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Abstract  

In measuring 3D shape with structured light techniques, systematic errors arise in the 

neighbourhood of discontinuities in reflectivity or geometry. A mechanism for this 

phenomenon is proposed, based on the finite size of the imaging system’s point spread 

function. A theoretical analysis for the phase errors in a phase-shifting projected fringe 

system is given, from which a correction algorithm to minimise the systematic errors is 

presented. In this algorithm, a closed form expression for the errors based on the intensity 

values and the phase values in a neighbourhood excluding the affected region is used to 

remove the estimated error from the measured phase values within the affected region. 

Experiments on samples with both linear and circular discontinuities in reflectivity 

demonstrated respective reductions in systematic errors by factors of 2.5× and 3×.  
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1. Introduction 

Projected fringe profilometry has become an active research area within the field of 

non-contact optical full-field three-dimensional (3-D) sensing techniques because of its 

numerous advantages, such as fast measurement and high accuracy [1-3]. Its applications 

range from measuring the 3-D shape of micro-electromechanical systems (MEMS)  

components to the measurement of flatness of large panels. Projected Fringe Profilometry has 

been widely used in practical applications including object detection, digital model 

generation, reverse engineering, product inspection, quality control and biometric 

identification [4-6].  

A typical fringe projection system consists of a digital projector, a digital camera and a 

computer. A digital camera with a matrix of pixels records the light intensity distribution of 

the fringe pattern that is phase modulated by the object height distribution. Quantitative 

information on the height distribution is normally obtained from wrapped phase maps, 

calculated from a series of images with different fringe phase shifts. Determination of the 

absolute fringe order at each pixel is typically achieved by repeating the phase measurements 

at a range of fringe spatial frequencies, and applying a temporal phase unwrapping algorithm 

[7].   

Despite the relatively mature state of this technology, it is nevertheless subject to significant 

measurement artefacts under certain conditions. The focus of the current paper is the 

systematic errors that can arise when measuring surfaces with discontinuities in reflectivity 

by these techniques.  

An example is shown in Figure 1 in which a calibration board has been measured by a 

commercial scanner (Phase Vision Quartz 1200 DBE). This scanner uses temporal phase 

shifting with a reversed exponential temporal phase unwrapping scheme [8]. The 

measurement is repeated at two orthogonal fringe orientations to provide additional 

information to improve the calibration accuracy. Figure 1(a) shows an intensity image of the 

calibration board. This has white circles on a black plane, a configuration that is widely used 
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in projected fringe profilometry. Although the surface profile of the board is smoothly 

varying across the circle edges, the measured profile contains large errors in their vicinity. 

The height map corresponding to Fig. 1(a) is shown as a greyscale image of the full board in 

Fig. 1(b), a horizontal cross section in Fig. 1(c) and a mesh plot of the region around a pair of 

the circles in Fig. 1(d). Errors of up to ±1 mm are clearly visible which appear to be induced 

by the sudden transition in reflectivity, and which will therefore be denoted 

‘discontinuity-induced measurement artefacts’ (abbreviated to DMA) throughout the current 

paper. 

As far as we are aware, this phenomenon has received almost no attention in the fringe 

projection literature. In 2003, Brakhage et al. [9] studied the reliability of phase information 

in the neighbourhood of object discontinuities. The errors caused by the transition between 

two object levels were just deleted. Although this prevents decisions being made from 

erroneous data, edges or corners of a sample are often the regions where data is most badly 

needed. A means to estimate and then to remove the errors, instead of simply discarding the 

data, would therefore be beneficial. 

In the current paper, we give a simple physical explanation for the phenomenon, from which 

an analytical model to predict the spatial distribution of DMAs in the case of discontinuities 

in reflectivity is proposed. An algorithm is then developed that allows the correction - rather 

than simply deletion - of the data in the neighbourhood of a discontinuity. The performance 

of the correction algorithm is assessed using near-planar samples with linear and circular 

discontinuities in reflectivity.  

2. Model for Discontinuity-Induced Measurement Artefacts 

The principle of the fringe projection technique based on temporal phase unwrapping, and the 

camera/projector pinhole calibration model, is summarised in Section 2.1. Then our 

hypothesis for the cause of DMAs is presented in Section 2.2, from which a new analytical 

model is developed in Section 2.3.  
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2.1 Principle of fringe projection technique  

Temporal phase unwrapping is a method of analysing fringe patterns which is widely used in 

the fringe projection technique [7,8]. The fringe phase at each pixel is measured by standard 

temporal phase shifting techniques and unwrapped as a function of time. The reversed 

exponential temporal phase unwrapping method is used here in which the phase decreases 

from its maximum value to zero, with an exponentially growing series of phase changes. This 

provides significant improvements in reliability, accuracy, and computation time compared 

with the original temporal unwrapping algorithm [8]. 

In this paper, the fringes are projected in two sequences where the second is rotated by 90° 

with respect to the first direction. By recording phase images with both vertical and 

horizontal fringe patterns, concepts from the photogrammetry literature (notably 

camera/projector models and nonlinear optimization techniques to estimate the system 

parameters) can be used to assist in the calibration [10]. At a given pixel, the unwrapped 

phase values for the vertical and horizontal fringes, normalised such that they each span the 

range –π to + π, are represented by ωx and ωy, respectively (see Fig. 2). These define the 

coordinates of a point in the image plane of the projector’s spatial light modulator (SLM) 

through which the light illuminating scattering point P must have passed. The position of P is 

calculated by projecting rays from the camera and projector image planes through the 

previously-estimated lens pinhole locations Oc and Op. The coordinates (X, Y, Z) of P are 

defined as the midpoint of the closest points of approach of the two rays [11,12].  

2.2 Proposed mechanism for DMA formation 

The cause of the artefacts is believed to be the spatial averaging of the phase signal produced 

by the finite size of the camera’s point spread function (PSF). When a significant change in 

reflected light intensity occurs within the PSF, the averaged phase is weighted towards the 

values from the high-intensity region within the PSF, thus introducing a bias in the detected 

phase.  



5 
 

A simple 1-D example to illustrate the effect is shown schematically in Figure 3. Figure 3(a) 

shows a cross section through a simulated image of a uniformly-illuminated plate which has a 

region of low reflectivity (25% of that elsewhere on the plate) over the region –D/2 < x < D/2, 

where D = 0.4. The imaging system is assumed here to have a PSF of negligible diameter so 

that a given point in the image plane receives light from only a single point on the object 

surface. Horizontal and vertical axes represent normalised intensity I(x), and position along 

the plate, x, respectively.  

The plate is then illuminated with a sequence of virtual fringe patterns, one of which is shown 

in Fig. 3(b). If, for example, the reversed exponential sequence [8] is used to provide an 

independent unwrapped phase value at each camera pixel, a sequence with 8,7,6,4 fringes 

across the field could be projected, with four phase shifts for each fringe frequency. Figure 

3(b) then represents one of these 16 patterns, with eight fringes and a phase shift of π/2.  

The unwrapped phase profile computed from these patterns, ωx(x), is shown in Fig. 3(c). The 

continuous and red dotted lines represent ωx(x) from the high-reflectivity and low-reflectivity 

portions of the plate, respectively. Phase is calculated from ratios of intensity difference 

values. Therefore, since both the numerator and denominator are scaled equally by the local 

surface reflectivity, spatial variations in reflectivity have no effect on the computed phase 

provided there is no crosstalk between neighbouring pixels. ωx thus follows a straight line 

with no deviations across the discontinuities in reflectivity. The subscript ‘x’ in ωx refers to 

phase values coming from fringe patterns oriented normal to the x axis. In the full 2-D case 

considered later, ωy will be used to refer to the unwrapped phase map from fringes projected 

normal to the y axis.  

The key assumption made so far is that the camera recording the images has a PSF of 

negligible diameter compared to the field of view. Consider now the situation where this is 

not the case, for example due to significant defocus of the camera. Point P in Fig. 3(c) is a 

point on the sample well away from the low-reflectivity region, with a true unwrapped phase 

value ωx
(P). The horizontal bar represents the diameter of the PSF. The signal at P now 

contains contributions from the range of ωx values that fall within the range of the bar. 
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However since the sample is uniformly reflective over the PSF region, as seen in Fig. 3(a), 

the contribution from the regions to the left and right of P, where ωx is respectively greater 

than and less than ωx
(P), can be expected to largely cancel out. On the other hand, point Q, on 

the left hand edge of the low-reflectivity region, receives more signal from regions of the 

sample with ω𝑥𝑥 ≤ ω𝑥𝑥
(𝑄𝑄); the measured phase can therefore be expected to be biased in the 

downward direction. The opposite happens at point R where there is a positive bias in the 

measured phase.  

A model for the measured phase from this finite sized PSF case is shown in Fig. 3(d), where 

we have assumed that the measured phase is a convolution of the true phase (Fig. 3(c)), 

weighted by the intensity signal (Fig. 3(a)), with the camera’s PSF. The measured profile 

across the low reflectivity region which is obtained by removal of the linear ramp and 

appropriate scaling, then has positive and negative artefacts next to the low-reflectivity region 

which are reminiscent of those shown in Fig. 3(d). The example in Fig. 3(e) is the profile that 

would be obtained for the case of a 45° projection angle, and the artefacts are seen to be a 

significant fraction of the field of view.  

For many optical systems, the PSF ℎ(𝑥𝑥,𝑦𝑦) may be modelled as a Gaussian [13]: 

ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐 ,𝑦𝑦 − 𝑦𝑦𝑐𝑐) =  𝑎𝑎 e−
(𝑥𝑥−𝑥𝑥𝑐𝑐)2

2𝑐𝑐2 e−
(𝑦𝑦−𝑦𝑦𝑐𝑐)2

2c2  
(1) 

  

where (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) is the position of the center of the Gaussian, c controls the width which is 

assumed here to be identical along both the 𝑥𝑥 and 𝑦𝑦 axes, and a is a normalisation factor. 

The PSF of a camera can be conveniently estimated by measuring the response of the camera 

to an image of an object containing an edge, across which there is a step change in reflectivity. 

A finite difference operator acting in a direction normal to the edge then results in a Gaussian 

function, if the PSF is Gaussian, from which c can be estimated by a simple least squares 

fitting procedure [13]. The parameter c is related to the half width at one tenth of maximum 

(HWTM) of the peak and HWTM can be regarded as the radius, RP, of the PSF. Therefore, 

https://en.wikipedia.org/wiki/Full_width_at_half_maximum
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𝑅𝑅𝑃𝑃 = HWTM = √2ln10𝑐𝑐 ≈ 2.146𝑐𝑐 (2) 

2.3 Mathematical model for DMA  

The hypothesis underlying the current paper is that the fringe imaging system produces a 

recovered phase equal to a weighted average of the phase values lying within the PSF 

footprint, where the weighting function is a product of intensity I and point spread function h. 

In 2-D, the output of the model for the phase ω�𝑗𝑗 (j = x, y) recovered at point 𝑥𝑥 = 𝑥𝑥𝑐𝑐,𝑦𝑦 = 𝑦𝑦𝑐𝑐, 

may thus be written as the convolution integral 

ω�𝑗𝑗(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) =
∬ ω𝑗𝑗(𝑥𝑥, 𝑦𝑦) ∙ 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐 ,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

 
(3) 

where the denominator represents a normalisation factor.  

It should be noted that Eqn. (3) represents a significant approximation in the model. A more 

complete analysis would require computation of the weighted intensity at 𝑥𝑥 = 𝑥𝑥𝑐𝑐,𝑦𝑦 = 𝑦𝑦𝑐𝑐, for 

each of the phase-shifted images; a full error propagation calculation through the particular 

phase-shifting formula and phase unwrapping algorithm would then be needed to quantify the 

deviation in computed phase from the actual phase. Such a calculation seems impractically 

complex; it is therefore of interest to see how well the much simpler Eqn. (3) works with 

experimental data.  

In order to apply Eqn. (3) it is necessary to estimate both I and ω𝑗𝑗 in the vicinity of the 

discontinuity. However, in the image plane, any measurement of these quantities within a 

distance RP of the discontinuity is affected by the values on the other side of the discontinuity. 

This region is illustrated in Figure 4, where the pixel grid has been rotated such that the 

discontinuity is locally vertical, and is labelled the PSF zone as it is a strip of width twice the 

radius of the Point Spread Function.  

Independent Taylor series expansions in x and y are used on each side of the discontinuity, to 

represent each of the I and ω𝑗𝑗 distributions. The values of the Taylor series coefficients are 

then estimated by least squares fitting polynomial surfaces to the measured quantities within 

the Least Squares Fitting (LSF) zones shown in Fig. 4. Eqn. (3) then becomes  
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ω�𝑗𝑗(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) =
∬ ω�𝑗𝑗(𝑥𝑥, 𝑦𝑦) ∙ 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐 ,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

. 
(4) 

In Eqn. (4), and in what follows, the symbol ‘^’ denotes quantities calculated from the Taylor 

Series coefficients, the symbol ‘ � ’ denotes the output from the model, and the symbol ‘ � ’ 

denotes experimentally measured quantities.  

For a given point inside the PSF zone at which ω�𝑗𝑗 needs to be estimated, a local coordinate 

system is set up with the x axis normal to the discontinuity, and the origin chosen to lie on the 

discontinuity such that yc = 0. All the results in this paper were obtained by using 1st order 

Taylor series for ω𝑗𝑗, and zero order series for I, as follows: 

 

ω�𝑗𝑗
(𝑟𝑟)(𝑥𝑥,𝑦𝑦) = 𝑝𝑝𝑗𝑗00

(𝑟𝑟) + 𝑝𝑝𝑗𝑗10
(𝑟𝑟)𝑥𝑥 + 𝑝𝑝𝑗𝑗01

(𝑟𝑟)𝑦𝑦 (5) 

ω�𝑗𝑗
(𝑙𝑙)(𝑥𝑥, 𝑦𝑦) = 𝑝𝑝𝑗𝑗00

(𝑙𝑙) + 𝑝𝑝𝑗𝑗10
(𝑙𝑙) 𝑥𝑥 + 𝑝𝑝𝑗𝑗01

(𝑙𝑙) 𝑦𝑦 (6) 

𝐼𝐼(𝑟𝑟)(𝑥𝑥,𝑦𝑦) =  𝑞𝑞00
(𝑟𝑟) (7) 

𝐼𝐼(𝑙𝑙)(𝑥𝑥, 𝑦𝑦) =  𝑞𝑞00
(𝑙𝑙) (8) 

In the above, superscripts (r) and (l) denote, respectively, regions to the right and the left of 

the discontinuity, and the p and the q coefficients result from least squares fitting the above 

equations to 𝜔𝜔�𝑗𝑗 and 𝐼𝐼.   

For the Gaussian PSF of Eqn. (1), Eqn. (4) can be integrated to give the following analytical 

expression for the modelled phase:  

 

ω�𝑗𝑗(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) =
𝐴𝐴 + 𝐵𝐵
𝐶𝐶 + 𝐷𝐷

 (9) 

where 

𝐴𝐴 =  −π𝑝𝑝𝑗𝑗00
(𝑙𝑙) 𝑞𝑞00

(𝑙𝑙)𝑐𝑐2 (erf�
√2𝑥𝑥𝑐𝑐

2𝑐𝑐
� − 1)    
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           −√2π𝑝𝑝𝑗𝑗10
(𝑙𝑙) 𝑞𝑞00

(𝑙𝑙)𝑐𝑐 �𝑐𝑐2e−
𝑥𝑥𝑐𝑐
2

2𝑐𝑐2 − �π
2
𝑐𝑐𝑥𝑥𝑐𝑐 �1 − erf �√2𝑥𝑥𝑐𝑐

2𝑐𝑐
��� 

−π𝑝𝑝𝑗𝑗01
(𝑙𝑙) 𝑞𝑞00

(𝑙𝑙)𝑐𝑐2𝑦𝑦𝑐𝑐 (erf�
√2𝑥𝑥𝑐𝑐

2𝑐𝑐
� − 1) 

 

 

 

(10) 

𝐵𝐵 =  −π𝑝𝑝𝑗𝑗00
(𝑟𝑟)𝑞𝑞00

(𝑟𝑟)𝑐𝑐2 (erf�
√2𝑥𝑥𝑐𝑐

2𝑐𝑐
� − 1)    

          +√2π𝑝𝑝𝑗𝑗10
(𝑟𝑟)𝑞𝑞00

(𝑟𝑟)𝑐𝑐 �𝑐𝑐2e−
𝑥𝑥𝑐𝑐
2

2𝑐𝑐2 + �π
2
𝑐𝑐𝑥𝑥𝑐𝑐 �1 + erf �√2𝑥𝑥𝑐𝑐

2𝑐𝑐
��� 

+π𝑝𝑝𝑗𝑗01
(𝑟𝑟)𝑞𝑞00

(𝑟𝑟)𝑐𝑐2𝑦𝑦𝑐𝑐 (erf�
√2𝑥𝑥𝑐𝑐

2𝑐𝑐
� − 1) 

 

 

 

(11) 

 

𝐶𝐶 = π𝑞𝑞00
(𝑟𝑟)𝑐𝑐2 �erf�

√2𝑥𝑥𝑐𝑐
2𝑐𝑐

� − 1� 
(12) 

𝐷𝐷 = π𝑞𝑞00
(𝑙𝑙)𝑐𝑐2 �erf�

√2𝑥𝑥𝑐𝑐
2𝑐𝑐

� + 1� 
(13) 

 

3. DMA correction algorithm 

In this section we describe an algorithm that estimates the error in the measured ω𝑥𝑥 and ω𝑦𝑦 

at a given point due to a neighbouring edge discontinuity, from which a corrected coordinate 

can be computed. The purpose is two-fold – firstly to test the hypothesis outlined in the 

previous section (in particular the applicability of Eqn. (3)), and secondly to reduce DMAs in 

real-world applications of the projected fringe technique. 

The correction algorithm includes the following four steps. 

 

Step1 - find the affected pixels. Two edge detection methods based on that described in [14], 

which provides sub-pixel accuracy, and a standard Canny edge detection method [15], are 

used to estimate the locations of the discontinuities in the image. A dilation operation on the 
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Canny detected edges, with a dilation radius equal to the radius RP of the PSF then generates 

a binary mask to specify the pixels that are potentially affected by the discontinuity. For each 

affected pixel, carry out the following steps 2 to 4. 

Step2 – define LSF zones. Find the nearest point on the discontinuity, as determined by the 

sub-pixel edge-detection method [14], to the chosen pixel. This point becomes the origin of a 

local coordinate system (𝑥𝑥,𝑦𝑦) as shown in Fig. 4, with 𝑥𝑥 perpendicular, and 𝑦𝑦 parallel to 

the discontinuity. It is convenient to transform the camera image plane coordinates (𝜉𝜉𝑐𝑐, 𝜂𝜂𝑐𝑐) 

of the nearby pixels, as shown in Fig. 2, into the (𝑥𝑥,𝑦𝑦)  system by a suitable 

rotation/translation operation. The LSF zones are defined in this system as the two 

rectangular regions  

𝑅𝑅𝑃𝑃 < 𝑥𝑥 < 2𝑅𝑅𝑃𝑃;  −𝑅𝑅𝑃𝑃 < 𝑦𝑦 < 𝑅𝑅𝑃𝑃     (right LSF zone) 

−2𝑅𝑅𝑃𝑃 < 𝑥𝑥 < −𝑅𝑅𝑃𝑃;  −𝑅𝑅𝑃𝑃 < 𝑦𝑦 < 𝑅𝑅𝑃𝑃     (left LSF zone) 

 

Step 3 – find Taylor series coefficients of LSF zones. The Taylor series coefficients 𝑝𝑝𝑗𝑗
(𝑟𝑟), 

𝑝𝑝𝑗𝑗
(𝑙𝑙), 𝑞𝑞(𝑟𝑟) and 𝑞𝑞(𝑙𝑙) are estimated by fitting Eqns. (5)-(8) to the measured ω�𝑗𝑗 and 𝐼𝐼 fields. 

The value of ω�𝑥𝑥 and ω�𝑦𝑦 at the current pixel, i.e., that predicted by the model, is then 

evaluated by Eqns. (9-13).   

Step4 - calculate corrected coordinate. The error εω�𝑗𝑗 that will be present in the measured 

ω�𝑗𝑗 at the current pixel, due to the neighbouring discontinuity, is estimated as follows: 

εω�𝑗𝑗 = ω�𝑗𝑗 − ω�𝑗𝑗 (14) 

The measured ω�𝑗𝑗 values are then corrected as 

 

ω�𝑗𝑗
′ =  ω�𝑗𝑗 − εω�𝑗𝑗 (15) 

A corrected position vector for the scattering point, (𝑋𝑋′,𝑌𝑌′,𝑍𝑍′), is then computed from the 

(ω�𝑥𝑥
′,ω�𝑦𝑦

′) values from Eqns. (14) and (15), using the model for the scanner that provided the 

original position vector. 
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4. Experimental results 

Two objects were measured with the Phase Vision scanner to assess the effectiveness of the 

proposed mathematical model. One was a piece of A4 paper with printed grey and white 

stripes, the other was a calibration board with white circles on a black plane. Images of 

printed black and white stripes were also captured by the scanner’s camera over a range of 

positions, in order to measure the variation of RP within the measurement volume.  

The scanner comprises a single projector (ProjectionDesign F22SX+, 32 mm focal length, 

1400 × 1050 pixels, 13.7 µm pixel spacing in both directions) and a single camera (VDS 

Vosskuhler CCD 4000, 50 mm focal length, 2048 × 2048 pixels, 7.40 µm pixel spacing in 

both directions). The lens centres of camera and projector are separated by a baseline distance 

of 919 mm. The scanner has a working distance of 1.8-2.8 m, a field of view and lateral 

resolution of 700 mm and 340 µm, respectively, at the centre of the measurement volume, 

with a depth measurement accuracy of 100 µm. 

4.1 Measurement of PSF radius 

A typical captured image of the black/white striped sample is shown in Fig. 5(a). As the 

stripes are approximately vertical, the radius of the PSF can be estimated from a horizontal 

cross section of the image across an edge. The degree of image blur caused by the finite size 

of the PSF can be estimated by applying a forward difference operator to the recorded 

intensity values along the line, followed by a Gauss curve fitting [13]. The first order 

difference image of the edge response function and the Gaussian curve fitting result are 

shown in Fig. 5(b) and (c). Then, the radius of the PSF can be estimated by using Eqn. (2).  

This procedure was repeated with the paper sample at different distances from the scanner 

over the range 1.8-2.8 m, to allow the variation of RP with depth Z within the measurement 

volume to be estimated. The results are presented in Fig. 5(d). By interpolating the data 

shown in Fig. 5(d), an estimate of RP at any desired height value can be obtained. 

4.2 Straight-edge sample 

The paper sample printed with grey and white stripes is a relatively simple object, which 

allows for a clear demonstration of the effectiveness of the proposed correction algorithm. 

Figure 6(a) and (b) are the Canny edge image and the dilated Canny edge image produced 
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from the texture image. Figure 6(c) shows the sub-pixel edge detection image, with an 

enlarged part in Fig. 6(d). The red short line in the sub-pixel image denotes the position of the 

sub-pixel edge, and the blue arrow denotes the direction of the gradient vector. 

The calibrated height of the centre point of the sample was 87mm, and interpolation of the 

data in Fig. 5(d) shows that the appropriate value of RP for this dataset is 4.0 pixels. A cross 

section of the measurement error predicted by the model, εω�𝑥𝑥, calculated by Eqn. (14), is 

shown in Fig. 7(a) for several values of RP close to RP = 4.0. It is compared with the 

difference δω𝑥𝑥 between the measured ω𝑥𝑥 and that estimated in the PSF zone from the 

Taylor series coefficients, where in general 

 

δω𝑗𝑗 =  ω�𝑗𝑗 − ω�𝑗𝑗′ (16) 

The additional prime on ω�𝑗𝑗  indicates that the least squares fitting is done over both the left 

and right LSF regions so that the estimated ω𝑗𝑗 inside the PSF is an interpolation rather than 

an extrapolation. For a close-to-planar surface, δω𝑗𝑗  can be regarded as an estimate of the 

actual measurement error, and should be equal to εω�𝑗𝑗 if the model and underlying hypothesis 

is correct. As seen in Fig. 7(a), the agreement is indeed closest between the two curves for the 

case RP = 4, thus providing evidence to support the validity of the model.  

This value of RP was then used to apply the correction algorithm described in Section 3 to the 

data. The benefit of the DMA correction is seen clearly both in an individual cross section 

(Fig. 7(b)) and 3-D height map (Fig. 7(d)), compared to the uncorrected cross section and 3-D 

height map (Figs. 7(b) and (c) , respectively).  

The RMSE (Root Mean Square Error) of the height in the PSF region for the whole image 

with different RP values is shown in Table 1. The error reduction is again seen to be highest 

for the case RP = 4. With the proposed new method, and this optimal RP value, these 

systematic errors are reduced by a factor of approximately 2.5×.  

4.3 Calibration board sample 

The scanner’s circle calibration board provides an example that is more representative of the 

types of samples that may be encountered in everyday use. As the problem is now 
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2-dimensional, the correction algorithm requires a decision as to whether the Taylor series are 

calculated along the row direction or column direction over the PSF zone. This decision is 

based on the orientation of each sub-pixel edge point.  

Figure 8(a) and (b) shows the results of the Canny edge detection and the subsequent dilated 

mask, calculated from a texture image of the calibration plate. Figure 8(c) gives the sub-pixel 

detected edges from one of the circles. The measured height results before and after the DMA 

correction are shown as grey-scale images in Figure 8(d) and (e). To illustrate the correction 

effect more clearly, 3-D images of the two circles indicated in (d) before correction and after 

correction are separately given in (f) and (g), respectively. Figure 8(h) shows a cross section 

through the two circles before and after correction. The DMAs introduce serious errors 

around the circle edge area, and the proposed method shows significant ability to reduce this 

problem. The RMSE of the height in the PSF region of the two circles decreased from 0.41 to 

0.12 mm by using the proposed correction method, which represents a reduction in error by a 

factor of over 3×.  

 

5. Conclusions 

Significant systematic errors in measured profile are produced by the fringe projection 

technique in the neighbourhood of discontinuities in sample reflectivity. These are believed 

to be caused by the finite size of the point spread function of the camera’s imaging system, 

which blurs the fringe signal across the discontinuities. Although the paper has only 

addressed fringe projection, the effect is likely to be present in all active triangulation-based 

optical metrology systems. 

A mathematical model has been proposed from which a correction algorithm has been 

developed. The key input parameter to both the model and the correction algorithm is the 

radius of the point spread function. The effectiveness of the algorithm has been investigated 

with two test objects having discontinuities in reflectivity, using an independently-measured 

radius of the point spread function. The measurement errors were indeed found to be 

minimised for this radius, compared to other nearby candidate radius values, thus supporting 

the hypothesis for the underlying cause of the errors and the validity of the associated model. 

Errors in the vicinity of the discontinuity were reduced by approximately 2.5× for the linear 
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stripe sample, and over 3× for the circle sample. 
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Tables 

 

Table 1. RMSE of the estimated height in the PSF region for the whole image with different 

RP values. 

 
 After correction Before 

correction 
Rp/ pixels 2 3 4 5 6 / 

RMSE/mm 0.126 0.117 0.098 0.116 0.200 0.256 
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Figures 

 

 

(a)                         (b) 

 

(c)                                 (d) 

Figure 1. Calibration board with discontinuities in surface reflectivity. (a) Intensity 

distribution (texture image); (b) grey scale representation of height distribution after 

subtraction of best fit plane; (c) row 20 of (b)；(d) mesh plot of the two circles in the red 

square indicated in (b). 
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Figure 2.  Pin-hole model and coordinate systems for fringe projection scanner. CCD CS 

(ξc,ηc) is the coordinate system attached to the centre of the camera’s CCD sensor. Camera 

CS (xc, yc, zc) is the coordinate system attached to the camera’s pin-hole lens. SLM CS (ξp,ηp) 

is the coordinate system attached to the centre of the projector’s spatial light modulator 

(SLM). Projector CS (xp, yp, zp) is the coordinate system attached to the projector’s pin-hole 

lens. World CS (X,Y,Z) is the global coordinate system in which any scattering point P is 

defined. (Reproduced with permission from [10]). 
  

Y 
Z 

P(X,Y,Z) 

X 
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Figure 3. Schematic of DMA formation in one dimension. Image-plane intensity distribution 

I(x) for sample containing a low-reflectivity region (25% of the intensity of the other regions) 

under (a) uniform illumination and (b) fringe illumination. (c) Corresponding unwrapped 

phase ωx(x), assuming a point spread function of zero width. (d) Modelled phase ω�𝑥𝑥(𝑥𝑥) and 

(e) resultant height profile h(x) for a PSF diameter of 10% of the field of view and a 

projection angle of 45°.  
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Figure 4. An image-plane point (xc, yc) lying within distance Rp of a discontinuity in scattered 

light intensity, i.e. within the ‘PSF Zone’, receives light from the other side of the 

discontinuity. ‘LSF Zone’ denotes the Least Squares Fitting region referred to in the text. 
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(a)                              (b) 

 
 (c)                                (d) 

Figure 5. Measurement of PSF radius: (a) a typical captured image (the left part is the black 

and white stripe pattern and the right part is the grey and white stripe pattern); (b) a small 

region of the forward difference image near an edge; (c) Gaussian curve fitting result 

(continuous curve) along a line of the forward difference image (discrete points); (d) the 

variation of PSF radius RP with depth Z within the measurement volume.  
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(a)                 (b) 

 

(c)                                (d) 

 

Figure 6. Edge detection on texture image from paper sample with grey and white stripes. (a) 

The Canny edge image; (b) the dilated Canny edge image; (c) sub-pixel image edge detection; 

(d) an enlarged part of (c).  
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(a)                                 (b) 

 
      (c)                                   (d) 

Figure 7. Measured results from paper sample with grey and white stripes. (a) δω𝑥𝑥 profile, 

and εω�𝑥𝑥 results with different RP values; (b) comparison of measured height before and after 

correction with proposed algorithm, using the value RP = 4.0, for one row; (c) 3-D image of 

height before correction; (d) 3-D image of height after correction. 
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(a)                                 (b) 

 

(c)                                     (d) 

 

（e）                                    (f) 
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（g）                                 (h) 

Figure 8. Measured results from circle calibration board. (a) The Canny edge image; (b) the 

dilated Canny edge image; (c) sub-pixel image edge detection of one circle; (d) height map of 

the circle artefact before correction; (e) height map of the circle artefact after correction; (f) 

3-D image of the two circles indicated in (d) before correction; (g) 3D image of the two 

circles indicated in (e) after correction; (h) cross-section of height maps on row 50 before and 

after correction. 

 


