway industry as a key enabling

technology for future system development. The primary usesfor this could be the improvement of mainte-

nance procedures and/or the identification of high risk vehicle running conditions. Advanced processing of

signals means these tasks could be accomplished without theuse of cost prohibitive sensors.

This paper presents a system for the on-board detection of low adhesion conditions during the normal

operation of a railway vehicle. Two different processing methods are introduced. The first method is a model-

based approach that uses a Kalman-Bucy filter to estimate creep forces, with subsequent post processing

for interpretation in to adhesion levels. The second non model-based method targets the assessment of

relationships between vehicle dynamic responses to observe any behavioural differences as a result of an

adhesion level change.

Both methods are evaluated in specific case studies using a British Rail (BR) Mark 3 coach, inclusive of

a BR BT-10 bogie, and a generic modern passenger vehicle based on a contemporary bogie design. These

vehicles were chosen as typical application opportunitieswithin the UK.

The results are validated with data generated by the multi-body simulation software VAMPIRE® for

realistic data inputs, representing a key scientific achievement.
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1. Introduction

Low adhesion or the ‘leaves on the line’ problem is a large issue often misunderstood by the industry and

general public alike. There is currently a lack of information about the changing picture of areas of low
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adhesion with respect to short term trends (over a daily period), and macro trends (across the seasons). The

generally established methods of identifying these areas of low adhesion involve mapping activations of

wheel slide and wheel slip protection systems to track locations. This represents a blind-spot in awareness

as adhesion cannot be assessed outside of braking or traction zones, potentially resulting in application of

costly mitigation methods such as railhead cleaning and timetable changes where none are needed.

The research described in this article has been performed aspart of a project commissioned by RSSB

in the UK and supported by the TSLG (Technology Strategy Leadership Group) to investigate methods

of detecting low adhesion. This research is a progression from a feasibility study, also commissioned by

RSSB, to investigate advanced methods of detecting areas oflow adhesion in real time using modest cost

inertial sensors mounted to in-service vehicles. This study demonstrated that the motions of a railway vehicle

(in both lateral and yaw directions) vary as the adhesion conditions at the wheel/rail interface change (1).

Fundamentally, this means that if the changes in the runningdynamics as a result of low adhesion can be

observed and understood, the adhesion at all points across arail network can be inferred during normal

running, i.e. not only when slip/slide events are triggered.

A number of methods have been proposed to analyse data provided by inertial sensors mounted on

the wheelsets, bogie and vehicle body. The main focus of the research has been developing a model-based

approach (2; 3) that uses a fundamental understanding of thephysics of a rail vehicle to estimate wheel-rail

creep forces that can not be measured directly. The application of this technique, including comparison work

and analysis of data produced by a high fidelity railway vehicle dynamics simulation, will be presented in

Section 2.
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The other stream of work highlighted in this paper is the direct analysis of measured data in order to

identify any features in the relationships between component dynamic behavious as adhesion levels change.

The current findings of this work are presented in Section 3.

2. Model-based Estimator

The concept of using a model-based estimator to identify faults and failures or estimate systems parameters is

widely suggested in railway specific applications. There are examples of suspension parameter modelling (4;

5), suspension fault detection (6; 7), suspension condition monitoring (8) and wheel/rail condition monitoring

(9). The opportunities are broad for this style of investigation with some publications including numerous

different examples of fault identification or condition monitoring with model based methods (10; 11; 12).

In a similar fashion to the model-based estimation techniques highlighted above, the concept of using

such an approach to approximate adhesion levels whithin thewheel/rail interface has been developed and

tested against linear suspension models with complex, non-linear wheel/rail interface mechanics generated

in MATLAB/Simulink (1; 9). The work presented in this article extends this previous study by applying the

creep force estimation method to more representative simulation data. This data was supplied in the form of

outputs taken from the multi-body physics software (MBS) package VAMPIRE®, generated for this project

by DeltaRail (13). VAMPIRE® is a well validated, specialist rail vehicle dynamics modelling software that

simulates multi-degree of freedom/multi-bodied interactions of a railway vehicle.

MBS packages (such as VAMPIRE®) are currently the closest means of generating vehicle dynamic

data short of the costly process of full scale testing. In this study, data produced from the MBS is treated

as a close representation of the data outputs from real accelerometers and yaw rate gyros mounted on the
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wheelset, bogies and body of railway vehicles. The added advantage from a MBS package is that the creep

forces are also available, enabling high fidelity validation of the estimation method.

By using VAMPIRE® simulation data generated, it is possible to treat the data outputs as sensor readings

in order to verify any model based estimators created. The outputs from these can then be compared against

those that are captured directly from VAMPIRE®. This use of MBS data is considered as an intermediate

step to prove the efficacy of the methods before the final validation occurs through full scale testing.

This section gives a brief overview to the generation of a model based estimator and presents the results

when this estimator is applied to VAMPIRE® test data.

2.1. Methodology

The model-based estimator approach used previously is based around the well-known Kalman-Bucy filter

(14). In this method the filter requires a well validated, linearised plan view model of the vehicle suspension

system in order to estimate the total lateral force and yaw moments at the wheel/rail interface (3; 9). It has

been shown (15; 16) that the yaw and lateral dynamic responses contain the dominant characteristics of the

motion when the adhesion levels are modified and that the other system dynamic responses can be neglected

due to their secondary importance.

The first step of the process is to create and validate a secondrepresentative simulation model of the

system in question in MATLAB/Simulink. The linearised suspension component from this model can then

be converted into state space form and used to form a Kalman-Bucy filter.
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2.2. Model Development and Validation

The vehicle chosen for this case study is a generic modern passenger, Diesel Multiple Unit (DMU) vehicle,

that is based loosely on a British class 158 vehicle. This vehicle represents a typical example of a vehicle

likely to benefit from on-board adhesion detection.

Figure 1 shows a simplified plan-view linear representationof a railway vehicle primary suspension. A set

of linear equations to describe the dynamics is derived fromthis geometry, by considering the force/moment

balance equations around the wheelset. The parameters usedare defined in table 1.

Calibration Data
Parameter Description

yFF wheelset lateral position
ψFF wheelset yaw position
yB bogie lateral position
ψB bogie yaw position
kx primary spring stiffness (longitudinal)
ky primary spring stiffness (lateral)
kbx bush spring stiffness (longitudinal)
kby bush spring stiffness (lateral)

laxlebox axlebox semi-spacing
lbushbox radius arm length
lwhlset wheelset semi-spacing
FRy/Ly creep forces at the right and left wheel/rail interface (lateral)
FRx/Lx creep forces at the right and left wheel/rail interface (longitudinal)
Fg ’gravitational stiffness’ - resolved normal force due to weight and contact angle
Mg ’gravitational stiffness’ - resolved moment due to weight and contact angle

Table 1. Parameters used for the primary suspension dynamic model

The linear and yaw dynamics of the wheelset are therefore defined by:

mÿFF = FRy + FLy + Fg + 2ky((yb + ψblbush)− yFF )

+ 2kby((yb + ψb(lwhlset − lbush))− (yFF + ψFF lbush))

(2.1)
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Fig. 1. Plan-view, linear model of the Modern Vehicle primary suspension system

Iwxψ̈FF = RRyFRx −RLyFLx +Mg

+ 2kby((yb + ψb(lwhlset − lbush))− (yFF + ψFF lbush))lbush

+ 2(kx + kbx)(ψb − ψFF )l
2
axlebox

(2.2)

where minor terms have been neglected.



8 Journal name ()

The equation set generated was used to form a dynamic linear model in a MATLAB/Simulink environ-

ment. The model generated contains two selectable contact force descriptions based on the works of Kalker

and Polach(17; 18). In addition, a VAMPIRE® test case, against which this Simulink model is to be validated,

was generated whereby a whole vehicle model virtually travelled along a length of perfect track containing

a single 5mm lateral step after 1 second of travel.

A useful test to validate the linear model is to check that calculated component accelerations, as defined

in equations (2.1) and (2.2), are close to the equivalent accelerations recorded in the VAMPIRE® simulations.

This would confirm that the set of equations formed by the consideration of the force/moment balance of

the suspension components in a linear, plan-view sense sufficiently match the suspension forces experienced

in the VAMPIRE® simulation. To perform this, the contact forces, bogie and wheelset dynamic responses

recorded in a VAMPIRE® simulation are input into the linear Simulink model which inturn derives the total

wheelset lateral and yaw accelerations based on the resultant suspension loading.

Figure 2 shows the so called ‘open loop’ response of the modern vehicle simulation model in dry

conditions and compares the output to the values simulated by VAMPIRE®. The solid blue lines show the

resultant derived wheelset accelerations in the lateral and yaw directions from the linear Simulink model.

The green dashed line shows the acceleration values recorded in VAMPIRE®. It can be seen that the matches

are close, but have a number of discrepancies that are a result of differences in the Force/Moment balance

equations. These differences between the models can be accounted for by:

• The 3D suspension geometry of VAMPIRE® compared to the 2D plan view assumption of the Simulink

model.
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Fig. 2. Figures showing the derived values of lateral and yaw acceleration overlaying the recorded VAMPIRE® values.
These are taken from the centre of mass of the front wheelset of the front bogie - hence the ‘front front’ label.

• Linearisation of components in the Simulink model compared to non-linear components of the

VAMPIRE® model.

• Simplification of some suspension components in the Simulink model.

In terms of application to a Kalman-Bucy filter, the differences shown above are small enough to allow

the linear model to form the basis of the estimator.
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2.3. Creep Force Estimation Technique

The linear suspension model generated for the modern passenger vehicle is converted into standard state

space form given by the state and output equations:

ẋ = Akx+Bku (2.3)

y = Ckx+Dku (2.4)

Previous work has shown (9) that the Kalman-Bucy filter cannot distinguish between the creep forces

and the resolved normal forces as separate states and therefore are combined into one state, as defined by:

FFF = FLy + FRy + Fg (2.5)

MFF = RRyFRx −RLyFLx +Mg (2.6)

The state space model is formed by choosing the states to be the position and velocity of the wheelset

(in both lateral and yaw directions) along with the contact forces:

x = [yFF , ẏFF , ψFF , ψ̇FF , FFF ,MFF ]
T (2.7)

The bogie position and velocity (in both lateral and yaw directions) are included here in the input vector

u, where:

u = [yBF , ẏBF , ψBF , ψ̇BF ]
T (2.8)
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The state equation (2.3) can now be satisfied by using equations (2.1) and (2.2) to populate the matrices

AK andBK.

The Kalman-Bucy filter is formed from the equations:

˙̂x = Akx̂+Bku+K(y − ŷ) (2.9)

ŷ = Ckx̂ (2.10)

The derivative estimated states˙̂x are formed from two parts; the expected value, based on the suspension

description defined as a function of Ak, Bk, the current stateestimate,̂x, and the current inputs,u, and a

correction factor based on a scaled difference between sensor measurementsy and expected sensor outputsŷ.

In this case, the values of̂y are the estimated states (defined by choosingCk in equation (2.10) accordingly)

andy represents the actual sensor values captured from a vehicle. In this configuration the measurements

required would be the leading wheelset and bogie positions and velocities, in both the lateral and yaw

directions. These could be derived from accelerometers or yaw gyros to reduced measurement complexity.

The Kalman gain,K, is derived by identifying a degree of certainty with each ofthe state models (9).

By setting the creep force state models as highly uncertain compared to the vehicle dynamics state models,

the filter can be used to approximate the creep forces by extracting them from the estimated state vectorx̂.

Figure 3 shows an evaluation of this method at two different levels of adhesion; ideal dry conditions

and low levels of adhesion. The actual values of friction defined for these levels were chosen to represent

different adhesion conditions at which the vehicle operates, dry (µ=0.56) and low (µ=0.072).
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Fig. 3. Figure showing the estimated lateral creep force and estimated totalcreep moment, overlaying the recorded
values.

In each case, VAMPIRE® data was generated using the same section of track as in section 2.2. Selected

states from this are then passed into the filter representingequivalent sensor data measured in real time.

It can be seen that the outputs of the model-based estimator demonstrate good agreement to the simu-

lated lateral contact forces and creep moments at both levels of adhesion. This confirms that although the

linear approximations demonstrated in Figure 2 were not exact, they were good enough to facilitate the

implementation of the creep force estimation.
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2.4. Verification with VAMPIRE®

A number of simulations were produced in VAMPIRE® in order to validate the capability of the Kalman-

Bucy filter in more demanding scenarios. In these simulations, the VAMPIRE® model of the modern DMU

virtually travelled a typical section of track under different operating conditions. For the results presented in

this section, the track used contained irregularities (fora 200kph track) in both lateral and vertical directions,

as opposed to the previous test where there existed only a single, lateral step input. These irregularities

are statistically similar to those of a typical high speed line found in the UK. The vehicle travelled for 60

seconds at full line speed (defined here as 200kph) and the positions, velocites and accelerations of the vehicle

components (wheelsets, bogies and vehicle body) along withthe contact forces experienced were recorded.

As before, this allowed the Kalman-Bucy filter to use the recorded quantities from VAMPIRE® as if they

were sensor readings taken from the vehicle. This test was repeated at three different levels of adhesion;

dry and low as before (µ=0.56 and 0.072 respectively), with the addition of a very low condition (µ=0.038)

which represents the state where even the use of defensive driving may not mitigate the operational risks

experienced. The performance of the estimator in these conditions is shown in Figure 4.

It can be seen that as the adhesion level falls, the overall levels of creep force fall and the estimator

correctly follows this magnitude change. The best match forforce estimation is seen in the dry condition

and the largest discrepancies exist at the very low adhesioncondition. As the creep forces become small,

the resultant wheelset deflections are not large enough to exceed the required breakout forces (i.e. the static

friction part) of the suspension components. The linear estimation part of the Kalman-Bucy filter will still

predict a proportional deflection in the suspension whereasthe non-linear VAMPIRE® simulation these

breakout forces will not be exceeded, creating a differencebetween estimated and actual sensor values (y
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Fig. 4. Graphs showing the estimated creep forces (solid line) against theactual creep forces (dashed line) over three
adhesion conditions.

andŷ). As a result, the contact information gets incorporated with the modelling discrepancies within the

Kalman filter.
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However, the estimator successfully follows the overall fall in level of creep force, particularly with

the reduction of creep moment with adhesion level. Figure 5 shows the performance of the estimator over

the three adhesion levels when a five second moving RMS is applied to both the measured values and the

estimated values.
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Fig. 5. Graphs comparing the measured creep moment to the estimated creep moment over three adhesion levels.

The variations observed in the RMS creep moment throughout an individual run is attributed to the

naturally changing magnitude of irregularities experienced upon the track during that particular window.

Normalising to track irregularities presents a challenge as they are difficult to measure onboard a stan-

dard railway vehicle and referring to stored information regarding track section presents a different set of

operational difficulties.
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In order to provide normalisation to the track irregularity, tests were performed whereby the estimated

creep force RMS values were normalised by each of the onboardmeasurable states (with a moving RMS

taken over the same window) and assessed to observe performance. It was found that normalising by wheelset

yaw acceleration provided the best results.

Because the conditions of each test run was known, the measured ratio ofMFF (RMS) to ψ̈FF (RMS)

when averaged over the whole test run can be used as a calibration value for level of adhesion. Therefore, if

the ratio ofMFF (RMS) to ψ̈FF (RMS) can be measured during a vehicle run the calibration values can be

used to populate a linear interpolation table from which thecurrent level of adhesion being experienced can

be determined. The calibration data used is summarised in Table 2.

Calibration Data
Condition µ MFF (RMS)/ψ̈FF (RMS)

Dry 0.56 3088
Low 0.072 1237

Very Low 0.038 900.6
Table 2. Calibration data for adhesion level with respect to Creep Moment/Yaw acceleration ratio

This method is validated on further VAMPIRE® simulations whereby a change in adhesion level part

way through the test run is introduced. In these tests, a stepchange in adhesion is experienced after 30

seconds of travel. Figure 6 shows the actual adhesion level and estimated adhesion level of two test runs.

It can be seen that the estimated adhesion level correctly changes from high levels of adhesion to the

lower levels. The discrepancy between actual and estimatedvalues can be explained by the inability to scale

accurately to track irregularity. It is also possible to seethe time lag in the estimator response to the step

change. This is due to the 5 second moving window over which anRMS is taken. Although the adhesion

level is not accurately tracked, the overall change in operating conditions is identified.
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2.5. Further Work

The model-based creep force estimation scheme used here hasbeen shown to provide good estimations of

the contact forces experienced in the wheel rail contact during MBS test scenarios.

Having obtained estimations of creep forces and moments, basic post processing has shown that it is

possible to attain a reasonable approximation of adhesion,even with a coarse linear interpolation method

based on only 3 points and an abstract method of normalising for track irregularity. Future studies may focus

on the development of post-processing techniques to more accurately analyse the creep force data to better

estimate adhesion.

A limitation of this technique is that, in its current form, the creep force estimator loses accuracy at

low adhesion levels for suspension units with significant non-linearity in their components. In a case study

with a British Rail (BR) Mk3 vehicle, fitted with a BT-10 bogie, it was found that the estimation method

at low levels of adhesion was poor. The geometry of the suspension of this model is such that a linear
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plan view model does not sufficiently capture the dynamics ofthe vehicle, particularly when suspension

components are operating with small deflections. This situation occurs either when there are small levels of

track irregularities, or when the adhesion level is low. As such, vehicles with suspension dynamic response

characteristics, such as the BR Mk3 vehicle, would require amore detailed mathematical model around

which to form a filter.

3. Direct Data Analysis

The method presented in this section aims to identify any features or relationships between measurable data

that can be used to signify a change in adhesion levels without the need for the complexity of developing a

Newtonian based model. This approach has been used in identifying suspension system faults (19; 20) by

observing changes in the system dynamic interactions or by different frequency modes observed (21). All

these methods rely on calibration against a baseline model to identify good operating conditions.

The vehicle used in this case study is a BR Mk3 vehicle. As mentioned in section 2, the non-linear

characteristics inherent to this vehicle make it unsuitable for use with the model-based estimator technique

presented due to the manner in which the suspension respondsunder very low adhesion levels for which

there are correspondingly low levels of creep force.

After an initial search, the investigation followed two streams; relationships between leading and trailing

bogie dynamic responses, and relationships between leading and trailing wheelset dynamic responses.
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3.1. Leading and Trailing Wheelsets

Under high adhesion conditions it is known that during quasi-static curving the forces and relative movements

of the leading wheelset are significantly larger than for thetrailing wheelset (15). It seems possible therefore

that a comparison between leading and trailing wheelset dynamic data may provide a useful indication for

low adhesion.

After an investigation on data produced by VAMPIRE® simulations for the Mk3 vehicle, the most

significant dynamic quantity of interest was the yaw velocity comparison. Figure 7 shows the data recorded

over a one second interval on a test track that contains lateral only disturbances. Figure 7a shows this test

under dry conditions and Figure 7b shows this under very low conditions.

It can be seen that, at low adhesion conditions, the yaw velocity of the leading and trailing wheelsets,

and bogie converge and begin to move more as a single unit. It is hypothesised that at low adhesion levels the

creep forces are not of a significant magnitude to overcome the breakout forces of the stiff wheelset-bogie

yaw connections and the secondary yaw friction levels inherent in parts of the BT-10 suspension design. The

parts are therefore more likely to lock together and move as aunit, rather than display independent dynamic

behaviour.

This analysis showed initially promising results as there is a noticeable trend between the level of

adhesion and a correlation analysis of the dynamic responses. However, when an identical simulation test

was performed with full track irregularities (i.e. vertical, cross level and gauge width irregularities), the

results were less satisfactory.

This analysis shows that this does not yet appear to be a useful indicator for real-time adhesion detection.

It has nevertheless revealed that the yaw motions of the two wheelsets in response to lateral irregularities
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Fig. 7. Comparisons of bogie, leading wheelset and trailing wheelset yawrate in a) Dry conditions and b) Very low
adhesion conditions.

become increasingly similar as adhesion levels reduce. To pursue this investigation further, appropriate

normalisation or scaling factors would require to be studied to attempt to clarify the correlation trends.

Initial testing on the modern DMU vehicle datasets show thatrelationship identified for the Mk3 vehicle

does not remain true. It is apparent that the suspension features of the BT-10 are such that the breakout forces

are not exceeded during the smaller impulses experienced with very low adhesion levels, whereas in the

modern vehicle example they are. It remains to be seen if other dynamic measurements between wheelsets

could be used in a similar ways to see if similar traits are present that could be exploited to detect low

adhesion conditions.
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3.2. Leading and Trailing Bogie Dynamics

Similarly to the comparison of the leading and trailing wheelset dynamic responses, it was considered that

a study to compare leading and trailing bogie dynamic responses may yield a useful indicator for levels of

adhesion. Once again, this study focused on the BR Mk3 vehicle.

This investigation began by comparing the correlation of all dynamic variables of the leading and trailing

bogies. The variables were compared when taken at the same instant in time, and when the leading data

is delayed so the comparisons are made as the bogies travel over the same piece of track. All the possible

dynamic measurements of the vehicle components were considered at different adhesion levels to see if there

were observable differences in correlation as the frictionchanges.

This was performed using the Matlab function "crosscorr" (22) that provides an estimate of the correlation

between two time series over a range of sample delays or ‘lags’. The value for cross correlation is obtained

by:

rxy(k) =
cxy(k)
sxsy

, k = 0, 1, 2, . . . (3.1)

whererxy(k) is the estimate of the cross correlation,cxy(k) is the cross covariance function andsx

andsy are the sample standard devations. Figure 8 show the cross-correlation analysis for the yaw dynamic

quantities of the leading and trailing bogie.

It was found that the biggest change in correlation with adhesion was between the yaw angles of the two

bogies. At high levels of adhesion, the correlation was found to be low (r ≈ 0.2) whereas at low levels of
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Fig. 8. Figure showing the cross-correlation analysis of leading and trialing bogie yaw position (ψ), yaw velocity (ψ̇)
and yaw acceleration (̈ψ) in both dry and very low adhesion conditions.

adhesion the correlation was high (r ≈ 0.8). As with the results presented in section 3.1, it is thoughtthat

this relationship is once again a result of the levels of static friction within the Mk3 suspension components.

The trend between adhesion levels and agreement of bogie yawposition can therefore be exploited to

produce an adhesion estimator. The scheme developed based on this relationship is shown in Figure 9. Here,

the difference between leading and trailing bogie yaw angleis filtered by taking a RMS over a moving

window. This value is then normalised for the variances in track irregularity by scaling with the RMS of

the leading bogie yaw angle and then multiplied by the RMS of the leading wheelset lateral acceleration.
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Both these RMS are taken over the same moving window as the yawangle. Testing concluded a 10 second

moving window provided reasonable results.

V

RMS

RMS

RMS

+
-

ΨB1 ΨB2
yB1
..

÷ ×
Output

Fig. 9. Leading/Trailing bogie yaw comparison scheme where:
ψB1, ψB2 - bogie yaw position (leading and trailing)

ÿB1 - leading bogie lateral acceleration

Four test runs utilising this system are summarised in Table3. Each simulation consists of an instantaneous

change in adhesion after 30 seconds in the direction highlighted in the third column of the table. The source

data for these tests were generated by VAMPIRE® simulations of the Mk3 vehicle

The resultant scaled RMS of the difference between yaw angles derived from these test runs are shown

in Figure 10.
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Test Run Summary
Run No. Speekd (kph) Adhesion Change

1 200 High to V Low
2 200 V.Low to High
3 100 High to V. Low
4 100 V.Low to High

Table 3. Summary of conditions within the test runs. Adhesion change takes place after 30s of travel
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Fig. 10. Graph showing the scaled RMS of the difference between leadingand trailing bogie yaw position for 4 test runs
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Figure 10 shows that there is a distinct change of the scaled RMS of the difference between yaw angles

as adhesion levels change. Although this technique shows promise, there remains further investigations to

confirm its viability as an adhesion detection method.

3.3. Further Work

One area of concern with this method is that the relationshipidentified relies on the specific suspension

characteristics of the chosen case-study vehicle. An initial case study on the modern DMU vehicle data

demonstrated that the relationship of bogie yaw angle agreement to adhesion level was not as prominent as

shown for the Mk3 simulations, although the tehcnique was found to work with correlation analysis based

upon different variables (not included in this article). Inall likelihood, different trends between correlation

patterns and adhesion levels will be observed for differentsuspension design philosophies.

Furthermore, although a distinct difference is observed between the two extreme conditions of high

adhesion and very low adhesion, there is a requirement to distinguish between low and very low conditions.

Although differences between these conditions can be observed within certain test runs, they are not as clear

as the results shown above.

4. Conclusions

Two different methods have been demonstrated to estimate adhesion levels in the wheel/rail interface during

the normal running of high fidelity model of a typical in-service rail vehicle. The model-based estimation

technique demonstrates a good potential to provide accurate lateral force and yaw moment estimations on the

modern style vehicle. Along with some basic post processing, a reasonable estimate of current adhesion level
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is observed, albeit with a small processing delay. This technique would benefit from further investigation

into post-processing methods to identify more accurate andfaster techniques of deriving adhesion.

Furthermore, the direct data analysis methods have provided some potentially useful markers for identi-

fying low adhesion areas. As these methods approach the datadirectly, an accurate linear model of a complex,

non-linear suspension model is not required. In the case of the Mk3 vehicle where the suspension is trou-

blesome to model linearly, refinement of these techniques could provide a solution where a model-based

estimator may not. Both this method and the model-based approach would benefit from testing on in-service

vehicles to prove their validity away from simulation.

One of the main findings is that, without direct knowledge of track irregularity, it is not possible to obtain

an instant value of adhesion based on creep force estimation. Operationally this means that the output of an

adhesion estimator in this form will have limited use onboard a vehicle in terms of quickly advising a driver

of conditions or scheduling braking in an onboard anti-slipcontroller. However, the output would be quick

enough to provide a real-time overview of the current rail network state if enough vehicles were equipped

with such a device.
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