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Abstract

Degree-days are a versatile climatic indicator and used for many applications in the design and operation of en-
ergy efficient buildings – from the estimation of energy consumption and carbon emissions due to space heating
and cooling to the energy and environmental monitoring of buildings. This research is aimed at developing an
equation for calculating degree-days from low-resolution temperature data by exploring the relationship between
degree-days and annual mean temperature of 5511 locations around the world, using multiple non-linear regres-
sion. Results suggest a very strong relationship between annual mean temperature and degree-days. Incorporating
standard deviation (SD) of monthly mean temperature and latitude increases the accuracy of prediction (R2 > .99),
demonstrating the strength of the location-agnostic relationship in predicting degree-days from two temperature
parameters: annual mean and SD of monthly mean. Research findings can be used to calculate degree-days of loca-
tions, for which daily temperature data may not be available. The equation can also be used to calculate degree-days
from low-resolution global circulation model (GCM) projections of increasing temperature, for investigating the im-
pact of climate change on building heating and cooling energy demand at global scale without the need to create
synthetic weather series through morphing or downscaling.
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Symbols and units

T annual mean outdoor air temperature (°C)
Td daily mean outdoor air temperature (°C)
Tm monthly mean outdoor air temperature (°C)
Ti outdoor air temperature at the i-th hour of the day (°C)
Tmax daily maximum outdoor air temperature (°C)
Tmin daily minimum outdoor air temperature (°C)
Sd standard deviation of daily mean temperature in a month(°C)
Sm standard deviation of monthly mean temperature (°C)
Tb base temperature (°C)
DD degree-days (°C-day)
HDD annual heating degree-days (°C-day)
HDDd daily heating degree-days (°C-day)
HDDm monthly heating degree-days (°C-day)
CDD annual cooling degree-days (°C-day)
CDDd daily cooling degree-days (°C-day)
CDDm monthly cooling degree-days (°C-day)
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1. Introduction

Degree-days are an important climatic design indicator that captures the extremity and duration of
ambient temperature [1]. They are essentially the summation of temperature differences between the
ambient or outdoor air temperature and a reference temperature, which is also known as the base or bal-
ance point temperature. The base temperature, Tb, is referred to as the outdoor air temperature at which
the heating or cooling systems do not need to run in order to maintain comfort conditions [1]. In other
words, for the specified value of the indoor air temperature; i.e., set point temperature, the total heat loss
from the space is equal to the heat gain from sun, occupants, lights, equipment, etc. [2]. When outdoor
air temperature is below the base temperature, the heating system needs to provide heat. As heat loss
from a building is directly proportional to the differences between indoor and outdoor air temperature,
the energy consumption of a heated building over a period of time relates to the sum of these temperature
differences over this period. On the other hand, cooling systems need to operate if outdoor air temper-
ature is above the base temperature. The summed temperature differences or the cooling degree-days
also have a relationship with cooling energy consumptions.

Degree-days and their uses depend on two distinct but essentially unrelated issues: the way degree-
days are calculated and the way they are applied to building energy [1]. Calculation techniques for
degree-days vary depending on the temporal resolution of temperature data. Hourly temperature (out-
door air) data produces better estimates of degree-days than daily or monthly methods. On the other
hand, the application of degree-days varies depending on whether it is for heating or cooling season.
Thermal response of the building; i.e., the overall heat transfer coefficient is an important factor for the
application of heating degree-days as it influences the base temperature, specific to the building. An-
other factor affecting the use of heating degree-days is whether the building is continuously or intermit-
tently heated. For the application of cooling degree-days, the type of cooling systems affects its use. This
paper is concerned with the calculation of degree-days from a low resolution temperature dataset and,
therefore, the reader is directed to the associated references for detailed discussions on: general overview
[1, 2]; the use and identification of base temperature [3]; estimates of chiller energy consumption using
degree-days [4]; use in energy management [5] and uncertainties in energy estimates using degree-days
[6].

Apart from their use in estimating energy demand and associated carbon emissions, degree-days are
widely used as a climatic indicator for the assessment of the impact of climate change, in particular the
increasing temperature. Degree-days are particularly suited for the analysis of extremity and duration
of increased outdoor temperature [7–9] due to the simplicity of its concept and its extensibility in in-
vestigating the inherent uncertainties in climate projection from global circulation models (GCM). The
uncertainties in GCM projection primarily originate from the use of various emissions scenarios1, which
result in a range of temperature projections instead of a single figure [10]. Other forms of uncertain-
ties originate from the ocean-atmosphere coupling in the underlying model; i.e., the way atmospheric
interactions are modeled in a particular GCM. Multi-model ensembles are, therefore, used to quantify
uncertainties and to generate projections of future climate [11] for wider applications such as risk and
vulnerability assessments.

On the other hand, GCM projections of surface air temperature are typically reported as anomalies at
monthly scale. Only a few models, 8 out of 23 in the IPCC fourth assessment report (FAR), give air tem-
perature outputs at daily scale and only for a few selected marker scenarios. These outputs are not readily
suitable for building applications. GCM outputs need to be temporally downscaled to finer resolutions;

1Climate change projections depend on future human activities: economic, environmental and technological. Future climate
projections are, therefore, based on several scenarios, each making different assumptions for future technological and economic
development, affecting the concentration of greenhouse gas in the atmosphere. There are six families of scenarios adopted in
the assessment reports by the Intergovernmental Panel on Climate Change (IPCC) [10]. The six illustrative marker scenarios are
B1, A1T, B2, A1B, A2, and A1FI, representing an approximate CO2-eq concentrations in 2100 of about 600, 700, 800, 850, 1250
and 1550 ppm, respectively. The use of different scenarios results in uncertainties in climate projection; e.g., the best estimate of
temperature change at 2090-2099 is 1.8°C and 4.0°C for B1 and A1F1 scenarios respectively.
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e.g., hourly, if detailed-based building simulation tools are to be used. Such downscaling techniques in-
troduce uncertainties in the synthetic future weather series, mainly because of the assumption that the
variability and distribution of weather pattern is similar in present-day and future climates [12], which
may not necessarily be the case. The alternative is to develop a technique that uses coarse resolution
(e.g., monthly or annual) GCM outputs of surface air temperature to determine changes in degree-days.
This would eliminate uncertainties associated with downscaling and enable the reconciliation of multi-
ple marker scenarios for improved reliability of projections.

Considering the importance of calculating degree-days from a low temporal resolution temperature
series, this paper explores the relationship between annual mean temperature and degree-days of 5511
locations around the world. The aim is to develop an equation to predict heating and cooling degree-
days from annual mean temperature and site specific geographical parameters such as latitude. The rest
of the paper is organized as follows. Commonly used methods for calculating degree-days are discussed
next, followed by a discussion on the methods adopted in this research and sources of data. The results
and directions of future research are deliberated, with an emphasis on the accuracy of the developed
equation. The paper ends with concluding remarks.

2. Calculation of degree-days

Depending on the availability of outdoor air temperature data, different methods are used for calcu-
lating heating and cooling degree-days. The hourly or ideal method produces the most accurate esti-
mate. However, the hourly method is not suitable for all applications due to the unavailability of hourly
temperature series for many locations. Therefore, several attempts have been made in the past to develop
methods for calculating degree-days from reduced datasets. Of note are the works by Thom [13], Erbs et
al. [14], Hitchin [15] and Schoenau and Kehrig [16]. Of available techniques using reduced datasets, the
following are commonly used and, therefore, are discussed in this article: the American Society of Heat-
ing, Refrigerating and Air-Conditioning (ASHRAE) daily mean temperature method [2]; UK Meteorolog-
ical Office (UKMO) daily maximum and minimum temperature method [1] and Schoenau and Kehrig’s
monthly mean temperature method [16].

2.1. Hourly method

Hourly temperature data for a location are used in this method to sum differences between the base
temperature and hourly temperature measurements; i.e., degree-hours. The cumulative degree-hours of
a day is divided by 24 to get the mean degree-hours or degree-days. Daily heating degree-days, HDDd

and daily cooling degree-days, CDDd are given by Equations 1 and 2 respectively.

HDDd =

(
24∑
i=1

(Tb − Ti)
+

)
/24 (1)

CDDd =

(
24∑
i=1

(Ti − Tb)
+

)
/24 (2)

where Tb is base temperature and Ti is outdoor air temperature at the i-th hour of the day. The subscript
plus symbol (+) means that only positive differences between Tb and Ti are taken into account.

Monthly degree-days, DDm is calculated by summing up the daily degree-days, DDd in a month:

DDm =

P∑
j=1

(DDd,j ) (3)

where P is number of days in a month and DDd,j is daily degree-days on the j-th day of the month.
Annual degree days, DDa is calculated by summing up monthly degree-days, DDm :
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DDa =

12∑
k=1

(DDm,k ) (4)

where DDm,k is monthly degree-days of the k-th month of the year.

2.2. ASHRAE formula

According to the ASHRAE daily mean temperature method, the daily degree-days is the difference
between the daily mean temperature, Td and base temperature, Tb [2]. The calculations for daily heating
degree-days, HDDd and daily cooling degree-days, CDDd are given by Equations 5 and 6 respectively.

HDDd = (Tb − Td)
+ (5)

CDDd = (Td − Tb)
+ (6)

Td is calculated from daily maximum and minimum temperatures, Tmax and Tmin respectively:

Td = (Tmax + Tmin)/2 (7)

2.3. UKMO equations

The UKMO method uses a single daily reading of a maximum and minimum thermometer. There are
four possible relationships between the base temperature and diurnal temperature variation, resulting
in four different scenarios. Depending on these four scenarios, daily heating degree-days, HDDd, is
calculated from the base temperature, Tb, and daily maximum and minimum temperatures, Tmax and
Tmin respectively, using Equation 8.

HDDd =


Tb − 0.5(Tmax + Tmin), Tmax ≤ Tb;
0.5(Tb − Tmin)− 0.25(Tmax − Tb), Tmin < Tb; and (Tmax − Tb) < (Tb − Tmin);
0.25(Tb − Tmin), Tmax > Tb; and (Tmax − Tb) > (Tb − Tmin);
0, Tmin ≥ Tb.

(8)

Daily cooling degree-days, CDDd, can be calculated using the same parameters:

CDDd =


0.5(Tmax + Tmin)− Tb, Tmin ≥ Tb;
0.5(Tmax − Tb)− 0.25(Tb − Tmin), Tmax > Tb; and (Tmax − Tb) > (Tb − Tmin);
0.25(Tmax − Tb), Tmin < Tb; and (Tmax − Tb) < (Tb − Tmin);
0, Tmax ≤ Tb.

(9)

The coefficients of 0.5 and 0.25 in Equations 8 and 9 are originally determined by trial and error. The
accuracy of calculations using these coefficients has been found to vary from location to location and
there have been suggestions in favor of location specific values. A study on the effect of coefficients on
the accuracy of these equations was conducted by Day and Karayiannis [17].

2.4. Schoenau–Kehrig monthly mean temperature method

The method was developed by Schoenau and Kehrig [16] and is one of the widely adopted method.
The formula for calculating monthly heating degree-days, HDDm to base Tb is given by:

HDDm = NSd[ZbF (Zb) + f(Zb)] (10)
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where N is the number of days in the month, Zb is the difference between base temperature, Tb and
monthly mean temperature, Tm, normalized by the standard deviation (SD) of the daily mean tempera-
ture, Sd, which can be found from the following expression:

Zb =
Tb − Tm
Sd

(11)

Function f is the Gaussian probability density function with mean 0 and SD 1, and function F is the
equivalent cumulative normal probability function:

f(Z) =
1

2π
exp

(
−Z2

2

)
(12)

F (Z) =

∫ z

−∞
f(z)dz (13)

Monthly cooling degree-days,CDDm are calculated using Equation 14, which is similar to the method
for calculating heating degree-days, described in Equation 10.

CDDm = NSd[ZbF (Zb) + f(Zb)] (14)

However, Zb for cooling degree-days has the following from:

Zb =
Tm − Tb
Sd

(15)

2.5. Summary of calculation procedures
All three methods for calculating degree-days from a reduced dataset involve daily readings of tem-

perature in some form. Both ASHRAE and UKMO equations require daily maximum and minimum tem-
peratures. On the other hand, Shoenau-Kehrig method requires daily mean temperature to calculate
monthly standard deviation. For a number of meteorological stations worldwide, in particular the re-
gions that are underrepresented in global climatological database, daily mean temperature data are not
readily available. The situation worsens for historical climate data because of the prevalence of manual
observations and recordings of data. Although, daily mean can be calculated from daily maximum and
minimum temperatures (using Equation 7), there is an underlying assumption that diurnal distribution
of temperature is normal. There is, therefore, a need for further development of a calculation procedure
from annual mean temperature.

3. Methods

3.1. Data source
Degree-days and temperature data from ASHRAE are used in this study [2]. The dataset is part of the

‘2009 ASHRAE Handbook – Fundamentals’ and often referred to as the “HOF’09” dataset. The dataset re-
portedly contains climatic design conditions for 5564 meteorological stations, worldwide. Closer inspec-
tion reveals that some of the stations such as Canadian stations from Nova Scotia, Northwest Territories,
etc. are reported twice. Duplicate stations are included only once in this study. In total, 5511 unique
stations are considered, locations of which are presented as points in Figure 1. There are 1085 stations
from the United States, 427 from Canada2 and 3999 from the rest of world. The concentration of stations
is higher in North America. The reporting stations in the HOF’09 dataset are widely distributed and rep-
resentative of major climatic zones [18]; hence, suitable for a global analysis of the relationship between
annual mean temperature and degree-days. Further details on the dataset and underlying methodology
are discussed in [2, 19, 20].

2The number of Canadian stations in HOF’09 dataset was 480, of which 53 were duplicates.
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Figure 1: Location map of 5511 reporting stations.

ASHRAE publishes heating and cooling degree-days for two base temperatures: 18.3°C (65°F) and
10°C (50°F) respectively, as they are the most commonly used bases for building energy applications.
Degree-days to other base temperatures can be calculated using the Schoenau-Kehrig procedure, de-
scribed in Equations 10 to 15. In this research, HDD18.3 and CDD10 are used for exploring the relation-
ship between annual mean temperature and degree-days.

3.2. Modeling

Multiple regression has been selected as the method for building predictive models to investigate
the relationship between annual degree-days and climate parameters, mainly annual mean tempera-
ture. This research employed the stepwise procedure, which is a popular and highly effective method for
building regression models [21]. According to Draper and Smith [22], stepwise regression is one of the
best approaches for variable selection. In stepwise regression, independent variables are successively
added or removed based on partial F -statistic. It begins with no explanatory variable in the model and
sequentially adds a variable according to entry/removal criteria. At each step, a variable whose partial
F -statistic yields the smallest p-value is added to the model. The procedure stops when the addition of
any of the remaining variables yields a partial p-value greater than a specific maximum value. The dif-
ference between stepwise and forward selection procedures is that the stepwise method also permits the
elimination of variables that become statistically non-significant.

In this study, separate models are constructed using annual heating degree-days, HDD (°C-day) and
cooling degree-days CDD (°C-day) as dependent variables. Annual mean temperature, T (°C), standard
deviation of monthly mean temperatures Sm (°C), elevation, E (m) and latitude, L (°) of the location are
chosen as independent variables. The choice of variables is mostly based on the availability of data.
Annual mean temperature, latitude and elevation are available from a variety of sources. It is relatively
easy to calculate Sm of a particular location from monthly mean temperatures using Equation 16.

6



Sm =

(∑
(Tm,i − Tm)

2

n− 1

)0.5

(16)

where, Tm,i is mean temperature of the i−th month, Tm is the mean of all monthly mean temperatures
of the year and n (=12) is number of months in a year.

Initial explorations of the data indicated that there is a non-linear association between T and degree-
days, as shown in Figure 2. 4th order polynomials best describe the relationships, with R2 estimates of
0.994 and 0.969 for HDD18.3 and CDD10 respectively. Non-linear regression is, therefore, considered to
be the most appropriate. A simple polynomial form of the model, as shown in Equation 17, is used. This is
primarily because thatR2 estimates for one independent variable (T ) is quite high (>0.95), indicating the
importance of T in explaining the variance. Moreover, by defining different orders of T as independent
variables, it is possible to convert the non-linear relationship to a simpler linear model, the solution and
interpretation of which is relatively straightforward.

Yi = b0 + b1Xi + b2X
2
i + ...+ bnXi

n + εi (17)

aData
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2
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Figure 2: Cubic and 4th order curve-fit of T vs. degree-days for 5511 locations. (a) HDD18.3 and (b) CDD10.

Statistical analyses are carried out using IBM PASW Statistics 18.0 for Mac OS X [23]. The samples are
tested for normal distribution. T is normally distributed while the remaining variables are not. The entry
or removal criteria for stepwise regression is the probability of F . The probability of F to enter is ≤ .050
and the probability of F to remove is ≥ .100.

4. Results and discussion

4.1. Heating degree-days

Results from the stepwise regression for heating degree-days at 18.3°C base temperature,HDD18.3 are
given in Tables 1 and 2. Table 1 summarizes six models with change statistics such as R2, F , degrees of
freedom and significance. In all cases, R2 and adjusted R2 values are same and therefore only R2 values
are used for interpretation of results. Of note is the order of the models. T appears as an important
predictor (standardized coefficient, β = −.975) in model #1 with R2 = .952. The next model (#2) with
T 3 improves the R2 statistic. The change in R2 is .042, resulting in the overall R2 = .993. The next
improvement comes in model 3, when Sm is added, with an overall R2 = .997. For the next three models
(#4-6), changes in F -statistic is progressively smaller. However, model 5 (R2 = .997) incorporates lower
and higher orders of T and reduces standard error to 123.419. Although, there is no change in R2 from
the previous one, model 5 agrees with the 4th order fit in scatter plot (Figure 2a). The addition of latitude
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in the regression model reduces the standard error, but the change is quite small. There is no change in
R2 from model #3 upwards.

β and t-statistics of explanatory variables demonstrate that first order T has the highest degree of
importance in the model, apart from the constant term, b0 (see Table 2). T is negatively associated in all
models, indicating that an increase in T will result in a corresponding decrease inHDD18.3, which agrees
with conventional wisdom. All predictor variables are significant at .000, indicating their importance in
explaining the variance.

Table 1: Summary of stepwise regression for HDD18.3.

Model Predictors R R2 Std. error Change Statistics

R2 F df1 df2 Sig.

1 b0, T̄ .975 .952 532.411 .952 108170.063 1 5509 .000
2 b0, T̄ , T̄ 3 .997 .993 195.290 .042 35437.687 1 5508 .000
3 b0, T̄ , T̄ 3, Sm .998 .997 141.845 .003 4933.577 1 5507 .000
4 b0, T̄ , T̄ 3, Sm, T̄ 4 .999 .997 128.307 .001 1224.456 1 5506 .000
5 b0, T̄ , T̄ 3, Sm, T̄ 4, T̄ 2 .999 .997 123.419 .000 445.777 1 5505 .000
6 b0, T̄ , T̄ 3, Sm, T̄ 4, T̄ 2, L .999 .997 122.510 .000 82.962 1 5504 .000

4.2. Cooling degree-days

Different models of stepwise regression for cooling degree-days at 10°C base temperature (CDD10)
are summarized in Table 3. The key difference with HDD18.3 models is the presence of 2nd order T in
the first and subsequent models for CDD10, compared to 1st order T in different models for HDD18.3.
T 2 has the highest degree of importance in predicting CDD10. However, the introduction of T 3 in model
#4 improves the R2 to a large extent. The scatter plot in Figure 2b and the corresponding cubic curve
fit illustrates the importance of T 3. The shape of curves for both the cubic and 4th order fits are almost
same, except at the tail-ends for extremes of T . There are gradual improvements in R and R2 statistics
for models #1-5. The initial R2 in model #1 is .952, increasing to .994 in model #6 that incorporates T ,
T 2, T 3, T 4, L, Sm and b0. The addition of T 4 in model #6 does little to improve the F -statistic (=22.236).
There appears to be no change in R2 values up to three decimal points. Change in standard error is also
small (=.267). However the significance level is .000, which indicates that the effect of T 4 should not be
ignored.

Regression coefficients forCDD10 models are given in Table 4. Standardized coefficient, β for T 2 is the
highest among the independent variables in models #1-6. For models #1-3, β for T 2 is between .785 and
.976. In the rest of the models (#4-6), β for T 2 ranges between .468 and .492, and is more than the remain-
ing predictor variables but its influence is smaller. Standard deviation of monthly mean temperature, Sm

has greater influence in CDD10 models, compared to the HDD18.3 models. β for Sm in CDD10 models
varies between .227 and .234 whereas inHDD18.3 models the range is .079–.087. The greater influence of
Sm may be due to the greater variance in mid-ranges of T . T , T 2, T 3 and Sm are positively associated with
CDD10, indicating that with an increase in their values, there is a corresponding increase in CDD10. The
constant term, b0, as well as T 4 and L are negatively associated with CDD10.
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Table 2: Regression coefficients for HDD18.3 models.

Model Predictors Unstandardized coefficients Standardized coefficients, β t Sig.

b Std. error

1 b0 6361.474 11.730 542.336 .000
T̄ -274.492 .835 -.975 -328.892 .000

2 b0 6783.879 4.852 1398.025 .000
T̄ -366.805 .578 -1.304 -634.514 .000
T̄ 3 .158 .001 .387 188.249 .000

3 b0 6211.852 8.874 700.013 .000
T̄ -350.743 .478 -1.246 -733.589 .000
T̄ 3 .158 .001 .386 258.451 .000
Sm 51.711 .736 .079 70.239 .000

4 b0 6104.809 8.590 710.681 .000
T̄ -332.197 .684 -1.181 -485.615 .000
T̄ 3 .040 .003 .097 11.665 .000
Sm 56.685 .681 .087 83.245 .000
T̄ 4 .004 .000 .240 34.992 .000

5 b0 6082.231 8.332 730.007 .000
T̄ -337.004 .696 -1.198 -483.999 .000
T̄ 3 .025 .003 .062 7.500 .000
Sm 56.602 .655 .086 86.413 .000
T̄ 4 .003 .000 .221 33.078 .000
T̄ 2 .801 .038 .071 21.113 .000

6 b0 6059.131 8.651 700.436 .000
T̄ -337.420 .693 -1.199 -487.127 .000
T̄ 3 .026 .003 .064 7.815 .000
Sm 54.913 .676 .084 81.218 .000
T̄ 4 .003 .000 .214 32.126 .000
T̄ 2 .896 .039 .080 22.929 .000
L .756 .083 .008 9.108 .000

4.3. Equations for heating and cooling degree-days

Given the regression coefficients for HDD18.3 and CDD10 in Tables 2 and 4 respectively, the relation-
ship between degree-days and the independent variables in model #6 can be described as Equations 18
and 19.

HDD18.3 = 6059.131− 337.420T + .896T 2 + .026T 3 + .003T 4 + 54.913Sm + .756L (18)

CDD10 = −718.905 + 74.871T + 3.823T 2 + .109T 3 − .001T 4 + 109.959Sm − 1.585L (19)

where, HDD18.3 is annual heating degree-days at 18.3°C (°C-day), CDD10 is annual cooling degree-days
at 10°C (°C-day), T is annual mean temperature (°C), Sm is standard deviation of monthly mean temper-
atures (°C) and L is the latitude of the location in decimal degree (°) where north latitudes are positive
and south latitudes are negative.

Errors in Equations 18 and 19 tend to occur at lower tail ends of HDD18.3 and CDD10 respectively.
This is primarily because of points of inflection in 4th order curves in Figure 2. Closer inspection of the
original data reveals that degree-days around the inflection points are very low – either zero or very close
to zero. The inflections result in over estimates of HDD18.3 and under estimates of CDD10 at very high
and very low temperatures respectively. Simple corrections are made to Equations 18 and 19 around the
points of inflection (≈25°C forHDD18.3 and -15°C for CDD10) to overcome this issue. Modified relation-
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Table 3: Summary of stepwise regression for CDD10.

Model Predictors R R2 Std. error Change Statistics

R2 F df1 df2 Sig.

1 b0, T̄ 2 .976 .952 383.880 .952 108406.754 1 5509 .000
2 b0, T̄ 2, T̄ .981 .963 336.491 .011 1661.966 1 5508 .000
3 b0, T̄ 2, T̄ , Sm .994 .989 183.777 .026 12958.410 1 5507 .000
4 b0, T̄ 2, T̄ , Sm, T̄ 3 .997 .993 142.562 .004 3645.409 1 5506 .000
5 b0, T̄ 2, T̄ , Sm, T̄ 3, L .997 .994 138.778 .000 305.413 1 5505 .000
6 b0, T̄ 2, T̄ , Sm, T̄ 3, L, T̄ 4 .997 .994 138.511 .000 22.236 1 5504 .000

ships are given in Equations 20 and 21.

HDD18.3 =

{
0, T ≥ 25; and Sm > 4;
(6059.131− 337.420T + .896T 2 + .026T 3 + .003T 4 + 54.913Sm + .756L)+, T < 25.

(20)

CDD10 =

{
0, T ≤ −15;
(−718.905 + 74.871T + 3.823T 2 + .109T 3 − .001T 4 + 109.959Sm − 1.585L)+, T > −15.

(21)
Dividing the equation into temperature ranges and taking only positive values of degree-days im-

proves R2 statistic but only marginally. R2 increases were .0005 and .0007 for HDD18.3 and CDD10 re-
spectively. Few locations are affected by the conditional relationship on temperature and standard devi-
ation; 11 for (T ≥ −15°C) and 67 for (T ≥ 25; and Sm > 4).

4.4. Validation and accuracy of derived relationships

Calculated degree-days for all 5511 locations using Equations 20 and 21 are illustrated in Figure 3.
Note the similarities between scatter plots in Figures 2 and 3, in particular in the shape and characteristics
– illustrating the effectiveness and accuracy of the derived relationships. Standard deviation of error for
Equations 20 and 21 are 120 and 135 °C-day respectively, which represents .328 and .370 °C-day per day
forHDD18.3 andCDD10 respectively. The estimates can be said to be highly accurate and well within the
range of typical measurement errors.
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Figure 3: Heating and cooling degree-days calculated using the derived relationships. (a) HDD18.3 and (b) CDD10.
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Table 4: Regression coefficients for CDD10 models.

Model Predictors Unstandardized coefficients Standardized coefficients, β t Sig.

b Std. error

1 b0 461.552 7.014 65.808 .000
T̄ 2 7.898 .024 .976 329.252 .000

2 b0 273.925 7.680 35.669 .000
T̄ 2 6.356 .043 .785 146.854 .000
T̄ 44.262 1.086 .218 40.767 .000

3 b0 -924.599 11.333 -81.582 .000
T̄ 2 6.358 .024 .785 268.976 .000
T̄ 77.408 .661 .381 117.176 .000
Sm 108.576 .954 .230 113.835 .000

4 b0 -787.818 9.079 -86.775 .000
T̄ 2 3.983 .043 .492 91.754 .000
T̄ 77.975 .513 .384 152.133 .000
Sm 107.426 .740 .227 145.142 .000
T̄ 3 .088 .001 .297 60.377 .000

5 b0 -731.968 9.398 -77.886 .000
T̄ 2 3.789 .044 .468 86.731 .000
T̄ 77.720 .499 .383 155.705 .000
Sm 110.782 .746 .234 148.571 .000
T̄ 3 .093 .001 .313 64.220 .000
L -1.633 .093 -.024 -17.476 .000

6 b0 -718.905 9.780 -73.505 .000
T̄ 2 3.823 .044 .472 86.506 .000
T̄ 74.871 .783 .369 95.603 .000
Sm 109.959 .764 .233 143.846 .000
T̄ 3 .109 .004 .369 28.895 .000
L -1.585 .094 -.023 -16.889 .000
T̄ 4 -.001 .000 -.049 -4.715 .000

The highest R2 statistic for CDD10 models is .994; in contrast the highest R2 statistic for HDD18.3

models is .997. The resulting regression fits, therefore, describe the variance quite well; i.e., 99.7% and
99.4% for HDD18.3 and CDD10 respectively. Final models (#6) in both regression experiments have
strong predictive power, when the distribution and coverage of the data are considered. 4th order non-
linear relationship appears to be more appropriate than the 3rd order or lower. 4th order curves match the
shape of the data at tail ends (see Figure 2), at lower and higher temperatures for HDD18.3 and CDD10

respectively – resulting in reduced errors for higher degree-days on both occasions. What sets apart this
research from previous studies is that only three predictor variables (T , Sm and, L) are required to de-
termine annual degree-days and the identified relationship is based on a wider coverage of locations.
For example, Schoenau-Kehrig’s paper was based on four locations only, compared to 5511 in this re-
search. If locations were regionalized the R2 estimates could have been or very close to unity. However,
the purpose of this research was to find a globally applicable relationship, not regionalized equations.

5. Conclusion

Degree-days is an important climatic design indicator and is widely used in the design and opera-
tion of energy-efficient buildings. The calculation of degree-days has always been a topic of focus by
researchers. Attempts have been made in the past to calculate degree-days from datasets of reduced
temporal resolution, the lowest being the daily mean temperature. This research went further and inves-
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tigated the relationship between annual mean temperature and annual heating and cooling degree-days
using multiple non-linear regression. Developed equations are able to predict annual degree-days from
one reading of annual mean temperature, standard deviation of monthly mean temperature and signed
decimal latitude of the location. The predictions are highly accurate with standard errors of .328 and .370
°C-day per day for heating and cooling degree-days respectively.

The relationship investigated in this research and the developed equations will open up new avenues
of research in climate and built environment. To begin with, it will now be possible to calculate historical
annual degree-days from reduced temperature observations for many locations in the world, for which
only monthly mean temperature data are available. Such historical analyses will enable us to understand
the impact of observed changes in climate. Other immediate applications will be the investigations into
the impact of the projected climate change. Long term monthly projections of temperature from global
circulation models (GCM) can now be transformed into degree-days to investigate the severity and du-
ration of temperature that have a bearing on heating and cooling energy consumption in buildings.

Other directions for future research can include the extension of this work to include the relationship
between annual mean temperature and degree-days at variable base temperatures. The method can also
be assessed against other reduced dataset methods such as UKMO, ASHRAE and Schoenau-Kehrig for
accuracy, ease of use and potential for application in geographical regions, underrepresented in global
climatological databases.
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