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Abstract: The aim of this study was to analysis the recovery of heart rate variability (HRV) 

after treadmill exercise, and to investigate the autonomic nervous system (ANS) response after 

exercise. Frequency domain indices, i.e., LF(ms2), HF(ms2), LF(n.u.), HF(n.u.) and LF/HF, and 

lagged Poincaré plot width (SD1m) and length (SD2m) were introduced for comparison between 

the baseline period (Pre-E) before treadmill running and two periods after treadmill running 

(Post-E1, Post-E2). The correlations between lagged Poincaré plot indices and frequency domain 

indices were applied to reveal the long range correlation between linear and non-linear indices 

during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity 

to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves 

achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 

4 mins. The correlations coefficients between lagged Poincaré plot indices and spectral power 

indices could separate not only Pre-E and two sessions after the treadmill running, but also the 

two sessions in recovery periods, i.e. Post-E1 and Post-E2. Lagged Poincaré plot as an innovative 

nonlinear method showed a better performance over linear frequency domain analysis and 

conventional nonlinear Poincaré plot. 

Keywords: Heart rate variability, Autonomic nervous system, Lagged Poincaré plot, 
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1. Introduction 
 

The evaluation of the recovery of heart rate variability (HRV) is an innovative approach to 

study the autonomic nervous system (ANS) response after exercise. Exercise intensity, exercise 

modality, and physiological conditions (e.g. body position) influenced the HRV recovery after 

exercise [1]. Conventionally, measures of the HRV time- and frequency-domain indices were 

utilized to examine the underlying physiological control mechanisms of the body during the 

exercise recovery. The above linear summary measures of HRV displayed a good performance to 

distinguish the time-varying influence of the ANS and its components on cardiac function during 

HRV recovery. Kingsley et al. [2], Chen et al. [3] and Teixeira et al. [4] reported the autonomic 

recovery from acute resistance exercise. In their studies, parasympathetic activity and 

sympathetic activity at postexercise following acute resistance exercise were investigated using 

frequency-domain indices of HRV. Sun et al. [5] compared autonomic recovery following an 

acute bout of treadmill exercise between Chinese and Caucasian using both the time- and 

frequency-domain HRV indices, which suggested that autonomic recovery was delayed in 

Chinese following acute treadmill exercise.  
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However, non-linear mechanisms are certainly involved in the genesis of HRV, which are 

largely influenced by complex interactions and variables of haemodynamic, electrophysiological, 

humoral variables, as well as by autonomic and central nervous regulations [6]. The fact that 

cardiovascular variability is a result of both linear and nonlinear fluctuations opened new 

perspectives. Some situations or interventions can change the linear content of the variability, 

while leaving the nonlinear fluctuations intact. Therefore, methods of nonlinear system dynamics 

are expected to elicit additional information. Moreover, a combination of linear and non-linear 

HRV analysis techniques on an automated system is essential for understanding and evaluating 

cardiac autonomic modulation. Features extracted from both linear and nonlinear algorithms not 

only show the ‘instantaneous’ temporal changes in HRV but also describe the underlying physio-

pathological ‘state’ of the ANS and the intrinsic nonlinear nature of the autonomically-regulated 

cardiac rhythm. 

Due to the increased use of nonlinear system dynamics in clinical studies, it is very 

important to understand the physiological mechanisms underlying the generation of these 

fluctuations. The Poincaré plot is a valuable HRV analysis technique due to its clear 

interpretation and its ability to display nonlinear aspects of the complex physiological signals 

[7,6]. The conventional two-dimensional Poincaré plot, i.e. 1-lagged Poincaré plot, is a diagram 

in which each R-R interval is plotted as a function of the previous one ([RRi, RRi+1]). The 

evidence that the next R-R interval is determined from previous beats leads itself to further 

generalization with different intervals, i.e. m-lagged Poincaré plots ([RRi, RRi+m], m≥1). As to the 

lagged Poincaré plot, autocovariance information was incorporated in this novel method, 

therefore the analysis to various lags can provide new insights into the important role of 

autonomic control of the heart. The lagged Poincaré plot yields the higher discriminant power in 

evaluating physiological dynamical characteristics and revealing clinical information that is 

inaccessible via conventional linear methods [8-11]. 

Thakre et al. [12] assessed the relation of the heart beats and HRV with different lags in 

congestive heart failure subjects and normal subjects. They found curvilinear association between 

lag and Poincaré plot indices in normal subjects but patients. Contreras et al.’s study [13] in 

assessing correlations between Poincaré plot indices and spectral indices in healthy and diabetic 

subjects suggested that the correlations between spectral indices and lagged Poincaré widths 

might be useful to distinguish normal from pathological HRV. However, few studies analysis the 

autonomic control of the heart in the recovery of HRV following exercise by Lagged Poincaré 

plots indices. 
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The aim of this study was to analysis the recovery of HRV after treadmill exercise, and to 

assess the influence of time on the recovery of HRV. Moreover, the correlations between lagged 

Poincaré plot and spectral power indices were studied in three durations before and after the 

treadmill exercise, which was expected to reveal the long range correlation between linear and 

non-linear indices during the recovery of HRV, and made further analysis the ANS response after 

exercise.  

 
2. Method 

2.1 Subjects  

Sixteen individuals (8 males and 8 females, age: 23.9±0.7 years; BMI: 21.5±2.9 kg/m2) 

without any history of cardiovascular or neurological disorder volunteered to participate in this 

study. They all were normotensive, non-smokers, and were not taking any medications at the time 

of the study. Participants were familiarized with the test procedure and training equipment used in 

the study for approximately 2 days prior to the data collection. The study protocol was conducted 

according to the declaration of Helsinki and was approved by the University of Shanghai for 

Science and Technology Ethical Committee. The contents of the experiment were fully explained 

in writing to the subjects. All subjects provided written informed consent. 

2.2 Data acquisition system and HRV measurement 

A multi-channel physiological signal recording system (PowerLab 4/26, ADInstruments Pty 

Ltd., Sydney, Australia) was used to collect data from ECG signals. The lead II ECG signal was 

recorded with three disposable electrodes placed on the right wrist, the left wrist and the right leg 

of each subject. The ECG signal was sampled at 1 kHz and recorded directly onto the hard disk of 

a computer through an analog-digital convertor having a 12 bits resolution. The bandwidth of the 

ECG amplifiers was set from 0.13 to 100 Hz with 50Hz notch. The values of beat-to-beat cardiac 

interval were automatically excluded for each sinus beat and were subsequently exported for 

further analysis using MATLAB (Math-Works Inc., MA, USA). All ECG datasets used for 

subsequent analysis were free of any form of morphologically abnormal beats. 

HRV describes the fluctuation in heartbeat intervals and is a reliable, noninvasive and 

quantitative marker of ANS activity. HRV characterizes the variations in the time interval 

between consecutive heartbeats, that is, the variations in duration between the R peaks on the 

QRS complexes recognized on ECG tracing. Assessment of HRV is based on analysis of 
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fluctuations of heart beat intervals and may provide quantitative information on the modulation of 

cardiac inputs from parasympathetic and sympathetic nerves. HRV analysis is a well-recognized 

tool for estimating cardiac autonomic modulations [6]. 

2.3 Measurement protocol 

All subjects were instructed to refrain from hot drinks or those containing caffeine and 

strenuous exercise for 1 h prior to the study. Subjects rested quietly in a seated position for at 

least 3 min before the measurement. Then the resting ECG was recorded 4 min as the baseline 

recording (Pre-E). Next, the subjects performed a treadmill running for 8 min at the speed of 6 

km/h. Immediately following exercise (within 10 s), participants were re-seated in a chair and 

recovered passively with instructions to remain motionless without talking. The ECG was 

recorded for each subject for 8 min following the treadmill running, which was divided into two 

periods to do the further processing, including the period of 1-4 min after the treadmill running 

(Post-E1), and the period of 5-8 min after the treadmill running (Post-E2). 

2.4 Spectral characteristics 

RR interval series extract from ECG tracing is inherently nonuniformly sampled series. 

Interpolation is necessary to produce a uniformly sampled HRV time series out of an RR interval 

series. The interpolation frequency was chosen as 4 Hz. After interpolation, the FFT method with 

Hanning window was used to obtain power spectrum estimates of HRV.  

Presently, the investigators have either relied on FFT algorithm or on autoregressive (AR) 

modeling for spectral estimation of HRV time series. The FFT is easier to implement and is 

usually employed with a priori selection of the number and frequency range of bands of interest 

[6]. Conversely, AR algorithms can decompose the overall spectrum into single spectral 

components, using the residual theorem, thus providing automatically the number, central 

frequency, and associated power without the need for a priori assumptions [6]. However, by 

choosing a specific AR model order (ARMO), two different difficulties may arise. Lower orders 

can interfere in the correct power estimation of the frequency bands and may produce a different 

effect in each component, mainly in R–R series of high complexity. Higher orders on the other 

hand are sensible to spurious peaks and produces over fitting [14]. It has been suggested that the 

order of the model should be fixed instead of being estimated independently for each R–R series 

[15, 16]. Recommendations for computational analysis of HRV are not conclusive [6], and 
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therefore many controversies still exist about the choice of the optimal model order. Therefore, 

FFT algorithm was used in the present study for spectral estimation of HRV time series. 

The frequency domain HRV variables, gained from a power spectrum of the RR interval 

series, have been found to reflect autonomic cardiovascular control [6]. Two power components 

were taken into account in this study: a high frequency (HF: 0.15–0.4 Hz) component and a low 

frequency (LF: 0.04–0.15 Hz) component. HF power was supposedly a marker of 

parasympathetic activity, and LF power was reflective of both parasympathetic and sympathetic 

modulation of heart rate [6]. LF/HF ratio was regarded as a mirror of sympathovagal balance or 

mainly as an index of sympathetic modulations [17,18]. LF and HF were measured as both 

absolute units (ms2) and normalized units (n.u.). The normalized units were obtained by dividing 

the power of each component by total power minus the VLF component [6,17]. Normalization 

could minimize the effect on values of LF and HF components of the changes in total power [6]. 

Normalized LF and HF, i.e., 𝐿𝐿𝐿𝐿 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐻𝐻𝐿𝐿 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are expressed as 

LF (n. u. ) = LF
Total Power–VLF

×100                                                (1) 

HF(𝑛𝑛.𝑢𝑢. ) = HF
Total Power–VLF

×100                                                (2) 

2.5 Lagged Poincaré plot 

Poincaré plot outlines the HRV measurements and provide the detailed pulse-to-pulse 

behavior. Conventional Poincaré plot for HRV analysis is a scatterplot of each RR interval 

against the previous RR interval, i.e., it has two dimensions and a lag of 1 interval. The geometric 

appearance of the Poincaré plot can be described by enclosing with an ellipse the points in the 

plot. The ellipse is fitted onto a new coordinate axis that is rotated 45° counterclockwise to the 

normal axis so the new X-axis crosses the ellipse. The standard deviation of the points 

perpendicular to the new X-axis (SD1) measures the width of the plot and therefore indicates the 

level of short-term HRV. The standard deviation along the new X-axis (SD2) measures the length 

of the plot and is thought to indicate the level of long-term HRV. The present quantitative 

analysis was planned to measure SDl, SD2 and SD1/SD2 ratio, respectively. Generally, SD1 is 

the parameter of parasympathetic control of the sinus node [19, 20]. SD2 is influenced by both 

parasympathetic and sympathetic tone [19-22]. SD1/SD2 ratio could be used as an indicator of 

sympathetic activity [22]. 
Instead of the plotting nRR  against 1n+RR in conventional two-dimensional Poincaré plots , 

i.e., 1-lagged Poincaré plots, generalization of Poincaré plots by plotting m-lagged plots was 

investigated in this study, where m is allowed to vary from 1 to some small positive value. M-
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lagged Poincaré plots, plotting nRR  against mn+RR , assume the previous interval can affect 

multiple successive intervals. The length and the width of the m-lagged Poincaré plot are altered 

as the lag is increased. SD1 and SD2 generalized for lag m are given by [23]. 

( ) )()0(1 2 mmSD PPPP φφ −=                                                (3) 

( ) )()0(2 2 mmSD PPPP φφ +=                                                (4) 

Where )(mRRφ  is the mean-removed autocorrelation function, i.e., autocovariance function, 

and is expressed as 

( )( )[ ]PPPPPPPPm mnPP −−= +nE)(φ                                        (5) 

Considering the facts that m-lagged Poincaré plots can be described as the autocovariance 

function, and the autocovariance function monotonically decreases with the increasing lag for 

values of lag less than 10, lags between 1 and 10 for each subject were applied in this study. 

SD1m and SD2m are introduced to express the width and the length in m-lagged Poincaré plots, 

respectively.  
In this study, correlation coefficients (r) between the frequency-domain HRV and the lagged 

Poincaré plot indices were accounted for within three measurement periods e.g. Pre-E, Post-

E1and Post-E2. 

2.6 Statistics  

Normal distribution of each index was assessed applying the Kolmogorov–Smirnov test 

revealing a normal distribution for all HRV indices. Variables in this study were given as 

mean±SD. The significance of difference between sessions was compared using one-way 

ANOVA with repeated-measures followed by post hoc analysis. A p<0.05 was considered 

statistically significant. The statistical analyses were run in MATLAB software (MathWorks Inc., 

MA,USA). 

 

3. Results 

3.1 Frequency domain indices in the recovery of HRV 

In Table 1, LF(ms2) and HF(ms2) were observed significantly decreased during Post-E1 and 

Post-E2 compared to the baseline recording Pre-E. HF(n.u.) significantly decreased, and LF(n.u.) 

and LF/HF significantly increased during recovering time.  However, there were no significant 

differences between Post-E1 and Post-E2 for five frequency domain indices. The trends of the 
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change of frequency domain indices for Post-E1 and Post-E2 were in the direction of Pre-E, but 

did not return to the baseline level.  

3.2 Lagged Poincaré plots indices in the recovery of HRV 

In Table1, the differences between Post-E1 and Post-E2 cannot be distinguished. Therefore, 

the lagged Poincaré plots, which studied the long term variability of HRV, were applied to 

examine the difference between Post-E1 and Post-E2.     

In Table 2, SD1m in Post-E1 and Post-E2 were significantly decreased for all lags compared 

with Pre-E. However, there were no significant differences between Post-E1 and Post-E2 for 

SD1m. SD2m in Post-E1 and Post-E2 were significantly decreased for all lags compared with Pre-

E. SD2m with lag 5 and 6 in Post-E2 were significantly decreased compared with Post-E1. 

SD1m/SD2m in Post-E1 were significantly decreased compared with Pre-E. SD1m/SD2m with lag 5, 

6 and 7 in Post-E2 were significantly decreased compared with Post-E1.  

3.3 Correlation between lagged Poincaré plot indices and frequency domain indices  

This study examined the correlation between lagged Poincaré plot indices and frequency 

domain indices during Pre-E, Post-E1 and Post-E2 to look into the ANS response after exercise. 

In Fig. 1, the correlation coefficients between SD1m and LF component in Pre-E were lower 

than those in Post-E1 and Post-E2. The correlation coefficients between SD1m and LF(n.u.) 

component in Pre-E were lower than those in Post-E1 and Post-E2. The correlation coefficients 

between SD1m and HF(n.u.) component in Pre-E were higher than those in Post-E1 and Post-E2. 

The correlation coefficients between SD1m and LF/HF in Pre-E were lower than those in Post-E1 

and Post-E2. 

In Fig. 2, Pre-E, Post-E1, and Post-E2 were separated by the correlation coefficients between 

SD2m and frequency domain indices. In Fig. 3, the results for the correlation coefficients between 

frequency indices and SD1m/SD2m indicated that lag 4 deserved attentions. For example, the 

correlation coefficients between LF(ms2) and SD1m/SD2m in Pre-E gradually rose for the lag <4, 

but declined for the lag >4 (Fig. 3a). The results indicated that lag 4 is the key point for the 

change of coefficients.    

Generally, Pre-E, Post-E1, and Post-E2 could be visually distinguished by the correlation 

coefficients between lagged Poincaré plot indices and frequency domain indices. 

 

4. Discussion 
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4.1 Frequency domain indices in the recovery of HRV 

Evaluation of heart rate recovery after exercise has become a valuable, noninvasive 

procedure to assess cardiovascular-para-sympathetic influence [24, 25]. Time-domain was 

considered a less measure of cardiac modulation of ANS [6]. In this study, frequency indices LF, 

HF and LF/HF were used to evaluate the cardio-physiological behavior in Pre-E, Post-E1 and 

Post-E2. Spectral analysis of HRV is a useful, noninvasive technique to investigate the short-term 

(2-5 min) autonomic modulation of heart rate under physiologically stable conditions [6]. For the 

frequency-domain indices of HRV, the HF component has been linked to the activity of 

parasympathetic nervous system, while the LF component is reflective of both sympathetic 

modulation and parasympathetic tone [26-28]. LF/HF ratio was considered as an index of 

parasympathetic and sympathetic interactions, i.e., the index of sympathovagal balance [26,27]. 

In this study, significantly decreased HF(ms2) and HF(n.u.) indicated that the parasympathetic 

activity was suppressed after treadmill exercise. The decreased LF(ms2) after the treadmill 

exercise suggested the suppressed sympathetic activity and parasympathetic tone due to exercise. 

However, accumulating evidence demonstrated that the interpretation about power spectral 

analysis over simplifies the complex non-linear interactions between the sympathetic and the 

parasympathetic divisions of the ANS [29-32]. 

Despite serious and largely under-appreciated limitations, the LF/HF ratio has gained wide 

acceptance as a tool to assess cardiovascular autonomic regulation where increases in LF/HF are 

assumed to reflect a shift to “sympathetic dominance” and decreases in this index correspond to a 

“parasympathetic dominance.” In the present study, significant increased LF(n.u.) and LF/HF in 

Post-E1 and Post-E2 demonstrated that the sympathetic nerves achieved dominance over the 

parasympathetic nerves following the treadmill exercise, although the dominance diminished over 

time during the recovery of HRV. The phenomenon in this study indicated that LF/HF was tended 

to calculate as an autonomic-imbalance index, which was coincident with the claim from 

Billman’s paper. Billman [33] also indicated that the physiological basis for LF/HF was difficult 

to discern due to the disagreement in interpretation of the LF and HF component of HRV. 

The changes in five frequency domain measures between Pre-E and two sessions after 

treadmill running suggested entirely attenuated autonomic nervous activity to the heart, and may 

reflect diminished afferent autonomic activity following the treadmill exercise. However, 

frequency domain measures cannot distinguish the difference between Post-E1 and Post-E2. It is 

possible that the intrinsic nonlinear nature of the autonomically regulated cardiac rhythm implies 

the linear data processing techniques do not predict the subtle change of the ANS.     
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4.2 Lagged Poincaré plots indices in the recovery of HRV 

Poincaré plot is one of the most powerful nonlinear tools for qualitative exploration the 

dynamics of physiological signal. Previous studies have shown the evaluation of the conventional 

Poincaré plot for HRV analysis in investigating the function of ANS. It has been shown that SD1 

correlates better with HF component than with LF component [7,23]. Brennan et al.[23] 

suggested that conventional Poincaré plot ignored some of its most potent abilities to display 

nonlinear aspects of the interval sequence while converting the two-dimensional plot into various 

one-dimensional views which existing HRV indexes already specify. They expressed that the set 

of lagged Poincaré plots could be a complete and better description of the autocovariance 

function and the power spectrum of the HRV intervals [23]. In the present study, we have 

assessed how these correlations were affected when SD1 and SD2 was obtained for longer lags 

(m>1) during HRV recovery after treadmill exercise. Lagged Poincaré plots in this study 

provided information about the cardiac response for the recovery of HRV following treadmill 

exercise in different sessions that was less evident in the linear-based methods.  

Table 2 showed that all lagged Poincaré plot measures significantly changed in both Post-E1 

and Post-E2 compared to these in Pre-E. The changes between Post-E1 and Post-E2 were 

distinguished while the lag was 5, 6 and 7. It was demonstrated that lagged Poincaré plot have 

sufficient sensitivity in detecting the obscure changes in ANS, that is not visible from frequency-

domain indices, and conventional Poincaré plot as well. It has been reported that a heartbeat 

influences not only the beat immediately, but also up to 4-10 beats downstream [34], which could 

be due to the variation in heart rate as a consequence of respiration, i.e., respiratory sinus 

arrhythmia.  

Goshvarpour et al. indicated that indices in Poincaré plot with lag 6 were found comparative 

while studying the nonlinear behavior of physiologic signals [35]. Several studies showed that 

Poincaré plot with increased lags had better performance in predicting pathophysiological risk or 

accessing physiological condition [8-11]. In the present study, we speculated that the respiratory 

rhythm greatly affects the recovery of HRV at different durations after exercise. The influence of 

the respiratory rhythm was presented in all lagged Poincaré plot, particularly while the lag is 5, 6 

and 7. 

In practically, behavioural factors influence the HRV and HRV recovery, including physical 

activity, smoking habits, alcohol consumption and dietary patterns. For example, regular physical 

activity has been shown to lower resting HR [36]; to improve HR recovery after acute exercise[33, 
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34] and to increase global HRV[38-40] due to physical activity causes a resting bradycardia. 

However, literatures support the interpretation that there may be no true causal association of 

behavioural factors with HRV [41, 42]. Therefore, the questionnaire about the behavioural factors 

for the participants was not conducted in this study. Many researches indicated that exercise 

duration, intensity and mode may affect the post-exercise recovery of physiological parameters in 

acute exercise [43-45].  However, the above studies always provided the temporal or spectral 

mathematical approaches, which performed well in stationary segments of the signal, yet 

neglected the nonlinear characteristic aspects of RR interval. Lagged Poincaré plot as a novel 

technology allowed researches to analyze the HRV in non-stationary condition, such as 

assessment of the cardiac autonomic activity at the immediate post-exercise period in this study. 

As suggested by previous studies, the width of Poincaré plot (SD1) could be considered as a 

nonlinear indicator of parasympathetic activity, while the length of Poincaré plot (SD2) is 

influenced by both sympathetic and parasympathetic tone [21,22]. SD1/SD2 ratio could be used 

as a marker of sympathetic activity since it increased during the exercise after a complete 

parasympathetic blockade. SD2m and SD1m/SD2m ratio continued to decrease in Post-E2 and the 

significant differences were detected at lag 5, 6 and 7, which suggested that the entirely 

attenuated autonomic nervous activity to the heart and the inhibition of sympathetic activity 

lasted for more than 4 mins.  

4.3 Correlation between lagged Poincaré plot indices and frequency domain indices  

A combination of linear and nonlinear HRV analysis techniques are applied widely to 

monitor the changes of automated system and would offer valuable insight into ANS functioning 

and response [46,47]. The correlation between lagged Poincaré plot indices and spectral power 

indices may uncover abnormalities that are not easily detectable with frequency domain measures. 

In the present study, the results indicated that the combination of lagged Poincaré plot and 

frequency domain measures could separate not only Pre-E and two sessions following treadmill 

running, but also the two recovery periods, i.e. Post-E1 and Post-E2. 

An established physiological oscillator model have expressed that the HF component 

contributes greatly to the width of Poincaré plot, and that the LF component contribution was 

relatively minor [7]. The LF/ HF significantly correlated with SD2 [48].  However, the above 

statement was based on the conventional Poincaré plot (lag=1). As to the lagged Poincaré plot 

(lag>1), with the augment of the lags, there was no general agreement on how LF or HF 

components contribute to the width and the length of lagged Poincaré plot. The results in this 

study indicated that, in the correlation between lagged Poincaré plot indices and frequency 
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domain indices, medium-term (lag=4) inter-beat correlation could be a valuable index, which may 

be associated with the respiratory sinus arrhythmia. Since the two branches of the ANS i.e., 

sympathetic and parasympathetic nervous systems, are reciprocally innervated, their responses 

are co-ordinated to provide the appropriate internal environment to meet shifts in both internal 

and external demands. Therefore, in this study, the recovery time and the respiratory sinus 

arrhythmia were both considered as the factors that influenced the recovery of HRV. Wessel et al 

[49] gave an example of cardiorespiratory modeling which demonstrates that the complex 

behaviour of the heart rate is mainly caused by the respiration which influences the coupling of 

heart rate and blood pressure. It is known that respiration is not perfectly periodic and even a 

resting person experiences irregular breathing due to several factors. Therefore, the influence of 

respiration on HRV would be expected to be in both LF and HF [50]. Lagged Poincaré plot 

expected to provide the opportunity to explore the nature of nonlinear physiological response due 

to its physiological correlation with HF and LF.  

 

5. Conclusion 
 
Generally, lagged Poincaré plot as an innovative nonlinear method showed a clear advantage 

over linear frequency domain indices and conventional nonlinear Poincaré plot. The present study 

indicated that nonlinearity in the cardiovascular system cannot be reflected by standard HRV 

analysis. The experiment results show the effectiveness of the lagged Poincaré plot method and 

its correlation with frequency domain indexes of HRV for assessing the recovery of HRV after 

treadmill exercise. The autonomic nervous activity attenuated following the treadmill exercise, 

and the sympathetic nerves achieved dominance after the treadmill running.  

The goal is not that nonlinear HRV techniques would replace the conventional linear 

analysis, but they have to be considered as an addition, yielding the nonlinearity and possible 

chaos of the cardiovascular system.  
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Table 1: Comparisons from frequency domain between Pre-E, Post-E1 and Post-E2. LF: 

low-frequency power; HF: high-frequency power; LF (n.u.): normalized HRV indices 

[LF/(LF + HF)]; HF (n.u.): normalized HRV indices [HF/(LF + HF)]; LF/HF: the power 

ratio of low-frequency to high-frequency. Values are given as mean±SD. 

 Pre-E Post-E1 Post-E2 p1 p2 p3 

LF(ms2) 1129.4± 547.9 433.4±168.9  443.2±186.2 <0.001 <0.05 0.47 

LF(n.u.) 58.1±21.0  70.4±10.6  68.1±18.0 <0.001 <0.05 0.22 

HF(ms2) 644.4±198.2  65.4±21.7  98.1±47.5 <0.001 <0.001 0.13 

HF(n.u.) 30.1±11.4  14.3±5.3 16.5± 7.6 <0.001 <0.05 0.16 

LF/HF 2.62±1.1  6.45±2.8 5.19±2.3 <0.05 <0.05 0.17 

p1: Pre-E v.s. Post-E1; p2: Pre-E v.s. Post-E2; p3: Post-E1 v.s. Post-E2 
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Table 2. Summary of lagged Poincaré plot indices in Pre-E, Post-E1 and Post-E2.  

 SD1m(ms) SD2m(ms) SD1m/SD2m 

Lag Pre-E Post-E1 a Post-E2 b Pre-E Post-E1 a Post-E2 b Pre-E Post-E1 a Post-E2 

1 29.1±14.9 11.2±5.5 14.4±7.6 75.4±23.3 50.4±15.4 43.8±17.7 0.37±0.11 0.23±0.10 0.34±0.11 

2 38.3±17.4 14.3±6.9 17.9±8.9 71.1±21.4 49.5±14.9 43.6±16.9 0.52±0.12 0.29±0.11 0.41±0.09 

3 43.5±18.3 17.0±9.1 20.7±10.4 68.2±20.2 48.5±14.3 41.3±15.9 0.62±0.11 0.36±0.14 0.48±0.10 

4 45.8±18.4 19.2±11.1 22.9±11.9 66.7±20.1 47.5±13.6 40.1±14.9 0.67±0.12 0.41±0.17 0.55±0.12 

5 48.4±17.7 21.4±12.6 25.3±12.8 64.8±20.7 46.3±13.0 38.6±14.2* 0.74±0.14 0.46±0.21 0.63±0.14* 

6 50.4±16.9 23.2±13.5 27.3±13.3 63.2±21.8 45.3±12.7 37.2±13.8* 0.81±0.18 0.52±0.23 0.71±0.16* 

7 51.1±16.4 24.4±13.8 28.6±13.7 62.4±22.7 44.6±12.6 36.2±13.5 0.85±0.24 0.56±0.24 0.77±0.17* 

8 50.7±15.6 25.1±13.8 29.1±13.9 62.5±23.9 44.2±12.6 35.8±13.3 0.87±0.34 0.58±0.25 0.79±0.17 

9 51.2±16.2 25.2±13.5 29.3±14.1 61.9±24.1 44.2±12.7 35.6±13.1 0.91±0.45 0.58±0.24 0.80±0.18 

10 51.6±16.4 25.2±12.9 29.4±14.2 61.4±24.5 44.3±13.1 35.5±13.1 0.96±0.62 0.58±0.24 0.81±0.18 

SD1m: the width of m-lagged Poincaré plot, SD2m: the length of m-lagged 
Poincaré plot. 
a p<0.05 for SD1m (m=1, 2, 3 …,10) in Post-E1 compared with Pre-E. 
b p<0.05 for SD2m (m=1, 2, 3 …,10) in Post-E2 compared with Pre-E. 
* p<0.05 for SD2m (m=5, 6, and 7) in Post-E2 compared with Post-E1. 
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(a)                                                                       (b) 

 

(c)                                                                       (d) 

 

                                   (e) 

Fig. 1. The correlations between SD1m and frequency domain indices: (a) LF(ms2), (b) HF(ms2), 
(c) LF(n.u.), (d) HF(n.u.), and (e) LF/HF.  
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(a)                                                             (b) 

 

(c)                                                               (d) 

 

                                     (e) 

Fig. 2. The correlations between SD2m and frequency domain indices: (a) LF(ms2), (b) HF(ms2), 
(c) LF(n.u.), (d) HF(n.u.), and (e) LF/HF. 
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(a)                                                             (b) 

 

(c)                                                               (d) 

 

                                     (e) 

Fig. 3.  The correlations between SD1m/ SD2m and frequency domain indices: (a) LF(ms2), (b) 
HF(ms2), (c) LF(n.u.), (d) HF(n.u.), and (e) LF/HF. 
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