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Abstract 

 

Reliability has an impact on wind energy project costs and benefits. Both life test 

data and field failure data can be used for reliability analysis. In wind energy industry, 

wind farm operators have greater interest in recording wind turbine operating data. 

However, field failure data may be tainted or incomplete, and therefore it needs a 

more general mathematical model and algorithms to solve the model. The aim of this 

paper is to provide a solution to this problem. A three parameter Weibull model is 

discussed and the parameters are estimated by Maximum Likelihood and Least 

Squares. The average failure numbers of the wind turbines in Denmark and Germany 

are used for this study. The traditional Weibull model is also employed for 

comparison. Analysis shows that the three parameter Weibull model can obtain more 

accuracy on reliability growth of turbine lifetime. The proposed three parameter 

Weibull model is also applicable to the life test of  the components in use to shorten 

testing time. This work will be helpful in the understanding of the mechanical 

behaviour, durability and management aspects of wind energy systems.  
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1. Introduction 

Wind turbines are a renewable source of energy and will play an increasingly 

important role in providing electricity, because wind turbines capacities and the 

number of grid-connected wind turbines are increasing. Wind turbine reliability is a 

significant factor in ensuring the success of a wind power project. Walford outlined 

the issues relevant to wind turbine reliability for wind turbine power generation 

projects and the relationship between wind turbine reliability and operation & 

maintenance costs
[1]

. Reliability and condition monitoring apparently benefit the 

maintenance management of wind power systems 
[2]

 by reducing the O&M costs by 

giving advance warning of failures. Some authors have combined wind power 

generation and wind speed models to analyze power production reliability
[3][4]

. Others 

have applied Probabilistic Safety Assessment (PSA) to wind turbines to assess system 

reliability qualitatively and quantitatively, based upon component failures
[5][6]

. 

Another authors used the monthly variation of energy production to weight the 

shutdown time, which included both maintenance and fault hours. This showed a 

large difference exists between the original downtime and weighted downtime
[7]

. 
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After a wide review, Herbert etc. concluded that fewer authors have worked on 

reliability evaluation of wind turbine systems
[8]

. Valuable information for wind 

turbine reliability analysis can be derived from failure data by statistical analysis 
[9][10]

. 

Climate change can also be taken into account using statistical data 
[11]

.  

 

In wind energy industry, there are plenty of field data available for reliability analysis, 

but the field failure data is usually tainted or incomplete. In most of the cases, data is 

not collected from the time of the installation of wind turbines and the population of 

the investigated wind turbines changes. To study the reliability characteristics using 

the available field data, a new model considering the above problems is presented in 

this paper. The new model is a three parameter Weibull model that uses a third 

parameter to look into the past running time. The three parameters are estimated by 

two techniques, Maximum Likelihood and Least Squares. Two wind turbine 

populations are analyzed using the presented model and traditional Weibull model. 

The data is extracted from Windstats Newsletters
[17]

. The results of both models are 

compared. 

2. Windstats Data 

Windstats Newsletter is a quarterly international publication which provides various 

information about the wind energy converted in wind turbines in various countries in 

the world. The data analyzed in this paper has been extracted from Windstats 

Newsletters from wind turbines in Demark and Germany. The data collects the 

numbers of wind turbine subassembly failures in a fixed interval, one month for 

Danish turbines and one quarter for German turbines. To simplify the problem and 

concentrate on the methods demonstrated in this paper, it is assumed that any 

subassembly failure will lead to a wind turbine failure.  By that assumption, the wind 

turbine failures in an interval is equal to the sum of the subassembly failures. 

 

Danish data starts from Oct. 1994 to Dec. 2003 with population varying from highest 

2345 turbines to lowest 851 turbines; German data starts from Dec. 1995 to Sep. 2004 

with population varying from highest 4285 turbines to lowest 1578. Danish data 

shows a decreasing number of installed turbines, while German wind turbines 

increase rapidly
[9][10]

. Since the population changes, it’s necessary to eliminate the 

population difference by normalizing the wind turbine reliabilities. Furthermore, 

individual wind turbines have similar subassemblies and architecture. Therefore, the 

number of failures in an interval is divided by corresponding number of turbines to 

get the average failure number of that interval, which means the number of failures 

per interval per turbine and is suitable for modelling the reliability of  the wind 

turbines. 

 

The interval of Danish data is not converted into a quarter (the interval of the German 

data) by synthesizing data for 3 months, because this paper is aimed at providing 

reliability analysis methods for wind turbines using incomplete failure data recorded 

in different intervals. 

 

Windstats Newsletter also provides additional information, besides failure numbers, 

about wind turbines such as production, capacity factor, which can be used to analyze 

other aspects of wind turbines
[11]

.  

3. Weibull Model 
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The Weibull process is widely used to model the non-homogeneous Poisson process. 

Its intensity function (or failure rate)  is  
 tt )(  (1) 

With <0, =0, >0, the Weibull model can depict infant mortality stage, normal 

stage and wear-out stage of the so-called bathtub curve respectively.  Equation (1) can 

also be written as the popular equation (2) , which simplifies calculating the integral 

of intensity function, 
1)(   tt  (2) 

where =+1 and =/. In some literatures,  is called the scale parameter and  the 

shape parameter. 

 

For a Poisson process, the probability of N events occurring over period (a, b] is 
[12]
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The failure data of wind turbines collected by Windstats is grouped data, monthly for 

Danish wind turbines and quarterly for German. It is assumed that the distribution of 

wind turbine failures is of Weibull and individual  groups are independent to each 

other. Thus, a joint probability distribution function PDF of k grouped data is  
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Combined with equation (2) and (3), the following is derived 
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Next, calculate the maximum likelihood estimates of  and . 
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Then 
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By Letting  0
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Substitute  in equation (6) by ̂  of equation (8) 
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Then 
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Again, by Letting  0
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The above result is the same as  that in  [13]. In this paper, time interval T is fixed, 

which means iTti  , then the above formula is changed to 
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Then, the estimates of  and  can be derived from  and . 

 

4. A Three parameters Weibull Model 

The Weibull process is a Non-homogeneous Poisson Process with the intensity 

function of equation (1). According to the statements above, the number of failures in 

fixed intervals are known, so the parameters  and  should be estimated using those 

measurements. After rewriting equation (1) in term of equation (2), the number of 

failures, , over period (0, t) is calculated as below: 

 tdxxt
t

 0 )()(  (12) 

The above equation is suitable for the situations where the data is recorded from the  

wind turbine installation. However, the data collected in Windstats is not necessarily 

from the date of wind turbine’s installation as it may start from some years after later. 

Another parameter  called time factor in this paper is reasonably introduced into the 

Weibull model in order to describe the past running time. The  shifts the intervals 

along the time axis from 0, T, …, kT to T, T+T, …, T+kT. T for Danish turbines is 

the number of hours of a month and a quarter for German turbines. Therefore, the task 

has changed to estimate the parameters , ,  average failure numbers 1, 

2, …, k.  

4.1. Maximum Likelihood Estimates 

After  is introduced, equation (1) becomes 

 )()( Ttt   (13) 

Correspondingly, equation (2) changes into 
1)()(   Ttt  (14) 

Following the same procedures in the last section, the estimate of  can be derived as 



 5 

 


)(])[(
ˆ 1

TTk

N
k

i

i





  (15) 

and the estimates of  and  are the solutions of the equations below which are solved 

by trust-region dogleg method
[14]

. 
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Then, the estimates of  and  can be derived from  and . 

4.2. Least squares Estimates 

From Equation (12),  the number of failures in each interval is given by 
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Thus, for the interval i, the average number of failures is  
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then Equation (18) becomes 
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Equation (20) can then be written in matrix form as:  
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Next, the least squares estimate of   can be derived as following 

ΛCCC
TT 1)(ˆ   (24) 

which is a function of  and . Inserting Equation (24) into Equation (20) gives the 

estimate of i  
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Now the problem becomes 
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Since Q is highly non-linear, the above minimum is solved by a large-scale algorithm 

which is a subspace trust region method and is based on the interior-reflective Newton 

method
[15][16]

. With the values  and , by equations (19) and (24) an estimate for the 

parameter  can be obtained. Then, the estimates of  and  can be derived from  

and . 

5. Modelling Results Analysis  

The two algorithms presented above are applied to Danish and German populations of 

Windstats data, analyzing the reliability growth. Table 1 and 2 give estimated 

parameters from the two algorithms, but Danish data is estimated in monthly intervals 

and German data is estimated in quarterly intervals. The average relative errors are 

calculated as following 


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ii
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 (28) 

 

 Danish population has a larger time factor() than German, which implies that 

Danish wind turbines are put into use earlier than German wind turbines. Windstats 

data (2003) confirms Danish first turbine installations was in 1987 and German first 

turbine installations was in 1990. Therefore, combined with the starting points of data 

of two populations (Danish is Oct. 1994 and German is Dec. 1995), those  estimated 

by ML in the tables show their consistence. Those  achieved by LS have a little bit 

larger deviation. The ML estimates coincide with the LS estimates when the noise is 

zero-mean Gaussian distributed. The noise in Windstats data is not of that 

characteristic
[11]

. ML and LS give similar intensity distribution functions, which 

explains that similar curves (in Fig. 5 and Fig. 6) are obtained by ML and LS. 
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Table 1. Estimated parameters of the 3-parameter Weibull Model for monthly Danish 

data 

   Average Relative Error 

LS ML LS ML LS ML LS ML 

112.32 

(9.36 yrs) 

93.7  

(7.80 yrs) 
9.93 7.33 -0.999999 -0.985097 0.29 0.29 

 

Table 2. Estimated parameters of the 3-parameter Weibull Model for quarterly 

German data 

   Average Relative Error 

LS ML LS ML LS ML LS ML 

26.45  

(6.61 yrs) 

21.42  

(5.36 yrs) 
16.94 11.32 -0.999985 -0.976861 0.24 0.24 

 

Failure numbers and failure rates of Danish wind turbines are shown in figure 1 and 

figure 2, while failure numbers and Failure rates of German wind turbines are shown 

in figure 3 and figure 4. Results of traditional Weibull model and 3-parameter Weibull 

model(Least squares estimates) are also illustrated in the figures. In the figures of 

failure numbers, Windstats data is also given(asterisks). It should be noted that failure 

number is the numbers within an interval, a month for Danish turbines and a quarter 

for Greman turbines. The starting times(T) are marked out. Figure 5 and figure 6 

show the comparison of failure number and failure rate between Maximum 

Likelihood estimates and Least squares estimates with Danish data analyzed. In figure 

5, a copy of Windstats data is marked as circles for ML result. Besides, it can be seen 

that:  

 The curves of failure number vs. time has a similar shapes to those of failure 

rate vs. time. This applies to both populations and both techniques.  

 The Danish and German curves have similar shapes in accordance with the 

estimated values of  which are close between the two populations. 

 Failure numbers and failure rates of 3-parameter model are rather high close to 

time zero, whereas those of 2-parameter model are rather high close to time 

T(years). That is a shortcoming of Weibull modelling. The monthly failure 

number by the first year per turbine is about 0.73. 

 The 3-parameter model provides more information about the period before 

failure data was collected, but 2-parameter model can only be used to predict 

reliability performance for the subsequent period. 

 The wind turbines are all shown to be in the stage of infant mortality, because  

all the values of  are less than zero. 

 Similar curves are obtained by applying ML and LS techniques to 3-parameter 

models. 

 LS gives a larger  than ML, but the time factor differences between two 

populations using two techniques are close to each other. From table 1, it can 

be calculated that the time factor difference is 2.75 years for LS and 2.44 years 

for ML.  
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Figure 1. Failure number of Danish  

wind turbines 

 
Figure 2. Failure rate of Danish wind 

turbines 

 
Figure 3. Failure number of German wind 

turbines 

 
Figure 4. Failure rate of German wind 

turbines 

 
Figure 5. Failure number comparison of 

ML and LS estimate results (Danish 

population) 

 
Figure 6. Failure rate comparison of ML and 

LS estimate results (Danish population) 
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6. Conclusions 

Windstats Newsletters provide failure data of wind turbines, but it is incomplete. In 

order to take such incompletion into account and obtain a more accurate reliability 

growth of wind turbines, a 3-parameter Weibull model is presented in this paper and 

its parameters are estimated by two techniques, Maximum Likelihood and Least 

squares. Similar results have been achieved by the two techniques.  

 

Three parameters Weibull model presented in this paper has advantages over 

traditional Weibull in dealing with incomplete data. However, three parameters 

Weibull model shrinks to of the traditional Weibull model on the condition that  is 

set to 0. That is in accordance with the fact that three parameters Weibull model is 

promoted from traditional Weibull model by introducing  into it. Therefore, the 

proposed three parameter Weibull model is a general model that is applicable to both 

complete data, like life test data, and incomplete data, like field failure data in 

Windstats.  

 

Because three parameters Weibull model provides an extra earlier part of reliability 

curve, it is helpful in planning a better maintenance schedule for wind energy systems. 

In other words, the remaining life time of a wind turbine can be estimated as a 

reference of the maintenance schedule, if a period of data is available for reliability 

analysis.  
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