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Robust control of nonlinear MAGLEV suspension

system with mismatched uncertainties via DOBC

approach

Abstract: Robust control problem of a class of uncertain systems that have disturbances and uncer-

tainties not satisfying “matching” condition, is investigated in this paper via a disturbance observer

based control (DOBC) approach. In the context of this paper, “matched” disturbances/uncertainties

refers to the disturbances/uncertainties enter the system through the same channels as the control

inputs. By properly designing a disturbance compensation gain, a novel composite controller is pro-

posed to counteract the “mismatched” lumped disturbances from the output channels. The proposed

method significantly extends the applicability of the DOBC methods. Rigorous stability analysis

of the closed-loop system with the proposed method is established under mild assumptions. The

proposed method is applied to a nonlinear MAGnetic LEViation (MAGLEV) suspension system.

Simulation shows that compared to integral control method, the proposed method provides improved

disturbance rejection performance and robustness against load variation.

Keywords: “mismatched” disturbances, nonlinear MAGLEV suspension system, state-space dis-

turbance observer, disturbance compensation gain.

1 Introduction

Various uncertainties including external disturbances, the effects caused by unmodeled dynamics

and parameter variations widely exist in practical systems. These uncertainties often bring adverse

effects to closed-loop control systems. With the growing interests in high-precision control, the

utilization of disturbance rejection techniques is usually required in control system design. One

fact that should be pointed out is many uncertainties in control systems are unmeasurable, thus the

disturbance estimation technique could be regarded as highly important for disturbance attenuation.

Disturbance observer is acknowledged as an effective disturbance estimation approach. Dis-

turbance observer based control (DOBC) methods provide powerful abilities in handling system

disturbances and improving robustness [1]. The disturbance observer technique was first presented

by Ohishi et al. [2] for a position servo system in the late 1980s. During the last three decades,

DOBC schemes for linear and nonlinear systems have been proposed and applied successfully in

various practical areas, e.g., servo control systems [3, 4], robotic systems [5, 6, 7], hard disk drive

systems [8, 9], flight control systems [10, 11], and process control systems [12, 13, 14].

It should be noted that the existing DOBC methods are generally confined to uncertain systems
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which satisfy the so-called “matching” condition [15, 16]. Here “matching” refers to the uncer-

tainties (also called lumped disturbances) that act on the system via the same channels as the control

inputs. The problem of rejecting “mismatched” disturbances (i.e., the disturbances that enter the sys-

tem through different channels from those of the control inputs) has been looked at in [17, 18] where

the “matching” disturbances are compensated by DOBC while the “mismatched” disturbances are

attenuated by some traditional feedback controllers, such as variable structure control [17] and H∞

control [18]. It is also reported that certain constraints in the “mismatched” disturbances (such as

bounded H2 norm) are required in [17, 18]. The most widely used practical method in dealing with

“mismatched” disturbances is adding an integral action in a feedback control law to remove offset of

the closed-loop system [19], which will be compared with the proposed method in this paper. Note

that all above mentioned methods remove the effects of “mismatched” disturbances by feedback

regulation in a relatively slow way. It is well known that feedforward control provides satisfac-

tory performance in rejecting disturbances, the significance of which has been shown in the existing

DOBC approaches. To this end, it is of great importance to develop a new DOBC method to directly

attenuate the “mismatched” disturbances by feedforward compensation rather than by feedback reg-

ulation. However, to the best of the authors’ knowledge, no systematic DOBC method is presently

available to handle the “mismatched” disturbances completely by feedforward compensation.

In addition, it has been noticed that the “mismatched” disturbances are more general and widely

exist in practical applications. Taking an aircraft as an example, the lumped disturbance torques

caused by unmodeled dynamics, external winds, and parameter perturbations, may affect aircraft

dynamics in a rather complicated way, which does not necessarily satisfy the so-called “matching”

condition [10]. The problem also appears in a permanent magnet synchronous motor (PMSM) sys-

tem [20], in which the uncertainties consisting of the parameter variations and the load torque enter

the system via different channels to those of the control inputs. Another example is the MAGnetic

LEViation (MAGLEV) suspension system, which will be studied in this paper, where the track input

disturbances act on different channels from the control input [21, 23].

When confronted with the “mismatched” condition, it is unlikely to counteract the effects of

the lumped disturbances completely from the state variables. The design specification in this case

is removing the influence of the disturbances from the output channels in steady-state and reducing

their influence on transient performance. By properly designing a disturbance compensation gain,

a novel DOBC approach is proposed in this paper to solve the disturbance attenuation problem for

a class of uncertain systems with “mismatched” disturbances/uncertainties. The proposed method

significantly extends the application field of the DOBC approaches. Under the assumption that both

the lumped disturbances and their derivatives are bounded, it is shown that the closed-loop system

is bounded-input-bounded-output (BIBO) stable with properly designed controller parameters. In

addition, rigorous analysis shows that asymptotic stability of the closed-loop system is established

under the condition that the lumped disturbances have steady-state values. It is also proved that the
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proposed control method can eliminate the influence of the “mismatched” disturbances/uncertainties

of the system from the output channels in steady-state with a properly designed disturbance com-

pensation gain.

During the past few years, MAGLEV suspension system has become one of the most promising

transportation systems [24]. Compared with conventional trains, the major superiority of MAGLEV

train lies in that the friction, mechanical losses, vibration and noise are reduced substantially since it

replaces the wheels by electromagnets and levitates on the guideway and avoids mechanical contact

with the rail [25]. However, MAGLEV suspensions are essentially nonlinear systems with lumped

disturbances consisting of external disturbances (caused by track input) and parameter perturbations

(caused by load variation) [26, 27]. A number of elegant control approaches for MAGLEV sys-

tems have been researched throughout the past two decades, including PI control [23], sliding mode

control [28], adaptive control [29], robust control [30], H-infinity control [31, 32], and some other

traditional methods [33, 21]. Two reasons motivate the authors to apply the newly proposed DOBC

method to the MAGLEV suspension systems. One is most of the feedback based control methods

listed above can not react promptly in the presence of strong disturbances since they do not deal

with the disturbance directly. The second being the lumped disturbances in MAGLEV systems are

“mismatched” ones.

The rest of the paper is organized as follows. The problem of “mismatched” uncertainties in

MAGLEV system is illustrated in Section 2. Design and stability analysis of the proposed DOBC

method is presented in Section 3. In Section 4, the design of a MAGLEV suspension system using

the proposed method is implemented, while concluding remarks are given in Section 5.

2 Problem formulation

2.1 Nonlinear MAGLEV suspension dynamics

The complete nonlinear model for the MAGLEV suspension system is given by [21, 23],

B = Kb
I

G
, (1)

F = KfB2, (2)

dI

dt
=

Vc − IRc + NcApKb

G2 (dzt

dt − dZ
dt )

NcApKb

G + Lc

, (3)

d2Z

d2t
= g − Kf

Ms

I2

G2
, (4)

dG

dt
=

dzt

dt
− dZ

dt
, (5)

where variables I , zt, Z, dzt

dt , dZ
dt , G, B, and F denote the current, the rail position, the electromagnet

position, the rail vertical velocity, the electromagnet vertical velocity, the air gap, the flux density,

and the force, respectively. Signal Vc is the voltage of the coil. Remaining symbols in Eqs. (1)-(5)

are system parameters which are listed in Table 1.

3



Table 1: Parameters of MAGLEV suspension system

Parameters Meaning Value

Ms Carriage Mass 1000kg

Kb Flux coefficient 0.0015T·m/A

Kf Force coefficient 9810N/T2

Rc Coil’s Resistance 10Ω

g Gravity constant 9.81m/s2

Lc Coil’s Inductance 0.1H

Nc Number of turns 2000

Ap Pole face area 0.01m2

2.2 Model linearization

The linearization of the MAGLEV suspension is based on small perturbations around the operating

point [23, 27]. The following definitions are used in which the lower case letters define a small

variation around the operating point and the subscript ‘o’ refers to the operating condition.

B = Bo + b, (6)

F = Fo + f, (7)

I = Io + i, (8)

G = Go + (zt − z), (9)

Vc = Vo + uc, (10)

Table 2: Nominal values of MAGLEV suspension system

Parameters Meaning Value

Bo Nominal flux density 1.0T

Fo Nominal force 9810 N

Io Nominal current 10A

Go Nominal air gap 0.015m

Vo Nominal voltage 100V

The nominal values of the variables in operating point are given in Table 2. The nonlinear

MAGLEV suspension models (3)-(5) are expressed as a linear system with disturbances and uncer-

tainties 



ẋ = Ax + Buu + Bdd + ∆Ax + O(x, u, d),

y = Cx,
(11)
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where the states are the linearized current, vertical carriage velocity and air gap, i.e., x = [i ż (zt −
z)]T , the input u = uc is the voltage, the track input disturbance d = żt is the rail vertical velocity

(the external disturbance). The controlled variable is the variation of the air gap, i.e., y = zt − z.

∆A is the perturbation matrix caused by load variation. Nonlinear function O(x, u, d) consists of

the high order nonlinear terms with respect to x, u and d. The detailed liberalization procedure can

be found in [23]. The matrixes A, Bu, Bd and C are given as

A =




−Rc

Lc+KbNc
Ap
Go

−KbNcApIo

G2
o(Lc+KbNc

Ap
Go

)
0

−2Kf
Io

MsG2
o

0 2Kf
I2

o

MsG3
o

0 −1 0




, (12)

Bu =




1

Lc + KbNc
Ap

Go

0

0




, (13)

Bd =




KbNcApIo

G2
o(Lc + KbNc

Ap

Go
)

0

1




, (14)

C = [0 0 1]. (15)

Remark 1. In (11), the high order nonlinear function O(x, u, d) is generally neglected when

designing controllers since their magnitudes are much smaller as compared with the linear parts. In

this paper, such high order nonlinear terms O(x, u, d) are no longer neglected but considered as part

of the lumped disturbances.

The control specifications of the MAGLEV suspension under consideration of deterministic

track input are given in Table 3.

Table 3: Control specifications for MAGLEV suspension system (deterministic)

Constraints Value

Maximum air gap deviation, (zt − z)p ≤0.0075m

Maximum input coil voltage, (uc)p ≤300V(3IoRc)

Settling time, ts ≤3s

Air gap steady state error, (zt − z)ess =0

2.3 “Mismatched” disturbances/uncertainties

In MAGLEV suspension systems, the lumped disturbances (or uncertainties) are formulated by

merging the effects caused by parameter variation and nonlinearities into the disturbance terms,
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which are described as

dl = Bdd + ∆Ax + O(x, u, d). (16)

Substituting (16) into (11), the full dynamic model of the nonlinear MAGLEV suspension sys-

tem is described as 



ẋ = Ax + Buu + Blddl,

y = Cx,
(17)

where Bld = I is a 3× 3 identity matrix.

Remark 2. Note that dl in (17), which is a vector with the dimension three, includes system

uncertainties consisting of the external disturbance and the effects caused by parameter variation and

nonlinearities.

Remark 3. It can be observed from Eqs. (13) and (17) that there are multiple disturbances but

a single control input. Hence, the disturbances definitely enter the system via different channel from

the control input, forming a set of “mismatched” disturbances.

Besides in MAGLEV systems, the “mismatched” disturbances/uncertainties also exist in other

practical industrial control systems, e.g., missile system [10] and motor system [20]. In the presence

of “mismatched” disturbances/uncertainties, the existing DOBC methods are no longer available.

This is better explained via the following example. Considering a simple system, i.e.,




ẋ1 = x2 + d,

ẋ2 = x1 + x2 + u,

y = x1.

(18)

For system (18), the estimate d̂ of the real disturbance d can be obtained by a disturbance ob-

server. However, if the composite control law is designed as u = Kxx−d̂ (where Kx is the feedback

control gain) which is the formulation of the existing DOBC methods from the literature, it can be

found that the disturbance compensation design has nothing meaningful for system (18) because the

disturbance can neither be attenuated from the state equations nor from the output channels.

It should be pointed out that the “mismatched” disturbances are unlikely to be attenuated from

the state equations in general. This work aims to develop a disturbance compensation gain so that

the DOBC method can be used to remove “mismatched” disturbances/uncertainties from the output

channels.

3 A novel DOBC for “mismatched” uncertainties

Consider a multi-input-multi-output (MIMO) linear system with multiple disturbances, depicted by




ẋ = Ax + Buu + Blddl,

y = Cx,
(19)

where x ∈ Rn, u ∈ Rm, dl ∈ Rr, and y ∈ Rs are state, control input, lumped disturbance, and

output vectors, respectively. The system matrixes A, Bu, Bld, and C are with dimensions of n× n,

n×m, n× r, and s× n, respectively.
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Remark 4. In (19), the lumped disturbances are generalised concepts of disturbances, possibly

including external disturbances, unmolded high order dynamics, parameter variations, and nonlinear

dynamics that can not be captured by the linear dynamics in Eq. (19).

For system (19), the following state-space disturbance observer [5, 7, 10, 22] is designed to

estimate the disturbances




ṗ = −LBld(p + Lx)− L(Ax + Buu),

d̂l = p + Lx,
(20)

where d̂l is the disturbance estimate vector, p is an auxiliary vector and L is the observer gain matrix

to be designed.

Remark 5. The state-space DOB presented in (20) can be used to estimate both “matched” and

“mismatched” uncertainties.

Based on the disturbance estimate by DOB, a new composite control law is proposed, i.e.,

u = Kxx + Kdd̂l, (21)

An appropriately designed disturbance compensation gain Kd guarantees that the influence of the

disturbances can be removed from the output channels in the steady-state.

For system (19) subject to “mismatched” uncertainties, a general design procedure of the pro-

posed DOBC method is given below:

1) Design a feedback controller to achieve stability without considering the lumped disturbances.

2) Design a linear state-space disturbance observer to estimate the lumped disturbances.

3) Design a disturbance compensation gain to guarantee that the “mismatched” lumped distur-

bances are removed from the output channels in steady-state.

4) Integrate the feedback controller and the feedforward compensator to formulate the composite

DOBC law.

To establish the stability of the closed-loop system, some mild assumptions are given as follows.

Assumption 1. Both the lumped disturbance dl and its derivative ḋl are bounded.

Assumption 2. The lumped disturbances dl have constant values in steady-state, i.e.,

lim
t→∞

ḋl(t) = 0 or lim
t→∞

dl(t) = ds where ds is a constant vector.

Assumption 3. (A,Bu) is controllable.

The asymptotic stability of DOB (20) is concluded by the following theorem.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied for system (19). The disturbance

estimates d̂l yielded by DOB (20) can asymptotically track the lumped disturbances dl if the observer

gain matrix L in (20) is chosen such that matrix −LBld is Hurwitz.

Proof. The disturbance estimation error of the DOB (20) is defined as

ed = d̂l − dl. (22)
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Combining system (19), DOB (20), with estimation error (22), gives

ėd = ˙̂
dl − ḋl

= ṗ + Lẋ− ḋl

= −LBldd̂l − L(Ax + Buu) + L(Ax + Buu + Blddl)− ḋl

= −LBld(d̂l − dl)− ḋl

= −LBlded − ḋl.

(23)

It can be verified that the error system (23) is asymptotically stable since −LBld is Hurwitz, ḋl

is bounded and satisfies lim
t→∞

ḋl = 0. This implies that the disturbance estimate of DOB can track

the disturbances asymptotically. ¤

Remark 6. It seems that the asymptotic tracking of DOB can only obtained based on the as-

sumption that lim
t→∞

ḋl(t) = 0. However, it is pointed out in [5] that the estimates by DOB (20) can

also track some fast time-varying disturbances well as long as the observer dynamics are much faster

than those of the disturbances.

Remark 7. In the presence of uncertainties, the lumped disturbances would be a function of

the states, which can be reasonably estimated if the DOB dynamics are faster than the closed-loop

dynamics. The same argument for the state observer based control methods is applicable.

The bounded-input-bounded-output (BIBO) and asymptotic stabilities of the closed-loop system

are shown as follows.

Theorem 2. Suppose that Assumptions 1 and 3 are satisfied for system (19). The BIBO stability

of system (19) under the newly proposed DOBC law (21) is guaranteed if the observer gain L in

(20) and the feedback control gain Kx in (21) are selected such that both−LBld and A+BuKx are

Hurwitz.

Proof. Combining system (19), composite control law (21), with error system (23), the closed-

loop system is written as


 ẋ

ėd


 =


 A + BuKx BuKd

0 −LBld





 x

ed


 +


 BuKd + Bld 0

0 −1





 dl

ḋl


 . (24)

Since −LBld and A + BuKx are Hurwitz, it can be verified that matrix

 A + BuKx BuKd

0 −LBld




is also Hurwitz. It can be concluded that the closed-loop system (24) is BIBO stable for any bounded

dl and ḋl if Kx and L are properly selected. ¤

Theorem 3. Suppose that Assumptions 1 and 2 are satisfied for system (19). The state of system

(19) under the composite control law (21) converges to xs = −(A + BuKx)−1(BuKd + Bld)ds

asymptotically if the observer gain L in (20) and the feedback control gain Kx in (21) are selected

such that both −LBld and A + BuKx are Hurwitz.
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Proof. The state error can be constructed as

ex = x− xs. (25)

Combining system (19), composite control law (21), error system (23), with state error (25), the

closed-loop system are given as


 ėx

ėd


 =


 A + BuKx BuKd

0 −LBld





 ex

ed


 +


 BuKd + Bld 0

0 −1





 dl − ds

ḋl


 . (26)

Similar with the proof of Theorem 2, it can be verified that


 A + BuKx BuKd

0 −LBld




is Hurwitz. In addition, it can be obtained from Assumption 2 that lim
t→∞

[dl(t)− ds] = 0.

Considering the conditions, it can be shown that the closed-loop system (26) is asymptotically

stable. This means that with the given conditions the state vector converges to a constant vector xs

asymptotically. ¤

The main theoretical contribution of this work is that a systematic method is developed for

disturbance compensation gain design so that the disturbances can be attenuated from the output

channels in steady-state.

Assumption 4. The system matrixes and the feedback control gain satisfy the rank condition

that rank(C(A + BuKx)−1Bu) = rank([C(A + BuKx)−1Bu,−C(A + BuKx)−1Bld]).

Theorem 4. Suppose that Assumptions 1-4 are satisfied for system (19), also the observer gain

L and the feedback control gain Kx are chosen to make matrixes −LBld and A + BuKx Hurwitz.

Considering system (19) under the proposed composite control law (21), the lumped disturbances

can be attenuated from the output channel in steady-state if the disturbance compensation gain is

designed such that

C(A + BuKx)−1BuKd = −C(A + BuKx)−1Bld. (27)

Proof. Substituting control law (21) into system (19), the state is expressed as

x = (A + BuKx)−1
[
ẋ−BuKdd̂l −Blddl

]
. (28)

Combining (19), (27) with (28), gives

y = C(A + BuKx)−1ẋ + C(A + BuKx)−1Bld(d̂l − dl). (29)

With the given conditions, the following results are obtained according to Theorem 3,

lim
t→∞

ex(t) = 0, lim
t→∞

ed(t) = 0. (30)
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Under the consideration of (30), taking limits of both sides of Eq. (29) with respect to t, gives

lim
t→∞

y(t) = 0. (31)

¤

Remark 8. The disturbance compensation gain Kd in (27) is a general case and suitable for

both “matching” and “mismatched” disturbances. In the “matching” case, i.e., Bu = Bld, it can

be obtained from (27) that the disturbance compensation gain is reduced to Kd = −1 which is the

particular form of most existing DOBC methods.

4 Application to MAGLEV suspension system

4.1 Controller design

It should be pointed out that any feedback controller that can stabilize system (17) in the absence

of disturbances may be used to achieve tracking performance. In the context of this paper, we

concentrate on deterministic design only. In this study, the classical linear quadratic regulator (LQR)

is employed and the penalty matrixes Q and R in the cost function of LQR are simply selected as

Q =




1 0 0

0 1 0

0 0 1


 , R = 0.1. (32)

To this end, the feedback control gain of LQR can be calculated according to the model infor-

mation and the penalty matrixes, given as Kx = [−61 − 591 40061]. With the parameter matrixes

given in (12), (13), (17) and the calculated control gain Kx, the disturbance compensation gain is

calculated by Eq. (27), given as Kd = [−2.1 36.0 742.2].

To guarantee the asymptotic stability of the DOB, the observer gain matrix in (20) is designed

as

L =




40 0 0

0 40 0

0 0 40


 . (33)

The control structure of the proposed DOBC method for the nonlinear MAGLEV suspension

system is shown in Fig. 1.

4.2 Simulations and analysis

In the presence of disturbances/uncertainties, many control methods (e.g. LQR) can not remove the

offset. The integral control is a widely used practical method to eliminate the steady-state error in

these cases. To demonstrate the effectiveness of the proposed method, LQR plus an integral action

(called LQR+I) method is employed for comparison. The control law of the LQR+I method is

represented as

ulqr+i(t) = Kxx(t) + ki

∫ t

t0

[zt(τ)− z(τ)] dτ, (34)
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Figure 1: Block diagram of the proposed DOBC method for the nonlinear MAGLEV system.

where t0 is the initial time and ki is the integral coefficient to be designed. To find an appropriate

integral coefficient, a variable x4 =
∫ t

t0
[zt(τ)− z(τ)] dτ is taken as an augmented state. For the

augmented system, the LQR method is used to get the control gain. The penalty matrixes are selected

as

QI =


 Q 0

0 qi


 , RI = R = 0.1. (35)

Set qi = 1.0×109, then the integral coefficient is able to be calculated and gives as ki = −1.0×105.

4.2.1 External disturbance rejection performance

The main external disturbances in the MAGLEV system are the deterministic inputs to the suspen-

sion in the vertical direction. Such deterministic inputs are the transitions onto track gradients. In

this paper, the deterministic input components considered are referred to [23] and shown in Fig. 2.

They represent a gradient of 5% at a vehicle speed of 15 m/s and an allowed acceleration of 0.5

m/s2 while the jerk level is 1 m/s3.

The response curves of both the output and input of the suspension system under the proposed

DOBC method (solid line), LQR+I method (dashed line) and LQR method (dash-dotted line) are

shown in Fig. 3. Response curves of the corresponding states are shown in Fig. 4. Note that zero air

gap variation refers to Go, as we follow the treatment setup proposed in [21, 26, 27].

As shown in Figs. 3 and 4, the LQR method results in unstable control of the airgap and current

in such case of external disturbances. It can be observed from Fig. 3(a) that both the overshoot and

settling time under the DOBC method are shorter than those under the LQR+I method, the conver-

gence rate under the DOBC method is much faster than that under the LQR+I method. As shown in

Fig. 3(b), the maximum input voltage under the DOBC method is smaller than that under the LQR+I

method. Response curves in Fig. 4 show that both the current and the vertical electromagnet velocity

under the DOBC method vary smoothly and approach to the desired equilibrium points faster than
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Figure 3: Response curves of the input and output in the presence of deterministic track input: (a)

the air gap, (zt − z), (b) the voltage of the coil , uc.
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Figure 4: Response curves of the states in the presence of deterministic track input: (a) the current,

i, (b) the vertical electromagnet velocity, ż.
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that under the LQR+I method. The results demonstrate that the newly proposed DOBC method has

achieved much better performance in rejecting such practical disturbances than that of the traditional

LQR+I method.

4.2.2 Robustness against load variation
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Figure 5: Curve of the load variation.

In this part, the load variation of the MAGLEV suspension is considered. The suspension has to

support the large mass of the vehicle as well as the load (weight of the passengers) which can vary

up to 40% of the total mass of the vehicle [23]. This is a considerable variation of the total mass and

may results in undesirable performance. To this end, the robustness against load variations should

be taken into account to ensure performance and stability for a fully laden or unladen vehicle. For

testing, it is supposed that the load variation is up to 40% of the total vehicle mass within 10 seconds,

i.e., the load can vary from 1000kg to 1400kg for a fully unladen and laden vehicle, respectively.

The profile of the load variation is shown in Fig. 5. The track input disturbance like in Fig. 2 is also

considered but acts on the system at t = 15 s.

The robustness against such case of load variation under both DOBC (solid line), LQR+I (dashed

line) and LQR (dash-dotted line) methods can be seen in Figs. 6 and 7. It can be found that the LQR

method leads to unstable control of the closed-loop system in such cases of uncertainties. It can be

observed from Fig. 6(a) that the overshoot of the air gap deviation under DOBC method is much

smaller than that under the LQR+I method. In addition, the convergence rate under the DOBC

method is much faster than that under the LQR+I method. Fig. 6(b) shows that the magnitude of the

coil voltage under DOBC method is smaller than that under the LQR+I method. Test results in this

subsection manifest that the proposed method obtains promising performance of robustness against

load variation as compared with that of the integral control method.
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Figure 6: Response curves of the input and output in the presence of load variation: (a) the air gap,

(zt − z), (b) the voltage of the coil , uc.
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Figure 7: Response curves of the states in the presence of load variation: (a) the current, i, (b) the

vertical electromagnet velocity, ż.
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5 Concluding remarks

By appropriately designing a disturbance compensation gain, a novel disturbance observer based

control (DOBC) method has been proposed to solve the disturbance rejection problem of the un-

certain system which contains “mismatched” disturbances. Here “mismatched” means the lumped

disturbances enter the system through different channels from the control inputs. With the pro-

posed control method, rigorous stability of the closed-loop system has been analyzed under some

soundable assumptions. It has also been verified that the “mismatched” lumped disturbances can

be attenuated from the output channels with the properly designed disturbance compensation gain.

To shown the feasibility and efficiency of the proposed method, application design is carried out for

an industrial MAGLEV suspension system, which is essentially a system with “mismatched” dis-

turbances including external disturbances (caused by track inputs), nonlinear dynamics (neglected

nonlinearities during liberalization) and parameter perturbations (caused by load variation). When

control such practical MAGLEV suspension system, simulation has shown that the proposed method

achieves much better performance of external disturbance rejection and robustness against load vari-

ation than those of the traditional integral control method.
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