
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Reliable, Distributed Scheduling and Rescheduling
for Time-Critical, Multiagent Systems

Amanda Whitbrook, Qinggang Meng, Member, IEEE, and Paul W. H. Chung

Abstract— This paper addresses two main problems with
many heuristic task allocation approaches—solution trapping in
local minima and static structure. The existing distributed task
allocation algorithm known as performance impact (PI) is used
as the vehicle for developing solutions to these problems as it
has been shown to outperform the state-of-the-art consensus-
based bundle algorithm for time-critical problems with tight
deadlines, but is both static and suboptimal with a tendency
toward trapping in local minima. This paper describes two
additional modules that are easily integrated with PI. The first
extends the algorithm to permit dynamic online rescheduling in
real time, and the second boosts performance by introducing an
additional soft-max action-selection procedure that increases the
algorithm’s exploratory properties. This paper demonstrates the
effectiveness of the dynamic rescheduling module and shows that
the average time taken to perform tasks can be reduced by up to
9% when the soft-max module is used. In addition, the solution
of some problems that baseline PI cannot handle is enabled by
the second module. These developments represent a significant
advance in the state of the art for multiagent, time-critical task
assignment.

Note to Practitioners—This work was motivated by the lim-
itations of current agent-to-task allocation algorithms that do
not use a central server for communication. In previously pub-
lished work, the current state-of-the-art consensus-based bundle
algorithm has demonstrated poor performance when applied to
model task allocation problems with critical time limits, often
failing to assign all of the tasks, especially when the deadlines
are tight. The performance impact (PI) algorithm has a much
better success rate with these model problems but would be
flawed when applied to real missions because it has no mechanism
for online replanning when new information becomes available.
In addition, it is somewhat restricted in the way it searches
for a problem solution, meaning that more efficient plans are
often available but are not discovered. This paper tackles both
of these shortcomings. The PI algorithm is extended to include a
module that permits rescheduling when necessary, and a further
module is introduced that widens the scope of the solution
search. A third module that is able to offer robust plans, even for
large-scaled missions involving many agents and tasks, has also
been developed, although it is not discussed here. Implementation

Manuscript received August 18, 2016; revised January 6, 2017; accepted
February 23, 2017. This paper was recommended for publication by Associate
Editor l. Tang and Editor M. P. Fanti upon evaluation of the reviewers’
comments. This work was supported by the Engineering and Physical Sciences
Research Council under Grant ep/j011525/1 with BAE Systems as the leading
industrial partner.

A. Whitbrook is with the Department of Electronics, Computing and
Mathematics, University of Derby, Derby, DE22 1GB, U.K. (e-mail:
a.whitbrook@derby.ac.uk).

Q. Meng and P. W. H. Chung are with the Department of Com-
puter Science, Loughborough University, Loughborough, LE11 3TU, U.K.
(e-mail: q.meng@lboro.ac.uk; p.w.h.chung@lboro.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2017.2679278

and testing of a version of PI that incorporates all three of these
modules are the final goal of this research.

Index Terms— Adaptive systems, auction-based scheduling,
distributed task allocation, multiagent systems.

I. INTRODUCTION

S INGLE-TASK, single-robot (ST-SR) task allocation prob-
lems have been defined in [1] as consisting of agents

capable of executing at most one task at a time, and tasks
that require only one agent to complete them. In addition,
the subclass of time-extended allocation problems (ST-SR-TA
problems) has a temporal horizon and more tasks than agents
to service them. These problems have many properties in com-
mon with manufacturing scheduling problems (see [2] and [3]
for a full review) such as the well-known job shop scheduling
problem, where a set of jobs is to be allocated to a set of
machines that can handle only one job at a time. Each job
needs to be completed during an uninterrupted time period of a
given length on a given machine. If each job can be completed
by a single machine, then the problems are equivalent. In both
cases, the objective is to find an optimum assignment that
satisfies particular constraints, for example an assignment that
minimizes total duration to complete all tasks or jobs. Such
problems are strongly NP-hard [4] as they are complex, combi-
natorial decision problems. For example, for the more general
job shop scheduling problem (where jobs may require more
than one machine), the number of possible solutions is equal
to (m!)n where m is the number of jobs and n is the number of
machines [5]. Solution methods for ST-SR-TA problems thus
tend to scale very poorly as the computation time increases
exponentially with the problem size [6]. This means that
analytic methods such as linear programming (LP) or mixed
integer LP are not suitable for large, complex problems of this
type; the methods become intractable because of the expo-
nential number of constraints in the model [1]. In addition,
simple, uninformed search-based methods cannot deal with the
large solution space. Much research effort has therefore been
directed toward designing search-based methods that incor-
porate some sort of heuristic, for example Tabu-search [7],
genetic algorithms [8], [9], simulated annealing [10], and
artificial neural networks [11]. These algorithms are generally
referred to as traditional approaches. There is also a rich litera-
ture on heuristic distributed agent-based strategies, for example
Yet Another Manufacturing System (YAMS) (for manufac-
turing scheduling) [12] and auction-based approaches [13].
Although heuristic methods can produce good solutions in
reduced time [2], a disadvantage with many is that they

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

often provide suboptimal solutions. Moreover, many heuris-
tic algorithms used for ST-SR-TA task allocation problems
(including the examples given) are static in nature with no
dynamic rescheduling version available. This is an important
consideration for many real-world task allocation problems,
for example search-and-rescue missions (SAR), which take
place in dynamically changing environments with situational
awareness (SA) subject to change at any time.

The performance impact (PI) algorithm [14] is a distrib-
uted heuristic algorithm that has shown good performance
for solving difficult, time-critical problems when compared
to other auction-based methods, notably the consensus-based
bundle algorithm (CBBA) [13], but it is a static program that
needs to be run offline, and also suffers from suboptimality
because the solution is prone to trapping in local minima.
This paper aims to solve both of these problems and thus
address the two main drawbacks of heuristic approaches—
local minima traps and lack of a rescheduling mechanism.
First, baseline PI is developed into a dynamic search algorithm,
i.e., the online reassignment of tasks during the course of
the mission is enabled. Thus, as soon as new information
becomes available, the algorithm can dynamically reschedule.
The modifications made enable the algorithm to handle new
information concerning the locations of tasks, the addition of
new tasks, the removal of tasks, and the addition and removal
of agents from the team; this functionality was not available
in PI previously. Numerous test scenarios have validated the
dynamic capability and have demonstrated the benefits of
reassignment compared to proceeding with the original plan.
Second, baseline PI is extended to include an appropriate com-
bination of PI task selection and soft-max task selection. This
development improves performance and boosts the exploratory
properties of the algorithm, meaning that escape from local
minima is possible. For each problem, the parameter that
determines the best action-selection combination is obtained
by repeatedly solving between start and end values in suitable
steps, until the best solution is found. Extensive testing under
several different scenarios and network topologies is carried
out to show empirically that the enhancement can improve
the performance of the baseline PI algorithm by up to 9%,
and enables solution of some problems that the baseline
cannot handle. The search for an optimal soft-max parameter
introduces a tradeoff between increasing solution time and
boosting solution quality. A method for reducing the search
time without compromising performance is thus put forward.

Development of PI to include dynamic rescheduling and
escape from local minima is the main contribution of this
paper. The enhancements are fully described in Sections IV-B
and V-B, and the results for each additional module show that
they represent an advance in the state of the art in multiagent
task assignment for time-critical systems. In addition, specific
details of the dynamic rescheduling aspects of distributed
ST-SR-TA task allocation algorithms are not well-documented
in the literature; this paper aims to fill the gap.

II. LITERATURE REVIEW

As stated earlier, the approaches to solving complex
scheduling problems such as ST-SR-TA problems and

manufacturing scheduling problems can be categorized into
traditional methods and distributed agent-based methods. For
a general discussion of the advantages and disadvantages
of these categories see [2] and [3]. An example traditional
method is the use of genetic or memetic algorithms to evolve
a problem solution (see [8], [9], [15], and [16]). The main
advantage of these methods is the ability to solve higher
dimensioned problems considerably faster than some other
search methods [17], but optimality is not guaranteed.

Agent-based approaches were first proposed in [18] for
solving manufacturing scheduling problems and their appli-
cation to general task-allocation problems is well docu-
mented (see [19]), where agent behavior is modeled on the
division of labor in social insects. When designing such
systems an important consideration is the choice of either a
centralized or distributed communication architecture. Agents
continually need to share information about their current task
set, and centralized approaches (see [15] and [16]) incur a high
communication overhead for larger systems, are vulnerable
to single-point failure and have a limited range. However,
centralized systems are generally simpler to implement and
tend to run faster as no consensus processing stage is required
to ensure that the agents have identical SA or identical
solutions [13]. Alternatively, distributed systems (see [20]),
where a scheduling algorithm is instantiated in each agent,
require less communication bandwidth [21], allow an extended
range, and have no single-point failure vulnerability. However,
in real networks, where communication is sometimes limited,
inconsistencies in the SA or the generation of different local
solutions can lead to conflicting assignments [22], meaning
that some form of consensus algorithm is necessary [23].
These consensus-before-planning algorithms provide an addi-
tional computational and data processing burden, which can
slow down performance, but they have been shown to be robust
to different network topologies [13]. For a full discussion of
centralized and distributed auction methods see [24].

Many agent-based methods involve iterative task allocation,
for example market-based decision strategies [25], where each
agent is modeled as a self-interested party, and the whole
fleet as an economy. The agents must maximize their own
profit by making deals with others in the form of bidding for
different tasks. Globally, the profit (revenue minus cost) must
be maximized.

Auction-based algorithms (see [26]–[28]), which are a
subset of market-based methods, have also been applied to
ST-SR-TA task-allocation problems. In these algorithms, each
agent bids on a task based on information from its own SA,
and the highest bidder wins the task assignment. Either a
central system or one of the bidders can act as the auctioneer.
Auction-based methods are generally robust to inconsistencies
in the SA, and have been shown to produce suboptimal
solutions efficiently [13].

Choi et al. [13] have shown that their distributed CBBA
algorithm effectively combines the positive properties of
auction-based and consensus-before-planning approaches, pro-
ducing conflict-free solutions independent of inconsistencies
in the SA. Task selection is implemented via a decentralized
auction phase, and agreement on the winning bids (rather

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 3

than the SA) is achieved through a consensus phase that also
serves to release tasks that have been outbid. Application
of the auction method to TA problems is made possible
by grouping common tasks into bundles and allowing the
agents to bid on the bundles rather than individual tasks,
with the bundles continuously updating as the auction pro-
ceeds. This approach is known as a combinatorial auction.
Choi et al. [30] show that the method produces similar solu-
tions to some centralized sequential greedy procedures, and
50% optimality is guaranteed. Task bundling auction methods
are also described in [29] and [30].

In CBBA, the bundles are formed by logically grouping
similar tasks, as it would be too computationally costly to
enumerate all possible bundles. The PI algorithm [14] is also a
combinatorial auction method but builds its bundles iteratively
using novel PI metrics designed to exploit the synergies
between tasks to decrease global cost (see Section III-C for
full details). The PI task swapping mechanism is similar to that
used in Durfee and Lesser’s partial global plan (PGP) algo-
rithm for distributed problem solving [31]. Both techniques
involve local planners that rate task order based on time costs
and the effects on preceding and future tasks, and then use hill-
climbing techniques [32] to generate a satisfactory ordering
that is not necessarily optimal. One of the main differences is
that the PGP does not iteratively test all possible combinations
of task bundles and their ordering using specialized metrics.
Instead, more highly rated tasks are simply moved to a slot
earlier in the plan. In addition, instead of executing a separate
consensus phase that takes the input from each agent into
consideration, partial plans from each agent are periodically
combined to create larger ones.

In [14], the distributed PI algorithm has been shown empir-
ically to solve model task allocation problems with tight
deadlines more effectively than the CBBA method. When
solving a number of time-critical ST-SR-TA problems with
different network topologies, different numbers of agents and
tasks, and randomly generated locations for agents and tasks,
the PI approach demonstrates a consistently lower mean time
cost, and is able to solve many problems that the CBBA
method cannot. However, neither PI nor CBBA can handle
dynamic rescheduling, and PI’s solutions are prone to trapping
in local minima. It is clear that a rescheduling variant of PI is
necessary, and the local minima problem needs addressing.

Traditional methods for solving task allocation problems
are not generally suited for dynamic rescheduling as they are
often too inflexible and too slow [33]. However, agent-based
approaches have been reported for manufacturing schedul-
ing (see [33] and [34]). In [33], a scheduling mechanism
that evolves dynamically is used to combine centralized and
distributed strategies. A global optimized schedule is initially
implemented and a fast rescheduling solution is called for
whenever changes occur as this is faster than waiting for an
optimized schedule. In [34], a mediator mechanism is used to
help agents dynamically find other agents that can contribute
to a given task, and negotiation is through the contract net
protocol [35]. However, these architectures are not suited to
the problems of interest in this paper (ST-SR-TA problems)
as here, each task requires only one agent for completion.

Rescheduling algorithms for problems of this type are scarce
in the literature.

III. PROBLEM DEFINITION, SCENARIO,
AND PI ARCHITECTURE

A. Problem Summary

The set of problems of interest in this paper are formulated
mathematically by defining a set of n heterogeneous agents
V = [v1, . . . , vn]T, a set of m heterogeneous tasks T =
[t1, . . . , tm]T, m > n, and a set of ordered task allocations
A = [a1, . . . , an]T, where ai , i = 1, . . . , n, is the task list
assigned to agent vi . Note that the actual size �i of a task
list ai may vary between agents; for example, agent v1 may
be assigned a single task (�1 = 1), whereas agent v2 may be
assigned three tasks (�2 = 3). However, mathematically |ai | ≡
m as the corresponding elements of any unassigned tasks are
given value −1 in each set of allocations ai . A compatibility
matrix H with entries hi, j ∈ [0, 1] defines whether agent vi is
able to perform task t j as there may be different task types.
(The value is 1 if it is able, 0 otherwise.) In addition, each
task has a maximum (latest) start time S = [s1, . . . , sm]T

after which it cannot commence, i.e., the problem has the
additional complexity of being time-limited. The time cost ci,k

for a particular agent vi and task tk is defined as the time of
arrival of agent vi at the location of task tk ; the time spent
in that location servicing task tk is not included; instead, this
contributes toward the arrival time of agent vi at the next task
tk+1. In addition, note that time costs are cumulative so that
the cost of servicing task tk includes the cost of servicing
all the tasks previous to it. Each task requires only one agent,
and each agent can complete only one task at a time, although
it can complete other tasks afterward, provided that there is
enough time. The problem falls into the general category of
ST-SR task allocation problems, as defined in [1], and since
there are always more tasks than agents available to service
them, the problem is also a time-extended assignment type,
i.e., it is an ST-SR-TA system under the same taxonomy.

The solution requires a conflict-free assignment of agents
to tasks that minimizes some global penalty. In this particular
case, the global objective function is to minimize ϕ the mean
single time cost (as defined above) over all tasks, that is

ϕ = 1

m

n∑

i=1

�i∑

k=1

ci,k(ai) (1)

where �i is the number of tasks assigned to agent vi , and
ci,k(ai) is the time cost incurred by agent vi servicing the kth
task in its task list (see Section III-C for a justification of the
choice of objective function). Any solution that includes tasks
that cannot commence in time is a failed solution; the time-
cost in such cases is nonexistent, and the objective function
cannot be calculated.

The constraints in the optimization problem are as follows:

ai ≤ m (2)
n⋃

i=1

ai = T, ai ∩ a j = ∅ ∀i �= j (3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

hi,k ∈ [0, 1] (4)

ci,k (ai) ≤ sk . (5)

Equation (2) constrains the number of tasks assigned to a
particular agent to be less than or equal to the total number
of tasks. Equation (3) shows that each set of allocations
is a subset of the whole set of tasks, that tasks cannot
be assigned to multiple agents, and that all tasks must be
assigned to some agent. Equation (4) constrains the elements
of the compatibility matrix to either 0 or 1 in value, and (5)
represents the task arrival time constraint.

B. Test Scenario

In this paper, the particular scenario selected for appli-
cation of the problem type is based on the rescue aspect
of urban SAR (USAR). The agents are vehicles [unmanned
air vehicles (UAVs) carrying food and helicopters carrying
medicine], and their mission is to rescue disaster survivors
by delivering their supplies to them. Each survivor requires
either food or medicine and their delivery constitutes the
completion of a task. The start locations of the UAVs and
helicopters are known in advance, as are the 3-D locations and
requirements of the survivors, although note that task locations
are assumed to be estimates that are subject to change in the
reassignment work (Section IV). The allocation of a maximum
start time sk for each task represents the constraint that
each survivor must be rescued before their health condition
deteriorates completely. Note that the problem type described
in Section III-A is not restricted to USAR applications; it
applies to any distributed, time-critical scheduling problem.

C. PI Architecture

PI is a distributed task allocation algorithm that runs sep-
arately on each vehicle in the fleet. It uses a combinatorial
auction-based approach, but introduces the concept of PI as
a score function to build bundles iteratively by adding and
removing tasks and testing the impact on global cost. As in
the CBBA algorithm, there is a local task allocation phase
in which each vehicle generates a bundle of tasks, and a
task consensus phase that resolves conflicts through local
communication between connected vehicles. The two phases
are repeated until convergence, i.e., until a conflict-free task
assignment is reached.

There are two types of PI, removal PI (RPI) and inclusion
PI (IPI), which are now explained. The RPI wk(ai 	 tk) of
task tk to its assigned vehicle vi is the cost of performing a
removed task plus the difference in cost (with and without the
removed task) of performing all subsequent tasks. It represents
the contribution of a task to the local cost generated by a
vehicle. RPI is defined as

wk(ai 	 tk) = ci,b(ai)+
�i∑

r=b+1

{ci,r (ai)− ci,r−1(ai 	 tk)} (6)

where ai 	 tk symbolizes removal of task tk from the task list
ai of vehicle vi , and b denotes the position of task tk in the task
list, i.e., ai,b = tk . The summation term represents comparison
of the time cost with the task tk included in the task list

Fig. 1. Example problem showing the distances between tasks.

(first term) and the time cost without it (second term). It is a
summation since this is calculated for all the tasks following tk
in the task list. An RPI list γ p = [w1, . . . ,wm]T p = 1, . . . , n
is thus compiled for each vehicle. To facilitate consensus,
a vehicle list β p = [β1, . . . , βm]T p = 1, . . . , n is also
composed for each vehicle. This list records the local view of
which vehicle is assigned to which task. Fig. 1 illustrates the
layout of an example problem where vehicle v6 is originally
assigned tasks 8, 11, 9, and 10. The time taken to travel each
path is shown. If v6 starts at task 8’s location, and each task’s
duration is 350 s, then the RPI of removing task 11 from the
task list of v6 is calculated as follows:

c6,2(a6) = 350 + 49.3 = 399.3

c6,3(a6) = 399.3 + 350 + 187.5 = 936.8

c6,2(a6 	 t11) = 350 + 217.9 = 567.9

c6,3(a6)− c6,2(a6 	 t11) = 936.8 − 567.9 = 368.9

c6,4(a6) = 936.8 + 350 + 56.2 = 1343

c6,3(a6 	 t11) = 567.9 + 350 + 56.2 = 974.1

c6,4(a6)− c6,3(a6 	 t11) = 1343 − 974.1 = 368.9

w11(a6 	 t11) = 399.3 + 368.9 + 368.9 = 1137.1.

When a task is removed from a vehicle’s task list it must
be added to the task list of another. Thus, it is necessary to
define IPI to measure the task’s contribution to the local cost
generated by the new vehicle. The IPI w∗

k (a j ⊕ tk) of task tk
to vehicle v j is the cost of performing the additional task plus
the difference in cost (with and without the added task) of
performing all subsequent tasks. It is defined as

w∗
k (a j ⊕ tk) = min

� j
l=1

{
w�k, j,l

}
(7)

w�k, j,l =
{

c j,l(a j⊕l tk)+
� j∑

r=l

{c j,r+1(a j⊕l tk)−c j,r (a j)}
}

(8)

where a j ⊕l tk symbolizes adding task tk into the task list
a j of vehicle v j , at the lth position. The value of w�k, j,l
in (8) is calculated for each possible value of l and w∗

k
is taken as the minimum of these. Again, the summation
term represents comparison of the time cost with the task tk
now included in the task list (first term) and the time cost

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 5

without it (second term). This is calculated for all the tasks
including and following position l in the task list. An IPI list
γ ∗

p = [w∗
1, . . . ,w∗

m]T p = 1, . . . , n is thus compiled for each
vehicle. Note that in the implementation of PI an infinity value
is used for w∗

k when a task is already included in a vehicle’s
task list.

Intuitively, the RPI and w�k, j,l in (8) have the same value
when a task is removed from a vehicle’s task list and then is
added back into the same task list in the same position, i.e.,
when i = j and b = l. In the example, if task 11 is first
removed from the task list of v6 as before and then added
back into it in position 2, w�k, j,l is calculated as follows:

c6,2(a6⊕2t11) = 350 + 49.3 = 399.3

c6,3(a6⊕2t11) = 399.3 + 350 + 187.5 = 936.8

c6,2(a6) = 350 + 217.9 = 567.9

c6,3(a6⊕2t11)− c6,2(a6) = 936.8 − 567.9 = 368.9

c6,4(a6⊕2t11) = 936.8 + 350 + 56.2 = 1343

c6,3(a6) = 567.9 + 350 + 56.2 = 974.1

c6,4(a6⊕2t11)− c6,3(a6) = 1343 − 974.1 = 368.9

w�11,6,2 = 399.3 + 368.9 + 368.9 = 1137.1.

The actual value of w∗
11(a6 ⊕ tk11) is calculated by also

evaluating w�11,6,l for l = 1, 3, 4 and taking the minimum
value, i.e., the value obtained when adding the task at the
position that yields the least additional cost.

When removing a task tk from the task list ai of vi , it is
obvious that there is benefit in adding it to the task list a j of
vehicle v j if

wk(ai 	 tk)>w∗
k (a j ⊕ tk)

as this will decrease the overall cost by the difference between
the two values. The algorithm’s full structure, which is written
in MATLAB code, is now described.

At the start of the PI algorithm, the locations of the tasks and
vehicles and the maximum start times are randomly generated,
and the network topology is defined (see Section V-C). Also,
the vehicle RPI lists and IPI lists are initialized to an m-
sized vector holding the maximum MATLAB real number.
The task lists, time cost lists, and vehicle lists are initialized
to an m-sized vector of −1, −1, and 0 values, respectively
(see Algorithm 3).

The consensus phase is a twofold process and is necessary
as some tasks may be locally assigned to more than one
vehicle. First, the vehicles exchange RPI lists, vehicle lists,
and time stamps with all other vehicles in their range. The
RPI and vehicle lists are then recomputed according to a
consensus procedure first introduced in [13], which stipulates
conditions for updating (adopting another vehicle’s lists),
leaving (keeping the same lists), and resetting. These rules are
based on comparing RPI values and determining which vehicle
has the most up-to-date information. For example, if vehicle
j is the sender and vehicle i is the receiver, and both vehicles
claim task k then if w jk < wik the receiver’s action is to
update so that wik = w jk and βik = β j k . If the sender claims
task k but the receiver credits it to a different vehicle p then,
if either the time stamp for the information exchange between

vehicles j and p is more recent than that between vehicles i
and p, or if w jk < wik , then the receiver’s action is the same.
This is the initial part of the consensus phase, which serves
to resolve some of the conflict.

The task removal phase (see Algorithm 1) of the algorithm
acts as the second part of the consensus phase. A lower
RPI implies a more optimal assignment, so an agent with a
higher RPI for a conflicting task should release it. Tasks are
marked as candidates for removal from a vehicle’s task list
if there is disagreement between the vehicle list (computed
in the initial part of the consensus phase) and the current
task list, i.e., if a task is recorded on the task list, but that
task is assigned to a different vehicle on the vehicle list. The
RPI list γ �

i = [w1, . . . ,wm]T is then calculated according
to (6) and iteratively compared with the previous RPI list
γ i = [w1, . . . ,wm]T (that emerged from the initial part of the
consensus phase), for all candidate tasks di , i.e., the following
is computed:

z = max|di |
k=1{γ �

i,k − γi,k }. (9)

Algorithm 1 : PI Task Removal
1: Compute candidate tasks for removal
2: while candidate list is not empty
3: for each task in the task list
4: if vehicle and task are compatible
5: Set previous (and next) task and time cost
6: Compute wk from (6)
7: end if
8: next
9: Compute z from (9)
10: if z ≥ 0
11: Remove task yielding max z from task list
12: Remove task yielding max z from candidate list
13: Re-calculate time cost list
14: end if
15: end while
16: Put unremoved tasks back into vehicle list

If z ≥ 0, then the task yielding the maximum z is removed
from both the task list and the candidate list, and the time
cost is then recalculated. In addition, γ �

i is computed again
from (6) as its value changes following the removal of the
task. Equation (9) is reevaluated, and the process repeats until
di = ∅. Any unremoved tasks are assigned to vi in the vehicle
list, i.e., β i (di) = vi and the RPI list γ i is set as the final γ �

i .
The next phase is the task inclusion phase (see Algorithm 2),

which is the part of the algorithm that builds the task bundles.
The IPI list γ ∗

i = [w∗
1, . . . ,w∗

m]T is computed according to (7)
and (8), and compared with the RPI list γ i = [w1, . . . ,wm]T

computed in the task removal phase, i.e., the following is
calculated:

q = maxm
k=1{γi,k − γ ∗

i,k}. (10)

If q > 0, then the task tζ yielding the maximum q is
added to the task list of vi at the position l that returns the
minimum w∗

ζ , and the time cost is recalculated. The RPI of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 2 : PI Task Inclusion
1: while tasks in task list not at upper limit
2: for each task in problem
3: if vehicle and task are compatible
4: if task not already in task list
5: for each insertion position
6: Set previous task and time cost
7: Compute w∗

k from (7) and (8)
8: next
9: end if
10: end if
11: next
12: Compute q from (10) and l from (7) and (8)
13: if q > 0
14: Add task yielding max q to task list at position l
15: Update vehicle list
16: Set wk = w∗

k
17: Recalculate time cost list
18: end if
19: end while
20: Recalculate γ i

the task for vi becomes the IPI of the task for vi (so that
the difference is zero), and the vehicle list β i is adjusted
accordingly. The IPI is recalculated, (10) is reevaluated, and
the process repeats until there are no more tasks in the task list.
Finally, the RPI γ i = [w1, . . . ,wm]T is recalculated at the end
of the phase. The communication exchange, initial consensus,
task removal, and task inclusion phases continue iteratively
until suitable stopping criteria are met (see Algorithm 3). PI
is a heuristic algorithm that uses an iterative optimization
principle; that is, each agent aims to decrease the overall cost
at each iteration by recursively adding or removing tasks. The
algorithm thus converges when no changes are made in the
RPI values in both the task inclusion and removal phases (see
[14]). However, the convergence rate slows down when the
algorithm gets close to the solution; this helps to determine
when to stop and accept the current solution without spending
more time with little return.

It is important to note that optimization is on the average
individual task cost for all the tasks, not average completion
time for each vehicle. This is to take into account how many
tasks benefit from the time saving. If there is a scenario where
four tasks are completed earlier by swapping tasks, then this
is preferable to a scenario where, for example, only two tasks
are completed earlier. This is why the RPI takes account of the
difference in time cost (with and without the removed task)
for all subsequent tasks (and similar for the IPI calculation).

IV. REASSIGNMENT

A. Reassignment Problem

Reassigning the tasks when new information becomes avail-
able is not just a case of rerunning the algorithm, because
some tasks may have already been serviced, or may be in
the process of being serviced; thus some tasks need to be
excluded from the reassignment. Additionally, vehicles are

Algorithm 3 : PI Main Program
1: Define World, Vehicles, Tasks, Network Topology
2: for each vehicle i
3: Initialize ai , ci , w∗

i , wi , β i
4: next
5: while not converged
6: Communicate wi and β i between vehicles
7: Re-compute wi and β i according to CBBA rules
8: for each vehicle i
9: Carry out task removal
10: Carry out task inclusion
11: next
12: if converged
13: Mark as converged
14: end if
15: end while

already acting on the schedules that they were previously given
and so, in calculating their new position, one needs to know
which task they were originally heading toward and how far
they traveled along that path. As it stands, the baseline PI
algorithm lacks the functionality to deal with these additional
constraints. A rescheduling version of the algorithm is thus
constructed to handle this functionality.

For the rescheduling version of the PI algorithm a time ψ
is defined when new information first becomes available. This
information may be in the form of updated task locations, new
tasks added to or removed from the mission, new vehicles
joining the fleet or deleted vehicles that have been recalled
to base or to another mission. Any new vehicles and tasks
will also have an estimated location associated with them.
A set K = [κ1, . . . , κq]T of changed tasks is specified where
q is the number of tasks that have updated locations or have
been added or deleted. Each changed task κ j has a set of
associated x , y, and z coordinates. These are either the updated
coordinate estimates for existing tasks or the given coordinates
for newly added tasks. A set of tuples � = [θ1, . . . , θq]T

where θ j = 〈k j , x j , y j , z j 〉 j = 1, . . . q represents this
information. The status of the task is recognizable by the
values in its tuple. Arbitrarily large numbers �1 and �2
can be used to represent a new task’s nonexistent index and
the nonexistent x coordinate of a deleted task, respectively.
Thus, if κ j = �1 and ‖x j‖ < �2, then the task is a
new task. If κ j ≤ m and x j = �2, then the task is a
deleted task. If κ j ≤ m and ‖x j‖ ≤ xmax where xmax is
the maximum dimension of the world in the x direction,
then the task is an existing one with an updated location.
Similarly, a set Z = [ζ1, . . . , ζr]T of r deleted vehicles is
stipulated, along with p, the number of new vehicles added to
the fleet. The problem is to create an initial, conflict-free task-
to-vehicle assignment before the new information becomes
available, minimizing (1) and then to reassign appropriate
tasks once the new data are received, taking account of the
new intelligence and the updated locations of all the vehicles.
The new assignment must minimize (1) as before, and must not
conflict with the implemented tasks in the original assignment,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 7

i.e., tasks that have already been completed or tasks that are
in the process of being completed cannot be reassigned to a
different vehicle unless they belong to the set K. In addition,
no task can be reassigned to vehicles in the set Z. Note that if
a vehicle is recalled to base while in the process of servicing
a task, then it is assumed that it completes that task before
returning to base. If a vehicle arrives at a task location and
no survivor is present (because incorrect information on its
location was initially supplied), then it is assumed that it moves
onto the next task in its list until instructed otherwise via
communication of a new task list.

B. Reassignment Methodology

The arrival of new information at time ψ is simulated by
supplying values for ψ , q , p, and r and providing sets K, �,

and Z at the start of the main program. First, the algorithm
executes as before ignoring this information, and generates
an original assignment Ao. Following this, the new vehicles,
new tasks, and updated tasks are initialized and V and T
can be updated. The new vehicles are assigned their type
(helicopter or UAV) alternately, their locations are set ran-
domly (using the same method as the existing vehicles), their
availability is set to ψ , and the communication network is
updated to include them. The new tasks are assigned their
type (medicine or food) alternately, and their start times, along
with the start times of updated tasks, are set to ψ . The new
and updated locations of the tasks are assigned, and the old
locations of the updated tasks are stored. A maximum (lat-
est) start time s is also randomly generated for the new
tasks.

The main program then generates a set of protected tasks
P that cannot be reassigned. Tasks are protected if, under the
original assignment, they have already been serviced by a vehi-
cle (or have started to be serviced) at time ψ and there is no
new information about their location. Algorithm 4 illustrates
the task protection subroutine. For each task k in a vehicle’s
task list, it compares the minimum start time ωk to ψ . If this
is the first task in the list or the previous task is protected, then
ωk = ci,k(ai), but if tasks have been completed or the previous
task is unprotected, then the minimum start time also depends
upon the task-type duration dk and how many tasks have been
completed. The protection element Pi,k is set to 1 for protected
tasks and 0 for unprotected tasks.

The original assignment Ao has an associated set of time
costs Co. Before reassignment can take place the task lists and
time cost lists must be updated to include the new vehicles and
tasks. Thus, the following changes are made to Ao and Co.

1) New tasks are initially allocated to a vehicle that matches
their type and this is done sequentially.

2) A task k is also swapped with its predecessor k − 1 if k
is protected and k − 1 is unprotected and has not been
removed, as this indicates that task k − 1 has a changed
location. The servicing vehicle would have arrived at the
scene and would then have to proceed to task k without
spending any time on task k − 1.

3) Deleted tasks and their corresponding time costs are
removed from Ao and Co.

Algorithm 4 : Task Protection
1: Set Pi,k = 0
2: for all vehicles i
3: for all tasks k in ai

4: if k > 1 AND Pi,k−1 = 0
5: ωk = ci,k (ai)− (k − 1) dk

6: else
7: ωk = ci,k (ai)
8: end
9: if ωk < ψ
10: Pi,k = 1
11: else
12: Pi,k = 0
13: end
14: for all tasks j ∈ K
15: Pi,k = 0
16: end
17: end
18: end

4) All unprotected tasks are removed from the task lists of
deleted vehicles.

5) The time costs are reevaluated. If the start time of a
task exceeds the maximum permitted, then the task and
time cost are removed from the corresponding lists; this
indicates a failure of the original solution to solve the
reassignment problem.

The updated assignment and time cost sets are designated
Au and Cu , respectively, and, provided the solution is viable
for the reassignment problem, ϕ can be calculated from Cu

generating ϕu . Additionally, ϕu,1 and ϕu,2 are determined as
the mean task times for task types 1 and 2, respectively. The
assignment Au represents the solution of the reassignment
problem using the original allocation. It is thus possible to
use ϕu , ϕu,1, and ϕu,2 to determine the benefit of reassigning
tasks after ψ rather than proceeding with the original solution.

The consensus and task allocation phases of the PI algorithm
are run again with Au and Cu as the starting points for the
schedule. However, for this iteration, protected tasks cannot
be candidates for removal during the task removal phase.
In addition, during task inclusion, the initial insertion point
in the task list is after the last protected task and tasks can
only be inserted if they are not already in the list, are not
protected, and have not been removed.

If a vehicle has not started out on a path toward a false
task t f at time ψ (either a missing task or the task it was
originally assigned to that has now changed), then the time
costs needed for the calculation of the RPI and IPI can be
computed in the same way as for the initial schedule. However,
if a vehicle is on its way to a false task at time ψ , then a
path finder routine is called to determine the position of the
vehicle and hence the time cost of servicing the next true
task, which depends on distances between vehicles and tasks
and the value of ψ . A vehicle may have undertaken many
false paths, but there are only one or two key false tasks that
matter for these calculations, since the location of the last

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. Illustrating possible positions of key false tasks.

visited task (false or otherwise) is always known and the time
that the vehicle deviates from its original path is always ψ .
For example, assume a vehicle i is initially assigned tasks j
and k and the location of task j has been estimated wrongly.
If the time cost in getting from the vehicle’s original position
to the initial (false) location of task j is x , then vehicle i starts
out on a false path toward task j . It either moves completely
to the location of the false task j (if ψ = x), partially toward
it (if ψ < x), or travels beyond it toward task k (if ψ > x)
(see Fig. 2).

If i travels beyond task j, then task k is also a false task for
vehicle i , even if task k’s location is correct. This is because
the new first-assigned task for i (following rescheduling) could
be a different task completely, for example task p. The vehicle
cannot travel from its initial location directly to task p. It must
travel to task j and then head toward task k as per its original
instructions before it can travel to task p. In this case, t f = k
and task j is denoted as the previous false task t f̄ . In all cases,
the number of key false tasks ϒ ∈ [0, 1, 2].

Even if there is no changed information about any of the
tasks in a vehicle’s task list, there may still be a false task
because any vehicle’s task list is subject to change following
rescheduling and it must remain on its original path until the
mission time has reached ψ . In such cases, if a task k is first
in vehicle i ’s original task list and is unprotected then it is
vehicle i ’s false task as protection only takes place when a task
has been serviced at time ψ . If the task remains un-serviced
and there is no changed information about the task, then the
original servicing vehicle must be on its way to that task at
time ψ . If task k is not first in vehicle i ’s original task list,
then it is vehicle i ’s false task as long as ci,k−1(ai)+ dk−1 ≤
ψ where dk−1 represents the duration of the task preceding
task k.

The path finder routine calculates the time cost c(t�) of
task t� based on the location �(vψ) of its assigned vehicle v

TABLE I

TIME COST CALCULATION DECISIONS

at time ψ , which depends upon the false path or paths taken,
the original locations and updated locations of tasks, the initial
location �(v0) of v, the velocity ϑ(v) of v, and the position
l of t� in the new task list. Task t� is the task being added
to the task list or the task immediately following the removed
task. The following general relations are defined:

χ(t f) = �{a,�(t f)}
ϑ(v)

(11)

�x(vψ) = ax + �

χ(t f)
(�(t f)x − ax) (12a)

�y(vψ) = ay + �

χ(t f)
(�(t f)y − ay) (12b)

�z(vψ) = az + �

χ(t f)
(�(t f)z − az) (12c)

χ(t�) = �{�(vψ),�(t�)}
ϑ(v)

(13)

c(t�) = ψ + χ(t�). (14)

In (11) and (12), the operational notation �{a, b} is used to
denote the distance between points a and b. Throughout (11)
to (14), χ(t f) represents the time taken to reach the false
task, �(t f) represents the location of the false task, χ(t�)
represents the time taken to travel from the position of the
vehicle at ψ to the current task, and �(t�) represents the loca-
tion of the current task (which has been updated if t� ∈ K).
Equation (11) is a simple distance-velocity relation used to
define the theoretical time taken to reach the false task.
Equation (12) defines the x , y, and z coordinates of the
servicing vehicle at time ψ, and (13) is a simple distance–
velocity relation used to define the time taken to reach the
current task from �(vψ).

In (11), a represents the location of the servicing
vehicle if the current task is the first in the task list
(l = 1) and there is no previous false task (ϒ = 1).
In this case, � in (12), which represents the time spent
traveling on the false path, is simply ψ . If the current task
is not the first in the list (l > 1) and there is one false
task (ϒ = 1), then a in (11) represents the location of
the previous task in the task list �(t�−1) and � in (12) is
ψ − (c(t�−1)+ d(t�−1)), where the last two terms represent
the time cost and duration of the previous task, respectively. If
there is a previous false task (ϒ = 2), then a in (7) represents
the location of the previous false task �(t f̄) and � = ψ−c(t f̄)
in (12) where c(t f̄)is the time cost of the previous false task.
Table I summarizes the logic of the path finder routine for
different combinations of ϒ and l.

Apart from calls to the path finder routine (when there are
false tasks in the path of the servicing vehicle), the algorithm
proceeds in the same way as the original in terms of calculating

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 9

the RPI and IPI and converging to a solution. The final
reassignment and associated time cost sets are designated Ar

and Cr , respectively, and the parameter ϕ is calculated from Cr

for each task type generating ϕr,1 and ϕr,2, for the two task
types 1 and 2, respectively. These are compared with ϕu,1
and ϕu,2 if Au represents a viable solution. If ϕu,1 ≤ ϕr,1,
then the algorithm reverts back to the original solution for
type 1 vehicles, and if ϕu,2 ≤ ϕr,2, then the algorithm reverts
back to the original solution for type 2 vehicles. Note that
reversion is not possible if Au is infeasible for the reassignment
problem or if vehicles have been removed from the fleet. The
final solution is represented by A f , and the associated time
cost set C f is used to calculate ϕ f . If Au represents a viable
solution for the reassignment problem, then ϕ f is compared
to ϕu to assess the benefit of rescheduling. As long as

ϕ f < ϕu (15)

then it has been worthwhile building a new schedule in light
of the new information.

C. Experimental Details

Different test conditions can be created by varying the
numbers of tasks and vehicles and using different seed values
to set the vehicle and task locations and the latest start times
for the tasks. Two different world scenarios were used for
testing the reassignment PI algorithm, Scenario A and Scenario
B. In each scenario, the following experimental settings were
adopted.

1) The world x and y coordinates ranged from −5000 to
5000 m in Scenario A and from −2500 to 2500 m in
Scenario B. The z coordinates ranged from 0 to 1000 m
in both scenarios. These settings provided sufficiently
large and realistic rescue zones.

2) The helicopter and UAV velocities were arbitrarily set
at 30 and 50 m/s, respectively.

3) All vehicles were available straight away at the start of
the mission.

4) The mission time limit (the time window within which
the mission must finish) ranged between 2000 and
3500 s in Scenario A and between 5000 and 6500 s
in Scenario B.

5) The latest start time s was generated for each task using
a random fraction of the overall mission time, with
1000 s as the lowest in Scenario A and 1500 s as the
lowest in Scenario B.

6) The times to execute delivery of medicine and food were
arbitrarily fixed at 300 and 350 s, respectively.

Note that the settings above were arbitrarily chosen and are
not necessary for the algorithm to work; many other settings
are possible. Forty different test problems (20 using Scenario
A and 20 using Scenario B) were designed to validate the
algorithm and measure the benefits of rescheduling rather
than proceeding with the original plan. The test problems
differed from each other in the seeds used to generate the
3-D worlds, the initial numbers of tasks and vehicles (limited
to a maximum of 32 tasks, 16 vehicles in Scenario A, and 96
tasks, 16 vehicles in Scenario B), the task to vehicle ratio, the

number of changed tasks, the identities of the changed tasks,
the locations of the changed tasks, the positions of the changed
tasks in the original schedule, the number of deleted vehicles,
the number of additional vehicles, and the identities of the
deleted and additional vehicles. Also, the effects of introducing
the changes at different stages in the mission were investigated.
Each of the 40 different test problems was run using ψ values
of 140, 260, 340, 470, 530, and 700 s, generating 240 test
cases in total. In Scenario A, task to vehicle ratios of 2,
4, 6, and 8 were used, and in Scenario B, the ratios used
were 6, 8, and 10.

For each test case, ϕ f was calculated and compared to ϕu

if Au represented a feasible solution. In addition, the A f and
C f sets for 70 of the cases were examined and checked by
hand to verify that they represented feasible solutions that
did not conflict with the protected elements of the original
solution including the paths already taken by the vehicles.
The 240 test problems were also run using baseline CBBA
for comparison, although this version of CBBA is unable to
carry out reassignment.

D. Results

When PI was used, all 240 test cases were solved in
their original form. When changes were introduced to the
problem, PI was able to configure a new solution using its
reassignment module in 86% (206) of the test cases. In 151 of
the test cases (63%), the original assignment could be used
to solve the reassignment problem; however, 73% of these
151 cases showed an improvement in mean task time after
rescheduling took place. The remaining 27% demonstrated the
same mean task time as the original solution after reschedul-
ing. In 89 of the test cases, the original assignment could
not solve the reassignment problem, but in 62% of these
89 cases, the reassignment module was able to configure a new
solution.

When baseline CBBA was used, only 163 test cases (68%)
were solved in their original form. When changes were intro-
duced to the problem, CBBA was unable to configure a new
solution in any of the cases as it lacks a reassignment module.

Four particular PI test cases 1 to 4 (each derived using
the same seed and each using 8 vehicles and 16 tasks) are
now provided to illustrate the results further. In test case 1,
the locations of tasks 5 and 10 are updated, and in test case 2,
tasks 5 and 10 are removed and two new tasks are introduced.
The locations of these new tasks are the same as the changed
locations in test case 1 to test the equivalence of these two
different problem types. In test case 3, the locations of tasks
5 and 10 are updated and two new vehicles are also added.
Test case 4 is the same as test case 3 except that vehicle 7 is
also removed from the fleet. In each test, the new information
arrives at ψ = 260 s.

Table II shows the assignments and task times correspond-
ing to Ao (the solution of the original problem), which is
the same for each test. Tables III–VI show the assignments
and task times corresponding to Au (the solution of the
reassignment problem using the original plan), and A f (the
rescheduled solution) for each test.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE II

TASK LIST, TASK COST, AND OBJECTIVE FUNCTION
FOR ORIGINAL PROBLEM

TABLE III

TASK LIST, TASK COST, AND OBJECTIVE FUNCTION FOR TEST CASE 1

TABLE IV

TASK LIST, TASK COST, AND OBJECTIVE FUNCTION FOR TEST CASE 2

In test case 1 (Table III), the original plan can be used
to solve the reassignment problem, but it takes less time for
vehicle 1 to reach task 5 as the location has changed. However,
when vehicle 6 arrives at the original location of task 10, there
is no task there to service and so it proceeds to the next task
on its list, task 11. It receives the new location of task 10 while
servicing task 11, and thus travels to task 10 upon completion
of task 11. The mean task time increases to 335.47 s because
of the changes. If rescheduling is used, the solution is almost
the same except that tasks 4 and 5 are swapped so that vehicle
1 services task 4 and vehicle 2 services task 5 at less combined
cost than using the original plan. Thus, (15) holds and time is
saved by rescheduling.

In test case 2 (Table IV), tasks 5 and 10 are removed from
the task list and tasks 17 and 18 are introduced. Task 17 is
a type-1 task and is given to vehicle 1 by default; task 18 is
a type-2 task and is thus assigned to vehicle 5. Although the

TABLE V

TASK LIST, TASK COST, AND OBJECTIVE FUNCTION FOR TEST CASE 3

TABLE VI

TASK LIST, TASK COST, AND OBJECTIVE FUNCTION FOR TEST CASE 4

problem is effectively the same as in test case 1 (since the
positions of the new vehicles are the same as the updated
positions in test case 1), the default vehicle assignment and
task list position of the new type-2 task mean that ϕu has
increased to 362.89 s. However, following rescheduling the
same final solution is generated and (15) holds as before.
Incidentally, it is not always true that the same solution will
prevail when the updated tasks in one problem have the same
new locations as substituted tasks in another. This is because
the updated tasks already have a vehicle assignment and a task
list position before rescheduling in the first problem, but are
arbitrarily assigned in the second.

In test case 3, the mean task time and solution are the
same as test case 1 when the original plan is used to solve
the reassignment problem (see Table V). However, two new
vehicles are introduced into the fleet, vehicle 9 (type 1), and
vehicle 10 (type 2). When the problem is rescheduled, task
2, originally assigned to vehicle 3, is reassigned to vehicle 9,
and task 14, originally assigned to vehicle 7, is reassigned to
vehicle 10. In addition, tasks 15 and 16 are also reassigned to
different vehicles. The reassignment results in a much more
efficient solution with ϕ f = 289.43 s.

In test case 4 (Table VI), the original plan cannot be used
for the reassignment problem as vehicle 7 is recalled to base
after 260 s. Although it is able to finish servicing task 9, it is
unable to travel to its second task, task 14. The reassignment

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 11

problem can only be solved by rescheduling. The rescheduled
solution is almost the same as in test case 3 except that tasks
10, 15, and 16 are now serviced by different vehicles. The
reassignment results in a solution with ϕ f = 292.98 s.

In timing trials for 8 vehicles and 16 tasks, the baseline
PI algorithm and the rescheduling version solved 10 problems
with no rescheduling demands in about 1 s each, although
baseline PI was about 0.2 s faster in each case. When a
single rescheduling demand was introduced, the run time
increased to about 2 s for each trial. The rescheduling version
of PI has thus proved both effective for reassignment and
efficient in its computation time. It represents a contribution to
the literature because distributed rescheduling algorithms that
solve problems of this type are very scarce, and executable
code for them is not generally available.

V. SOFT-MAX ACTION SELECTION

A. Soft-Max Action-Selection Mechanism

In the baseline PI algorithm, task allocation is governed
only by comparing the calculated RPI and IPI values using (9)
and (10). This approach can restrict the solution search space
to local minima meaning that there is a need to provide an
additional mechanism that permits further exploration. In the
Boltzmann soft-max action-selection method [36], selection is
based on a fitness score f for the various options. If there are
m items, the fitness for item k is fk and the fitness for each
item j = 1, . . . ,m is f j , then the probability pk of selecting
item k is given by

pk = e
fk
τ

∑m
j=1 e

f j
τ

. (16)

By varying the parameter τ , it is possible to alter the
selection strategy from picking a random item (τ infinite)
to assigning higher probabilities for higher fitness (τ small
and finite), or choosing only the item with the best fitness
(τ tending to 0).

B. Integrating Soft-Max Selection Into the PI Algorithm

In the proposed approach, a Boltzmann soft-max action-
selection routine is integrated into the PI algorithm and a
loop is constructed around the main program. Within the loop
different values of τ are trialed (in appropriate steps) until the
best solution [i.e., that yielding the minimum ϕ value from (1)]
is obtained.

The RPI and IPI are calculated for each task as in the
baseline PI algorithm. For task removal, the arrays λ, ξ

(fitness) and σ [related to the top term in (16)] are then
determined from

λ = γ �[d] − γ [d] (17)

μ = min{λ} (18)

μ∗ = |μ|∀μ < 0 (19)

μ∗ = 0 ∀μ ≥ 0 (20)

ξ = λ + μ∗ (21)

σ = e
ξ
τ . (22)

For task inclusion, λ is calculated from

λ = γ − γ ∗. (23)

Calculation of μ (an adjustment factor to remove negative
values) is slightly more complex for task inclusion, as some
of the members of the λ array may have values equal to
MATLAB’s largest possible value R from initialization. Thus,
λ is first adjusted so that any such members have their values
scaled by a factor R. If λ∗ represents the adjusted λ array,
then

μ = min{λ∗} (24)

and μ∗ is given by (19) and (20) as before. The fitness is
defined as

ξ = λ∗ + μ∗ (25)

and σ is given by (22) as before. For both task removal and
task inclusion, the probability pk of task k being selected is
given by

pk = σk∑m
j=1 σ j

(26)

from (16). To facilitate this, a random number ρ is generated
for each iteration of the task removal and task inclusion phases,
and this number determines which task is selected for removal
or inclusion according to (26). By varying τ in (22), it is
possible to control the reliance of the strategy upon probability.
Note that the value of z is still calculated from (9) for task
removal, even if a different task is selected (i.e., if the task
yielding the maximum value is not selected). For task inclusion
q is not calculated from (10); instead, it is taken as λ j where
j represents the selected task. The position of insertion in
the task list l is still taken as that yielding the minimum w∗

k
from (7).

In theory, parameter reselection could be carried out at
any time to cope with dynamic changes in the environment.
Although this would impose an additional computational bur-
den during run time, minimization of impact is possible by
limiting the search to a region close to the original optimal
parameter, assessing overall mission time, and imposing suit-
able stopping criteria.

C. Experimental Methodology

Two sets of experiments were conducted. In the first set (A),
the world coordinates for Scenario A (in the rescheduling tests)
were adopted and the task-to-vehicle ratio was maintained
at 2:1. The mission completion time was restricted to 2000 s
and the latest start time ranged randomly between 0 and
2000 s. Thus, in Scenario A, some of the problems were quite
difficult to solve as the mission deadline is tight and it was
possible to generate a number of tasks that needed attending
to very early on in the mission. The number of tasks and
vehicles was varied with a maximum of 32 survivors. This is
in keeping with the work presented in [14] and [37], which
was concerned with testing PI and CBBA on problems with
tight time constraints, and allows easy comparison with this
work. However, in more realistic scenarios the vehicle services

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. Illustration of the different network topologies used in the
experiments.

would be spread more thinly and the task deadlines would not
be so tight. Thus, in the second set (B), the world coordinates
from Scenario B were adopted and the number of tasks was
maintained at 96 with variation of the number of vehicles so
that more realistic task-to-vehicle ratios were tested. In addi-
tion, the mission completion time was restricted to 5000 s
and the latest start time ranged randomly between 1500 and
5000 s. The smaller rescue zone and the more relaxed time
constraints contributed to a more realistic scenario.

In experiment set A, nine seeds were used to create different
3-D cases and 20, 24, 28, and 32 tasks were trialed with
m = 2n. In experiment set B, five seeds were used and 96 tasks
were trialed with n values of 10, 12, 14, and 16. Each problem
was solved using CBBA, the baseline PI algorithm, and the
soft-max extension. If the problem was solved, i.e., each task
was completed on time, then ϕ was calculated and recorded.
If some tasks were not completed, then the number of failed
tasks was recorded instead. Additionally, each problem in
set A was solved using a row, mesh, and hybrid (row–tree)
network topology (see Fig. 3, which illustrates the arrangement
of the different network topologies for a 12 vehicle system).

In the row topology, the vehicles are connected in a line and
communicate with the next and previous vehicle except that
the first vehicle communicates only with the second and the
last communicates only with the previous. The mesh topology
has a circular communication arrangement where half of
the other possible communication pairs are also randomly
connected. The hybrid topology is a combination of a row
and tree network; the vehicles begin in a row topology but the
middle vehicle is connected to the next �n/4� + 1 vehicles in
a tree-like structure. The remaining vehicles continue in a row
topology.

In experiment set A, τ values of between 1 and 50 were
trialed in steps of 1. However, to avoid delays the stopping
value was changed to τ = 20 for 16 vehicles so that the run
time never exceeded 3 min in the MATLAB implementations
used here. In experiment set B, τ values between 10 and
30 were used throughout.

CBBA parameter values of 0.001 were used for λ and also
for F (the vehicle fuel penalty) to match the scale of the
worlds [38]. The CBBA score function was set at He−λt −Fd,
where H is the reward associated with a task (H = 100 for
all tasks) and d is the distance between vehicle and task. All
runs were executed in MATLAB R2013a on the same 64-b

TABLE VII

SUMMARY OF ROW COMMUNICATION FOR SET A

TABLE VIII

SUMMARY OF MESH COMMUNICATION FOR SET A

TABLE IX

SUMMARY OF HYBRID COMMUNICATION FOR SET A

machine running Windows 7 Enterprise Edition, and using a
2.50-GHz Intel Core i5-2400S processor.

Note that tests are carried out in simulation only as trials
using PI under uncertain conditions have shown that a robust
version of PI is necessary if the algorithm is to perform well
in a real environment. Future work will thus aim to integrate
the rescheduling and soft-max modules with a robust version
of PI that has been developed [39] so that they can be tested
in the real world.

D. Experimental Results

1) Experiment Set A: Table VII summarizes metadata
for experiment set A using row communication, and
Tables VIII and IX repeat these statistics for mesh and hybrid
communication. In these tables, σ is the percentage improve-
ment of the soft-max variant when compared to the solution
generated by the baseline, and � is the number of additional
problems that each algorithm could solve (i.e., the number
unsolvable by the baseline but solvable by the algorithm in
question). In calculating the percentage of problems solved,
the number of problems was taken as 32, as 4 problems could
not be solved by any method in any of the tests. The data are
also depicted as a bar chart in Fig. 4 for ease of comparison.
Note that if the sum of the percentages of best solutions is
greater than 100% it is because two algorithms generated the
same best solution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 13

Fig. 4. Percentage of problems solved and percentage of best-solved
problems in experiment set A.

TABLE X

ALGORITHM RUN TIMES FOR CASE 4 ROW COMMUNICATION (s)
EXPERIMENT SET A

Table X shows the time taken in seconds for 15 iterations
of the soft-max PI variant when case 4 is solved with row
communication. This is the time taken when the maximum τ is
set to 15 with increments of size 1. These times are compared
with the corresponding run times of the baseline, which only
executes a single iteration. For comparison purposes, this value
is also multiplied by 15 in the next column. If an “F” is shown,
this indicates that the algorithm failed to solve the problem.

CBBA demonstrated a high failure rate; out of the 32 solv-
able problems trialed it was only able to solve two. In addition,
it did not provide the best solution in any case and was not able
to solve any additional problems. Its poor performance was
consistent for all of the network topologies. These problems
were chosen because the tight deadlines make them difficult
to solve, and it seems that CBBA was simply unable to cope
with these problems. It performed better in the experiments in
Section IV because the constraints were somewhat relaxed.

The soft-max PI variant consistently outperformed the base-
line in terms of the percentage of problems solved and the
percentage of best solutions. In the row topology, baseline PI
was able to solve about 91% of the problems, compared to
100% for the soft-max variant. These results were the same
for mesh and hybrid communication, except that for hybrid
communication baseline PI could only solve about 88% of the
problems. This topology is weaker than the others as there is
a heavy communication dependence upon the middle vehicle
that is not present in the others. In the row communication
experiments, the baseline PI algorithm produced the best
solution in only about 9% of the problems compared to
94% for the soft-max variant. When mesh communication
was trialed, these figures changed to about 19% and 81%,

TABLE XI

ALGORITHM RUN TIMES FOR CASE 4 ROW COMMUNICATION (s)

respectively. The mesh topology represents the most connected
network, and thus the baseline algorithm was finding more
optimal solutions than it would have under a sparser network.
However, the soft-max variant still performed much better.
When using the hybrid topology baseline PI solved about 13%
of the problems best compared to about 88% for the soft-max
variant.

Up to about 8% improvement in ϕ was observed for row
communication. This maximum decreased to about 6% for
mesh communication and increased to about 9% for hybrid
communication. The mean improvement σ was about 3% in
the row and hybrid topologies, but dropped to about 2% for
mesh communication.

The value of τ that produced the best solution varied
somewhat. For example, for 14 vehicles, the best τ was 6
in one of the cases but was 47 in another. Given the wide
variety in best τ values, it is not possible to narrow the scope
of the search to save run time while still guaranteeing the
best solution; if the scope of the search is reduced then the
opportunity to find the best solution may be missed. Thus,
there is a compromise between obtaining the best possible
solution and minimizing run time. Further row-communication
results for smaller numbers of vehicles are available in [37].

Table X shows that baseline PI runs almost instantaneously;
for example, it takes only about a second when there are 10
vehicles, and the run time increases steadily as the number
of vehicles rises. The run time of the soft-max variant is
comparable with column 3 of the table, which multiples
baseline PI’s run time by 15. It suggests that running the
soft-max variant is approximately equivalent to running the
baseline the same number of times, i.e., softmax takes longer
only because it executes a search; there are no additional
complications in its architecture that slow it down. However,
in order to reduce the run time a soft-max B variant was
built. This algorithm terminates the search when a solution
is reached that is a fixed percentage ε better than the best
generated thus far, although it must execute at least δ searches.
Table XI shows the results for 15 iterations of case 4 (row
network) and the soft-max B variant with ε set at 2% and δ
set at 5. The run times for PI and the original softmax are
repeated here for comparison.

Table XI shows that imposing the additional stopping crite-
ria provides benefit for some problems, but not all. There are
benefits in stopping early for 8 and 12 vehicles. However,
reduced execution times are only of value as long as the
algorithm continues to demonstrate better solution quality than
baseline PI.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE XII

SOFT-MAX B VERSION RESULTS

TABLE XIII

SUMMARY OF ROW COMMUNICATION FOR SET B

Table XII shows the results of running the B version of
the algorithm with case 4, row communication and the same
number of maximum iterations as the earlier experiments. The
B version produced the same results as the original soft-max
variant, both in terms of the objective functions and the τ
values that generated them, improving on the baseline PI result
in each case. These results suggest that the B variant is the
best option for these problem types; it is able to improve
performance while maintaining a comparatively reasonable run
time.

2) Experiment Set B: As the results for the different network
topologies in experiment set A proved to be very similar, only
the row topology was tested for experiment set B. The total
number of experiments was 20, and each was repeated with
CBBA, baseline PI, and the soft-max B variant of PI. The B
variant was selected because the greater number of tasks in
these experiments would have prevented the original soft-max
variant from running efficiently. In addition, to try to reduce
run time, the ε parameter was reduced to 0.2% and δ was
set to 1. Table XIII and Fig. 5 summarize the metadata for
this set of experiments, and Table XIV shows the run times
in seconds for the five experiments using 16 vehicles. The best
τ value for soft-max B is shown in column 4, and column 5
shows whether soft-max B terminated early (before τ = 30
was reached).

This experiment set represents a more complex and more
realistic collection of problems. CBBA did not solve any of the
problems best and was, in fact, only able to solve four out of
the 20 problems, performing slightly better than when tested
on experiment set A. Although there were many more tasks to
be completed in set B, leading to longer run times, the latest-
start-time constraints were more relaxed than in set A, making
the tasks slightly less prone to failure, although the constraints
were tighter than in the experiments in Section IV, where
CBBA performed much better. This supports the theory that it
is the tight constraints inherent in these problems that makes
them unsuited to CBBA. The soft-max variant outperformed
baseline PI again in terms of both the number of problems it
could solve and the percentage of best solutions, but the gap

Fig. 5. Percentage of problems solved and percentage of best-solved
problems in experiment set B.

TABLE XIV

ALGORITHM RUN TIMES IN SECONDS FOR 16 VEHICLES

in performance was not as large as in experiment set A. There
was only one additional problem that soft-max B was able to
solve, and the percentage of best solutions was 70% compared
to 35% for the baseline.

The run time results in Table XIV show that soft-max B
was able to complete in reasonable time compared to baseline
PI in the cases where it was able to terminate quite early in the
loop. However, when the best τ value was closer to the end
value (experiment 3, with best τ = 25), the run time was much
longer (almost 7 times longer in this case). The benefits of
employing soft-max B thus depend on the dimensionality and
time scale of the problem and the stopping criteria imposed.
This is discussed more fully in the following section.

E. Discussion

The tradeoff between solution quality and run-time effi-
ciency is an important factor in both sets of experiments, and a
key consideration is that the soft-max variant is not as efficient
as the baseline in terms of execution time. This matters
more for shorter mission times such as those considered in
experiment set A, where the maximum mission time is 2000 s
(about half an hour), and mean rescue times are at about
280 s (about four and a half minutes). In these problems, any
saving in mean rescue time offered by the soft-max variant
is counter-balanced by run-time losses. For example, if there
is a 4% saving in mean rescue time, this equates to about
11 s for each task. If there are 28 tasks, the total saving is
308 s or about 5 min. However, if the search algorithm takes
5 min to run, then any gain is eliminated. For smaller time-
scale problems, this means that it is important to terminate the
algorithm execution early or limit the search space some other
way as m increases, even if this means missing fitter solutions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WHITBROOK et al.: RELIABLE, DISTRIBUTED SCHEDULING AND RESCHEDULING FOR TIME-CRITICAL MULTIAGENT SYSTEMS 15

However, for more realistic larger-scale problems, for exam-
ple, problems with a maximum mission time in terms of days
and mean rescue start times in terms of hours, the algo-
rithm’s initial run-time efficiency is not as important and
thus has much less impact on overall mean rescue time.
In these cases, it would be possible to examine a wider range
of the spectrum of possible τ values to be certain of finding
the optimal or near-optimal solution without compromising
the effectiveness or efficiency of the mission. In addition,
a possible application is to reserve use of the soft-max module
only for cases where baseline PI fails to solve.

These experiments have illustrated that PI is much more
effective than CBBA in solving both lower dimensioned
problems with tight constraints and higher dimensioned prob-
lems with more relaxed constraints. They have also demon-
strated that PI’s performance can be enhanced easily by
making some adjustments to the action-selection mechanism
within the task removal and task inclusion phases of the
algorithm.

VI. CONCLUSION

This paper has confirmed that the distributed PI task-
allocation algorithm [14] is easily enhanced to permit
rescheduling when new information becomes available. The
results of extensive testing of the rescheduling PI algorithm
have validated its architecture and demonstrated benefits com-
pared with proceeding with the original plan. The work
represents an important extension to the baseline as real
missions take place in dynamically changing environments
where the SA is subject to alter rapidly. Task allocation
strategies must therefore be able to adjust to new data and
recompute new solutions in real time. The extended algorithm
can handle new information concerning the locations of tasks,
the addition of new tasks, the removal of tasks, and the
addition and removal of vehicles. This paper represents a
contribution to the literature because distributed rescheduling
algorithms that solve problems of this type dynamically are
very scarce, and executable code for them is not generally
available.

The baseline PI algorithm has also been modified to solve
the problem of solution trapping in local minima. The algo-
rithm now includes a degree of soft-max action selection
to introduce a level of exploration to its architecture. This
variation allows new areas of the search space to be explored,
generally improving solution fitness. In the experiments per-
formed here, baseline PI’s task allocation performance was
increased by up to about 9%. In addition, the algorithm was
able to solve some problems that failed using the baseline
version. Although this enhancement increases run time quite
substantially, especially for larger dimensions, some methods
for reducing the extent of this limitation have been presented
and have been reasonably successful.

In [14] and [37], and in this paper, baseline PI has been
shown to outperform the popular state-of-the-art CBBA algo-
rithm [13], especially for problems with tight time con-
straints. The introduction of rescheduling in PI widens the
scope of its potential applications even further and makes

it much more usable for real, time-critical task allocation
problems. Furthermore, the additional action-selection mech-
anisms detailed in this paper enable improved performance
at relatively low cost. This paper thus represents an advance
in the state of the art in time-critical ST-SR-TA multia-
gent task planning. The integration of the rescheduling and
the search exploration modules with the robust version of
PI [39] to create a “Super-PI” is left as a subject for future
work.

REFERENCES

[1] B. P. Gerkey and M. J. M. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” Intl. J. Robot. Res., vol. 23,
no. 9, pp. 939–954, Sep. 2004.

[2] W. Shen, L. Wang, and Q. Hao, “Agent-based distributed manufactur-
ing process planning and scheduling: A state-of-the-art survey,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 36, no. 4, pp. 563–577,
Jul. 2006.

[3] P. Leitão, “Agent-based distributed manufacturing control: A state-of-
the-art survey,” Eng. Appl. Artif. Intell., vol. 22, no. 7, pp. 979–991,
Oct. 2009.

[4] J. L. Bruno, E. G. Coffman, and R. Sethi, “Scheduling independent
tasks to reduce mean finishing time,” Commun. ACM, vol. 17, no. 7,
pp. 382–387, 1974.

[5] T. P. Bagchi, Multiobjective Scheduling by Genetic Algorithms. Norwell,
MA, USA: Kluwer, 1999.

[6] D. Bertsimas and R. Weismantel, Optimization Over Integers. Belmont,
MA, USA: Dynamic Ideas, Jun. 2005.

[7] F. Glover and R. Marti, “Tabu search,” in Metaheuristic Procedures for
Training Neural Networks, E. Alba and R. Marti, Eds. New York, NY,
USA: Springer, 2006, ch. 4, pp. 53–69.

[8] A. K. Khuntia, B. B. Choudhury, B. B. Biswal, and K. K. Dash,
“A heuristics based multi-robot task allocation,” in Proc. IEEE Adv.
Intell. Comput. Syst. (RAICS), Sep. 2011, pp. 407–410.

[9] T. Shima, S. J. Rasmussen, A. G. Sparks, and K. M. Passino, “Multiple
task assignments for cooperating uninhabited aerial vehicles using
genetic algorithms,” Comput. Oper. Res., vol. 33, no. 11, pp. 3252–3269,
Nov. 2006.

[10] O. Catoni, “Solving scheduling problems by simulated annealing,” Siam
J. Control Optim., vol. 36, no. 5, pp. 1539–1575, Sep. 1998.

[11] I. Sabuncuoglu and B. Gurgun, “A neural network model for scheduling
problems,” Eur. J. Oper. Res., vol. 93, no. 2, pp. 288–299, 1996.

[12] V. D. Parunak, “Manufacturing experience with the contract net,” in
Distributed Artificial Intelligence, M. N. Huhns, Ed. New York, NY,
USA: Pitman, 1987, pp. 285–310.

[13] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[14] W. Zhao, Q. Meng, and P. W. H. Chung, “A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[15] C. Liu and A. Kroll, “Memetic algorithms for optimal task allocation
in multi-robot systems for inspection problems with cooperative tasks,”
Soft Comput., vol. 19, no. 3, pp. 567–584, Apr. 2014.

[16] C. Liu and A. Kroll, “A centralized multi-robot task allocation for indus-
trial plant inspection by using A* and genetic algorithms,” in Artificial
Intelligence and Soft Computing (Lecture Notes in Computer Science),
vol. 7268, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz,
L. A. Zadeh, and J. M. Zurada, Eds. Heidelberg, Germany: Springer,
2012.

[17] S. Forrest and M. Mitchell, “What makes a problem hard for a genetic
algorithm? Some anomalous results and their explanation,” Mach.
Learn., vol. 13, no. 3, pp. 285–319, Nov. 1993.

[18] M. J. Shaw, “Dynamic scheduling in cellular manufacturing systems:
A framework for networked decision making,” J. Manuf. Syst., vol. 7,
no. 2, pp. 83–94, 1988.

[19] S. Nouyan, “Agent-based approach to dynamic task allocation,” in Proc.
3rd Int. Workshop Ant Algorithms, 2002, pp. 28–39.

[20] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 3, pp. 876–888, Jul. 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[21] P. B. Sujit and D. Ghose, “Self assessment-based decision making for
multiagent cooperative search,” IEEE Trans. Autom. Sci. Eng., vol. 8,
no. 4, pp. 705–719, Oct. 2011.

[22] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1465–1476, Sep. 2004.

[23] W. Ren, R. W. Beard, and D. B. Kingston, “Multi-agent Kalman
consensus with relative uncertainty,” in Proc. Amer. Control Conf.,
Jun. 2006, pp. 1865–1870.

[24] K. Zhang, E. G. Collins, Jr., and D. Shi, “Centralized and distrib-
uted task allocation in multi-robot teams via a stochastic clustering
auction,” ACM Trans. Autonom. Adapt. Syst., vol. 7, no. 2, Jul. 2012,
Art. no. 21.

[25] M. B. Dias and A. Stentz, “Opportunistic optimization for
market-based multirobot control,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Lausanne, Switzerland, Sep./Oct. 2002,
pp. 2714–2720.

[26] G. Oliver and J. Guerrero, “Auction and swarm multi-robot task
allocation algorithms in real time scenarios,” in Multi-Robot Systems,
Trends and Development, T. Yasuda, Ed. Rijeka, Croatia: InTech, 2011,
pp. 437–456.

[27] D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems,” Mass. Inst. Technol., Cambridge, MA, USA,
Tech. Rep., 1989.

[28] A. Kalyanasundaram, R. A. K. Lalkhanwar, and S. Rao, “Fail-stop dis-
tributed combinatorial auctioning systems with fair resource allocation,”
in Proc. IEEE Conf. Autom. Sci. Eng. (CASE), Trieste, Italy, Aug. 2011,
pp. 181–188.

[29] S. Zaman and D. Grosu, “A combinatorial auction-based mechanism for
dynamic VM provisioning and allocation in clouds,” IEEE Trans. Cloud
Comput., vol. 1, no. 2, pp. 129–141, Jul./Dec. 2013.

[30] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and
A. J. Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
vol. 1, Sep. 2004, pp. 698–705.

[31] E. H. Durfee and V. R. Lesser, “Using partial global plans
to coordinate distributed problem solvers,” in Proc. IJCAI, 1987,
pp. 875–883.

[32] E. G. Talbi and T. Muntean, “Hill-climbing, simulated annealing and
genetic algorithms: A comparative study and application to the mapping
problem,” in Proc. HICSS, Jan. 1993, pp. 565–573.

[33] P. Leitão and F. Restivo, “A holonic approach to dynamic manufacturing
scheduling,” Robot. Comput.-Integr. Manuf., vol. 24, no. 5, pp. 625–634,
2008.

[34] W. Shen and D. H. Norrie, “An agent-based approach for dynamic
manufacturing scheduling,” in Proc. Workshop Agent-Based Manuf.,
1998, pp. 117–128.

[35] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. C-29,
no. 12, pp. 1104–1113, Dec. 1980.

[36] R. S. Sutton and A. G. Barto, “Evaluative feedback,” in Reinforcement
Learning: An Introduction. Cambridge, MA, USA: MIT Press, 1998,
p. 30.

[37] A. Whitbrook, Q. Meng, and P. W. H. Chung, “A novel distributed
scheduling algorithm for time-critical multi-agent systems,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Hamburg, Germany,
Sep./Oct. 2015, pp. 6451–6488.

[38] L. B. Johnson, “private communication,” Jul. 2014.
[39] A. Whitbrook, Q. Meng, and P. W. H. Chung, “A robust, distributed task

allocation algorithm for time-critical, multi agent systems operating in
uncertain environments,” in Proc. 30th Int. Conf. Ind., Eng. Appl. Appl.
Intell. Syst. (IEA/AIE), Arras, France, Jun. 2017.

Amanda Whitbrook received the B.Sc. (Hons.)
degree in mathematics and physics and the Ph.D.
degree in applied mathematics (numerical analy-
sis) from Nottingham Trent University, Nottingham,
U.K., in 1993 and 1998, and the M.Sc. degree in
management of information technology from the
University of Nottingham, Nottingham, in 2005.

She was a Research Fellow and a Teaching Asso-
ciate at the University of Nottingham, a Senior Sci-
entist in the Autonomous Systems Research Group,
BAE Systems, Farnborough, U.K., and a Research

Associate at Loughborough University, Loughborough, U.K. She is currently a
Lecturer in Computer Science with the Department of Electronics, Computing
and Mathematics, University of Derby, Derby, U.K. Her research interests
include biologically inspired artificial intelligence (artificial immune systems,
genetic algorithms, swarm optimization), mobile robot navigation, artificial
intelligence for computer games, and heuristic methods for multiagent task
allocation.

Qinggang Meng (M’06) received the B.Sc. and
M.Sc. degrees in electronic engineering from Tianjin
University, Tianjin, China, and the Ph.D. degree
in computer science from Aberystwyth University,
Aberystwyth, U.K.

He is currently a Senior Lecturer with the Depart-
ment of Computer Science, Loughborough Uni-
versity, Loughborough, U.K. His current research
interests include biologically and psychologically
inspired learning algorithms and developmental
robotics, service and assistive robotics, robot learn-

ing and adaptation, multi-unmanned air vehicle cooperation, situation aware-
ness and decision making for driverless vehicles, driver’s distraction detection,
human motion analysis and activity recognition, activity pattern detection,
pattern recognition, artificial intelligence, and computer vision.

Paul W. H. Chung received the B.Sc. degree in
computing science from Imperial College London,
London, U.K., in 1981, and the Ph.D. degree in arti-
ficial intelligence from the University of Edinburgh,
Edinburgh, U.K., in 1986.

From 1984 to 1991, he was with the Artifi-
cial Intelligence Applications Institute, University
of Edinburgh. In 1991, he joined Loughborough
University, Loughborough, U.K., where he has been
a Professor of Computer Science since 1999, the
Head of the Department of Computer Science from

2004 to 2008, and the Dean of the School of Science from 2011 to 2014.
He was a Visiting Professor with the Beijing University of Posts and
Telecommunications, Beijing, China, and the Institute Technology of Brunei,
Gadong, Brunei. He was an Invitation Fellow with Okayama University,
Okayama, Japan. He has successfully supervised 30 doctorate students and
published over 200 papers. His current research interests include applying
advanced computing techniques to solve novel complex problems.

