Loughborough University
Browse
PhysRevLett.124.065702.pdf (631.54 kB)

Rounded layering transitions on the surface of ice

Download (631.54 kB)
journal contribution
posted on 2020-01-17, 10:45 authored by Pablo Llombart, Eva G Noya, David SibleyDavid Sibley, Andrew ArcherAndrew Archer, Luis G MacDowell
Understanding the wetting properties of premelting films requires knowledge of the film’s equation of state, which is not usually available. Here we calculate the disjoining pressure curve of premelting films, and perform a detailed thermodynamic characterization of premelting behavior on ice. Analysis of the density profiles reveals the signature of weak layering phenomena, from one to two and from two to three water molecular layers. However, disjoining pressure curves, which closely follow expectations from a renormalized mean field liquid state theory, show that there are no layering phase transitions in the thermodynamic sense along the sublimation line. Instead, we find that transitions at mean field level are rounded due to capillary wave fluctuations. We see signatures that true first order layering transitions could arise at low temperatures, for pressures between the metastable line of water/vapor coexistence and the sublimation line. The extrapolation of the disjoining pressure curve above water vapor saturation displays a true first order phase transition from a thin to a thick film consistent with experimental observations.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Physical Review Letters

Volume

124

Publisher

American Physical Society

Version

  • VoR (Version of Record)

Rights holder

© American Physical Society

Publisher statement

This paper was published in the journal Physical Review Letters and is available at https://doi.org/10.1103/PhysRevLett.124.065702.

Acceptance date

2020-01-14

Publication date

2020-02-11

Copyright date

2020

ISSN

0031-9007

eISSN

1079-7114

Language

  • en

Depositor

Prof Andrew Archer . Deposit date: 15 January 2020

Article number

065702

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC