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Abstract

This article re-examines the fundamental notion of interference in wireless networks by contrasting

traditional approaches to new concepts that handle interference in a creative way. Specifically, we discuss

the fundamental limits of the interference channel and present the interference alignment technique and

its extension of signal alignment techniques. Contrary to this traditional view, which treats interference

as a detrimental phenomenon, we introduce three concepts that handle interference as a useful resource.

The first concept exploits interference at the modulation level and leads to simple multiuser downlink

precoding that provides significant energy savings. The second concept uses radio frequency radiation

for energy harvesting and handles interference as a source of green energy. The last concept refers to a

secrecy environment and uses interference as an efficient means to jam potential eavesdroppers. These

three techniques bring a new vision about interference in wireless networks and motivate a plethora of

potential new applications and services.
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I. INTRODUCTION

Resources (e.g. time, frequency, code) have to be shared by multiple users in wireless networks.

Therefore, interference has long been considered as a deleterious factor that limits the system capacity.

In conventional communications systems, the design objective is to allow users to share a medium with

minimum or no interference. Thus, great efforts are made to avoid, mitigate and cancel interference. For

instance, to support multiple users, orthogonal access methods in time, frequency, code as well as spatial

domains have been used in different generations of cellular systems. In future-generation heterogeneous

cellular networks, due to the increasing number of uncoordinated low-power nodes in such as femtocells

to improve the coverage and capacity, interferences need to be mitigated in multiple domains, rendering

their management a challenge.

Interference mitigation/avoidance techniques provide convenient mechanisms to allow multiple users

to share the wireless medium. However, they lead to inefficient use of wireless resources. One may ask

whether to cancel or mitigate interference is always the optimal way of utilizing wireless resources.

Indeed, there has been growing interest in exploiting interference to improve the achievable rate, the

reliability and the security of wireless systems. Recently, new views on interference have resulted in

advanced interference-aware techniques, which, instead of mitigating interference, explore the potential

of using interference. We present two examples from the literature to illustrate the ideas.

In his early work of dirty paper coding [1], Costa proved the striking result that interference known

at the transmitter but not at the receiver does not affect the capacity of the Gaussian channel. The

optimal strategy to achieve this interference-free capacity is to code along interference, while cancelling

interference is strictly sub-optimal. Another example is coordinated multipoint or multi-cell coordination,

where base stations (BSs) cooperate to serve their own and out-of-cell users. In the downlink, the

cooperating BSs work together to jointly optimize the transmitter strategies such as power, time and

beamforming design to control the inter-cell interference. Cell-edge users who suffer most from the inter-

cell interference now benefit most from this coordination. In the uplink, jointly decoding is performed

in BSs, so signals from users in other cells are no longer treated as interference, but as useful signals.

The purpose of this article is to re-examine the notion of interference in communications networks and

introduce a new paradigm that considers interference as a useful resource. We first give an overview from

the information theoretic standpoint as a justification for rethinking the role of interference in wireless

networks. We then introduce interference alignment and signal alignment as effective means to handle

interference and increase the achievable rates. Departing from this traditional view, we present three novel
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techniques of interference exploitation that aim to improve the performance of wireless networks. The

first technique is a data-aided precoding scheme in the multiuser downlink that judiciously makes use of

the interference among users as a source of useful signal energy. In the second technique, we consider

simultaneous information and energy transfer; in such a system, while interference links are harmful for

information decoding, they are useful for energy harvesting. Thus, a favorable tradeoff is demonstrated.

The third technique leverages interference in physical layer secrecy as an effective way to degrade the

channel of the eavesdropper and increase the system’s secrecy rate.

II. INTERFERENCE FROM THE INFORMATION THEORETIC STANDPOINT

Fig. 1: (a) The K-user Gaussian Interference Channel (G-IC) (b) The 2-user G-IC.

We first present an overview of results on interference from information theory. The Interference

Channel (IC) models simultaneous transmission by non-cooperating transmitters and receivers. The

messages of each link are encoded only by the corresponding transmitter, and the receiver does not have

access to the signals of other receivers. Figure 1(a) depicts the K-user Gaussian Interference Channel

(G-IC). Each of K transmitters wants to send a message to the corresponding receiver. Receiver k bases

its decision on signal Yk, which contains not only the (scaled) useful signal Xk, but also interference

and Gaussian noise.

Despite its apparent simplicity, to this date it is not known what the optimal way of transmitting over

the G-IC is, not even for the 2-user G-IC shown in Fig. 1(b). Nevertheless, significant progress has
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been made recently, and results from information theory have started influencing the design of wireless

networks. The optimal decoding strategy depends on the power of interference compared to the direct

links. Interference should be treated as noise when it is very weak. The exact conditions for the 2-user G-

IC to be in the very weak regime can be found in [2]. In information theoretic terms, the messages of both

transmitters are private, since they are only decoded at the intended receiver. On the other hand, when

the power of the interfering signal exceeds the power of the signal of interest (strong interference), the

optimal strategy is to also decode interference at the receivers. In this case, both messages are public. If

the power of the interference exceeds an even higher threshold the G-IC is in the very strong interference

regime and the rate that can be achieved by each link is the same as if the interferer did not exist,

i.e., interference does not impact the achievable rates. Nevertheless, the receiver does need to decode

interference in addition to the signal of interest. Clearly, there are costs associated with interference-

aware decoding. The receivers are more complex, synchronization is essential, and each receiver needs

to estimate not only its own channel, but also the cross-channel coefficients.

The most challenging situation arises when the power of the interference is of the order of the power of

the signal of interest. To this date it is not known what the best way to transmit and decode is. A strategy

that combines public and private messages (the so-called Han & Kobayashi scheme [2]) achieves higher

rates compared to treating interference as noise or avoiding it via orthogonal transmission, or attempting

to decode all messages at each receiver. Moreover, it has been shown that as the signal-to-noise ratio

(SNR) grows to infinity, a simplified Han & Kobayashi scheme can attain the capacity region within 1/2

bit [2]. In addition to providing evidence that strategies based on the Han & Kobayashi scheme may be

the best for the 2-user G-IC, this result may prove useful in future wireless networks with small cell size

that will operate at high SNRs and will therefore be limited by interference rather than by noise.

Devising good strategies for the K-user G-IC seems to be even more challenging, and the Han &

Kobayashi scheme does not appear to extend to the K-user G-IC in a straightforward manner. A promising

direction towards finding good strategies for the K-user G-IC appears to be dealing with the combined

interference by all K − 1 users at each receiver instead of decoding separately the interference by each

user. Furthermore, a deterministic approximation framework has been developed for the G-IC, which

enables the construction of structured codes [2]. By employing structured lattice codes, which are also

used in other scenarios, such as multi-way relay channels, it is possible to attain the capacity region of

the G-IC within a constant gap [3]. Very recently, there has been an interesting finding that connects

topological interference management and index coding [5]. This connection can be leveraged to calculate

rate regions that are within a constant gap from capacity and to develop transmission schemes over
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wireless networks. The existing index coding solutions are then translated to interference management

solutions via a family of elegant achievability schemes of interference alignment (IA) that has generated

significant interest, which is discussed in more detail in Section III.

System designs that operate based on the best known achievability schemes of information theory being

the ultimate goal, in the meantime improvements in performance can also be attained by incorporating

interference-aware schemes in current systems. In [6] it is shown that when the transmitters use discrete

constellations and interference-aware detectors are employed at the receivers the achievable rates over

the fading G-IC are limited by the SNR rather than by the signal-to-interference-plus-noise ratio (SINR).

III. INTERFERENCE AND SIGNAL ALIGNMENT

Prior to the invention of IA [4], interference avoidance has been achieved by relying on the use of

orthogonal frequency or time channels. And when interference is inevitable, conventional approaches are

to adopt advanced decoding/detecting algorithms by treating interference as noise.

The success of IA lies in the fact that it efficiently exploits the rich degrees of freedom available

from the time/frequency/spatial domains. By a careful coordination among the transmitters, the use

of IA can ensure that all the interference is aligned together to occupy one half of the signal space

at each receiver, leaving the other half available to the desired signal. As a result, the per-user rate

achieved by IA for the interference channel with K pairs of single-antenna transceivers is C(SNR) =
1
2 log(SNR) + o(log(SNR)). This result is surprising since a traditional view is that such a K-user

scenario is interference limited and hence the per-user rate is diminishing by increasing the number of

users. As a result, the use of IA ensures that the spectral efficiency of wireless communications can be

improved significantly since more users sharing the same bandwidth yields a larger system throughput.

In addition to interference channel, the concept of IA has also been applied to other communication

scenarios, including multiple access channel, broadcast channel, one/two-way relaying channel as well

as physical layer security. In practice, the implementation of IA is not trivial since the global channel

state information at each transmitter (CSIT) is required, which is challenging particularly for the case

with fast time varying channels. Two types of approaches to realize IA in practice have been proposed.

One is to apply advanced feedback techniques and existing results have demonstrated that the number

of fedback bits needs to be proportional to the SNR in order to achieve nearly optimal performance [9].

The other is to exploit the coherent structure of channels and apply manipulations analog to space time

coding at the transmitters. As a result, the concept of IA can be implemented even when the channel

information is not available to the transmitters.

August 28, 2014 DRAFT



A MANUSCRIPT ACCEPTED IN THE IEEE COMMUNICATIONS MAGAZINE 6

The concept of signal alignment can be viewed as an extension of IA in the context of bi-directional

communications [10] and [11]. For example, consider a multi-pair two-way relaying communication

scenario as shown in Fig. 2, where M pairs of source nodes exchange information with their partners

via the relay. Each source node is equipped with N antennas, and the relay has M antennas. As can

be seen from Fig. 2, the relay observes 2M incoming signal streams, and needs to have at least 2M

antennas in order to separate these signals. The use of signal alignment is to effectively suppress intra-pair

interference and reduce the requirement to the number of antennas at the relay. Particularly, by carefully

designing the precoding vectors at the sources, the intra-pair interference is aligned at the relay, which

means that the original 2M signal streams are merged into M streams. As a result, a relay with only M

antennas can accommodate 2M incoming signals, which is particularly important for practical scenarios

where nodes are equipped with a limited number of antennas. At the user end, each receiver can first

subtract its own information, the so-called self-interference, and then detect the information from its

partner, a way analogous to network coding.

b) Precoding design to ensure interference alignment 
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Fig. 2: Illustration of the concept of signal alignment.

IV. DATA-AWARE INTERFERENCE EXPLOITATION FOR MULTIUSER TRANSMISSION

The a priori knowledge of interference is readily available at downlink transmission, where CSIT

combined with the knowledge of all data symbols intended for transmission can be used to explicitly

predict the resulting interference between the symbols. Despite the insights in [1], the majority of

existing precoding implementations attempt to eliminate, cancel or pre-subtract interference. Only recently

however, has there been a rising interest in making use of the interference power to enhance the useful
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signal [7], [8]. Indeed, it has been shown that interference can contribute constructively to the detection

of the useful signal and this phenomenon can be utilized in the CSIT-assisted downlink transmission and

other known-interference scenarios to improve performance without raising the transmit power.

To clarify the above fundamental concept, a trivial example of two users is shown in Fig. 3(a), where

we define the desired symbol as x1 and the interfering symbol as x2. Without loss of generality we assume

that these belong to a Binary Phase Shift Keying (BPSK) constellation and that x1 = 1, x2 = −1. For

illustration purposes, we assume a lossless channel from the intended transmitter to the receiver and an

interfering channel represented by the coefficient ρ. Ignoring noise, the received signal is

y1 = x1 + x2 · ρ, (1)

where x2 · ρ is the interference. Note that this model also corresponds to a multi-antenna transmission

with matched filtering where the correlation between the two channels is ρ. In Fig. 3(b) two distinct cases

are shown, depicting the transmitted (×) and received (o) symbols for user 1 on the BPSK constellation.

In case i) with ρ = 0.5 it can be seen from (1) that y1 = 0.5. The destructive interference from user 2

has caused the received symbol of user 1 to move towards the decision threshold (imaginary axis). The

received power of user 1 has been reduced and its detection is prone to low-power noise. In case ii)

however, for ρ = −0.5 (1) yields y1 = 1.5, and hence the interference is constructive. The power received

has been augmented due to the interference from user 2 and now its detection is tolerant to higher noise

power (nconstr compared to north). It should be stressed that in both cases the transmit power for each

user is equal to one. Note that, while the above example refers to a two-user transmission scenario for

illustration purposes, the fundamental concept can be extended to more users, multipath transmission,

inter-cell interference and other generic interference-limited systems.

Clearly, there are critical gains to be drawn from the exploitation of constructive interference in

interference-limited transmission. As a first step, analytical constellation-dependent characterization cri-

teria for systematically classifying interference to constructive and destructive have been derived in [7],

[8] and references therein for PSK modulation. Early work carried out on a simple linear precoding

technique has reported multi-fold increase in received SNR for fixed transmit power compared to zero-

forcing (ZF) beamforming [7]. This can be nontrivially translated to multi-fold savings in transmit power

for a fixed received SNR. A representative result is shown in Fig. 4(a) where the required SNR per

transmit antenna in a cellular downlink for an uncoded symbol error rate (SER) of 10−2 is shown for

increasing numbers of single-antenna users. The results compare the widely known ZF precoding with

the interference exploitation precoding of [7] for QPSK and 8PSK modulation. Significant SNR gains of

August 28, 2014 DRAFT



A MANUSCRIPT ACCEPTED IN THE IEEE COMMUNICATIONS MAGAZINE 8

up to 10dB (a 10-fold transmit power reduction) can be observed between the two techniques, by simply

exploiting the existing constructive interference.

Further work has investigated the application of this concept on advanced nonlinear precoding, yielding

further significant gains in the transmit power. More recent work has extended this concept to inter-cell

interference exploitation in multi-cellular transmission scenarios [8]. The important feature in all the above

techniques is that the performance benefits are drawn not by increasing the transmit power of the useful

signal, but rather by reusing interference power that already exists in the communication system; a source

of green signal power that with conventional interference cancellation techniques is left unexploited.

              
1

x1

x2

y1=x1+x2· ρ

ρ 

x1=1, x2=-1

y1

x1

y1x1

i) ρ=0.5

ii) ρ=-0.5

1-1

(a) (b)

north

nconstr

Fig. 3: The concept of constructive interference — a two-user example.

V. WIRELESS INFORMATION AND ENERGY TRANSFER

Energy harvesting (EH) communication systems that can scavenge energy from a variety of natural

sources (solar, wind, etc.) for sustainable network operation have attracted significant interest. The main

limitation of conventional EH sources is that they are weather-dependent and thus not always available.

A promising harvesting technology that could overcome this bottleneck is radio frequency (RF) energy

transfer where the ambient RF radiation is captured by the receiver antennas and converted into a direct

current voltage through appropriate circuits (rectennas). The concept of RF-EH is not new; over 100

years ago, Nicola Tesla proved and experimentally demonstrated the capability of transferring energy

wirelessly. The integration of RF-EH technology into communications networks opens new challenges

in the analysis and design of transmission schemes and protocols. Multi-user interference, which is the

main degradation factor in conventional networks, can be viewed as useful energy signals that could be

exploited for harvesting purposes. Although from an information theoretic standpoint the same signal
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can be used for both decoding and EH, due to practical hardware constraints, simultaneous energy

and information transmission is not possible with existing rectenna technology. Two practical receiver

approaches for simultaneous wireless power and information transfer are a) “time switching” (TS), where

the receiver switches between decoding information and harvesting energy and b) “power splitting” (PS),

where the receiver splits the received signal in two parts for decoding information and harvesting energy,

respectively [12].

An interesting implication of the PS technique is that in multiuser networks harvested energy at a

particular receiver can emanate either from sources that intentionally transmit towards that direction or

from other sources whose signal is traditionally perceived by that receiver as interference. Nonetheless,

in this case the contribution of useful and interfering signals towards the satisfaction of any RF-EH

requirements is equally important. This implication changes completely the design philosophy of such

networks, as interference becomes useful.

This concept was demonstrated for the multiple-input single-output (MISO) interference channel where

K transmitters, each one with K antennas, communicate with K single-antenna receivers [13]; each

receiver is characterized by both quality-of-service (QoS) and RF-EH constraints, while PS is used for

simultaneous information/energy transfer. The QoS constraint requires the SINR to be higher than a

given threshold, while the RF-EH constraint requires the power input to the RF-EH circuitry to be above
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a threshold. In this framework, an interesting non-convex optimization problem arises in selecting the

beamforming weights and the power of the transmitters as well as the power splitting ratios at the receivers

so as to minimize the total transmit power. The problem can be solved optimally using semidefinite

programming, while traditional beamformers can be employed to obtain suboptimal but low-complexity

solutions. An interesting conclusion, is that for ZF beamforming there always exists a unique, optimal,

closed-form power allocation.

The benefit of exploiting interference in the context of RF-EH is illustrated in Fig. 5, which depicts

the transmit power ratio between ZF and optimal beamforming for varying SINR and RF-EH thresholds

(K = 8). The figure indicates that by exploiting interference the transmit power can be significantly

reduced, especially for low SINR. The reason is that for low SINR there is room to increase interference

which is beneficial for RF-EH. In contrast, high SINR thresholds requires almost full cancellation of

interference; hence, the solutions obtained from ZF are almost optimal. The benefits of interference

exploitation can also be seen with respect to the RF-EH constraints: when the RF-EH threshold increases,

the ZF/optimal power ratio increases because the optimal scheme manages interference better. However,

the effect of the SINR constraint on the transmit power ratio is more significant compared to the RF-EH

constraint.

VI. INTERFERENCE-AIDED SECRECY RATE IMPROVEMENT

Due to the growing wireless applications, confidentiality and secret transmission has become an

increasingly important issue. Recently, securing wireless communications at the physical (PHY) layer

has been studied as a complimentary measure to upper layer cryptographic techniques. In the presence

of eavesdroppers who passively overhear the communication, intentional interference plays a key role to

improve the secrecy rate. This is understandable since interference will affect both systems, however, if

properly designed, it can be an advantage for the legitimate system. This is indeed true as it has been

shown in [14] that, the exploration of aggregated interference together with location and channel quality

information, can significant improve network secrecy. In the following, we review several approaches

that utilize interference to confuse the eavesdropper in a simple point-to-point network.

Consider a basic 3-node system which consists of a source S, a destination D and an eavesdropper E.

When S has multiple antennas, it can transmit information bearing signal to D in the range space of the

channel to D and also generate artificial noise (AN) to E in its null space simultaneously. In this way, even

without knowledge of the instantaneous CSI of the eavesdropper, the generated AN does not interfere

with the legitimate receiver D and only affects the eavesdropper node E. The same principle applies if
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there are trusted helper relays who could form distributed beamforming to transmit cooperative jamming

signals to E.

When neither multiple antennas at S nor trusted helpers are available, the system must rely on itself

to achieve secure communication. To this end, a self-protection scheme has been proposed that adopts

full-duplex (FD) operation at D to improve the secrecy rate [15], as shown in Fig. 6. More specifically,

an FD receiver is introduced that simultaneously receives its data while transmitting a jamming signal

to confuse E. The proposed approach uses intentional interference at D to confuse the eavesdroppers

and does not require external helpers or data retransmission. Due to the FD operation, the receiver

experiences a loop interference (LI) introduced by the transmitted jamming signal. If D has multiple

transmit or receive antennas, it can employ joint transmit and receive beamforming for simultaneous

signal detection, suppression and intentional jamming.

In Fig. 6, the achievable secrecy rate is evaluated against transmit SNR. We simulate two cases: i)

single transmit/receive-antenna receiver and eavesdropper and ii) the receiver has two transmit and two

receive antennas while the eavesdropper has four antennas for fairness. For the single-antenna case, it is

seen that the FD scheme outperforms the HD operation for transmit SNR greater than 10 dB, and double

secrecy rate is achieved in the high SNR region. The performance of the HD scheme saturates when the

transmit SNR is higher than 20 dB. When the receiver has multiple antennas and the eavesdropper adopts

a simple MRC receiver, the secrecy rate strictly increases with the transmit SNR and does not saturate

at high SNR as the half-duplex (HD) case. When the eavesdropper is aware of the FD operation at D

and adopts the minimum-mean-square-error (MMSE) receiver to mitigate the jamming signals from D,

the achievable secrecy rate saturates at a high SNR of 40 dB but is still significantly higher than the case

with HD receiver. This reveals the great potential of using interference at the receiver side to provide

self-protection against eavesdropping.

VII. CONCLUSIONS

In this article, we have introduced radical views on interference in wireless networks. Traditional

interference mitigation techniques are no longer optimal, and innovative ways of utilizing interference

are emerging. As more aggressive resource sharing and tighter cooperation are foreseen in future wireless

networks, interference management will continue to be a growing challenge. Accordingly, it is essential

to further these new perspectives on interference for more efficient radio resource utilization in advanced

wireless concepts such as large-scale antenna arrays (massive MIMO), multicell cooperation, cognitive

radio and heterogeneous networks. Indeed, the employment of massive MIMO in future networks, allows
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the mitigation of interference using simple linear operations. This way, interference could be “available”

in the network for other purposes without affecting its performance; this scenario motivates new services

and applications. In future cloud radio access networks, baseband processing will be shifted from BSs

to the central baseband unit pool to jointly process data to and from multicells, and this gives great

opportunities to fully utilize interference. In cognitive radio, the interference from the secondary user to

the primary user can facilitate RF energy transfer and be tuned into useful signals if the primary data is

known at the secondary user. Regarding security in heterogeneous networks, a promising direction is to

study how network interference can be engineered to best benefit wireless network secrecy.
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to achieve SINR and RF-EH constraints in MISO interference channel.
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Fig. 6: Left: FD operation at the receiver that creates self-interference to improve the secrecy rate. Right:

achievable secrecy rate in bits per channel use (bpcu) vs transmit SNR in dB.
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