
Pilkington Library 

•• Loughborough 
., University 

Author/Filing Title ...... P.fI .. 1.11.~~0. .................... .. 

Vol. No. ............ Class Mark ....... 1 ................ . 

Please note that fines are charged on ALL 
overdue items. 

.. 

~1~li~miillllllllllllll ~ 1111111111 





Safety System Design 
Optimisation 





ACKNOWLEDGMENTS 

"In my distress I ... . cried unto my God." - Psalm 18:6 

I would like to acknowledge all those who helped me so much with the completion of 
this thesis. I am indebted to my mum, dad and sister Ruth who, as always, were by 
my side and gave me support and encouragement at the most important moments. I 
thank my boyfriend, Dave and my friends (Kimy, Sarah, Jirn and many others) for 
being there to lean on and for always being gteat fun. 

I would especially like to acknowledge the support of Dr. John Andrews who 
supervised me though my PhD. His help and advice was crucial, in addition to his 
constancy and friendship. 

"The end 0/ a matter is better than its beginning and patience is better than pride. " -
Ecclesiastes 7:8 

"When you are a Bear o/Very Little Brain, and you Think o/things, youfind 
sometimes that a Thing which seemed very Thingish inside you is quite different when 

it gets out into the open and has other people looking at it" - Winnie-the-Pooh 



ABSTRACT 

Key Wonls: Fault Trees, Binary Decision Diagram;, Optimisation, Genetic 
Algorithms, Safety Systems, Reliability. 

This thesis investigates the efficiency of a design opturusation scheme that is 
appropriate for systems which require a high likelihood of functioning on demand. 
Traditional approaches to the design of safety critical systems follow the preliminary 
design, analysis, appraisal and redesign stages until what is regarded as an acceptable 
design is achieved. For safety systems whose failure could result in loss of life it is 
imperative that the best use of the available resources is made and a system which is 

optimal, not just adequate, is produced. 

The object of the design optimisation problem is to minimise system unavailability 
through manipulation of the design variables, such that limitations placed on them by 
constraints are not violated. 

Commonly, with mathematical optimisation problem; there will be an explicit 

objective function which defines how the characteristic to be minimised is related to 
the variables. As regards the safety system problem, an explicit objective function 
cannot be formulated, and as such, system performance is assessed using the fault tree 
method. By the use of house events a single fault tree is constructed to represent the 
failure causes of each potential design to overcome the time consuming task of 
constructing a fault tree for each design investigated during the optimisation 

procedure. Once the fault tree has been constructed for the design in question it is 
converted to a BOO for analysis. 

A genetic algorithm is first employed to perform the system optimisation, where the 
practicality of this approach is demonstrated initially through application to a High
Integrity Protection System (HIPS) and subsequently a more complex Firewater 
Deluge System (FOS). 

An alternative optimisation scheme achieves the final design specification by solving 
a sequence of optimisation problems. Each of these problems are defined by 
assuming some form of the objective function and speciJYjng a sub-region of the 
design space over which this function will be representative of the system 
unavailability. 

The thesis concludes with attention to various optimisation techniques, which possess 
features able to address difficulties in the optimisation of safety critical systems. 
Specifically, consideration is given to the use of a statistically designed experiment 
and a logical search approach. 



CONTENTS 

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I 

1.1 

1.2 

1.3 

1.4 

1.5 

Introduction to Risk and Reliability Assessment. 

Background. . . . . . . .. . . . . . . . . . . 

Terminology ..... 

Methods of Analysis. 

System Design. . . . 

I 

I 

3 

4 

8 

1.6 Safety Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

I. 7 The Design Optimisation Problem. . . . . . . . . . . . . . . . . . . . . . II 

1.8 Objectives of the Project. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

2. Fault Tree Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 

2.1 Background. . . . . . . . . . . . . . . . . . . . . . . 14 

2.2 General Description. . . . . . . . . . . . . . . . . . . 14 

2.2.1 System Definition and Fault Tree Construction. . . . . . . . . . . . . . . 15 

2.3 Qualitative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 

2.3.1 Derivation ofMinirnal Cut Sets ....................... 19 

2.3.2 Modularisation............................... 24 

2.4 Quantitative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2.5 

2.4.1 Component Failure Parameters. . . . . . . . . . . . . . . . . . . . . . . 26 

2.4.1.1 Failure Rate Models. . . . . . . . . . . . . . . . . . . . . . .. 32 

2.4.2 System Failure Parameters. . . . . . . . . . . . 35 

2.4.2.1 Top Event Quantification. . . . . . . . 35 

2.4.2.2 Unconditional System Failure Intensity. . . . . . 36 

Faulttree+. . . 

2.5.1 Basic Event Model Types. 

2.5.2 Analysis in Faulttree+ ... 

42 

.43 

.45 

2.6 Binary Decision Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 47 

2.6.1 Introduction to BDD's. . . . . . . . . . . . . . . . . . . 48 

2.6.2 General Description. . . . . . . . . . . . . . . . . . . . . 49 

I 



2.6.3 Binary Decision Diagram Construction. . . . . . . . . . . . . . . . .. 50 

2.6.4 Minimising Procedure. . . . . . . . . . . . . . . . . . . . . . . . . .. 54 

2.6.5 Ordering............................ 57 

2.6.6 Top Event Quantification. . . . . . . . . . . . . . . . . 58 

2.6.6.1 Top Event Probability. . . . . . . . . . 58 

2.6.6.2 Unconditional System Failure Intensity ..... . 60 

3. Optimisation Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 66 

3.1 

3.2 

3.3 

3.4 

3.5 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Linear Programming. . . . . . . 

3.2.1 The Simplex Method ...... . 

66 

67 

68 

3.2.2 Integer Programming. . . . . . . 68 

3.2.3 Reliability and LP Techniques. . . . . . . . . . . . . . . . . . . . . .. 78 

3.2.4 Further Research. 80 

3.2.5 Summary..... 81 

3.2.6 Logical Search. . . 83 

Gradient Techniques. . . . . . 

3.3.1 Basic Methods ................... . 

3.3.2 Advanced Methods ....... . 

3.3.3 Constrained Gradient Techniques. 

3.3.4 Summary ............... . 

Direct Search Methods. . . . . . . . . . . . . 

84 

85 

87 

91 

98 

99 

3.4.1 Unconstrained Direct Search Methods. . . . . . . . . . . . . . 100 

3.4.2 The Constrained Case. . . . . . . . . . . . . . . . . . . . . . . . . .. 105 

3.4.3 Further Research. . . 108 

3.4.4 Summary ...... . 

Random Search Methods. . . . . . . . . . . . . . . . . . . . 

3.5.1 Pure Random Search ..... 

3.5.2 Controlled Random Search .. 

3.5.3 Partitioned Random Search ............. . 

3.5.4 The Combinatorial Heuristic Method. . . . . . . . . . 

n 

108 

111 

III 

112 

116 

118 



4. Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121 

4.1 Introduction to Evolutionary Computation. 121 

4.2 Introduction to Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . .. 122 

4.3 The Simple Genetic Algorithm. . . 124 

4.4 

4,5 

4.3.1 Representation ...... . 

4.3.2 Initialisation ... . 

4.3.3 

4.3.4 

Fitness Evaluation. 

Selection .......................... . 

4.3.5 Genetic Operators ..................... , , 

4.3.6 Result Designation and Termination Criteria .... , . , , .. . 

4.3.7 GAParameters .. , ....... "., ........ , .. . 

The Theoretical Foundation. 

The Constrained Case. , 

125 

127 

127 

128 

129 

130 

131 

132 

133 

4,6 Premature Convergence. 136 

4.7 Modifications to the Genetic Algorithm. . . . . . . . . . . . . . . . .. 137 

4.7.1 Representation .. , .. , ....... , ......... ,...... 137 

4.7.2 Fitness Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . .. 138 

4,7.3 Selection" ..... ,................... 139 

4,7.4 Recombination Operators .......... , . , , . 142 

4.7.5 Hybridisation..................... 144 

5. System Analysis. . . . . . . . . . , . . . . , , , , . . , . . . . . . . . . . .. 147 

5.1 

5.2 

Introduction to HIPS System. . . . . . . . . . . . . . . . . . . . . . . . 

5.l.l Description of HIPS System .. , ............ , .. , , 

Safety System Analysis. . . . . . . . . . . . . . , , . . , . . . 

147 

147 

150 

5.2.1 Evaluate the System Unavailability ..... , . . . . . . . . . 151 

5.2.l.l Construction of the System Unavailability Fault Tree. . . . . 152 

5.2.1.2 Data Input and Analysis ...... , , , . , . ' . , . 164 

5.2.1.3 ConversionoftheFaultTreetoaBDD,., . , " . 164 

5.2.1.3.1 BADD, ...... ' .... , , . , . . . 165 

5.2.1.3.2 BDD Structure to Represent System Unavailability. . 169 

m 



6. 

6.1 

6.2 

5.2.1.4 Computational Method for BOO Quantification. . . 170 

5.2.1.4.1 Input of the BOO File Structure. . . . 171 

5.2.1.4.2 Input Event Data. . . . . . . . . . . . . . . .. 171 

5.2.1. 4.3 Analysing the BOO Structure. . 172 

5.2.2 Cost and MDT Evaluation. . . . . . . . . . . . . . . 177 

5.2.3 Evaluate the Frequency of Spurious Trip Occurrence. . . . . . . . . .. 179 

5.2.3.1 Construction of the Spurious Trip Fault Tree. . . . . . . . . 179 

5.2.3.2 Data Input. . . .. ..................... 182 

5.2.3.3 Conversion of the Spurious Trip Fault Tree to a BDD. . . . 182 

5.2.3.4 A Computational Method for the Top Event Unconditional 183 

Failure Intensity of the BOO. . . . . . . . . . . ..... . 

5.2.3.4.1 Input of the BOO File Structure and Event Data. . 183 

5.2.3.4.2 Analysing the BOO Structure. . 184 

5.2.4 Accuracy Comparison with Faulttree+. . . . . . . . . 184 

Implementing the GA to Optimise the High Integrity Protection System. 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Computer Implementation of the GA to Optimise the HIPS - GASSOP. 

6.2.1 Input to GASSOP. . . . . . .............. . 

189 

189 

190 

190 

6.2.2 Coding and Initialisation. . . . . . . . . . . . . . . . . 192 

6.2.3 Evaluating String Fitness. . . . . . . . . . . . . . . . . . . . . 194 

6.2.3.1 Derivation of Penalty Formulae .... 

6.2.3.2 Fitness Information per Generation .. 

6.2.4 Selection............... 

6.2.4.1 Fitness Conversion Method. 

196 

199 

199 

199 

6.2.4.2 Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 202 

6.2.5 Action of Genetic Operators. . . . . . . . . . . . . . . . . . . 203 

6.2.6 Update Design Data. . . 206 

6.2.7 Update Fitness Data. . . 208 

6.2.8 Check for Termination. . . . . . 208 

6.2.9 Output from GAS SOP. . . . . . . . . . . . . . . . . . . . . 208 

6.2. IO Results from a Run of GAS SOP. . . . . . . . . . . . . . . . . . . 209 

IV 



6.3 GA Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 

213 

214 

217 

6.3.1 Discussion of Quantitative Results ............... . 

6.4 Further Testing .......... . 

6.4.1 Discussion of Results ... . 

7. Modifications to the GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 218 

7.1 

7.2 

Introduction. . . . . . . . 

Utilisation of the MDT Resource ... 

7.2.1 MDT Modification Method 1. 

7.2.2 MDT Modification Method 2. 

7.2.3 MDT Modification Method 3. 

7.2.4 Results of the MDT Modification Methods .. 

7.2.5 Discussion of the MDT Modification Results. 

218 

219 

220 

221 

224 

225 

228 

7.3 Derivation ofa Modified Cost Penalty Formula. . . . . . . 230 

7.3.1 Results of the GA Using the Modified Cost Penalty. 232 

7.3.2 Discussion of the Modified Cost Penalty. 233 

7.4 The Conversion Method. . . . . . . . . . . . . 234 

7.4.1 Application of the Original Method. . . . . . . . . . . . . . . . . . .. 234 

7.4.2 A modified Conversion Method. . . . . . . . . . . . . . . . . . . . .. 236 

7.4.3 An Example of the Modified Conversion Process. . . . . . . . . . . .. 239 

7.5 

7.4.4 Results Comparing Both Conversion Methods. . . . 241 

7.4.5 Discussion of Conversion Method Results. . . . . . 242 

The Modified GA. . . . . . . . . . . . . . . . . . . . . . . . 

7.5.1 Discussion of Results from the Modified GA. ..... 

242 

244 

8. Grid-Sampling Optimisation Technique. . . . . . . . . . . . . . . . . . . .. 246 

8.1 

8.2 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The Optimisation Algorithm. . . . . . . . . . . . . . 

8.2.1 Formulation of the Objective Function ..... 

8.2.2 Limiting the Scope of the Objective Functions. 

v 

246 

247 

250 

254 



8.2.3 Searching the Restricted Design Space. . . . . . . . . . . . . . . 256 

8.2.4 Reducing the Restricted Design Space. . . . . . . . . 258 

8.2.5 Application of the Grid-Sampling Method. . . . . . . . . . . . . . .. 259 

8.2.6 Results Using the Grid-Sampling Method. . . 

8.2.7 Discussion of Results. . . . . . . . . . . . . 

263 

265 

8.3 Other Formulations of the Objective Function. . . . . . . . . . . . . . . . . . . 266 

8.3.1 The Pure Quadratic Objective Function. . . . . . . . . . . . . . . . .. 266 

9. 

9.1 

9.2 

9.3 

8.3.1.1 Application Using the Pure Quadratic Objective Function. . .. 268 

8.3.1.2 Results Using the Pure Quadratic Objective Function. . . . .. 270 

8.3.2 The Cross Quadratic Objective Function. . . . . . . . . . . . . . . .. 271 

8.3.2.1 Application Using the Quadratic Objective Function with Cross 273 

Terms ........................... . 

8.3.2.2 Results Using the Quadratic Objective Function with Cross 277 

Terms ........................... . 

8.3.3 Discussion of Results Using Other Forms of the Objective Function. . 278 

Implementing the Optimisation Procedure to a Firewater Deluge System. 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Description of the Firewater Deluge System. . . . . . . . . . . . . . . 

9.2.1 The Deluge System ..................... . 

9.2.2 The Firewater Supply and Distribution System. 

9.2.3 The AFFF Supply and Distribution System. 

9.2.4 Design Variables ............. . 

Safety System Analysis. . . . . . . . . . . . . . . . . . . . . . . . 

9.3.1 Evaluate the System Unavailability ............. . 

9.3.1.1 Construction of the System Unavailability Fault Tree. 

280 

280 

280 

282 

286 

290 

291 

293 

294 

294 

9.3.1.2 Converting the System Unavailability Fault Tree to a BDD. 299 

9.3.1.3 Computational Method for BDD Quantification. . . . . . . . .. 301 

9.3.1.3.1 Transferring the BDD. . . . . . . . . . . . . . . . . . 303 

9.3.1.3.2 Derivation of Component Unavailability. . 304 

9.4 Evaluate the Frequency of Spurious Trip Occurrences of the FDS. . 313 

9.4.1 Construction of the Spurious Trip Fault Tree. . . . . . . . . . . 313 

VI 



9.4.2 Conversion of the Spurious Trip Fault Tree to a BDD. . . 314 

9.4.3 Evaluate the Top Event Unconditional Failure Intensity of the Fault Tree 314 

9.5 Life Cycle Costs. . . . . . . . . . . . 314 

9.6 

9.5.1 Initial Cost. . . . . . . . . . . 315 

9.5.2 Corrective Maintenance Cost. . 318 

9.5.3 Preventative Maintenance Cost. 321 

9.5.4 Testing Cost. . . . . . . . . . . . . . . . . . . . . 322 

9.5.5 Evaluate the Life Cycle Cost. . . . . . . . . . . . . . . . . . 324 

9.5.6 Implementing Life Cycle Cost Evaluation within the Computational 325 

Method ............................ . 

Computer Implementation of the GA to optimise the FDS. . . . .. . 

9.6.1 Memory ............................ . 

9.6.2 Coding and Initialisation ...... . 

327 

328 

328 

9.6.3 Evaluate String Fitness. . . . . . . . . . . . . . . . . . . . . . . 329 

9.6.4 Derivation of Penalty Formulae. . . . . . . . . . . . . . . . . . . . .. 331 

9.6.5 Selection.................................. 334 

9.6.6 Genetic Operator Action plus Update Routines. . . . . . . . . . . . .. 335 

9.6.7 Output from GASSOPm. . . . . . . . . . . . 337 

9.6.8 Results............ 337 

9.6.8.1 Discussion of Results. 343 

10. A Logical Search Approach. . . . . . . . . . . . . . . . . . . . . . . . . . .. 344 

10.1 

10.2 

10.3 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 

Applicable Features of the Optimisation Literature ..... . 

A Logical Search Approach. . . . . . . . . . . . . . 

344 

344 

346 

10.3.1 The Logical Search Algorithm. . . . . . . . . 346 

10.3.2 Detailed Results from a Run of Search_logic. . . . . . . . . . . . . .. 349 

10.3.2.1 Further Results. . . . . . . . . . . . . . . . . . 352 

10.3.3 Order of Variables in SearchJogic. . . . . . . . . . . . . . 353 

10.3.2.1 Alternative Ordering Number 1, altordl. 354 

10.3.2.2 Alternative Ordering Number 2, altord2. 355 

10.3.4 Discussion of Results .................. . 356 

vn 



11. A StatisticaUy Designed Experiment. 

11.1 Introduction........... 

11.2 

11.3 

11.4 

Orthogonal Arrays. . . . . . . . 

Steps in a Statistically Designed Experiment. . . . . . . . . . 

Application of the Statistically Designed Experiment to optimise the HIPS ... . 

11.4.1 Aim and Response Variable ...................... . 

11.4.2 Choice of Factors and Levels ............ . 

11.4.3 Matrix Experiment ................. . 

11. 4.4 Data Analysis. . . . . . . . . . . . . . . . . . 

11.4.5 Selecting Optimum Factor Levels. . .......... . 

11. 4.6 The Influence of the Parameter P. . . . . . . . . . . . . . . . 

11.4.7 Consideration of the Constraints .... . 

11.4.8 Follow-up Experiment. ........ . 

11.4.8.1 Design of a Matrix Experiment ........ . 

11.4.8.2 Data Analysis ................ . 

11.4.8.3 Interpretation of Results. . . . . . . . . . . . 

358 

358 

359 

360 

360 

361 

361 

362 

367 

369 

370 

371 

376 

377 

380 

383 

11.4.8.4 Optimum Factor Settings. . . . . . . . . . . . . . . . . . .. 384 

11.4.9 Discussion of Results. . . . . . . . . . . . .. 385 

11.5 Application of Local Optimisation Techniques. 

11.6 Conclusion and Summary. . . . . . . . . . . . . . . . . . . . ... 

386 

388 

12. Conclusions and Future Work. . . . . . . . . . . . . . . . . . . . . . . . .. 389 

12.1 Conclusions............... 

12.2 Future Work. ............. . 

vm 

389 

391 



NOMENCLATURE 

A m x n coefficient matrix 

A Number of AFFF pumps fitted (FDS) 

AE Number of electrically powered AFFF pumps fitted (FDS) 

Ap Percentage capacity of the AFFF pumps fitted (FDS) 

A(t) Probability of availability at time t 

b m-dimensional column vector 

C Material type for corrosion resistant and non-corrosion resistant 

components 

C, Minimal cut set i 

CHP Cost per hour of manual work to carry out preventative maintenance 

CHR Cost per hour of manual work to repair failure (dormant or spurious) 

CHT Cost per hour of manual work to test the component 

Cl Initial cost 

CR Number of hours manual work required to repair the component 

Cs Storage costs per component 

Csp Cost of spares each time preventative maintenance is carried out 

CSR Cost of spares for each repair carried out (dormant or spurious) 

eT n-dimensional row vector 

D AFFF deluge valve type 

E Number ofESD valves fitted (HIPS) 

F Number of firewater pumps fitted (FDS) 

FE Number of electrically powered firewater pumps fitted (FDS) 

Fp Percentage capacity of the firewater pumps fitted (FDS) 

FT Firewater pump type fitted (FDS) 

F(t) Cumulative distribution function of the failure distribution 

j(t) Probability density function for the failure distribution 

Fsrs Probability of spurious trip occurrence 

Ffys Spurious trip frequency of design point} 

FIrs Predicted spurious trip frequency 

FJrs Temporary Spurious Trip Frequency 

g Gradient vector 

G(t) Cumulative distribution function of the repair distribution 

IX 



h{t) 

n 

NJ 

N2 

P 

p 
p(c.) 

P,(t) 
poi,(q) 

po;'(q) 

prXi(q) 
Q(t) 
QSTS 

Q~s 

Q~rs 

Q:rS 

Q~s 
q;(t) 

0tCSUB 

R(t) 

Probability density function for the repair distribution 

Criticality function for component i (the probability that the system is in the 

failed state with respect to component /) 

Number of HIPS valves fitted (HIPS) 

Hessian Matrix 

Number of hours manual work required to test the component 

Number of hours manual work required to carry out preventative 

maintenance 

Hazard rate function or conditional failure rate 

Number of pressure transmitters required to trip subsystem I (HIPS) 

Number of pressure transmitters required to trip subsystem 2 (HIPS) 

Conditional repair rate 

Number of minimal cut sets (unless otherwise stated) 

Number of pressure transmitters fitted, subsystem I (HIPS) 

Number of pressure transmitters fitted, subsystem 2 (HIPS) 

Pressure transmitter type (HIPS and FDS) 

Roulette wheel percentage 

Probability of occurrence of minimal cut set i 

Probability of being in state i at time t 

Probability of the path section from the 1 branch node of Xi to a terminal 1 

node (probpost 1 branch) 

Probability of the path section from the 0 branch node of Xi to a terminal 1 

node (Probpost 0 branch _ 

Probability of the path section from the root node to node Xi (Probprev) 

Probability of unavailability at time t 

Top event probability or unavailability 

Penalised system uavailability 

Unavailability of design point j (i.e. x i) 

Predicted unavailability of the top event 

Temporary unavailability of the top event 

Unavailability of event (or component) j 

The minimal cut set upper bound approximate for system unavailability 

Component ( or system) reliability 

x 



v 
v 

v{t} 
v{o,t} 
W 

W{t} 
w{o,t} 
Wc{t} 
Wi(t} 
wsrAt} 
Xi , 

T 

Search direction in the space of the current design variables from the current 

estimated minimum point x(·) 

Valve type (HIPS) 

Constant repair rate 

Unconditional repair intensity 

Expected number of repairs in 0 to t 

Water deluge valve type (FDS) 

Unconditional failure intensity 

Expected number offailures in 0 to t 

Unconditional failure intensity of cut set C 

Unconditional failure intensity of event (or component) j 

System unconditional failure intensity 

Value of variable i at design point j 

Initial design vector 

Temporary design point 

Predicted minimum design point 

Shape parameter of the Weibull distribution 

Scale parameter of the Weibull distribution 

Constant failure rate 

Dormant failure rate 

Spurious failure rate 

Conditional failure intensity 

Mean time to repair (MTTR) 

Mean time to failure (MTTF) 

Dormant mean time to repair 

Spurious mean time to repair 

Inspection interval for subsystem 1 (HIPS) 

Inspection interval for Subsystem 2 (HIPS) 

Maintenance test interval for the firewater and AFFF pump system (FDS) 

Maintenance test interval for the firewater and AFFF pump system, 

modified (FDS) 

Preventative maintenance on components of wear out type (FDS) 

Maintenance test interval for the ringmain (FDS) 

Maintenance test interval for the ringmain, modified (FDS) 

XI 



AFFF 

AGREE 

ANOM 

ANOVA 

APRS 

BADD 

BDD 

BIP 

CDF 

CM 

CMCAPL 

CMCDS 

CMCFPL 

CMCR 

CRS 

ELRAFT 

ESD 

FATRAM 

FDS 

FMEA 

GA 

GAS SOP 

GASSOPm 

GPM 

GRGM 

GUI 

HE 

HIPS 

ICAPL 

ICDS 

ICFPL 

ICR 

ABBREVIATIONS 

Aqueous Filrn-Fonning Foam 

The Advisory Group on Reliability of Electronic Equipment 

Analysis of Means 

Analysis of Variance 

Adaptive Partitioned Random Search 

Binary Algorithm Decision Diagrams 

Binary Decision Diagram 

Binary Integer Programming 

Cumulative Distribution Function 

Corrective Maintenance 

Corrective Maintenance Costs of the AFFF Pumps and Lines 

Corrective Maintenance Cost of the Deluge Skid 

Corrective Maintenance Costs of the Firewater Pumps and Lines 

Corrective Maintenance Cost of the Ringmain 

Controlled Random Search 

An Efficient Logic Reduction Analysis of Fault Trees 

Emergency Shutdown 

FAult Tree Reduction AlgorithM 

Firewater Deluge System 

Failure Mode and Effects Analysis 

Genetic Algorithm 

Genetic Algorithm Safety System Optimisation Procedure 

Genetic Algorithm Safety System Optimisation Procedure modified 

Gradient Projection Method 

Generalised Reduced Gradient Method> 

Graphics User Interface 

Human Error 

High-Integrity Protection System 

Initial Cost of the AFFF Pumps and Lines 

Initial Cost of the Deluge Skid 

Initial Cost of the Firewater Pumps and Lines 

Initial Cost of the Ringmain 

XII 



!LP 

IP 

ite 

LCC 

LOC 

LP 

MCLP 

MDT 

MFGP 

MILSTDS 

MIP 

MTI 

MTTF 

MTTR 

PDF 

PLC 

PMC 

PRS 

SCMC 

SDE 

SIC 

SGA 

SPMC 

STC 

SUMT 

TCAPL 

TCDS 

TCFPL 

TCR 

TMEC 

Integer Linear Programming 

Integer Programming 

If-then-else 

Life Cycle Cost of the FDS 

Local Optimisation Algorithm 

Linear Programming 

Multiple Criteria Linear Programming 

Maintenance Down Time 

Main Fire and Gas Panel 

The Department of Defence Adopted Standards in 1966 

Mixed Integer Programming 

Maintenance Test Interval 

Mean Time To Failure 

Mean Time To Repair 

Probability Density Function 

Computer Logic 

Cost due to Preventative Maintenance 

Partitioned Random Search 

Cost Incurred by the FDS due to Corrective Maintenance 

Statistically Designed Experiment 

Initial Cost of the FDS 

Simple Genetic Algorithm 

Cost Incurred by the FDS due to Preventative Maintenance 

Cost Incurred due to System Testing of the FDS Eh Year 

Sequential Unconstrained Optirnisation 

Cost of Testing the AFFF Pumps and Lines 

Cost of Testing the deluge Skid 

Cost of Testing the Firewater Pumps and Lines 

Cost of Testing the Ringmain 

Cost due to Total Maintenance Effort on the FDS 

xm 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Reliability and Risk Assessment 

Throughout the history of modern engineering failures of systems have been observed 

in every field. The impact of system failures varies from minor inconvenience and 

costs to personal injury, significant economic loss and death. The 1986 explosion of 

the space shuttle Challenger was as a result of the failure of the rubber O-rings that 

were used to seal the four sections of the booster rocket. In the same year, history's 

worst nuclear power reactor accident occurred in Chernobyl, USSR, which resulted in 

the leakage of radioactivity into the atmosphere. With the ever-increasing complexity 

of modern technology and increased public awareness to the potential hazards, the 

field of risk and reliability analysis has come into greater prominence. 

Risk and reliability analysis techniques attempt to study, characterise, measure and 

analyse the failure and repair of systems in order to improve their operational use by 

increasing their design life, eliminating or reducing the likelihood of failure and 

safety risks, and reducing downtime, thereby increasing available operating time. 

Reliability is not only an important part in the engineering design process, but also a 

necessary function in life-cycle costing, cost-benefit analysis, repair and facility 

resourcing, the determination of inventories and spare part requirements and the 

establishment of preventative maintenance programs. 

1.2 Background 

Attention was first given to reliability quantification within the aircraft industry after 

the First World War. Initially the number of flights completed successfully by one 

and multi-engine aircraft were compared and each occurrence offailure thoroughly 

investigated. Attempts at reliability improvement were, however, applied on an ad 

1 



hoc basis with little consideration given to the expression of reliability in quantitative 

terms. As information regarding system failures accumulated the concept of 

expressing reliability in terms of the failure rate for a particular type of aircraft or 

system emerged. Requirements were subsequently developed in terms of accident 

rates per hours of flying time and, thus, quantification became embedded in the 

design process. By 1960, for automatic landing systems, the design criteria for a fatal 

landing risk ofless than one per 107 landings could be established. 

The development of mathematical reliability models began during World War IT in 

Germany with a group working on the V-I missile project. They abandoned the 

assumption that regarding reliability a chain could not be stronger than its weakest 

link, since it failed to account for the random failure when applied to a series system. 

This led to reliability being considered as the product of components joined in series 

(that is, using probability laws) and the further realisation that in a series system the 

reliability of the individual components must be much higher than the system 

reliability for satisfactory system performance. 

The Advisory Group on Reliability of Electronic Equipment (AGREE) was created 

by the Department of Defence in 1952 due to excessive failure rates observed in 

electronic systems, especially in military equipment. Studies conducted by AGREE 

showed that it cost the Armed Services $2 per year to maintain every dollars worth of 

electronic equipment. As a result the group advised that reliability criteria, in terms 

offailure rate, life expectancy, design adequacy and success prediction were applied 

to mass-produced components. 

Simultaneously, following a series of missile accidents, concern for safety grew and 

in 1966 the Department of Defence adopted standards (MILSTDS) and required 

safety studies be performed at all the product development stages. Subsequently the 

UK Ministry of Defence also introduced similar standards, thereby significantly 

improving the reliability and maintainability of military equipment and systems. 

Increased importance was also attached to safety in the nuclear field. The first 

extensive risk assessment of an industrial facility concerned nuclear power plants and 

was published in 1975. Professor Rasmussen and some 50 engineers analysed a vast 

2 



spectrum of nuclear accidents and then assessed their potential consequence to the 

public. Following the Three Mile Island accident the number of risk assessment 

studies of nuclear power plants increased. 

Reliability and risk analysis techniques now encompass availability and 

maintainability. They are being adopted across many industrial sectors to control and 

manage major industrial hazards, on the one hand, and to design consumer goods, on 

the other. 

1.3 Terminology 

This section introduces some of the terminology used in reliability assessment. A 

more detailed discussion of these concepts is given in chapter 2. 

Reliability is defined to be 

the probability that a component or system will perform a required junction for 

a given period of time when used under stated operating conditions. 

Reliability is, therefore, concerned with how long the product continues to function 

once it has become operational. As such, the unit of time must be identified and the 

system should be observed under normal performance. 

Maintainability is defined to be 

the probability that a failed component or system will be restored to a specified 

condition within a period of time when maintenance is performed in accordance 

with prescribed procedures. 

This concept applies only to repairable systems. That is, maintainability characterises 

the ability of a system to resume the performance of its function after a failure. 

3 



Availability is defined as 

the probability that a component or system is performing its requiredfunction 

at a given point in time when used under stated operating conditions. 

Availability may be interpreted as the percentage of time a component or system is 

operating over a specified time interval. It differs from reliability in that availability 

is the probability that the component is currently in the working state even though it 

may have previously failed and been restored to its normal operating condition. 

System availability can, therefore, never be less than system reliability. Availability 

measures the combined affect of both the failure and the repair process and as such, is 

an important characteristic of the system. 

A failure is the termination of the ability of a component or system to perform a 

required function. By extension, a failure is said to have occurred when the ability of 

a component or system to perform a required function is altered. 

A fault is the inability of a component or system to perform its requiredfunction. A 

fault is always the result ofa failure. However, it may not be direct failure of the 

component or system itself. 

1.4 Methods of Analysis 

Various probabilistic methods are employed in reliability and risk assessment. All 

available methods can be broadly classified into inductive and deductive techniques. 

In the inductive procedures, the analysis begins at the component level, identifies the 

failure modes of each component, and establishes the effect of each component 

failure on the overall system. In the deductive techniques, the analysis starts with 

consideration of the potential hazards and works down through the system to identifY 

the system hardware failures or human errors, which could have caused these hazards. 

The following gives a brief description of those techniques extensively applied in 

safety analysis. 

4 



Fault Tree Analysis 

Fault tree analysis is an example of a top-down, deductive approach. A fault tree is a 

graphical representation of the relationship between certain specific events and the 

ultimate undesired, or top, event. Boolean logic is used to combine the causal events 

in the tree. A qualitative analysis consists of identifying the various combinations of 

events that will cause the top event to occur. A quantitative evaluation can then be 

performed by assigning failure probabilities to the basic events and computing the 

probability of the top event. Computer programs are available to carry out analysis 

on a constructed fault tree. Fault tree analysis is discussed in detail in chapter 2. 

Over recent years research has focused on developments to improve the accuracy and 

efficiency offault tree analysis. This resulted in the development of the Binary 

Decision Diagram (BDD) method, which is discussed further in chapter 2. 

Failure Mode and Effect Analysis 

The Failure Modes and Effects Analysis (FMEA) is an inductive or 'bottom-up' 

approach. The purpose is to identify the different failures and modes offailure that 

can occur at the component, subsystem and system leVels and to evaluate the 

consequences of these failures. There are four main steps in the performance of an 

FMEA: 

1) Definition of the system, its function and components. 

2) Identification of the component failure modes and their causes. 

3) Study of the failure mode effects. 

4) Conclusions and recommendations. 

The FMEA is usually performed during the conceptual and initial design phases of 

the system in order to assure that all possible failure modes have been considered and 

that proper provisions have been made to eliminate all the potential failures. 

5 



Markov Analysis 

The kinetic tree theory used in fault tree methods requires the statistical independence 

of the basic events. Markov analysis provides a means of anIaysing the reliability and 

availability of systems whose components violate these assumptions of independence, 

such as standby redundancy, common cause failures, secondary failures and multiple 

component states. 

Markov analysis looks at the system as being in one of several states. One possible 

state, for example, is that in which one component has failed but the other 

components continue to operate. The state transition diagram identifies alI the 

discrete states of the system and the possible transitions between those states. Figure 

1.1 illustrates the most simple state transition diagram in which the failure and repair 

behaviour of a single component is portrayed. The component has two states only, 

the working state (W) and the failed state (F). It is a repairable component and hence, 

the component may move from the failed state as welI as moving from the working to 

failed state. These possible transitions are represented by the transition lines and 

arrows in the transition diagram. States in the transition diagram that cannot be left 

once the system has entered the state are termed absorption states. Markov diagrams 

representing non-repairable systems will contain absorption states. 

vdt 
Repair 

F 
1 

Figure 1.1 One Component State Transition Diagram 

The state transition diagram should contain all possible states and transitions for the 

component or system. As a result, large systems are generally exceedingly 

complicated and difficult to construct. This is the major drawback ofMarkov 

methods. 

6 



The fundamental assumption in a Markov process is that the probability that a system 

will undergo transition from one state to another depends only on the current state of 

the system and not on any previous states the system may have experienced. That is, 

the system must be characterised by a lack of memory. In addition, the basic Markov 

approach considers only constant transition rates. 

The state transition diagram in figure 1. 1 may be translated into a set of linear 

equations, which represent the time-dependent behaviour of the state probabilities. 

These equations are 

(1.1) 

(1.2) 

where p, (t) is the probability of being in state i at time t, A the component failure 

rate and v the component repair rate. 

In matrix form this is 

[p. (t)p, (t)]= [p.(t) P,(t){~~:] 
P=PA 

The square matrix A, i.e. transition matrix, in equation (1.3) can be formulated 

directly from the transition diagram. 

(1.3) 

The first stage of the Markov analysis is to draw the state transition diagram for the 

respective system and hence, formulate the transition matrix. The transition matrix is 

then used to solve for the probabilities that the system is in the working and failed 

state. For a more detailed discussion ofMarkov Analysis the reader is referred to 

reference 5. 

7 



1.5 System Design 

Failure of a safety system for a potentially hazardous industrial system or process 

may have severe consequences, possibly injuring members of the work force or 

public and occasionally resulting in loss oflife. It is, therefore, imperative that such 

systems have a high likelihood of functioning on demand. 

Typically the design of a safety system follows the traditional process of preliminary 

design, analysis, appraisal and redesign. If; following analysis, the initial design 

does not meet some pre-determined acceptability criteria for system unavailability, 

deficiencies in the design are removed and the analysis and appraisal stages repeated. 

Once the predicted system unavailability of the design reaches the acceptability 

criteria the design process stops and the system is adopted. For a system whose 

failure could result in fatality it could be accepted that a merely adequate level for 

system unavailability is not sufficient. The aim should be to produce the optimal 

performance attainable within the constraints imposed on resources. 

It is' highly unlikely that the design parameters can be manually selected such that 

optimal system performance can be achieved within the available resources. For this 

reason an optimisation algorithm integrated within the design process is required. 

The 'traditional' v's the 'optimal' approach is illustrated in figure 1.2 

8 



I 

INITIAL 

/ DESIGN ~ 

( DESIGN 
DESIGN 

VARIABLE 

~ ~ 
REDESIGN ANALYSIS ANALYSIS 

~ ~ ~ 
APPRAISAL OPTIMISATION 

~ ~ 
ACCEPTABLE OPTIMAL 

DESIGN DESIGN 

TRADITIONAL APROACH OPTIMAL SYSTEM DESIGN 

Figure 1.2 Traditional V's Optimal Design Process 

1.6 Safety Design Considerations 

Safety systems are designed to operate when certain conditions occur and and to 

prevent their development into a hazardous situation. AB such, there are certain 

features common to all safety systems. All safety systems have sensing devices 

which monitor for the occurrence of the triggering events. These sensors usually 

measure some process variable and transmit its current level to a controlling device. 

The controlling device determines whether the current situation is acceptable by 

comparing the input signal to a set point. When the sensed variable violates the set 

point the protective action is initiated. The protective action may either prevent a 

hazardous situation occurring or reduce its consequences. 

The design engineer has a number of choices to make regarding the structure and 

operation of the safety system, which can influence reliability. These design options 

are described below. 

9 



Redundancy and Diversity Levels 

The safety system must be designed to have a high likelihood of functioning on 

demand. Thus, single component failure should not be able to prevent the system 

from functioning. One means of achieving this is by incorporating redundancy or 

diversity into the system structure. Redundancy duplicates elements in the system 

while diversity involves the addition of a totally different means of achieving the 

same function. Both redundancy and diversity can be used at component level or 

sub-system level. 

Increased levels of duplication in the form of fully redundant and fully diverse 

elements will also increase the number of spurious system trips. To counteract this, 

partial redundancy is commonly utilised where k of the n components fitted are 

sufficient for correct system functioning. 

Component Selection 

Each component selected for the design will be chosen from a group of possible 

alternatives. For every valve, relay, pressure sensor, etc .. , for which a selection is to 

be made there will be several choices, each with associated characteristics such as 

failure rate in each failure mode, cost and time taken for their scheduled maintenance. 

The design engineer has to decide how to trade-off these characteristics to give the 

most effective option for the overall system performance. 

Maintenance Interval 

Generally the time interval between preventative maintenance activities is assigned 

on an ad hoc basis. This is now changing with the more frequent application of 

reliability centred maintenance. Even so, the allocation of available maintenance 

effort is only considered after the system design has been finalised. Since component 

selection determines the time taken to maintain the system there are significant gains 

to be made by considering the maintenance frequency at the design stage. 

10 



Limitations on the Design Choices 

There are many options open to the design engineer. To produce the most effective 

system these parameters need to be selected to give optimal system performance. The 

choice of design is not, however, unrestricted. Some of the possible design variations 

will not be feasible. Practical considerations of limits placed on resources will 

prevent a completely free choice of system design. Such considerations may include 

cost, limited maintenance effort, system weight, space limitations and other 

requirements of the system performance such as limits to the spurious trip occurrence 

rate. 

1. 7 The Design Optimisation Problem 

There are many mathematical optimisation methods available. The application of 

methods such as linear programming, dynamic programming, non-linear 

programming and sequential unconstrained optimisation (SUMT) to reliability 

problems is explained by Tillman (Rei 88). However, the features offered by the 

methods make them inappropriate for the industrial problems considered in this 

thesis. 

Many of the optimisation methods require an explicit function (objective function), 

which defines how the characteristic to be minimised is related to the design 

variables. A variation in some ofthe design variables, such as redundancy levels, 

gives a discrete change in the structure of the system and prevents an objective 

function being deduced. 

Design variables, which represent the levels of redundancy for a component or 

subsystem, are integer. If partial redundancy is incorporated through the use of 

voting systems, the number of successful channels to give the trip condition also 

needs to be chosen. This too is an integer variable for the design. 

11 



When a particular type of component is selected there will be a choice from several 

options which fulfil the same function. For example equipment supplied from 

different manufacturers. A variable corresponding to each potential piece of 

equipment can take the value 1 to indicate its selection and 0 to represent non

selection. This Boolean variable is again an integer over a restricted range. The 

optimisation scheme must be appropriate for integer variables. 

Constraint forms, which are linear or non-linear functions of the design variables 

need to be incorporated in a general solution scheme. Constraints which determine 

aspects of the system performance (such as limitations on the expected number of 

spurious trips) which can only be evaluated by a full analysis of each potential design 

(implicit constraints) may also be specified. 

1.8 Objectives ofthe Project 

The objectives of the work programme were to: 

I) Review existing reliability and risk assessment methods, which can be applied to 

industrial systems. 

2) Review existing optimisation techniques and critically appraise their capabilities 

to industrial applications. Identify the features of each method which are 

appropriate for integer variables, can cope with implicit and explicit constraint 

forms of equality or inequality type, do not require linear forms of explicit 

constraints, do not require an explicit objective function and have an efficient 

analysis routine that is able to quickly evaluate a large number of potential 

designs. 

3) Apply a Genetic Algorithm (GA) optimisation scheme to an industrial problem 

and investigate the effects of the GA parameters. 

4) Critically appraise the results from the GA approach and modifY the algorithm 

accordingly. 

12 



5) Test the GA approach further by application to a more complex industrial system. 

Give attention to the inclusion of wear out components. 

6) Develop alternative algorithms, which can cope with the features of design 

optimisation identified in (2). Formulate the methods in a manner for efficient 

computer implementation. 

7) Thoroughly investigate the application of the methods derived in (6) to an 

industrial problem. Critically appraise each algorithm and determine their most 

beneficial features as regards how efficiently and effectively they achieve the 

optimal design. 

13 



CHAPTER 2 

FAULTTREEANALYS~ 

2.1 Background 

System design is often based on traditional engineering analysis, experience and 

judgement. With rapid technology evolution and increasing system complexity, the 

additional use of more comprehensive analytic techniques in the development of safe, 

efficient, systems is appropriate. 

A primary goal of reliability and safety analysis is to identifY the causal relationships 

between events, which result in system failure, and to find ways of ameliorating their 

impact by system redesigns and upgrades. One of the most powerful and widely used 

analytic techniques in the field of reliability engineering is Fault Tree Analysis. Fault 

Tree Analysis provides a well-accepted means of improving or predicting the 

reliability and efficiency of complex systems. 

Fault tree analysis was first conceived in 1961 by H. A. Watson of Bell Telephone 

Laboratories in connection with a US Air Force contract to study the Minuteman 

Missile Launch Control System. During the late 1960's and early 1970's the 

technique evolved and was applied to several studies carried out to obtain qualitative 

reliability information about relatively complex systems. Advances in the technique 

are covered in a comprehensive bibliography in fault tree analysis and its applications 

in reference 24. 

2.2 General Description 

The various types of system safety analysis procedures can be broadly classified into 

inductive and deductive techniques. In the inductive procedures analysis begins at 

the component level. Each relevant component failure is identified and its effect on 

overall system performance established. Thus, the inductive analysis works its way 

14 



up the system through higher assemblies until the complete system is analysed. 

Conversely, deductive techniques start the analysis with an enumeration of the 

potential hazards and work down through the system to identifY the system hardware 

failures or human errors, which could have caused these. 

Fault tree analysis is an example of a top-down, deductive technique, structured in 

terms of events rather than components. The perspective is on faults rather than 

reliability. A fault tree has a root, which represents a system failure mode. This 

undesired state is termed the top event. Once the top event is defined branches are 

extended to intermediate events directly responsible for its occurrence. Each level of 

the tree is, thus systematically deduced. Branches are terminated when basic events, 

which represent the lowest resolution of the tree, are encountered. 

A single fault tree is not a model of all possible causes of system failure. Given a 

particular undesired state, a single fault tree reveals the possible combinations of 

component failures that may lead to this state. It may, therefore, be necessary to 

construct more than one fault tree during the assessment of any system to deal with 

further undesired states. 

The fault tree acts as a visual tool. The fundamental concept offault tree analysis is 

the translation of a physical system into a structured logic diagram. The tree is, thus, 

a graphical representation of the various parallel and sequential combinations of 

faults that lead to the occurrence of the top event. Following fault tree construction 

qualitative and quantitative analysis may be performed. Qualitative methods help in 

understanding the logical structure of the various failure modes of a system and their 

interrelationship. Quantitative methods, on the other hand, assign failure probabilities 

or unavailabilities to the basic events and predict the probability of the top event. 

2.2.1 System Definition and Fault Tree Construction 

Prior to Fault tree construction it is essential that the system definition is thoroughly 

addressed. Appropriate boundary conditions for the system's environment must be 

defined. An important boundary requirement is the top event. This detennines the 

15 



comprehensiveness of the analysis. The limit of resolution to which the analysis will 

develop is determined by the choice of basic events and this determines the detail of 

the fault tree structure. In addition, system definition requires specification of the 

initial condition of each component and the particular time domain under 

consideration. 

The fault tree logic diagram is constructed from two basic elements, 'gates' and 

'events'. 'Gates' connect events according to their causal relations. A gate may have 

one or more input events but only one output event. The type of gate determines 

what combination of input events must occur for the output event to occur. Table 2.1 

defines the gate symbols used in the fault trees developed during the work carried out 

in this thesis. Other gate types exist. For a comprehensive list see references 2 and 3. 

These additional gates only serve to reduce the size of the fault tree diagram and have 

to be expressed in terms of AND, OR and NOT logic prior to analysis. An equivalent 

rninimallist of event symbols is shown in table 2.2. 

Gate Symbol Gate Name Casual Relations 

0 
Output event 

AND gate 
occurs if all input 

events occur 
simultaneously. 

0 
Output event 

OR gate 
occurs if at 

least one input 
event occurs. 

~ m-out-of-n 
Output event 

gate (voting 
occurs if 

m-out-of-n input 
gate) 

n inputs events occur. 

Table 2.1 Common Gate Symbols 

16 



Event Symbol Meaning of Symbol 

L=J Intermediate event 
further developed 

Rectangle by a gate 

6 Basic event 

Circle 

0 House event. 
Either occuring or 

House notoccuring 

n L Transfer Symbol 

Triangles 

Table 2.2 Common Event Symbols 

2.3 Qualitative Analysis 

A fault tree represents the causal relations resulting in an undesired system state. 

Occurrence of the undesired state can result from many different combinations of 

events. Each unique combination is termed a system failure mode and may involve 

single or multiple component failures. Qualitative analysis consists of identification 

of these system failure modes. 

System failure modes of a given fault tree are clearly defined in the concept of a cut 

set. A cut set is a collection of basic events, such that if they all occur the top event is 

guaranteed to occur. 

When dealing with complex systems the number of possible failure modes is often 

very large. In order to restrict and simplifY qualitative analysis, consideration is 

given only to the smallest combination of basic events, which cause the occurrence of 

17 



the top event of the fault tree. A minimal cut set is such that if any basic event is 

removed from the set the remaining events are no longer a cut set. A non-minimal 

cut set has redundant components. 

A path set is the dual concept to the cut set. It is a collection of basic events such that 

ifnone of the events in the set occur, the top event is guaranteed not to occur. 

Similarly, a minimal path set is a path set such that if any basic event is removed from 

the set the remaining events collectively are no longer a path set. 

A minimal cut set can be characterised by the number of basic events comprising it, 

which is termed its 'order'. In performing a qualitative evaluation more importance 

should be placed on first and second order minimal cut sets since it is expected that 

they are more likely to occur than cut sets having more events. For example, if a 

single event has a probability of occurrence in the order of 10-2
, then a double event 

cut set could be expected to have a probability of occurrence in the order of 10-4. 

System performance can be dramatically iinproved if attention is focussed on 

eliminating the lower order cut sets. 

Logical notation allows the top event to be represented in terms of the minimal cut 

sets, 

T=Ct +C2 + .... +C. 

where T represents the top event, C; the minimal cut set i and n the number of 

minimal cut sets. The '+' symbol in the logic equation represents the OR operator. 

The minimal cut sets are represented as an AND combination of basic events, i.e. 

(2.1) 

(2.2) 

where X ij is the basic event j in the /4h minimal cut set. The'.' symbol is used to 

represent logical AND in the equation. 

18 



2.3.1 Derivation of Minimal Cut Sets 

Here, the discussion of qualitative assessment techniques is restricted to analysis of 

coherent fault trees, i.e. basic events represent failures and the logic diagram contains 

only AND and OR gates. A system which has failure modes involving both failure 

and success events is referred to as a non-coherent system. Non-coherent fault trees, 

therefore, contain AND, OR and NOT logic. 

The first algorithms to determine minimal cut sets were based on Monte Carlo 

simulation techniques (Ref. 20). Later methods are deterministic. The basic idea 

behind deterministic methods is direct expansion of the top event in terms of the 

constituent basic events using Boolean algebra. 

The fault tree OR gate logic represents the union of events. For example, an OR gate 

with two input events A and B and the output event Q can be represented by the 

equivalent Boolean expression Q = A v B (or Q = A + B). The AND gate can be 

represented using the Boolean expression for intersection. Therefore, the Boolean 

equivalent of an AND gate with two inputs A and B would be Q = A n B (or Q = 

A.B). The NOT gate is equivalent to the Boolean operation of complementation. 

Methods to determine cut sets using the above expressions are classified into two 

groups, bottom-up and top-down. Both algorithms involve the expansion of Boo lean 

expressions to obtain the Boolean logic expression for the top event and transform it 

into disjunctive normal (or sum of product) form. Each product then represents a 

minimal cut set. The substitution procedure in a bottom-up algorithm proceeds from 

the primary (or basic) events and works upward to the top event, while a top-down 

algorithm begins with the top event and works down. 

The laws of Boo lean algebra used to manipulate the structure logic expression are: 

I. Commutative laws: 

A+B=B+A, A.B=B.A 

19 



2. Associative laws: 

(A + B) + C = A + (B + C), (A . B) . C = A . (B . C) 

3. Distributive laws: 

A + (B . C) = (A + B) . (A + C), A . (B + C) = A . B + A . C 

4. Identities: 

A + 0 = A, A + 1 = I, A. 0 = 0, A. 1 = A 

5. Idempotent laws: 

A+A=A, A.A=A 

6. Absorption law: 

A+A.B=A, A.(A+B)=A 

o 

Figure 2.1 Example Fault Tree for Calculation of Minimal Cut Sets 

To iUustrate the top-down approach, consider the fault tree in figure 2.1. The top gate, 

T, is an AND gate with two gate inputs, GI and G2. The first operation, therefore, 

substitutes T with G1.G2. Next, consider GI which is an OR gate with two gate 

20 



inputs, G3 and G4, and one event input, D. The top event can now be expressed as 

(G3 + G4 + D).G2. This process is repeated, continuing down each branch until all 

references to gates are removed from the expression. Boolean laws enable 

simplification and reduction at each stage. The result is an expression for the top 

event defined solely in terms of basic events. Hence, application of the top-down 

algorithm gives 

T=G1. G2 

= (G3 + G4 + D) . G2 

= (ABC + BC + D). G2 

By the absorption law (ABC + BC = BC) this reduces to 

T = (BC + D) . G2 

Substitute for G2 (= A + C) 

T = (BC + D). (A + C) 

= ABC + BCC + AD + CD 

as C.C = C 

T = ABC + BC + AD + CD 

Again, applying the absorption law (BC + ABC = BC) gives 

T=BC+AD+CD (2.3) 

The minimal cut sets {BC}, {AD} and {CD} can be extracted from the top event 

expression (2.3). Expression (2.3) represents the minimal cut sets of the fault tree in 

sum of products form. 

It is clear from the example that the evaluation offault trees by hand can be a 

formidable job. The need for a computerised technique to detennine minimal cut sets 

21 



when considering larger, more complex trees becomes apparent. One of the earliest 

computer programs using the deterministic method is the PREP program developed 

by Vesely and Narum (Ref 90). Fussel and Vesley (Ref 32) developed an 

alternative top-down orientated algorithm called MOCUS. It is based on the fact that 

OR gates increase the number of cut sets whereas AND gates enlarge the size of the 

cut sets. 

The top event label is inserted as the first element of a two-dimensional matrix. This 

matrix develops as lower level events are substituted. The result is ultimately a 

matrix consisting purely of primary events. The matrix formulation is constructed as 

follows: 

1. Locate the top event in the first row and column of the matrix. 

2. Continually scan the array and implement the following replacement: 

a) Expand each OR gate vertically in terms of its gate inputs, thus increasing 

the number of cut sets. Duplicate all other elements in the initial row. 

b) Expand each AND gate horizontally in terms of its gate inputs, thus 

enlarging the size of each cut set. 

Repeat the process above until all gates have been replaced and only primary 

events remain. 

3. The final step involves reduction of the cut sets to their minimal fonn through 

application of Boolean laws. 

Alternative Methods 

Many alternative algorithms with unique features have been proposed to obtain 

minimal cut sets for the top event in a more efficient manner. The main goal of these 

algorithms is to obtain the minimal cut sets as quickly as possible using the smallest 

amount of core memory. 

Semanders (Ref 76) in the computer code ELRAFT (An ~fficient Logic Reduction 

Analysis of Eault Irees) introduces the concept of prime number representation of 

22 



I -

basic events for reduction offault trees. This concept is useful in storing the cut sets 

and eliminating dependencies. 

Semanders applies the conventional bottom-up procedure in conjunction with the 

unique feature that each basic event is assigned a prime number. A particular 

combination of basic events can, therefore, be expressed uniquely by a single number, 

which is equal to the product of prime numbers corresponding to the basic events. 

Consider for example, a fault tree with basic events A, B and C and cut sets {AB}, 

{ABC}. If events A, B and C are assigned the prime numbers 2,3 and 5 respectively, 

cut set AB is represented by 2x3 = 6, cut set ABC by 2x3xS = 30. However, 6 is a 

factor of 30, thus 30 is dropped. Consequently, non-minimal sets are automatically 

eliminated and only those proving to be minimal are stored as a single number. 

Wheeler et al (Ref 91) introduce another unique numbering scheme using bit 

manipulation. This achieves greater efficiency in terms of computer effort and 

storage. A disadvantage of this approach may be the difficulty in organising basic 

events as binary bits for larger tree structures. 

Fatram (Eault Tree Reduction AlgorithM) introduced by Rasmuson and Marshall 

(Ref 70) is a top-down algorithm similar to that ofMOCUS. It differs in the order 

with which it considers each gate. Gates to be resolved are selected in such a manner 

that computer core requirements are minimised. 

Initially all AND gates and OR gates with gate inputs are resolved and reduction 

techniques applied. OR gates with only basic events remain in the matrix. The next 

step deals with these remaining OR gates. The action taken depends on whether these 

basic event inputs are repeated. For a detailed description of the algorithm with 

worked examples the reader is referred to the paper. 

An interesting addition to the FATRAM algorithm is a process termed 'weeding' or 

'culling'. This process is based on the assumption that lower order cut sets largely 

determine system performance. Consequently, the effect exerted by cut sets above a 

certain order is insignificant. The weeding process ignores cut sets above a 

23 



predetermined 'ceiling' for cut set size, thus reducing ineffectual computer effort as 

cut sets are resolved. 

A comparison between FA TRAM and MOCUS carried out in the paper portrays 

impressive results. Twenty fault trees are compared in total with varying results. A 

fault tree with 25 gates and 36 basic events showed a particularly dramatic 

improvement. MOCUS detennined 1184 cut sets in 7.36s, requiring 8288 words of 

core. FATRAM took 0.547s and used only 112 core words (Ref. 70). 

Many algorithms, which aim to increase efficiency, incorporate innovative methods 

to handle repeated events, as inferred in the FATRAM approach above. As stated by 

Ziani, much effort is wasted creating then deleting non-minimal cut sets in 

conventional algorithms when repeated events are present (Ref. SO). In his paper 

Ziani introduces an algorithm with improvements based on reducing the number of 

set comparisons required to find minimal cut sets. The algorithm is based on the 

partitioning of cut sets into two families, those containing repeated events and others. 

The first step generates all cut sets by a conventional approach such as MOCUS. The. 

cut sets are partitioned and the family containing repeated events considered next. 

Reduction is performed on this family alone, thus limiting the maximal number of 

comparisons. This reduced family of cut sets is then added to the 'other' group to 

create the full minimal set. In addition to its simplicity, a major advantage of this 

approach is its ability to combine with other algorithms, thus decreasing computer 

effort and enhancing performance. 

2.3.3 Modularisation 

The majority of algorithms for cut set derivation are based on Boolean reduction 

techniques. Even with modifications most of these methods get into computational 

difficulties with large trees. Large trees lead to an impractical number of Boo lean 

indicators, which must be examined during Boolean reduction. Computational time 

is reduced when all combinations of Boo lean indicators are being investigated. 

'Weeding' can eliminate much unnecessary computer effort. However, order cut off 

procedures can leave out important minimal cut sets and hence, lead to considerable 

24 



errors. This is often exacerbated when the component failure data is markedly 

different. In addition, many algorithms are designed for special case scenarios and 

are not efficient for general fault tree analysis purposes. 

An alternative approach, which has the potential to lead to more efficient computer 

programs and also identifY subsystems of a fault tree which are intuitively 

meaningful, is modularisation. The theory behind this technique is that analysis 

algorithms can only guarantee efficiency if they exploit the simplest form of fault 

tree. It may be possible to decompose a large fault tree into several sub-trees. Then, 

even if the number of steps by the analysis grows exponentially, the analysis is 

applied to small trees. 

A module of a fault tree is a set of at least two events which has only one output to 

the rest of the tree and no inputs form the rest of the tree. These modules can then be 

used to split the analysis problem into disjoint parts. Once a module has been 

analysed a reduced system can be defined in which the module is treated as a basic 

event, thus reducing the size of the remaining analysis problem. A more 

comprehensive review of modularisation can be found in reference 15. 

Modularisation proves particularly effective in simplifying analysis on certain trees 

when used in conjunction with conventional methods. Problems arise, however, in 

creating effective techniques to find the modules of a general fault tree. In addition, 

certain trees do not contain modules and thus, cannot be simplified in this way. 

2.4 Quantitative Assessment 

This section develops the theory and techniques required to predict the reliability 

performance of a system. Computerised quantitative assessments are based on the 

analytic methodology called 'Kinetic Tree Theory' introduced by Vesely in 1970 

(Ref 89). Kinetic Tree Theory requires that all basic events in the tree structure are 

independent. It has the ability to model primary events, which have time-dependent 

failure probabilities and requires that all the minimal cut sets of the fault tree are 

known. Quantitative assessments yield values for the system reliability, the system 

25 



availability, the expected number of system failures over a given time period and the 

system failure rate, the inverse of which depicts the mean time to failure of the 

system. Additional probabilistic quantities, such as the mean time between repairs 

are simply obtained from the above characteristics. 

The measures of importance of individual failure events and cut sets of a fault tree are 

another feature of quantitative fault tree analysis. Whilst the evaluation of the top 

event provides system reliability and availability information, probabilistic 

importance computation can generate a numerical ranking to assess weaknesses in the 

system. 

2.4.1 Component Failure Parameters 

An accurate description of a component's failure and repair cycle is central to the 

identification of system hazards, since these are caused by combinations of 

component faults. Thus, basic events related to system components with binary 

events, i.e. normal and failed, must first be quantified. 

It is assumed that at any given time a component is either working or failed. A new 

component is automatically assumed to be in the working state and this is subject to 

change as time evolves. When the component fails it enters the failed state. A non

repairable component will remain in this state forever. A repairable component will 

return to the working state following repair and continue in this two-state cycle. 

Three common assumptions are made to ease mathematical analysis: transition from 

one state to the next is instantaneous, only one state transition can occur in a 

sufficiently small interval of time, a repaired component is considered to be as good 

as new. 

The Failure Process 

Four related probability functions: the reliability function, the cumulative distribution 

function, the probability density function and the hazard rate function can be used to 

26 



compute component reliabilities. Specifying anyone of these will uniquely and 

completely characterise the failure process. Various summary measures of reliability 

can then be determined. 

Let R(t) denote component reliability, that is the probability that a component will 

function over some time period. Thus, 

where t is the designated period of time for the items operation and T the time to 

failure of the item. Also, R(t);:: 0, R(O) = 1 and limt->oo R(t) = o. 

(2.4) 

Let F(t) denote the cumulative distribution function (CDF) of the failure distribution, 

that is the probability that a component fails at some time prior to I. 

(2.5) 

where F(O) = 0 and Iim,~oo F(/) = 1. 

The corresponding probability density function (PDF), 1(/), is thus 

1(1)= dF(I) 
dl 

(2.6) 

This function describes the shape of the failure distribution and has the two properties 

~ 

1(/);:: 0 and f 1(/}d1 = 1 (2.7) 
o 

The reliability function and the CDF represent areas under the curve defined by 1(/), 

giving rise to the following relations 

t 

F(/) = f 1(/')dt' (2.8) 
o 

27 



~ 

and R(I) = J f(I'}!I' (2.9) 

where R(I) = 1- F(I) (2.10) 

The mean time to failure (MTTF) is defined by 

~ 

MTTF=E(T)= Jif(t}!t (2.11) 
o 

The conditional failure rate or hazard rate function, h(I), describes the instantaneous 

transition to the failed state. The hazard rate is a measure of the first and only failure 

of an item in the next instant of time, given that the item is presently operating. 

h(t}dl = P[component fails between [I, 1+ dl )] 
P[no failures in [0, I)] 

= -=--f-,--,:(I }d,,1 f(1 }dl 
I-F(I) R(I) 

Integrating both sides of equation (2.12a) gives: 

J h{t'}dl' = J f{t'}d~' -In [1- F{t)] 
o 0 1- F{t ) 

:. F(I) = I-ex{ [h(t'}dt'] 

(2.12a) 

(2.12b) 

In practice h(l) often exhibits a bathtub shape and is referred to as a bathtub curve 

(Ref's 28,41), as shown in figure 2.2. 

The Repair Process 

Repairable items undergo repair and are, thus returned to their normal state. 

Parameters representing the repair process are derived in the same manner as for the 

failure process. Time is now measured from the instant the component failed. Thus, 

28 



G(t} = [a failed component is repaired in [0, t}] 

The corresponding density function is 

g{t}= dG{t} 
dt 

and conditional repair intensity 

Integrating gives 

m{t}= g{t} 
I-G{t) 

then the mean time to repair (MTTR) is defined by 

00 

MTTR = f tg(t}:lt 
o 

h(t) 

Burn-in Useful life 

. ....-::-Early! Rapdom failures : . 
',failures : ¥ . .·f 

" '. : : .. Wearout 
.......... :-:::-: ~ "'--, ....... :.: ::":::':::':" .. .: ..... ~ .... :. - faih:tf 

Figure 2.2 The Bathtub Curve 

29 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

t 



The Whole Process 

The lifetime of a repairable component enters a continuous cycle consisting of 

repetitions of the failure-to-repair and the repair-to-failure process. For repairable 

components a relevant measure of performance is the availability as opposed to the 

reliability. More precisely, availability, A(t}, is defined as the probability that a 

component is performing its required function at a given point in time. Conversely, 

unavailability, Q(t}, is the probability that a component is in the failed state at time t, 

where 

Q{t) = 1- A{t) (2.17) 

The entire life cycle of a component needs to be modelled to calculate component 

availability and attention given to additional parameters required to achieve this. 

The hazard rate is applicable only to non-repairable components as it relies on the 

component having worked continuously from zero to time t. To model the whole 

process two further parameters are introduced: the unconditional and the conditional 

failure intensity. 

The unconditional failure intensity, wet}, is the probability that a component fails per 

unit time at t given that it was working at t = o. 

The conditional failure intensity, A(t}, is the failure rate based on those components 

which are working at time t. In contrast, wet} is based on the whole population. 

Conditional probabilities can be used to relate it and w 

it{t ';it = P[a component fails in [t, t + dt) given that it was working at t = 01 

_ P[acomonentfails in ~,t+dt)l 
- P[component is working at t 1 

w{t}dt 
-I-Q{t) 

w{t}dt 

A{t) 

30 

(2.18) 



Repair parameters must also be considered. The unconditional repair intensity, v(t), 

is the probability that a failed component is repaired per unit time at t, given that it 

worked at t = 0. The conditional repair intensity, p{t) , is the probability that a 

component is repaired per unit time at 1 given that it is failed at 1 and was working at 

time zero, i.e. p{l) is based only on those components in the failed state at time I, 

whereas v is based on the whole population. 

Using the density functions f{l) and g{I), integral equations can be developed 

whose solution yields the unconditional failure and repair intensities. These integrals 

are derived in Andrews and Moss (Ref 5) and are 

t 

W{I) = f{I)+ f f{l-u)v{u}du (2.19) 
o 

I 

V{I) = f g{l-u)w{u}du 
o 

By solving the simultaneous equations (2.19) and (2.20) the expected number of 

failures and repairs can be determined over any time period from the following 

equations 

I 

W{O,I) = f w{u}du 
o 

I 

V{O,I)= f v{u}du 
o 

(2.20) 

(2.21) 

(2.22) 

In turn, these expectations can be used to derive component unavailability, giving: 

Q{I) = W{O,f)- V{o, f) (2.23) 

As described in Andrews and Moss (Ref 5). 

31 



2.4.1.1 Failure Rate Models 

Several probability models are useful in describing a failure process. The most 

common models are based upon the exponential, Weibull, normal and lognormal 

probability distributions. Those utilised in the analysis processes detailed later are 

described below. 

The Exponential Reliability Function 

A failure distribution that has a constant failure rate has failure times given by the 

exponential probability distribution. A great deal of reliability analysis is carried out 

using the assumption that components are operating during their 'useful life' period, 

as represented by the bathtub curve in figure 2.2. This 'useful life' period exhibits a 

reasonably constant rate of failure, characterised by random failures of the 

component. The exponential distribution is, therefore, one of the most important and 

widely used reliability distributions. 

To develop the Constant failure rate (CFR) model for the failure process assume h(t) 

= A., using equations (2.12b), (2.10) and (2.6) with t ~ 0 

(2.24) 

(2.25) 

hence j(t) = A. e-.'.l (2.26) 

Using equation (2.11) The mean of the distribution can be found yielding the mean 

time to failure (MTTF or p) 

1 
p=

A. 

32 

(2.27) 



Similarly, for the repair process with constant repair rate v and using equation (2.16) 

the mean time to repair (MTTR or .. ) is 

1 ,=
v 

(2.28) 

If the constant failure and repair rates apply then the solution of equations (2.19) and 

(2.20) can be performed using Laplace transforms to yield the unconditional failure 

and repair intensities 

AV ..1,2 
w(t} = ---exp[-(A +v}t] 

A+V A+V 

Further substitution into equation (2.23) yields 

A Q(t} = - {l- exp[-(A + v}t]} 
A+V 

If the component has been operable for a long period of time, i.e. t ~ 00, the 

stationary or steady-state unavailability can be used and is estimated by 

Q=_A_=_'_ 
A+V p+, 

The assumption that the MTBF is much greater than the MTTR results in a very 

simple pessimistic approximation of component unavailability 

Q =A-r 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Standby or safety systems lie in the dormant state and function only when the demand 

requires. A dormant system failure may go undetected for a substantial period of 

time, the fault being noticed only when demand requires the system to function, or the 

33 



system is maintained or tested. Repair of such systems relies on the time between 

system inspection intervals as well as the MTTR, that is the detection time and the 

repair time. If a system is inspected every (J time units, the average unavailability is 

given as 

(2.34) 

The WeibuU Distribution 

Weibull is an exceedingly useful probability distribution in reliability. In contrast to 

the exponential distribution, Weibull is able to model increasing and decreasing 

failure rates. Thus, lending itself to the first (wear-in) and last (wear-out) phases of 

the bathtub curve in addition to the useful life period. It is characterised by a hazard 

rate function of the form 

Beta (fJ) is referred to as the shape parameter. ModifYing the value of P has a 

dramatic effect on the PDF. Eta ( 1] ) is known as the scale parameter (or 

characteristic life) and influences both the mean and spread of the distribution. 

The CDF and PDF using Weibull gives 

p (I JP_I (I JP /(/)=-;; 1] exp- 1] 

34 

(2.35) 

(2.36) 

(2.37) 



For f3 < 1, the hazard rate applies to the bum-in phase. When f3 = 1, the hazard rate is 

constant and the distribution is identical to the exponential with A = 111/. For f3 > 1, 

the hazard rate applies to the wear-out phase. For f3 ~ 3, the PDF tends toward a 

normal distribution, thus portraying symmetry. When 1 < f3 < 3, the Weibull portrays 

its typically skewed distribution. 

The disadvantage of the Weibull distribution is the increase in complexity when 

analysing the whole failure and repair process. Introducing time-dependent failure 

models creates unconditional transition equations, which are too complex to solve 

using Laplace transforms. The analyst usually has to resort to numerical methods to 

achieve component unavailability. This are is covered in more detail in chapter 9. 

2.4.2 System Failure Parameters 

2.4.2.1 Top Event Quantification 

Once failure probabilities are assigned to each basic event and minimal cut sets have 

been obtained, quantification of the top event can be instigated. The top event 

probability or unavailability is denoted as Q,(t). 

The top event exists when at least one minimal cut set exists. If the basic events are 

independent this gives rise to what is termed the inclusion-exclusion formula, where 

the top event probability, QEXACT, is defined as 

n n i-I 

QEXACT = LP(cJ- LLP(Cj nCJ+ ... +(-I)~'P(C, nCz n ... nC.} (2.38) 
;=1 ;=2 j=l 

where n is the number of minimal cut sets. In the general case 

p(C, nCz n ... nC.)= p(CJp(C,)..p(C.) 

35 



To demonstrate the use of the inclusion-exclusion expansion the top event probability 

of the fault tree in figure 2.3 is derived. 

D 

Figure 2.3. Example Fault Tree to Calculate Top Event Probability 

The fault tree in question has minimal cut sets {A}, {BC} and {D}. The top event 

can therefore be expressed as 

T=A+BC+D 

Each basic event is assigned a probability of 0.2 and the minimal cut sets denoted by 

Ct, C2 and Cl respectively. The cut sets, therefore, have probabilities of failure 0.2, 

0.04 and 0.2. Expansion of equation (2.38) gives 

Qs(t) = [p(C,)+p(C2 )+p(CJ]- [p(C, nC2 )+ p(C, nC,)+ p(C2 nC,)] 
+ [p(c, nC2 nC,)] 

= [0.2+ 0.04 +0.2]- [0.008 + 0.04 + 0.008]+ [0.0016] 

= [0.44]- [0.02]+ [0.0016] 

= 0.4216 

36 



For a small system such as this the top event probability can be calculated exactly. 

Fault trees representing rea1life scenarios can have hundreds and thousands of 

minimal cut sets. As can be seen from this simple example, as the fault tree 

complexity increases calculations involving the inclusion-exclusion expansion soon 

become intolerable. For this reason approximation techniques are introduced to 

estimate lower and upper bounds for system unavailability. 

Lower and Upper Bounds for System Unavailability 

The inclusion-exclusion principle is based on alternately adding and subtracting each 

successive term. Truncating the expansion after a negative term results in a lower 

bound for system unavailability, conversely truncation after a positive term gives an 

upper bound. Thus 

(2.39) 
1:::1 ;=2 j=1 ;=1 

i.e. Lower bound::; Exact ::; Upper bound 

As is shown in the above example, the contribution from each term becomes less 

significant as the expansion progresses. The rarer the basic event probabilities, the 

smaller the number of terms required to give an accurate upper or lower bound 

approximation. The simplest approximation, i.e. the single term upper bound, is the 

Rare Event approximation. It is so called as it is only accurate if the component 

failure events are rare. 

The Minimal Cut Set Upper Bound 

A more accurate upper bound approximate can be obtained using the minimal cut set 

upper bound. The top event occurs if at least one minimal cut set occurs. 

Conversely, if no minimal cut sets occur the system does not fail. Hence, 

37 



where 

Q, (t) = P(at least one minimal cut set occurs) 

= 1-P(no minimal cut sets occur) 

Ne 

p( no minmal cut sets occur);?: n p( minimal cut set i does not occur) 
i=1 

Ne being the number of minimal cut sets. The equation portrays equality when basic 

events are not common to more than one minimal cut set. Thus, 

Ne 

Q,(t) ~ 1- n[l-p(Ci )] = QMCSUB (2.40) 
;=1 

2.4.2.2 Unconditional System Failure Intensity 

The calculation of minimal cut set probabilities has already been considered. The 

expected number of times the cut set occurs per unit time at t, wc(t), is given by 

where, N is the number of events in the cut set, wJt) is the unconditional failure 

intensity of event j and qi(t) the unavailability of event i. 

(2.41) 

A further quantitative system measure is the expected number of top event 

occurrences over a given period of time. The frequency of the top event from zero 
time to time t is given in equation (2.21), where w is the unconditional failure 

intensity. The unconditional failure intensity represents the expected number of times 
the top event occurs at time t. Thus, w s (t ';it is the expected number of top event 

occurrences in [t, t + dt) . 

A means to achieve w s (t) uses the criticality function for each component i, denoted 

by Gi(q) (also known as Birnbaum's measure of importance). The criticality 

38 



function is defined as the probability that the system is in the critical state with 

respect to component i. Failure of component i, therefore, transfonns the system 

from the working to the failed state. 

A means to evaluate the criticality function requires detennination of the probability 

that the system fails only if component i fails. This is the probability that the system 

fails with component i failed minus the probability that the system fails with 

component i working. This gives 

where 
Q(l" q) is the probability of system failure with q, (/)= 1 
Q(O" q) is the probability of system failure with q, (/)= 0 

Alternatively 

where 

Subsequently, W s is evaluated using 

39 

(2.42) 

(2.43) 

(2.44) 



Figure 2.4 Example Fault Tree to Calculate the Unconditional Failure Intensity 

As an example the unconditional failure intensity and expected number of system 

failures for the fault tree in figure 2.4 are derived. The minimal cut sets of the tree are 

{BD} and {ABC}, i.e. Cl and C2 respectively. Component failure data is given in 

table 2.3. 

Component t..(hours) t{hours) 

A 3 x 10-4 12 

B 9 x IO-s 16 

C 1.1 x 10-4 10 

D 4 X 10-4 12 

Table 2.3 Component Failure Data 

Consideration is first given to component failure parameters. Using the steady-state 

unavailability approximation, q = AT, component unavailabilities are 

qA =3.6xI0-3 

qs = 1.44 X 10-3 

qc = 1.1 X 10-3 

qD = 4.8x 10-3 

Using W = A(I- q), the component unconditional failure intensities are 

40 



W A = 2.9892 X 10-4 

WB = 9.8704 x 10-' 

Wc = l.0987 X 10-' 

W D = 3.9808 X 10-3 

Table 2.4 to 2.7 specifY each possible combination of component states where A, B C 

and D are the critical components respectively. A'" verifies system failure as a 

result of the respective combination and the associated probability is stated in 'Prob'. 

Component State System State Corn onent State System State 

B C D Crit Prob A C D Crit Prob 

W W W W W W 

W W F W W F • 4.8e-3 

W F W W F W 

W F F W F F • S.28e-6 

F W W F W W 

F W F • 6.91e-6 F W F • l.73e-S 

F F W • l.S8e-6 F F W • 3.96e-6 

F F F * l.6e-9 F F F • l.ge-8 

Table 2.4 Component A Critical Table 2.5 Component B Critical 

Component State System State Corn onent State System State 

B C D Crit Prob A C D Crit Prob 

W W W W W W 

W W F W W F 

W F W W F W • 1.44e-3 

W F F * 6.91e-6 W F F * l.58e-6 

F W W F W W 

F W F F W F 

F F W * S.l8e-6 F F W • 3.96e-6 

F F F • 1.21e-S F F F * S.7e-9 

Table 2.6 Component C Critical Table 2.7 Component D Critical 

41 



Using tables 2.4 to 2.7 G,(q) for each component is 

GA (q) = 85 X 10-6 

GB (q) = 4.92xlO-3 

Gc(q)= 1.2IxI0-' 

GD(q)= 1.44 x 10-3 

Using equation (2.44) the unconditional failure intensity is 

Ws~)= ((2.99 x 1O-4)x (8.5 xlO-6 ))+ (~.87x W')x (4.92 X 10-3 
)) 

+((1.1 xI0-4)x (1.21 x 10-' ))+((3.98xl0-3 )X(I.44X 10-3)) 

=2.54xlO-9 +4.86xlO-7 +1.33xl0-9 +5.73xl0-6 

=6.22xlO-6 

The above calculations consider only the time interval [t, t + dt). To find the expected 

number of system failures over say 10 years (i.e. 87600 hours), equation (2.21) gives 

2.5 Faulttree+ 

17600 

W(0,87600)= Jws~)dt 
o 

= 6.2207 X 10-6 x 87600 

= 0.0545 

A fault tree analysis software package called FAULTTREE+ (Version 4.1) provides 

both graphical capabilities to construct the failure logic model and comprehensive 

analysis functions. The program is controlled via a Graphics User Interface (GUI), 

which enables functions and edit operations to be predominantly controlled using a 

mouse device. 

Faulttree+ provides interactive facilities for constructing, editing and plotting fault 

trees. The program will allow the user to construct single large fault trees. A useful 

feature, however, is that the user may divide the tree into 'pages' by attaching 'page' 

42 



markers on selected gates within a single large tree. The tree is, therefore, more 

manageable, easier to view and less prone to human error. 

2.5.1 Basic Event Model Types 

Prior to analysis of the fault tree, data must be entered for each included primary 

event. Before data input the primary event type must be determined. The allowed 

event types are basic, conditional, undeveloped, dormant and house. In addition one 

of four alternative quantitative failure models for each event must be selected, where 

the various mathematical expressions that are available to calculate the component 

unavailability constitute the component's 'model type'. These models are discussed 

in detail below. 

Fixed Unavailability and Unconditional Failure Intensity 

The fixed model specifies a fixed, time-independent unavailability (q;) for an event. 

A fixed unconditional failure intensity (w;) may also be specified .. 

The system unavailability and total down time are dependent only on the component 

unavailability and so the component's unconditional failure intensity is not necessary 

to determine the parameter. The unconditional failure intensity will be required for 

basic events in the spurious system failure fault tree, where top event frequency of 

occurrence is required. 

Constant Failure and Repair Rate 

This model specifies fixed failure and repair rates. It is assumed that a failure event is 

instantaneously revealed and repair instigated immediately. The event unavailability 

and unconditional failure intensity are then calculated from the following expressions: 

43 



A q(t}= -{l-exp-{A+v 1} 
A+V 

w{t} = A{l-q{t)} 

(2.45) 

(2.46) 

where q(t} and w{t} are the unavailability and unconditional failure intensity at time 

t, A the constant failure rate and v the constant repair rate. Non-repairable 

components are given a repair rate of zero. 

Mean Time to Failure and Repair 

The mean time to failure (MTTF), jJ, and the mean time to repair (MTTR), T , 

parameters are given and used to calculate the constant failure and repair rate using 

equations (2.26) and (2.27) respectively. The failure and repair rates are then used in 

equations (2.45) and (2.46), defined in the previous model, to evaluate q{t} and w{t} 

respectively. 

Dormant Failure with Periodic Inspection 

This model is appropriate for dormant components whose failure remains unrevealed 

until periodic inspection is performed. It produces an average unavailability and 

unconditional failure intensity from the constant failure rate (A), the MTTR ( T ) and 

inspection interval parameter ( ()). The model takes an average value of the typical 

saw-toothed behaviour with period of (), see figure 2.5. 

44 



Mean Value 

o 20 30 time 

Figure 2.5 Dormant Failure with Periodic Inspection 

The unavailability and unconditional failure intensity for each basic event are given 

by 

(2.47) 

(2.48) 

Note a more accurate equation for (2.47), when the mean time to repair is negligible, 

IS 

(2.49) 

2.5.2 Analysis in Faulttree+ 

Having constructed the fault tree and entered all primary event input data format the 

'analysis' can be performed. On selection ofthe analysis option two ascii files 

describing the tree structure and the quantitative data are automatically created. 

These files are given the same base name as the current graphics file but with 

45 



extensions '.ats' (tree structure) and '.aqd' (quantitative data). (The fonnat of each 

ascii file is given in Appendix I). 

To illustrate the analysis process using Faultree+ consider the fault tree in figure 2.6, 

where the model indicators and significant parameters are stated beneath each 

primary event (see Appendix 11). The tree is named example. 

P=O.OOO6 P=O.OOO5 

P=O.OOO3 F=1 

R=O.OO2 P=O.OOO5 

Figure 2.6 Fault tree 'Example' 

On selection of the 'analysis' option the corresponding ascii files, 'example.ats' and 

'example.aqd' are created. These are shown in figures 2.7 and 2.8 respectively. The 

first line in the ats file verifies that the top gate is an OR gate with 2 gate inputs: gate 1 

and gate2 . All gates, which appear in the tree, are subsequently defined. As regards 

the aqd file, the first line describes the basic event 'event!'. The model code 

indicates a fixed model type. The second line states the value of the associated 

46 



parameters, i.e. the constant unavailability is 0.01 and the unconditional failure 

intensity 0.005 (both standard deviations are undefined). Note that Event3 is of 

dormant type, i.e. 'P' and hence the failure rate, inspection interval and mean time to 

repair parameters are specified. 

top OR 2 Ogatel gate2 
gate2 AND 1 2gateS event3 event4 
gate 1 AND 1 Igate3 event I 
gate3 OR I Igate4 house I 
gate4 AND 0 2event2 event4 
gateS AND 0 3 event I eventS house2 

Figure 2.7 Fault Tree Structure File CaUed example.ats 

Event I F 
0.01 O.OOS 0 0 
Event3 P 
.0.0006 8904 36 0 0 
House2 H 
I o 0 0 
Event2 R 
0.002 0.D3 0 0 
House2 H 
o 0 0 0 
Event4 P 
O.OOOS S040 36 0 0 
EventS R 
0.0003 0.004 o 0 

Figure 2.8 Quantification Data File CaUed example.aqd 

Analysis determines an upper and lower bound to system unavailability, system 

unconditional failure intensity, system failure rate and expected failures, total down 

time and the number of minimal cut sets. 

2.6 Binary Decision Diagrams 

Fault trees provide a clear and logical visual tool, which is then analyzed, first 

qualitatively then quantitatively. Fault trees are not, however, an ideal form for 

47 



mathematical analysis. Computing the minimal cut sets of a fault tree and evaluating 

the associated probability are problems that increase exponentially with respect to the 

number of basic events involved. Since the 1960's a lot of effort has been devoted to 

both aspects offault tree analysis. Available analysis tools, such as Faulttree+ 

(described in section 2.5), resort to the use of approximations. In addition, they 

assume that basic events have a small likelihood of occurrence and introduce 

problems such as estimation of truncation error. Analysis techniques have in effect 

reached' saturation point'. Computerized methods are so well developed that further 

refinement is unlikely to significantly alleviate computer effort. Substantial 

improvement in fault tree analysis will, thus only result from a completely new 

approach. 

2.6.1 Introduction to BDD's 

Binary Decision Diagrams (BOO's) provide an alternative approach for manipulating 

Boolean functions that overcome the limitations of many conventional procedures. 

BOO's were formally defined in 1986 by Byrant (Ref 14), who started from much 

more ancient ideas ofC.Y.Lee (Ref 49) and S.B.Akers (Ref 3). The use of BOO's 

in the reliability analysis framework was initiated by O.Coudert and J.C.Madre 

(Ref 19) and further developed by Rauzy (Ref. 71) to analyse fault trees. 

The fault tree structure is first converted to a BOO, which represents the Boolean 

equation for the top event in a form much easier to manipulate than the fault tree. 

The BOO is then used to encode the minimal cut sets and carry out an exact 

quantitative assessment. Analysis of BOO's has been shown to be much faster than 

the quantification of the fault tree structure itself 

This section describes how to construct the BOO and obtain the minimal cut sets. In 

addition, factors affecting efficient construction and necessary minimisation 

procedures resulting in an optimal BOO are discussed. 

48 



2.6.2 General Description 

A BOO is a rooted, directed acyclic graph. All paths through the BOO terminate in 

one of two states, either a 1 state, which corresponds to system failure, or a 0 state, 

which corresponds to system success. All the paths terminating in a 1 state give the 

minimal cut sets of the fault tree. A BOO is composed of tenninal and non-terminal 

vertices, which are connected by branches. Terminal vertices have the value 0 or 1 

and non-tenninal vertices correspond to the basic events of the fault tree. Each vertex 

has a 0 branch which represents basic event non-occurrence (works) and a 1 branch 

which represents basic event occurrence (fails). All the right hand branches leaving 

each vertex are the 0 branches and all the left-hand branches are 1 branches. As an 

example BOO consider figure 2.9. 

1 

Terminal 
vertex 

o 
1 branch 

Figure 2.9 An Example BDD 

Non-terminal 
vertex 

Every path starts from the top basic event, called the root vertex, and proceeds down 

through the diagram to the terminal vertices. Only the vertices (or nodes) that lie on a 

1 branch on the way to the terminal 1 vertex are included in a path, which represents 

the cut sets. For example a path, or cut set, of the BDD shown in figure 2.9 is 

49 



{X1.X2}. To reach the left most terminal I vertex a I branch is traveled from Xl and 

a I branch from X2. The other path set of the BOO in figure 2.9 is {X3.X4). The 

path taken from the root vertex is a 0 branch and hence, X I is not included in the 

latter cut set. The BOO represents the same logical function as its equivalent fault 

tree. 

2.6.3 BDD Construction 

The BOO method developed by Rauzy (Ref. 71) constructs the BOO from its 

equivalent fault tree using a bottom up procedure. The variables must first be 

assigned an ordering. Rauzy recommends the use of a top-down, left-right ordering, 

where the basic events which are placed higher up the tree are listed first and 

regarded as being 'less than' those further down the tree, such as Xl < X2. Basic 

events encountered for the first time on the same level are considered from left to 

right, i.e. those to the left are considered 'less than' those at their right. In addition ite 

connectives are assigned to each basic event, X;, in the fault tree, i.e. ite(X;, I, 0). 

Each basic event X; can either fail (I branch) or work (0 branch). The following 

procedures are then used to compute the BOO. 

Let J = ite(x, FI, F2) and H = ite(y, Gl, G2) then 

1. Ifx<y; 

J<op>H = ite(x, FI<op>H, F2<op>H) 

2. If x = y; 

J<op>H = ite(x, FI <op>Gl, F2<op>G2) 

Where <op> denotes a Boolean operation of the logic gates in the fault tree. This is 

replaced by the dot or product symbol if the gate is an AND gate and the sum symbol 

if the gate is an OR gate. Where the fault tree includes vote gates the following 

procedure is also used. 

50 



3. IfF is a kin vote gate with inputs Fl,K ,Fn, i.e. F = at -Ieast(k, Fl,K Fn), then F 

is written implicitly as (Fl nat -Ieast(k -1,F2,K ,Fn) vat -Ieast(k, F2,K Fn), 

where n", AND and v '" OR . 

The following identities are used with the procedures above to simplifY the ite 

structure at each stage. 

If <op> is an OR gate; 

I+H=1 

O+H=H 

If <op> is an AND gate; 
l.H=H 
O.H=O 

X 1 < X2 < X3 < X4 

Figure 2.10 Example Fault Tree for ite Construction 

The BDD construction procedure is demonstrated using the fault tree shown in figure 

2.10 and obtains the ite structure for the top event in the following manner. 

51 



1. The variable ordering is Xl < X2 < X3 < X4; 

2. Each basic event is assigned an ite structure; 

Xl = ite(Xl, 1, 0) 

X2 = ite(X2, 1, 0) 

X3 = ite(X3, 1, 0) 

X4 = ite(X4, 1,0) 

3. Applying a bottom-up approach and using the relevant procedures and 

simplification identities gives 

G3 = ite(X3, 1, 0) + ite(X4, 1,0) 

= ite(X3, l+ite(X4, 1,0),0 + ite(X4, 1,0» 

= ite(X3, 1, ite(X4, 1, 0) 

Gl = G3.xl 

= ite(X3, 1, ite(X4, 1, O».ite(Xl, 1,0) 

= ite(Xl, l.ite(X3, 1, ite(X4, 1,0», 0.ite(X3, 1, ite(X4, 1,0») 

= ite(Xl, ite(X3, 1, ite(X4, 1,0»,0) 

G2 = X2 + X3 

= ite(X2, 1,0) + ite(X3, 1,0) 

= ite(X2, 1, ite(X3, 1,0» 

Top = Gl + G2 

Therefore, 

= ite(Xl, ite(X3, 1, ite(X4, 1, 0»,0 + ite(X2, 1, ite(X3, 1,0») 

= ite(Xl, ite(X3, 1, ite(X4, 1,0» + ite(X2, 1, ite(X3, 1, 0»,0 + ite(X2, 1, 

ite(X3, 1,0») 

= ite(Xl, ite(X2, 1 + ite(X3, 1, ite(X4, 1,0», ite(X3, 1,0» + ite(X3, 1, 

ite(X4, 1,0», ite(X2, 1, ite(X3, 1,0») 

= ite(Xl, ite(X2, 1, ite(X3, 1 + 1, 0 + ite(X4, 1, 0», ite(X2, 1, 

ite(X3, 1,0») 

52 



Top = ite(XI, ite(X2, I, ite(X3, I, ite(X4, 1,0), ite(X2, I, ite(X3, 1,0») 

The top event is stated in tenns of an equation of nested ite structures. Working from 

left to right, each variable is successively broken down into its left and right branches. 

Thus, XI is the root variable with X2 on both its right and left branch. Considering 

the left branch, X2 beaks down into I on its left branch and X3 on the right. In turn, 

X3 breaks down into I and X4, where X4 represents the terminal ite structure, i.e. 

ite(X4, 1,0). Returning to the right branch of the root node, the nested ite structure 

ite(X2, I, ite(X3, I, 0) is broken down into its respective branches. The resulting 

BDD structure is depicted in figure 2.11. 

Figure 2.11 BDD for the Fault Tree Shown in Figure 2.10 

The BDD structure can then be used to obtain the cut sets of the fault tree. Paths 

through the node are traced from the root node to a terminal I node. Only those basic 

events connecting to the following node via a I branch, indicating component failure, 

are included in the path. Thus, the paths through the BDD which correspond to the 

cut sets of the fault tree in the above example are 

53 



1. {XLX2} 

2. {XI.X3} 

3. {XI.X4} 

4. {X2} 

5. {X3} 

A BDD obtained using the ite procedure with an optimal basic event ordering scheme 

produces near minimal ifnot minimal cut sets. A final check may need to be made to 

eliminate those that are non-minimaI. The resulting BDD in the above example is 

non-minimal. Cut sets 1 and 2 are redundant. This introduces the need for a 

minimisation procedure, which is discussed in the next section. 

2.6.4 The Minimising Procedure 

The BDD does not always give minimal cut sets, as shown in the ite construction 

corresponding to the fault tree in figure 2.11. In such cases, Boolean reduction can be 

used to establish the minimal set. The primary asset of the BDD technique is that 

computation time and storage requirements are reduced. If, however, non-minimal 

cut sets are produced, the need to reduce these using Boolean operations may destroy 

the gain in efficiency achieved by the BDD. To generate minimal combinations of 

cut sets alone a non-minimal BDD must undergo a minimising procedure. A 

minimisation algorithm due to Rauzy (Ref 71) achieves its objective through 

introduction of a 'without' operator. Consider the simple BDD in figure 2.12. 

Figure 2.12 BDD for ite(X, F, G) 

54 



Assigning an ite connective to the top event gives Top = ite(X, G, H). Let 0 be a 

minimal solution of G, i.e. 0 = Solmm(G) and let y be a minimal solution ofH, i.e. y = 

Solmm(H). Now, for x n 0 to be a minimal solution of the top event, 0 must not be a 

minimal solution of H. So, if C1 is a complete set of the minimal solutions to the top 

event, i.e. C1 = Solmin(Top), the implication is that 

where t5 < exp > r is the set of 0 excluding any which are in y, i.e. the 'without' 

operator. Applying the without operator to each node in turn transforms the BOO 

such that it defines exactly the minimal cut sets of the fault tree. 

1 

o 

Figure 2.13 Example of a Non-minimal BDD 

To illustrate the minimisation algorithm consider the non-minimal BOO in figure 

2.13. Considering the nodes in a top-down fashion gives 

FI = ite(XI, F2, F3) 

55 



The minimal solutions ofF2 are {X2} and {X3}. The minimal solutions ofB are 

{X2}, {X3} and {X4}. Minimal Solution {X2} and {X3} are common to both F2 

and F3 and hence must be removed from F2 by the without operator. This is 

achieved by eliminating nodes F2 and F4, thus making F6 the son of the 1 branch of 

FI, i.e. FI~ ite(XI, F6, F3). 

Continuing Down the tree: 

F3 = ite(X2, I, F4) 

The only solution on the 1 branch is X2. Therefore, no common solutions exist. 

Finally, both F4 and F5 represent the terminal ite structure and are thus minimal. The 

resulting minimal BDD is shown in figure 2.14. Tracking the paths through the BDD 

in its minimal form gives cut sets 

I. {X2} 

2. {X3} 

3. {Xl.X4) 

which correspond to the minimal cut sets of the fault tree. 

Figure 2.14 Minimal Form of the BDD Shown in Figure 2.13 

S6 



2.6.5 Ordering 

Efficient construction and the resulting size of the BOO are highly dependent on the 

ordering taken for the basic events. As stated by Bouissou (Ref 13), there exists an 

extremely wide bracketing for BOO size. A BOO cannot exceed 2n-1, i.e. the size of 

the corresponding binary tree, where 11 is the number of basic events. On the other 

hand, it cannot be lower than the number of variables the function really depends 

on. To illustrate this sensitivity to ordering, consider the fault tree in figure 2.10. 

The equivalent BOO constructed with an ordering of XI < X2 < X3 < X4 is shown in 

figure 2.11. In contrast, the fault tree is also represented by the BOD in figure 2.15, 

constructed with a reverse ordering, i.e. X4 < X3 < X2 < Xl. 

X4 < X3 < X2 < X1 

Figure 2.15 BDD Corresponding to Figure 2.10 with Ordering X4< X3<X2<XI 

As previously demonstrated the top-down, left-right ordering often results in a non

minimal BOO. The minimisation algorithm rectifies this. However, this increases 

computation time, thus counteracting the gains achieved through use of the BOO 

technique. An ordering scheme, which results directly in a minimal BDD, is 

beneficial. 

57 



In recent years much research has focused on a means to find an optimal ordering. 

Friedman and Supiwit (Ref 31) describe an algorithm for finding an optimal 

ordering. It has, however, excessive running time. In addition, the algorithm requires 

that the Boolean function for the fault tree is determined. Deriving the Boolean 

function itself generally requires knowledge of the minimal cut sets, thus deeming the 

algorithm useless for practical applications. The general view is that the means to 

achieve a good ordering is to use heuristic methods (Ref's. 13,58). 

In addition to the number of events and gates, the complexity of a fault tree depends 

on the number of repeated sub-trees and repeated primary events not belonging to the 

sub-trees (Ref 18). As the number of repeated events increase, the number of non

minimal cut sets increase, thus the greater becomes the complexity of the analysis. 

On this basis, recent ordering techniques involve consideration of the number of 

repetitions of events, prior to placement. Sinarnmon (Ref 79) investigates the effects 

of three different ordering schemes. Within each of these three schemes there is also 

the option to list repeated events first. For more detail the reader is referred to the 

paper. The results affirm the sensitivity ofBDD construction to variable ordering. 

However, the effect due to the particular ordering implied dependency on the 

particular fault tree structure being analysed. In conclusion, there did not appear to be 

a general-rule based ordering scheme optimal for all fault trees. Further research 

concerning variable ordering is carried out by Bartlett (Ref 8). 

2.6.6 Top Event Quantification Using the BDD 

2.6.6.1 Top Event Probability 

Kinetic Tree Theory forms the basis for quantification of fault trees using minimal cut 

sets with component failure and repair distributions, as described in sections 2.3 and 

2.4. 

Top event quantification using a BDD avoids the need to use approximations and 

obtains an exact probability of the top event directly from the diagram. If the top 

58 



event ite structure is f{x) = ite{xi ,/1,/2), then the corresponding Boolean function 

is f{x) = Xi fl + Xi f2. When a Boolean function is expressed in this fonn, the 

probability of the top event is obtained by taking the expectation of each term 

E[r{x )]= qiE[rI]+{I- qi )E[r2] (2.50) 

where qi = E[xi ] the probability that event i has occurred. Each path to a tenninal 1 

vertex is, therefore, mutually exclusive or disjoint. The probability of occurrence of 

the top event is the sum of the probabilities of these disjoint paths (Ref 78). 

The probability of each disjoint path is a product of the probabilities of included basic 

events encountered on route from the top node to the terminal vertex, where the 0 

branch infers the use of component success probabilities and the I branch component 

failure. 

It is important to note that an unminimised BOO is used to trace the disjoint paths. 

The minimisation algorithm alters the top event structure function into a format, 

which no longer encodes Shannon's decomposition. This is discussed in greater 

detail in reference 79. 

As an example, consider the non-minimal BOO structure in figure 2.11, previously 

obtained through application of the ite technique to the fault tree in figure 2.10. The 

failure data assigned to each event is shown in table 2.8. 

Basic Event Failure rate (A;) Unavailability Unconditional 

(qi) Failure 

Intensity (Wi) 

XI 2 x 10-5 0.01 1.98 x 10-5 

X2 6 X 10.(; 0.03 5.82 x 10.(; 

X3 I x 10.(; 0.05 9.5 x 10-7 

X4 5 x 10-5 0.02 4.9 x 10-5 

Table 2.8 Basic Event Data 

59 



The BDD has 5 terminal vertices representing system failure. The corresponding 

disjoint paths are 

I) XI.X2 

2) XI.X2X3 

3) XI.X2X3.X4 

4) X1.X2 

5) X1.X2X3 

System unavailability (QSys) is the sum of the product of each disjoint path 

Qsrs = P(XIX2 + XI.X2X3 + XI.X2X3X4 + X1.X2 + XLX2JO) 

=qx,qxz +qx,(I-qXZ)czX3 +qx,(I-qxzXI-QX3)czX4 

+(I-qx, )czxz +(I-qx, XI-QXZ)qX3 
= (O.oI xO.03 )+(O.oI xO.97xO.05)+(0.01 xO.97 x 0.95 x 0.02) 

+(0.99x 0.D3)+ (0.99xO.97 x 0.05) 

= 7.87 x lO-z 

2.6.6.2 Unconditional System Failure Intensity 

A further quantitative system measure is the expected number of top event 

occurrences over a given period of time, as described in section 2.4. 5.2. 

Direct implementation of equation (2.42) to find the criticality of each component 

involves substitution of q, = 0 then q, = I followed by evaluation of the system 

failure probabilities. This process requires 2n top event calculations, where n is the 

number of components in the system. 

Deviation from this direct approach uses the BDD structure. Each component occurs 

at least once in the BDD. Figure 2.16 illustrates the occurrence of component Xi. 

60 



.c0. 
NOde0 

1.V·.O 
,," " 

. Node b 

Q 
1 .0. 0 

.' ", 

Figure 2.16 Consider Variable Xi 

Determination of each term in the criticality function for component Xi can be 

achieved using 

n 

Q(Oj,q)= L(prxj(q}po~(q))+Z(q) 
n 

where 

(2.51) 

prXj(q) - is the probability of the path section from the root node to node Xi 

(probprev). 

PO~j(q) - is the probability of the path section from the I branch node of Xi to a 

terminal 1 node (probpost I branch). 

pol-,(q) - is the probability of the path section from the 0 branch node of Xi to a 

terminal I node (probpost 0 branch). 

Z(q) - is the probability of the paths from the root node to the terminal I 

nodes which do not go through the node for variable Xi. 

n all nodes for variable Xi in the BDD. 

and hence: 

(2.52) 
n 

61 



The BDD in figure 2.13 is used to demonstrate this approach. Consider first the 
evaluation of Probpostl (po~(q) and ProbpostO (po~(q) for each node. 

Probpost(F6) 

F6 = ite(X4,1,0) 

PO~4(q)= prob(l)= 1 

PO~4(q)= prob(O)= 0 

QF6 = p(X4)P(1)+P(X4~(0)= 0.02 

Probposi(F5) 

F5 = ite(X3, 1,0) 

PO~3(q)= prob(l)= 1 

PO~3(q)= prob(O)= 0 

QF' = p(X3)P(I)+p(x3~(0)= 0.05 

Probposi(F4) 

F4 = ite(X3, I,F6) 

PO~3(q)= prob(l)= 1 

PO~3(q)= prob(F6)= 0.02 

QF4 = p(X3)P(I)+p(x3~(0.02)= 0.069 

Probpost(F3) 

F3 = ite(X2,I,F 5) 

PO~2 (q)= prob(l)= 1 

PO~2(q)= prob(F5)= 0.05 

QF3 = p(X2)P(I)+ p(x2~(0.05) = 0.0785 

Probposi(F2) 

F2 = ite(X2,I,F4) 

PO~2(q)= prob(l)= 1 

PO~2(q) = prob(F4)= 0.069 

QF2 = p(X2)P(I)+p(x2~(0.069)= 0.09693 

62 



Probpost(11 ) 

Fl = ite(Xl,F2,F3) 

poi,(q) = prob(F2)= 0.09693 

po~, (q) = prob(F3) = 0.0785 

QF' = p(Xl)P(0.09693)+ p(xi~(0.0785) = 0.07868 

An agreement can be seen between the probability of the top event Qsrs evaluated 

previously using the sum of the disjoint paths and the unavailability of the top node 

QFl. 

Attention is now given to calculation of Probprev (pr Xi (q » for each node. 

Probprev(Fl) = 1 

Probprev(12) = p(Xl) 

=0.01 

Probprev(F3) = p(XI) 
=0.99 

Probprev(F4) = p(X2 )probprev(F2) 

= (0 97XO.Ol) 

=0.0097 

Probprev(F5) = p(X2 )probprev(F3) 

= (0.97XO.99) 

=0.9603 

Probprev(F6) = p(X3 )probprev(F4) 

= (0 95XO.0097) 

=0.009215 

The node, corresponding basic event, probability of post 1 branch, probability of post 

o branch and probability of the previous path section are portrayed in the respective 

columns of table 2.9. 

63 



Node Basic Event Probposti ProbpostO Provprev 
Fl Xl 0.09693 0.0785 1 

F2 X2 1 0.069 O.oI 

F3 X2 1 0.05 0.99 

F4 X3 1 0.02 0.0097 

F5 X3 1 0 0.9603 

F6 X4 1 0 0.009215 

Table 2.9 Probtable 

Using the values in table 2.9 within equation (2.52), evaluation of the criticality 

function of each component is straightforward. 

Xl is represented by Fl alone: 

Gx,(q) = prF,(q)lpo~,(q)- po;, (q)j 
= 1[0.096943 - 0.0785] 

= 0.01843 

X2 is represented by both F2 and F3: 

GX2 (q) = prF2(q)lPo~2(q)- PO;2(q )j+ prF3(q)lpo~3(q)- PO;3(q)j 
= 0.01[1- 0.069]+ 0.99[1- 0.05] 

=0.9498 

X3 is represented by both F 4 and F 5: 

GX3 (q) = prF.(q)\po~. (q)- po;. (q)j+ prF,(q)\po~,(q)- po~,(q)j 
= 0.0097[1-0.02]+0.9603[1-0] 

= 0.9611 

64 



X4 is represented by F6 alone: 

GX4(q) = prF6(q)\po~6(q)- PO~6(q)J 
=0.009215[1-0] 

= 0.009215 

The criticality function values of each component are used in equation (2.44) (each 

component's unconditional failure intensity (w;) is stated in table 2.8) to give the 

steady state system unconditional failure intensity WSl'S: 

wsrs = Gx,(q)wx, + GX2 (q).WX2 +GX3(q)wX3 + GX4 (q)wX4 

= (0.01 843Xl.98 x 10-> )+(0.9498X5.82 x 10-6)+ (0.9611~.5 X 10-7
) 

+(0.009215X4.9xW-' ) 

= 7.2573 x 10-6 

System unconditional failure intensity considers only the time interval ~, t + dt) . 

Using equation (2.21) the expected number of system failures over a specific time 

period can be obtained. Consider, for example, a 10 year operating period (i.e. 8760 

hours) then the expected number offailures in this time is 

1760 

W(0,8760)= f7.2573xI0-6dt 
o 

= 0.0636 

65 



CHAPTER 3 

OPTIMISATION TECHNIQUES 

3.1 Introduction 

Optimisation theory is a means to identifY the best candidate from a collection of 

possible alternatives without having to explicitly enwnerate and evaluate all 

possibilities. Some criterion is established as a performance measure for the 

optimisation procedure. In an industrial process a conunon criterion used is 

minimwn cost, where the product cost can depend on a large nwnber of 

interrelated controlled parameters in the manufacturing process. More complex 

systems consider multiple criteria 

In practice it is very difficult to determine if the best candidate obtained is indeed 

a global minimum, i.e. the best point over the whole search space. In most 

circumstances it can only be said that the point obtained is a minimum within a 

local area of search. 

Many types of optimisation techniques exist. The particular technique applied is 

dependent on the characteristics of the problem Some factors of concern are 'a 

priori' knowledge of the search region itself and the associated objective fimction, 

the number and type of design variables and the number and type of constraints, if 

any, restricting the search region. 

The purpose of this chapter is to consider the basic concepts behind some well

known optimization techniques, to analyse and evaluate aspects of their algorithm 

structure in conjunction with modifications and extensions in recent research. 

Where appropriate potential difficulties in application of the algorithm to complex 

optimisation problems are expressed. Conversely, potentially advantageous 

features are noted. The ultimate aim is to propose a method or methods 

appropriate for effective and efficient application to the safety system 

optimization problem under consideration 

66 



The chapter opens with a section on linear programming. Gradient based 

optirnisation techniques are then considered foUowed by a discussion of direct 

and random search methods. 

3.2 Linear Programming 

The term Linear Programming (LP) defines a particular class of optimisation 

techniques in which the objective fimction is a linear fimction of the design 

variables and the constraints of the system can be expressed as linear equations or 

inequalities. In recent years much research has been carried out in this area, 

proving it to be one of the most valued optimization tools. 

In matrix·vector notation any LP can be transformed into the standard form 

minimise eT 1 

subject to AI;:: b 

1;::0 

(3.1) 

Here 1 is an n-dimensional vector, eT is an n-dimensional row vector, A is an 

m x n coefficient matrix, and b is an m-dimensional column vector. The vector 

inequality x ;:: 0 means each component of x is nonnegative. 

The LP finds the best solution in the feasible region. 10 general, there are more 

variables than equations. Hence, the selection of the best solution to minimise the 

system is a non-trivial problem From a geometric viewpoint, optimal solutions 

occur at corner (or extreme) points of the convex search space. The basic concept 

of the LP is to focus on the extrema to establish the most optimal feasible corner 

point. The system of m equations in n unknowns is reduced by elementru:y row 

operations to canonical form The variables xI, .. 'xm' that appear in only one 

equation with unit coefficient are termed basic variables. The remaining n - m 

variables are termed nonbasic variables. A basic solution is obtained from the 

canonical system by setting the nonbasic variables to zero. If the vector of the 

resulting solution is nonnegative it is termed a basic feasible solution It can be 

shown that every corner point of the feasible region corresponds to a basic 

feasible solution of the constraint equation 

67 



3.2.1 The Simplex Method 

Having established that the optimal solutions lie at extrema restricts the 

potentially infinite set of points to analyse. The simplex method is an iterative 

algorithm, which takes advantage of this knowledge and solves the LP in a more 

efficient manner by examining only a fraction of the total number of basic feasible 

solutions. A more detailed description on solving a LP using the Simplex Method 

can be found in references 42,48 and 83. 

3.2.2 Integer Programming 

Combinatorial optimisation involves assigning discrete numerical values, from 
some finite set, to a finite set of variables, x, to minimise the function f(x) whilst 

simultaneously satisfYing a given set of constraints. The functions and constraints 

may be non-linear, discontinuous or implicit. Integer linear programming (ILP or 

IP) is a simplified subset of this general area in which the objective function and 

constraints are assumed to be linear. If n is the number of decision variables, a 
problem in which a subset of q(1 :S q :S n) variables are constrained to be integer is 

termed a mixed IP. If all n variables must be integer a pure IP is being 

considered. A further consideration in the reliability optimisation problems is the 

binary variables (Boolean or 0-1 variables). Boolean variables are restricted to 

just two values, generally 0 or I. As regards the decision scenario, this determines 

situations such as, is a particular component fitted; yes or no? IP problems 

containing only binary variables are referred to as a Binary Integer Programming 

(BIP) problem or azero-one programming problem. Without the integer 

restrictions we are dealing with the original LP problem 

Here is a typical example of a small constrained IP problem 

m3XlDllse z = 6xI + 5x, 

subject to XI + x, :S 5 

13xl + 6x, :S 49 
(3.2) 

XI ,x, 2! 0 and integer 

68 



IF problems seek the determination of the optimum point among all the discrete 

points included in the feasible solution space. The inference is that an IF problem 

is an LP problem with fewer solutions to consider, and should, therefore, be 

relatively easy to solve. Two major problems arise with this reasoning. 

The reduced solution space, though finite, can still be exceedingly large. 

Consider, for example, biruuy variables. If n variables exist there corresponds 2" 

potential solutions. In general, as the dimensionaIity of the problem increases 

linearly the equivalent solution grows exponentially, thus, requiring much 

computer effort. 

Secondly, the key to the efficiency of the simplex method in solving LP problems 

is the guarantee that the optimal solutions will be feasible corner points of the 

solution space. Integer points within the region may not, and in fact in the 

majority of cases do not, lie on the region's boundary, let alone the corners. 

Removing these feasible solutions breaks down the crux of the simplex procedure. 

In special cases the resulting optimal solution of an IP problem utilising the 

simplex algorithm is integer. This is, however, particularly unusual. A key 

limitation of the simplex method is the inherent assumption of divisibility. 

Much research and many sophisticated optimisation techniques are dependent on 

the special features of the simplex algorithm Despite the obvious flaws, in many 

ways it is advantageous to utilise the simplex method to solve IF problems, 

particularly considering the lack of globally successful methods specifically 

developed for problems involving integer variables. 

One approach is to carry out LP relaxation. The IF is solved using the simplex 

algorithm without considering the restriction on the integer variables. In other 

words the IF is converted or 'relaxed' to its equivalent LP and the continuous 

optimum solution obtained. Regarding the IF model ,expression (3.2), the 

corresponding relaxed LP is the same except that the variables Xl and X2 do not 

have an integer stipulation. 

Elements in the continuous optimal vector solution corresponding to the integer 

restricted variables are then rounded to their closest integer value. Discussion of 

69 



the relationship between an IP problem and its relaxed LP problem is discussed in 

a paper by Joseph et al in 1998 (Ref. 47). 

There are pitfalls associated with this approach The roWlded integer solution is 

not necessarily optimal. In addition, the integer solution may not be feasible. 

Any integer model having an original equality constraint can never yield a feasible 

solution through rounding. Binary (or 0-1 variables) emphasize further the 

inadequacy of rounding. Binary variables imply decisions based on their value, 0 

or 1. It is nonsensical to deal with fractional values of such variables, and the use 

of rounding as an approximate is logically unacceptable. In general., roWlding is 

reasonable when the values of the variables are so large only negligible changes 

are produced. When dealing with problems in which the integer variables assume 

small values, rOWlding and trlUIcating may significantly distort the optimal 

solution. Binary variables are an extreme example of this. The implication is the 

need for more sophisticated methods to solve IP problems. 

IP techniques are generally categorised into two broad types: (I) Search methods 

and (2) CUlling methods. 

Theoretically, any IP problem can be solved by simply listing all possible feasible 

solutions, evaluating each point and choosing the best, i.e. exhaustive 

enumeration. As stated earlier, even when finite the solution space can be very 

large without having significantly high dimensionality. Search methods are 

techniques, which enumerate as small a portion of all candidate solutions as 

possible while automatically discarding the remaining points as non-promising. 

In other words, many points are enumerated implicitly. This is termed implicit 

enumeration. The branch and bound technique is a prime example of an implicit 

enumeration technique, specifically designed for an IP problem The zero-one 

method is, in the main, considered as a special case of the branch and bound 

approach. 

Cutting methods are motivated by the fact that the simplex solution to a linear 

program must occur at an extreme point. The idea is to solve the relaxed LP 

model and identiJY its continuous optirnaI point. Utilising this continuous 

optimum, specially developed secondary constraints are added to the relaxed LP. 

The secondary constraints are violated by the non-integer solution ofthe relaxed 

70 



LP, but not by any feasible integer point. These constraints modifY the solution 

space and will iteratively force the optimwn extreme point of the resulting 

modified LP model toward the desired integer restriction 

Cutting methods and the branch and bound technique are similar in that they both 

eliminate non-integer optimal solutions to the associated LP model, but leave all 

feasible integer solutions untouched. There are, however, fundamental differences 

between the two approaches. The branch and bound technique creates many 

different linear programming problems, whereas the successive constraints of 

cutting plane methods are added to the original LP. Consequently, the original 

feasible region of the branch and bound problem is divided into disconnected sub

regions. In contrast, cutting plane methods gradually reduce the original feasible 

region as extra constraints are added. 

Branch and Bound Technique 

Branch and bound is an iterative technique. The original search space is too large 

to solve directly. It is, therefore, divided into smaller and smaller sub-regions and 

handled separately. This procedure is achieved via a sequential process of 

branching, bounding and fa/homing, which results in a decision tree. The first 

iteration, carried out on the relaxed LP of the original problem, establishes the 

point at which the tree is rooted. Subsequent iterations, via the branching process, 

produce further nodes emanating from the root node. The branch and bound 

algorithm will be explained by means of the two-dimensional example expressed 

in expression (3.2). (Two dimensions are used to simplifY the explanation and 

enable a graphical representation). 

Figure 3.1 shows the feasible integer solution grid and the continuous optimal 

solution, ignoring the integer restriction, to the above model. The grid points 

represent the solution to the lP. 

71 



Optimum: 
4 Z = 27.71 
3 x., = 2.71 
2 • ~ = 2.29 
1 • 
0 

Figure 3.1 Integer Solution Grid for JP Model 

The problem is to establish the maximum. A lower bound is, therefore initially set 
at -00, i.e. let zlo) = -00. The first step is to solve the relaxed LP, i.e. the original 

model without the integer restriction, referred to as the LPO. The solution ofthe 

LPO, as depicted on Figure 1, is Xl =2.71, x, =2.29 and z=27.71. A check is 

carried out to ensure the solution is non-integer. An integer solution would imply 

an immediate optimal feasible solution and the algorithm terminates. Otherwise, 

the continuous optimum defines a bound, where the bound is a 'criteria of 

goodness' for the root node. Any feasible solution to the JP will not exceed this 

value. 

The initial region must now be partitioned into two disjoint subsets, giving rise to 

the concept of branching. In effect branching signifies partitioning the current 

solution space into mutually exclusive subspaces without eliminating any feasible 

integer points. Branching is carried out about one variable only at a time. Any 

variable, whose current value in the optimum LPO solution violates its integer 

requirement, can be chosen as the branching variable. Both Xl or x, could be 

chosen here. Select Xl (= 2.71) arbitrarily, we can partition the original set of 

feasible solutions into one subset comprising all solutions Xl ,:; 2, and the other 

subset containing all solutions with Xl :2: 3, see Figure 3.2. Note that no feasible 

integer points have been eliminated. 

72 



Figure 3.2 Partitioning the Feasible Space 

As regards the decision tree the partitioned linear models create two new nodes 

emanating from the root node, LPl and LP2, where the root node represents all 

feasible solutions, as shown in Figure 3.3. 

LP1 

Figure 3.3 The Decision Tree 

Consider each node (or sub-region) in turn. The relaxed LP on LPl is solved, 
having the added restriction XI :s; 2. The solution is XI = 2, x, = 3, and z = 27. 

The optimal solution of the subspace ofLPl is in fact integer. There are no 

further branching variables to choose, neither can this feasible integer solution for 

the subset be improved upon. The node is said to be fathomed. Tbe feasible 

integer solution is compared against the lower bound. If this is an improvement it 

becomes the incumbent. It is essential for the efficient performance of the branch 

and bound technique to establish a feasible integer lower bound relatively early in 

the iterative process. This is then used as a benchmark for the bounds of other 

73 



nodes, arising form the solution of their relaxed LP, and, hence, as an aid in the 

fathoming process. 

If the solution to the maximwn is restricted to an integer value an overall solution 

to the IF would have been found and the algorithm terminated as a result of the 

knowledge that the bound on the root node is less than 28. WIthout this added 

integer restriction, however, attention must be focused on any unexplored nodes. 

LP2 is, therefore, considered. The relaxed LP, having the added restriction 

XI ~ 3, i.e. LP2, is solved. The continuous optimal solution has a potential 

branching variable, x 2 = 1.667 (XI = 3, therefore feasible). Further branching is, 

however, unnecessruy. Using accwnulated knowledge this node can be deemed 

fathomed. The continuous optimal solution to the subset is z = 26.33 and, hence, 

is not comparable to the integer lower bound incumbent. 

A node is deemed fathomed if the sub-problem yields a feasible integer solution to 

the IF problem or if the sub-problem cannot yield a better feasible than the best 

available lower bound of the IF problem The sub-problem which has no feasible 

solution, either continuous or integer, is a special case of the latter. Having 

fathomed all nodes the branch and bound algorithm is terminated 

In summruy the branch and bound algorithm precedes as follows: 

• Initialization: Set a lower bound, say z(O) = -00, and i = 0, representing the 

initial iteration. Considering the original search space, ignore the integer 

restriction and solve the LP, i.e. LPO, using the simplex method. Express this 

solution as the bound for the root node. If this optimal solution vector is 

integer the root node is fathomed and the algorithm terminates. Else, the 

procedure continues. 

• Steps for each iteration, i; 

(I) Select the most recently created, unfathomed node. (At i = 0 this will 
be the root node). Arbitrarily select a branching variable, Xj (where) 

= 1,2, ... n), with optimwn value x; in the LPi solution Create two 

branchinf nodes, LP(i + I) and LP(i + 2), with additional constraints 

X j :S: lx; and X j ~ lx; J + I respectively (where lx' J is the integer part 

of x). 

74 



(2) Apply the simplex method to the relaxed LP of each new sub-problem 

and obtain its bound. If the continuous optimal solution vector is 

integer, compare to the existing feasible lower bound and update the 

incumbent. 

(3) Apply the fathoming conditions to each sub-problem and discard those 

deemed to be fathomed. Ifboth nodes, LP(i + 1) and LP(i +2),are 

unfathomed proceed with the iterations along one branch, sequentially 

branching and fathoming Wltil this branch is sufficiently partitioned 

such that fathomed nodes are reached. Return, then, to the other 

branch. 

Termination ofthe branch and bound algorithm occurs when all nodes are 

deemed to be fathomed. 

As regards the decision on the iteration sequence, the most recently created node 

is considered as this reduces computational effort regarding the solution of the 

relaxed LP. TIlls selection procedure may vary, a possible choice being the node 

with the most promising continuous boWld (Ref 48). The algorithm can also vary 

in its method for choice of branching variable, as opposed to the arbitr8l)' 

approach stated above (Re[ 83). 

Zero-one Method 

A special case of the branch and bOWld technique is the zero-one or additive 

method, introduced initially by Balas as a new approach in 1965, before its 

similarities to the branch and bound were recognized (Ref 30,83). This method is 

carried out on a binary linear program (BIP). Although this seems very 

restrictive, any pure IP can be converted into a binary problem using conversion 

techniques (Re[ 's 30,48). 

This method differs from the branch and bound in that it does not require the 

simplex method in its solution. The objective function is expressed solely in 

terms of positive coefficients. The binary variables are partitioned in various 

structured ways, some fixed at 1, others ° and the rest classed as 'free'. Bounds 

are then assigned to each partition by adding coefficients of the objective function 

relating to the values of the binary variables for the particular partition, hence, the 

name the additive method. 

75 



Cutting Methods 

A cutting plane for an JP problem is a new constraint that reduces the feasible 

region for the LP relaxation without eliminating any feasible integer solutions to 

the JP problem, as shown in Figure 3.4. 

Figure 3.4 The Cutting Plane Technique 

As in the branch and bound approach the corresponding relaxed LP is first solved 

for its optimal solution. If this solution is all integer the optimal integer solution 

has been found and the process terminates. If at least one variable is non-integer, 

the next step is to establish a secondary constraint to add to the relaxed LP model. 

The fractional method to derive a cutting plane proceeds as follows. It should be 

noted, prior to solving the relaxed LP for the fractional cut method constraints 

should be manipulated to ensure all coefficients are integer and not left as 

fractions. 

A source row is chosen from the simplex tableau, generated to solve the relaxed 

LP. The row selected must be one of the constraint equations corresponding to a 

non-integer solution As a general rule the source row with the largest truncated 

value, having removed the integer part of the right hand-side constraint value, is 

chosen. This constraint equation is used to generate the fractional cut, which is 

then added to the simplex tableau. Derivation of the fractional cut varies 

according to whether a mixed or pure JP (MIP or JP) is being considered 

(Ref 42). An optimal solution to the amended LP is then found using the dual 

76 



simplex method, which is equivalent to cutting of the solution space towards the 

optimal integer solution. 

If application of the dual simplex method results in an integer solution the process 

ends. Else, a new fractional cut is generated from the resulting tableau and the 

algorithm proceeds wrtil an integer solution is obtained. 

Further discussion focuses on the choice of source row to derive the fractional cut 

(Ref 42). Different cuts may be generated from the same simplex tableau. The 

aim is to obtain the strongest cut, i.e. that which cuts deepest into the search space, 

without loss offeasible integer solutions. The basic idea behind a cutting plane 

method remains the same. Methods differ in their derivation of the cutting plane 

(Ref 61,83). The fractional cut mentioned above is a standard approach. An 

alternative approach can be applied to a pure BIP (MP). 

Cutting plane methods have two major problem areas. Firstly, the introduction of 

round-off errors that may distort the original data Secondly, no feasible integer 

solution exists unti1 the optimal point is attained. Thus, if the process is 

terminated early no infonnation is gathered. 

Branch and Cut Method 

A general conclusion is that the cutting technique alone cannot be used effectively 

to solve the general integer problem Recent research has used aspects of the 

cutting technique within the context of the branch and bound algorithm, the aim 

being to move the solution of each sub-problem towards the desired integer 

solution This is the basic concept behind a new approach termed the branch and 

cut technique (Ref 42, 61 and 89). 

Initially the branch and cut technique was introduced as an algorithm to solve pure 

BIP problems. Recently it has been applied to the mixed BIP (Ref 89). 

Successful outcomes from this method have resulted for large problems in excess 

of thousands of variables. Typically, the approach depends heavily on the sparsity 

of the constraint coefficient matrix. In addition to various other characteristics of 

problems which have not yet been pinpointed. 

77 



Briefly stated the method uses the generation of cutting planes in conjunction with 

clever branch and bound techniques. These, however, are preceded by a 

technique referred to as automatic problem processing. Automatic problem 

processing involves inspection by an automated computer process of the initial IP 

model. This process reforms the original model to make the problem quicker to 

solve without eliminating any feasible solutions. As regards a BIP this is achieved 

through three techniques: fixing variables, eliminating redundant tecluriques and 

tightening constraints. 

Branch and cut methods for IP solve a sequence of LP problems. Traditionally 

these LP relaxations have been solved using the simplex method. Mitchell in 

1997 (Ref 61) considers the use of the interior point method as an alternative to 

solve such problems. For a more detailed description of interior point methods 

see Reference 96. A simplex tableau is not available when using an interior point 

method. It is, therefore, necessary to modity the classical techniques for fixing 

variables and generating cutting planes from the optimal tableau. 

3.2.3 Reliability and Linear Programming 

In the area of system reliability much work has been done on the redundancy 

allocation problem (Ref 25, 87). Typically, a system has N subsystems in series 

where components may be added in parallel or in series to each subsystem to 

optimise the system reliability or some other objective without violating the 

system constraints. Figure 3.5 shows network diagrams of such structures. The 

aim is to select the optimum number of redundant components for each 

subsystem (It is assumed redundant units are operating in parallel (hot standby), 

subject to failure. 

78 



r-1 h r-1 h r-1 h 
I 

: 

I I I I I I I I I I I 
: 

y ~ y ~ y t--l 
Figure 3.5 A Circuit Diagram 

Reliability expressions can be developed for such network configurations. 

Consider one of the simplest systems, consisting of a set of n components in 

series. If each component is independent in operation, each contributes to the 

system failure mode under consideration and the system is to operate for a fixed 

period of time, then the reliability of the system is the product of the individual 

component reliabilities. 

n 

RSYS = IlR, 
i=1 

where Rsys is the system reliability and R, the reliability ofcomponenls i, .. n. 

(3.3) 

AggarwaI in 1975 (Ref 2) uses the simplest approach to establish the solution of a 

redundancy allocation problem The algorithm consists of adding redundancy to 

the stage where unreliability is so far the highest. Previous such methods add an 

extra level of redundancy having ensured the design remains within the 

permissible region. The method described in this paper takes into account the 

constraints, analysing factors such as whether more than one element can be 

added to the stage and the design still be permitted. 

Further research illustrates the formulation of reliability optimisation problems for 

a variety of series/parallel systems in this manner and solves them as JP problems 

(Ref 88). Specifically the following problems are addressed: (1) Maximum 

reliability of a parallel redundant system subject to several non-linear constraints, 

(2) Minimum cost of a series redundant system su~ect to several non-linear 

constraints, while maintaining an acceptable level of reliability. 

Specifically Ghare in 1975 (Ref 33) applies a branch and bound method to a 

reliability optimisation problem A later paper (Ref 55) compares this to a couple 

79 



of approximation techniques (The algorithm in Ref 2 being one of them). The 

branch and bound approach required greater computer effort in both time to run 

and programming, but gave a far higher guarantee of obtaining an optimal 

solution Further exact techniques such as cutting plane and implicit search have 

been applied to similar redundancy problems. 

3.2.4 Further Reseanh 

Recent research on traditional integer programming methods focuses on applying 

the techniques to a wider array of problem types, as opposed to the limited single 

criterion linear objective function and linear constraint model. 

Shi in 1997 (Ref 78) introduces a branch and bound approach to solve a binary 

integer linear program with multiple criteria and multi-constraint levels, using the 

framework of a multiple criteria LP (MCLP). The motivation being that many 

real-world problem; should be classified as an IP problem under a multiple 

criteria environment. Integer design variables are converted to their binmy 

equivalent. A modified form of the simplex method is then used to solve the 

relaxed multiple criteria model. This MCLPP can be formulated as 

maximise a ex 

subject to A x $ DP 
x~o 

(3.4) 

where, C, A and D are matrices representing the objective function and constraints 

respectively, a is a criteria parameter and P a constraint level parameter. (a and 

P are assumed unknown and explain the probability distribution for the sub

problem bounds described later). 

The branch and bound procedure is then adopted. Once the branching is made by 

partitioning the original feasible set into smaller subsets, each sub-problem needs 

to be solved to obtain its bound. The upper bound of a sub-problem is defined as 

the expected objective value of its relaxation problem with a probability 

distribution over the parameters for multiple criteria and multiple constraint 

levels. 

80 



3.2.5 SummaI)' 

Disadvantages 

In general exact integer techniques are dependent on the nature of the objective 

function and constraints. This is due to the fundamental requirement on 

sequential use of the simplex method as the algorithms progress. Ironically, the 

feature which makes these methods so effective. Its application requires the 

problem to be described in mathematical terms so that the functions and variables 

can be manipulated by standard rules. In addition, these functions are generally 

enforced to be linear. Applications of implicit enumeration, such as the additive 

algorithm, do not use the simplex method, but require a monotonic objective 

function that is separable. 

The simplex algorithm is unable to cope with a black box type function, which 

does not have an explicit form to relate the decision variables over the search 

space. Similarly implicit constraint types and generally non-linear constraints are 

difficult to deal with. All features which are present in the safety system 

optimisation problem 

Application of the interior point method to solve the LP, fix variables and develop 

cuts has similar disadvantages. The interior point method does not involve the 

complexities of the simplex tableau, but an objective function and relatively strict 

mathematical fomrulation of the problem is still required. 

Reliability expressions can be fomrulated for series and parallel network 

configurations. Methods to formulate such expressions are, however, dependent 

on the systems structure. As networks become more complex, methods to 

calculate the system failure probability become more comprehensive. As the 

complexity increases so to does the ability to obtain the network in the first place. 

The use of network configurations, both in terms of construction and evaluation, 

for the demand of the safety system under consideration is unrealistic and too 

simplistic. 

For a fixed number of integer variables BIP problems are, in the main, easier to 

solve than problems with general integer variables. Conversion of general integer 

81 



variables to their binary equivalent vel)' rapidly increases the dimensionality of 

the problem One of the most important determinants of computation time and 

solvability ofIP problems is the number of integer design variables. The set of 

variables in the safety system problem creates a difficult mixture for IP 

application. Generally, the small integer variable range and presence of binary 

variables eliminates the possibility of rOlUlding. The ratio of binary variables does 

not, however, encourage the conversion to a pure BIP. 

Advantages 

Many features of traditional IP techniques and their recent developments restrict 

their implementation to the safety system optimisation problem Certain 

characteristics and concepts do, however, show potential and may be modified to 

the design optirnisation problem 

Developing expressions for the reliability of a subsystem from network 

configurations of redlUldant systems opens up a whole new range of possibilities 

as regards the application ofIP techniques. The system viewed as a whole with 

binary decision variables, maintenance test times and so on, is too complex for 

such an approach. An idea, perhaps, may be to partition the system configuration 

and isolate those areas, which could be expressed as a series/parallel network. For 

example, the number of pressure transmitters and the number required to trip 

forms a standard parallel-voting network. An IP technique could be applied, using 

the reliability expression for the voting network, to this section. This contributes 

an avenue of investigation though many other factors must be considered, such as 

the dependency ofthe system reliability on the whole system, i.e. interactions 

between subsystems. The effect of altering redlUldancy in the pressure transmitter 

voting subsystem is dependent on the structure of other components within the 

system 

The Branch and bOlUld algorithm follows a tree search procedure where at each 

step all possible solutions of the current problem are partitioned into two or more 

subsets. Each subset is assigned a bolUld and, depending on this value is either 

dismissed as worse than an existing solution or the subset is further partitioned. If 

it is a maximisation problem an upper bolUld to each subset is applied. Estimating 

82 



this upper bound, or evaluating it exactly is a complex issue in itself The branch 

and bound is dependent on the accuracy of this estimate. In addition, it is never 

known how close the current largest function value obtained is to the global 

rnaximiser. A recently proposed method, partitioned random search (PRS) (Ref 

86) is a tree search type of algorithm, which attempts to overcome this 

complication of the branch and bound approach. This is discussed in a later 

Section of the chapter. 

3.2.6 Logical Search 

Having studied the structured traditional LP techniques a more applicable 

approach to the safety system design optimisation points to the use of search logic. 

Misra in 1991 (Ref 60) proposed a simple and efficient technique for solving 

integer-programming problems that generally arise in system reliability design. It 

involves a systematic search near the boundary of constraints and involves 

function evaluations only. In addition the algorithm is designed to solve problems 

in which the decision variables are restricted to integer values. Motivation behind 

the approach considers the time and effort wasted analysing points well within the 

feasible space. It is logical to assume the optimal point will lie close to the 

boundary of the region since, in the main, a better design will result from 

exhaustive utilisation of the systems resources. 

The basic idea is to set up an initial design vector x. The next step fixes XI as 

large as possible without breaking the constraints and the remaining 

n - I variables are set at their lower bound. Each variable is considered in turn 

and increased such that the constraints are not violated. The value at a design 

point is only calculated when the design falls within tolerable slacks, i.e. a 

specified distance from or about the boundary, specified for the constraints. This 

ensures that·only those feasible points that are close to the boundary of the 

constraints are considered for function evaluations. The approach resembles a 

general technique, which alternately considers and fixes variables (Ref 61). The 

decision of which variable to fix and at what value, rather than being based on the 

design vector of the optimal relaxed solution, is based on past fimction 

evaluations, inter-dependency of variables and the distance from the constraint 

83 



boundary. The reader is referred to Reference 18 for a more detailed description 

of the steps of the algorithm 

A disadvantage to this approach is the intensive demand on fimction evaluations. 

By virtue, however, little knowledge of objective and constraint functions is 

required, integrality of the decision variables is maintained and function 

evaluations are limited by the innovative inclusion oftolerable slacks about the 

constraints. The algorithm lends itself nicely to optimisation of the safety system 

design problem 

3.3 Gradient Techniques 

Many optimisation methods employ gradient information A traditional means to 

classiJY such methods is to refer to those that only use first derivatives as first 

order methods and to those, which use both first and second derivatives as second 

order methods. The objective of this section is to introduce initially the 

fundamental first and second order gradient approaches for unconstrained 

optimisation These provide a framework from which many more methods are 

fonned. The more sophisticated application of gradient methods to the 

constrained optimisation problem will then be considered. 

It is assumed throughout this section that the fimction and its first and second 

derivatives exist and are continuous. For reasons of consistency the minimisation 

problem (as opposed to maximisation) is considered. Most gradient methods 

employ a similar iteration procedure 

(3.5) 

where, X(k) is the current estimated minimum point, a(k) the step length 

parameter, S(x<kl) the search direction in the space of the design variables from 

the current point. A particular method is characterised by the manner in which the 

search direction and step length are determined at each iteration. 

84 



3.3.1 Basic Methods 

The Method of Steepest Descent 

The method of steepest descent, also known as Cauchy's method, is the 

fundamental first order method. Cauchy's method uses the lacobian gradient, i.e. 

the first partial derivatives of J{x) with respect to x denoted by VJ{x) , evaluated 

at some point X(k) to determine the search direction The gradient of a function 

points in the direction of the greatest increase in the value of the function and is 

orthogonal to the contours of J{x) that pass through X(k). The negative of the 

gradient is the direction of steepest descent. The search direction is, therefore, the 

negative unit vector of the lacobian about the current point approximation 

V'! X(k) 
S(X(k))-- IIVJ X(k) 1 

Using equation (3.6) the new point is 

(3.6) 

(3.7) 

The unit vector of the lacobian defines only the direction of search. This in 

conjunction with the step length establishes the new point. Approaches to the 

method of steepest descent differ in their derivation of the step length. In the 

main, a(k) is determined so that J(x(k+'))is a minimum along the search direction 

using an appropriate line search. A less general approach selects a fixed, or 

adjustable, value for a. If adjustable, a is then reduced as the minimum is 

approached. 

The steepest descent method is iterative due to the first direction of movement 

yielding only a restricted minimum, which is often not toward the actual 

minimum Convergence, though guaranteed, is often not realistic, as the number 

of iterations required is intolerably large. This is particularly true close to the 

minimum Steepest descent is most effective far away from the minimum where 

the step length is large and the number of iterations required to reach the vicinity 

of the minimum generally low. 

85 



Newton's Method 

Cauchy's method is in effect a Taylor expansion about the objective function 

truncated linearly. Second order methods incorporate the third term of the Taylor 

series, thus establishing a quadratic approximation to the function value at the new 

point, x+~ 

where, 
gT = 'liT f(x(.)) 
H = V' f(x<·)) 

Second order methods make use of the Hessian matrix, i.e. the second partial 

derivatives of f(x} with respect to x evaluated at X(k) , denoted by H. To 

(3.8) 

approximate ~ , the Taylor expansion in equation (3.8) is partially differentiated 

with respect to each ofthe components of ~ and the resulting expression equated 

to zero to give 

Direct use of this search direction in the standard formula over successive 

iterations from an initial point is known as Newton's method, that is 

(3.9) 

(3.10) 

At the minimum the Jacobian is equal to 0 and it is required that the inverse 

Hessian matrix is positive definite. Throughout the iterative process using the 

current approximate to the minimum this is not always the case. Hence, search 

directions diverging from the minimum may be derived. Regarding points close 

to the minimum, where the quadratic approximation of the function is most 

accurate, the Hessian matrix generally portrays positive definite characteristics. In 

consequence, Newton's method holds no guarantee that points located away from 

the minimum will converge. Both this and the mathematical effort required to 

calculate the second partial derivatives and invert the Hessian at each iteration 

complicate the application of Newton's method. 

86 



The modified Newton's method goes some way to alleviate divergence of points 

far from the minimum. The modification simply involves adding a line search, as 

in Cauchy's method, that is 

(3.11) 

where, a(') is chosen such that f(r(k+Il) tends to a minimum. This ensures that 

the value of the function at the new point is less than the value at the current point. 

The conflicting positive attributes of first and second order methods naturally 

instigate the idea to precede second order methods by first order approaches, often 

steepest descent, away from the minimum. As the vicinity of the minimum is 

reached a second order method takes over. 

3.3.2 Advanced Methods 

Conjugate Directions 

Conjugate directions use the history of previous iterations and aim to mimic the 

positive characteristics of Newton's method, i.e. accelerated search close to the 

minimum. They avoid, however, the mathematical effort and storage 

requirements associated with use of the Hessian matrix. Additionally, conjugate 

directions attempt to incorporate the robust characteristics of steepest descent 

away from the minimum. 

Conjugate directions are based upon the model of a quadratic objective function. 

Functions not in this form are approximated to be so. The theoretical basis for this 

is that any function closely represents a quadratic close to the solution. Hence, the 

problem is of the form 

Minimise (3.12) 

where, C is a positive definite matrix and b a vector. Transforming this quadratic 

function so that it is the sum of perfect squares, enables the optimum to be found 

exactly after n single variable searches. Equation (3.12) is expressed in tenns of a 

87 



new co-ordinate system From a graphical viewpoint, consider the general 

quadratic function with cross terms. The transformation chooses a new vector set, 

ie. co-ordinate axis, to coincide with the major and minor axes of the quadratic. 

Single variable searches, therefore, correspond to searching along each of the 

principle axes of the quadratic. 

Given a symmetric matrix C, two vectors Ut and u, are said to be C -orthogonal 

or conjugate with respect to C if uT Cu, = O. It can be shown that the new co

ordinate axes define a set ofn colunm vectors Ut , ... u. that are a mutually 

orthogonal set of conjugate directions with respect to C and are the eigenvectors 

of C (Ref 43). These vectors are linearly independent and can, therefore, 

represent any other vector in n-space. Given an initial estimate x(O) to the 

minimum, the actual solution can be expanded in terms of the orthogonal set and 

the initial approximate as 

• 
x· = x(O) + "Qu. 

£... ' , 
;=1 

where Q f, i = I to n. is a coefficient. 

(3.13) 

In summary, if a suitable set of conjugate directions can be obtained, the optimum 

of a quadratic function can be found by exactly n single variable searches with 
respect to each conjugate direction uf ' i = l, ... n. 

Powell devised a method to generate the set of conjugate directions using 

objective function values only. For the general case a quadratic approximation to 

the objective function and gradient information can be employed to generate 

conjugate directions. The most common approach is the conjugate gradient 

method. 

88 



The Conjugate Gradient Method 

The conjugate gradient method sequentiaIly builds a set of conjugate gradients as 

the algorithm progresses, as opposed to specifYing the set beforehand. Each 

search direction is selected at the current point such that they show conjugacy to 

those previously selected. At the ktb iteration the current negative gradient vector 

is added to a linear combination of the previous direction vectors to obtain a new 

conjugate direction along which to move. It can be shown (Ref 69) that the 

general form of each search direction is 

(3.14) 

This is the suggested form by Fletcher and Reeves. 

Using the conjugate gradient method the quadratic model will be solved in n steps. 

An approximated model may require further iterations, but in general this method 

has proved efficient. Potential difficulties arise if a search direction generated is 

linearly dependent. The n-dimensional solution space for future iterations is 

reduced and the actual solution possibly eliminated. Periodic restarts of the 

method are sometimes introduced to overcome the derivation of a dependent 

direction. 

The method of parallel tangents, or the partan method, due to Shah, Buehler and 

Kempthorne (Ref 77) uses the conjugate gradient method in conjooction with 

steepest descent steps. The motivation behind the method is that the solution to 

steepest descent lies close to where the two straight lines meet which bound the 

zigzag path of the steepest descents iterative steps. 

Recent research by Liu, Hu and Storey (Ref 46, 52) has proposed a new 

generalised conjugate gradient algorithm and compared it, via application to six 

functions, to other modified conjugate gradient and quasi-Newton methods. The 

new method uses a combination of the previous search direction and the current 

gradient to form the new direction per iteration, as in the conventional approach. 

The new direction is formed such that it is conjugate to a vector perpendicular to 

the current vector, instead of the new direction being conjugate to the previous 

89 



direction as before. The results show promise in tenns of efficiency in the number 

of iterations and storage requirements. 

Quasi-Newton Methods 

Quasi-Newton methods are a further class of techniques using principles lying 

somewhere between the method of steepest descent and Newton's method. The 

motivation behind the quasi-Newton technique is to overcome the impracticality 

of evaluating the inverse Hessian at each step. Specifically, an approximation to 

the Hessian is made using only first derivative information 

Quasi-Newton methods are based primarily on quadratic fimctions as for 

conjugate gradients. The expectation is that success with quadratic fimctions will 

lead to success with general non-linear fimction. The methods differ in their 

manner and complexity of approximating the inverse. 

The classical modified Newton's method is the simplest in the class of techniques. 

The true inverse Hessian is established at the initial point, denoted by ~x(O) t' . 
The Hessian evaluated at the initial point is then used throughout the iterative 

process 

The effectiveness of this approach is governed by the magnitude of the third 

derivatives of the objective fimction 

(3.15) 

Most quasi-Newton methods are more complicated than the classical approach 

and aim to use information gathered from each iteration as the algoritJun 

progresses. At the!!' stage the previous Hessian is used to define the new descent 

direction. The intention is that as the sequence proceeds the approximated inverse 

Hessian tends toward the actual inverse Hessian derived about the optimal point 

(3.16) 

90 



Many such techniques are called variable metric methods due to the inverse 

Hessian changing at each iteration 

The most widely used method to approximate the inverse Hessian is the Oavidon

Fletcher-Powell (DFP) method (Ref 69). It can be shown (Ref 17) that 

where, 

ax(t-I) ax(t-I)T 

A(t) =A(t-I) +=-7-'-
ax(t-I)T ~(t-I) 

ax(t) = X(k+I) - x(t) 

A (t-I) ~(t-I) ~(t-I)T A (t-I) 

~(t-I)T A (t I) ~(t I) 

~(t) = V'f(X(hI)- V'f(x(t») 

(3.17) 

where, A (t) is an estimate to the inverse of the Hessian In the main, A (0) = I . 
The OFP formula maintains the synunetric positive definite characteristics of the 

A matrix. 

Broyden, Fletcher and Shanno (Ref 43) proposed an alternative formula to update 

the inverse Hessian that has gained significant approval. 

A common difficulty of quasi-Newton techniques is the tendency of A (k+I) to be 

ill conditioned. A means to lessen this problem is to incorporate a restart 

procedure into the algorithm 

3.3.3 Constrained Gradient Techniques 

The general constrained optimisation problem introduces additional complexities. 

The abundance of research and available methods to cope with unconstrained 

optirnisation problems and the linearly constrained case encourage transformation 

of the constrained problem in order to apply such traditional techniques. These 

modifications fall into two categories. 

The penalty concept reformulates the general constrained model into a sequence 

of unconstrained problems via the addition of specifically derived penalties should 

constraints be violated. 

91 



A second approach is to convert the general problem into a constrained but linear 

model. In the main, a Taylor expansion of the objective fimction and any non

linear constraints is carried out about the current point and truncated linearly. 

This opens up a vast array of applicable optimisation techniques. These are, in the 

main, from the class of linear progrannning techniques. Thus, the issue becomes 

an LP problem 

The standard approach to such Iinearisation methods is to approximate a linear 

model at an initial point x(O) carry out the LP optimisation technique and, thus, 

establish a new improved point X(I). The dilemma with this approach is that the 

Taylor approximation is only deemed accurate in the vicinity of the point about 

which it is derived. The estimated value of the new point is open to a large degree 

of inaccuracy. 

A means to overcome inaccuracies associated with Iinearisation is to apply what 

are termed direction-generation methods based on Iinearisation A linear 

approximation (i.e. the gradient) is evaluated at an initial point to determine a 

direction of search. The actual objective fimction value and those of the 

constraints are used to guide the search along this direction. The following 

section introduces the prominent gradient-based techniques for general 

constrained pro blerns. 

The Method of FeasibJe Directions 

The most basic concept is the method offeasible directions. Starting from an 

initial point, a direction is specified. Steps are then taken through the search 

region from the initial point in the specified direction to a new point. 

(3.18) 

where d(') is the direction vector. The difference between this and the 

unconstrained gradient methods is that it must be ensured that the steps in the 

specified direction are feasible, i.e. there exists a> 0 such that, for alIOs; a s; a, 
X(k+I) is still in the feasible region. 

92 



This basic approach has a couple of major pitfalls. For certain problems a linear 

direction vector emanating from a point may never be feasible. Consider, for 

example, a problem with non-linear equality constraints. A second problem is that 

the feasible direction methods are subject to jamming, i.e. convergence to a point 

other than a local minimum. This occurs because the steps that the method takes 

become shorter and shorter as the direction vectors alternate between closely 

adjacent boundaries due to different constraints coming into play. 

A means to combat jamming is to partition constraints into active and inactive 

sets, creating what is termed a working set. An inequality constraint m; (x) ~ 0 is 

said to be active at a feasible point if mJx} = 0 and inactive if m; (x}", o. To 

maintain consistency an equality constraint is active at any feasible point. The 

idea is that within the neighbourhood of x active constraints restrict the domain of 

feasibility, whereas inactive constraints have no influence at this point. 

Constraints treated as inactive are, therefore, ignored. The working set is defined 

as those constraints, which are active at the current point, i.e. a subset of the total 

constraints. 

Active set methods extend feasible directions to incorporate the partitioning of 

constraints, thus defining the working set. The algorithm proceeds from an initial 

point to move on the surface defined by the working set of constraints, i.e. the 

working surface, to an improved point. As steps are taken on the working surface 

different constraints come into play. The algorithm is, therefore, systematically 

dropping and adding constraints in the working set. 

The Gradient Projection Method 

Several methods are developed from this active set strategy. The gradient 

projection method is a commonly used and successfully applied example. The 

negative gradient established at a point via the conventional method of steepest 

descent for unconstrained problems is projected onto the working surface to 

define a direction of movement in the following manner. 

The algorithm is initiated from a feasible point x. W(x} is defined to be the 

working set at the given feasible point. The direction vector to be used is the 

93 



projection of the negative gradient onto this subspace (Rei 43). To compute this 

projection use 

P=~_WT(WWTtW) (3.19) 

where P is the projection matrix corresponding to the working set, W is the 

matrix composed of the rows of the working set, and the direction vector d is 

d=-PVj{x)' (3.20) 

The second step involves selecting both li and a', where li is the value such that 

the feasible line segment, j{x + ad), is terminated and a'finds the optimum 

value of the function along the line. If the optimal value occurs at the end of the 

segment, that is li = a', a new constraint comes into play and is added to the 

working set. 

In the main, we are dealing with an algorithm that solves equality constraints only. 

Thus, Lagrange multipliers and Kuhn-Tucker sufficient and necessary conditions 

at a minimum corresponding to the active constraints are required to solve the 

problem and define constraints to be added to and dropped from the working set. 

The reader is referred to Reference 6 for a discussion ofLagrange multipliers and 

Kuhn-Tucker conditions. 

The gradient projection method is extended to deal with non-linear constraints. 

As previously, the projection matrix and gradient at the current point is used to 

define a direction of search. Equation (3.19) is, however, more complicated as 

linearisation of the constraints to create the working set matrix is required. Steps 

are taken in the direction of the projection matrix on the linearised working 

surface, the first step moving to point y. These steps are feasible only for the 

approximated constraints. Movement is then made in a perpendicular direction to 

the tangent plane to intersect the actual non-linear constraint and hence, return to 

the feasible region, as shown in Figure 3.6. Difficulties arise when steps taken 

along the tangent plane are too large. The result is that the perpendicular 

projections coincide with non-linear constraints that are no longer active. The 

point of intersection is, therefore, removed from the feasible region In such 

94 



circumstances, an interpolation scheme must be used to return to the active 

constraints (Ref 43). 

Constraint 
surface 

Figure 3.6 GPM with Non-linear Equality Constraints 

The Reduced Gradient Method 

Theoretically the reduced gradient method (RGM) (Ref 69) behaves in a similar 

manner to the gradient projection method. Many ideas and attributes behind this 

method are, however, borrowed from the simplex method. 

The reduced gradient method is an extension of the convex simplex method. 

Consider a typical LP problem 

Minimize f{x) = ex 
Subject to Ax =b x ~ 0 

(3.21) 

Applying the simplex method, the variable set x is partitioned into m basic 

variables, denoted by i, which are all positive and n - m non-basic variables, 

denoted by r, which are all zero. In the same way the coefficient matrix A is 

partitioned into 8 and A and the objective coefficient vector e into f: and c. A 

basic feasible solution is derived. As the simplex algorithm proceeds the relative 

cost coefficients, if , are used to choose which non-basic variable is to enter the 

matrix 

(3.22) 

95 



The non-basic variable corresponding to the smallest relative cost coefficient is 

chosen. The minimum ratio rule then selects the basic variable to leave the basis. 

This approach is modified for the convex simplex method by replacing the linear 

objective coefficients with the Iinearised form of the non-linear objective function 

Hence, the modified relative cost factor about a basic feasible solution x(O) is 

vJ(x(O») = vl(x(O»)- VJ(x<°) )8-1 A (3.23) 

where VJ relates to the partial derivatives with respect to the basic variables, 

vl the non-basic variables and v7 the relative change of the objective fimction at 

x(O) taking into account linear constraints. 

If the non-basic variable corresponding to the largest negative vJ(x(O») 
component is increased, this will result in a reduction in the objective function. Its 

increase will simultaneously drive a basic variable to zero. In contrast to the 

general simplex procedure, the fact that all derivatives are evaluated at the current 

point means that as the basis is altered so to are the values of the derivatives. A 
minimum of j(x) may, therefore, occur before the adjacent corner point is 

reached. The implication is that a line search should be carried out between the 

current point and the selected adjacent corner point. 

A problem arises in that positive non-basic variables may occur. To 

accommodate this problem and enable continued selection of a non-basic variable 

to enter the basis the following constructions must be considered 

p, =min~,v.r :i=I, ... ,n-m} 

r, =max~.V.rx; :i=I, ... ,n-m} 
(324) 

If Ip,1 > r" then x, should be increased, adjusting only the basic variables until 

some basic variable goes to zero. If lp, I ,;; r" then X, should be decreased, 

adjusting only the basic variables until either the basic variable or x, itself goes to 

zero, whichever occurs first. 

In summary, the convex simplex method requires the specification of an initial 
feasible point x(O) , a partition of the problem variables x = (x,x) and Iinearisation 

96 



of the objective fimction. It is then established which non-basic variable to 

increase using equations (3.23) and (3.24) with the corresponding conditions. The 

target point, that is the adjacent corner point, is determined and a line search 

executed. The new point is, therefore established and if necessal)' the basis is 

updated. 

A drawback to the convex simplex approach is that, unless a minimum to f(x) 

occurs at the adjacent corner point, the basis will remain the same. This results in 

a static method. At worst the initial partition essentially amounts to the selection 

of a reference co-ordinate system in the non-basic variables. 

The RGM is an extension of this approach that focuses on nuIIiJYing the one at a 

time search emphasis of the convex simplex method. This is achieved by altering 

a number of non-basic variables simultaneously. It is termed the RGM as it can 

be viewed as a typical gradient approach carried out in a reduced variable space. 

The partition of basic and non-basic variables and associated array manipulations 

are used to specuy a feasible descent direction. The search direction is selected 

and refined such that it will lead to an improved feasible point. The method 

continues until convergence to a Kuhn-Tucker point is reached. 

The means to calculate the descent direction is modified in later algorithms to 

accelerate the convergence rate. As oppose to using the ordinal)' steepest descent 

approach, conjugate directions and quasi-Newton constructions are employed. 

The generalised reduced gradient method (GRGM) enables the application to 

problems with both non-linear objective and constraint functions. In graphical 

terms, the descent direction is determined as for the RGM An additional sub

routine is incorporated to drop perpendicular projections from the descent 

direction, thus establishing the nearest point on the feasible constraint surface. 

Many similarities exist between the RGM and the GPM The partitioning of 

active and inactive constraints in GPM correlates to the reduced variable space 

arising from the basic and non-basic partition of the RGM In graphical terms the 

extension to the non-linear case for each method is fimdarnentaIly the same. 

However, the routine to carry out the perpendicular projection differs. Both 

techniques have proven to be a reliable and effective tool for solving a wide range 

ofnon-Iinear optimisation problems (Ref.'s 73, 74). 

97 



3.3.4 Summa." 

Gradient based approaches provide exceedingly reliable, robust and efficient tools 

for optimisation ofa vast array of problems. Derivative information of the 

objective function and constraints determine the search direction, thus guiding the 

steps through the search region. The degree of knowledge of the function and its 

derivatives is, however, an essential and often restricting factor. Methods 
employing gradient information require that, in the least, j(x)and Vj(x)exist and 

are continuous. Second order methods include the assumption of existence and 
continuity of V2 j(x) 

An integer restricted optimisation problem is by convention a grid of discrete 

sampling points. Hence, we cannot strictly formulate the partial derivatives. To 

apply any kind of gradient approach it must first be considered that a smooth 
curve is used to link all discrete points to give the marginal distribution of j as a 

function of Xi . 

The GRGM has been implemented to several reliability optimisation problems 

(Rei 88). It is stated that the decision variables must be considered as continuous. 

They are rounded to their nearest integer value following termination of the 

iterative procedure to obtain a feasible integer design vector solution Such an 

approach would be prone to much rounding error in the safety system design 

variable. The variables are small and rounding or truncating is, therefore, 

significant. 

Direction·generation methods based on Iinearisation require the formation of a 

linear objective function about a feasible point. The linear approximate of the 

objective function and derivative information is used to determine a direction of 

movement. The optimal step-size in the determined direction is governed by 

function evaluations of the actual objective function For the safety system 

optirnisation problem derivation of a linear objective function at a point is 

possible, see chapter 8 of this thesis. Assuming continuity of the decision 

variables, the corresponding gradient information can be used to define a direction 

of search. Problems arise when steps are taken from the current point. Movement 

away from the current point in the specified direction renders the linearised 

objective function inaccurate. Away from the point no explicit objective function 

98 



exists to determine the value of the function. As stated, the search region is 

governed by a black box type objective function, which requires an integer design 

vector to evaluate the probability of system unavailability at a specific point. A 

line search in the descent direction is, therefore, out of the question. The 

alternative is to take a fixed step in the descent direction Multiplying the 

direction vector by some fixed value and adding this to the current point will 

result in a new design point. It must then be ensured that the new point is both an 

improvement over the current solution and feasible. There is no guarantee, in fact 

it would be a remarkable coincidence, if the new design point were integer and 

each variable remained within their specified bounds. Rounding non-integer 

elements of the new design vector and returning non-feasible elements within 

their specified bounds must, hence precede any actual system evaluations. 

In conclusion the discrete nature, low value and small bounded range associated 

with the majority of design variables for the safety system optirnisation problem 

render any gradient-based approaches impractical. The assumption of continuity 

introduces the need to round or truncate non-integer variables. The rounding 

procedure is a combinatorial problem in itself and prone to a huge degree of error. 

A practical use of gradient information as regards optimisation of the safety 

system is described in chapter 8 of this thesis. In this case, derivatives are used to 

approximate the objective function at a point via a numerical difference scheme. 

A grid sampling technique is then carried out in the direct vicinity of this point to 

ensure the integrality and feasibility of the design vectors analysed. 

3.4 Direct Search Methods 

Direct search methods establish a direction of search, carry out a linear search, or 

take fixed steps, in the designated direction and thus, iteratively produce estimates 

of the minimum (or maximum) of I(x). The process is iterative as each direction 

is not necessarily directly toward the minimum The fundamental concept behind 

search methods is similar to the gradient-based approaches. The difference being 

that search methods use the evaluation of function values only to define directions 

of search. Such methods do not require continuity of the objective fimction or 

existence of derivatives. 

99 



Search methods can be categorised into two classes. (I) Heuristic methods, these 

rely on geometric intuition and offer no performance guarantee. (2) Theoretically 

based methods, these have a mathematical foundation and mathematical proof of 

convergence may be possible. The simplex search and pattern search teclmiques 

are contrasting examples of the heuristic type. COnjugate directions are an 

example of the theoretically based approaches. These techniques are described in 

the following section. 

3.4.1 Unconstrained Direct Search 

Heuristic Direct Search Methods 

The most basic direct search approach is to adjust one variable at a time whilst 

keeping the others fixed until a minimum is reached. This method is termed the 

one at a time search. It is ensured that each search direction is independent and 

spans the entire domain ofj(x). Each step of one overall iteration is a linear 

search parallel to each of the n co-ordinate axes, where n is the dimension of the 

search space. This approach often leads to almost exhaustive enumeration of the 

search space and is impractical for all but the most basic of functions, i.e. those 

with low dimensionality and very little interaction between variables. 

Simplex Method 

Spendly, Hext and Hirnsworth introduced a more structured approach involving 

the evaluation of the performance index in some pattern about a base design point 

(Ref 69). It uses the fact that in n dimensions a regular simplex is a polyhedron 

composed of n + I mutually equidistant points which form its vertices. For 

example an equilateral triangle is a simplex in two dimensions. A new simplex 

can then be generated on any face ofthe old one by projecting a chosen vertex the 

proper distance through the centroid of the remaining vertices of the old simplex. 

The old vertex is deleted, the remaining points and newly projected 'reflection 

point' form the new simplex. Utilising these ideas the simplex method was 

formed. 

100 



To carry out the simplex algorithm basic calculations are required to generate a 

regular simplex about a base point. Reflection through the centroid involves 

calculation of the centroid itself For a problem with n dimensions 

(3.25) 

where Xc is the centroid and Xj the point to be reflected. All points on the line from 

X; through Xc are given by 

The value A determines the distance from the controid where A = I corresponds to 

the controid itself and A= 2 the reflected point chosen to retain regularity of the 

simplex. 

Rules are required to overcome two modes of oscillation. Straddling the 

minimum occurs when the newly generated point is also the largest of the new 

simplex. It would consequently be reflected back to form the original simplex. 

To combat this the second largest point of the new simplex is reflected. The 

second type of oscillation occurs when the simplex rotates about one vertex, 

resulting in repetition of the simplex pattern. This is termed cycling and occurs in 

the vicinity of the minimum When repeated use of one vertex is detected, the 

size of the simplex is reduced by some factor termed the reduction factor. 

Termination occurs when the size of the simplex is reduced below a specified 

criterion or variation in the fimction value over a few iterations is negligible. The 

reduction factor and termination criteria are generally user-specified parameters. 

The steps of the simplex method are such that an initial point x(O) , reduction 

factor a and termination parameter fl are defined (assume a minimisation 

problem) 

(I) Select n + I mutually equidistant points to define a regular simplex. 

(2) Evaluate the fimction at each vertex. Locate the vertex with the largest 
fimction value, x~O). 

(3) Check for either mode of oscillation Update x~O) if necessary. 

IQI 



(4) Reflect the point x~O) through the centroid calculated from the remaining 

points. To retain the regularity of the simplex the reflected point lies at an 
equal distance on the opposite side of the centroid to x~O). Should cycling 

occur, reduce the size ofthe simplex by a factor <1. 

(5) If the size of the simplex is greater than the tennination parameter return to 

step 2 and continue with the newly formed simplex. Else stop. 

The simplex method is limited in that its progress is slow. No previous history 

from past iterations is used to generate accelerated moves toward the minimum 

On the contrary, once a simplex has been reduced there is no simple Wi¥f to 

expand it again. 

Nelder and Mead introduced modifications to combat these problems (Ref 26). 

The modified algorithm begins with a regular simplex in n dimensions. The crux 

of the algorithm, however, is that there is no need to maintain regularity of the 

simplex as the search proceeds. The actions of contraction and expansion are 

introduced. Basically, the simplex is reflected as previously stated. Depending on 

the relation of the function value at the reflected point to the old vertex and the 

remaining vertices of the new simplex the point search along the line of equation 

(3.26) is expanded, contracted or maintained. The value I.. in this equation is 

replaced by <1, J3 or y representing normal reflection, contraction and expansion 

respectively. Nelder and Mead recommend that the values of Cl = 1, J3 = 0.5 and 

y = 2 be employed. 

Pattern Sean:h 

Pattern search is a second heuristic approach devised by Hooke and Jeeves 

(Ref's 43, 69). This method emphasises more clearly working with a set of 

direction vectors to guide the search as opposed to manipulating a pattern of trial 

points. It is made up of two stages namely 'exploratory' moves and 'pattern' or 

acceleration moves. Past history amalgamated from the sequence of iterations is 

incorporated into the algorithm 

The exploration phase involves a one at a time search about a base point, i.e. a 

local search in n dimensions of set increments about a point vector. The value of 

the objective function is established at the base point f(x(O»). Each variable is 

102 



then incremented by /\x in rotation. If f(x(O) + &:.) < f(x(O»), where i = I, ... n, 

the change in element Xi is accepted, else Xi is incremented by - &:i' The 

lowest fimction value, i.e. f(x{O) + &:i} f(x(O) )or f(x(O) - /\xi) is accepted. The 

exploratory search thus establishes the lowest point, x;:Z, about the base point, 

X(k) . 

To describe the algorithm further the foUowing notation is employed. 

x(·) current base point 

X(·-I) previous base point 

X~'I) pattern move point 

X(·+I) next (i.e. new) base point 

The second phase involves movement from the minimum about X(k-I) through the 

minimum about X(k) to an equal distance the other side of the latter point. This is 

termed a pattern move and defines the temporary pattern point X~·+I). An 

exploratory search is then carried out about X~··I) and its lowest associated point 

established. If the resulting point is an improvement over the current minimum 
the pattern move is accepted and the minimum about X~'+I) becomes the new base 

point. Otherwise the pattern move is rejected is chosen to be the minimum about 

the current base point. 

An exploratory search may fail in that the base point proves also to be the lowest. 

If this is the case the step size increment in each search direction is reduced and 

the search repeated. Termination occurs when the increment is smaller than a set 

criterion or the fimction values vary insignificantly over a specified number of 

iterations. 

Numerous modifications have been made to the Hooka-Jeeves method. The most 

widely used is the introduction of expansion and contraction steps in both the 

exploratory search and the pattern move should fimction values prove better or 

worse respectively. 

103 



Conjugate Directions 

Conjugate directions are an example ofa theoretically based search method. Such 

methods require the objective fimction to be approximated as a quadratic in n 

dimensions. 

I 
f{x} = _xT Ax+bT x+c 

2 
(3.27) 

An orthogonal co-{)rdinate frame for the n dimension space is defined by the 

conjugate direction vectors associated with the matrix A In particular the 

eigenvectors of A define the conjugate directions which represent the set of 

orthogonal principle axes for the quadratic surface defined by f{x}. (A more 

detailed explanation of conjugate directions is given in section 3.3.2). 

As a direct search method a non gradient-based technique is required to determine 

linearly independent conjugate direction vectors. Powell proposed an iterative 

method (Ref 43). The idea is to build up the vector set sequentially .. The 

procedure begins with a one at a time search along each co-ordinate axes. The 

minimum about the initial point defines a new direction to replace one of the 

original co-ordinate axes. Specifically the direction is X(h]) - x(') , where x(k+]) is 

the minimum associated with the base point x(·). In addition, a check is proposed 

based on the determinant of the matrix of direction vectors to ensure that any 

direction vector introduced maintains linear independence ofthe matrix. The 

direction matrix, therefore, continues to span the n-dimensional space. 

Rosenbrock introduced a two-phase method termed the method of rotating co

ordinates (Ref 1). As the name suggests the co-ordinate system is rotated such 

that one of the search directions lies in the expected direction of the minimum 

The first phase of each iteration defines a direction of search in a similar manner 

to a step of Po well's sequential development of conjugate directions. A linear 

search in each n dimension is added as oppose to a sole fixed step. The second 

phase changes the search direction vectors to align with the direction vector 

determined in phase one by a process of orthogonalisations. 

104 



3.4.2 The Constrained Case 

The previous section considers only the unconstrained optimisation problem 

These unconstrained methods can be modified to handle the more complex 

constrained scenario. The modifications used fall into two categories. Explicit 

modification of the constraints considers the detailed structure of the actual 

constraint functions. The implicit approach penalises the violation of any 

constraint by adding a sequence of penalty functions to the objective fimction 

The latter, sequential unconstrained techniques are dealt with elsewhere and will 

only be touched upon here. The following section describes primarily the former 

explicit approach. 

Given a feasible point x the most basic constrained method ensures that any 

deviation from this point remains in the feasible region via evaluation of the 

constraints. Should any constraints be violated the infeasible point is manipulated 

such that it is returned to the feasible state. 

Consider the Hooke-Jeeves pattern search. In the exploratory phase a step in a 

particular co-ordinate direction may cross a constraint boundary, thus leaving the 

feasible region. As a consequence, one of two courses of action could be taken. 

The feasible point could be treated as a point with a very high objective function 

and thus rejected. Conversely, the linear search along the direction vector in 

question must be reduced by a factor until the feasible region is re-entered. In a 

similar manner if a pattern move results in an infeasible tentative base point, the 

acceleration step can be reduced by a fixed fraction until a feasible point is found. 

In practice, however, this simple approach introduces significant problems. 

Primarily, there exists the inability to deal with non-linear equality constraints. 

The factor reduction approach is a crude line search. A non-linear equality 

constraint may not be feasible at any point along the line. Contraction is, 

therefore, of no consequence. Secondly, slow convergence or at worst premature 

convergence may result. The search can degenerate into a series ofline searches 

in a fixed set of directions. In particular, all n-dimensional searches from a base 

point may either lead outside the feasible region or to points with a worse 

performance value. 

105 



Rosenbrock incorporated an interesting extension to this fundamental constrained 

approach, introduced in conjunction with the method of rotating co-ordinates (Re[ 

I). It was developed specificaI\y to include constraints of the form 
x L.; ~ x; ~ x u.; , i = \,2 .. 1 > n, where the first n constraints limit the range of the 

parameters x; , .. .x •. The remaining constraints are of the form 

XL.; ~f;(x)~ xu.;and are few in number. 

The extension involves the inclusion of a boundary region associated with each 
constraint. The basic idea being that a width 8; beyond the limits of each 

boundary is accepted as part of the feasible region A formula defines a depth of 

penetration, say A, for the lower and upper boundary. The depth of penetration 

acts as a local penalty function, thus altering the objective function in the vicinity 

of the constraint within the boundary region. This approach enables an enhanced 

ability to search the region close to the constraint boundary. 

To rectifY the basic approach for dealing with constraints it is necessary to adjust 

the search directions whenever further progress is stymied. The intention is to 

redefine the set of search directions such that they move along or parallel to the 

constraint surface. A dilemma arises due to the assumption that direct searches 

are able to use only function values, that is they have no access to gradient 

information. 

The Multiple Gradient Summation Technique 

KJingrnan and Himmelblau address this problem to a degree with the introduction 

of the multiple gradient summation technique (Re[ 43). On encountering a 

constraint it is assumed that the minimum lies near to or on the constraint 

boundary. A linear combination of the function gradient and violated constraint 

gradients, i = l, .. p, is defined by 

'11' f Vg; 
-1'111 - ;=1 IVg;1 (3.28) 

and evaluated at the current point. It is envisaged that analytical evaluation of the 
violated constraint function gradients Vg; is possible. The gradient of the 

106 



objective fimction VI is approximated by the direction vector of the predicted 

pattern move. 

The Complex Algorithm 

An alternative approach is a modification of the simplex method referred to as the 

complex method proposed by Box (Ref 12). The motivation behind this method 

is to use scattered or random search directions to mitigate the fact that the search 

directions do not adapt to the constraint surfaces. The original approach initiates a 

regular simplex about an initial point using basic mathematical calculation. 

Considering the constrained case, deviation of the simplex may result in some 

infeasible vertices. To overcome this a set of p feasible points are chosen 

randomly, where p <! n + 1, n being the dimension of the problem The algorithm 

then proceeds in the normal manner. The performance value at of each point p is 

evaluated. Reflection of the largest of these points is carried out about the 

centroid of the remaining points. As in the pattern move of the Hooke-Jeeves 

pattern search, the reflected point may be infeasible. When this occurs the point is 

adjusted for feasibility. Firstly each variable is checked to ensure any element 

exceeding its bounds is modified to the closest bound limit, i.e. 

if xm < X<L), set xm = X<L) 
I I I I 

where x~ is the reflected point, X}L) and x}U) the lower and upper bound limits 

associated with the ith variable, i = 1, ... n. If the resulting vector is feasible the 

algorithm continues as normal. Otherwise, xm is retracted halfthe distance to the 

centroid until it is feasible. 

Box recommends the number of trial points p = 2n. A large number of vertices 

prevents the simplex from collapsing and flattening along the constraint boundary. 

In addition, it is recommended that the algorithm undergoes a specified number of 

restarts prior to termination This combats premature convergence of the method 

due to the restricted search about the boundary of the region. 

107 



3.4.3 Further Research 

Misra in 1973 (Re[ 59) demonstrates the application of the sequential simplex 

search to a reliability optimisation problem The paper considers the optimal 

number of redundancies at various stages of the system to ensure maximum 

reliability, within the limits imposed on resources. Linear constraints only are 

considered. It is stated, however, that the inclusion of non-linear constraints is 

simple due to the requirement of function values alone. 

Constraints are added to the objective function for system reliability in the form of 

a least squares model. It is suggested that the actual pro blem is to seek a solution 

that offers a maximum value for the objective function and at the same time uses 

the available resources to a maximum extent. A least squares penalty concept is, 

hence, used. 

The redundancy allocation is an integer-programming problem where the 

allocations are allowed to take only integer values, which lie within a small range 

at a low value. A further point of interest from this study is that the decision 

variables are treated as continuous for solving the simplex method. A finaI 

optimal solution is obtained by rounding of the final solution obtained. The 

algorithm proved successful on the 4-stage system example. 

3.4.4 Summary 

In general direct search methods are heuristic in nature. That is, they are 

intuitively based, unsupported by rigorous theory and, hence, offer no guarantee 

of convergence. Conjugate directions have a modicum of mathematical 

foundation In contrast, however, they stipulate the necessity that the objective 

function be approximated as a quadratic. This limits the flexibility of application 

of conjugate directions. The quadratic enforcement also reduces the global 

capabilities of conjugate directions, enforcing a somewhat local optirnisation 

procedure. 

A potential disadvantage of direct search methods is the intensive dependence on 

function evaluations. Problems, which require significant computer time and 

108 



effort to evaluate objective and constraint functions, render direct search methods 

impractical. The demand for function evaluations is directly related to the 

dirnensionality of the problem In particular, many direct search algorithms rely 

on several restarts to combat premature convergence others utilise a line search in 

each exploratory direction. The complex algorithm relies on a large number of 

trial points to prevent the simplex collapsing and flattening along the constraint 

border. 

Further problems arise when considering the integer stipulation, restricted variable 

range and small values assigned to most decision variables in the safety system 

design optimisation problem The assumption of divisibility is inherent in the 

formula to locate the centroid of a set of trial points. Evaluation of the centroid 

generally requires that the resulting non-integer elements are rolDlded or 

trIDlcated. Problems with rolDlding concerning the safety system design problem 

have been discussed previously (section 3.2.2). Secondly, contraction and 

expansion along search directions are prevalent, particularly in the constrained 

case. In such circumstances, integrality can be maintained via choice of an integer 

parameter to carry out contraction and expansion Concerning the safety system 

design, however, difficulties arise due to the small restricted variable range 

associated with most of the variables. Consider, for example, pattern search, 

increasing the acceleration parameter by the smallest possible integer value, i.e. 1, 

causes many decision variables to step beyond their upper bound limit. The 

simplex method and pattern search require the pattern of points and directional 

movements to grow and develop within the search region from iteration to 

iteration The integer stipulation in conjunction with the small variable range for 

most of the design variables infers that an integer increment is too great. 

Misra's paper in 1973 previously described (Ref 59) uses a simplex algorithm to 

optimise a problem with a variable set having similar characteristics to the safety 

system design problem The method uses rounding to obtain an integer solution 

and proves to be effective. Rounding is only introduced after tennination of the 

algorithm Following each iteration the algorithm proceeds with non-integer 

valued variables. This is possible as performance is expressed as an explicit 

objective function. Taking into account the whole process, rounding contributes 

only a very minor part and is therefore negligible. The safety system design 

problem does not have an explicit objective function. Integer values of the 

109 



decision variables are required to evaluate the performance of each design 

implicitly. Utilising the simplex method for the safety system design optimisation 

would require rOlmding to be carried out after every iteration. In addition, 

boolean variables constitute part if the variable set in the safety system design. A 

variable type which deem rounding illogical. 

Conversely, the heuristic nature of direct search methods enables greater 

flexibility in their application to val)'ing problem types. Direct search methods 

rely on function evaluations only and generally pay little attention to the structure 

of either objective or constraint functions. Such an approach is able to deal with 

the 'black box' type function ofthe safety system design problem The lack of an 

explicit objective function over the whole search region is a major limitation of 

the safety system model. 1bis attribute of most direct search methods is, thus, a 

particularly encouraging characteristic. 

The multiple gradient summation method uses gradient information from the 

constraint functions only. As regards the safety system, there exists a 

differentiable objective function for the maintenance down time and cost 

constraints. It is advantage to use any available gradient information. Handling 

the spurious trip constraint would, however, require further manipulation and 

innovation. 

The idea of a 'fuzzy' boundary in Rosenbrock's constrained approach shows 

potential regarding the rodt, cost and spurious trip constraint of the safety system 

design problem Allowing constraints to be violated should significant 

improvement in system reliability result, enables the algorithm to foUow the real 

decision making progress. 

The method of rotating co-ordinates and the complex method showed 

consideration of variable bounds. Random sampling procedures to generate 

values for variables within the specific stated ranges proffers a reasonable 

approach to maintain point feasibility. This filet is a motivation for the random 

search techniques considered in the next section. 

110 



3.5 Random Searcb Methods 

Many optirnisation problems are not represented by a well-structured objective 

function with convex .or lD1imodal properties. Conversely, in practical situations 

there is little or no 'a priori' information about the search region. Frequently the 

search space under consideration possesses more than one local minimum Local 

optimisation techniques may improve the solution by a few percent. Moving to a 

different area of the search space can result in a very significant change in 

performance, disregarded by the local approach. When little is known about the 

function in question the aim is to devise an optimisation algorithm that will 

distinguish between the local minima and locate the best local minimum. That is, 

to devise an algorithm to deal with the global optimisation problem 

The demand on fimction evaluations enforced by a thorough systematic search of 

the region is intolerable. The means to tackle global optirnisation problems fall 

into 2 broad classes namely 'deterministic' and 'probabilistic'. As stated by 

Gomulka (Ref. 27), theoretical reasoning indicates it is unlikely that efficient 

deterministic algorithms for global optimisation could be discussed for general 

functions. Such approaches are only possible for a very restricted class of 

functions. It is expected that application of global optirnisation methods will be 

pro babilistic in nature. 

3.5.1 Pure Random Search 

The simplest probabilistic approach is the pure (or crude) random search. Trial 

points are generated via a random sampling procedure. The simplest approach is 

to use pseudo-random number generation routines available on most computers. 

Specifically, when decision variables are limited to a restricted variable range, 

each can be assigned a value using 

where r; is a random number distributed uniformly on the interval (0,1). To 

maintain integrality of the point vector ensure that 

III 

(3.29) 



(3.30) 

where o!> R; !> (x:U
) - x:L») and integer. The objective and constraint values (if 

constraints are present) are calculated for each trial point to ensure feasibility. 

Each feasible trial point is then compared and the best retained. A specified 

nwnber of trial points are analysed prior to termination. This sinrultaneous search 

is robust, simple and flexible in application. However, it is, in other than 

exceptional circumstances, impractical. 

The positive attributes of a crude random search can be inter-twined with other 

optimisation techniques and used in an intelligent manner to achieve a robust yet 

efficient algorithm The following section introduces several innovative 

techniques, which use a random search as their backbone. 

3.5.2 ControUed Random Search 

In the extreme a function may be quasi-random, i.e. there exists little or no 

correlation between the values of the function at neighbouring points. It is usual, 

however, to asswne some correlation does exist even when a function is 

discontinuous or the variables discrete. The controlled random search (CRS) is 

motivated by this concept. It is reasonable to asswne that point vectors with high 

performance, that is a low function value in the case of a minimisation problem, 

lie in a sub-domain containing at least a local minimwn Attention should, 

therefore, be focused on high quality sub-domains of the search space. 

The basic CRS proposed by Price (Ref 65) proceeds as follows. It is supposed 

that each of the n variables lies within specific stated ranges, thus defining the 

search domain. 

Step 1. N trail points are chosen at random from the feasible search space. Each 

trial point and corresponding function value are stored in array A. 

Step 2. P is selected from a set of potential trial points derived in the following 

manner 

112 



a) n + I points are chosen at random from N. These points form a 

simplex in n-space with vertices RI, ... R. + 1, where R. + 1 is chosen 

arbitrarily as the pole. 

b) The centroid of the simplex, G , is calculated. 

c) P is the image point of the pole with respect to G, that is 

P =2G-R.+1 

In total Ne n+1 X (n + I) potential trial points could be chosen, thus creating 

the set of primary trial points. 
Step 3. Check P for feasibility and establish Jp. 
Step 4. Establish the point, M, resulting in the greatest function value, JM' of the 

N points stored. 

Step 5. If Jp < JM and P is feasible, replace M in the array with P. 

Step 6. If Jp > JM or P is not feasible return to step 2 and repeat with an 

alternative primary trial point. 

It is required that the probability of success of Jp < JM strikes a balance between 

a pure random search, thus introducing global diversity, and a structured 

algorithm, ultimately tending toward convergence. If the percentage of successes 

from the total number of trials at any stage falls below 50% a secondaty trial 

point, Q, is introduced, where 

Q=(G+R.J 
2 

(3.31) 

Primary trial points are search orientated, whereas secondary trial points are 

conducive to convergence. A certain number of function evaluations may specify 

the stop criterion of the CRS algorithm. Else, termination may occur when either 

N points fall within a sufficiently small region of n-space or all fimction values 

stored in the array are within so many significant figures of one another. 

Price introduced a new version, known as CRS2, of the original CRS algorithm 

(Ref 66) CRS2 differs in that primary trial points only are included. No 

consideration is given to secondary trial points. Secondly, CRS2 differs in 

application of the Nelder-Mead type simplex application. Specifically, the pole of 

the simplex is not chosen randomly. The pole, RI, is chosen to be the point 

corresponding to the lowest function value of the N points in store. This reduces 

113 



the set of potential primary trial points to nxN
-

1 C. , n being the dimensionality of 

the simplex. 

CRS2 biases the search to the region aroWld the lowest function value in store in 

an attempt to achieve more rapid convergence than that attained by the original 

CRS algorithm 

A further modification was introduced resulting in CRS3 (Ref 67). CRS3 speeds 

the final convergence of the optimisation by combining a local optirnisation 

algorithm (LOC) with the global search procedure. CRS is based on the geometry 

of the simplex. It was, therefore, considered appropriate to base the LOC 

extension on the Needle-Mead simplex procedure. 

LOC is carried out in a separate subroutine either at the end of the original CRS2 

global search stage or within when certain criteria result. It was suggested to 

introduce LOC whenever CRS2 generates a new point, which falls within the 

bottom one tenth of the array of stored values. 

To fWl LOC the best n + I points of the N points stored in array A are chosen to 

form a simplex. The worst point, W, is established and the centroid of the 

remaining n points generated. The points P, Q and R are then calculated, where 

P=2G-W 

Q=(G+W)/2 

R=4G-3W 

(3.32) 

representing normal reflection, contraction and expansion with respect to the 

centroid respectively. The fimction and constraint values at point P are 

established. Consequently, contraction or expansion is carried out to determine 

the most optimal point to replace W in the set of stored points. Rules governing 

these steps reflect those of the Nelder-Mead simplex procedure. 

CRS portrays a decrease in convergence ability as the region of the global 

minimum is approached. A recent paper by Ali and Storey (Ref 4) attempts to 

remedy this defect. As oppose to carrying out LOC, the region around the current 

best point is explored using a l3-distribution In the same paper AIi and Storey 

compared this to a gradient based local search, implemented on detection of a new 

114 



best point following application ofCRS. The motivation behind this is that 

gradient type techniques are generally preferable, even when the gradients have to 

be computed numerically. The paper shows that the new a1goritluns portray 

substantial improvement over the original CRS approaches. 

Summary of CRS 

The CRS is designed for thoroughness of search rather than speed of convergence. 

The original CRS exhibits slow convergence due to its treatment of each region in 

a non-preferential manner, thus tending toward a pure random search. The later 

algorithms aim to recti1Y this. Due to their inherent random nature, the algorithms 

are prone to selecting repeated points, thus introducing degeneracy and 

encouraging susceptibility to premature convergence. In consequence, the 

modified searches may sometimes show bias toward the region of a local 

minimum, which is not necessarily the global minimiser. 

CRS3 encounters problems when the global minimum lies on a constraint 

boundary. Due to its simplex framework LOC does not operate effectively at the 

edge of the search region. 

As regards the safety system design model, the fact that the CRS algorithms are 

based on the Nelder-Mead simplex approach implies the disadvantages associated 

with the application of the simplex approach will take effect. In particular, the 

inherent assumption of divisibility when calculating the centroid and the limited 

ability to carry out contraction and expansion due to the integer stipulation and 

restricted variable range. 

Despite this, CRS has been considered in view of many potential features of merit 

for application to the safety system design model. The later CRS algorithms, in 

the main, achieve the balance between a direct and random search. The random 

influence stretches the search across the region and the direct aspect introduces the 

history of previous events, reinforcing continued search in promising areas. In 

addition, generating a population offeasible integer points enables a more 

optimistic outlook as regards searching the whole search region. Thus, preventing 

the search getting stuck in local optima Specifically, the algorith.m shows 

115 



capability of pattern recognition, resulting in clustering about high quality sub

reglOns. 

Function values only are used. The algorithm is not dependent on the structure of 

the objective function or presence of derivatives. It is, therefore, applicable to a 

black-box type function The algorithm is able to deal with constraints and is 

particularly designed to incorporate variables with an upper and lower bound, thus 

defining the boundaries of the search region. In conclusion the algorithm is 

versatile. It is able to adapt to the problem in hand. The basic concepts of CRS 

establish the vicinity of the global minimum A local technique adapted to the 

problem in question is then used to refine the latter stages ofthe search. 

3.5.3 Partitioned Random Search 

A further sophisticated random search approach was introduced by Tang and 

termed the partitioned random search (PRS) (Ref 84). The purpose of the PRS is 

to partition the search region of the objective function into a certain number of 

sub-regions. (CRS assumes this partitioning indirectly through the formation of 

clusters, whereas with PRS the sub-regions are directly defined and enforced). 

Vector points are sampled from each sub-region. The associated function values 

are used to estimate the 'promise' of each sub-region. 

An independent and identically distributed random sampling scheme is employed 

for each of the sub-regions. The observed function values evaluated within each 

partition are used to assign a density function to the sub-region in question. The 

idea is to limit fruitless function evaluations in unpromising sub-regions using a 

partitioned sequential sampling approach. 

An optimal sequential sampling procedure is derived and consists of two 

components. The first concern is to determine a stopping rule, i.e. a decision as to 

whether further function evaluations should be taken or whether the algorithm 

should terminate. The second concern is the sampling rule, i.e. if the algorithm 

continues, from which sub-region should the next value be taken? The sampling 

rule is governed by each sub-regions promising index. The promising index is 

derived from the density function associated with the particular sub-region. The 

116 



reader is refereed to References 84 and 85 for a more detailed explanation of the 

mathematical definition of the optimaI sequential sampling procedure and 

estimation of the promising index. The idea behind the method is of interest here. 

In addition, mathematical analysis in the paper describes that the random search 

with partitions works better than the random search with no partitions. With 2 

sub-regions alone the PRS demonstrates superiority over the crude random search. 

The more partitions the greater the effect. 

As the PRS algorithm proceeds the number of function evaluations per iteration 

increases. Initially the region is partitioned into k sub-regions. By choosing, for 

example, one function evaluation from each partition, the most promising sub

region is established. The next step partitions the most promising sub-region into 

e further partitions. The number of function evaluations required to compare sub

regions is now k + e. A modification to the PRS was introduced by Tang and 

termed the adaptive partitioned random search (APRS) (Ref 85). In a similar 

manner, the region is partitioned into k sub-regions and the most promising of 

these determined. The APRS differs in that, having established the expected best 

partition, the rest of the sub-regions are aggregated together into one region The 

most promising sub-region is then further divided into k parts. The search space, 

thus, consists of k + 1 partitions and following the initial iteration the number of 

function evaluations remains fixed at k + l. 

Summary of PRS 

PRS deserves attention in view of its simple yet effective application. The PRS 

method makes very few assumptions about the objective function, is able to 

handle constraints and is particularly suitable for variables within bounds. PRS 

initiates the search from a set offeasible integer points. This fact is indicative of 

the robustness of the search, thus combating the convergence to local optima As 

is the case in CRS. Additionally, PRS is able to maintain integrality of the design 

points throughout all steps of the a1goritJun This is ofparticuiar importance 

regarding the safety system design problem Addition and subtraction of points is 

not an issue as in the simplex-based approaches. Consequently, variable bounds 

are not exceeded and specifically Boolean variables maintain logical values. 

117 



As previously stated in the linear programming section, PRS mimics the branch 

and boWld approach in that sub-regions of the search are systematically analysed 

and evaluated. The branch and boWld technique assigns an upper boWld to each 

sub-region Whereas, PRS is a probabilistic approach and determines the 

expectation of each partition to contain a high quality point. 

A disadvantage ofPRS is the intensive demand on ftmction evaluations combined 

with an unstructured convergence property. APRS goes some way to alleviate the 

high demand, however the number offimction evaluations required to reach a 

specific criteria is still something of an unknown quantity. In addition, it must be 

ensured that the amalgamated region in the APRS is not neglected should it 

contain the global minimum. 

3.5.4 The Combinatorial Heuristic Method 

The combinatorial heuristic method is an interesting approach regards the integer 

realm (Re[ 69). The method relies on discretising the range of each independent 

variable then carrying out a randomised search over the finite grid of possible 

solutions. The latter part of the algorithm is ideally suited to an optimisation 

problem involving integer restricted decision variables within a specified range. 

The steps of the algorithm proceed as follows. 

Step 1. The initial point x(O) is randomly generated. F mID = f(x(O») is evaluated. 

Step 2. Each variable i, where i = I, ... n, is considered in turn and the following 

loop executed. 

a) Randomly select q values of the i th variable. Hold the other variables 

fixed. Establish f«j)= f(x(O) + &,.J ' wherej = I, ... q. If 

f(x<°») < f«j) for alIj, reinitiate step 2a with variable i + 1. 

b) IdentifY the lowest of f(x:,j). Set this ftmction value to T min· 

e) Incorporate interaction with the next variable, i.e. carry out a look

ahead search. 
i) Randomly select p values of the variable i + 1. For each x~j of 

step 2a evaluate the new ftmction value with the random 

selection ofp, i.e. for j = I, ... q, evaluate f(x:,j + &(',1,.) for k 

118 



= l, ... p. Retain each function value showing an improvement 

over Tnrin. 

ii) Fix the i lh variable at a value corresponding to the point vector 

resulting in the lowest value in step 2ci. 

d) If i = n - I go to step 3, else return to 2a with i = i + 1. 

Step 3. Randomly choose q values for the nib variable. Hold the rest fixed and 

retain the best function value. 

Step 4. Check for tennination. Either stop or reinitiate step 2 with i = 1. 

Further enhancements to the method consider various termination criteria, variable 

reordering, more elaborate look-ahead procedures and variable reduction 

strategies. 

Summary of the Combinatorial Heuristic Method 

As regards application to the safety system design optimisation problem, the 

obvious attribute of the combinatorial heuristic method is the specific orientation 

toward solving an integer problem Decision variables are modified within 

bounds and assume only integer values. In addition, little or no assumption is 

made concerning the structure ofthe objective or constraint functions. Constraint 

evaluations can be easily incorporated at each step and infeasible designs 

penalised or rejected. The random sampling prevents points getting stuck in local 

optima whilst simultaneously avoiding an exhaustive search over all discrete 

values of the design variables. 

Again the obvious disadvantage is the high demand on function evaluations. The 

randomising effect prevents a restricted search of the region yet, in contrast, the 

random structure introduces an unknown quantity regards convergence of the 

algorithm 

The combinatorial heuristic method portrays striking similarities to Misra's 

approximation methodin section 3.2.6. The innovative inclusion of random 

sampling and a look-ahead search could be combined with Misra's use of 

tolerable slacks about the constraints to introduce a more effective algoritlun 

Misra's approach would first evaluate the constraint functions defined by an 

119 



explicit objective function, thus requiring little computer effort. Should these 

values faIl within the tolerable slacks the more complex implicit function are 

evaluated. A shift in emphasis in computer effort is, therefore made towards those 

functions which are well-structured and more easily handled. 

120 



CHAPTER 4 

GENETIC ALGORITHMS 

4.1 Introduction to Evolutionary Computation 

In general, any optimisation problem can be perceived as a search for the best point 

through a space of potential solutions. Classical analytic or exhaustive optimisation 

techniques usually suffice for small, simple spaces. However, searching a complex 

space often involves a trade-off between two important issues: exploiting the best 

solutions and exploring the search space. Exploitation assesses information supplied 

by a good solution in the hope that incremental changes to the single structure will 

lead to an improved variant. Hill climbing is an example of such an exploitation 

strategy, which proceeds to the detriment of exploration of the search space. This 

short-sightedness makes hill climbing vulnerable to being trapped in local optima, 

often far removed from the optimal solution. Locally optimum solutions often prove 

insufficient for real world engineering problems. Conversely, random search is an 

example of a blind strategy, which explores the search space but ignores information 

about the problem domain. Such blind sampling is in the main intolerably inefficient. 

Evolutionary computation is an umbrella term used to describe a class of search 

strategies that solve complex problems by simulating evolution via a computer 

algorithm. Such strategies combine elements of directed and stochastic search, which 

can strike a remarkable balance between exploitation and exploration of the space. 

There are currently three main avenues of research in simulated evolution: genetic 

algorithms, evolution strategies and evolutionary programming. Common principles 

governing these are that each algorithm initialises a population of contending trial 

solutions for the particular problem. Each trial solution is then assessed by an 

objective measure of performance and used in conjunction with a selection 

mechanism to determine which solutions continue into subsequent generations. 

Specific processes are introduced which create new solutions via the alterations of 

existing solutions. The algorithms differ in the emphasis that they put on ~articular 

121 



aspects of the evolutionary process. Evolution strategies and evolutionary 

programming emphasise the behavioural link between existing and newly formed 

solutions (Ref's 6,21). In contrast, genetic algorithms stress the genetic link and it is 

with these that this chapter is concerned. 

4.2 Introduction to Genetic Algorithms 

John Holland, his colleagues and students developed genetic algorithms (GAs) in the 

1970's at the University of Michigan. Holland's work is based on two central 

themes: the encoding of complicated structures by simple representations (bit strings) 

and the ability to improve such structures by simple transformations. His motivation 

rose from the study of natural adaptive systems (Ref 44). 

In evolution the problem each species faces is to search for beneficial adaptations to a 

complicated and changing environment. The knowledge gained by each species is 

embodied in the genetic makeup (or chromosomes) of its members. When parents 

reproduce this chromosomal material may be altered. Crossover involves the 

exchange of genetic material between two parents. Mutation randomly alters specific 

areas of the chromosomal string. Inversion alters segments of the chromosome. GAs 

are a class of optimisation procedures which use principles mimicking those of 

natural selection and genetics, specifically genetic inheritance and Darwinian strife 

for survival. 

The terminology used in GA literature is a mixture of the natural and the artificial. In 

a biological organism a chromosome is the structure used to encode the description 

that specifies how the organism is to be constructed. A gene encodes a particular 

feature of the individual and together the set of genes makes up the chromosome. 

The location, or locus, of the gene within the chromosome structure determines the 

order of the characteristics represented by the gene. A gene may adopt several 

different values to describe its characteristic. Each value of a gene is termed an allele. 

The complete set of values of all genes constitutes the gene pool. The 

correspondence of GA terms and optimisation terms is summarised in table 4.1. 

122 



Genetic AI20rithms Explanation 

Chromosome (string, individual) Solution (coding) 

Gene Variable contributing to solution 

Locus Position of gene (variable) 

Allele Value of gene (variable) 

Gene pool Entire search space 

Table 4.1 An explanation of GA terms 

The structure of the GA is such that each solution is coded as a string of parameter 

values. Each solution being analogous to a chromosome in nature, each parameter a 

gene, and their specific value an allele. The method then works with a population of 

strings. Each string is assigned a measure of its fitness in the environment. Selection 

(or reproduction as it is also known) then exploits this available fitness information. 

The greater the fitness value the higher the strings chance of being selected to enter 

the next generation. 

The whole process is influenced by the action of genetic operators, typically 

crossover and mutation. These perturb the parameter information on each string and 

allow for greater exploration about the search space. 

As suggested by Goldberg (Ref. 37), GAs differ from more traditional optimisation 

techniques in that they work from a coding of the parameter set and not the 

parameters themselves. They search from a population of points, not a single point. 

They use objective (i.e. fitness) rather than auxiliary information (e.g. gradients) and 

the transition rules are probabilistic not deterministic. 

In 1975 De Jong combined the theories of Holland with his own computational 

experiments in a function optimisation setting (Ref. 22). His study bore great 

importance in the subsequent development of GAs, in particular as an optimisation 

tool. GAs have since received considerable attention regarding their potential to 

solve a wide range of practical optimisation problems in the engineering world. 

Amongst many others, such applications include reliability design, scheduling and 

sequencing, vehicle routing and transportation. 

123 



GAs lend themselves well as a function optimiser due to their simplicity of 

implementation. They do not have much mathematical requirement. GA's find good 

solutions by a blind manipulation of their contents, where blind refers to the fact that 

the GA will search for solutions without regard to the specific inner workings of the 

problem. The objective function can thus be viewed as a black box that provides only 

evaluation of the strings. As a result the GA can handle any kind of objective 

function and requires very little prior knowledge of the fitness domain. In particular, 

GAs are able to cope with multi-modal regions. From a function optimisation point 

of view the GA tries to locate and scale high peaks on the fitness landscape. More 

specifically, selection acts to drive populations uphill towards peaks while 

recombination operators produce drift. 

4.3 The Simple Genetic Algorithm 

The SGA is described by Goldberg (Ref 37) and is used here to illustrate the basic 

components of the GA. The general structure of the SGA is shown in figure 4.1. 

Following initialisation and evaluation of a population of strings, operators act to 

select, recombine and mutate the population, which evolves over subsequent 

generations. Prior to application of the GA the user must determine a representation 

scheme, define the fitness measure, define the parameters and variables for 

controlling the algorithm and designate a performance measure and a criterion for 

terminating a run. Using this outline, the following section describes the basic stages 

of the traditional GA in a more detailed fashion. 

124 



in 

Generate Initial 
Population 

1= nr'l'lrling 

Evaluate 
Fitness 

Are Termination 
Criteria met? 

Yes 

Assess 
Performance 

Measure 

out 

No 

Generate a New 
Population 

Figure 4.1 The Structure of Holland's Traditional Genetic Algorithm. 

4.3.1 Representation 

To create an individual the parameters of an optimisation problem are coded as a 

finite length string over some finite alphabet. Traditionally GAs use either binary or 

125 



Gray coded strings. Both of these have a 2-character alphabet, 0 or 1. Considering 

the binary code: the right most bit of a typical 8-bit byte in the computer has the value 

2 to the power 0, i.e. 2° The bit directly to the left is 21, the next 21 and so on. 

Hence, the binary number 

10010 = Ix 24 +Ox2' +Ox 22 + Ix21 +Ox 2° 

=16+0+0+2+0=18 

Gray code differs from binary in that the hamming distance between successive 

numbers is minimised. More specifically, adjacent integers have Gray code 

representations that differ in only one bit position. In essence, a Gray code takes a 

binary sequence and shuftles it to form a new sequence with this 'adjacency 

property'. Consequently, for a series of integers, multiple Gray codes exist. One of 

the most common goes by the name 'binary reflected Gray codes' and is shown in 

comparison to the standard binary code in table 4.2. 

Integer Binary Gray 

0 000 000 

I 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

7 111 100 

Table 4.2 Binary and Gray Code 

The parameter set of each individual is represented by a single chromosomal string of 

allele values. Each parameter is encoded as its bit string equivalent with its own 

particular sub-length. Each encoded section is then concatenated to form a single 

multi-parameter string of O's and 1 's, where each string represents a point in the 

search space. The ensemble of possible values the parameter set can take defines the 

entire region and is comparable to a gene pool. 

126 



The GA works on the search space of the coded population. Manipulation is carried 

out on encoded decision variables, not the decision variables themselves, except 

where a real-valued representation scheme is used. However, examination of the 

chromosome string in isolation yields no information about the problem being solved. 

The chromosome must be decoded to apply any meaning to the binary representation. 

Having decoded the chromosome representation into its decision variable domain it is 

possible to assess the performance of the individual. 

4.3.2 Initialisation 

As previously stated, a GA performs a multi-directional search by maintaining a 

population of potential solutions. The population to population approach attempts to 

ensure the search does not get trapped in local optima. Initialisation routines vary .. 

F or research purposes, a random population is useful since the evolution from a 

disordered population to a well-structured highly fit set of points is a good test of the 

GA. To initialise a binary population of n individuals, whose chromosomes are I bits 

long, n x I values from the set {O, I} are randomly generated. If prior knowledge of 

the problem is available it may be useful to incorporate it into the initial population. 

However, this should be tempered with diversity to ensure regions of the search space 

are not neglected. 

4.3.3 Fitness evaluation 

A criteria is required to determine how' good' an individual is. An objective function 

is generally used to provide a measure of how individuals perform in the problem 

domain. The objective function value is a raw measure of performance that is usually 

not in an appropriate form for use in the algorithm. For this reason it is only used as 

an intermediate stage in determining the performance of individuals. For example, 

when finding a global minimum the fittest individuals will have the lowest numerical 

values of the associated objective function. Another function is, therefore, required to 

transform the objective function value into a measure suitable for application of the 

selection operator. This mapping is generally referred to as the fitness function and 

127 



determines the fitness of the individual. Transformation of the raw objective function 

value is essentially the first stage of selection. The mechanics of the transformation 

process depends on the problem being solved and the selection operator used. 

4.3.4 Selection 

Selection is the first operator concerned with generating the next population. The 

purpose of selection is to increase the probability of reproducing individuals that have 

higher fitness values, thus directing search towards promising regions in the search 

space. The particular selection method used determines how many and which strings 

make up the new population. In some versions the whole population of strings is 

replaced, in others only a subset. If the whole population, n say, is to be replaced the 

new chromosomes are generated by choosing strings from the original population and 

reproducing them. It should be noted that selection alone does not introduce any new 

points for consideration from the search space. Selection copies individuals without 

change into the next generation. The traditional approach implements selection using 

Holland's proportionate method, or a biased roulette wheel as it is better known. 

Basically each individual in the population is allocated a slice of the roulette wheel 

that is directly proportional to the individuals fitness. Specifically, individual i with 
fitness .f has a selection probability Pi of being reproduced where 

.f 
Pi =-n-- (4.1) 

"L"!i 
j=l 

A wheel is made according to each string's probability and the selection process is 

based on spinning the wheel n times. Figure 4.2 illustrates the application of the 

biased roulette wheel to a population of 4 strings. Strings with a higher fitness 

occupy a greater percentage of the wheel and thus, have a higher probability of 

contributing one or more offspring to the next generation. 

128 



Roulette Wheel 

1 

2 

3 

4 

tOinter 

A Population 
of 4 Strings 

Fitness % 

20.2 50.5 

5.3 13.25 

10.4 26 

6.1 15.25 

Figure 4.2 A Biased Roulette Wheel 

4.3.5 Genetic Operators 

Individuals already selected to enter the next generation are recombined according to 

specified recombination rates. The genetic operation of crossover is the exchange of 

genetic material between two parent chromosomes and allows new individuals (i.e. 

new points in the search space) to be created and tested. The traditional GA operator 

is called one-point crossover. A cutting point is randomly chosen such that the 

genetic material beyond that point is exchanged between two previously selected 

parents to create two children. One-point crossover with the random crossover point 

chosen to be 3 gives 

Parent I: 0111 010 ~ 
Parent 2: 101 1100 ~ 

Child I: 011100 

Child 2: 101010 

In addition to its role as a recombination operator, binary crossover also has the 

potential to generate new parameter values. Consider a chromosome made up of a 

concatenated set of parameter values in binary form. Each time the selected 

crossover point is within the boundaries of a parameter, part of the parameter's bits 

from one parent are combined with those of another with the result that a new 

parameter value may be encoded. Crossover is often described as the key to the 

129 



- ._- ---- - --- ~ 

power of the GA. The perfollDance of the GA depends to a great extent on the 

perfollDance of the crossover operator used. 

Mutation is generally the random alteration of a parameter value on the solution 

string. As regards a binary coded string this simply means changing a I to a 0 or vice 

versa. A slightly different approach randomly regenerates the bit in question. The 

new bit will, therefore, differ from the old one 50% of the time. In essence, this is 

merely equivalent to a reduction in the mutation rate. Given that mutation is 

generally applied unifollDly to an entire population of strings it is possible that a 

given binary string may be mutated at more than one point. Mutation ensures all 

a1leles have the potential to enter the population. 

Reproduction and crossover effectively explore the search space. Occasionally, 

however, they may become overzealous and loose some potentially useful genetic 

material. Mutation is usually conceived to be a background operator, which helps 

maintain sufficient diversity in the population. 

4.3.6 Result Designation and Termination Criteria 

It is required that a tellDination criterion is specified for each run of the GA. Due to 

the fact that the GA is a stochastic search method it is difficult to fonnally specify 

convergence criteria. Application of convergence tellDination criteria is problematic 

as fitness of a population may remain static for a number of populations before a 

superior individual is found (Ref. 29) 

A popular criterion is to state the maximum number of generations evolved. An 

alternative approach is to achieve a particular degree of convergence portrayed in the 

binary encoding of the string population. There is no general rule. The method of 

tellDination is problem dependent. In addition, there must be a means to monitor the 

behaviour of the GA, i.e. a method of result designation. One frequently used method 

is to designate and store the best individual obtained in any generation of the 

population during the run (i.e. the best-so-far). Keeping track of the best individual 

from one generation to the next is usually described as an off-line measure. The 

130 



average fitness of each population may also be evaluated and stored to give an on-line 

indication of population convergence. 

A major advantage of the GA is that it can be stopped and restarted at any point in the 

search and information to that point can be determined and analysed. In addition, the 

GA can provide a number of potential solutions to a given problem, where the choice 

of final solution is left to the user. This is particularly useful in the case of 

multiobjective optimisation for which the problem does not necessarily have a unique 

solution. The GA is able to explore the trade-offs between multiple objectives with a 

minimum of effort and identify alternative solutions simultaneously (Ref. 57). 

4.3.7 GA Parameters 

Prior to each run important global program variables that affect the operation of the 

GA need to be defined. These are referred to as the GA parameters. The most 

common GA parameters govern the population size, the maximum number of 

generations, the probability of crossover and the probability of mutation. The greater 

the population size and number of generations the more potential there is to both 

explore the search space and introduce diversity from the onset. However, this is 

generally at the expense of efficiency and a balance for the particular problem must 

be attained. 

The crossover rate controls the expected number of chromosomes to undergo the 

crossover operation per generation. A higher crossover rate allows exploration of 

more of the solution space and reduces the chances of settling for a false optimum: 

but if this rate is too high, it results in the wastage of a lot of computation time in 

exploring unpromising regions of the solution space. 

The mutation rate controls the rate at which each bit is changed to its opposing value. 

If it is too low, many genes that would have been useful are never tried out: but if it is 

too high, there will be much random perturbation, the offspring will start losing their 

resemblance to the parents and the algorithm will lose the ability to learn from the 

history of the search (Ref. 34). 

131 



Establishing the best values for the GA parameter set is an optimisation problem in 

itself. This area is discussed further in chapter 6. 

4.4 The Theoretical Foundation 

The theoretical foundation behind GA's relies on the notion of a schema 

(Ref.'s 37,56). Holland defines a schema to be a similarity template, which describes 

a subset of strings with similarities in certain string positions. Geometrically, a 

schema can be considered as a hyperplane in the search space. Holland used the 

concept of a schema with binary encoding to derive the schema theorem. In essence, 

the schema theorem states that if a better understanding of the problem domain is 

desired it is essential to use information gained from the similarities between strings 

as well as their fitness. To build a schema the notational device * (or don't care 

symbol) is introduced forming a ternary alphabet (0,1,*). A schema represents a 

subset of strings that match in all positions other than '*'. For example the schema 

(***1 *010) matches the following strings (1111010), (0111010) and (1010010) but 

does not match (1101010). 

Schemata are described using two properties: order and defining length. The order of 

a schema is the number of fixed positions, i.e. O's and I 's, in its vector. The defining 

length is the distance between the first and last fixed positions of the schema. 

Each binary string oflength I is an instantiation of 21 possible schemata. Holland 

speculated that the evaluation of each string actually offers partial information about 

the expected fitness of all possible schemata in which that string resides. Such 

parallel processing is considered a combinatorial explosion working to positive effect 

and is termed implicit parallelism. 

Intuition implies that highly fit strings will contain a high proportion of fit schemata, 

where a schema's fitness is defined to be the average fitness of all strings in the 

population matched by the schema in question. A schema's fitness is altered as the 

GA progresses. The effect exerted by selection is straightforward. Strings are 

132 



selected from the population with a probability relative to their fitness. Above 

average schema will, therefore, receive an increasing number of strings in the next 

generation. Conversely, the proportions ofless desirable schema will decrease. The 

effect of crossover and mutation is a little more complex. As regards crossover, if the 

crossover point chosen cuts the schema, the pattern of the schema will be disrupted. 

Obviously, the shorter the defining length the more likely the schema is to survive 

crossover. Mutation is most likely to destroy a schema containing more fixed bits. 

Hence, short, low order, above average schemata receive exponentially increasing 

trials in subsequent generations of the GA. 

4.5 The Constrained Case 

Most practical optimisation methods must have the ability to handle both equality and 

inequality constraints. As regards the constrained problem, if the objective fitness 

value of a decoded chromosome lies outside the feasible region the chromosome is 

deemed to be infeasible. Equality constraints can be dealt with inherently within the 

black box objective function. The concern is, therefore, to cope with inequality 

constraints. 

The simplest approach is to run the GA in the normal fashion and evaluate both the 

objective fitness and the constraints. Should any constraints be violated the solution 

is infeasible. The string is, therefore, assigned no fitness. It is, in effect, discarded 

from the evolutionary process. This is often classified as the rejecting strategy. 

Difficulties arise with the rejecting strategy when the problem is highly constrained or 

the search space non-convex. In a highly constrained environment, finding a feasible 

point is a feat in itself. If infeasible points are rejected outright, no information 

concerning the space is gained and much time and effort wasted. In addition, simple 

rejection could seriously limit the diversity of the initial population. As regards a 

non-convex feasible space, it is often more efficient to reach the optimum if it is 

possible to 'cross' an infeasible region. Constraint management techniques allowing 

movement through feasible regions of the search space tend to yield more rapid 

optimisation and produce better trial solutions than do limiting search trajectories 

only to feasible regions of the search space (Ref. 35) 

133 



Additionally, in the constrained case the optimum typically occurs at the boundary of 

the feasible space. The ability to approach the optimum from both feasible and 

infeasible regions is, therefore, beneficial. 

A penalising strategy enables consideration of infeasible points. As in conventional 

techniques, the penalty method penalises infeasible solutions, thus modifYing the 

constrained case into an unconstrained problem. The problem is transformed such 

that in the limit its solution tends to the optimal solution of the original problem. The 

challenge is to strike a balance between eliminating unpromising information and 

retaining useful schemata. 

There are very few general guidelines to assist in the derivation of penalty formulae. 

The penalty term can modifY the value of the objective function in two ways. One 

approach is to add the respective penalty to the fitness function, that is 

mod (x) = f{x) + p{x) (4.2) 

where x is the chromosome, f{x) the objective function and p{x) the penalty term. 

If no constraints are violated p{x) = 0, else p{x) > 0 for a minimisation problem or 

p{x) < 0 to find a maximum. 

A penalty can be classed as being constant or variable, where the variable type tends 

to be more effective for complex problems. Variable penalties are based either on the 

extent to which constraints are violated or the iteration number of the GA. Typically, 

the degree of constraint violation depends on the absolute distance of the particular 

infeasible solution from the feasible region. The penalty becomes more severe as the 

absolute distance increases. As an example, Homaifer, Qi and Lai (Ref 45) applied 

an additive variable penalty to a typical non-linear programming where p{x) = 0 if x 

is feasible, else 

m 

p{x) = L r,g,2 (x) (4.3) 
;=1 

134 



where r is the penalty coefficient for the ith constraint. For a greater array of penalty 

function methods the reader is referred to reference 34. 

A further constraint consideration is a characteristic termed illegality of 

chromosomes. An illegal chromosome has a parameter set that does not represent a 

solution to the given problem. 

decoding 
............... ... 

infeasible 

feasible point 

... . .................... . ... 

encoding 

Figure 4.4 Infeasible and DJegal Solutions 

The occurrence of illegal chromosomes is directly related to the manner in which the 

parameter set is encoded. In the main, illegal chromosomes arise due to the action of 

genetic operators, typically crossover and mutation. An illegal chromosome cannot 

be decoded to a feasible solution and, thus, cannot be evaluated (see figure 4.4). As 

such the penalty approach is inapplicable in this situation. 

There are three common approaches to deal with illegality: the rejecting strategy, the 

repairing strategy and the modification of genetic operators. The rejecting strategy 

proceeds as stated previously. The repairing strategy applies sOffi;e repairing 

procedure, which generates a feasible chromosome from an infeasible one. The 

repaired chromosome can be used solely for the purpose of fitness evaluation, or it 

can actually replace the original illegal chromosome in the population. Empirical 

\35 



testing shows the repairing strategy to be both effective in tenns of speed and 

perfonnance. The final approach is to modify the action of the genetic operators such 

that the feasibility of chromosomes is maintained. This method has also proved 

effective although it is highly problem dependent (Ref. 21). 

4.6 Premature Convergence 

Above average strings are favoured by the selection operator of the GA. As the 

population evolves over successive generations, fit strings become more abundant 

and below average strings are 'weeded out'. Ultimately a pattern of particularly fit 

schemata emerges, enforcing population convergence. All too often, however, highly 

fit strings dominate the population too early and bring about what is known as 

premature convergence. 

While Holland's schemata theory points to sampling rates and search behaviour in the 

limit, any implementation necessarily uses a finite population. Estimates based on 

finite samples inevitably have a sampling error associated with them. Finite sampling 

in conjunction with the high-variance associated with stochastic selection can result 

in offspring production that is markedly different from theoretical predictions. De 

Jong cited both aspects as primary causes in the loss of diversity in the population 

gene pool. As a result the search converges to a sub-optimal solution, i.e. 

demonstrates premature convergence. In the biological arena, this is tenned genetic 

drift, where allele frequencies vary due to chance over successive generations and 

may result in some a11e1es becoming 'extinct'. In such situations, recombination is 

less likely to produce individuals in certain regions than in others. In particular, 

standard crossover simply regenerates the current point. 

Many innovative techniques have been proposed to combat premature convergence. 

De Jong's study in 1975 is one of the earliest to address this issue and in fact, set the 

ball rolling in tenns of alternative approaches to selection and recombination 

operators. These techniques are considered in more detail in the next section. 

136 



A paper by Booker considers a preventative approach in that he looks for indicators 

that occur before loss of diversity takes effect and carefully implements search 

operators to avoid the situation (Ref. 9). 

4.7 Modifications to the GA 

Recent research has made a departure from the SGA with the aim to improve its 

performance as an optimisation tool. Attention has been focussed on each stage of 

the algorithm: specifically, representation, selection, fitness evaluation and the 

recombination operators. This section looks at each of these areas in a little more 

detail. 

4.7.1 Representation 

The classical GA generally uses a fixed length binary string representation. The 

motivation behind this is related to the idea of schemata. Both binary and non-binary 

strings code the same number of solution alternatives. Holland speculated, however, 

that it is beneficial to maximise the number of schemata being sampled, thus 

maximising implicit parallelism. This is achieved using the lowest cardinality 

alphabet, i.e. binary. In addition, bit string representations fit with the standard 

versions of crossover and mutation. 

There are, however, problems with a binary representation. Frequently the cardinality 

of a parameter set is not a power of 2. In such cases, enforcing a binary 

representation can increase the size of the representation space. Consequently, 

genetic operators will invariably produce some illegal chromosomes, thus instigating 

the need for coping strategies. A further problem arises when GAs find points in the 

vicinity of the optimum but fail to reach the best. This may be explained by the 

notion of Hamming cliffs. A Hamming cliff corresponds to a pair of numbers in 

integer space whose bit representations are complementary, for example 7 and 8 are 

adjacent with bit string representations 0 Ill, 1000. A small change in the parameter 

value, therefore, requires a radical change in its corresponding binary representation. 

137 



In such circumstances the GA is said to 'Lack the Killer Instinct'. The adjacency 

property of Gray coded strings may nullity this problem. 

4.7.2 Fitness Evaluation 

The GA uses the numerical fitness values obtained from the objective function in 

association with the parameter set to guide the search. As such, it is vital that an 

individual's fitness, i.e. converted raw objective data, within the finite population, 

accurately describes the search space. Problems can arise at the start of the GA if the 

population contains a few highly fit individuals amidst a set of mediocre colleagues. 

The fitness advantage gained by the fit strings, relative to the rest of the population, is 

misleading and in consequence they dominate the population within a few 

generations, resulting in premature convergence. In later generations the opposite 

problem may occur. There is a tendency that a population showing diversity, which 

is legitimately dominated by fit strings, has a population average fitness close to the 

population best fitness. Consequently the expected number of offspring for the 

average and best strings are almost equivalent. As a result each string contributes 

equally to the subsequent population despite differences in fitness. A possible means 

of mitigating both problems is to use fitness scaling (or normalising procedures as 

they are also known). The use of scaling retains an individual's relative performance 

and also attempts to bias the selective pressure towards better individuals although 

still allowing relatively unfit individuals the potential to reproduce (Ref. 16). 

Fitness scaling maps raw objective function values to some positive real values, 

which are then used to determine the selection probability for each chromosome. If 

the raw fitness is represented by f and the scaled fitness by f' for chromosome k 

(4.4) 

where g is the scaling function. The scaling function can take a variety of different 

forms. The most common are linear scaling, sigma truncation, power law scaling and 

logarithmic scaling. Linear transformations offset the objective function and are 

often used prior to fitness assignment to ensure the resulting fitness values are non-

138 



negative. Ifthere is little deviation in the population, then linear scaling provides 

only a small bias towards the fittest individuals. In contrast, power law scaling is 

used to shrink or stretch the range of fitness values required, the degree of effect 

being dependent on the value of the power. The performance of the GA is highly 

sensitive to the normalising procedure used. The reader is referred to reference (Ref. 

34) for further details regarding these scaling mechanisms. 

4.7.3 Selection 

Holland's traditional GA selects chromosomes to enter the next population using a 

biased roulette wheel. Selected strings are probabilistically recombined and inserted 

into the new population. If recombination does not occur, offspring identical to their 

parents are inserted directly into the new population. In biological tenns this is 

asexual reproduction. Selection is generally based on the whole population, which 

maintains a constant size from one generation to the next. As illustrated in figure 4.5. 

Original Intermediate New 
Population Population Population 
0110000 0110000 0111000 
0101011 1111000 

crossover 
mutate 1110001 

1111000 0110000 
1100110 1110000 1110010 
0001110 0001110 

crossover 
0001100 

0010001 0010001 
probabilistic 

recombination 

Figure 4.5 Constant Sampling Space 

An alternative approach creates an enlarged sampling space. Chromosomes are 

selected and stochastically recombined in the original manner. The method differs in 

that the resulting offspring are not inserted immediately into the new population. An 

enlarged intermediate sampling space containing both selected parents and offspring 

is formed from which the new population is then chosen. As illustrated in figure 4.6. 

139 



Original 
Population 

0110000 
0101011 
1111000 
1100110 
0001110 
0010001 

Enlarged 
Intermediate 
Po ulation 
0110000 
1111000 
0110000 
1110000 

offspring 
0111000 
1110001 
1110010 
0001100 

crossover 
mutate 

crossover 

Figure 4.6 Enlarged Sampling Space 

New 
Population 

0111000 
1111000 
0110000 
0001110 
0001100 
0010001 

Selection pressure is a critical factor in the balance between promoting diversity and 

controlling rapid convergence. Many studies have proposed, examined and compared 

various selection methods. A study carried out by De Jong in 1975 is of particular 

importance. This study considers a test bed of five functions covering a broad range 

of characteristics and examines the effect of four different selective pressures on GA 

performance (Ref. 22). 

Holland's biased roulette wheel is an example of stochastic sampling. The number of 

offspring attributed to a particular individual is approximately directly proportional to 

the individual's performance. As cited by De J ong, the roulette wheel is, however, 

open to much variance resulting in a fair amount of scatter between the expected and 

actual number of offspring. Consequently, there is no constraint either on the upper 

or lower bound ofan individual's offspring production. This allows the potential for 

super component dominance or, conversely, denial of many inferior individuals. 

Baker introduced a modification to Holland's roulette wheel called stochastic 

universal sampling (Ref. 7). Markers are equally spaced around the edge of the 

roulette wheel, the number being in accordance with the population size. One spin of 

140 



the wheel then matches each marker with a segment allocated to a particular 

individual. The premise is to prevent super component dominance and maintain 

diversity. 

A deterministic approach to compute the expected number of offspring for each string 

uses the rank of its fitness in the population as oppose to the magnitude. There are a 

variety of means to assign the offspring based on ranking but it must be ensured that a 

monotonically increasing relationship with respect to increasing performance values 

is maintained and the population size retained. Ranking gives a certain degree of 

control over percentage offspring production of the population, thus restricting 

reproduction of highly fit strings. Problems with objective functions having large 

offsets are also eliminated. However, convergence to better solutions using the 

ranking method is generally slow. A further disadvantage is that the ranking method 

does not allow allele proportions to change when warranted. The algorithm's ability 

to exploit promising schemata is compromised by ignoring all knowledge about the 

relative fitness of strings in the population (Ref. 9). 

Besides ranking, a variety of deterministic approaches using the concept of expected 

number have been proposed. As an example Brindle's approach (Ref. 34) allocates 

offspring according to the integer part of each chromosome's expected offspring 

production. The fractional remainder of this value is used to create a list in 

descending order. Individuals are then added to the new population from the sorted 

list until the sample space is full. 

Elitist selection is another deterministic approach. It ensures the best structure is 

passed into the next generation, if it is not chosen through the usual means. De J ong 

suggests that an elitist strategy improves local search at the expense of global 

perspective. 

A method, which contains both random and deterministic sampling, is tournament 

selection (Ref. 34). This involves the random choice of a set of chromosomes from 

the current population. The best one of these is then chosen for reproduction. The 

smallest set containing only two chromosomes is referred to as a binary tournament. 

Tournament selection can be incorporated within the biased roulette wheel approach. 

141 



Successive pairs of individuals are chosen using the roulette wheel in the nonnal 

manner. The best of these is then inserted into the new population. 

4.7.4 Recombination Operators 

The recombination operators provide the key to exploration of the search space and as 

such are of vital importance to the GA process. 

Crossover is often characterised as a distinguishing feature of the GA. It capitalises 

on familiar areas of the space that show promise whilst simultaneously stepping out 

to unexplored regions. The conventional approach proposed by Holland, tenned one

point crossover, reinforces this statement using Holland's building block hypothesis. 

An obvious extension of one-point crossover is multi-point crossover. If the 

chromosome is thought of as a circle with the first gene immediately following the 

last then it becomes immediately clear that there are in fact 2 crossover points: one 

fixed at position zero and the other randomly selected. An immediate generalisation 

to the present crossover operator is to allow both crossover points to be randomly 

selected (Ref. 23). 

In this way two-point crossover is fonned. This was the philosophy behind the fifth 

modification introduced in De Jongs' study, which he tenned a generalised crossover 

approach. Figure 4.7 illustrates the effect of four-point crossover. By Holland's 

analysis, multi-point crossover becomes a random shuffle breaking up higher order 

schemata. Later studies have shown an improvement in off-line perfonnance to the 

detriment of on-line convergence (Ref. 9). 

cross points 

String 1 String 2 Crossed strings 

Figure 4.7 4-Point Crossover 

142 



Unifonn crossover is an approach given by Syswerda (Ref SO), which swaps a bit 

from one parent to the other with equal probability. Unifonn crossover involves the 

generation of a random crossover mask, which is made up of a binary string of 

identical length to the chromosome. Allele values are exchanged between parents 

according to the pattern of the mask. This procedure is demonstrated in figure 4.S. 

Theory suggests that one-point crossover will perfonn better as it maintains blocks of 

good code. In practice varying results have been obtained. Syswerda shows unifonn 

crossover to be effective when used with real-coded strings in a combinatorial 

problem setting. When used with real-valued a1leles unifonn crossover is usually 

referred to as discrete recombination. 

Uniform Crossover mask 

Parents 

1110101011111 
10101011101 11 

Crossed parents 

Imll 0 1[Q]li1l1 1 11 1 

Figure 4.S Uniform Crossover 

One-point crossover is likely to disrupt sections of code that lie at opposite ends of 

the chromosome. Highly fit building blocks that span a significant portion of the 

string are, thus, unlikely to be exploited. This motivated Holland to develop the 

inversion operator. Inversion involves the random selection and reversal of a 

segment of the chromosome. To recap, a chromosome is made up ofa set of genes, 

i.e. the problem variables, which lie at specific loci along the string. Each gene is 

given a specific value, i.e. an allele, within the range of the variable it represents. 

Inversion considers the gene and its allele as an ordered pair and dissociates the gene 

from its loci. In other words, the segment reversal switches the position of the gene 

on the string but does not alter its value. For example, consider a specific 

143 



chromosomal string, where the numbers above correspond to the particular gene that 

each allele describes and the two inversion sites are randomly chosen to be 2 and 6 

1213456178 

1010111101 

The inversion operator gives 

12654378 

10111001 

As can be seen, each gene retains its original value. The fitness of the string is, 

therefore, unaltered. Although inversion has no effect on the genotypical information 

its affect becomes apparent when used in conjunction with crossover. It may be that 

the current population has a bad ordering. Parts of the chromosome representation 

that contribute most to the performance of a particular individual may not necessarily 

be contained in adjacent sub-strings. As a result these fit building blocks are 

constantly disrupted. Inversion, in its role as a reordering operator, can rearrange the 

gene placement, providing the opportunity for more effective propagation of the 

reordered building block. 

Following inversion, crossover must fix the position of the genes on each parents' 

chromosomal string and cross only the allele information. If crossover proceeds with 

the gene and allele as an ordered pair it cannot be guaranteed that either offspring will 

contain a full gene complement. An alternative approach is to cross only homologous 

strings, i.e. those with identical genotypical structure, but this is a little restrictive. 

4.7.5 Hybridisation 

In practical design applications every numerical optimisation technique is 

characterised by advantages and drawbacks when viewed in comparison to one 

another. The GA robustly explores the search space. However, a common 

conception is that GAs are good at global optimisation but bad at fine detailed local 

144 



searching. Hybridisation has the potential to maintain and exploit favourable features 

of the GA whilst simultaneously enhancing their ability to refine good solutions. 

Hybridisation is the combination of the evolutionary procedure with an optimisation 

technique of different nature, possibly suited to the domain of the chosen application, 

or characterised by a complementary behaviour (Ref. 68). 

The simplest means to apply a hybrid method involves optimising in two steps. First, 

the GA is used to locate the area of the suspected global optimum and then 

subsequently switched to other methods for further tuning. An improvement is to 

incorporate the new optimisation technique among the set of operators as the 

algorithm evolves, without necessarily changing the structure of the GA. 

A recent paper by Yang and Douglas (Ref. 93) combines the Nelder and Mead 

simplex downhill method with a traditional GA. The simplex downhill method 

(introduced in section 3.4.1) is not as robust as the GA but is well tuned for local 

searching. The idea of the simplex approach is to speed up search to the optimum 

once promising areas are established. For this reason the expansion operator is 

discarded and an averaging operator added. 

An iteration of the GA creates an intermediate population of size n via selection, 

recombination and mutation in the normal manner. A second intermediate population 

is achieved by applying the simplex approach n times on a randomly selected sub

committee from the initial intermediate population. A new coding system, which 

normalises the variable within the range (0,1) replaces the traditional bit string code. 

This enables application of the individuals to both methods. 

Both intermediate populations are ranked in descending order of fitness. Individuals 

oflike position are compared and the best inserted into the new population. A form 

of elitism. The result is an effective, efficient, robust and fast converging global 

optimum procedure. 

A further study (Ref. 68) couples a GA to a gradient based optimisation technique. 

Again an intermediate population is created via selection, crossover and mutation; 

some of its included individuals are then selected and fed into a hill-climbing operator 

145 



for refinement. Three alternative schemes are proposed to choose these individuals. 

In this study the traditional binary string is used to encode a solution. Prior to 

application of the hill-climbing operator, the binary string is converted into the real 

number list, then converted to continue the GA. The number of individuals selected 

for local refinement is limited due to considerable computer overhead of gradient 

evaluation. In addition, to keep computer effort to a practical level, the hill-climbing 

operator generally proceeds for no more than 2 iterations. In conclusion, the hybrid 

GA shows performance enhancement for both single and multiobjective problems. 

146 



CHAPTERS 

SYSTEM ANALYSIS 

5.1 Introduction to HIPS System 

Safety systems are designed to operate when certain conditions occur and act to 

prevent their development into a hazardous situation. Failure of a safety system for a 

potentially hazardous industrial system or process may have catastrophic 

consequences, possibly injuring members of the workforce or public and occasionally 

resulting in loss oflife. The purpose of this thesis is to describe a design optimisation 

scheme, which uses available resources to the best possible advantage to obtain an 

optimal safety system design. 

5.1.1 Description of HIPS System 

To demonstrate the practicalities of the optimisation process it has been applied to a 

simple High-Integrity Protection System (HIPS). The basic features of the HIPS are 

shown in figure 5.1. Its function is to prevent a high-pressure surge passing through 

the system. In this way protection is provided for processing equipment whose 

pressure rating could be exceeded. The high pressure originates from a production 

well of a not normally manned offshore platform and the pieces of equipment to be 

protected are located downstream on the processing platform. 

The first level of protection is to be the ESD (emergency shutdown) sub-system. 

Pressure in the pipeline is monitored using pressure transmitters (PTs). When the 

pipeline pressure exceeds the permitted value then the ESD system acts to close the 

Wing and Master valves on the well together with any ESD valves that have been 

fitted. 

147 



To provide an additional level of protection a second level of redundancy can be 

incorporated by inclusion of a HIPS (high-integrity protection system). This works 

in a similar manner to the ESD system but is completely independent in operation. 

SUb-system 1 Sub-system 2 

Master Wing ESDV1ESDV2 HIPS1 HIPS2 

Figure 5.1 High-Integrity Protection System 

Even with a relatively simple system such as this there are a large number of options 

for the designer to consider. In the example it is required to detennine values for the 

design variables that represent the following: 

Designer Options 

• How many ESD valves are required (0, 1, 2)? 

• How many HIPS valves are required (0, 1, 2)? 

• How many pressure transmitters for each sub

system (0, 1,2,3, 4)? 

• How many transmitters are required to trip? 

• Which of two possible ESDIHIPS valves to 

select? 

Design 

Variable 

E 

H 

Nl,N2 

v 

• Which of two possible pressure transmitters P 

to select? 

• Maintenance test interval for each sub-system Bt, fh. 

(1 week - 2 years)? 

148 



In all there are 42,831,360 combinations of the twelve design variables. An 

exhaustive evaluation of each potential design is impractical. In addition, 

understanding the interaction between design variables is a complex task. It is 

impossible for the design engineer to predict the effect that changes in each design 

parameter will have on system performance. 

For this example, each considered hardware component can fail in one of two modes: 

dormant and spurious failure. Dormant failure is the inability of the component to 

carry out its desired task on demand. Spurious failure results from the component 

carrying out its desired function when its operation is not required. In consequence, 

normal working conditions on the processing platform are inappropriately disrupted. 

The failure rate and mean repair time for each component in both failure modes is 

shown in table 5.1. 

Dormant Failures Spurious Failures 

Component Failure Mean Repair Failure Mean ReJX!ir Cost Test 

Rate Time Rate Time Time 

Win!! Valve 1.14 x 10-' 36.0 1 x 10-6 36.0 100 12 

Master Valve 1.14 x 10-' 36.0 1 x 10-6 36.0 100 12 

HIPS Valve 1 5.44 x 10-6 36.0 5 x 10-' 36.0 250 15 

HIPS Valve 2 1 x 10-' 36.0 1 x 10-' 36.0 200 10 

ESD Valve 1 5.44 x 10-6 36.0 5 x 10-' 36.0 250 15 

ESD Valve 2 1 x 10-' 36.0 1 x 10-' 36.0 200 10 

Solenoid Valve 5 x 10-6 36.0 5 x 10-' 36.0 20 5 

Relay Contacts 0.23 x 10-6 36.0 2 x 10-6 36.0 20 2 

Pressure Transmitter 1 1.5 x 10-6 36.0 1.5 x 10-' 36.0 20 1 

Pressure Transmitter 2 7 x 10-6 36.0 7 x 10-' 36.0 10 2 

Computer Lo!!ic 1 x 10-' 36.0 1 x 10-' 36_0 20 1 

Table 5.1 Component Failure Data 

149 



The choice of system design is not, however, unrestricted. Limitations have been 

placed on the design such that: 

1. The total system cost must be less than 1000 units. Hardware costs for each item 

in the system are given in table 5.1. 

2. The average time each year that the system resides in the down state due to 

preventive maintenance must be less than 130 hours. Times taken to service each 

component at each maintenance test are also shown in table 5.1. 

3. The number of times that a spurious system shutdown occurs would be 

unacceptable if it was more than once per year. 

5.2 Safety System Analysis 

A criteria must be determined to quantify how 'good' each system design actually is. 

The most important feature of a safety system is that it works when the demand 

arises. The objective is, therefore, to minimise system unavailability (i.e. the 

probability of system failure on demand) and as such provides a measure of system 

performance. 

Consideration must also be given, however, to the available resources. The HIPS is 

limited by cost, maintenance effort and spurious trip frequency. The design options 

need to be adjusted in order to improve system performance without violating the 

constraints. This will involve a trade-off between the effects any design changes will 

have. For example consider a gas detection system. In the presence of a gas leak, the 

detectors fitted initiate action of the protective system. Failure to do so results in 

failure of the system. The more gas detectors fitted the more robust the system. 

However, Gas detectors can fail in two modes. Increasing the number of detectors 

increases the likelihood of registering a spurious leak. This in turn spuriously 

activates the protection system, production is disrupted and excess cost incurred. 

In order to assess each design option a means to evaluate each constraint is required. 

150 



5.2.1 Evaluate the System Unavailability 

No explicit objective function can be formulated. Incorporating an added level of 

redundancy requires a new term to be added to the objective function, therefore 

altering its characteristics entirely. As such, fault trees are used to quantifY the 

system unavailability of each potential design. It is, however, a time consuming, 

impractical task to construct a fault tree for each design variation. Such an approach 

could be viable if automatic fault tree construction methods were available. Although 

much attention has been given to this area offault tree analysis, a reliable and 

effective approach has not been achieved. 

To resolve this difficulty house events can be used to enable the construction of a 

single fault tree capable of representing causes of the system failure mode for each 

possible system design. House events in the fault tree, which are either TRUE or 

FALSE, are utilised to switch on or off different branches to model the changes in the 

causes offailure for each design alternative. 

Valve No. 1 
selected and 

Fails 

i.e. 
H1 = 1 

Valve Failure 

Valve No. 2 
selected and 

Fails 

Le. 
H2= 1 

Valve No. 3 
selected and 

Fails 

i.e. 
1-13= 1 

Figure 5.2 Fault Tree Structure for Component Select 

151 



Consider, for example, the choice of a valve type, VI, V2 or V3. The structure of the 

part of the tree that deals with valve failure is as shown in figure 5.2. If valve type I 

is selected the house event, HI, corresponding to the selection of this valve is set to 

TRUE. House events H2 and ID, corresponding to the selection of valves 2 and 3 are 

conversely set to FALSE. A contribution to the top event arises from the left most 

branch only. The two right most branches are in effect switched off. Levels of 

redundancy are handled in a similar manner. 

The particular house events utilised in construction of a single fault tree representing 

the probability of system unavailability for each HIPS design alternative are 

discussed in detail in the next section. 

5.2.1.1 Construction of the System Unavailability Fault Tree 

The top event of the fault tree representing the causes of system unavailability is 

defined as 'Safety system fails to protect'. The top event will occur if all the valves 

along the pipeline fail to close. 

Each valve is of the 'air to open', fail safe type. When pressure in the pipeline is at 

an acceptable level, computer logic maintains the solenoid of the valve in an 

energised state, the pneumatic line remains pressurised and the associated actuator 

retains the valve in the open state. An increase in pipeline pressure is detected by 

pressure transmitters, which transmit a signal to the computer. If the pressure 

increase exceeds that which is acceptable, the computer causes the circuit of the 

output channel to the solenoid to open. Two relay contacts are available to break the 

circuit and, thus, introduce a level of redundancy. Consequently, the solenoid is de

energised and a vent valve activated. This results in a drop of pressure to the 

actuator, which causes the valve to close. 

The immediate, necessary and sufficient sub-events to the top event related by AND 

logic are 'Wing and master valves fail to protect', 'ESD valves fail to protect' and 

'HIPS valves fail to protect', as shown in figure 5.3. The system unavailability fault 

tree construction is described via development of each branch in turn. 

152 



Safety System 
Fails to Protect 

~ 

Top 

~ I 
Wing and 

ESD System HIPS System 
Master Valves 
Fail to Protect 

Fails to Protect Fails to Protect 

G1 G2 G3 

Figure 5.3. Top Event of System Unavailability Fault Tree 

Wing and Master Valves Fail to Protect 

Certain components in subsystem 1 are fixed and as such constitute part of each 

potential design variation. Specifically, these are the wing and master valves, their 

solenoids, the relay contacts and the computer logic. 

Closure of the wing or master valve alone will protect against a high-pressure surge in 

the pipeline. The event 'Wing and master valve fails to protect' will, therefore, only 

occur ifboth the wing and master fail. Consider first the wing valve. The wing valve 

fails to protect if either the wing valve itself fails (basic event 'WV') or the pneumatic 

line to the actuator of the wing valve remains pressurised (an intermediate event that 

must be developed further). The pneumatic line remains pressurised due to failure of 

the solenoid valve associated with the wing valve (basic event' SVW') or as a result 

of the solenoid staying energised. A similar tree structure develops from the 

alternative branch 'Master valve fails to protect'. This causal relationship described 

above is shown in figure 5.4. 

153 



Solenoid 
Valve Stays 
Energised 

G5 

Pneumatic 
Line Remains 
Pressurised 

Wing Valve 
Fails to 
Protect 

Solenoid 
Valve Fails 

Stuck 

svw 

Figure 5.4 Wing Valve Fails to Protect 

Wing Valve 
Fails Stuck 

wv 

The event' Solenoid stays energised' is common to branches developed from both the 

wing and master valves. This event represents a failure in the flow of fault logic from 

detection of increased gas pressure by the pressure transmitters to de-energising of the 

solenoids of the wing and master valves. This intermediate event must be further 

developed. The solenoid stays energised ifboth relay contacts fail to break the circuit 

from the computer (basic events 'R 111' and 'R1I2') or if the computer fails to send 

the trip. In turn, the 'computer fails to send the trip' if the computer logic itselffails 

(basic event 'PLC 1') or if the computer does not receive input to signit'y an increase 

in gas pressure, i.e. if the trip signal to subsystem I is not received. The causal 

relationship from gate 5 to the 'failure of subsystem 1 to indicate trip' is shown in 

figure 5.5. 

154 



Relay 
Contact 1 

Fails 

R1/1 

Relay 
Contacts Stay 

Closed 

G6 

Solenoid 
Valve Stays 
Energised 

Computer 
Fails to Send 
Trip Signal 

Relay 
Contact 2 

Fails 

Subsystem 1 
Trip Signal 

Not Recieved 

Computer 
Logic 
Fails 

G8 

R112 

Figure 5.5 Solenoid Valve Stays Energised 

The pressure transmitters initiate the safety protection system into action should the 

demand arise. Failure of the pressure transmitters of subsystem I to detect a gas 

pressure beyond the acceptable limit prevents action of the computer logic associated 

with subsystem 1 and hence, any subsequent events. 

The number of pressure transmitters for subsystem 1 (Nl ) is a variable with range 1 to 

4. The structure of the tree will alter according to the value of this variable. To 

model these structural changes the following house events are introduced: 

NENI: the number of pressure transmitters for subsystem 1 is not 1 

NEN2: the number of pressure transmitters for subsystem 1 is not 2 

NEN3: the number of pressure transmitters for subsystem 1 is not 3 

NEN4: the number of pressure transmitters for subsystem 1 is not 4 

EN 1: sub system 1 has 1 pressure transmitter fitted 

EN2: subsystem 1 has 2 pressure transmitters fitted 

EN3: subsystem 1 has 3 pressure transmitters fitted 

155 



EN4: subsystem 1 has 4 pressure transmitters fitted 

If the condition holds, the house event is set to true, i.e. assigned a probability of I. 

For example, if the design is such that subsystem 1 has 3 pressure transmitters fitted, 

house events NENI, NEN2, NEN4 and EN3 would be assigned a probability of 1 and 

the rest set to o. 

The casual relationship between sub-events and house events developed from 

'subsystem 1 fails to indicate trip' is shown in figure 5.6. 

Subsystem 1 
Fails to 

Indicate Trip 

~ 
G8 

::n-o; 
Channelt, Channel 2, 2 Channel 3, 3 Channel 4, 4 

t PT Fitted and PT. Fitted PT. Fitted PT. Fitted 
Fails to Indicate Trip and Fail to and Fail to and Fail to 

fod 
Indicate Trip Indicate Trip Indicate Trip 

G10 G11 G12 

Fail 10 Not 1 PT 
Indicate Trip 

Fitted t PT Fitted 

A 
~ G13 

Dormant 
1 PT 

Failure of 
Fitted 

Channel 1 

G14 ~ 
Figure 5.6 Subsystem 1 Fails to Indicate Trip 

Each sub-event represents a channel failure, where channel 1 models a design with 1 

pressure transmitter alone for subsystem I, channel 2 models a design exactly with 2 

156 



pressure transmitters, channel 3 with 3 pressure transmitters and so on. Channel 

failure to indicate a trip can occur in two ways: either the channel does not model the 

design in question or the channel fails to indicate a trip due to failure of the pressure 

transmitters fitted. In consequence, for each analysis three channels will 

automatically fail because they do not model the design in question. The higher event 

will only occur if all four channels fail. The significant channel is, therefore, that 

which models the design. 

Consider the example previously cited. A design has 3 pressure transmitters and the 

house events are fixed accordingly. Channels 1,2 and 4 input fault logic to 'System 

fails to indicate trip' due to the house events NENI, NEN2 and NEN4 respectively. 

The house events achieve their desired purpose in that they eliminate irrelevant 

branches that do not model the considered design. Control is effectively given to 

channel 3. If channel 3 inputs fault logic the output event will occur. As a result of 

the assigned house event probabilities, channel 3 will only fail to indicate a trip if the 

3 pressure transmitters fitted fail to carry out their required task. 

The number of pressure transmitters in subsystem 1 is not the only variable. 

Consideration must be given to the number of pressure transmitters required to trip 

the system (Ki, with range 1 to Ni) and the pressure transmitter type (Pi or P2). Each 

possible variation must be modeled in each channel. 

To model further structural changes in the fault tree additional house events are 

defined: 

EK 1: 1 pressure transmitter is required to trip subsystem 1 

EK2: 2 pressure transmitters are required to trip subsystem 1 

EK3: 3 pressure transmitters are required to trip subsystem 1 

EK4: 4 pressure transmitters are required to trip subsystem 1 

P 11: Pressure transmitter type 1 is fitted 

P 12: Pressure transmitter type 2 is fitted 

157 



Channel 1 models a design with 1 pressure transmitter for subsystem 1. Hence, KJ 

must, be 1. Consequently EK 1 holds true and is set to 1. Channel 1 is further 

developed as shown in figure 5.7. 

PT no. 1, 
Type 1 fails 

G16 

Pressure 
Transmitter 
no. 1 Fails 

Dormant 
Failure 

Channel 1 

G14 

PT no. 1, 
Type 2 Fails 

G17 

PT Type 1 
Fitted 

PT no.l, 
Type 1 Fails 

PT Type 2 
Fitted 

PT no. 1, 
Type 2 Fails 

PT1 1 PT12 

Figure 5.7. Dormant Failure of Channel 1 

1 PT 10 
Trip 

System 

Channel 1 terminates with house events modelling a component type design 

alternative. This structural relationship is common throughout the tree to model the 

inclusion of different valve and pressure transmitter types. Specifically, pressure 

transmitter number 1 fails if either 'Pressure transmitter type 1 is fitted' (house event 

'Pll') AND 'Pressure transmitter number 1 type 1 fails' (basic event 'PTl 1') OR if 

'Pressure transmitter type 2 is fitted' (house event 'PI2') AND 'Pressure transmitter 

158 



number I type 2 fails' (basic event 'PT! 2 '). It is assumed that, when more than one 

pressure transmitter is fitted, they are of the same type. 

Channel 2 models system designs with 2 pressure transmitters for subsystem I. In 

this case, KJ can be either I or 2. If only one pressure transmitter is required to trip 

the system, they act as redundant components and both must fail to trigger channel 2 

failure. Conversely, if 2 pressure transmitters must register an increase in pressure, 

failure of either will be sufficient to fail the channel. Hence, 'Donnant failure of 

channel 2' occurs as a result of 2 from 2 pressure transmitters failing or I form 2 

transmitters failing, where KJ = I and KJ = 2 respectively. Additional basic events 

'PT2 I' and 'PT2 2' representing failure of pressure transmitter number 2 type I or 2 

are introduced. Figure 5.8 shows further development of channel 2. 

159 



Dormant 
Channel 

Failure, K = 1 

G20 

2 from 2 PTs 
Fail 

PT no. 1 
Fails 

G22 

PT no. 2, 
Type 1 fails 

G24 

Pressure 
Transmitter 
no.2 Fails 

Dormant 
Failure 

Channel 2 

1 PTto 
Trip 

System 

Dormant 
Channel 

Failure, K =2 

1 from 2 PTs 
Fail 

G21 

PT no. 1 
Fails 

PT no. 2 
Fails 

PT no. 2, 
Type 2 Fails 

G25 

PT Type 1 
Fitted 

PT no. 2, 
Type 1 Fails 

PT Type 2 
Fitted 

PT no. 2, 
Type 2 Fails 

PT21 PT22 

Figure 5.8. Dormant Failure of Channel 2 

160 



In a similar manner, channel 3 must model KJ equal to 1,2 or 3. Either 3 from 3, any 

combination of 2 from 3 or failure of 1 pressure transmitter alone will trigger dormant 

failure of channel 3, where Kl = 1, Kl = 2 or Kl = 3 respectively. Additional basic 

events' PT3 l' and PT3 2' representing failure of pressure transmitter number 3 type 

1 or 2 are introduced. Channel 4 must account for 1 through 4 pressure transmitters 

being able to trip the system. This section of the tree is developed in a similar manner 

to that already described. 

ESD Subsystem Fails to Protect 

Consideration is now given to the event heading the second branch in figure 5.3. The 

event 'ESD valves fail to protect' is developed in a very similar manner to failure of 

the wing and master valve. However, structural differences arise due to the fact that 

ESD valves are not fixed aspects of the system design. The number ofESD valves 

(E) is a variable ranging from 0 to 2 and as such house events are included to switch 

on and off relevant parts of the tree. 

The ESD subsystem fails to protect ifESD valve 1 and ESD valve 2 fail to protect. 

Failure of each ESD valve can occur if either the ESD valve is not fitted or the ESD 

valve is fitted and fails. Figure 5.9 shows the causal relationship represented with 

house events. 

161 



ESDValve 1 
Fitted and 

Fails 

ESO Valve 1 
Fails to Close 

G64 

G63 

ESD System 
Fails to 
Protect 

G2 

ESDValve 1 
Fails to 
Protect 

ESDValve2 
Fails to 
Protect 

ESO Valve 
1 Fitted 

ESO Valve 
1 Not 
Fitted 

ESO Valve 
2 Not 
Fitted 

ESOValve 
2 Fitted 

ESD Valve 2 
Fitted and 

Fails 

G69 

ESO Valve 2 
Fails to Close 

G70 

Figure 5.9 ESD System Fails to Protect 

Failure of the ESD valve to close occurs as a result of the ESD valve itself failing 

stuck or the pneumatic line remaining pressurised. Failure of the ESD valve depends 

on the type fitted (VI or Vl). The pneumatic line remains pressurised due to failure of 

the solenoid of the ESD valve or the solenoid staying energised. 

The passage of fault logic from detection of hazardous gas levels to de-energising the 

solenoid of the ESD valve utilises the computer logic, relay contacts and any pressure 

transmitters fitted. These basic events are common to those, which transmit fault 

logic and ultimately trigger the wing and master valve to close. The event 'Solenoid 

stays energised' is, therefore, identical to that described in the previous section and its 

branching structure is merely replicated within the ESD structure of the tree. Figure ~ 

5.10 shows the fault tree structure representing the failure of ESD valve 1 to close. , 

162 



ESD Valve 1 
Fails to Close 

ESDValve 1 
Fails Stuck 

ESDValve 1. 
Type 1 Fails 

ESDValve 
Type 1 
Fitted 

G67 

ESDValve 
no. 1. Type 

1 Fails 

ESD11 

ESD Valve 1. 
Type 2 Fails 

ESDValve 
Type 2 
Fitted 

G68 

ESD Valve 
no. 1. Type 

2 Fails 

ESD12 

Pneumatic 
Line Stays 
Pressu rised 

Solenoid 
Valve Stays 
Pressurised 

Figure 5.10 ESD Valve 1 Fails to Protect 

HIPS Fails to Protect 

Solenoid 
Valve Fails 

Stuck 

SVEl 

The HIPS subsystem works in an identical manner to that of the ESD subsystem. As 

such the HIPS subsystem fails if all fitted HIPS valves fail. The HIPS subsystem is, 

however, completely independent in operation to the ESD, wing or master valves. 

Failure logic for the HIPS system is developed in an identical manner to that 

described for the ESD subsystem to complete the fault tree development. 

163 



5.2.1.2 Data Input and Analysis 

Fault tree construction and analysis is carried out in the software package 

FAIL TTREE+ (described in section 2.5). In total the system unavailability fault tree 

consists of88 primary events and 169 gates. Of the 88 events, 44 are basic events 

and 44 house events. The system under consideration is a safety system, which works 

only when the demand arises. As such, each basic event is a dormant failure model 

type, i.e. each requires input of the associated failure rate (/..), mean time to repair (t) 

and inspection interval (9). 

Failure and repair data are given in table 5.1. This data is fixed. It does not vary from 

one design variation to the next. In contrast, the value of a component's inspection 

interval varies. A component is associated with either subsystem 1 or subsystem 2 

and as such, variables 91 and 92 respectively supply the inspection interval for the 

particular design. Evaluation of component unavailability (q) is given by equation 

(2.4 7) and hence the value of q for each basic event varies from one design to the 

next, due to variations in 9. 

Data for each house event is specified by the house event model type. This model 

type requires either the value 1 or o. The value of the house event is specific to the 

design in question and hence, must be specified prior to each particular design 

quantification. 

The system unavailability fault tree is termed 'Unavail'. On selection of the analysis 

option two ascii files, 'Unavail.ats' and 'Unavail.aqd', are created 

5.2.1.3 Conversion of the Fault Tree to a BDD 

The use of house events overcomes the need to construct a separate fault tree for 

every possible design alternative. To specify the tree structure to a particular design, 

house events are assigned the appropriate Boolean states. Although preferable to 

reconstruction of the tree, manipulating house events is an involved process. As tree 

164 



size increases the task can become very time consuming and prone to human error. In 

addition, the ability to incorporate the fault tree technique within an optimisation 

procedure is restricted due to dependence on the fault tree analysis software package. 

Since the source code is not available it requires each analysis to be performed 

manually and the results entered into the optimisation scheme. Due to the large 

number of system assessments required for design optimisation this approach is not a 

practical proposition. For this reason an analysis procedure that can be embedded 

within the optimisation code is needed. 

Conversion of the fault tree to its BOO equivalent can introduce significant 

advantages into the quantitative process. As stated previously, quantitative 

calculations using the BOO structure do not require prior determination of the 

minimal cut sets and top event parameters are calculated exactly. The possibility of 

gross inaccuracies is eliminated. In addition, calculations work directly from the 

BOO and as such the technique is very flexible and lends itself well to incorporation 

within other analysis procedures. The following section describes how the BOO 

analysis is incorporated within the optimisation procedure. 

5.2.1.3.1 BADD 

A computational method to convert the failure logic represented by the fault tree to a 

BOO structure is implemented in a program called BADD (Binary Algorithm 

Decision Diagrams) (Ref. 79), previously developed at Loughborough University. 

The causal relations between the gates and events of the fault tree are represented in 

the 'ats' ascii file format (described in section 2.5.2). The '·.ats' file is read directly 

into the BADD code, where'·' is the name of the specific fault tree structure input 

file. The 'ats' file is created by the FAULTTREE+ package, thus removing the need 

to develop a graphics package for fault tree development. FAULTTREE+ is also 

used to produce the minimal cut sets during the fault tree validation stage. 

The input routine then assigns each basic event a unique integer termed its index. For 

ease of computation the fault tree is re-configured to a binary tree, i.e. each gate has 

165 



only two inputs. Inputs to a vote gate are left unchanged and dealt with by a 

specialized subroutine. 

In essence, BADD employs the ite (if-then-e1se) procedure on the binary tree. The 

program proceeds from the bottom of the tree in a step-by-step fashion, evaluating the 

ite structure of each gate until the top gate is reached. Once the ite structure for a 

particular gate has been evaluated, the gate is given an index. The algorithm is 

executed until all gates in the tree are indexed. Calculation of the ite structure of a 

vote gate is handled in a separate subroutine. For a more detailed description of the 

computer algorithm the reader is referred to reference 96. 

The ite structure of each gate is entered in an ite table. The gate's index corresponds 

to the position in the table where the gate's ite structure is stored. The ite table forms 

the bridge for BDD construction, in that certain rows hold the nodes of the BDD. 

Each node consists oD parts and is defined in the table as an ordered triple. The first 

column indicates the index value of the associated basic event for the node. The 

second column states the position of the node on its 1 branch and the third column the 

position of the 0 branch node. The order of the table is such that the first n rows 

correspond to the n basic events in the fault tree and the next m rows to the gates of 

the tree. The n+mth row defines the root node of the BDD. Any additional rows 

describe the intermediate events in the ite process. Only a portion of the rows in the 

ite table constitute nodes in the BDD. 

BADD writes the results of the computation to an output file. The output file 

provides the non-minimal ite table, the number of ite calculations performed and the 

position of the top event. (The minimal ite table requires the BDD to undergo a 

minimising procedure and is used to determine the system's minimal cut sets. This 

facility is not required in this study.) 

166 



Row Number Basic Event I Branch o Branch 

Value Position Position 

I I -I 0 

2 2 -I 0 

3 3 -I 0 

4 4 -I 0 

5 5 -I 0 

6 6 -I 0 

7 7 -I 0 

8 5 6 0 

9 I 8 0 

10 3 7 0 

II 3 16 4 

12 I II 0 

\3 2 3 0 

14 I 17 0 
• IS I 19 0 

16 4 -I 7 

17 2 18 0 

18 3 8 0 

19 2 20 11 

20 3 21 4 

21 4 -1 22 

22 5 23 7 

23 6 -1 7 

Table 5.3 Ite Table for Fault Tree Example 

To illustrate the nature of the ite table the fault tree in figure 2.6 is convened to its ite 

format, as shown in table 5.3 (-1 is used to distinguish a I state terminal venex from 

the basic event index value 1). Table 5.4 states the index value associated with each 

basic event. 

167 



Basic Event Index Value 

El I 

E3 2 

E4 3 

HI 4 

E5 5 

H2 6 

E2 7 

Table 5.4 Basic Event Index Associated with Fault Tree Example 

The ite table is essentially a set of instructions to build the equivalent BOO offault 

tree 'example'. The output file states the position of the top event in the table and as 

such defines the root node of the BOO. This sets a start point for BDD construction. 

The 1 and 0 branches emanating from the root node link to other nodes, whose 

positions are defined in columns I and 2 respectively. In turn, the nodes 

corresponding to the 0 branch and 1 branch nodes are interpreted and the BOO 

unfolds. BOO construction terminates when all paths conclude in terminal vertices. 

The BOO for fault tree example is illustrated in figure 5.11. The index associated 

with each node is converted back to the name for that basic event. The position in the 

ite table of each node is also included in the figure. 

168 



19 

~".-___ 11 

E4 

Figure 5.11 BDD for Example 

5.2.1.3.2 BDD Structure to Represent System Unavailability 

The file structure created from the system unavailability fault tree within 

FAULTTREE+, Unavaii.als, is read into BADD (i.e. a non-minimal ite table 

consisting of 10888 ite statements). Each primary event is assigned an index value 

and the root node position defined to be in row 303. 

169 



5.2.1.4 Computational Method for BDD Quantification 

A computational method is used to calculate the top event probability for each 

specified safety system design alternative from the system unavailability BOO 

structure. The program is composed of several subroutines forming a step-by-step 

computational procedure. The first step involves input of the BOO file structure in 

the form of the ite table. Data, both fixed and variable, for each primary event is then 

entered to define the unavailability of each node in the BOO. Where the BOO node 

represents the occurrence or non-occurrence of a House Event the associated 

probability is 0 or 1. The final step tracks paths through the BOO, with included data, 

to evaluate the system unavailability of the considered design. This step-by step 

procedure is illustrated in the flowchart in figure 5.12. The following sections 

explain each aspect of the flowchart in greater detail. 

Start 

End 

Record Structure In 
Uneventlnfo 

• Event name 
• Event type (b or h) 
• Subsystem 1 or 2 
• Failure rate 
_MTTR 
• Maintenance test 

interval 
• Unavailability 

.. eoon:l Structure 
In Unnode/nfo 

.j 

• Bra1 
-erao 
• Storen 
• Storeb 
epass 

Figure 5.12 Flowchart of the Top Event Probability Computational Method 

170 



5.2.1.4.1 Input of the BDD File Structure 

On execution of the computerised approach a subroutine called Getunbdd reads in the 

ite table associated with the system unavailability fault tree (determined previously 

using BADD). A database containing node infonnation, termed unnodeinfo, is 

created with a record number equivalent to the number of rows in the ite table. Each 

record stores the basic event index value (i), the node on the 1 branch (braJ) and the 0 

branch node (braO). In addition, the root node position, the number of primary events 

and the number of ite calculations are specified and stored for use in the path tracking 

routines. 

5.2.1.4.2 Input Event Data 

The next part of the method compiles a database of records describing each primary 

event, tenned uneventinfo. The structure of each record is shown in figure 5.12. 

Primary events are stored in the database in the order defined by the index associated 

with the BDD structure (the number of records ranges from 1 to 88). 

The subroutine fixundata enters all fixed data associated with each event, thereby 

partially filling uneventinfo. The event name, event type and associated subsystem 

are input in each record. In addition, failure and repair data are specified for each 

basic event. All other fields are initialised to zero. 

The subroutine varundata specifies the BDD for a particular design before analysis 

commences. The user is prompted to enter a particular safety system design 

parameter set. varundata then carries out two separate functions: setuntest and 

setullhouse. The fonner evaluates and stores the unavailability of each basic event 

using the currently specified inspection interval values whilst the latter assigns 

appropriate house event probabilities. SetullhOIlSe involves a simple if then else 

structure. This is illustrated in the algorithm in figure 5.13 for the parameter 

governing the number of pressure transmitters in subsystem 1 (NI). 

171 



Vanmdata completes the primary event database. The unavailability of each event is 

defined, where house events are treated as basic events with restricted probabilities of 

o or 1. Data can be acquired for each node in the BOO structure via a partnership 

between the node's basic event index value and the data stored in the record 

corresponding to this index point within unevelltillfo. 

SetulIhouse 

consider NJ 

ijNJ =] 

EN] =] 

NEN2 = NEN3 = NEN4 = 0 

else ijNJ = 2 

EN2 =] 

NEN] = NEN3 = NEN4 = 0 

else ijNJ = 3 

EN3 = 1 

NEN] = NEN2 = NEN4=O 

else 

EN4= ] 

NEN] = NEN2 = NEN3=O 

Figure 5.13 Algorithm for NI in Subroutine Setunhouse 

5.2.1.4.3 Analysing tbe BDD Structure 

Having completed data input of ulIeventillfo specific to the safety system design under 

consideration, quantification of the BOO proceeds. Unavailworkout is a routine that 

tracks each possible path through the tree from the top node to the terminal vertices. 

The product of probabilities along each path is calculated and the sum of these 

products established. 

To describe Unavailworlwut the following variables need to be defined: 

172 



• SN defines the node under consideration at a given moment. Initially SN is 

defined to be the root node of the BDD structure. 

• NNl defines the 1 branch node of the node being considered, SN. 

• NNO defines the 0 branch node of SN. 

• PA ill stores the value derived from the product of each branch on a particular 

route from the top node to SN. PA ill is initially set to 1 and continually updated 

as the algorithm progresses. Passing from SN to NNl multiplies PA ill by the 

component unavailability associated with node SN. Conversely passing from SN 

to NNO multiplies P A ill by the respective component availability. It is required 

that PATH is rectified by division of the appropriate branch's probability as 

movement is traced back up the tree. 

• QSYS stores a running total of the sum of all paths to a terminal 1 vertex. QSYS is 

initially set to O. Each time a terminal 1 vertex is encountered the value of PA ill 

is added to QSYS. Ultimately QSYS represents the system unavailability of the 

design as it defines the sum of all product paths resulting in the failed state. 

A node is 'complete' if all paths from that node to accessible terminal vertices have 

been explored. Having traced a specific route to a terminal vertex it is necessary to 

backtrack and branch out at the most immediate 'incomplete' node onto a different 

path. The implication is that the tracking procedure requires a memory. As such, the 

storage structure associated with each node, unnodeinfo, is extended. Specifically 

variables PASS, STOREN and STOREB are introduced. PASS keeps a running total of 

the number of times a path passes through the node. If PASS is even the emanating 1 

branch of SN is checked. Else if PASS is odd the 0 branch is traversed. At SN the 

previous node and branch passed (0 or 1) to reach SN are stored, i.e. STOREN and 

STOREB respectively. Movement back up the BDD is merely a case of accessing 

these stored values, where the value of PASS is used to determine whether a node is 

'complete' . 

Unavailworkout consists of three main subroutines: check 1 branch, checkObranch and 

search. The flowchart in figure 5.14 exhibits the general framework of the overall 

path tracking routine. Unavailworkout is executed until both the 1 and 0 branch of 

each node has been explored. 

173 



Start Search 

PASS=O 
SN=TOPNODE 

PASS = PASS + 1 
,------.---+i Check PASS value !+------1 

incompleted 
node 

ofSN 

Is PASS 
even? 

NO 

Call 
CheckObranch 

NO Is NNO 

NO 

terminal? 

YES 

Call Search 

11 branche 
checked? 

YES 

Stop Search 

YES Call 
Check1branch 

Figure 5.14 Flow Chart illustrating Subroutine Unavailworkout 

174 

NO 

Is NN1 
Terminal? 

YES 



Unavailworkout considers node SN. If PASS associated with SN is even 

check I branch is called. An initial check to determine whether NNI is a house event 

is perfonned. This checking process is represented in pseudocode in figure 5.15. 

while NNl = 'h' 
ijqNNJ = 1 

update NNl: NNl = lbraflch node ojNNl 
ijqNNJ = 0 

update NNl: NNl = 0 branch node ojNNl 

Figure 5.15 Algorithm to Check for House Events 

IfNNI is a house event the probability of passing down one of its branches is 

absolute. This branch is, therefore, traversed and the other eliminated. Infonnation 

concerning passage across the house event is not stored. Movement back up the tree 

skips over the house event and hence, the other branch will never be checked. 

The resulting node, NNI, which exits the checking loop is not a house event. 

Subsequent action depends on this node type. The steps taken ifNNI is a basic 

event are shown in the algorithm in figure 5.16. Flow logic then returns the updated 

node, SN, to the beginning of Unavailworkout, its PASS value is checked and the 

process continues. 

ijNNl = 'b' 
PATH = qNNJ xPATH 
STOREN=SN 
STOREB = 1 
update SN: SN = NNl 
break 

Figure 5.16 Algorithm ifNNl is a Basic Event 

Conversely, ifNNI is a terminal vertex the process followed is as illustrated in figure 

5.17. Flow logic then sends SN to subroutine checkObranch. 

175 



ifNNI =-1 
PAlH=qNNJ xPAlH 
QSYS = PAlH + QSYS 
PAlH = PAlH /qNNJ 
break 

else ifNNI = 0 
break 

Figure 5.17 Algorithm if NNI is a Terminal Vertex 

Subroutine checkObranch proceeds in a similar manner. It differs, however, when 

NNO results in a terminal vertex. In this case, both branches of SNhave been checked 

and SNhas proved 'complete'. Subroutine search is, therefore, executed. 

let TEMPNODE = STOREN oj SN 
while PASS value ojTEMPNODE is even 

move back up tree and update PATH 
if STOREB oj SN = 1 

PATH = PATH / qTF.MPNODE 
else if STOREB oj SN = 0 

P A lH = P A lH / {l-ijTEMPNODW 

SN = TEMPNODE 
TEMPNODE = STOREN ojTEMPNODE 
ifTEMPNODE = root node 

stop 

ifSTOREBojSN= 1 
PAlH = PAlH / qTEMP.NODE 

else if STOREB oj SN = 0 
PATH = PATH / (l - qTEMPNODF) 

SN = TEMPNODE 

if SN = root node 
if PASS value oj root node is even 

stop 
else 

continue 

Figure 5.18 Algorithm for Subroutine Search 

176 



Figure 5.18 shows the pseudocode to describe search. Stored values associated with 

each node are used to update the value of PATH and find the next 'incomplete' node. 

Search terminates Unavailworkout if all branches have been checked. Termination is 

realised if SN is again defined as being the root node and the root node has an even 

PASS value. 

5.2.2 Cost and MDT Evaluation 

Constraints fall into two categories: those that can be determined from an explicit 

function of the design variables and are, therefore, easily evaluated, and those that 

cannot be expressed as a function and can only be evaluated by a full analysis of the 

system. The former are termed explicit constraints and the latter referred to as 

implicit. 

The spurious trip frequency of the lflPS is an example of an implicit constraint. This 

is evaluated in a similar manner to the probability of system unavailability and is 

considered in section 5.2.3. 

Cost and MDT are explicit constraints. Total cost is the sum of the cost of subsystem 

I and subsystem 2 and is represented by the following equations 

COST = COST(SUBSYSI)+COST(SUBSYS2) ~ 1000 (5.1) 

where 

CV}, Cl-? = costs of the two valve types 

CPJ, Cn = Costs of the two pressure transmitter types 

Cs = cost of the solenoid valves 

E = the number ofESD valves fitted 

H = the number of lflPS valves fitted 

177 



Subsystem I necessarily includes a wing and master valve, their solenoid valves, the 

computer and control relays. Hence, the fixed cost of 261 units included in equation 

(5.2). The extra cost depends on the number and type ofESD valves and the number 

and type of pressure transmitters. Subsystem 2 has a fixed cost of 21 units due to the 

computer and control relays, hence the constant in equation (5.3). 

Similarly average MDT is a sum of subsystem I and subsystem 2, as shown in the 

following equations 

MDT =MDT(SUBSYSI)+MDT(SUBSYS2)s; 130 (5.4) 

where 

Mv/,MVl = test times of the two valve types 

Mp!, MP2 = test times of the two pressure transmitter types 

Ms = test time of the solenoid valves 

E and H are the number ofESD and HIPS valves fitted respectively 

The constant 47 in equation (5.5) is the test time for the wing and master valve, their 

solenoids, the computer and control relay for subsystem I. The test time for the 

computer and control relay for subsystem 2 is 13 units, as stated in equation (5.6). 

178 



5.2.3 Evaluate the Frequency of Spurious Trip Occurrences 

5.2.3.1 Construction of the Spurious Trip Fault Tree 

Due to the constraint limiting the number of spurious system trips permitted, attention 

is given to a second system failure mode, i.e. spurious activation of the HIPS. The 

specific fault tree resulting in this culminating event must be developed. The top 

event will occur if anyone of the valves included along the pipeline closes 

spuriously. 

Each valve has air-to-open fail safe characteristics. When there is no demand on the 

system to act, failure of any component such that the air supply to a valve is removed 

(or failure of the valve itself) will result in a spurious trip. 

The immediate, necessary, and sufficient sub-events to the top event, related by OR 

logic, are 'Wing or Master Valves Fail Spuriously', 'ESD Subsystem Fails 

Spuriously' OR 'HIPS Subsystem Fails Spuriously'. This causal relationship is 

illustrated in figure 5.19. 

HIPS Fails 
Spuriously 

~ 
Wing or Master ESDSystem HIPS System 

Valve Fail Fails Fails 
Spuriously Spuriously Spuriously 

G1 G2 G3 

Figure 5.19 Top event of Spurious Trip Fault Tree 

Clearly, the major difference between this and the system unavailability fault tree is 

the lack of redundancy in the first level of the tree structure. 

179 



It should be noted that house events incorporated in the spurious trip fault tree 

structure are consistent with those in the system unavailability fault tree. The failure 

mode of the design under consideration is different but the structural characteristics of 

the design remain the same in each case. 

Wing or Master Valve Fails Spuriously 

Spurious failure of either the wing or master valve results in a spurious system 

failure. This gives rise to the next level intermediate events 'Wing Valve Closes 

Spuriously' OR 'Master Valve Closes Spuriously'. Further development of the 

intermediate wing valve event closely resembles that of the wing valve failing stuck 

in the system unavailability fault tree. Components and their casual relationships 

involved in the structure of the branch are almost the same. The branch differs in the 

failure modes of the included basic events. Additionally, spurious action of either 

relay contact instigates the flow offault logic and trips the system (see figure 5.20). 

SPLC , 

Figure 5.20 Wing Valve Fails Spuriously 

180 



Structural differences arise below the intermediate event, 'Subsystem I Receives a 

Spurious Trip', GS. Sub-events are again partitioned into 4 separate channel failures, 

where channel 1 indicates inclusion of 1 pressure transmitter etc. However, Or logic 

associates the channels and spurious channel failure occurs if the relevant number of 

pressure transmitters are fitted (as defined by house events ENI, EN2, EN3 or EN4) 

and the relevant trip combination occurs (i.e. house events EKl, EK2, EK3 or EK4). 

The mutually exclusive house event pairings (e.g. NENl and ENl) are, therefore, not 

required, as shown in figure 5.21. 

Subsystem 1 
Recieves a 
Trip Signal 

~ I 
Channel 1 Channel 2 Channel 3 Channel 4 
Recieves a Recieves a Recieves a Recieves a 
Trip Signal Trip Signal Trip Signal TrtpSignal 

n G10 G11 G12 

G9 

Spurious 
1 PT 

Failure of 
Fitted 

Channel 1 

G13 

~ 
Figure 5.21. Subsystem 1 Receives a Trip Signal 

Further structural differences exist within each channel. Consider channel 2. In this 

case KJ can be either 1 or 2. If only 1 pressure transmitter is required to trip the 

system, spurious failure of either transmitter will initiate spurious system action. 

Conversely, if 2 pressure transmitters must register an increase in pressure, spurious 

failure of both is required to cause spurious system failure. This is the reverse 

scenario to dormant failure of channel 2. The other channels are developed in a 

similar vein. 

ISI 



ESD and HIPS Subsystems Fail Spuriously 

Spurious failure of any included ESD valve will cause the ESD subsystem to fail 

spuriously. Further development of the resulting intermediate events: 'ESD Valve 1 

Closes Spuriously' OR 'ESD Valve 2 Closes Spuriously', mimics the structure in the 

system unavailability fault tree. 

5.2.3.2 Data Input 

In total the spurious trip fault tree consists of 74 primary events and 150 gates. Of the 

74 primary events. 44 are basic events and 30 house events. The reduction in house 

events in relation to the system unavailability fault tree is due to the removal of house 

events that verifY a components non-existence. The basic events correspond to the 

components in the system unavailability tree, however, they represent the 

component's spurious failure. A spurious failure results in system activation when no 

demand is given. As such, spurious failures are instantaneously revealed and repair 

can be instigated immediately. The constant failure and repair rate model is used to 

quantifY each basic event, i.e. the failure rate (/...) and repair rate (v) (where v is the 

reciprocal of the MTTR) are required. 

The dependency of each basic event's probability of spurious failure on its associated 

maintenance test interval is eliminated. Consequently, spurious failure data for each 

basic event remains fixed from one design to the next. The parameter set of a design 

modifies only the house event probabilities. 

5.2.3.3 Conversion of the Spurious Trip Fault Tree to a BDD 

The file structure representing the spurious trip fault tree structure, spurious.ats, is 

read into BADD. A non-minimal ite table consisting of 10788 calculations results. 

Each primary event is assigned an index value and the root node position defined to 

be in row 289. 

182 



5.2.3.4 A Computational Method for the Top Event Unconditional Failure 

Intensity of the BDD 

A computational method is implemented to detennine the unconditional failure 

intensity of the BDD structure corresponding to the spurious trip fault tree. 

Integrating the resulting value over an allocated time gives the expected number of 

trip occurrences over that period. 

The step-by-step computational procedure is similar to that used to quantify the top 

event probability. Initially the relevant BDD file structure is read. The BDD is then 

modified to correspond to a specific safety system design. Finally the appropriate 

path tracking technique is activated to evaluate the unconditional failure intensity. 

These procedures are described in detail below. 

5.2.3.4.1 Input of BDD File Structure and Event Data 

On execution of the computerised approach a subroutine called Ge/spbdd reads in the 

ite table associated with the spurious trip fault tree. A database containing node 

infonnation, tenned Spnodeinjo, is created with a record number equivalent to the 

number of rows in the ite table. In addition, the root node position, the number of 

primary events and the number of ite calculations are obtained and stored. 

Step 2 compiles a database of records which describe each primary event, tenned 

Speventinjo. The fields in each record are akin to those in Uneven/injo. However, 

failure and repair data correspond to spurious failure, the maintenance test interval 

field is removed and a field to store each components unconditional failure intensity 

is added. Primary events are stored in Speventdata in the index order associated with 

the spurious BDD file structure. 

Subroutine Spfixdata mimics Unfixdata in that it enters all fixed data associated with 

each primary event. Due to that fact that sp'!rious failure is instantaneously revealed, 

both component unavailability and unconditional failure intensity remain constant 

from one design to the next and as such, can be evaluated and stored within Spfixdata. 

183 



5.2.3.4.2 Analysing the BDD Structure 

Evaluating the top event unconditional failure intensity requires the determination of 

the criticality function for each primary event. This is achieved through summation of 

the criticality function of each related node within the BDD, where the criticality 

function of each node requires the determination of ProbpostO, ProbpostJ and 
Probprev values, i.e. po~(q~ poi,(q) and prx;(q) respectively (introduced in section 

2.6.6.2). Routine Spuriousworkout determines the top event unconditional failure 

intensity using subroutines Nodecf, Eventcf and Sysuji. 

Evaluating the Criticality Function of Each Node 

Prior to describing Nodecf consideration is given to each record within Spnodeinfo. 

Fig 5.22 illustrates the structure of each record. The first six fields are equivalent to 

those in Unnodeinfo in Unavailworkout. Fields i, BRAJ and BRAO are specified in 

Getspbdd and define the spurious BDD structure. STOREN, STOREB and PASS 

enable storage of the path traced through the BDD, in effect associating a memory 

with the path tracking procedure. The extra fields are specific to system 

unconditional failure intensity evaluation. CHECKPOST is a binary marker that 

basically states whether the node has been assigned Probpost values (a I indicator) or 

not (a 0 indicator). PROBPREV, PROBPOSTl, PROBPOSTO and CF store the 

relevant values for the particular node, where CF denotes the criticality function. 

184 



Record Structure 
in Spnodeinfo 

• i 
• Bra1 
• BraD 
• Storen 
• Sloreb 
• Pass 
• Checkpost 
• Probprev 
• Probpos11 
• ProbpostO 

• Cf 

Figure 5.22 Structure of a Record in SpnodeinJo 

Nodecftraces a path through the BDD using a similar procedure to that of 

Unavailworkout, primarily to determine each node's Probprev value. Nodecf differs 

in the manner it calculates and stores PATH. Probprev for node Xi is concerned with 

the path section from the root node to Xi. Within Checkl branch, if NNl is a basic 
event, pr NNl (q) is updated using the current PATH value, as demonstrated in figure 

5.23. 

within Checkl branch 
lfNNl = 'b' 

PATH = PATH xqSN 
prNNl(q) +=PATH 
STOREN ofNNl = SN 
STOREB ofNNl = 1 
SN=NNl 
break 

Figure 5.23 Algorithm for the PATH tracking section of Ch eckl branch 

IfNNI is a terminal vertex no action regarding PATH is taken and the subroutine to 

check the 0 branch is called. 

Similarly, within CheckObranch, if NNl is a basic event, the probability of the 

preceding 0 branch is incorporated in pr NNl (q). To achieve this PATH is first updated 

via multiplication by the proceeding 0 branch probability, (1- q SI{ ). If NNl is 

terminal, subroutine Search is implemented to backtrack up the BDD and find the 

most immediate 'incomplete' node. 

185 



Each time a node is updated to SN within Nodecf, a check is earned out to detennine 
whether the Probpost values, i.e. po!". (q) and po1v (q), of that node have been 

evaluated. If the check proves negative the node is sent to subroutine Post. Post 

incorporates two functions: Postlfunc and PostOfunc. Initially the 1 branch node, 

NNl, of SN is detennined. NNl is passed to Postlfimc. Postlfimc mimics 

Unavailworkollt with NN 1 as the top event. QSYS, i.e. the product of all paths to I 
from NNl, is stored in po!". (q). Subsequently, the O-branch node, NNO, of SN is 

passed to PostOfunc. Similarly,PostOfunc mimics Unavailworkoul, where NNO is the 
top event, and QSYS is stored in po"." (q). A flowchart depicting Post and its relation 

to Nodecfis shown in figure 5.24. On exit of Nodecf the values 
po1. (q ~ poi,(q)and pr Xi(q) have been evaluated for each node. 

Update SN 

Start Nodecf 

Updated SN from: 
Check1branch, 
CheckObranch, 

Search 

of SN = O? 

until SN = root 
node 

End Nodecf 

Figure 5.24 Flowchart for Subroutine Post 

186 



Evaluate the Criticality Function of Each Basic Event 

Subroutine Eventcfcalculates the criticality function (introduced in section 2.6.6.2) 

for each basic event as shown in figure 5.25, using equation (2.52). The calculation 
of GXi(q)for each node simply requires the values pol,(q), po;' (q), and prXi(q). 

The calcuhition of Gi (q) for each basic event is the summation of associated node 

criticality function values. 

set Gi(q)= Of or all i 

do for all nodes Xi 

GXi(q)= prXi (q)lPol, (q)- PO~i(q)j 
do for all basic events i 

check all nodes Xi 
if Xi is associated with i 

Gi(q)= Gi (q)+GXi (q) 

Figure 5.25 Algorithm to Evaluate the Criticality Function Gi(q) 

Evaluate the System Unconditional Failure Intensity 

A final subroutine Sysuji to determine the system unconditional failure intensity 

(introduced in section 2.6.6.2) is illustrated in figure 5.26, using equation (2.44). An 

allocated time period, input by the user, subsequently determines the expected 

number of top event occurrences over that period. 

Set W srs(t)= 0 
Do for all basic events i 

wsrs(t)+ = Gi(q)XWi 
Time period = T 

W(O,T)= integra/~ (wsrAt)) 

Figure 5.26 Sysuji Algorithm 

187 



5.2.4 Accuracy Comparison with FAULTIREE+ 

To compare the accuracy of the computerised BDD technique with the conventional 

Kinetic Tree Theory approach ofFAULTTREE+, three safety system designs were 

analysed. Table 5.2 defines the parameter set for each considered design, where the 

final rows state the corresponding system unavailability and spurious trip occurrence 

using both quantitative techniques. In addition, the cost and maintenance down time 

of each design is portrayed. 

Variables Desi2n 1 Desi2n 2 Desi2n 3 

E 0 1 2 

KIINI 112 3/4 111 

H 2 0 1 

KVN2 2/3 0/0 4/4 

V 1 2 2 

P 1 1 2 

81 40 50 30 

82 30 34 30 

MDT 130.4 58.2 164.7 

Cost 922 561 992 

QSYS 9.76e-3 4.288e-2 5.87e-3 

FAULTIREE+ 

QSYS 9.70e-4 4.287e-2 5.5e-3 

BDD 

Fsvs 0.561 0.242 0.544 

FAULTTREE+ 

Fsvs 0.551 0.241 0.542 

BDD 

Table 5.2 Quantification Results of Three Safety System Designs 

188 



CHAPTER 6 

IMPLEMENTING THE GA TO OPTIMISE THE mGR-INTEGRITY 

PROTECTION SYSTEM 

6.1 Introduction 

It was decided to investigate the effectiveness of Genetic Algorithms (GAs) to 

optimise safety system availability. The GA was initially applied to the High 

Integrity Protection System (HIPS). SGA _ C is a C-Ianguage translation and 

extension of the original Pascal Simple Genetic Algorithm (SGA) code presented by 

Goldberg (Ref 37). This package was used as a framework to build the GA software 

for the HIPS optirnisation called GASSOP (Genetic Algorithm Safety System 

Optimisation Procedure). 

GAs are iterative procedures that maintain a population of candidate solutions to 

some objective criteria. Each safety system design is indicative of a specific set of 

parameter values representing a point in the search space. GAS SOP commences with 

a diverse population of designs. Each design's performance is evaluated using a 

preconceived criteria, in this case availability. The set of performance measures is 

subsequently used within a selection procedure to create a new population of 

candidate solutions, which enable greater exploration of the search space. A second 

iteration commences using the new population. Each iteration is tenned a generation. 

The iterative procedure terminates after a pre-set number of generations. An 

algorithm summarising the steps of GAS SOP is given in figure 6.1. 

189 



Procedure GA 
gen = 0 
input GA parameters 
initialize prO) 
evaluate P(O) 
do while gen smaxgen 

Report 

select P(gen + J) from P(gen) 
genetic operator action 
evaluate P(gen + J) 
gen += J 

Figure 6.1 A Simple Genetic Algorithm 

6.2 Computer Implementation of the GA to Optimise the HIPS - GASSOP 

The following is an outline of the routines constituting GAS SOP and the subroutines 

they contain. 

6.2.1 Input to GASSOP 

Initialise is the central initialisation routine called on execution of GASSOP and 

consists of subroutines Ini/data, Memory and Initpop. 

The first step, [nitdata, prompts the user for SGA parameters. The user may choose 

parameters governing: 

• Population size (popsize), 

• Number of generations (maxgen), 

• Crossover rate (pcross), 

• Mutation rate (pmutate). 

Memory handles dynamic memory management. The data entered in Inilpop is used 

to dynamically allocate space for the GA population. Each individual, i.e. design, in 

the population accumulates a certain amount of descriptive data throughout the GA 

190 



run. As such, on execution of GAS SOP, enough storage space must be allocated for 

data storage in the form of a record per individual. The structure of each record is 

shown in figure 6.2. 

Record of Design Data (opop) 

• Binary string code of parameter set (chrom) 
• Integer structure to store parameter set (ichrom) 
• Structure to store fitness data (fitparts) 
• Lower bound for selection (bo!) 
• Upper bound for selection (boh) 
• Crossover site (xsite) 
• Marker to flag occurrence of mutation (mutatcheck) 
• Bits positions mutated (mutate bits) 

Figure 6.2 Record to Store Data for Each Design - opop 

Each record itself contains two further structures: ichrom and fitparts. Jchrom 

consists of a set of bit fields to store each parameter value for the considered design in 

its integer form. In contrast, chrom stores the parameter set as a concatenated string 

of integer values in binary form. (Both ichrom and chrom will be considered in 

greater detail when describing the subroutine lnitpop). Fitparts is a structure to store 

all fitness data associated with the design and will be considered further in section 

6.2.3. Bol and boh store the upper and lower values to partition the roulette wheel, as 

described later within the Selection routine. Fields xsite, mutatecheck and mutatbits 

store the relevant data to report action taken by the genetic operators. The database of 

records describing each individual is termed opop. 

A replica storage structure is allocated simultaneously. This space will store 

individuals chosen from the original popUlation for reproduction and is termed npop. 

Individuals chosen in the selection stage are transferred to npop. Genetic operators 

subsequently act on designs stored within npop. The fitness information of the 

modified designs is updated and the new population is transferred back to the original 

storage space, opop, prior to the next iteration. 

191 



6.2.2 Coding and Initialisation 

Each solution string represents a particular system design depending on the values 

assigned to each of its 10 parameters, where each parameter lies within a specific 

stated range. It was decided to initialise a population of strings randomly and 

represent parameter values in binary code. 

Each parameter must be allocated a particular length of string, i.e. a particular number 

of bits, in order to accommodate the largest possible value in binary form. For 

example, Of, the parameter governing the maintenance test interval for subsystem I, 

requires 7 bits to accommodate its maximum time span of 104 weeks. In total, each 

string representing all design variables is 32 bits in length and can be interpreted as a 

set of concatenated integers in binary form, as shown in figure 6.3. 

(L:'~r~;'~"'~'r:~~':;;~?;'~ ····~···n:~;~.~:~:: --v p 

h~ 
I I 

'--~--/" ..... --/ '--~--/ '--~ ./ ~ '---" 
N1 N2 ~ ~ E H 

Total = 32 bits 

Figure 6.3 A Design's Parameter Set Coded as a Binary String 

For ease of computation, the order of parameters on the string was chosen primarily 

to ensure that parameters did not cross the boundaries of a 16 bit word-length and 

each followed directly from the last, leaving no gaps. 

A means to compile each solution string is to initialise random strings ofO's and I's 

directly as in Goldberg's approach. However, the restricted range of each parameter 

is not necessarily equivalent to its corresponding binary range defined by the 

192 



allocated bit field length. For example, consider NI, the parameter governing the 

number of pressure transmitters in subsystem 1. The design can accommodate 0 

through 4 pressure transmitters, thus 3 bits are allocated to this parameter. Random 

initialisation of these three bits as described above will decode to a value in the range 

o to 7. This can yield 3 infeasible results. To overcome this the initialisation 

procedure termed Initpop creates the binary string in two stages. 

The first stage initialises the string in integer form parameter by parameter using a 

random number function, which only generates numbers that are feasible. These 

integer values are stored in their respective bit field within the ichrom structure. 

Presence or absence of the lllPS valve determines the state of subsystem 2. If no 

lllPS valve is fitted there is no redundant subsystem. A function is, therefore, 

incorporated to check the value of H. Ifnecessary, i.e. if H = 0, the associated 

parameters, i.e. N2, K2, Eh, are modified to zero. The range of N2 and K2 is hence 1 to 

4, where they only assume a zero value as dictated by H. 

Next subroutine Binconversion uses a left shift and masking technique to insert each 

initialised value, in its binary form, into the 32 bit solution string. The binary string 

covers two bytes using a computer with 16 bit word-length. Hence, chrom is an 

integer array of size 2. To demonstrate Binconversion figure 6.4 illustrates 

compilation of the first 16 bits of the 32 bit string. The final 16 bits are formed in the 

same manner. 

Binconversion for string j 
chrom[OJj = 81 

chrom[OiJ <shift to left> 9 
temp = Eh 
temp <shift to left> 2 

chrom[OiJ <OR-logic> temp 
temp = V 
temp <shift to left> 1 
chrom[OiJ <OR-logic> temp 
temp =p 
chrom[OJj <OR-logic> temp 

Figure 6.4 Algorithm to Compile Binary String - Binconversion 

193 



Initpop is carried out popsize times to create a complete population of feasible 

individuals. 

6.2.3 Evaluating String Fitness 

A simple explicit objective function to calculate the fitness of each design does not 

exist. String fitness comprises of system unavailability plus the respective penalty 

should any of the constraints be violated, i.e. a penalty for exceeding the cost limit of 

the design envelope, a penalty for exceeding the total maintenance down time 

constraint and a penalty for exceeding the allocated trip frequency allowance per 

year. 

A rountine called Fitness obtains a raw fitness value for each design. The data fields 

that constitute the structure fitparts, associated with each individual, are as follows: 

• Cost of subsystem I (csubl), 

• Cost of subsystem 2 (csub2), 

• Total system cost (tcost), 

• Maintenance down time for subsystem I (mdtl), 

• Maintenance down time for subsystem 2 (mdt2), 

• Total maintenance down time (tmdt), 
• Spurious trip frequency (F srs ), 

• Probability of system unavailability (Qsrs), 

• Penalty due to excess cost (penc), 

• Penalty due to excess MDT (penm), 

• Penalty due to excess spurious trip frequency (pens), 
• Penalised system unavailability (Q~rs ), 

• Roulette wheel percentage (p). 

Fitness contains subroutines to evaluate and store this data and follows the algorithm 

illustrated in figure 6.5. (Determination of each string's roulette wheel percentage is 

considered within the Selection routine). 

194 



Fitness 
Unavail 

ifgen = 0 
Getunbdd 
Fixumiata 

do for all strings j 
Varundata 
Unavailworkout 
QSYS=Q~ 

Spurious 
ifgen = 0 

Getspbdd 
Fixspdata 

do for all strings j 
Varspdata 
Spuriousworkout 
FSYS = Fsr.;} 

doforallj 
evaluate MDT 
evaluate cost 
Penaltys 

Genaverage 
Genbest 

Figure 6.5 Fitness Evaluation Algorithm 

Fitness first evaluates each fitness aspect, i. e. Qsrs, Fsrs , cost and MDT. Calculating 

each string's cost and MDT is fairly straightforward. Both these constraints use an 

explicit formula in which the respective data values and specific parameter set are 

entered to give the required results. Evaluating the system unavailability and the 

spurious trip frequency is a more in depth process. A BOO representing each failure 

mode is incorporated into GAS SOP and used directly to quantifY the system failure 

parameters. The routines to achieve this are discussed in chapter 5. These routines 

are integrated within Unavail and Spurious with slight modifications in order to 

handle a population of strings within the GA environment, as shown in figure 6.5. 

Fixed data, i.e. the BDO structure and component failure and repair data, need only 

be entered once and as such, are carried out on the first iteration alone. Each time a 

new design is considered the variable data must be specified prior to quantification of 

the BOO. Consequently, automatic manipulation of House Event probabilities and 

195 



maintenance test interval parameters establishes the unavailability of each primary 

event for a particular design. As such, the method is capable of specifYing the 

probabilities of each node, in both the system unavailability and spurious trip BOO, 

automatically within the GA software package for each design alternative. 

String fitness must, however, be represented in the GA as a single value. This value 

is subsequently used to determine which members of the population will be 

reproduced into the next generation. The system unavailability is the value in which 

we are ultimately interested. Resources are not, however, inexhaustible. In 

consequence, the values for cost, maintenance down time (MOT) and spurious trip 

frequency are used to penalise the probability of system unavailability if, and only if, 

they exceed their respective limits: 

• Cost> 1000 units 

• MOT > 130 hours 

• F SYS > I per year 

Penalty formula were, thus, derived for cost, MDT and spurious trip and implemented 

within the subroutine Penaltys. 

6.2.3.1 Derivation of Penalty Formulae 

During MOT components in the safety system are being inspected rendering the 

safety system unavailable. As such, MOT above 130 hours directly produces a 

contribution to the unavailability of the system. 130 hours or below is feasible and 

incurs no penalty. Hence, if the MOT ofa particular string exceeds 130 hours the 

respective penalty is 

M = (MOT-130) 
p 8760 

for MOT >130 (6.1) 

where Mp denotes the penalty due to excess MOT and 8760 the number of hours per 

year. 

196 



Consideration is now given to the cost constraint. This proves a little more difficult 

to formulate as excess cost does not directly translate to system unavailability. The 

method utilised tries to form a direct relationship between cost and performance. If 

cost exceeds its allocated limit by 100 units, i.e. 10% of the total budget, a 

corresponding increase in performance of at least 10"10 is expected. 

For this approach it is required to know the level of performance associated with a 

system which costs 1000 units. Here an assumption has to be made that a typical 

system of this cost would have an unavailability of about 0.02. Therefore, if 

modifications to the system cause the cost to increase to 1100 units, it is expected that 

system unavailability will decrease to 0.018. String designs with excessive cost will 

not be adopted so the more the constraint violation the heavier the penalty. This is 

implemented using an exponential relationship of the form y = X'I4, chosen by trial 

and error. Consequently, the penalty function for excess cost is 

, 
C = (COST-1000)4 x 0.002 

p 100 
(6.2) 

where Cp denotes the penalty due to excess cost. Figure 6.6 demonstrates application 

of the penalty function for excess cost. 

Consider string A: 

• 

• 

Cost ~ 1150 QSYS = 0.011 , 
C =[(1150-1000)]4 xO.002 

p 100 

=3.3xI0-3 

Q;yS =0.01l+3.3xlO-3 

= 0.0143 

where Q;yS denotes the penalised system unavailability 

Figure 6.6 Evaluation of the Cost Penalty 

197 



The third constraint, excess spurious trip occurrence, is also related to cost. If a 

spurious trip occurs, production ceases causing a financial loss. It is assumed that the 

cost per hour for loss of production is 100 units. On average a spurious trip requires 

36 hours to repair and only one such occurrence a year is acceptable. If2 trips were 

to occur in one year an excess of36 hours downtime must be tolerated, i.e. a loss of 

3600 cost units. 

Once the constraint violation has been expressed in terms of cost, the formula given 

in equation 1 can be used to relate this to the system unavailability. The algorithm of 

the calculations required to find the spurious trip penalty for a particular design is 

illustrated in figure 7. 

Consider string A: 
Fs1s = 1.3845 per year 

• Exceeds spurious limit by 0.3485 

• Repair time, 
0.3485 x 36 = 12.546 hours 

• In money terms, 
12.546 x 100 = 1254.6 units, 
i. e. EXCESS COST = 1254.6 units 

• Using the cost penalty formula , 
S = (1254.6)4 x 0.002 

p 100 

=0.047 
where Sp denotes the spurious penalty 

Figure 6.7 Evaluation of the Spurious Trip Penalty 

Each penalty is subsequently added to the system unavailability to give 

(6.3) 

198 



The result is a sole fitness value for each design referred to as its penalised system 

unavailability, Q~s. 

6.2.3.2 Fitness Information per Generation 

Two final routines analyse the penalised system unavailability of each design in the 

population. Genaverage determines the population average fitness value. Genbest 

determines the fitness of the best design. The best design is stored in a structure 

termed Bestever. Bestever stores both the specific parameter set and the fitness 

information of the best design. 

6.2.4 Selection 

Selection is the process of determining the number of times a particular design is 

chosen to enter the next generation. Selection consists of two phases. The first phase 
is concerned with the transformation of a design's fitness value, i.e. Q~, into a real-

valued expectation of an individuals probability of reproducing, p. This is dealt with 

in a routine called Fitconversioll. The second phase is the probabilistic selection of 

individuals for reproduction using the assigned reproduction probabilities. This is 

carried out in the Selection routine. 

6.2.4.1 Fitness Conversion Method 

Each string enters the selection procedure with an associated fitness value, Q~s. In 

the safety system optimisation problem the smaller Q~s, the fitter the string and 

hence, the greater should be its chance of reproduction. In such cases, a possible 

approach is to use a reproduction probability based on availability concepts rather 

than unavailability. This, however, does not provide a useful measure of selection 

potential. Designs of ultimate interest have unavailability values that lie in the range 

(0,0.1). Subtracting these values from one results in numbers in the range (0.9, 1.0). 

This loses any sensitivity to distinguish between the capabilities of any design. The 

199 



fitness infonnation available to the GA is distorted and the GA's ability to 

differentiate between designs nullified. 

The implication is that a specialized conversion method is required. A non-linear 

translation is required to enforce the selection likelihood of the very good design 

(with availabilities over 99"10) in comparison with poor designs (with availabilities 

around 90%) and average designs (with availabilities around 98%). This is achieved 

by a conversion method, which allocates each string to one of three categories 

according to its fitness value. The range of values covered by each category are 

represented in table 6.1. 

Fitness value domain 

UDDer limit Catel!:Orv Lower limit 

1.0 > 3 > 0.2 

0.2 > 2 > 0.1 

0.1 > 1 > 1.0 

Table 6.1 Categories Represented in the Fitness Domain 

Each string in category 3 is automatically allocated zero percent. This category 

comprises of poor system designs. If they do not feature on the roulette wheel they 

will be eliminated from the succeeding generation. 

Category 2 contains average merit designs. It is, however, important to retain a little 

diversity in the population. To preserve sensitivity each string is subtracted from the 

upper category limit, i.e. 0.2, and subsequently allocated some portion of a total of 

5% of the roulette wheel. 

The strings, which fall into category 1, are of ultimate interest. To enhance their 

fitness values each string is subtracted from the upper category limit, 0.1. A 

particular amount of the remaining 95% of the roulette wheel is then allocated to each 

string, dictated by how fit they are in relation to the other strings in the category. 

200 



The algorithm to implement Fitconversion is illustrated in figure 6.8. A check 

function is incorporated to ensure that the roulette wheel totals I 00% if either 

categories I or 2 are empty. If all strings fall into category 3 their fitness values are 

subtracted from one and the entire roulette wheel apportioned accordingly. The latter 

check is not illustrated in figure 6.8. 

Fitconversion 
doforall) 

if Q'srSJ ::;; 0.1 

temp = O.I-Q~ysj 
sum95 += temp 
n95 += 1 

else if 0.1 < QSYSJ ::;; 0.2 

else 

temp = 0.2-Q~ySJ 
sum5 += temp 
n5 += 1 

check function 
ifn5 = 0 

mult95 = 100 
else 

mult95 = 95 
ifn95 = 0 

mult5 = 100 
else 

mult5 = 5 

doforall) 
if Q'srsj ::;; 0.1 

Pj = l(O.I-Q'srsJI sum95Jxmul195 

else if 0.1 < QsrSj ::;; 0.2 

Pj = l(0.2-Q'srsJI sum5Jxmlllt5 

Figure 6.8 Algorithm for Converting String Fitness to Reproduction Probability 

201 



6.2.4.2 Sampling 

Prior to selection a routine termed Bounds is implemented. Bounds assigns each 

individual a segment of a line, corresponding to its reproduction probability. The 

limit of each segment is defined in teffils of an upper and lower bound, i.e. bol and 

boh respectively, for design i. As an example Bounds is applied to a population of 4 

strings, as shown in figure 6.9. 

Design P, bal, boh, 

S1 0.25 0 0.25 

S2 0.4 0.25 0.65 

S3 0.2 0.65 0.85 

S4 0.15 0.85 1.0 

.·······S1·······_·············S2·············_···· S3·····_·· S4···. 
(lE I( I( I 
o 1.0 

Figure 6.9. An Example of Bounds 

Selection in the GA builds a new population of constant size. A random number 

between 0 and 1 is generated. The resulting number falls within a segment allocated 

to a particular string. This string is subsequently chosen to enter the new population 

and is stored in the first record of npop. This cycle is repeated until the new 

population is complete. The algorithm to implement selection is depicted in figure 

6.10. 

202 



Selection 
do for i = 1 to popsize 

generate random m/mber 1 to 1000 = rand 
rand = rand /1000 
doforallj 

ifrand ~0.5 
if bohj ~ rand 

if bolj ~rand 
npopi = OpOpj 

else 
if bolj ~ rand 

if bohj ~ rand 
npopi = OpOPj 

Figure 6.10 Algorithm to Implement Selection 

6.2.5 Action of Genetic Operators 

Designs chosen to enter the new population are merely replicas of previously 

explored design points. The action of genetic operators aims to reach unexplored 

areas of the search space. In the GA this is typically carried out using crossover and 

mutation. 

Crossover produces new individuals, which have some parts of both parent's genetic 

material. The GA uses the simplest fonn, single-point crossover. This mating 

process is carried out in the routine Crossover. Crossover considers every other 

string in the population. Consider string). A random number between 0 and I is 

generated. If this number lies below the crossover rate the mating process proceeds 

and stringj is mated with stringj + I about a randomly chosen crossover point. Else 

both strings remain unchanged and consideration is given to string) + 2. As the new 

population is determined using a probabilistic selection method, mating pairs are in 

effect randomly chosen. 

203 



The algorithm to implement crossover uses a combination of shifting and Boolean 

logic to achieve its objective. Having deduced that string) will be crossed the 

subsequent process is illustrated in figure 6.11. 

Crossover 
crosspoint = random number I to 32 
if crosspoint S 16 

byte = 0 
goto Funccross with byte and crosspoint value 

else 
byte = I 
cross pOint = crosspoint - 16 
goto Funccross with byte and crosspoint value 

Funccross 
templ = chrom[byteh+l 
templ<shift to right> UNITSIZE - crosspoint 
templ <shift to left> UNITSIZE - crosspoint 

temp2A = 0 
for i = 0 to (UNITSIZE - croospoint -I) 

Temp2A <shift to left> I 
Temp2A += I 

temp2 = temp2A <AND-logic> chrom[byte}j 

temp3 = chrom[byteJ1 
temp3 <shift to right> UNITSIZE - crosspoint 
temp3 <shift to left> UNITSIZE - crosspoint 

temp4 = temp2A <AND-logic> chrom[byte}j+l 

chrom[byteh = templ <OR-logic> temp2 
chrom[byteh+ 1 = temp3 <OR-logic> temp4 

Figure 6.11 Algorithm to Implement Crossover 

Mutation is a random process where one allele of a gene is replaced by another to 

produce a new genetic structure. Using binary code, mutation flips the value of the 

bit at the loci selected to be the mutation point. In the GA, mutation is applied with 

uniform probability to the entire population of strings. It is possible, therefore, that a 

given binary string may be mutated at more than 1 point. Mutation occurs with a 

probability determined by the mutation rate, typically in the range 0.001 to 0.1. 

204 



Each string enters the routine Mutation. Each bit of the string is then considered in 

turn. If the random number generated dictates that the considered bit is to be mutated 

the string is sent to a subroutine termed Funcmutate. Funcmutate first determines the 

value assigned to the specific loci, i.e. 0 or 1. A mask is then used in conjunction 

with AND or OR logic, where the bit value is 0 and 1 respectively, and the bit is 

flipped. The algorithm to mutate a bit is given in figure 6.12, where mutate pOint 

specifies the particular bit under consideration. An example of FUllcmutate applied to 

the 6th bit ofa simplified string is given in figure 6.13. 

Funcmutate 
let maskA = 65535 
letmaskB = 1 

determine value of bit to be flipped 
mask1 = maskA <shift to right> mutatepoillt 
flag1 = mask1 <OR-logic> chrom[byteiJ 
mask2 = maskA <shift to right> (UNITSIZE - mutate point - 1) 
mask2 <shift to left> (UN1TSIZE - mutatepoint + 1) 
flag2 = mask2 <OR-logic> flag1 

create mask 
maskB <shift to left> (UNITSIZE - mutate point) 

ifflag2 = 65535 

chrom[byte}j = chrom[byteiJ <AND-logic> maskB 
else 

chrom[byte}j = chrom[byteiJ <OR-logic> maskB 

Figure 6.12 Algorithm to Implement Mutation 

205 



Mutatepoint = 6 on Chrom[byteiJ = 11100110: 

Step1} Determine value of bit to be flipped, 

maskl = maskA »6 = 00000011 
flag1 = maskI <OR> chrom[byte}, 

= 00000011 <OR> 11100110 
= 11100111 

mask2 = maskA > > 3 = 000111 Il 
mask2 = maskA < < 3 = 11 Il I 000 
flag2 = mask2 <OR> flag1 

= III IlOOO <OR> 11100111 
= IlIlIIlI 

Step 2} Create a mask 

maskB = maskB < < 2 = 00000100 

Step 3} Flip bit, 

flag2 = 65535 so, 

chrom[byte}j = chrom[byte}j <AND> maskB 
= I Il00110 <AND> 11111011 
= 11100Q10 

Figure 6.13 Example to Demonstrate Funcmutate 

6.2.6 Update Design Data 

Mutation and crossover directly manipulate the binary code of each design. As a 

result the record of data concerning each design which has undergone crossover or 

mutation will be distorted. For each modified design the integer parameter set must 

be modified to correspond to the binary string. In addition, the string's fitness 

information must be updated. 

A routine called Updateichrom extracts the specific integer values of a design's 

parameter set from its binary code. A shifting process in conjunction with OR logic 

206 



is used. Figure 6.14 demonstrates the first part of the algorithm to implement 

Updateichrom, depicting extraction from bits 1 to 16 of the binary string. 

Updateichrom 
extract parameters from byte 0 
temp = chrom[OIJ <AND-logic> OXFEOO 
ichrom. (}J = temp <shift to right> 9 
temp = chrom[OiJ <AND-logic> OXOIFC 
ichrom. (h = temp <shift to right> 2 
temp = chrom[OiJ <AND-logic> OX0002 
ichrom. V = temp <shift to right> 1 
temp = chrom[OIJ <AND-logic> OXOOOI 
ichrom.P = temp 

Figure 6.14 Algorithm to Extract a String's Integer Parameter Set 

Genetic operator action can modifY a parameter value is within its feasible binary 

range, as dictated by the number of bits allocated to the parameter. Crossover or 

mutation may produce an infeasible design. Either a parameter value may be altered 

such that it lies outside its designated range or interactions between parameters may 

render the design infeasible. 

Having extracted the parameter set, designs are checked for feasibility. The checks 

made and subsequent corrective action taken is carried out to: 

• Ensure neither NJ or N2 exceed 4. If so, reduce the respective value to 4. 

• Ensure neither NJ or KJ equal O. If so, set to I. 

• Ensure neither E or H equal 3. If so, set to 2. 

• Check subsystem 2 feasibility: 

• If H = 0, ensure N2, K2 and (h are O. 

• If H '" 0, ensure N2, K2 and (h are not O. If so set the respective value to 1. 

• Ensure KJ is less than or equal to NJ. If not, set KJ = NJ. 

• Ensure K2 is less than or equal to N2. If not, set K2 = N2. 

A check marker is flagged if a design requires any feasibility modifications. These 

designs then enter a routine to rectifY their binary string (implemented in a similar 

manner to Billcollversioll). 

207 



6.2.7 Update Fitness Data 

The next step updates the fitness information of the modified designs. Each crossed 

or mutated string enters the fitness function. The probability of system unavailability, 

the spurious trip frequency, MDT, cost, respective penalties and associated penalised 

system unavailability are re-evaluated. 

A new population consisting of both explored and unexplored points has been 

formed. The population is analysed using Genaverage and Genbest, calculating the 

population's average penalised system unavailability and determining the fittest 

design. The best individual is then compared with that in the Bestever structure. If 

the individual in the current population proves fitter it replaces the best design up to 

that point. As such, the best design obtained throughout the GA run is recorded. 

6.2.8 Check For Termination 

The new population, npop, is transferred to storage within opoP. The generation 

number is increased by I. If the maximum number of generations is reached the loop 

is terminated and the GA run completed. Else, the next iteration commences with the 

selection process carried out on the opop structure. 

6.2.9 Output from GASSOP 

GASSOP writes data associated with each generation to an output file. Each 

generation provides the following information: 

I) The parameter set of each individual expressed in integer from at the start of the 

iteration number. 

2) A table of raw fitness values: MDT, cost, spurious trip and system unavailability 

of each design. 

3) Each design's penalised system unavailability with a breakdown of penalty 

contributions. 

208 



4) The reproduction probability assigned to each string. 

5) The population of designs chosen during selection alongside their binary code. 

6) Action carried out in crossover and mutation, i.e. those strings which have 

undergone either crossover or mutation, expressed in binary, and verification of 

the crossover and mutation points. 

7) An updated new population in integer fonn, plus corresponding fitness 

information 

This data file is compiled throughout the GA run. Additionally, on completion of the 

program run a summary of results is written to an output file called Bestdata. This 

summarises the GA run and states 

1) A table specifYing the average penalised system unavailability of each population. 

2) A table specifYing the fitness of the best design in each population. 

3) A description of the best design obtained throughout the GA run, i.e. the 

parameter set and associated fitness values. 

6.2.10 Results from a Run of GASSOP 

GAS SOP was implemented with a population of20 strings. A maximum of 100 

generations was allowed along with a mutation rate of 0.01 and crossover rate 0.7. In 

total, therefore, 1000 system evaluations were performed in determining the best 

design. The running time of the program was an order ofrninutes. 

The average and best string fitness were two dominant factors considered in each 

generation. These results are represented graphically in figure 6.14. 

209 



Average Data per Generation 
0.14r-----r--~-~--_,C-~--~-~~-~--~-. 

0.12 

0.1 

~ ::::io.oa 
10 
:'i 

~ 0.06 
=> 

0.04 

0.02 

oL-_~_~ __ ~ _ _L __ L__~_~ __ ~ _ _L_~ 

o 10 20 30 40 50 60 70 80 90 100 
GENERATION 

X 10-3 Best Data per Generation 
9~~-r--.--~--r--.---.--.---.--.---. 

8 

7 

6 

3 

2 

O~--~--~--~---=--~~r-~--~--~---=r--! o 10 20 30 40 50 60 70 ao 90 100 
GENERATION 

Figure 6.14 Average and Best String Data 

The initial population produced a set of strings with fitness values ranging between 

0.699 and 0.0087. Over successive generations the action ofthe GA successfully 

produced string fitness convergence. 

210 



A dramatic improvement in average population fitness was portrayed in the first 30 

generations. Generation 30 has fitness values in the range 0.144 to 0.0017. 

Generation 50 onwards represents dominance by highly fit strings. 

The fittest string from the entire process arose in generation 70. The characteristics 

of this design are specified in table 6.2. The design does not exceed any design 
limitations and as such is not penalised, i.e. QSTS = Q~s . 

Subsystem 1 No. ofESD valves 0 

NO.ofPTs 4 

No. ofPTs to trip system 2 

MTI 45 

Subsystem 2 No. of HIPS valves 2 

NO.ofPTs 1 

No. ofPTs to trip system 1 

MTI 22 

Valve type 2 

PT type 1 

MDT 127.74 

Cost 822 

Spurious trip 0.847 

System unavailability 9.36e-4 

Table 6.2 Characteristics of the Best Design 

Generation 91 onwards gives rise to a slightly less fit best string with a fitness value 

of 0.001141. This design differs from that above in that it requires 3 pressure 

transmitters to trip subsystem 1 and has test interval parameters of 46 and 26 for 

subsystems 1 and 2 resulting in a MDT of 114.35. 

211 



6.3 GA Parameters 

The GA requires the following selection parameters to be set: 

• population size, 

• crossover rate, 

• mutation rate, 

• number of generations. 

Values entered for these parameters have a marked affect on the action of the GA (see 

section 4.3.7). Using GAS SOP as previously described, an analysis was carried out 

to investigate the effect of changing these parameter values. De long, amongst 

others, has researched this area with a test bed of five trial functions, and two criteria 

of goodness defined (Ref Goldberg). Regarding his concluding discussion a limited 

set of values for each parameter was chosen: 

Mutation rate: 

Crossover rate: 

Population size: 

0.1 

0.5 

10 

0.01 0.001 

0.6 

20 

0.7 

50 

0.8 

In total 36 runs of the GA were carried out, thus ensuring each possible combination 

of the values above was analysed. The penalised system unavailability of the best 

overall string per run was then investigated for each parameter set. 

To obtain an indication of the effect of setting each parameter to a particular value the 

best penalised system unavailability obtained for all of the other parameter values 

were summed and averaged. A summary of these results are given in table 6.3, for 

the mutation rate, crossover rate and population size respectively. 

212 

. . ; 
-.,.; 
"" 

• '., 
• 

. ,~ 



It is interesting to note that as the population size increases the beneficial effect of a 

larger mutation and crossover rate is diminished. A possible deduction from this is 

that the mutation and crossover rates do not have a significant effect if the population 

size is sufficiently large. A population of only 1 0 strings may not incorporate enough 

diversity from the onset and for this reason a high degree of mutation moves to areas 

in the search space, which would otherwise not be explored. 

In conclusion a balance in the diversity, and processing time introduced into the GA 

has to be established. For further analysis of the SGA it was decided to use a 

population size as high as is appropriate, a crossover rate of 0.7 and mutation rate 

0.01. 

6.4 Further Testing 

To test the GA method further 10 runs with a population of20 strings over 100 

generations were carried out. The mutation and crossover rate for each run was 

entered as 0.01 and 0.7 respectively. 

The GA portrays a significant convergence in average population fitness. This is 

demonstrated in table 6.4, which shows the population average fitness value of the 

first and last generation for each run. Typically, the greatest convergence occurs in 

the first 30 generations. Figure 6.15 demonstrates the average data per generation for 

runs 3, 4 and 8. The latter part of each run shows fluctuation about a low average 

population fitness. 

214 



GARun Initial Population Final Population 

No. Fitness Averal1.e Fitness Average 

I 0.1729 . 0.0305 

2 0.1391 0.0087 

3 0.0928 0.0069 

4 0.1241 0.0101 

5 0.1184 0.0242 

6 0.0863 0.0184 

7 0.0673 0.0093 

8 0.1155 0.0188 

9 0.1345 0.0190 

10 0.0997 0.0113 

Average fitness 

L 0.1151 0.0157 

Table 6.4 To Demonstrate Population Average Fitness Convergence 

Key: 

Average Data from GA Runs 3,4 and e 
O.'4r-~-~-~---"-~-r-~-'--~-~-~---, 

0.12 

0.1 

~ . 
::::i 0.08 

~ 
~O." 
~ 

0.04 

0.02 

~ 10 ro ~ ~. W 00 ro ~ ~ • 
GENERATION 

__ GARun No. 3, __ GA Run No. 4, __ GA Run No. 8 

Figure 6.15 Average Data From GA Runs 3,4 and 8 

215 



Table 6.5 shows the characteristics of the best design resulting from each run and 

table 6.6 the corresponding fitness data. These designs vary quite markedly. Each 

design is, however, particularly fit. 

GARun E K/NJ H K:zIN2 V P BJ B2 Qsrs 

I 0 3/4 2 2/4 1 I 51 37 l.56e-3 

2 0 2/4 2 1/1 2 I 45 22 9.36e-4 

3 0 112 3 1/1 2 I 33 37 1.l4e-4 

4 0 2/3 2 III I 1 42 28 1.l3e-3 

5 0 2/4 2 3/3 2 1 31 35 1.26e-3 

6 0 2/4 2 2/4 1 1 38 37 1.l3e-3 

7 0 III 2 113 2 1 45 23 9.71e-4 

8 0 1/1 2 III 2 I 28 29 8.31e-4 

9 0 1/2 1 4/4 1 1 26 46 2.34e-3 

10 0 112 2 III 2 1 36 28 9.44e-4 

Table 6.5 Characteristics of the Best Designs from Each Run 

GARun Cost MDT Spurious QSTS Q~TS 

Trip 

1 982 107.85 0.29 l.56e-3 1.56e-3 

2 822 127.74 0.85 9.36e-4 9.36e-4 

3 1000 \30.32 0.94 1.I4e-4 1.14e-4 

4 902 \31.24 0.42 1. \3e-3 1.23e-3 

5 862 122.26 0.72 1.26e-3 1.26e-3 

6 982 122.16 0.55 1. \3e-3 1. \3e-3 

7 802 125.30 0.97 9.7Ie-4 9.7Ie-4 

8 762 \31.54 0.72 8.31e-4 1.03e-3 

9 672 108.52 0.54 2.34e-3 2.34e-3 

10 782 119.48 0.85 9.44e-4 9.44e-4 

Table 6.6 Performance Measures of the Best Designs 

216 



The final population resulting from each run constitutes fit, yet somewhat varied 

designs. 

6.4.1 Discussion of Results 

Convergence to a fit design through the GA is not necessarily smooth. The potential 

to introduce an unfit gene at any point arises due to the inherent random nature of the 

GA. As a result sudden fluctuations in average population fitness are to be expected. 

Conversely, a particularly fit string may be produced in an early generation due to 

this random nature. 

It is, however, anticipated that the GA will show significant convergence to a 

particular design. In consequence, the final population will be dominated by a design 

similar, ifnot identical, to the best overall string. In addition, the fittest designs from 

one run to the next will show very little structural variance. 

GAS SOP is achieving its objective to find fit domains in the search space. The GA, 

however, lacks the ability to 'home in' on the fittest designs in a highly fit popUlation. 

For this reason significant variety is retained in the latter generations. There exists, 

therefore, the potential for significant fluctuation regarding design variations within a 

certain fitness band and this is further encouraged by genetic operator action. 

In addition, the maintenance effort allocated to a particular design is a determining 

factor in the resulting system unavailability. A particularly fit design may be 

investigated with a pair of test intervals, which do not enable good use of the MDT 

resource. Consequently, a design that has less potential but portrays a low system 

unavailability by virtue of its maintenance effort may be preferred to a potentially 

fitter design with a relatively poor MDT allocation. These issues are addressed in the 

next chapter. 

217 



CHAPTER 7 

MODIFICATIONS TO THE GA 

7.1 Introduction 

The focus of this chapter is to investigate potential improvements to the simple GA 

introduced in chapter 6, such that the GA is more efficient and effective in obtaining 

highly fit solution strings. Having implemented the GA to perform the HIPS 

optimisation, areas of improvement became apparent. . The only information 

directly used by the GA regarding each design is the reproduction probability 

allocated to the string and used within the selection process. It must therefore be 

ensured that the reproduction probability calculated for each string accurately reflects 

the string's fitness. An improvement in the accuracy of the string's reproduction 

probability will improve the overall performance of the GA. 

The system unavailability plus any penalty due to violation of cost, MDT or spurious 

trip frequency, should any of these constraints be violated, constitute the string's 

fitness. The fitness value is then converted to its corresponding reproduction 

probability. This process is depicted in figure 7.1. 

Figure 7.1 Factors Contributing to the Reproduction Probability 

All these factors are of great importance. An inaccurate calculation of anyone will 

result in a reproduction probability that does not precisely reflect the fitness of the 

string. This chapter considers each aspect in more detail. 

218 



7.2 Utilisation of the MDT Resource 

The Maintenance test interval (MTI) parameters for each subsystem directly affect 

the system unavailability of a design. They also contribute to the calculation of a 

system's maintenance down time, which exerts a penalty on the system unavailability 

if 130 hours is exceeded. 

Fully utilising the 130 hour MDT resource and splitting the available effort between 

the two subsystems to the best advantage will result in the most optimal system 

unavailability. It was noted that very few designs approached this limit and, hence, 

are not fully utilising their available resources. 

An extension of the quantitative analysis described in section 6.3 was carried out to 

establish the effect of the GA parameters, i.e. population size, crossover and mutation 

rate, on the ability of the GA to result in a design which tends toward its MDT limit. 

The analysis was undertaken in a similar manner to that previously described. The 

value of interest being in this case the MDT of the best system design generated. A 

summary of the average MDT of the best designs for each GA parameter combination 

is shown in table 7.1. 

MUTATION RATE 

Ml =0.1 M2 = 0.01 M3 =0.001 

I AVERAGE MDT 122.8 122.2 115.4 

POPULATION SIZE 

PI = 10 P2=20 P3 =50 

I AVERAGE MDT 118.9 120.4 124.9 

CROSSOVER RATE 

Cl = 0.5 C2 =0.6 C3 = 0.7 C4 = 0.8 

I AVERAGE MDT 116.5 116.5 121.6 124 

Table 7.1. A Summary ofthe Average MDT Values 

219 



A higher mutation rate, crossover rate and larger population size generate greater 

diversity in each population. The analysis shows that the greater the variation in each 

population, the more likely the MDT is to converge to its limit. 

Each parameter fixed at its largest value leads to the most optimum MDT. However, 

the data implies that the crossover rate has the greatest individual effect. 

The MDT is governed by the values assigned to the MTI values for subsystem I and 

2. These parameters span a much greater range of values than the other parameters 

and hence occupy a greater proportion of the string. 

The test parameters have a much larger area of the search space to explore. This 

knowledge supports the evidence from our quantitative analysis, implying a need for 

greater variation within this area of the string. 

Three methods to improve the exploration of the range of values allowed by the MTI 

parameters have been explored. 

7.2.1 MDT Modification Method 1 

In method I the GA executes in the normal manner and a best overall string is 

deduced. This best system design is then sent to an additional routine. Within this 

routine a loop checks the system unavailability for each feasible combination oftest 

intervals for subsystems 1 and 2. Any non-feasible combination, i.e. a MDT 

exceeding 130 hours, is ignored. The combination of maintenance test intervals 

resulting in the most optimal system performance is retained. The algorithm to 

achieve this is shown in figure 7.2. 

220 



set QsrORE = 1.0 

dofor I$O~EST $104 

do for I $ O~Esr $104 

evaluate MDT using best design 
ifMDT<130 
evaluate Qsrs 

if Q BEsr < Q srORE 

O~Esr = O~ORE 
o ;Esr = 0 bORE 

MDTBEST =MDTSTORE 
QBEST = QsrORE 

Oh-ORE = O~EST 
o :.rORE = 0 ~ESI 
MDTSTORE =MDTBEST 
QsrORE = QBEsr 

Figure 7.2 Algorithm to Carry Out MDT Modification Method 1 

7.2.2 MDT Modification Method 2 

Method 2 introduces greater search into the MTI area of the string, without affecting 

the rest of the design. This method uses a specialised mutation operator. 

The specialised mutation approach involves the inversion of a segment of the string. 

It must be noted that this is not equivalent to action carried out by the inversion 

operator. During inversion the segment reversal switches the position of genes on the 

string but does not alter their values, i.e. inversion retains the value of design 

parameters on the string (see section 4.2.6.4). To describe the modified mutation 

operator consider the string, S, 

S = 10QQIU 1101110 

Choose a = 2 and b = 7 say, 

221 



S'= 101110.01101110 

The string, S " is the original string with the points 2 through to 7 inverted. 

Crossover and traditional binary mutation is carried out on the latter part of each 

string pair only, i.e. between bits 15 and 32 (parameters V through to H, see figure 

6.3). Consequently, following the action of the two genetic operators the MTI area of 

the string is unaffected. Each new string is then further processed. The string is first 

decoded to obtain the MTI values for each subsystem and stored as integer values in 

the normal manner. The MTI area of each string is subsequently inverted between 

two randomly generated points a and b, where 0::; a < b ::; 14. The range of these cut 

points is limited if the design under consideration has no redundant subsystem, i.e. 

o ::; a < b ::; 7 , as B 2 = o. Each end of the MTI section is isolated into its respective 

parts, i.e. 0 through to a, a to b, and b to 14. The middle section to be inverted is 

termed invsect. To invert invsect each separate digit is placed in an array, termed 

sect, and the section rebuilt in reverse. The algorithm to achieve this is illustrated in 

figure 7.3. 

Once reversed invsect is re-instated in its original position in the MTI section, 

sandwiched between the end segments. Following the inversion process the MTI 

values are extracted and stored alongside the modified binary section in a separate 

structure, within the record of the considered individual. 

222 



I=b-a+l 

set leftshift = 0 
do for i = 0 to (1- 1) 

leftshift = leftshift + i 

set startshift = 0 
set digit = 0 
set rightshift = b - a 
do for loop = startshift to 1 

tempsect = leftshift<AND-logic> invsect 
tempsect<shift to right> rightshift 
sect[digitJ = tempsect 
tempsect = 0 
leftshift = leftshift - 2<to the power>rightshift 

digit = digit + 1 

set invsecI = 0 
do for loop = (1-1) 10 0 

SecI[loopJ<shift 10left>loop 
lnvsect<OR-logic>sect[loopJ 

Figure 7.3 Algorithm to Implement the Inversion Process 

Four potential MTI parameter combinations for the 2 subsystems now exist: 

where 8' denotes the mutated test interval values. The resulting combinations are 

considered in one of two ways: 

Method 2a evaluates the system unavailability in addition to the MDT for each MTI 

combination. Should any pair of test intervals exceed 130 hours MDT the respective 

penalty is added. The test intervals resulting in the lowest penalised system 

unavailability are retained. 

Method 2b evaluates the MDT associated with each MTI combination using the MDT 

formula. The pair of values whose MDT is closest to, but not greater than, 130 hours 

is retained. If all resulting MDT values are greater than 130 hours the test intervals 

223 



associated with the lowest value are kept. In this case the MDT penalty is enforced as 

in the original GA 

7.2.3 MDT Modification Method 3 

Method 3 is a mixture of methods 1 and 2. Crossover and mutation is carried out in 

the latter part of each string only, prior to being processed in the MTI area. Each 

string enters a loop, as with method 1, that checks the system unavailability of the 

design for every feasible combination of test parameters in the range. The pair of test 

parameters resulting in the best system performance for each system is retained. The 

population of strings, therefore, enters the next generation with each design fully 

utilising all the available MDT resources. 

The MTI parameters are established in the same manner for the initial population, 

thus differing from the original GA The structural system design variables are 

randomly initialised, the test parameters are then set to the optimal value for the 

particular design. 

Method 3 is computationally intensive. Consideration of each string in each 

population requires an extensive amount ofMDT and system unavailability 

evaluations, where the latter aspect is of primary concern. A means to combat this is 

to assume that MDT values below a certain criteria will not result in an optimal 

system unavailability. As such, the algorithm is modified so that only those test 

interval combinations resulting in a MDT between 120 and 13 0 are sent to the fitness 

function for system unavailability evaluations. MDT values outside this band are 

ignored. This could be taken one step further in that the MDT of all MTI 

combinations is evaluated and the test intervals whose MDT is closest to 130 hours 

retained. This combination is then used to evaluate the system unavailability and as 

such only one system unavailability evaluation per string is required. 

224 



7.2.4 Results of the MDT Modification Methods 

The GA with MDT modification methods 1, 2a, 2b and 3 were tested \0 times. Each 

run 20, 0.7 and 0.01 were entered for the population size, crossover rate and mutation 

rate respectively. Each run was terminated after 100 generations. Table 7.2 shows 

the original MDT and corresponding fitness for the best designs resulting from the 

original GA. Stated alongside are the MDT and fitness values for each best design 

using the modified methods. The average fitness values arising from each method are 

also given. (Method 3 was tested with a full analysis of every test interval 

combination. A lower limit of 120 hours MDT was subsequently placed on the 

designs requiring system unavailability evaluations. The results proved identical for 

each approach.) 

MDT MDT modification MDT 

Original SGA modification Method 2a Method 2b modification 

Method 1 Method 3 

MDT FIT MDT FIT MDT FIT MDT FT MDT FT 

107.85 l.56e-3 129.82 1.12e-2 128.26 8.65e-4 122 9.26e-4 129.78 8.36e-4 

127.74 9.36e-4 129.98 l.05e-2 123.39 9.81e-4 127.94 7.88e-4 129.56 7.81e-4 

130.32 1.14e-3 129.75 l.0ge-2 127.06 8.91e-4 128.37 1.05e-3 129.89 7.80e-4 

131.24 1.23e-3 129.77 8.36e-4 127.27 8.17e-4 122.02 9.44e-4 129.65 7.24e-4 

122.26 1.26e-3 129.56 7.84e-4 129.46 7.87e-4 129.63 8. 14e-4 129.45 7.9ge-4 

122.16 1. 13e-3 129.63 8.06e-4 127.94 7.86e-4 126.75 8.43e-4 129.89 7.81e-4 

125.30 9.71e-4 129.57 9.74e-4 128.77 8.65e-4 128.77 8.65e-4 129.72 9.35e-4 

131.54 l.03e-3 129.89 l.08e-3 128.32 l.07e-3 128.59 8.61e-4 129.89 7.81e-4 

108.52 2.34e-3 129.54 l.04e-3 123.5 l.07e-3 114.4 1.31e-3 129.88 8.56e-4 

119.48 9.44e-4 129.87 9.91e-4 129.63 8.04e-4 129.63 8.04e-4 129.72 7.5ge-4 

Averal!;e value from each column 

122.64 1.25e-3 129.74 9.78e-4 127.36 8.94e-4 125.82 9.20e-4 129.74 8.03e-4 

Table 7.2 Results from the Original GA and the MDT Modification Methods 

225 



The routine used to check the system unavailability of the resulting design for each 

feasible combination of test intervals (introduced in section 7.2.1) was incorporated 

into both methods 2a and 2b. This enables the resulting best designs to fully utilise 

available resources and hence, enhance their performance. These updated designs are 

given in table 7.3. 

Method 2a combined with Method 2b combined with 

Method 1 Method 1 

MDT Fitness MDT Fitness 

130 8.37e-4 129.56 7.82e-4 

129.75 8.78e-4 129.61 7.5ge-4 

129.63 8.07e-4 129.18 1.04e-3 

129.56 7.84e-4 129.63 8.07e-4 

129.89 7.81e-4 129.72 7.62e-4 

129.61 7.56e-4 129.63 8.07e-4 

129.77 8.36e-4 129.77 8.36e-4 

130 1.04e-3 130 8.38e-4 

129.72 9.65e-4 129.84 1.01e-3 

129.72 8.04e-4 129.63 8.04e-4 

Average value form each column 

129.75 8.4ge-4 129.66 8.45e-4 

Table 7.3 Method 2 Combined with Method 1 

The average string fitness and best string fitness in each generation for the fittest 

string resulting from each modified method (i.e. those underlined in table 2) are 

shown in figure 7.4. The characteristics of each of these designs are given in table 

7.4. 

226 



MOT Modification Methods Average String Data 
O,l<4r---,r---,--,:-~---.---,~-~---'-~-~---,-----, 

0,12 

0.1 

~ 
::::; O,OS 

'. ~ 

~ i 
z 0.06: 
~ , 

0.04 

0.02 

00~~~1~0~~ro~~~3~0~~~~~~~~~~~OO~~~7~O~~M~~~OO~~~'00 
GENERATION 

x 10"" MOT MOdifICation Methods Best Design Data 
5~--'-'---r----r---.----r---'--~.---.----'---. 

4.5 

4 

3.5 

2 

1.5 

O~~--~---=~~~--~--~--~~~=---~---7.~-7. o 10 20 30 <40 50 60 70 80 90 100 

Key: 

GENERATION 

Method) 
Method2a 
Method2b 
Method 3 

Figure 7.5 Average and Best Data for the Fittest Designs per Generation 

227 



E KIINI H K~2 V P 9 1 92 

. 

Method 2a 0 2/4 2 112 2 \ 30 32 

Method 2b 0 3/4 2 \/2 2 \ 30 32 

Method3 0 112 2 \/2 \ 0 36 29 

Table 7.4 The Best Design Characteristics Resulting From Each Method 

7.2.5 Discussion of the MDT Modification Results 

Each method improved the utilisation of MOT resources, thus improving the 

performance of the safety system design. 

The first method does not affect the GA process directly. The MDT is considered 

after as opposed to during the design stage, as is typical of most engineering 

disciplines. Such an approach, however, neglects to incorporate the MTI parameters 

in the design stage and thus, is unable to positively influence decisions such as, which 

valve or pressure transmitter to choose. 

Method 2 achieves the desired intention to introduce greater variety into the test 

interval parameter area of the string. Full use of the MOT resource is not guaranteed 

but the general case results in convergence towards the limit. Application of method 

1 to the final design ensures full use of all available MOT resources. The advantage 

of the second method is that it is incorporated within the design process and does not 

require an excessive amount of extra system evaluations. 

Method 2a puts a greater demand on system evaluations than method 2b, but achieves 

a more thorough analysis of the test interval combinations. Method 2a considers both 

the system MOT and the effectiveness of its distribution between subsystems. 

Method 2b considers the former aspect alone. The results for each are very similar, 

however, there is a slight bias in preference toward method 2a, particularly regarding 

MDTusage. 

228 



Method 3 is in effect an exhaustive search of every feasible test interval combination 

for each subsystem. It ensures that all MDT resources are used at all times and are 

distributed between both subsystems to the best advantage. As such, potentially fit 

designs are not eliminated due to inferior MTI values. This method, however, relies 

on a very large amount of system unavailability evaluations and may be considered 

impractical for larger systems. Analysing the system unavailability of only those test 

interval combinations within a specific range of the MDT limit, effectively reduces 

computer effort. Adapting the exhaustive approach to calculate the MDT values only, 

thus incurring no extra demand on system unavailability evaluations is an alternative 

method with much less demands on processing time. This distribution of test interval 

values between each subsystem may not, in this case, be optimal. 

For each MDT modification approach the GA portrays convergence to a fit 

population. The convergence rate is similar to that of the original GA, however, a 

slightly fitter population is generally attained in methods 2 and 3. Fluctuation occurs 

as a result of the introduction of novel design points via mutation and crossover. If 

these points prove ineffective they are eliminated from subsequent generations. 

Methods 2 and 3 enable a more thorough exploration of the MTI parameter values. 

As such, the best designs constituting the latter generations generally exhibit fitter 

performance measures. The best design from one generation to the next portrays 

significant variety. The GA still demonstrates an inability to differentiate the fittest 

strings from a highly fit population. The graphs show fluctuation within a highly fit 

band of designs, however, a particular design is not maintained. 

In conclusion, method 3 achieves the best results for the HIPS system. It is probable 

that method 2a or the less computer intensive adaptation of method 3 would be more 

practical for larger systems. These explore extra system evaluations but not to 

excess. 

229 



7.3 Derivation of a Modified Cost Penalty Formulae 

If the performance of a design is significantly improved due to a comparatively small 

excess in one or more of the constraints, the design in question deserves further 

consideration. An excessive abuse of the limits with only a small degree of 

performance improvement conversely implies the design be discarded. It is essential 

that an appropriate penalty be exerted to the system unavailability of a design should 

it exceed certain limits. 

The MDT modification methods go some way to alleviating the importance of the 

MDT penalty formula. A spurious trip results in loss of production of the industrial 

system and hence, loss of profit. For this reason a spurious trip is expressed in terms 

of excess cost and the cost penalty formula used. The penalty formula under 

consideration is, therefore, that regarding cost. 

The cost penalty in the original GA is derived from the formula: 

COST PENALTY = (EXCESS COST!I 00i'4 x 0.002 (7.1) 

A base level in system performance is assumed, i.e. a system unavailability of 0.02. 

This was based on expectation of improved performance, which is proportional to 

increase in cost, as described in section 6.2.3.1. To illustrate this, consider the 

example in figure 7.6. 

The comparative penalty for the fitter string is much greater. The penalty should take 

the fitness value of the system to be penalised into consideration. 

An alternative cost penalty formula is introduced which takes into account both the 

cost violation and the system unavailability of the design being penalised. This is 

achieved using a multiplying factor which, rather than being fixed, varies according 

to the system unavailability of the design. 

230 



• Design A: Cost = 1150 units QA = 0.015 

I) Apply the cost penalty formula: 

, 

( 150J4 xO.002 = 0.0033 
lOO 

2) Q~ = 0.018, a fitness decrement == 18% 

• Design B: Cost = 1150 units QB = 0.002 

I) Apply the cost penalty formula 

, 

( 150J4 x 0.002 = 0.0033 
100 

2) Q~ = 0.0053, a fitness decrement == 62% 

Figure 7.6 Two Example Designs 

Consider a particular design with cost C. The cost, C, exceeds 1000 units. The 

percentage excess ofthe system's cost is calculated, Jf say. The multiplying factor is 

derived by calculating Jf percent of the system unavailability of the design under 

consideration. In the designs A and B in figure 6, both designs exceed 1000 units by 

IS percent, i.e. Jf = 15%. The system unavailability of design A is 0.015, of which 

15% is 0.0025. The multiplying factor to be used in the penalty formula for this 

design is, therefore 0.0025. Applying the penalty formula; 

COST PENALTY = (150/100)sI4 x 0.0025 = 0.0041 (7.2) 

The penalised fitness value is 0.0191, a 22 percent decrement. The system 

unavailability of design B is 0.002, of which 15% is 0.0003. Hence, applying the cost 

penalty; 

COST PENALTY = (150/100)SI4 x 0.0003 = 0.00049 (73) 

231 



The penalised fitness value is 0.0025, a 20 percent decrement. 

7.3.1 Results of the GA Using the Modified Cost Penalty 

The GA was tested with ten runs using the modified cost penalty fonnula. For each 

run 20, 0.7, 0.01 and 100 were entered for the population size, crossover rate, 

mutation rate and number of generations respectively. 

Table 7.5 shows the total cost, spurious trip and corresponding fitness value for each 

run of the original GA. Stated alongside is the equivalent information regarding the 

modified cost penalty method for the best design. 

The average fitness value shows a small improvement using the modified cost penalty 

formula. It is not appropriate to compare the average cost of the best systems. 

Designs that cost below 1000 units are not affected by the penalty fonnula. The 

modified method should not encourage convergence towards 1000 units. The 

important information is that highly fit designs that slightly overstep the cost 

constraint but show significant performance improvement are tolerated. 

232 



Original SGA Modified cost penalty formula 

Cost Trip rate Fitness Cost Trip rate fitness 

982 0.29 1.56e-3 1062 0.55 1.3ge-3 

822 0.85 9.36e-4 782 0.85 1.08e-3 

1002 0.94 1.14e-3 1022 0.68 1.60e-3 

902 0.42 1. 23e-3 652 0.93 I. 14e-3 

862 0.72 1.26e-3 982 0.81 1.16e-3 

982 0.55 1.13e-3 882 0.98 1.04e-3 

802 0.98 9.71e-4 712 0.80 1.2ge-3 

762 0.72 I. 03 e03 882 0.42 l.38e-3 

672 0.54 2.34e-3 882 0.45 8.27e-4 

782 0.85 9.44e-4 1023 0.58 1.04e-3 

Average Fitness original 1.25e-3 Average Fitness modified 9.6ge-4 

Table 7.5 A comparison of the original and modified cost penalty formula 

7.3.2 Discussion of the Modified Cost Penalty 

The GA generates populations with successively fitter strings. Quite frequently this 

pattern continues up to a point until a very fit string oversteps a boundary by a very 

small amount. By virtue of the penalty formula the system's fitness value becomes 

substantially less fit. The string's chance of re-selection is virtually impossible and 

thus, is weeded out of the population. The modified penalty formula ensures that the 

penalty applied to a string is in accordance with the string's system unavailability. 

In summary, altering the cost penalty formula enables a more detailed exploration 

around the border of the search space. The lack of final system designs from the 

original GA that portray a slight excess in either the cost or trip constraints implies 

that the penalty exerted is too great. 

233 



7.4 The Conversion Method 

Each string receives a measure of its fitness in the environment. This is the string's 

penalized system unavailability. As described in the previous section, this value is 

not in an appropriate form to be used in the selection process of the GA. 

A specialized conversion method is required. It is imperative that the conversion 

method gives rise to reproduction probabilities in accordance with the fitness value of 

each string. The distribution of percentages should accurately reflect the distribution 

of fitness values. A system whose performance is twice as good as another should 

have a percentage allocation double that of the other design. This shall be referred to 

as the proportional representation of a population's fitness values foUowing 

conversion. The original 3-category conversion method is described in section 

6.2.4.1. 

7.4.1 Application ofthe original method 

Two populations from a run of the GA were chosen to portray the effectiveness of the 

conversion method, as shown in table 7.6. (Treatment of the same population using 

the modified conversion method described in the next section is shown alongside). 

The first population considered is the initial population in the run. This population 

covers a wide ranging set of fitness values. The second population is from a later 

generation that has benefited from the action of the GA. The designs are highly fit 

and a comparatively small area ofthe fitness domain covered. 

234 



First Population Second Population 

Fitness Original Modified Fitness Original Modified 

Value RW% RW% Value RW% RW% 

9.7e-3 11.5 14.2 8. 14e-4 5.08 7.23 

1.2e-2 11.2 13.7 8.17e-4 5.08 7.20 

1.42e-2 10.9 13.1 8.31e-4 5.08 7.07 

2.26e-2 9.9 10.7 8A2e-4 5.08 6.96 

3Ale-2 8A 7.6 9.2ge-4 5.08 6.13 

3A5e-2 8.3 7.5 1.20e-3 5.07 5.74 

3.67e-2 8.1 6.9 1.33e-3 5.07 5A7 

3.ge-2 7.8 6.2 1.34e-3 5.07 5A5 

5.17e-2 6.1 5.7 1.34e-3 5.07 5A5 

5.62e-2 5.6 5.2 1.34e-3 5.07 5A5 

6. 7ge-2 4.1 3.9 1.37e-3 5.07 5.38 

8.23e-2 2.3 2.4 1.37e-3 5.06 5.38 

9.2ge-2 0.1 1.3 1.38e-3 5.06 5.37 

0.98e-2 0.003 0.05 1.38e-3 5.06 5.37 

0.118 0.3 0.05 2.07e-3 5.05 4A6 

0.123 0.2 0.04 2A7e-3 5.04 3.85 

0.355 0 0 3.03e-3 5.02 3.13 

0.389 0 0 3. 13e-3 5.02 2.95 

OA21 0 0 5.51e-3 4.96 1.33 

0.422 0 0 4.63e-2 3.92 0.59 

Table 7.6 Two Example Populations 

The conversion method is rather crude. Its effectiveness is dependent on the range 

and distribution of fitness values being converted. A population of values ranging 

uniformly between, for example 0.009 and OA, produces a set of roulette wheel 

percentages with a fairly accurate proportional representation. A much fitter 

population, with most systems having a fitness value less than 0.01, gravitates toward 

a set of almost equal percentages, although the actual fitness values vary quite 

235 



markedly. The tendency is that the conversion method is insensitive to small yet 

significant differences between the fitness values of fitter strings. 

In addition problems occur when either a very high, or very low, proportion of strings 

fall into a particular category. The percentage allocated to each category is fixed and, 

therefore, independent of the number of strings it contains. Note the discrepancy in 

the allocation to the less fit strings of the first population. 

7.4.2 A modified conversion method 

An alternative method is required which is able to cope with very diverse populations 

and is simultaneously able to show sensitivity to a highly fit set of strings. 

Initially nine categories are depicted which cover the area of the fitness domain of 

importance, i.e. below 0.2, and each category is assigned a particular weight, as 

shown in table 7.7. As the category gets fitter, its weight increases in size. 

Fitness domain Weight 

Upper Cl!tegory Lower 

limit limit 

0.2 > 9 > 0.1 12 

0.1 > 8 ~ 0.05 22 

0.05 > 7 > 0.01 32 

o.oi > 6 > 0.005 42 

0.005 > 5 ~ 0.004 52 

0.004 > 4 > 0.003 62 

0.003 > 3 ~ 0.002 72 

0.002 > 2 ~ 0.001 82 

0.001 > 1 > 0 92 

Table 7.7 Nine Categories Plus Weights 

236 



The fundamental steps of the modified method are then as follows: 

I) Firstly each category is designated a particular percentage of the roulette 

wheel depending on: 

(a)The number of strings, n, of the total population, N, in the category 

(b) The weight assigned to the category. 

2) The percentage allocated to each category is then distributed appropriately 

between the strings within. The method used must ensure that a system in a 

fitter category is a given a greater percentage than a poorer design in a less fit 

category. 

The following sections describe steps I and 2 in greater detail. 

Establish the Percentage AUocation for Each Category 

Each string in the population is considered in tum. It is first established into which 

category the string falls. As in the original method the fitness value is enhanced by 

subtracting its value from the upper limit of the least fit category, namely 0.2. The 

enhanced fitness value is then multiplied by the weight associated with the category 

into which the string falls. The 'weighted' values of the strings in each separate 

category are summed. The result is that each category is designated a particular value 

directly related to the number of strings it contains and its weight. Using these 

designated values the relative percentage of each category is calculated. 

Distribute the Percentage AUocated to Each Category Between its Strings 

Having established the percentage allocated to each category. The average 

percentage allocated to each string within each category can be evaluated. As the 

categories get fitter, the average percentage allocated to each string should increase. 

It is imperative to ensure that strings in fitter categories are given a larger percentage 

than those in less fit categories. For each category, the average percentage allocated 

237 



to each string in the most previous non-empty category is ascertained. As regards the 

9th category this is always zero. 

The total percentage appointed to each category is split into two parts, a 'used' and an 

'excess' percentage. Each string in a category, X say, must be given a percentage at 

least that of the average allocated to each string in the most previous non-empty 

category, as previously determined. If category X contains n from N strings in the 

population, the 'used' percentage is: 

Where, 

Catxused 

prevavx 

Catxused = n x prevavx 

= The 'used percentage of category X, 

= The average % allocated to each string in the most previous non-empl 

category. 

The 'excess' percent for a category is, therefore, its total minus its 'used' percentage. 

Each string in a category is first given the average percentage allocation of each string 

in the most previous non-empty category. An additional portion of the categories' 

'excess' percentage is then given to each string. 

Distribution the 'Excess' Percentage of Each Category Between its Strings 

As categories get fitter the difference between the string's fitness values within the 

categories is very small. These differences are, however, significant, particularly 

regarding predominantly fit populations. 

Distributing the 'excess' percentage ofa category between its contained strings again 

requires fitter strings to be represented by a larger value. To retain the sensitive 

distribution between the fitness values of the strings they are subtracted from the 

238 



upper limit of the category in question. These resulting values for each string are then 

summed and their relative percentage of the categories' 'excess' percent calculated. 

7.4.3 An Example of The Modified Conversion Process 

To demonstrate application of the modified conversion method the roulette wheel 

percentage associated with each string in a population of 10 individuals is established. 

The first step determines the percentage allocated to each category. Table 7.8 states 
the penalised system unavailability of each string (Q~Sj ), the associated category (Cj), 

the enhanced fitness value, i.e. Q~Sj - 0.2 (ej) and multiplication of ej by the weight 

associated with the respective category (wj}. The final columns are considered later. 

Stringj Q~Sj c· e; W; Sub; p; 

1 0.0204 7 0.1796 1.6166 0.0296 9.6 

2 0.0043 5 0.1957 4.8933 7.3eA 30.2 

3 0.0792 8 0.1208 0.4831 0.0208 1.9 

4 0.0058 6 0.1942 3.1065 4.5e-3 19.2 

5 0.0508 8 0.1492 0.5967 0.0492 4.6 

6 0.0619 8 0.1381 0.5525 0.0381 3.6 

7 0.0135 7 0.1865 1.6785 0.0365 11.0 

8 0.7090 - - - - 0 

9 0.0246 7 0.1754 1.5789 0.0254 8.7 

10 0.0130 7 0.1870 1.6832 0.0370 1l.l 

Table 7.S Design Data Calculated During the Modified Conversion Process 

Table 7.9 considers each category. The second column states the number of strings in 

the population falling within the category limits. Column 3 represents the sum of 

each strings Wj in the respective category. Column 3 totals 16.188. The values in 

each row of column 3 are evaluated as a percentage of the column total and hence, 

gives the percentage allocated to each category. 

239 



Category nCj ~>jin Category Average Used Excess SubsumCj 

No. Category % 

9 0 0 0 0 0 0 0 

8 3 1.632 10.1 3.4 0 10.1 0.108 

7 4 6.557 40.5 10.12 13.6 26.9 0.128 

6 1 3.106 19.2 19.2 10.1 9.1 4.16e-3 

5 1 4.893 30.2 30.2 19.2 11.0 7.3e-4 

4 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

Table 7.9 Category Values Established During the Modified Conversion Process 

Step 2 involves the distribution of the percentage allocated to each category between 

the strings it contains. Columns 5, 6 and 7 in table 8 state the average, 'used' and 

'excess' values associated with each category. For each string Q ~s is subtracted 

from the upper limit of its associated category, as represented in table 7 (Sub). The 

Subj values of each string falling in the same category are summed, as shown in the 

table 7.9 (SubsumCj). 

The roulette wheel percentage (P) allocated to each string is subsequently derived 

using: 

p. = ( Subj x excessCj] + usedCj x 100 
) SubsumCj 

and represented in table 7.8. 

(7.4) 

Table 7.6 shows the application of the modified method to two very different 

populations. The first is quite diverse in the performance of the systems it contains. 

The second contains predominantly fit strings. The percentages arising from the 

original method are stated alongside as a comparison. 

240 



7.4.4 Results Comparing Both Conversion Methods 

The GA was tested with ten runs using the modified conversion method. For each 

run 20, 0.7, 0.01 and 100 were entered for the population size, crossover rate, 

mutation rate and number of generations respectively. 

Table 7.10 shows the best penalised system unavailability for each run of the original 

GA. Stated alongside is the equivalent information regarding the modified 

conversion method. 

Conversion method 

Original Modified 

1.56e-3 I.3le-3 

9.36e-4 8.14e-4 

1.14e-4 9.S7e-4 

1.23e-3 1.1ge-3 

1.26e-3 9.SSe-4 

1.13e-3 1.2Se-3 

9.7Ie-4 8.32e-4 

1.03e-3 8.93e-4 

2.34e-3 7.92e-4 

9.44e-4 8.2Se-4 

Average fitness 

1.2Se-3 8. 64e-4 

Table 7.10 Results from Both Conversion Methods 

The results show that overall system performance was generally improved using the 

modified method. Most importantly the new approach has an enhanced ability to 

converge on very a fit design. 

7.4.5 Discussion ofthe Conversion Method Results 

241 



The original method is not able to cope adequately with highly fit populations of 

system designs. The fitness values of the strings are not accurately represented and 

hence, the information used by the GA is not in accordance with the actual population 

fitness information. 

The modified method is able to differentiate between the strings in the fitter 

population, in addition to retaining the ability to handle a varied population. Essential 

information is not lost in the conversion process. Consequently, the modified 

approach portrays an enhanced ability to maintain a specific best design over the 

latter generations. 

7.5 The Modified GA 

A modified GA was created via amalgamation of the MDT modification method 2a 

(plus application ofMDT modification method 1 to the resulting design), the 

modified cost penalty and the modified fitness conversion method. 

10 runs of the GA were implemented with parameters set at values consistent with 

those used in previous tests (i.e. population size, crossover rate, mutation rate and the 

number of generations equal to 20, 0.7, 0.01 and 100 respectively). Table 7.11 states 

the fitness information associated with the best design resulting from each run. In 

each case no limits were violated and as such Qsrs = Q;"s' 

242 



Run No. Cost MDT Spurious Trip Qsys 

1 882 126.83 0.716 8.4e-4 

2 862 129.89 0.847 7.8e-4 

3 822 128.43 0.717 7.6e-4 

4 862 129.56 0.717 7.81e-4 

5 822 128.43 0.717 7.6e-4 

6 842 127.94 0.716 7.88e-4 

7 842 130 0.847 7. 92e-4 

8 882 128.69 0.978 8. 13e-4 

9 822 128.26 0.586 8.62e-4 

10 782 130.06 0.847 8.08e-4 

Table 7.11 Results from the Modified GA 

The best overall design resulted in both the 3n1 and 5th trial and had the characteristics 

shown in table 7.12. Figure 7.7 portrays the best design data associated with each 

generation of the 5th run. 

Subsystem 1 No. ofESD valves 0 
No.ofPTs 2 
No. ofPTs to trip system 1 
MTI 29 

Subsystem 2 No. ofHlPS valves 2 
No.ofPTs 3 
No. ofPTs to trip system 2 
MTI 32 
Valve type 2 

PT type 1 . Table 7.12 Charactenstlcs of the Best DeSign 

243 



Best Data per Generation for GA Run No. 4 

1.8 

1.6 

lA 

0.8 \L--------l 
0.6L-_-'-__ -'-_-'-__ --'--__ '--_-'-__ -'-_-'-__ ..L-_---.J 

o 10 20 30 40 50 60 70 80 90 100 
GENERATION 

Figure 7.7 Best Data per Generation from GA Run 4 

7.5.1 Discussion of Results from the Modified GA 

The modified GA demonstrates the ability to find and explore the fittest areas of the 

search space. 

Greater exploration of the MTI parameter values is introduced using the modified 

MDT methods 2 and 3. There is, thus, less chance that potentially fit designs are 

overlooked or eliminated due to poor MTI parameter values that do not fully utilize 

the MDT resource. 

Modification of the cost penalty formula ensures that the penalty incurred takes into 

account the fitness of the string being penalized. This avoids instant elimination of 

highly fit strings from future generations that are potentially close to the optimal 

design but overstep a constraint boundary by a small amount. 

244 



The original conversion method, used in the SGA, is unable to accurately reflect the 

small but significant differences in the fitness of strings in highly fit populations 

(genera\ly those in the latter generations). As a result each string is a\Iocated 

approximately the same area of the roulette wheel and the GA is thus limited in its 

ability to distinguish and hence, converge toward the optimal design. The modified 

conversion method enables accurate evaluation of each strings roulette wheel 

percentage for both highly fit populations and populations that cover a greater range 

of fitness values. The GA is thus able to consistently select the fittest strings with 

greater probability. 

The modified GA is able to differentiate between highly fit strings as the algorithm 

progresses, without losing potentia\ly useful information. It has an enhanced ability 

to distinguish and retain the best designs over latter generations and hence, 

convergence to the optimal design is more probable. 

It should be noted that significant fluctuation in average string fitness of the 

population exists throughout the entire run of the GA, as can be seen in figure 7.5. 

This is due to the action of the genetic operators. Crossover and mutation randomly 

introduce diversity into each solution string and as such modifications to the designs 

may be 'good or bad'. Advantageous modifications are capitilised on and selected to 

enter future generations. Negative modifications adversely affect population average 

fitness and are subsequently eliminated from the GA run. 

245 



CHAPTERS 

THE GRID-SAMPLING OPTIMlSA nON TECHNIQUE 

S.l Introduction 

This chapter describes an alternative approach to optimise the lllPS system referred 

to as the grid-sampling technique. There is no explicit objective function that defines 

how the system unavailability is related to the design variables. This alternative 

optimisation method works on the basis that some form of an objective function is 

assumed to estimate system unavailability and a region defined over which this 

approximate function is considered accurate. 

An initial design is chosen and an objective function derived such that it is feasible 

within a restricted neighbourhood of the initial design point. In a similar manner, an 

objective function is assumed for the implicit spurious trip frequency constraint. An 

efficient, computerised procedure can then analyse each point within the restricted 

design space to obtain the enclosed optimal design. 

The procedure results in an iterative scheme where the optimal solution is approached 

by solving a sequence of optimisation problems. Each problem in the sequence 

produces a new improved solution and the next problem to solve is defined by 

moving the feasible solution space to the neighbourhood surrounding the new 

solution and re-evaluating the approximate objective functions. This is represented 

diagrammatically in figure 8.1, where Xo is the initial design and xi, j = 1,2 and 3, 

each subsequent point about which an optirnisation problem is established. 

An approach by which optimal performance can be obtained using the fault tree 

analysis method to determine the availability of each system design was described in 

a paper in 1994 (Ref 95). The methodology represented in this chapter improves the 

efficiency of that used in the 1994 paper by incorporating BDDs, as described in 

chapter 5 of this thesis. Using BDDs enables a totally automated approach. 

246 



first 
optimisation 
pro~em 

feasible 
space 

/boutx2 

Figure 8.1 The Iterative Scheme of the Optimisation Procedure 

8.2 The Optimisation Algorithm 

The framework of the optimisation algorithm to implement the grid-sampling 

approach is depicted in figure 8.2. 

An initial design is produced by the design engineer, denoted by XO It is then ensured 

that the chosen design does not violate the MDT, cost or spurious trip limitations. If 

any of these constraints are violated a new start point is selected, else the design's 

system unavailability is calculated. (The spurious trip and system unavailability are 

evaluated using the aforementioned BDD technique.) 

Forms of the objective function for both the system unavailability and spurious trip 

frequency are assumed about the initial design point and a restricted neighbourhood 

defined within which these functions are assumed accurate. Each integer point within 

the restricted space is subsequently analysed automatically using the approximate 

objective functions and the explicit formulae for cost and MDT. 

247 



xJ+1 = xP 

Start 

Is x" 
feasible 

no 
Stop 

Evaluate Fi-' Is no 
i-' < 1.0 

Is loop = 1 
no 

yes 

Spobfunc,unobfunc yes Is no 
(Assume Objective 
Functions about x J) 

yes Is 
QP<QJ 

End 

Qi-' < Qi 

no 
~----l Resetbounds ~---=< 

Figure 8.2 Algorithm to Implement the Grid-Sampling Method 

248 

lowlimit = Qi" 

Are the 
boundaries 
maximally 
educed 

yes 



The system unavailability of the best predicted point resulting from the restricted 

search, denoted by Q:rs is compared with the system unavailability of the initial 

design, Q;"s. If the predicted point shows potential for improvement it is accepted 

for further consideration and defined as x i+' , where j is iteration number (initially set 
to 0) and denotes the number of predicted designs that are accepted. 

The actual values FIr;' and Q;;; are evaluated using the appropriate BDD. If the 

spurious trip rate is less than 1 and the system unavailbility verifies improvement 

over the previous design, the new design point is accepted. If either the spurious trip 
is greater than 1 or the system unavailability less than QIrts, the predicted point is 

rejected. In such circumstances, the current design point (xi) is retained, the 

boundaries of the restricted neighbourhood of the search space are reduced, a lowlimit 

equivalent to the previous predicted value is set and the search process repeated 

within the reduced restricted neighbourhood. The restricted search space is 

continually reduced until either the actual performance values of a predicted design 

show improvement over the current design or the boundaries about the search space 

are reduced to contain only the current point. The latter scenario terminates the 

algorithm and the current vector is deemed the most optimal design. 

At any point the algorithm terminates if the search within the restricted 

neighbourhood fails to predict a design which shows improvement over the current 

best. The resulting optimal design is, therefore, xi. 

The final value assumed by j specifies the number of optimisation problems solved. 

In contrast, the final value of loop states the number of predicted points, which were 

checked for their actual performance values. The difference betweenj and loop, 

therefore, represents those designs that were inaccurately predicted. 

The following sections describe the steps of the grid-sampling optimisation algorithm 

in more detail. 

249 



8.2.1 Formulation of the Objective Function 

To explore the design space around the initial design and progress to an improved 

point a means to express the system performance as a function of the design is 

required, i.e. 

Qsrs = f(x) 

where 

Assumption of an objective function form uses the Taylor expansion about the current 

design point (x) giving: 

(8.1) 

where tu is the change in the design vector, g the gradient vector and H the Hessian 

matrix. Taylor series approximates the value of points sufficiently close to x, 
however, there is no function that can represent f{x + tu) for the entire design space. 

Linear truncation of the Taylor expansion means that f{x + tu) can be evaluated 

providing that the gradient vector can be obtained. That is if !Oxi for each design 

parameter, where the partial derivatives show the rate of change of system 

performance with respect to the respective parameter. Strictly formulation of if! Oxi 

cannot occur as integer variables are being considered. To overcome this it is 

assumed that a smooth curve has been used to link all discrete points to give the 

marginal distribution of f as a function oh then if! Oxi can be obtained for the 

smooth curve. 

Finite differences can be used to estimate if! Oxi . For a linear objective function the 

partial derivatives are evaluated to specify the terms in the function using the central 

difference formula if possible: 

250 



(8.2) 

The BDD is used to obtain j(x; ± I'lx; ) for each variable, provided x; ± I'lx; is in the 

required range. If the range of variable X; ± I'lx; is infeasible, this is overcome using 

either the forward or backward scheme, equation (8.3) or (8.4) respectively: 

Qsrs (Xl ,X2,···,Xj_l ,X"Xi+1 , ... ,Xn ) 

aQsrs = ___ -...:Q""""'''-S-'-(x..!.l<.:.' .. :.:;.,~X.!:;; ,,-,l'~X!....; _-_dx-,--;x-";+",,,~ .. ...:.,~X=J 
Ox; dx; 

(8.3) 

(8.4) 

The gradient vector associated with the current design point and integrated within the 

system unavailability objective function is derived in a routine called Unobfunc. The 

partial derivatives associated with each parameter are stored in an array termed unob 

(E, NI, KI, H, N2, K2, V. P (h fh correspond to positions 0 through 9 respectively). 

The range of the parameter being dealt with and its value in the current design 

determines the difference scheme used. Boolean variables, i.e. V and P, are 

necessarily restricted to either forward or backward differences. The algorithm in 

figure 8.3 illustrates the estimation of partial derivatives for E, the parameter 

governing the number ofESD valves with range 0 to 2. 

251 



Unobfunc 
ifE~ 0 

evaluate Q(xE+PX) 
evaluate obun[OJ usingforward differences 

ifE ~ 1 
evaluate Q(xE+px)and Q(XE_I,X) 
evaluate obun[OJ lIsing central differences 

ifE ~ 2 

evaluate Q(x E-I' x) 
evaluate obun[OJ lIsing backward differences 

Figure 8.3 An Algorithm to Estimate the Partial Derivative w.r.t E 

Incrementing a parameter value within its range may still render a design infeasible 

due to interactions with other parameters. Consider, for example, a design with 

NI = KI = 4. Estimating the partial derivative with respect to NI uses backward 

differences. However, NI = 3 and K, = 4 is infeasible. To overcome this K, must 
also be modified. The algorithm to estimate Of / OxN is portrayed in figure 8.4. , 

Problems arise when the design under consideration has no redundant system, i.e. H = 
o. Utilising forward differences to determine the partial difference with respect to H 

increments H by 1. To ensure the resulting design is feasible N2, K 2 , and fh cannot 

remain at O. To overcome this the forward difference scheme is applied to an 

alternative design with H ~ N2 ~ K2 ~ 1 and fh = 50 to estimate If / Ox H . 

252 



Unobfunc 
ifN} = 1 

goto Fordiff 
ifN} = 2 

ifK} = 1 
goto Cendiff 

ifK} = 2 
goto Fordiff 

ifN2 = 3 
ifK} = 1 or 2 

goto Cendiff 
ifK} = 3 

goto Fordiff 
ifN}=4 

Fordiff 

if K} = 1,2 or 3 
goto Bacdiff 

ifK} = 4 

evaluate Q(XN._1,XK._1,X) 
evaluate obun[ 1] using backward differences 

evaluate Q(XN.+I'X) 
evaluate obun[ 1] using forward differences 

Bacdiff 
evaluate Q(XN._1,X) 
evaluate obun[1} using backward differences 

Cendiff 
evaluate Q(xN.+I,x) and Q(xN._"x) 
evaluate obun[ 1] using central differences 

Figure 8.4 An Algorithm to Estimate the Partial Derivative w.r.t N} 

Having evaluated each derivative the linearly truncated Taylor expansion takes the 

form: 

(8.5) 

253 



(where x j is the current design point) to define the objective function for system 

unavailability. 

The objective function to approximate the frequency of spurious system occurrences 

is derived in an identical manner. The routine to achieve this is termed Spobfunc and 

the storage array of the gradient vector spob. 

To obtain numerical estimates of the partial derivatives of system unavailability with 

respect to each design variable at most 2n system unavailability evaluations are 

required. Similarly, at least n spurious trip evaluations are necessary to approximate 

the objective function for this failure mode. In addition, each objective function must 

be remodelled at each iteration for the current design point. Returning to the fault 

tree software, setting the correct house events and re-analysing the tree for each 

evaluation is a tedious process (Ref 95). The BDD technique can be integrated 

within the optimisation algorithm source code. As such, alterations in the design 

parameter values are set automatically within the program, the associated 

probabilities in the BDD set accordingly and the necessary system evaluations 

established. 

8.2.2 Limiting the Scope of the Objective Functions 

The nature of the IDPS system restricts the design space. Specific ranges allocated to 

design variables define upper and lower bounds. Constraint functions remove other 

design alternatives. Additionally, since variables must assume integer values, only 

integer points within the design space are feasible. A feasible design space for a 2-

variable problem is illustrated in figure 8.5. The intersection points on the lattice 

represent feasible integer points within the space. 

254 



Feasible region Infeasible region 

. . . . . · . . . . . . . . . . . . 
-0 0--(;>--0--0--0-0-0-- -----~---~---:---:--- ----· . . . . . . . . . . . . 
-<i:l-<i:l--$--Ei7-$-<i:l-<i:l--Q--$-- ~---~---~---~--- ---- 0 
-<j:l- -$- -$- -&0 <j:l-<j:l-~- -$--& -; -i ---> 
-$- -$- -6- -& -0-$ -$- -$- -6--& -&-& -$~-"---

• • • • • , • • • • • I • 

D -$--0--8--0-0-0-0--0--8--0-0-0-0-· . . . . . . . . . . , . 
-0--0--8--0-0-0-0--0--8--0-0-0-0-

x, 

Figure 8.5 Feasible Design Space 

Feasible 
design 
point 

Current 
design 
point 

Linear truncation of the Taylor series enables only an approximation of Qsrs (x+ ruq. 
As such, a restricted solution space in the neighbourhood of the current point, where 

the approximate solution is deemed to be acceptably accurate, must be defined. To 

enforce the restricted neighbourhood each variables range is limited further through 

the introduction of additional constraints, i.e. 

where x; represents the variable of a design point within the restricted space, 

xl represents design variables at the l' accepted design point and &;L and &/U are 

the lower and upper limits by which Xi is allowed to change. 

The function to create a restricted neighbourhood about the current design is termed 

Bounds. Assigning further restrictions to each parameter is somewhat limited as a 

result of their already small range and the parameter's integer enforcement. 

Consequently, where possible additional constraints are set one unit either side ofthe 

current value of the design variable. The algorithm to apply bounds about NI, the 

parameter governing the number of pressure transmitters for subsystem 1, is 

illustrated in figure 8.6. Bounds about the other parameters are defined in a similar 

manner. 

255 



Bounds 
ijE;rO 

else 
xb. =E-I 

xb. =E 
ijE5{] 

else 

xi - E+I EU-

xfro = E 

Figure 8.6 An Algorithm to Define Bounds about E 

The MTI parameters are an exception. The range of values covered by the test 

parameters is much greater and hence, has scope to assign more strict bounds is less 

restricted. Initial bounds are set 12 units (weeks) either side of the actual test interval 

values for the /' design. 

8.2.3 Searching the Restricted Design Space 

Having defined a restricted area about the current design within which the objective 

functions are assumed accurate, the set of finite feasible points in the space can be 

analysed. The analysis is an efficient automated process, requiring only the 

evaluation of explicit objective functions. The routine to carry out the analysis of 

each intersection point on the grid is termed Restsearch and the implementation 

algorithm is illustrated in figure 8.7. 

256 



Restsearch 

set Q:"s = 1.0 

do for each paint in the grid, x T 

goto Analysis 

if Q:"s < Q~s 

else 

Analysis 

search successful 

Qp _Qj+l 
STS - srs 

search unsuccessfol 
best design is x j 

STOP 

evaluate cost and MDT of x T 

ifcost S 1000 &MDT s 130 
goto Increment 
goto Estimatespur 

if Firs'; 1 

goto Estimateun 

if Q1-s > lawlimit 

if Q~rs < Q:"s 

Q:"s = QJrs 

X=X 

Figure 8.7 The Algorithm to Implement Restsearch 

Consider each integer design point within the space in turn, xT say. The cost and 

MDT of the design is first checked for feasibility. If either limit is violated the design 

is rejected and the next point considered. If no violation occurs the design ( x T ) is 

sent to a routine termed Increment. Increment establishes the difference of each 

parameter value (x; ) from the current design (xi) and stores these values in an array 

termed inc. The gradient vector associated with design x j has been evaluated 

previously in Spobfonc for the spurious objective function. The values in inc specific 

to design xT are inserted into the spurious objective function in the routine 

Estimatespur. An estimate of the design's spurious trip frequency results. If this 
estimated value ( Firs ) is greater than 1 the design is rejected and the next point on 

the lattice considered. If no spurious trip violation occurs the increment array is used 

257 



in a routine tenned Estimateun to estimate the design's system unavailability (Qk). 

The algorithm to implement Estimateun is illustrated in figure 8.8. 

Estimateun 
set sumgrad ~ 0 
do for i ~ 0 to 9 

sumgrad = inc[i] x unob[i] 
T . 

Qsys =Q~s +sumgrad 

Figure 8.8 The Algorithm to Implement Estimateun 

The aim of Restsearch is to obtain the most optimal predicted point in the restricted 
space, excluding xi. The best point is recorded in vector xp

. Q;"s is then compared 

with Qbs. If Qbs ~ Q;"s it is assumed xi is the optimal design and the algorithm is 

tenninated. If Q;"s < Q~yS' xP is temporarily accepted as the new design point xi+' . 

Actual system unavailability and spurious trip calculations, i.e. F fr;' and Q~; 

respectively, are undertaken to verifY the estimated perfonnance measures. If these 

measures are accurately predicted the new point is accepted and a new iteration about 
this point commences. If either measure proves significantly inaccurate, i.e. F £;' > 1 

or Q£;; > Qb,s , attention is returned to the current design point xi and a repeated 

search about this point proceeds. Prior to reinitiating Restsearch a lower bound on 

the predicted system unavailability must be established, tenned lowlimit. Lowlimit is 

set equal to the predicted system unavailability of the previously rejected point, thus 

ensuring this point is not reselected. In addition, the restricted area around xi must 

be reduced further to ensure accuracy of perfonnance predictions. 

8.2.4 Reducing the Restricted Design Space 

The routine to reduce the size of the restricted neighbourhood about xi is tenned 

Resetbounds. The bounds to be reduced refer only to the restricted range about the 

MTI parameters. Bounds about the other parameters are maximally reduced due to 

the integer restriction. Each consecutive time a predicted improvement 
(Q:;; > Qb,s) proves invalid, the distance of the enforced upper and lower bound 

about the actual test parameter value is halved. On the first occasion 

258 



(}i _12S(}T S(}i +12 is reduced to (}i -6S(}T S(}i +6, the second to 

(}i _ 3 S (}T S (}i + 3. On the fourth and fifth occasion the bounded interval is 4 and 2 

units wide respectively so as not to violate the integer restriction. The first prediction 

that proves to be accurate is accepted as the new point about which the next iteration 

proceeds. A restricted neighbourhood is established about this new vector, where the 

MTI bounds are relaxed to a 24-unit interval. If, however, a predicted point is not 

accepted prior to the tf' trial about xi the algorithm terminates and xi is deemed to 

be the optimal design. 

8.2.5 Application ofthe Grid-Sampling Method 

The following section demonstrates the application of the grid-sampling optirnisation 

method to a high pressure protection optirnisation. 

The initial design is stated in the first row of table 8.1. The following rows state the 

consecutive designs, which were predicted to show improvement over the current 

design. Those designs that were accepted when their actual performance measures 

were evaluated are represented in bold. As can be seen, the first design accepted as 

an improvement over the initial vector is that predicted I'". The most optimal design 

from the grid sampling process using the specified initial design is described in the 5th 

row. 

The fitness values associated with each design are stated in table 8.2. The values 

predicted for system unavailability and spurious trip frequency are also given. 

(Actual values only are determined for the initial design.) The initial design has a 

system unavailability ofJ.95 x IO-J The system unavailability of the final design 

shows significant improvement specifYing a value of 7.97 X 10.4 

259 



Predicted Acc<pted Actual 

Design Design E K,IN, H KJN, V P 91 92 Qsrs 

No. No. 

Initial Design 1 2/2 1 111 1 1 40 50 
3.95e-3 

1 1 0 113 1 2/2 1 1 30 39 
9.34e-4 

2 0 2/2 2 113 2 1 30 30 
9.35e-4 -

3 0 212 2 113 2 1 28 33 
9.62e-4 -

4 2 0 2/3 2 113 2 1 27 36 
7.97e-4 

5 0 114 2 1/2 2 1 30 31 
9.6ge-4 

-
6 0 114 2 2/2 2 1 31 30 

9.7e-4 -
7 0 1/4 2 2/2 2 1 28 34 

9.9Ie-4 -
8 0 1/4 2 2/2 2 1 27 36 

1.01e-4 -
9 0 114 2 2/3 2 1 28 35 

8.04e-4 -

Table 8.1 Characteristics of Each Predicted Design 

Predicted Accepted Predicted Predicted Actual Actual MDT Cost 

Design Design QSYS F srs QSYS FSYS 

No. No. 

Initial Design - - 3.95e-3 0.420 101.66 882 

1 1 -1.48e-3 0.812 9.34e-4 0.942 129.33 922 

2 - 6.83e-4 0.716 9.35e-4 0.847 130 822 

3 - 6.91e-4 0.716 9.62e-4 0.847 129.16 822 

4 2 7.32e-4 0.846 7.97e-4 0.847 129.04 842 

5 - 5.01e-4 0.651 9.6ge-4 0.977 129.78 842 

6 - 5.08e-4 0.651 9.7e-4 0.977 129.44 842 

7 - 5.0ge-4 0.651 9.91e-4 0.977 129.67 842 

8 - S.25e-4 0.651 1.01e-3 0.977 129.52 842 

9 - 5.32e-4 0.781 8.04e-4 0.976 129.63 862 

Table 8.2 Fitness Values of Each Predicted Design 

An objective function is first assumed about the initial design to approximate both the 

system unavailability and spurious trip frequency. Table 8.3 states the gradient vector 

260 



values and the difference scheme used for each parameter for each failure mode (F,B 

and C denote forward difference, backward difference and central difference 

respectively). In addition, the upper and lower bounds of the restricted 

neighbourhood established about each parameter are specified. (If the HIPS valve is 

set to 0 parameters N2, K2, and fh are modified accordingly.) 

Parameter Difference Spurious Unavailability Upper Lower 

Scheme Of / Ox, Of / Ox, Bound Bound 

E C 8.73e-3 -1.30e-4 0 2 

NJ F 2.83e-4 -8.77e-4 I 3 

KJ B -0.261 8.82e-4 1 3 

H F 8.73e-3 l.75e-3 0 2 

N2 F 0.131 2.54e-4 1 2 

K2 F -0.262 5.07e-4 1 2 

V F 0.166 7.94e-4 1 2 

P F 0.482 4.90e-3 1 2 

8J C 0 9.73e-5 28 52 

82 C 0 7.5ge-5 38 62 

Table 8.3 Objective Function Coefficients Associated with 1
0 

, Evaluated Using 

Finite Differences 

The restricted neighbourhood about the initial design (10) was analysed and an 

improved design predicted. The actual performance values associated with this 

predicted design proved to be both feasible and fitter than the initial vector, giving 

rise to 11. A second pair of objective functions was consequently established about 

1 I. The associated partial derivatives and parameter bounds are stated in table 8.4. 

261 



Parameter Difference Spurious Unavailability Upper Lower 

Scheme Of / Ox, Of / Ox, Bound Bound 

E F 8.69E-3 -5.6IE-5 0 

NI C 0.130 -2.45E-7 2 

KI F -0.391 1.465E-6 I 

H F 8.69E-3 -2.6E-4 0 

N2 F 0.130 -6.53E-5 I 

K2 B -0.261 2.6E-4 I 

V F 0.165 3.26E-5 I 

P F 2.368 1.37E-5 I 

BI C 0 3.25E-5 18 

B2 C 0 2.45E-5 27 

Table 8.4 Objective Function Coefficients Associated with Xl 

The restricted neighbourhood about Xl was analysed and an improved design 
predicted. The actual system unavailability of this design proved less fit than Qb-s 

I 

4 

2 

2 

3 

3 

2 

2 

42 

51 

and was, therefore, rejected. The MTI boundaries were reduced to 24 S; BI S; 36 and 

33 S; B2 S; 45 and this reduced neighbourhood re-analysed. Similarly the next 

predicted design proved less fit and the MTI boundaries were further reduced to 

27 S; BI S; 33 and 36 S; B2 S; 42. A further analysis of the area produced a design 

whose actual values showed improvement over Q~rs and was therefore accepted, 

giving rise to x 2 . The feasible solution space was moved to the neighbourhood 

surrounding this new solution (with MTI bounds relaxed to a 24-unit interval) and the 

objective function coefficients re-evaluated, as shown in table 8.5. 

262 



Parameter Difference Spurious Unavailability Upper Lower 

Scheme Of / Ox, Of / Ox, Bound Bound 

E F 0.0913 -4.32e-5 0 1 

NJ C 0.130 -1.l0e-4 2 4 

KJ C -0.195 1. 64e-4 1 3 

H B 0.0914 -1.03e-3 1 2 

N2 C 0.130 -2.4ge-7 2 4 

K2 F -0.392 1.4ge-6 1 2 

V B 0.165 2.5Ie-5 1 2 

P F 1.435 2.36e-5 1 2 

OJ C 0 3.07e-5 15 39 

O2 C 0 2.3Ie-5 24 48 

Table 8.5 Objective Function Coefficients associated with X' 

Analysis of the region surrounding x2 produced 5 consecutive designs predicted to 

improve Q;ys' The actual system unavailability of each prediction proved, however, 

to be inferior. Following the fifth prediction each MTl's bounded interval had been 

maximally reduced and the algorithm is terminated. The most optimal design 

resulting from this test was x 2 
• 

8.2.6 Results Using the Grid-Sampling Approach 

The Grid-Sampling approach was tested using 8 alternative initial designs. Table 8.6 

specifies each initial design in bold and shows the designs produced at each 

subsequent iteration for each test. Table 8.7 summarises the optimal design resulting 

from each run. 

263 



her- E K/NJ H K/N2 V P B1 rh Qsys Fsys Cost MDT 
ation 

Test 1 
0 1 2/2 1 111 1 1 40 50 3.95e-3 0.419 882 101.6 
I 0 1/3 I 2/2 I I 30 39 9.34e-4 0.942 922 129.3 
2 0 2/3 2 113 2 I 27 36 7.97e-4 0.847 842 129 

Test 2 
0 1 111 1 III 2 1 45 34 3.27e-3 0.716 762 90.3 
I 0 112 2 112 2 I 34 26 7.23e-4 0.977 802 129.6 

Test 3 
0 1 2/2 1 III 2 1 60 25 3.64e-3 0.586 782 86.3 
I 0 1/3 2 112 I I 58 25 1.20e-3 0.942 922 129.5 

2 0 2/2 2 113 2 I 46 22 1.06e-3 0.847 822 129.2 

3 0 1/3 2 2/2 2 I 41 23 9. 96e-4 0.846 822 129.9 
4 0 2/2 2 113 2 I 35 26 9.46e-4 0.847 822 129.9 
5 0 113 2 2/2 2 I 32 28 9.35e-4 0.846 822 130 
6 0 2/2 2 1/3 2 I 31 29 9.34e-4 0.847 822 no 

Test 4 
0 2 1/1 0 0/0 2 1 50 0 4.85e-2 0.464 721 70.7 
1 2 112 0 0/0 2 I 38 0 3.23e-2 0.594 741 94.4 
2 2 113 0 0/0 2 I 28 0 2.3ge-2 0.725 761 130 
3 1 113 0 0/0 2 I 22 0 1. 8ge-2 0.633 541 130 
4 0 113 0 0/0 I 1 16 0 1.43e-2 0.411 301 126.7 

TestS 
0 2 111 1 111 2 1 63 33 4.42e-3 0.808 982 86.1 
I I III 2 III 2 I 52 23 1.1ge-3 0.808 982 129.9 

2 0 112 2 112 2 I 49 21 8.58e-4 0.977 802 128.1 
3 0 112 2 112 2 I 43 22 7. 82e-4 0.977 802 129.9 
4 0 112 2 112 2 I 40 23 7.58e-4 0.977 802 129.8 
5 0 112 2 112 2 I 38 24 7.5e-4 0.977 802 129.2 

Test 6 
0 0 111 2 3/4 1 2 45 35 2.23e-3 0.899 872 120.8 
I 0 III 2 2/4 2 I 34 27 8.53e-4 0.586 822 129.4 
2 0 112 2 3/4 2 I 32 29 7.62e-4 0.716 842 129.7 

3 0 113 2 2/3 2 I 33 28 7.57e-4 0.847 842 129.9 

Test 7 
0 0 2/3 1 113 1 1 40 40 2.51e-3 0.67 672 85.5 

Test 8 
0 2 111 1 111 1 1 40 50 4.2e-3 0.807 982 108.2 

Table 8.6 Results from each IteratIon of Tests 1 to 8 

264 



Test E K}IN} H K:/N2 V P 81 rh Qsrs Fsrs Cost MOT 

No. 

I 0 2/3 2 113 2 I 27 36 7.97e-4 0.847 842 129 

2 0 112 2 112 2 I 34 26 7.23e-4 0.977 802 129.6 

3 0 2/2 2 1/2 2 I 31 29 9.34e-4 0.847 822 130 

4 0 113 0 010 I I 16 0 1.43e-2 0.411 301 126.7 

5 0 112 2 112 2 I 38 24 7.5e-4 0.977 802 129.2 

6 0 1/3 2 2/3 2 I 33 28 7.57e-4 0.847 842 129.9 

7 0 2/3 I 113 I I 40 40 2.51e-3 0.67 672 85.5 

8 2 I1I I I1I 1 I 40 50 4.2e-3 0.807 982 108.2 

Table 8.7 A Summary of the Best Design from Each Test 

Tests I to 6 produced a fitter design than initially chosen. The optimal designs 

resulting from tests I, 2 5 and 6 are very fit. A fitter design was not found on either 

test 7 or 8. The optimal designs produced in each run are somewhat varied. 

8.2.7 Discussion of Results Using the Linearised Grid-Sampling Method 

The optimisation procedure proves to be very effective if an appropriate initial design 

is chosen. Tests 2 and 5 produce very similar results, as shown in table 8.7. The only 

difference is that the maintenance allocated to the 5th test is not as effective. An 

unavailability of 7.57 X 10-4 results from the optimal design in the 6th test. This 

design differs from tests 2 and 5 in that both sub-systems have 3 as opposed to 2 

pressure transmitters and the HIPS sub-system is initiated by 2 of the 3 transmitters 

being activated. Although the cost is slightly more for the latter design, it may be 

preferred due to the lower spurious trip rate. 

Table 8.6 confirms the dependence of the optimisation procedure on the initial design 

vector. The search is focused about a single point in the entire design space. Search 

progresses toward the optimum area in the vicinity of the point. The result is that the 

method is somewhat local in scope. This is illustrated in test 3, where the local 

265 



optimum has an unavailability of9.34 x 10-4 Fitter areas of the design space, 

resulting in designs with performance values approximately 7.5 x 10", remain 

unexplored. 

In addition, problems arise due to interactions between parameter values rendering 

the design infeasible. The extreme case is when the HIPS valve is equal to O. As 

such, finite differences with respect to H require special treatment and incur greater 

inaccuracy in the numerical estimations. This is illustrated in test 4. The resulting 

design is comparatively poor. Inaccurate estimations of predicted designs in the 

restricted neighbourhood of the current point prevent more optimal points designs 

from being selected. This occurs to a lesser extent between other parameters, e.g. the 

number of pressure transmitters fitted and the number required to trip the system, and 

is possibly a factor in the poor performance of tests 7 and 8. 

In the main, the optimisation procedure enables full utilisation of the MDT resource, 

distributed across each sub-system to the best advantage. Bounds governing the 

feasible design over which the optimisation proceeds are relaxed for the test 

parameters. Greater exploration of the test parameter combinations for each design in 

the space, therefore ensues. 

8.3 Other Formulations of the Objective Function 

The accuracy of the objective function is a determining factor in the effectiveness of 

the grid-sampling technique. A potential means to improve the technique involves 

consideration of extra terms in the Taylor expansion. As such, two variations in 

assumption of the objective function are investigated. 

8.3.1 The Pure Quadratic Objective Function 

The first variation involves incorporation of the pure quadratic contributions from an 

additional term in the Taylor expansion. The objective function, therefore, assumes 

the form: 

266 



(8.6) 

where 

and 

ai+n = ( a~~ys J i = 1, ... ,n 

The first partial derivatives are derived numerically, as described previously for the 

linear case. The second derivatives are evaluated using the current design vector j 

and the previous design point j + 1: 

(~r-(~J 
ai+n = '1' 

x! -x! , , 
i = 1, ... ,11 (8.7) 

As such, the initial form of the objective function about the initial design vector is 

linear. Having, accomplished the first iteration, sufficient information is available to 

evaluate the second order terms, which enable use of the quadratic objective function. 

Incorporating the pure quadratic objective function within the implementation 

algorithm is straightforward. Once a new design is established the gradient vectors 

evaluated about the previous point are stored. The algorithm then proceeds in the 

normal manner and the gradient vectors about the new design are calculated. The 

first order partial derivatives from points j and j - 1 are subsequently used to establish 

the second order coefficients in equation (8.6). In addition, Estimateun and 

Estimatespur are modified to incorporate the quadratic term in the Taylor expansion. 

267 



8.3.1.1 Application using the Pure Quadratic Objective Function 

Application of the grid-sampling technique using the pure quadratic objective 

function is demonstrated by means of the following example. 

The initial design about which the algorithm proceeds is stated in the first row of 

table 8.8. The following rows specifY each predicted design, where the accepted 

designs are stated in bold, in a similar manner to application of the linear scheme. 

The fitness values associated with each predicted design are given in table 8.9. The 

initial design has a system unavailability of 3.95 X 10-3 and the final resulting design 

assumes the fitter performance value of9.34 x 10-4 

Predictoo Accqrtoo 

Design Desigp E KIINI H K:z/N2 V P 01 (h 

No. No. 

Initial Design 1 2/2 1 111 1 1 40 50 

1 1 0 1/3 2 112 1 1 30 39 

2 - 0 2/2 2 112 2 1 26 35 

3 - 0 2/2 2 112 2 1 27 34 

4 - 0 2/2 2 112 2 1 27 36 

5 - 0 2/2 2 112 2 1 28 37 

6 - 0 2/2 2 1/2 1 I 29 39 

Table 8.8 Characteristics of Each Predicted Design 

268 

Actual 

Qsys 

3.95e-5 

9.34e-4 

9.4ge-4 

9.57e-4 

l.02e-3 

l.08e-3 

1.14e-3 



I 

Predicted Accepted Predicted Predicted Actual Actual MDT Cost 

Design Design QSTS Fsrs Qsrs Fsrs 
No. No. 

Initial Design N/A N/A 3.95e-5 0.419 101.7 882 

1 1 -1.48e-3 0.812 9.34e-4 0.942 129.3 922 

2 - 8.28e-4 0.586 9.4ge-4 0.716 130 802 

3 - 8.34e-4 0.585 9.57e-4 0.716 128.6 802 

4 - 8.46e-4 0.586 1.02e-3 0.716 125.7 802 

5 - 8.75e-4 0.586 1.08e-3 0.716 121.6 802 

6 - 9.04e-3 0.421 1.14e-3 0.551 129.9 902 

Table 8.9 Fitness Values of Each Predicted Design 

A linear form of the objective function is first assumed about the initial design, 

identical to that of the linear scheme. The values of each gradient vector are specified 

in table 8.10. 

Initial Design ( x·) Design Xl 

x, (~~s )" (a~s )" x. _Xl , , (a~:s } (a~~s } (a;,~rs } (a~~s } 

E -1.30e-3 8.73e-3 1 -5.61e-S 8.6ge-3 -7.414e-S 3.80e-5 

NI -8.77e-3 2.82e-4 -1 -2.4Se-7 0.130 8. 77e-4 0.130 

KI 8.82e-3 -0.261 1 1.46e-6 -0.391 8.80e-4 0.129 

H -1. 7Se-2 8.73e-3 -1 -8.72e-4 8.6ge-3 8.74e-4 -3.70e-S 

N2 -2.S4e-4 0.141 -1 -6.53e-5 0.130 1. 88e-4 -4.94e-4 

K2 S.07e-4 -0.262 0 2.6e-3 -0.261 0 0 

V 7.94e-4 0.166 0 3.26e-S 0.165 0 0 

P 4.90e-3 0.482 0 1.37e-S 2.36 0 0 

81 9.74e-5 0 10 3.25e-5 0 6.4ge-6 0 

rh 7.Sge-S 0 11 2.44e-5 0 4.68e-6 0 

Table 8.10 First and Second Order Derivative Information 

269 



The first design predicted to show improvement over the initial vector was accepted, 

i.e. x'. A pure quadratic form of each objective function was established about x'. 

The first step derived each gradient vector in the normal manner. (!.)' and (!, J 
were subsequently used in equation (8.7) to evaluate the second partial derivatives. 

Values of the first and second order derivatives are specified in table 8.10. 

Each design predicted to improve upon Q!"s was found to be inferior, with the result 

that the restricted neighbourhood was maximally reduced and x' deemed the optimal 

design. 

8.3.1.2 Results Using the Pure Quadratic Objective Function 

The grid-sampling algorithm was applied to 8 initial designs using the pure quadratic 

objective function. The initial designs were chosen to be the same as those tested 

using the linear scheme to enable direct comparisons. Table 8.11 specifies each 

initial design in bold and shows the design produced at each subsequent iteration for 

each test. 

270 



IteT- E K/N, H K,IN1 V P ()j rh Qsrs Fsrs Cost MDT 
atien 

Test 1 
0 1 2/2 1 111 1 1 40 50 3.95e-4 0.419 882 101.7 
I 0 113 2 112 1 1 30 39 9.34e4 0.942 922 129.3 

Test 2 
0 1 111 1 111 2 1 45 34 3.27e-3 0.716 762 90.3 
1 0 1/2 2 112 2 1 34 26 7.23e4 0.977 802 129.6 

Test 3 
0 1 2/3 1 111 2 1 60 25 3.64e-3 0.585 782 86.3 
1 0 1/3 2 112 1 1 58 25 1.20e-3 0.942 922 129.5 

Test 4 
0 2 111 0 0/0 2 1 50 0 4.85e-2 0.463 721 70.7 
1 2 112 0 0/0 1 1 38 0 3.23e-2 0.428 841 108.1 
2 1 1/2 0 010 1 1 26 0 2.22e-2 0.420 571 118 
3 0 113 0 010 1 1 16 0 1.43e-2 0.411 301 126.7 

TestS 
0 2 111 1 111 2 1 63 33 4.41e-3 0.808 982 86.1 
1 1 III 2 111 2 I 52 23 1.Ige-3 0.808 982 129.9 
2 0 112 2 1/2 2 1 47 21 8.2e4 0.977 802 129.8 
3 0 1/2 2 1/2 2 1 43 22 7.82e4 0.977 802 129.9 
4 0 112 2 112 2 1 40 23 7.58e4 0.977 802 129.8 
5 0 112 2 112 2 1 34 26 7.23e4 0.977 802 129.6 

Test 6 
0 0 111 2 3/4 1 2 45 35 2.23e-3 0.899 872 120.8 
1 0 III 2 2/4 2 1 34 27 8.53e4 0.586 822 129.4 
2 0 112 2 2/4 2 1 32 29 7.5ge4 0.717 842 129.7 
3 0 112 2 2/3 2 1 35 26 7.46e4 0.717 822 129.9 

Test 7 
0 0 213 1 113 1 1 40 40 2.51e-3 0.673 672 85.8 
1 0 114 2 2/2 1 1 34 35 1.22e-3 0.812 942 129.6 
2 0 213 2 1/2 2 1 30 31 7.62e4 0.717 822 128 

Test 8 
0 1 2 111 1 1 111 2111401501 4.2e-3 0.807 982 1 108.2 

Table 8.11 Results from each Iteration of Tests 1 to 8 (Pure Quadratic) 

8.3.2 The Cross Quadratic Objective Function 

A second variation in the objective function is investigated by inclusion of the cross 

product terms in the Taylor expansion. The objective function is then of the form: 

271 



where 

i = l, ... ,n 

b. = (82QSYS Ji 
'k Ox,Ox

k 

i = 1, ... ,n k = I, ... ,n k *' i 

and 

i = l, ... ,n 

Each partial derivative is evaluated using finite differences. Derivation of the first 

derivatives is discussed previously in section 8.2.1. The pure second partial 

derivatives are evaluated using the finite difference formula: 

8'Qsys Q(x, + &,)- 2Q(x} + Q(x, - &,) 
Ox' , &' , 

where 

and 

272 

(8.8) 

(8.9) 



The system unavailability terms are evaluated automatically by perturbing the 

variable Xi within the program source code and using the BDD technique. Derivation 

of the cross product terms uses the finite difference formula: 

[Q(Xi +dxi,x. +dx.)-Q(Xi +dxi,X. -dx.)] 

-[Q(Xi -dxi,x. +dx.)-Q(Xi -dxi,x. -&.)] 
(8.10) 

where both variables Xi and x. are perturbed. 

Subroutines Unobfunc and Spobfunc are extended to evaluate the second derivatives. 

As regards the pure quadratic terms, the derivative is 0 if the specific value of the 

respective parameter does not allow the use of central differences. The limited range 

of some parameters enforces a zero valued second derivative regardless of its specific 

value in the current design xi, i.e. parameters V, P and H. Evaluation of the cross 

terms requires both considered parameters to allow the use of central differences, else 

the respective cross term value is zero. 

Numerical estimates of the partial derivatives are subsequently used to establish 

values for the Taylor coefficients. The linear coefficients are calculated within 

Estimatun and Estimatspur. They are specific to the design point being analysed 

(XT) within the feasible neighbourhood of xi due to their dependence on the distance 

of x T from xi (i. e. the values established in Increment). 

8.3.2.1 Application using the Objective Function with Cross Terms 

To demonstrate the formulation of the quadratic objective function with cross terms 

the grid-sampling technique is applied to the initial design specified in row 1 of table 

8.12. Again, each accepted design in the program run is portrayed in bold and the 

associated fitness of each design specified in table 8.13. 

273 



Predi<1ed Accqrted 

Design Desillll E KJINJ H K/N2 V P ()J £h 
No. No. 

Initial Design 0 111 2 3/4 1 2 45 35 

1 1 0 111 2 2/4 2 1 34 27 

2 - 0 112 2 114 2 1 32 29 

3 2 0 112 2 3/4 2 1 32 29 

4 3 0 1/3 2 2/3 2 1 33 28 

5 - 0 112 2 114 2 1 32 29 

6 - 0 2/2 2 114 2 1 32 29 

7 - 0 1/2 2 114 2 1 31 30 

8 - 0 2/2 2 114 2 1 31 30 

9 - 0 1/2 2 114 2 1 30 31 

Table 8.12 Characteristics of Each Predicted Design 

Predicted Accepted Predicted Predicted Actual Actual MDT 

Design Design QSYS FSYS QSYS FSYS 

No. No. 

Initial Design N/A N/A 2.23e-3 0.899 120.8 

1 1 -6.07e-3 0.585 8.53e-4 0.586 129.4 

2 - 7.66e-3 0.718 - 1.24 129.7 

3 2 7.68e-4 0.196 7.62e-4 0.716 129.7 

4 3 2.23e-4 0.847 7.57e-4 0.847 129.9 

5 - 2.41e-4 0.652 - 1.24 129.7 

6 - 2.42e-4 0.261 9.65e-4 0.977 129.7 

7 - 2.48e-4 0.652 - 1.24 129.5 

8 - 2.4ge-4 0.261 9.67e-4 0.977 129.5 

9 - 2.56e-4 0.652 - l.24 129.7 

Table 8.13 Fitness Values of Each Predicted Design 

The partial derivatives about the initial design are derived using finite differences 

(equations (8.2),(8.3) or (8.4) for the first derivatives and (8.8) and (8.9) for the 

274 

Actual 

Qsrs 

2.23e-3 

8.53e-4 

-
7.62e-4 

7.57e-4 

-
9.65e-4 

-
9.67e-4 

-

Cost 

872 

822 

942 

842 

842 

842 

842 

842 

842 

842 



second derivatives}. These values are specified in table 8.14. (The cross terms not 

specified are equal to O. Note that the value of each cross tenn in the spurious 

objective function is zero.) 

The cross and pure second derivatives correspond directly to b" and Ci in equation 8 

respectively. The coefficients constituting ai are dependent on incremental 

infonnation, i.e. !!xi = x; -x~ , where xT is the point being analysed in the 

neighbourhood of x·. The values of ai at the next accepted point, i.e. xT = Xl are 

stated in table 8.15. 

Pure Partial Derivatives Cross Partial Derivatives 

Xi i3Qsrs oFsrs 02Qsrs 02 F srs Xjx! 02Qsrs XjX! 02 Fsrs -- --
Oxi Oxi Ox 2 , Ox 2 , OxiOx. OxiOx. 

E -1.l3e-4 S.6ge-3 0 0 K2(}1 5.9ge-5 - -
NI -S.25e-4 0.607 0 0 K2(}2 6.96e-5 - -
KI 1.65e-3 1-1.214 0 0 (}I (}2 l.57e-6 - -
H -1.95e-3 S.7e-3 0 0 

N2 -0.0651 4.6e-5 0 0 

K2 2.64e-3 -9.13e-3 4.95e-3 2.44e-6 

V 6.54e-5 0.165 0 0 

P 7.77e-4 0.479 0 0 

(}I 5.0Se-5 0 6.07e-S 7.25e-S 

Eh 6.91e-5 0 3.22e-7 9.94e-S 

Table 8_14 Derivative information about x· 

275 



Parameter X !:lx, a, 

Fsrs Qsrs 

E 0 0 8.6ge-3 -1.14e-4 

NJ I 0 0.607 -8.24e-4 

KJ I 0 -1.214 1.65e-3 

H 2 0 8.6ge-3 -1. 94e-3 

N2 4 0 4.6e-5 -0.652 

K2 2 -I 9.03e-3 8.8e-3 

V 2 I 0.165 6.54e-5 

p I I 0.479 7.77e-4 

{}J 34 -11 0 1.24e-4 

rh 27 -10 0 l.58e-4 

Table 8.15 The Value of Coefficients Constituting a, 

A second iteration about x I subsequently proceeds. Each objective function is re

evaluated. The value of each derivative is specified in table 8.16. 

a, 

x, i3Qsrs aFsrs a2
Qsrs a2 Fsrs -- -- XiX k a2

Qsrs x T 

Ox, Ox, Ox' , Ox 2 , ox,ox, (x2
) Qsrs FsyS 

E -4.93e·S 0.0915 0 0 K 2{}J 3.76e-8 0 -4.93e-5 0.0915 

NJ -l.Ole-4 0.131 0 0 K2rh 8.81e-8 2 -l.Ole-4 0.131 

KJ 2.02e-4 -0.261 0 0 {}J {}2 9.95e-7 I 2.02e-4 -0.261 

H -1.l4e-3 0.0916 0 0 2 -1.l4e-3 0.0916 

N2 -0.034 8.47e-4 0 0 4 -0.034 8.47e-4 

K2 1.23e-6 -0.26 2.44e-6 0.52 3 -1.32e-6 -0.781 

V 2.08e-5 0.166 0 0 2 2.08e-5 0.166 

P 3.73e-4 0.496 0 0 1 3.73e-4 0.496 

{}J 2.16e-5 0 7.25e-8 0 32 2.42e-5 0 

{}2 3.25e-5 0 9.94e-8 0 29 3.42e-5 0 

Table 8.16 Derivative Information about X 

276 



Similarly, objective functions are established about the new improved solutions x2 

and x' : Each predicted point within the neighbourhood of x' either violates the 

spurious trip constraint or has an inferior system unavailability to the current best. 

Design x' is, therefore, deemed the most optimal design and assumes an 

unavailability of7. 5 7 X 10-4. 

8.3.2.2 Results Using the Quadratic Objective Function with Cross Terms 

The grid-sampling algorithm was applied to 8 initial designs using the quadratic 

objective function with cross terms. The initial designs were chosen to be the same as 

those tested using the linear scheme to enable direct comparisons. Table 8.17 

specifies each initial design in bold and shows the design produced at each 

subsequent iteration for each test. 

277 



Iter- E K/IN/ H K;/N2 V P B/ rh Qsrs Fsrs Cost MDT 
atien 

Test 1 
0 1 1 2/2 1 111 1 1 40 50 1 3.95e-4 1 0.419 882 1 101.7 

Test 2 
0 1 111 1 111 2 1 45 34 3.27e-3 0.716 762 90.3 
1 0 112 2 112 1 1 42 31 1.05e-3 0.812 902 123.8 
2 0 111 2 113 2 I 33 27 8.27e-4 0.977 802 129.2 
3 0 112 2 112 2 I 34 26 7.23e-4 0.977 802 129.6 

Test 3 
0 1 2/3 1 111 2 1 60 25 3.64e-3 0.585 782 86.3 

Test 4 
0 2 111 0 0/0 2 1 50 0 4.S5e-2 0.463 721 70.7 
1 2 112 0 0/0 I 1 38 0 3.23e·2 0.428 841 108.1 
2 1 112 0 010 I I 26 0 2.22e·2 0.420 571 118 
3 0 1/3 0 010 1 I 16 0 1.43e·2 0.411 301 126.7 

Test 5 
0 1 2 111 1 111 2 1 63 33 4.41e-3 0.807 982 86.1 

Test 6 
0 0 111 2 3/4 1 2 45 35 2.23e-3 0.899 872 120.8 
1 0 I1I 2 2/4 2 1 34 27 8.53e-4 0.586 822 129.4 
2 0 1/2 2 3/4 2 1 32 29 7.62e-4 0.716 842 129.7 
3 0 113 2 2/3 2 I 33 28 7.57e-4 0.847 842 129.9 

Test 7 
0 0 2/3 1 1131111140 40 2.S1e-3 1 0.673 1 672 85.8 

Test 8 
0 2 111 1 111 2 1 40 50 4.2e-3 0.807 982 108.2 

Table 8.17 Results from each Iteration of Tests 1 to 8 (Cross Quadratic) 

8.3.3 Discussion Using Other Formulations of the Objective Function 

The pure quadratic formulation of the objective function attains very similar results to 

that of the linear approximation. Its performance is inferior regarding tests 1 and 3. 

An inability to predict an accurate improvement over relatively poor designs is 

portrayed, where the linear approach enabled further exploration in each case. In 

contrast, the quadratic approach showed slightly better performance in tests 5 and 6. 

Test 5 achieves a slightly better use of maintenance effort. The resulting design in 

test 6 differs only in that the number of pressure transmitters for subsystem I is 2 as 

278 



opposed to 3. The difference between the two system unavailabilities is negligible 

but the design resulting from the quadratic approach is both cheaper and less prone to 

spurious trips. Test 7 is unusual in that the quadratic objective function substantially 

improves performance. A design vector with an unavailability of7.62e-4 results. 

Both the linear and pure quadratic formulations proved to be more effective than the 

cross term objective function. Tests 1, 3 and 5 showed an inability to proceed to a 

second iteration. The remaining tests gave identical results to those of the linear 

approximation. 

In the main, the results show that incorporation of the quadratic terms adds little 

accuracy to the objective function. This can be explained by the way that the system 

unavailability is affected by changes in redundancy levels. Lower order minimal cut 

sets consist of components most likely to cause system failure. Adding an extra level 

of redundancy increases the order of these minimal cut sets by one. Consequently, 

other components in the system will most likely provide more significant 

contributions to system failure. Further increasing the redundancy levels does not 

significantly reduce the system unavailability. Therefore, the rate of improvement 

predicted by the objective function does not match that actually achieved, even when 

quadratic terms are included. 

Formulation ofthe linear objective function is the easiest to achieve. The pure 

quadratic form requires a few extra evaluations, yet no further BDD evaluations are 

enforced. The complexity and computer effort exerted by the cross terms approach is 

by far the greatest. 

In conclusion, the difference obtained in both computer effort and effectiveness 

between the linear and the pure quadratic objective function is negligible. But what 

appears to be of vital importance to the success of the scheme is the proximity of the 

initial design to the optimal. 

279 



CHAPTER 9 

IMPLEMENTING THE OPTIMISATION PROCEDURE TO A FIREWATER 

DELUGE SYSTEM 

9.1 Introduction 

The optimisation procedure using GA's has been demonstrated on a relatively simple 

High-Integrity Protection System. However, many systems are much more complex 

and have a much larger number of design variables. As a result this chapter is 

concerned with an implementation of the optimisation process to a larger, more 

detailed system,to test the effectiveness of the GA approach in these circumstances. 

This chapter first introduces and describes the features of a deluge system design 

typical of those used on offshore platform. Attention is then given to analysis of the 

safety system. Subsequently, the safety system analysis is incorporated within a GA 

optimisation procedure. 

9.2 Description of the Firewater Deluge System 

To test the effectiveness of the optimisation process in dealing with larger design 

problems it has been applied to a Firewater Deluge System (FDS) on an offshore 

platform. The basic features of the deluge system are shown in figure 9.1. Its 

function is to supply, on demand, water and foam at a controlled pressure to a specific 

area on the platform protected by a deluge system. As such, the FDS comprises of a 

deluge skid, firewater pumps and their associated equipment and ringmains, Aqueous 

Film-Forming Foam (AFFF) pumps and their associated equipment and ringmains. 

The following section describes the systems further. 

280 



Filter 
IIOIation Isolation 

v .... Jockey Pump Ya .. 

FIREWATER 
RINGMAIN 

r-~~PS}-------~PS~-. 

Filter 
Isolation 

Pressure Relief 
V .... 

T..t 
v ... Pres'sur'e: 

Sensor ~ 

,-----------I Valve 

I 
I 
I 

Filter 

(0 TO 4 Electric) 

MAIN FIREWATER 
PUMPS 

(0 to 4 Diesel)p .... 

lSolatiof'1 r
v .... 

I 

Toot 
v .... 

y 

I Isolation 

I v ... '----' • 
alarm Y: :v' I . 

------~--- MAIN FIRE AND 
GAS PANEL ------------------~-~Ign~fo-L-____ ....l 

Pumps 

._-->---

AFFF 
RINGMAIN 

AFFF 
Deluge Valve 

AFFF 
Check 

.-·IPowerl 

E 

~e AFFF PUMPS 

Water Deluge 

open-vent 

Manual 

DELUGE 
SKID 

[>-<J = Isolation Valves, Flow 
Control Valves, Pressure 

Release Valves, Test 
VaNes 

Figure 9.1 The Firewater Deluge Skid 

281 



9.2.1 The Deluge System 

The deluge valve set including all associated equipment is mounted on a fabricated 

steel framework called a skid. Skids are situated on the processing platform where an 

incident can occur and its associated equipment act to spray water onto the affected 

area. 

The deluge valve set comprises three main elements: the main distribution line, a 

water closing circuit and a control air circuit. Upon receipt of a signal from the Main 

Fire and Gas Panel (MFGP), the solenoid valves are de-energised and open thus 

releasing air pressure from the control air circuit. The air pressure drop allows the 

valmatic release valve to open, and water from the water closing circuit runs to drain. 

This causes the pressure on the deluge valve diaphragm to fall. When the pressure on 

the diaphragm has fallen sufficiently, the firewater main pressure acting on the 

underside of the deluge valve clack overcomes the load imposed by the diaphragm, 

allowing water to flow into the distribution pipes, through the nozzles and onto the 

hazard. 

The system may also be operated manually by opening the system local manual 

release valve on the skid. This allows air to escape from the control air circuit and the 

system operates as described above. 

The deluge valve set is also fitted with an AFFF supply line. Instrument air pressure 

maintains the valmatic release valve and AFFF valve closed. When the air pressure 

drops in the control air circuit, due to the solenoid valves being de-energised (the 

same components as those used to activate the water deluge valve), the AFFF valve 

and valmatic release valve open simultaneously. As the water flows through the foam 

inductor in the main distribution line, foam concentrate is induced from the AFFF line 

via the foam proportioner. The solution of water and approximately 3% foam then 

feed into the distribution network, through the nozzles and onto the hazard. 

Events considered in the reliability assessment of the deluge skid are specified in 

table 9.2. Event type 'HE' states that the event is a human error. In contrast 'CO' 

denotes that the event is a component failure. Components are of 'wear-out' or 'non 

282 



wear-out' type, denoted by 'w' and 'NW' respectively. Preventative maintenance is 

only carried out on components of wear -out type. The tendency for corrosion build

up in the system was noted. For this reason corrosion resistant components were 

introduced, where '0' and 'n' correspond to non-corrosion resistant and corrosion 

resistant materials respectively. The failure and repair data, maintenance effort and 

costs associated with each component are specified in table 9.3. The key to notation 

in table 9.3 is expressed in table 9.1. As can be seen from table 9.3, events due to 

human error require only specification of the probability of occurrence. SV1, SV2 

and WVRF are the only components that fail spuriously. 

Notation Description 

AD Dormant failure rate 

As Spurious failure rate 

TD Dormant mean time to repair 

TS Spurious mean time to repair 

HT Number of hours manual work required to test the component 

CHT Cost per hour of manual work to test the com£onent 

CR Number of hours manual work required to repair the component 

CHR Cost per hour of manual work to repair failure (dormant or spurious) 

CSR Cost of spares for each repair carried out (dormant or spurious) 

Hp Number of hours manual work required to carry out preventative 

maintenance 

CSP Cost of spares each time preventative maintenance is undertaken 

CHP Cost l'er hour of manual work to ~arry out preventative maintenance 

Ns No. of spares stored 

Cs Storage costs per component 

Cl Initial cost 

Table 9.1 Notation Used 

283 



Not- Event Description Event Rates 

ation Type 

SI Failure ofMFGP to correctly select and send a close signal to the CO NW 

solenoid valve. 

WBS Strainer, located upstream of the water deluge valve, blocked. CO NW 

WBN Deluge nozzle on the waterspray system blocked, old type CO NW 

(old) material. 

WBN Deluge nozzle on the waterspray system blocked, new type CO NW 

(new) material. 

WIVB Blockage of the locked open butterfly valve, one upstream and CO NW 

one downstream of the water delu&e valve. 

WIVO Operator leaves the normally locked open butterfly valve in the HE -
shut position (one upstream and one downstream of the water 

deluge valve). 

WVI Water deluge valve type I fails to open. CO NW 

WV2 Water deluge valve type 2 fails to open. CO NW 

WV3 Water deluge valve type 3 fails to open. CO NW 

MRM Manual release mechanism fails to dump instrument air. CO NW 

SV Solenoid activated valve fails to dump instrument air on reciept CO NW 

of the signal form the MFGP. (there are 2 of Solenoid Valves). 

WVR Valmatic relief valve sticks closed on activation, old type CO NW 

(old) material. 

WVR Valmatic relief valve sticks closed on activation, new type CO NW 

(new) material. 

AIVB Normally locked open butterfly valve on AFFF distribution line CO NW 

blocked (only one isolation valve on AFFF line). 

AIVe Operator leaves the normally locked open butterfly valve on the HE -
AFFF distribution line in the shut position. 

AINB The foam supply into the firewater distribution line is blocked by CO NW 

(old) the inductor nozzle, old type material. 

AINB The foam supply into the firewater distribution line is blocked by CO NW 

(new) the inductor nozzle, new type material. 

Table 9.2 Events Involved in the Reliability Assessment ofthe Deluge Skid 

284 



Not- Description E,'ent Rates 

ation Type 

AeVB The check valve in the AFFF injection line is blocked. CO NW 

AVl AFFF deluge valve type 1 fails to open on demand. CO NW 

AV2 AFFF deluge valve type 2 fails to open on demand. CO NW 

AV3 AFFF deluge valve_1yp_e 3 fails to open on demand. CO NW 

Table 9.2 •... continued. 

Event A.D TD A.S Ts HT CIn' CR CHR CSR Ns Cs Cl 

SI 2e-7 6e-6 

WBS 2.Se-5 1.2e-5 2 30 12 30 50 4 75 100 

WBN(o) 3.0e-5 1.2e-5 2 30 12 30 100 3 300 1000 

WBN(n) 5e-6 1.2e-5 2 30 12 30 300 3 300 3000 

WIVB l.Se-6 l.Se-6 2 30 IS 30 200 2 300 400 

W1VO Q= 0.01 

WVl 4.0e-5 l.Se-5 2 30 IS 30 200 2 200 400 

WV2 3.5e-5 l.Se-5 2 30 IS 30 250 2 200 500 

WV3 2.Se-5 l.Se-5 2 30 IS 30 300 2 200 600 

MRM 1.0e-5 1.2e-5 2 30 12 30 300 1 300 600 

SVl 3e-6 1.2e-5 3e-6 1.2e-5 2 30 12 30 200 2 300 400 

SV2 2.0e-5 1.2e-5 2.0e-5 l.2e-5 2 30 12 30 125 2 300 250 

WVR(o) 5e-6 1.2e-5 5e-6 1.2e-5 2 30 12 30 300 1 300 600 

WVR(n) 2e-6 1.2e-5 2e-6 1.2e-5 2 30 12 30 4S0 1 300 900 

AIVB l.Se-S l.Se-5 2 30 IS 30 200 2 300 400 

A1Ve Q=O.OI 

AINB (0) 3.0e-5 1.2e-5 2 30 12 30 100 3 300 1000 

AINB (n) 5e-6 1.2e-5 2 30 12 30 300 3 300 3000 

ACVB 2.Se-5 l.Se-5 2 30 IS 30 300 2 300 600 

AVl 4.0e-S I.Se-5 2 30 IS 30 ISO 2 150 300 

AV2 3.5e-5 I.Se-5 2 30 IS 30 200 2 150 400 

AV3 2.Se-5 l.Se-5 2 30 IS 30 2S0 2 150 500 

Table 9.3 Data Associated with Events in Table 2 

285 



9.2.2 Firewater Supply and Distribution System 

The deluge systems are connected to a pressurised ringmain network. The ringmain 

pressure is maintained by a jockey pump drawing water from the sea. Falling 

pressure is detected by the pressure transducers, which subsequently send a signal to 

the MFGP. In tum, the MFGP activates the firewater pumps to supply water direct 

from the sea at sufficient pressure to meet the deluge requirements. Pumps not 

needed remain in inactive standby. 

It is possible to start each pump manually, both locally and at the fire control panel. 

The fire pumps are arranged in two sets, one set being powered from the main electric 

power plant and the other from their own dedicated diesel engines. The diesels have 

a day tank sized for a 24 hour supply. The tank has a low level alarm fitted, alarming 

in the Central Control Room. 

Events considered in the reliability assessment of the firewater supply and 

distribution are specified in tables 9.4, 9.5 and 9.6. Table 9.4 lists the events 

associated with each fire pump and as such, constitute a single pump line (see figure 

9.1). The electricity supply (ESF) is global to all electric pumps and a single diesel 

tank supplies all fitted firewater diesel pumps. Events associated with the electric and 

diesel supply, in addition to the different pump types available are specified in table 

9.5. Table 9.6 considers failure events associated with the distribution network. 

286 



Not- Description E,'ent Rates 

ation Type 

FB The pump, which includes seawater filter, is blocked by debris. CO NW 

IVB Firewater pump isolation valve being blocked. The butterfly CO NW 

isolation valve operates on the header from pump to ringmain. 

IVC The firewater pump isolation valve is left closed after pump test, HE -
PRVO Pressure relief valve on header from pump to ringmain fails open. CO NW 

SVO The flow control valve fails open on demand. (used to dump CO NW 

excess flow from the pumps to ringmain) 

DVO Test line, used to dump flow from firewater pumps overboard HE -
during test, is left open after completion. 

CVB Check valve on header between the pump and ringmain blocked. CO NW . . 
Table 9.4 Events associated With each firewter pump 

Not- Description Event Rates 

ation Type 

ESF Failure of electricity supply to electric driven firewater pumps. CO NW 

DIVB Diesel engine supply is blocked. CO NW 

DIVC Diesel supply is inadvertently left isolated after maintenance. HE -
LAF Diesel tank level switch fails to signal flow level to control room. CO NW 

OAF Operator fails to notice or misinterprets the low level tank alarm. HE -
E 100 Failure of electric pump with 100% capacity. CO W 

D 100 Failure of diesel pump with 1 00% capacity. CO W 

EI50 Failure of electric pump type 1 with 50% capacity. CO W 

E250 Failure of electric pump type 2 with 50% capacity. CO W 

0150 Failure of diesel pump type 1 with 50% capacity, CO W 

D250 Failure of diesel pump type 2 with 50% capacity. CO W 

E133 Failure of electric pump type 1 with 33 113% capacity. CO W 

E233 Failure of electric pump type 2 with 33 113% capacity. CO W 

0133 Failure of diesel pump type 1 with 33 1/3% capacity. CO W 

D233 Failure of diesel pump type 2 with 33 113% capacity. CO W 

EIDM Probability of maintenance being carried out on a pump. - -

Table 9.5 Failure Events Associated with the Firewater Pumps 

287 



Not- Description E,'ent 

ation Type 

FSU Failure of fire pump selector unit to initiate start of the standby CO 

pump in sequence, on detection of failure of duty pump/pumps to 

restore ringmain pressure. 

OE Designated duty pump/pumps inadvertently left in a mode other HE 

than auto start at the end of the test. 

PBF Manual push button in the control room failing to initiate pump CO 

start when pressed. 

PTI Failure of ringmain low pressure sensor type 1 to indicate low CO 

ringmain pressure. 

PT2 Failure of ringmain low pressure sensor type 2 to indicate low CO 

ringmain pressure. 

PT3 Failure of ringmain low pressure sensor type 3 to indicate low CO 

ringmain pressure. 

Table 9.6 Failure Events Associated with the Distribution Network 

Associated component data for the events specified in tables 9.4, 9.S and 9.6 is given 

in tables 9.7,9.S, and 9.9 respectively. (The key to notation in these tables is supplied 

in table 9.1). Note that the pumps are of wear-out type and as such, the Weibull 

distribution is used (introduced in section 2.4.4.2). Hence, the value of the Weibull 

parameters, /3 and 11, are specified. In addition, PBF is a component failure with its 

probability of occurrence specified directly. 

Event AD 'iD HT CHT CR Cu. CSR Ns Cs Cl 

FB 2.Se-S 1.2e-S 2 30 12 30 SO 4 150 100 

IVB l.Se-S l.Se-S 2 30 IS 30 400 2 300 400 

Ive Q = 0.01 

PRVO 1.2e-S l.Se-S 2 30 IS 30 2S0 2 300 SOO 

sva l.Se-5 2.4e-S 2 30 24 30 400 2 300 SOO 

DVa Q= 0.01 

eVB 2.Se-S l.Se-S 2 30 IS 30 300 2 300 SOO 
Table 9.7 Data assocIated WIth the Events ID Table 4 

288 

Rates 

NW 

-

NW 

NW 

NW 

NW 



Event AD TD HT CHT'_ CR CHR CSR Hp CHP CSP Ns Cs Cl 

ESF 5.0e-5 2e-6 2 45 2 45 200 1000 

DIVB 3.0e-5 8e-6 2 30 8 30 200 2 300 400 

DIVe Q= 0.01 

LAF 3.0e-5 6e-6 2 30 6 30 lOO 2 200 200 

OAF Q = 0.01 , 

Event B 77 HT CHT CR CHR C .. Hp CHP CSP Ns Cs Cl 

E lOO 2 16667 2 30 72 30 1500 72 30 300 I 1000 3000 

D 100 2 14035 2 30 72 30 1450 72 30 290 I 1000 2900 

El 50 3/2 22857 2 30 48 30 900 48 30 180 2 900 1800 

E250 3/2 26667 2 30 48 30 1000 48 30 200 2 900 2000 

DJ 50 312 20000 2 30 48 30 750 48 30 150 2 900 1500 

0250 3/2 22857 2 30 48 30 900 48 30 180 2 900 1800 

EI33 3/2 32000 2 30 36 30 600 48 30 120 2 800 1200 

E233 3/2 40000 2 30 36 30 700 48 30 140 2 800 1400 

DI33 3/2 28571 2 30 48 30 500 48 30 100 2 800 1000 

D233 3/2 33333 2 30 48 30 550 48 30 110 2 800 1100 

ElDM Q = 1/25 

Table 9.8 Data Associated with the Events in Table 5 

Event AD TD AS TS HT CHT CR CH. Cs. Ns Cs Cl 

FSU 8e-6 2.4e-5 1 45 24 45 200 1 200 2000 

OE Q=O.oJ 

PBF Q = O.oJ 

PT! 7e-6 4e-6 7e-6 4e-6 I 45 4 45 50 2 100 500 

PT2 1.4e-5 4e-6 1.4e-5 4e-6 1 45 4 45 20 2 100 200 

PT3 2.1e-5 4e-6 2.le-5 4e-6 1 45 4 45 10 2 100 100 

Table 9.9 Data Associated with Events in Table 6 

289 



9.2.3 AFFF Supply and Distribution 

The foam concentrate is stored in a stainless steel tank and is distributed through a 

stainless steel ringmain network. The tank has a low level alarm fitted, alarming in 

the Central Control Room. 

The foam system is kept at approximately the same pressure as the firewater system 

by a continuously running air driven jockey pump. The AFFF pumps are either 

motor driven, supplied from the platform power plant, or diesel driven. AFFF pumps 

start automatically when any firewater pump starts to supply foam at sufficient 

pressure to meet design requirements. Pumps not needed remain in standby. The 

diesel supply to the firewater diesel pumps is separate from that of the AFFF diesel 

pumps. 

Failure Events on each AFFF pump line are identical to those described in table 9.4, 

where the associated component data is supplied in table 9.7. Further events involved 

in the AFFF supply and distribution are described in table 9.10. 

Not- Description Event 

ation Type 

ATNB Normally locked open ball valve on AFFF tank outlet blocked. CO 

ATIVC AFFF sllJ>llly left isolated after maintenance. HE 

AESF Faliure of electric supply to the electric driven AFFF pumps. CO 

ADNB Normally locked open ball valve on diesel tank outlet blocked. CO 

ADIVC Diesel supply to AFFF pumps left isolated after maintenance. CO 

ALAF Diesel tank level switch fails to signal low level to control room. CO 

AOAF Operator fails to notice AFFF diesel tank low level alarm. HE 

AE 100 Failure of AFFF electric pump with 100% capacity. CO 

AD \00 Failure of AFFF diesel pump with 100% capacity. CO 

AE50 Failure of AFFF electric pump with 50% capacity. CO 

AD 50 Failure of AFFF diesel pump with 50% capacity. CO 

AElDM Probability of maintenance being carried out on an AFFF pump. CO 

Table 9.10 Failure Events Associated with AFFF Supply and Distribution 

290 

Rates 

NW 

-
NW 

NW 

NW 

NW 

W 

W 

W 

W 

W 



Data associated with each of the events in table 9.10 is given in table 9.11. (Key to 

notation in table 9.11 is supplied in table 9.1.). Note, again, that the AFFF pumps are 

of wear-out type. As such, the Weibull distribution is used and Weibull parameters, 13 

and 1], are specified. 

Event AD TD Hr CHT CR CHR CSR Hp CHP CSP Ns Cs Cl 

ATIVB 1.8e-5 1.8e-5 2 30 18 30 200 2 300 

ATIVC Q= 0.01 

ESF 5.0e-5 2e-6 2 45 2 45 200 

DIVB 3.0e-5 8e-6 2 30 8 30 200 2 300 

DIVe Q= 0.01 

LAF 3.0e-5 6e-6 2 30 6 30 100 2 200 

OAF Q = 0.01 
, 

Event p 11 Hr CHT CR CHR CSR Hp CHP CSP Ns Cs 

AE 100 2 16667 2 30 72 30 750 72 30 150 I 800 

AD 100 2 14035 2 30 72 30 725 72 30 145 I 800 

AE50 3/2 22857 2 30 48 30 450 48 30 90 2 600 

AD 50 3/2 20000 2 30 48 30 375 48 30 75 2 600 

AElDM Q = 1/25 

Table 9.11 Data Associated with Events in Table 10 

9.2.4 Design Variables 

As regards the FDS it is necessary to determine values for the design variables that 

represent the following: 

291 

400 

1000 

400 

200 

Cl 

1500 

1450 

900 

750 



Designer Options 

• How many pressure transmitters on the ringmain 

(0,1,2,3,4)? 

Design 

Variable 

N 

• How many pressure transmitters are required to trip? K 

• Which of three possible pressure transmitters to select? P 

• How many firewater pumps are required (1 to 8)? F 

• Of these firewater pumps how many are electrically FE 

powered (0 to 4)? (The rest being diesel driven). 

• What percentage capacity to choose for the firewater Fp 

pumps (100%,50% or 33 1/3%)? 

• Which of two possible pump types to select? (For the 50% FT 

and 33 1/3% capacity pumps only) 

• How many AFFF pumps are required (1 to 4)? A 

• Of these AFFF pumps how many are electrically powered AE 

(0, 1,2)? (The rest being diesel driven). 

• What percentage capacity to choose for the AFFF pumps Ap 

(100%, 50%)? 

• Which of three possible water deluge valve to select? W 

• Which of three possible AFFF deluge valve to select? D 

• Which of two possible materials to use for certain C 

components (as specified in table 9.2)? 

• Maintenance test interval for the firewater and AFFF 

pump system (1 to 28 days)? 

• Maintenance test interval for the ringmain (1 to 24 

weeks)? 

• Maintenance test interval for the deluge skid (3 to 18 

months in 3 monthly intervals only)? 

• Preventative maintenance on components of wear-out type ()PM 

(3 to 18 months in 3 monthly intervals only)? 

It should be noted that all pumps in the firewater system are to be of the same 

capacity, as are all pumps in the AFFF system. In addition, electric and diesel pumps 

292 



of 100% capacity in the firewater system are of one type only, as are both 100 and 

50% pumps in the AFFF system. 

The design costs a certain amount to build, termed its initial cost. When in situ the 

FDS must be tested at regular intervals. Any failures found must be repaired. In 

addition, certain components are of wear-out type. These must undergo preventative 

maintenance at regular intervals. Knowledge of components comprising the FDS 

enable predictions to be made about the expected cost of system testing, repairs and 

maintenance effort. The initial cost plus cost of maintaining the system yield the life 

cycle cost. The choice of design is not unrestricted. Limitations have been place on 

the design such that: 

1) Total life cycle costs must be less than an average of 125000 units per year (i.e. 

initial cost plus total cost of maintenance, part 4 stated below). 

2) Total cost of testing the system must be less than 20500 units per year. 

3) Total cost of preventative maintenance effort must be less than 13500 units per 

year. 

4) Total cost of maintenance effort must be less than 44000 units. (i.e. cost of 

corrective maintenance due to repair of dormant and spurious failure plus 2 and 3 

stated above). 

5) The number of times that a spurious system shutdown occurs would be 

unacceptable if it were to occur on average more than 0.75 times per year. 

9.3 Safety System Analysis 

The FDS is a primary safety system on the platform designed to mitigate the 

consequences of jet and pool fires, in addition to reducing overpressures in the event 

of an explosion. Failure in the event of a hydrocarbon release could result in 

fatalities. It is imperative, therefore, that the FDS works when the demand arises. 

Applying the same principles as in the IllPS optimisation, the objective is to 

minimise system unavailability whilst giving consideration to the available resources. 

293 



9.3.1 Evaluate the System Unavailability 

No explicit objective function exists. A fault tree using house events is, therefore, 

constructed to model each possible design alternative. This fault tree is then 

converted to its BOO equivalent and integrated within the GA source code. 

9.3.1.1 Construction ofthe System Unavailability Fault Tree 

The top event of the fault tree representing the causes of system unavailability is 

defined as the 'Firewater Deluge System Fails to Activate on Demand'. This top 

event will occur if either the firewater or AFFF pump mechanisms are not activated, 

the firewater or AFFF pumps themselves fail or the water or foam deluge systems 

fail, as indicated in figure 9.2. The FDS system unavailability fault tree construction 

is described via development of each of these sub-events in turn. 

Failure to Initiate Pump Mechanisms (Firewater and AFFF) 

Failure to initiate the firewater and AFFF pump mechanisms occurs if both automatic 

and manual intervention fails. 'Manual Start' fails if either the push button on the 

MFGP fails or if the operator fails to push the button. 'Auto Start' fails if either the 

fire pump selector unit fails or the low pressure sensing on the firewater ringmain 

fails. This causal relationship is portrayed in figure 9.2. Failure of the low pressure 

sensing depends on the number of pressure transmitters fitted (N) and the number of 

pressure transmitters required to trip the system (K). House events are used to model 

each possible design alternative in a similar manner to that described in section 5.2.1. 

Failure of the Firewater Pumps and Lines 

The FDS fails to supply sufficient water to the ringmain iffailure of the firewater 

pump mechanisms or lines means that the pumps cannot supply 100% required 

pressure. Events resulting in this scenario depend on the values assigned to the 

294 



Failure to 
Initiate Pump 
Mechanisms, 
Firewater and 

AFFF 

Auto Start Manual 
Fails Start Fails 

uperator -Failure of Failure of 
Failure of Error to Push Low 

FSU Push Button on Pressure 
Button F Sensing 

a2 

,r;,SU) (O~ \ I PBF , 

100% 
Pumps 

Fitted and 
Fall 

Gb1 

Firewater 
Deluge System 
Fails to Protect 

Firewater 
Pumps or Unes 
Fall to Supply 

Sufficient Water 
to Ringmain 

50% 
Pumps 

Fitted and 
Fail 

Gb2 

331/3% 
Pumps 

Fitted and 
Fail 

Gb3 

Figure 9.2. Firewater 
Deluge System Fails to 

Activate on Demand 

295 

AFFF System 
Fails to Supply 

Failure of AFFF 

Sufficient Foam and Water 

to Ringmain Deluge Skid 

AFFF Failure of Failure of Failure of 

Pump AFFFTank AFFF Water 

Mechanism QJlet Ildatcn Deluge Deluge 

""" Skid Skid 

Gc1 Gd1 Gd2 

AFFFTank AFFFTank 
Isolation Isolation 

VaNe Valve 
Blocked Isolated 

, ATIV 
B 



variables Fp, F, FE and FT. As illustrated in figure 9.2, 'Failure of Firewater Pumps 

or Lines' will occur if either the firewater pumps are of 100% capacity and fail, if 

firewater pumps are of 50% capacity and fail or iffirewater pumps are of33 113% 

capacity and fail. 

1 to 8 100% capacity firewater pumps can be fitted. As such 8 sub-events are 

developed from gate 'Gb I " where the left most branch considers that' I 100% pump 

only is fitted and fails', the next that '2 100% pumps are fitted and fail', and so on. 

These branches are further developed. Consider the event '2 100% pumps are fitted 

and fail'. Of the 2 pumps fitted, each possible combination of electric and diesel 

pumps must be modelled and further developed to specifY the events that will trigger 

failure resulting from the specific combination. This causal relationship is portrayed 

in figure 9.3. H2P is a house event that is set to true if F= 2. HE2, HEI, HEO are 

true if FE = 2, FE = 1 or FE = 0 respectively. 

Electnc 
Pump No. 

1 Fails 

2 Electric 
Pumps Fitted 

Gb126 Gb127 

rue if2 
Elec1ric 

2100% 
Pumps Fitted 

and Fail 

1 Oiesel Pump 
Fitted 

1 Electric 
Pump and 1 
Diesel Pump 

Fails 
Gb1212 

2 Diesel 
Pumps Fitted 

Figure 9.3 2 100% Pumps Fitted and Fail 

296 

True if 2 
Pumps 
Fitted 



Pump failure occurs if the pump itself fails or if components on the pump line fail. 

Events that will trigger 'Electric Pump no. I Fails' are depicted in figure 9.4. (The 

abbreviations in figure 9.4 are described in table 1. The appended 'El' specifies each 

component to occurrence in electric pump line number I alone). 

Failure of 
Electric Pump 

No. 1 Itself 

Electric Pump 
No. 1 Fails 

Failure of 
Electric Pump 

Line No. 1 

Figure 9.4 Electric Pump No. 1 Fails 

The event '50% Pumps are Fitted and Fail', gate 'Gb2', is developed in a similar 

manner to that described above. It differs in that at least 2 pumps must be fitted to 

ensure 100% pressure is attained. As such, the sub-event '1 50% pump is fitted and 

fails' is infeasible. Developing the 50% branch is a little more complex as regards the 

combinations of pumps resulting in overall pump failure. Consider, for example, the 

next two levels in the tree structure below the event '3 50% Pumps Fail' illustrated in 

figure 9.5. 

297 



3 Electric 
Pumps Fitted 

2 from 3 
Electric 

Pumps Fail 

350% Pumps 
Fitted and Fail 

2 Electric and 1 Electric and 
1 Oiesel Pump 2 Diesel 

Fitted Pumps Fitted 

2J2 Electric 1 Electric and 
Fail or 112 112 Diesel 

Electric and 1 Fail or 2J2 
Diesel Fail Diesel Fail 

Figure 9.5 350% Pumps Fail 

3 Diesel 
Pumps Fitted 

Diesel Pumps 
Fail 

The combinations become still more complex when developing '33 1/3% Pumps are 

Fitted and Fail'. However, construction follows a similar pattern. As regards the 

33 1/3% branch at least 3 pumps must be fitted to ensure 100% pressure is attainable 

and as such only 6 sub-events constitute the level immediately below gate 'Gb3'. 

Failure of the AFFF Pumps and Lines 

The AFFF pump system fails to supply sufficient foam to the ringmain as a result of 

failure to the AFFF pump mechanisms or lines or isolation of the AFFF tank, as 

shown in figure 9.1. The tree structure below gate 'Gc l' is similar to that of the 

firewater pump system. Pumps of33 1/3% capacity are, however, not considered. 

Failure of the AFFF or Water Deluge Skid 

'Failure of the AFFF or Water Deluge Skid' occurs if either 'Failure of the Water 

Deluge Skid' or 'Failure of the AFFF Deluge Skid' occur. Considering the former 

298 



event. 'Failure of the Water Deluge Skid' occurs if either of the waterspray isolation 

valves fail, the strainer or nozzle becomes blocked or the deluge valve firils to open. 

Developing further 'The Water Deluge Valve Fails to Open' requires consideration of 

events that restrict activation of the deluge valve or failure of the deluge valve itself 

These two scenarios are related using OR logic. 'Failure to Activate the Water 

Deluge Valve' occurs if the signal to the solenoids fails, both fitted solenoid valves 

remain energised or the valmatic release valve fails. 'Failure of the AFFF Deluge 

Skid' is developed in a similar manner. It differs primarily in that the blocked nozzle 

is replaced by blockage of the inductor nozzle and the strainer by a blocked AFFF 

check valve in the sequence of events described above. 

The causal relationship describing each aspect of the FDS unavailability fault tree is 

depicted in full in Appendix V. 

9.3.1.2 Converting the System Unavailability Fault Tree to a BDD 

Construction of the fault tree in FAULTTREE+ exceeds the limit for both the number 

of gates and the number of basic events. In addition, BADD is unable to convert 

some larger structures to their BDD equivalent. For this reason, the fault tree is split 

into 17 separate parts. This is possible due to the fact that each part has independent 

events. The 'ats' file created from each separate part is read into BADD and the non

minimal ite table describing the corresponding BDD structure produced. Table 9.12 

describes the fault tree structure of each separate part with reference to figure 1 and 

states the size of the resulting BDD. (The abbreviation FPF & F denotes Firewater 

Pumps Fitted and Fail). 

299 



Name of Top Top Event No. of No.of BDD No. of ite 

Oats' File Event Description I!:ates Events Number Statements 

INIT Ga Failure to activate 29 61 I 723 

pump mechanisms 

AFFF Gc Failure of AFFF pump 62 83 2 6046 

mechanisms and lines 

DEL Gd Failure of AFFF and 36 33 3 157 

water delude skids 

BIOO Gbl 100% FPF & F 88 89 4 30574 

B502 Gb22 2 50%FPF &F 55 32 5 467 

B503 Gb23 3, 50%FPF &F 72 46 6 2493 

B504 Gb24 4, 50%FPF &F 89 60 7 8159 

B505 Gb25 5, 50%FPF & F 88 64 8 9068 

B506 Gb26 6, 50%FPF & F 87 62 9 6836 

B507 Gb27 7 50%FPF &F 86 54 10 4357 

B508 Gb28 8,50% FPF & F 85 45 II 2420 

B303 Gb33 3,33 113% FPF & F 72 42 12 849 

B304 Gb34 4,33 1/3% FPF & F 89 59 13 5582 

B305 Gb35 5, 33 113% FPF & F 88 66 14 8694 

B306 Gb36 6, 33 113% FPF & F 87 67 15 8513 

B307 Gb37 7 33 113% FPF & F 86 58 16 6102 

B308 Gb38 8,33 113% FPF & F 85 46 17 3366 

Table 9.12 A Description of Each Separate Tree Structure and Associated BDD 

BDD's 4 to 17 are all sub-events comprising the level directly below 'Failure of the 

Firewater Pump Mechanisms or Lines' (see figure 9.1). To model a particular design 

only one of these branches will be relevant. For example, for a design with F = 5 and 

a firewater pump capacity of 50% the tree structure termed B505 is used to determine 

the probability that system failure occurs as a result of firewater pump failure. 

Consequently, probability values are derived for each event that can directly cause the 

top event. As such, each of these events can be dealt with in an identical manner to 

basic events and evaluation of the probability of top event occurrence becomes a very 

300 



simple process. This is illustrated in figure 9.6, where the event 'Firewater Pumps 

and Lines Fail to Supply Sufficient Water to the Ringmain' accounts for the tree 

structures associated with BOO's 4 through to 17. 

Failure to 
Initiate Pump 
Mechanisms 

ql 

Firewater 
Deluge System 
Fails to Protect 

Firewater Pumps Afff Pumps or 
or lines Fail to lines Fail to 

Supply Supply Sufficient 
Suffiecient Water Foam to 

to Ringmaln Ringmain 

q2 q3 

Failure of AFFF 
and Water 

Deluge Skid 

q4 

Figure 9.6 Top Event Quantification 

As each 'basic event' featured in figure 6 is independent and mutually exclusive 

4 

Qsrs = 1-n (1- q, ) (9.1) 
;=1 

where Qsrs is the probability that the FDS fails to work on demand. 

9.3.1.3 Computational Method for BDD Quantification 

A computational approach to calculate the system unavailability of the IDPS is 

described in section 5.2.1. The basic framework is applicable for quantification of 

the FOS. However, certain modifications and extensions are required. 

The first step in the computational procedure involves input of each BOO file to 

represent the total system structure (see table 9.12). This is implemented in 

subroutine Getunbdds. A database storing the ite table of each BOO is created, where 

301 



unnodeinfoI refers to the database storing the structure ofBDD number 1, 

unnodeinfo2 to the structure ofBDD number 2, and so on. 

The next step compiles further databases to describe the events comprising each 

BDD. The records are stored in order of the index associated with the respective 

BDD. UneventinfoI refers to the database of events associated with BDD number 1, 

unevelllinfo2 is associated with BDD number 2, and so on. The structure of each 

record is as shown in figure 5.15 with 3 additional fields: 'Modified Maintenance 

Test Interval', 'Wear-out or Non Wear-out (basic event)' and 'Preventative 

Maintenance Test Interval'. In addition, the field 'Subsystem 1 or 2' is omitted. 

Fixundata enters all fixed data associated with each event in each database, therby 

partially filling each uneventinfo. The event name and event type (i.e. basic, human 

error or house) are input in each record. Each basic event is specified as being of 

wear-out or non wear-out type and its associated failure and repair data entered. In 

addition, as regards events resulting from human error the probability of occurrence is 

specified directly. 

Having entered all fixed information the unavailability of each separate part of the 

system, i.e. ql, q2, q3, and q4 (see figure 9.6), is evaluated for the specific design. This 

is achieved in subroutines FindqI, Findq2, Findq3 and Findq4 respectively. System 

unavailability is subsequently evaluated using equation (9.1). Within each of the 

Find routines Unavailworkout (described in section 5.2.104.3) is used to analyse each 

BDD. Modifications are however necessary in that it must first be decided which 

BDD is undergoing quantification. In addition, the means to achieve the probability 

of each node within the respective BDD is a little more involved. The following 

sections describe the modifications in more detail and an outline of the whole process 

is portrayed in figure 9.7. 

302 



Start 

Fixun 
(Partially fill 

Uneventnode1, 
Uneventnode2 .. 

End 

Steps in each Find 

Setunhouse 

Call Unavailwornout 

Figure 9.7 The Computational Method to Evaluate FDS Unavailability 

9.3.1.3.1 Transferring the BDD 

On execution of each of the Find routines the first step involves transferring the 

relevant BDD to the structures used within Unavailworkout, i.e. the general structures 

unnodein/o and uneventin/o. As regards Findql, Findq3 and Findq4 this is a 

straightforward process. A single BDD for each part of the system associated with 

these routines, models each possible design variation. More specifically, BDD 

number 1 models all the possible design alternatives achieved through variation of the 

303 



values assigned to N, K and P. As such, Findql transfers the description ofBDD 

number 1 stored in IInnodeinfol and its associated event database, IIneventinfol, to 

the general structures unnodeinfo and uneventinfo respectively, in preparation of 

BDD quantification. 

Findq2 is a little more complex in that 14 BDD's are required to model each possible 

design alternative arising from manipulation of the firewater pump variables. To 

model a specific design, however, only one of the 14 BDD's is necessary. 

Consequently, an if then else structure is used to determine which BDD description 

file, and hence associated event database, is required. For example, if the design 

under consideration has firewater pumps of 100% capacity the structure of BDD 

number 4 is retrieved. Conversely, if the particular design has 3 firewater pumps of 

50% capacity it is required that BDD number 6 is retrieved. 

9.3.1.3.2 Derivation of Component Unavailabilites 

The next step in each Find routine is to define the unavailability of each node in the 

relevant BDD specific to the considered design. 

House events are dealt with in an identical manner to that previously described in 

Setunhouse in 5.2.1.4.2. 

Each component in the system undergoes scheduled maintenance. As such, the 

average unavailability of each basic event (omitting those due to human error) is 

dependent on the interval between system testing. Components comprising the 

firewater and AFFF pump lines are tested every ~ days, components comprising the 

distribution network every ~ weeks and components on the deluge skids every ~ 

months. Maintenance tests carried out on separate parts of the system are not, 

however, independent. The pumps and lines are inadvertently tested whenever 

ringmain tests are carried out. Normal operation of the water and AFFF ringmains 

necessari1y requires an adequate supply of water or foam from the pump lines. 

Similarly, both the pump lines and ringmains are indirectly tested whenever there is a 

deluge skid test. Normal operation of the deluge skid necessari1y requires that 

304 



sufficient water is pumped through the system. As such, ~ and ~ are generally 

pessimistic. ~ must be modified to incorporate the influence of ~ and On prior to use 

within Findq2 and Findq3. ~ must, in turn, be modified due to the influence of On 
prior to use within FindqJ. On is not, however, affected and can be used directly 

within Findq4. 

Modification of Op and OR 

Modified values for ~and ~, denoted as B~ and 0';/ respectively, are derived in a 

routine called Mtiforcalc. For ease of computation a year is considered to be 48 

weeks, i.e. 336 days. 

The step-by-step algorithm to modify ~ is: 

1) Convert ~ and On to days. 

2) Establish the number of deluge tests carried out in a year, denote as N9D. 

3) Set up an array to store each day in the year on which the deluge skid is tested, 

denote as A9D. 

4) Divide each member of A9D by~. Eliminate each member that divides exactly. 

Let the number eliminated be stored in divrd. Divrd specifies the number of days 

when a ringmain and deluge test coincide. 

5) Establish the number of ringmain tests carried out in a year, denote as N9R. 

6) Sum N9D and N9R and subtract divrd. 

7) To derive 0';/ divide 336 by the number resulting from step 6. Divide this result 

by 7 to convert 0';/ back to weeks. 

Further steps to derive O~ are: 

1) Set up an array to store each day in the year on which the ringmain is tested, 

denote as A9R. 

2) Append the values in A9D (the reduced version) to A9R. 

3) Establish the number of pump tests carried out in a year, denote as N9p. 

305 



4) Divide each member of A9R by ~ and determine the number of these that divide 

exactly, denote as divpr. 

5) Sum N9D, N9R and N9p then subtract divrd + divpr. 

This algorithm is illustrated by means of an example in figure 9.8. 

Let lb = 3 months, fk = 8 weeks and ~ = 16 days 

Evaluate (J': : 
1) 

2) 

3) 

4) 

lb = 84 days, fk = 56 days 

Nlb = 336 +84 = 4 occurrences 

Alb = {84, 168,252, 336} 

Both 168 and 336 are directly divisible by 56 
/ 

so these values are eliminated from A Bv. Divrd = 2. 

5) Nfk = 336 +56 = 6 occurrences 

6) DoNBv + Nfk-divrd= 4 + 6-2 =8 

7) (J': = 336 + 8 = 42 days, i.e. 6 weeks 

Evaluate (J,;! : 
1) Afk = {56, 112, 168,224,280, 336} 

2) A fk appended = {56, 84, 112, 168, 224, 252, 280, 336} 

3) N~ = 336 + 16 = 21 occurrences 

4) Days 112, 224 and 336 are divisible by 16. 

5) Hence, divpr = 3 

6) Do Nlb + Nfk + N(}p - (divrd + divpr) = 31- 5 = 26 

7) (J,;! = 336 + 26 = 12.92 days 

Figure 9.8 An Example to Demonstrate Derivation of e: and (J,;! 

It should be noted that (J': and (J,;! are used only for evaluation purposes. The actual 

maintenance test intervals assigned to the design remain unchanged. 

306 

-• 



Wear-out Components 

For a component with a non-constant failure rate the wear-out phase of the bath-tub 

curve applies and as such, the time to failure distribution is the Weibull distribution 

(2.37). 

Consider a wear -out component that is tested at intervals of e and undergoes 

preventative maintenance at ()PM, as shown in figure 9.9. Only after preventative 

maintenance is the component considered as good as new. 

.···1 .. 

2~ (n-1)G' ~PM time 

Figure 9.9 Failure with Periodic Inspection and Preventative Maintenance 

Average component unavailability is, thus 

(9.3) 

where 

308 



_ fO [ (~J[(I+(~t)ot_((n-t)otJl 
qAV(n-t) - I-e dt 

o 

The failure rate is time dependent and as such, t + i e, where i = 0 to n, is incorporated 

within equation (9.3) for sections qAV1, qAV2 and qAV. respectively. 

A numerical approximation method, specifically Simpson's Rule, is used to evaluate 

each term in equation (9.3). To reduce the effects ofiII-conditioning the exponential 

terms are first expanded in terms of their power series. This gives 

where 

I 
a=- (9.4) 

'I] 

The equations can be simplified if the WeibuII parameters, f3 and 1], are known. 

309 



The only components of wear-out type in the FDS are the firewater and AFFF pumps. 

As such, the value ofa in equation (9.3) is (},:. The Weibull parameters, p and 1], for 

each pump are specified in tables 9.8 and 9.11. 

The step-by-step algorithm to evaluate qAvfor a component of wear-out type is: 

1) Convert both ()': and () PM to hours 

2) Establish the number of tests carried out prior to (}PM' denote as n. 

3) Establish the size of the end section, i.e. (}ES = (}PM -n(). 

4) Set p = 2 if Fp is 100%, else p = 3/2. 

5) Evaluate a using equation (9.4). 

6) Use Simpson's Rule with 6 strips to evaluate the area of each section, where 

i = 0 to n (corresponding to each section): 

i) Evaluate: 

= Of'( It '(}MV _"(}MV)_ aZ(V+i(}':Y +~(},:Yr Jd 
QAV(i+l) a\V' +I P J \' P J I +... t 

o 2. 

where (}'=()': for i=Oton-l and (}'=(}ES for i=n 

(9.5) 

ii) It must be ensured that evaluation of each section is sufficiently accurate. As 

such, Simpson's Rule is first implemented using 1 term in equation (9.5), then 

a second time using two terms. Ifthe difference between the two results is 

less than I x 10-8 the latter value is accepted. Else the integral is evaluated 

again using an additional term. This process continues until the difference 

from one Simpson's evaluation to the next is less than the specified error 

criteria. 

7) Evaluate qAvUSing: 

(9.6) 

310 



A demonstration of the step-by step algorithm to evaluate the unavailability of a 

wear-out component is illustrated in figure 9.10. (The value of () PM used in the 

example is neither practical nor feasible for the FDS. A small value is chosen in 

order to simplifY the demonstration of the algorithm.) 

Having implemented Setunhouse and Qeval probabilities have been established for 

each node in the relevant BDD. As such, execution of Unavailworkout proceeds to 

calculate the probability of occurrence of the respective system part. 

311 



Fp is 100% A=lx1ff6 B,/ =4 days BpM =10tiays 

1) B,/ = 96 hours, Bm = 240 hours 

2) 2 tests prior to BpM , • ·.n = 2 

3) BHS = 240-(2x96)= 48 hours 

4) P=2 

5) a=( I )2 = 6.25 X 10-12 

400000 

6) Consider each section: 

• Section 1, i = 0 

i) Evaluate: ii) • Using 1 term q~VI = 2.765xI0-0 

• Using 2 terms q~vl = 2.764 x 10'" 

96( 2 a
2
t' a

3
t

O 
} • Test for accuracy, 

qAvt = f at --,-+-,-- ... t 
o 2. 3. q~VI -q~vt =lxI0-9 <lxIO-' 

• Therefore, qAvt = 2.764 x 10-0 

• Section 2, i = I 

i) Evaluate: ii) • Using J term q~V2 = 1.1 0592 x I 0-' 

• Using 2 terms q~V2 = 1.105916 x 10-' 

• Test for accuracy, 

qm = QaV2+0:'1) a
2

fr2 + 0:' t L } 1 2 4 10-11 I 10-' qAV2 -qAVl = X < X 
+ .. I 

Therefore, qAV2 =1.l05916xI0-' 2! • 

• Section 3, i = 2 

i) Evaluate: ii) • Using J term q~VJ = 2.73792xlO-' 

• Using 2 terms q~V3 = 2.7379IxI0-' 

• Test for accuracy, 

48( a2~2 + 20:' I L } 1 2 I 10-10 I 10-' 
qm = [ a{t2 +2B,/I) 

QAV3-qAV3= x < X 
+ .. I 

Therefore, QAV3 =2.73791 x 10-' 2! • 

7) 
2.764 x 10'" + 1.105916 x 10-' + 2.73791 x 10-' 

1.717 x 10-7 
QAV = 

240 

Figure 9.10 Evaluation of qAv For a Component of Wear-out Type 

312 



9.4 Evaluate the Frequency of Spurious Trip Occurrences of the FDS 

9.4.1 Constructing the Spurious Trip Fault Tree 

As a result of the constraint limiting the number of spurious system occurrences 

permitted, spurious activation of the FDS must be established. The specific fault tree 

to quantify causes of this failure mode must first be developed. 

The top event occurs if either of the solenoid valves fail spuriously, the valmatic 

release valve opens spuriously or the signal from the MFGP to the solenoid valves is 

interrupted. The latter event occurs as a result of spurious activation of the ringrnain 

pressure sensors. The causal relationship of events directly causing the top event is 

depicted in figure 9.11. 

Signal from 
MFGPto 

Solenoid Valves 
Spuriously 
Interrupted 

G1 

Solenoid 

Firewater 
Deluge System 
Fails Spuriously 

Solenoid 
Valves fail 
Spuriously 

Solenoid 
Valve 1 Fails Valve 2 Fails 
Spuriously Spuriously 

SV1 

Valmatic 
Release Valve 

Opens 
Spuriously 

Old Type New Type 
VRV Fitted VRV Fitted 
and Fails and Fails 

G5 G6 

Figure 9.11 Spurious Trip Fault Tree 

313 



Gate 'G 1', i.e. 'Signal from MFGP to the Solenoid Valves is Spuriously interrupted', 

is modelled in a similar manner to that described in section 5.2.3 .1. The causal 

relationship describing each aspect of the FDS spurious trip fault tree is depicted in 

full in Appendix VI. 

9.4.2 Conversion of the Spurious Trip Fault Tree to a BDD 

In total the spurious trip fault tree of the FDS consists of 65 primary events and 28 

gates. Conversion of the associated 'ats' fault tree structure file to its equivalent 

BDD proceeds in an identical manner to that of the spurious fault tree used to 

quantifY the HIPS system. A non-minimal ite table consisting of? statements results. 

9.4.3 Evaluating the Top Eveut Unconditional Failure Intensity ofthe BDD 

All components featured in the spurious trip fault tree for the FDS have constant 

failure rates. In addition, spurious failures are instantaneously revealed and hence, 

the probability of failure of each basic event is independent of its associated 

maintenance test interval. As a result the computational approach to evaluate the top 

event unconditional failure intensity of the BDD for the FDS is identical to that of the 

HIPS (described in section 5.2.3.4). 

9.5 Life Cycle Costs 

Due to constraints imposed on the FDS, consideration must be given to the available 

resources regarding cost. 

To build the FDS an initial cost is incurred. Once built further running costs must 

also be taken into account. Running costs include only maintenance activity, i.e. the 

cost of system testing at regular intervals, the cost of corrective maintenance to repair 

any problems highlighted by system testing and the cost of preventative maintenance 

carried out at regular intervals on components that exhibit wear-out. The following 

314 



section describes the means to evaluate each of these aspects. In this study running 

costs are evaluated over a period of 1 year, i.e. 8760 hours. (Data regarding the costs 

associated with each component are specified in tables 9.3,9.7,9.8,9.9 and 9.11). 

5.1 Initial Cost 

Each component has an initial purchase cost. A storage cost is also associated with 

each component, which depends on the number of spare items stored and the cost to 

store each item. 

Initial cost (including storage cost) of the FDS (SIC) is given by 

SIC = ICFPL + ICAPL + ICR + ICDS (9.7) 

Where ICFPL, ICAPL, ICR and ICDS denote initial cost of the firewater pumps and 

lines, initial cost of the AFFF pumps and lines, initial cost of the ringmain and initial 

cost of the deluge skid respectively. 

Considering the ICFPL further 

ICFPL = [FE x ICelec J+ [(F - FE )ICdies J+ ICelecsup + ICdiessup 

where (F - FE) denotes the number of diesel driven pump lines, ICelec and ICdies 

represent the initial cost of each electric pump and diesel pump line respectively, 

ICelecsup and ICdiessup represent the initial cost of the electric supply and the initial 

cost of the diesel supply respectively. 

Each pump line consists of certain fixed components, i.e. a filter (F), check valve 

(CV), isolation valve (IV), spill-back valve (SPV) and a pressure relief valve (PRV). 

The initial plus storage cost of the CV (CV's) is 

CVIS =C, +(Cs xNs ) 

= 500+(Zx300)= 600 

315 



(Notation is described in table 9.1). The initial plus storage cost for each component 

is evaluated in a similar manner. Thus, the initial cost of each electric pump line 

(ICelec) is 

ICelec = 5400+ FErs 

where 5400 is the sum of the initial plus storage cost of each fixed component on an 

electric pump line and FErs is the initial plus storage cost of the particular electric 

pump chosen (i.e. 100%, 50% or 33 1/3%, type I or 2). ICdies is developed in a 

similar manner. 

ICelecsup comprises the electricity supply (ES) alone. In contrast, ICdiessup 

comprises both the diesel tank isolation valve (DIY) and the low level alarm (LA). 

The initial cost of the firewater pumps and lines can, therefore, be expressed as 

where 2600 is the sum ofICelecsup and ICdiessup. 

ICAPL is given by 

ICAPL = [AE x ICelec]+ [{A - AE}X ICdies] 

+ ICelecsup + ICdiessup + ICaflfsup 

(9.8) 

where {A - AE } denotes the number of diesel driven pumps in the AFFF system and 

Icaflfsup represents the initial cost of the AFFF tank isolation valve. Applying the 

same principles as for the firewater pumps and lines, ICAPL can be expressed as 

ICAPL = [AE X {6400+ AErs}]+ [{A - AE }X{6400+ ADrs )]+3600 (9.9) 

where 6400 is the sum of the initial plus storage cost of each fixed component on an 

electric or diesel pump line (this differs from the firewater pump lines due to an 

additional isolation valve), AErs and ADrs are the initial plus storage cost of the 

316 



particular electric or diesel pump chosen and 3600 is the sum oflCelecsup, IC 

diessup and ICafifsup. 

The fire pump selector unit (FSU) is the only fixed component in the ringmain. The 

ICR is thus 

ICR = 2200 + PIS 

where 2200 is the initial plus storage cost of the FSU and PIS is the initial plus 

storage cost of the particular pressure sensor chosen. 

(9.10) 

Fixed components on the deluge skid are the manual release mechanism (MRM), 

solenoid valve 1 (SV1), solenoid valve 2 (SV2), strainer (S), water deluge isolation 

valve (WJV), AFFF check valve (ACV) and AFFF deluge isolation valve (AIV). 

Variable components in the deluge system are a valmatic release valve (VR V), a 

nozzle (N) and an inductor nozzle (IN). These are made of corrosion resistant or non

corrosion resistant material. In addition, the skid comprises a water deluge valve 

(WV) and an AFFF deluge valve (AV). Both valves are of type 1,2 or 3. Thus, the 

ICOS is given by 

ICOS=7350+VRVIS +NIS +INIS +WVIS +AVIS (9.11) 

where 7350 is the sum of the initial plus storage cost of the fixed components. The 

latter terms correspond to the initial plus storage cost of the particular type of variable 

components chosen. 

Initial cost of the system (SIC) can, therefore, be expressed as 

SIC = [FE (5400+ FEIS)+(Fp -FE X5400+ FD IS )+ 2600] 

+ [AE (6400 + AE,s)+(Ap -AEX6400+AD IS )+3600) (9.12) 

+[2200+ P,s]+[7350+ VRVIS + NIS + IN,s + WVIS +AV,s] 

317 



9.5.2 Corrective Maintenance Cost 

Cost of corrective maintenance for each component depends on the expected number 

offailures and the cost to repair each failure. Specifically, corrective maintenance of 

component; (CM;) is given by 

(9.13) 

where W; D and w,s denote the expected number of dormant and spurious failures for 

component i respectively over the allocated time period (i.e. 8760 hours). Further 

notation is described in table 9.1. As an example, consider the check valve. Using 

equation (9.13) the corrective maintenance cost of the check valve (CVCM) is 

CVCM =Wg[(18x30)+300] 

= wg x840 

=wg xCVCMrep 

where CV CMrep is the cost incurred each time the check valve is repaired (i.e. 840 

units). Note that the CV does not fail spuriously. 

For component i of non wear-out type the unconditional failure intensity (w;) is given 

by 

W; =A;(I-q;) 

The expected number of failures is then determined using equation (2.21), where 

t = 8760 hours. 

(9.14) 

For component i of wear-out type the failure rate is time dependent and as such, is 

defined by the WeibuIl distribution, equation (2.37). The expected number offailures 

per year is, therefore, 

318 



W,(0,8760}= (8760)l (P, X~)P'-1 (I-q,) 
(JPM 0 17, 17, 

(9.15) 

where (J PM is converted to hours. 

Cost incurred by the FDS due to corrective maintenance (SCMC) is given by 

SCMC = CMCFPL + CMCAPL + CMCR + CMCDS (9.16) 

where CMCFPL, CMCAPL, CMCR and CMCDS denote the corrective maintenance 

costs of the firewater pumps and lines, the corrective maintenance costs of the AFFF 

pumps and lines, the corrective maintenance costs of the ringmain and the corrective 

maintenance costs of the deluge skid respectively. 

In each of equations (9.17), (9.18), (9.19) and (9.20) to follow, which describe the 

terms in equation (9.16), variable components are represented in bold, in order to 

distinguish them from the fixed components. Consider, for example, equation (9.17). 

W.::. is in bold as it denotes the expected number of dormant failures of the particular 

electric pump chosen (i.e. 100%,50%,33 1/3% of type 1 or 2). AECMrep represents 
the cost per repair associated with that electric pump. In contrast, W,g. denotes the 

expected number of dormant failures for the check valve, where there is only one 

such component type that achieves this purpose. As a result the cost per repair of the 

CV (840 units) can be specified directly. 

CMCFPL is formulated in a similar manner to that of the ICFPL. Hence, 

CMCFPL = [FE x CMCelec J+ [(F - FE}x CMCdies J 
+ CMCelecsup + CMCdiessup 

where CMCelec and CMCdies represent the corrective maintenance costs of each 

electric and diesel pump line respectively, CMCelecsup and CMCdiessup represent 

the corrective maintenance cost of the electric and diesel supply respectively. Using 

equation (9.13) to define the corrective maintenance cost associated with each 

component, CMCFPL can be expressed as 

319 



where 

CMCFPL = [FE X (Fix + (W::' X FE CM rep ))J 
+[(F - FE)X (Fix +(W;:' xFDCMrep))] 

+[w: x 290]+ [(w~y X400)+(W~ x 280)] 

CMCAPL is established using the same principles as those above to give 

CMCAPL = [AE X (Fix + (W ~ x AECMrep ))] 

(9.17) 

+ [(A - AE)X (Fix +(W!'n xADCMrep))] (9.18) 

+ [w: x 290]+ [(w~y x 400 )+(W~ x 280)]+ [w.zv x 740] 

where 

CMCR is given by 

The pressure transmitters fail in two modes, dormant failure and spurious failure, 

where W D and W S are the expected number of dormant and spurious failures 

respectively. 

(9.19) 

In a similar vein, CMCDS involves summation of the corrective maintenance cost of 

each associated component. This gives 

320 



CMCDS = ((W,::" + W,;,)x 560)+ ((W'::'2 + W';2)X 485) 

+(W~ X 660)+(Ws" X410)+2(W1e X 740)+(Wg X 840) 
(9.20) 

+ ((W~v + W~v )x VRV CM rep )+ (W~ x NCMrep)+ (W~ x IN CM rep ) 

+(W~ xWVCMrep)+(W!,v x AVCMrep) 

Note that the solenoid valves and the vaImatic release valve can fail spuriously. 

9.5.3 Preventative Maintenance Costs 

A component with a constant failure rate does not experience wear-out throughout its 

lifetime. At any time it is equally as likely to fail as when it was new and as such, 

preventative maintenance is futile. The preventative maintenance cost incurred by a 

non wear-out component is, therefore, zero. 

Establishing the cost incurred by the FDS due to preventative maintenance (SPMC) 

involves summation of the preventative maintenance cost incurred by each fitted 

pumps (i.e. each component of wear-out type). 

The preventative maintenance cost per year of each wear-out component depends on 

the number of times preventative maintenance is carried out in the year and the cost 

per time. Preventative maintenance cost incurred by component i (PMCi) is, thus 

(9.21) 

Notation is described in table 9.1 (OPM is converted to hours). Consider, for example, 

the preventative maintenance cost of the firewater pump of 100% capacity (E 1 OOPMC). 

Using equation (9.21) gives 

321 



EIOOPMC = (8760)[(72X30}+300] 
BpM 

= (8760)X2460 
BpM 

(
8760) = -- xEIOOPMrep 
BPM 

where E 100PMrep is the cost each time preventative maintenance is carried out on the 

pump (i.e. 2460 units). 

As a result, SPMC is given by 

SPMC = [FE x PMCFelec]+ [(Fp - FE}x PMCFdies] 

+[AE xPMCAelecj+[(Ap -AE }xPMCAdiesj 

where PMCFelec and PMCFdies denote the preventative maintenance costs of each 

firewater electric and diesel pump line respectively, PMCAelec and PMCAdies 

denote the preventative maintenance costs of each AFFF electric and diesel pump line 

respectively. Using equation (9.21), SPMC can be expressed as 

(9.22) 

where FEpMrep and FDpMrep represent the cost per preventative maintenance of the 

particular firewater electric and diesel pump type chosen respectively, AEpMrep and 

ADpwep represent the cost per preventative maintenance of the particular AFFF 

electric and diesel pump type chosen respectively. 

9 .5.4 Testing Cost 

System tests are carried out on each pump line, the distribution network and deluge 

skid as dictated by Bp , BR and BD respectively. 

322 



A pump line test examines the pump and all other components on that line 

simultaneously. Similarly, a single ringmain and deluge skid test examines all 

associated components. The cost of testing must only be considered once per group 

of components. (It is assumed that components tested simultaneously require the 

same specialized labour (i.e. CHT, see table I) and have the same test time (i.e. HT, see 

table 9. I). If this condition does not hold modifications are required). As such, the 

cost incurred due to system testing per year (STC) is given by 

STC = TCFPL + TCAPL + TCR + TCDS (9.23) 

where TCFPL, TCAPL, TCR, TCDS represent the cost of testing the firewater pumps 

and lines, the cost of testing the AFFF pumps and lines, the cost of testing the 

ringmain and the cost of testing the deluge skid respectively. 

TCFPL depends on the number of test carried out per year, the cost of testing each 

pump line plus the additional cost of testing the electric supply. The latter requires 

skilled electricians and as such, is considered separately. It is assumed that the diesel 

supply is tested indirectly via the diesel pumps. Each component on the pump lines 

has a test time of2 hours (HT = 2), with a cost of30 units per hour (CHT= 30). In 

contrast, the cost per hour to test the electricity supply is 40 units (CHT = 40) Hence, 

TCFPL = Fp x [Cost to test each pump line per year] + [Cost to test ES per year] 

= Fp[ 8;:0 (HT xCIIT )]+[ 8;:0 (HT XC IIT )] 

= Fp[ 8;:0 (2X30)]+[ 8;:0 (2X45)] 

= 8760 [(Fp X 60)+90] 
(Jp 

Using similar principles, TCAPL is given by 

TCAPL = 8;60 [(Ap x 60)+90] 
p 

323 

(9.24) 

(9.25) 



The cost of testing the ringmain per year is 

(9.26) 

As regards the ringmain components HT and CHT are given in table 9.9. 

The cost of testing the deluge skid per year is 

(9.27) 

As regards the deluge skid components HT and CHT are given in table 9.3. 

9.5.5 Evaluate the Life Cycle Cost 

The Life Cycle Cost of the FDS (LCC) is the sum of equation (9.7), (9.16), (9.22) and 

(9.23), ie. 

LCC = SIC + SCMC + SPMC + STC (9.28) 

Cost due to Total Maintenance Effort (TMEC) is the sum of the time dependent terms 

in equation (9.28), i.e. 

TMEC = SCMC + SPMC + STC (9.29) 

324 



9.5.6 Implementing Life Cycle Cost Evaluation within the Computational 

Method 

The life cycle cost fonnulae are implemented in a routine termed Lifecosts, which 

follows both unavailability and spurious BDD quantification roll:tines. 

To evaluate the corrective maintenance cost it is required that the expected number of 

donnant failures (W D), and where necessary spurious failures (W s), is derived for 
each component. Evaluation of Wi , both donnant and spurious, for component i is 

dependent on the component's probability offailure (qi). 

As regards system unavailability, the probability of failure of a component is 

dependent on the test intervals assigned to the particular design. As such, component 

unavailability is not a fixed value but varies from one design to the next and is 

evaluated specifically for the purpose of BDD quantification. Consequently, it is 

necessary to evaluate and store the expected number of failures for each component 

during the BDD quantification process. 

To achieve this a subroutine tenned Wfortl is integrated within routine Findql. 

Wfortl establishes and stores the expected number of failures for each component 

associated with the ringmain network using component unavailability data derived in 

Findql. Similarly, Wfort2 is a subroutine integrated within Findq2. Wfort2 

establishes the expected number of failures for each component associated with the 

firewater pumps and lines. Wfort3 is integrated within Findq3 and Wfort4 within 

Findq4. The fonner derives W D for each component associated with the AFFF 

pumps and lines and the latter, all components associated with the deluge skid. 

In a similar manner, a subroutine tenned Wforspur is incorporated within the spurious 

trip BDD quantification process to derive the expected number of spurious failures 

(W S ) for each component that fails in this mode. 

W D , and where necessary W S , is calculated only for the components comprising the 

deluge system design under consideration. For example, if the pressure transmitters 

in the considered FDS are of type 2, W D and W S are evaluated and stored for 

325 



pressure transmitter type 2, whereas pressures transmitters type I and 3 are 

disregarded. 

In addition, subroutines WJortl, WJort2, WJort3, WJort4 and Wforspur use if then else 

structures to deduce and store values for all the variables within each of the life cycle 

formulae specific to the FDS under consideration. 

Consider, for example, equation (9.7), which evaluates initial system cost. Amongst 

others, it is required that the initial plus storage cost associated with the pressure 

transmitter holds the value corresponding to the pressure transmitter type fitted in the 

design. The pressure transmitters comprise the distribution network and as such, 

Wfort I contains the algorithm illustrated in figure 9.11. 

WJortl 

if P = 'type 1 ' 

PIS = 700 

if P = 'type 2 ' 

PIS = 400 

ifP = 'type 3' 

PIS = 300 

Figure 9.11 An Algorithm within Wfortl 

On execution of the routine Lifecosts all variables within each of the life cycle 

formulae, i.e. equations (9.7), (9.16), (9.22) and (9:23), are set specific to the 

particular design. Evaluation of initial system cost, corrective maintenance cost, 

testing cost and preventative maintenance cost is, therefore, a straightforward process. 

Figure 9.12 illustrates integration of the subroutines required to evaluate life cycle 

cost of the FDS within the BOO quantification process (See figure 9.7 for reference). 

326 



( Start ) 

End 

Figure 9.12 Integration of Life Cycle Cost Evaluation Routines 

9.6 Computer Implementation oftbe GA to Optimise tbe FDS 

The Genetic A1goritm Safety System Optimisation Procedure (GAS SOP) is 

introduced in chapter 6 of this thesis. The framework of GASSOP in application to 

the FDS is predominantly the same as for the mpS. The following is an outline of 

327 
.. 



the modifications that are required in order to allow for the increased complexity of 

the FDS. (Routines not discussed are implemented in an identical manner to that 

described in chapter 6). For discussion purposes GAS SOP applied to the FDS is 

termed GASSOPm. 

9.6.1 Memory 

On execution of GASSOPm, Memory allocates space for a database of records that 

describe each individual in the GA population. This database is tenned opop. Two 

replica structures are allocated simultaneously, npopo and npopn. Individuals chosen 

in the selection stage are transferred to npopo. Crossover and Mutation is 

subsequently carried out on a section of the string of each design stored in this 

structure. The maintenance test interval area of the string remains unaffected. 

Individuals within npopo are then copied to npopn, where genetic operator action 

manipulates the test interval parameters. The fitness information of the designs 

within each storage structure is updated and subsequently used to fonn a new 

population. The new population is transferred back to the original space, opop, prior 

to the next iteration. (genetic operator action is discussed in greater detail in section 

9.6.6). 

9.6.2 Coding and Initialisation 

It was decided to create two solution strings to represent a particular FDS design. 

The second string accommodates all maintenance test interval parameters, i.e. ~, ~, 

tb, ~M, and the first string, all the other parameters remaining. The number of bits 

allocated to and the order in which each parameter is stored is depicted in figure 9.13. 

The first string is 29 bits in length, the second 16. 

328 



String 1: total length = 29 bits 

( (b~r· rGi;r~r ~s r~~S rr~;rl~D~;;;:: 
'-.. ..... --/ '-.. ..... --/ ~ "------""'- ..... -./-

N K P F FE FT 
.;- / / / / / / / / / / / / 

2 ~itS 1 I I 
2 ~itS 2 ~itS I 1 

bit 3 bits 2 ~itS bit / , , , , 
~-'-.. ..... --/~~~-

Fp A AE Ap W D C 

String 2: total length = 16 bits 

(( Gi{ (( (Gi< (( ~i{ (Git(O -_ ........ _-- '-.. ..... -/ '-.. ..... -/ 

Figure 9.13 The FDS Parameter Set Coded as a Binary String 

Representing each design by two solution strings eases implementation of the genetic 

operators (discussed in section 9.6.6). 

Each design is initialised as described in section 6.2.2. An integer in the range 1 to 6 

is generated for parameters Bv and BFM. The resulting value is subsequently 

multiplied by 3, so that each parameter is assigned a value in accordance with its 

feasible range, i.e. 2 to 18 months in 3 monthly intervals. 

9.6.3 Evaluating String Fitness 

A simple explicit objective function to calculate the fitness of each deluge design 

does not exist. String fitness comprises of the system unavailability plus the 

respective penalty should any of the constraints be violated. 

329 



The routine Fitness obtains a fitness value for each design. The data fields that 

constitute the structure fitparts, associated with each individual, are as follows: 

• Spurious trip frequency (F srs ) 

• Probability of system unavailability (Qsrs) 

• Penalised system unavailability (Q~ ) 

Two further structures are stored withinfitparts: lifeparts and pen parts. The data 

fields that comprise each of these structures are: 

lifeparts 

• Life cycle cost per year of the FDS 

(LCC) 

• Cost per year due to system testing 

(STC) 

• Cost per year due to preventative 

maintenance (SPMC) 

• Cost per year due to corrective 

maintenance (SCMC) 

• Cost per year due to total 

maintenance effort (TMEC) 

penparts 

• Penalty due to excess LCC (LCCp) 

• Penalty due to excess STC (STCp) 

• Penalty due to excess SPMC 

(SPMCp) 

• Penalty due to excess TMEC 

(TMECp) 

Fitness contains subroutines to evaluate and store the data infitparts and follows the 

algorithm illustrated in figure 9.14. 

330 



Fitness 

ifgen = 0 

Getunbdds and Getspbdds 

Fixulldata and Fixspdata 

do for all strings j 

Unavail 

Findql => Wfortl 

Findq2 => Wfort2 

Filldq3 => Wfort3 

Findq4 => Wfort4 
4 

Q;TS = 1- IT(I-q,) 

Spurious 

Varspdata 

i=l 

Spuriousworkout => Wforspur 

Firs = FSYS 

Lifecosts 

Penaltys 

Genaverage 

Gellbest 

Figure 9.14 Fitness Evaluation Algorithm for the FDS 

Penalty formulae must be derived to compensate for any constraints that may be 

violated. These formulae are evaluated within the routine Penaltys. 

9.6.4 Derivation of the Penalty Formulae 

The FDS has four constraints regarding cost. For each constraint a penalty formula of 

the type described in sections 6.2.3.1 and 7.3 is applied. This gives 

, 
Lee = (excess LeeJ' x (QSTS) 

p 1250 lOO 
(9.30) 

331 



9 

STC = (excess STC)' x(Qsrs ) 
p 205 100 

(9.31) 

9 

SPMC =(excesssPMC)' x(Qsrs) 
p 135 100 

(9.32) 

9 

TMEC =(excessTMEC)' x (Qsrs) 
p 440 100 

(9.33) 

The first term in each equation expresses the percentage by which the particular cost 

exceeds its constraint. The system unavailability of the considered design is then 

multiplied by the respective percentage excess to establish the appropriate penalty. 

Equations (9.30), (9.31), (9.32) and (9.33) are not independent. Excess life cycle cost 

invariably implies a violation in one or more of the other constraints. Similarly, both 

system testing and preventative maintenance comprise a proportion of total 

maintenance effort. As such, an excess in maintenance effort generally coincides 

with system testing and preventative maintenance cost violations. To compensate for 

this interaction to a certain extent the exponential relationship, i.e. y = x' , is chosen 

to be smaller than that used previously without achieving linearity. An example of 

application of the cost penalty formulae is given in figure 9.15. 

Occurrence of a spurious trip ceases production on the processing platform and 

causes financial loss. As a result the spurious trip constraint violation is expressed in 

terms of excess cost (described in section 6.2.3.1). The life cycle cost constraint 

formula, equation (9.30), can than be used to derive the penalty (Sp) applied to Qsys. 

332 



• Consider string A: Qsrs = 0.0125 
LCC = 12700 STC = 20450 SPMC = 15000 

SCMC = 11000 TMEC = 46450 

• Excess LCC = 2000 

Excess src = NIA 

Excess SPMC = 1500 

Excess TMEC = 2450 

• Apply equation (31), (33) and (34): 

9 

LCC = (2000)' x (1.25 X 10-4 ) 
p 1250 

= 2.12xI0-4 

• 
SPMC p =(1500)' x(1.25xW4

) 

135 

= 1.9xlO-3 

9 

TMEC p = (2450)' x (1.25 x 10-4 
) 

440 

= 8.5 x 10-4 

• Therefore, 

Q~yS = QSYS +LCC p +SPMC p +TMEC p 

=0.0125+2.lxI0-4 +1.9xI0-3 +S.5xlO-4 

= 0.01546 

Figure 9.15 Application of the Cost Penalty Formulae 

Each penalty is subsequently added to the system unavailability to give a sole fitness 

value for each design, i.e. 

333 



(9.34) 

9.6.5 Selection 

The fitness conversion method used in the selection process is akin to that described 

in section 7.4. Due to the complexity of the FDS, however, the range of fitness 

values that represent a design of ultimate interest is larger. As such, an extra category 

is incorporated and the bounds of each category modified. The 10 categories and 

their corresponding weight are portrayed in table 9.13. 

-
Fitness domain - Weight 

Upper Category Lower 

limit limit -

0.4 > 10 > 0.2 12 
-

0.2 > 9 > 0.15 22 
-

0.15 > 8 > 0.1 32 
-

0.1 > 7 ~ 0.08 42 

-
0.08 > 6 > 0.06 52 

-
0.06 > 5 ~ 0.04 62 

0.04 > 4 > 0.03 72 
-

0.03 > 3 > 0.02 82 
-

0.02 > 2 ~ 0.01 92 
-

0.01 > 1 > 0 102 

Table 9.13 Ten Categories plus Weights 

Sampling proceeds in an identical manner to that of the lllPS optimisation with the 

exception that each string selected is stored within the database npopo. 

334 



9.6.6 Genetic Operator Action plus Update Routines 

In view of the comparatively large area of the search space occupied by the 

maintenance test interval (MTI) parameter values, it was decided to isolate the action 

of genetic operators on these variables. To ease computation, the MTI parameters are 

stored on a separate binary string, referred to as string 2. The other parameters are 

stored in binary on string I (see figure 9.13). 

Crossover and mutation is applied in the normal manner (described in section) to 

string I of each design stored in npopo. Updateichrom is then implemented to extract 

the specific integer values of a design's parameter set from its binary code. 

Following extraction, the parameter set of each design must be checked for 

feasibility. The checks made and subsequent corrective action taken is carried out to: 

• Ensure N does not exceed 4 or N is not greater than K. If so, N is reduced to 4 or 

K is set to the value of N respectively. 

• Ensure P is not greater than 2. If so, regenerate P in the range 0 to 2. 

• Ensure F is feasible as regards Fp and the upper limit 8: 

• If Fp is 100%, F should be in the range I to 8. 

• If Fp is 50%, F should be in the range 2 to 8. 

• If Fp is 33 1/3%, F should be in the range 3 to 8 

If the above do not hold regenerate F. 

• Ensure FE is feasible as regards its limits and F: 

• If F s; 4, FE must be in the range 0 to 4. 

• If F = 5, FE must be in the range I to 4. 

• If F = 6, FE must be in the range 2 to 4. 

• If F = 7, FE must be in the range 3to 4. 

• If F = 8, FE must be equal to 4. 

If the above do not hold regenerate FE. 

• Ensure A is feasible as regards Ap and the upper limit 4: 

• If Ap is 100%, A should be in the range I to 4. Else regenerate A. 

• If Ap is 50%, A should be in the range 2 to 4. Else regenerate A. 

• Ensure AE is feasible as regards its limits and A: 

• If A s; 2, AE must be in the range 0 to 2. 

335 



• If A = 3, AE must be in the range 1 to 2. 

• If A = 4, AE must be equal to 2. 

If the above do not hold regenerate AE 

• Ensure W or D are not greater than 2. If so, regenerate the respective parameter in 

the range 0 to 2. 

On completion of Updateichrom the contents of npopo are copied to npopn. 

Inversion (as described in section 7.2.2) is then carried out on string 2 of each design 

in npopn. A routine termed Updatemti is subsequently implemented to extract the 

specific integer values of each design's MTI parameter set from the respective binary 

code. Updatemti uses the same principles as Updateichrom to achieve extraction. 

Feasibility checks to ensure that the MTI parameters lie within the stated ranges are 

not made within Updatemti. It is assumed that the penalty formulae will weed out 

designs whose test interval values are inappropriate. 

The next step requires that the fitness information of the modified designs in both 

npopo and npopn is updated. The probability of system unavailability, the spurious 

trip frequency. Life cycle costs and associated penalised system unavailability are re

evaluated. 

A new population is formed from both npopo and npopn. The particular design in 

record j, where j = 1 to n, of npopo and npopn differs only in the values assigned to 

its test interval parameters. A function is used to compare the penalised system 

unavailability ofthe/' design in npopo with that ofthe/' design in npopn. The 

fittest design is selected to enter the new population and as such, is transferred to the 

original storage structure, opop. 

The algorithm to illustrate genetic operator action and the update routines is given in 

figure 9.16. 

336 



Genetic Operator Action 

for j = J to n - J 

apply Crossover to string J of npopoj 

aor j = lton 

apply Mutation to string J of npopo! 

apply Updateichrom to npopo 

for j = J ton 

npopn j = npopo j 

for j = J ton 

apply Inversion to string 2 of npopni 

apply Updatemti to npopn 

Updatefitness (both npopo and npopn) 

for j = J ton 

If Q'srs of npopd s Q~rs of npopr/ 

opop j = npopo j 

Else 

opopj = npopn j 

Figure 9.16 Genetic Operator Action and Update Routines 

9.6.7 Output From GASSOPm 

Output from GASSOPm is in accordance with that described in section 6.2.9. The 

raw fitness values are, however, more comprehensive. The system unavailability of 

each design plus the respective contributions of ql, q2, q3 and q4 are first described. 

The life cycle cost and its respective parts, i.e. SIC, STC, SPMC, SCMC and TMEC 

are then listed. 

9.6.8 Results 

To test GASSOPm 10 runs with a population of20 strings over 100 generations were 

carried out. The mutation and crossover rate for each run was selected as 0.01 and 

0.7 respectively. Each run required several hours. 

337 



The GA portrays significant convergence in average population fitness similar to that 

of the HIPS optimisation. This is demonstrated in table 9.14, which shows the 

population average fitness value of the first and last generation for each run. 

GARun Initial Population Final Population 

No. Average Fitness Aver~e Fitness 

1 0.177 0.0172 

2 0.298 0.0306 

3 0.332 0.0156 

4 0.2 0.0297 

5 0.164 0.0243 

6 0.265 0.0223 

7 0.186 0.0380 

8 0.276 0.0218 

9 0.238 0.0273 

10 0.264 0.0232 

Average Fitness 

L 0.24 0.025 

Table 9.14. To Demonstrate Population Average Fitness Convergence 

Typically, the greatest degree of convergence occurs in the first 30 generations. 

Average population fitness then fluctuates about a low value for the latter part of each 

run. Average population fitness per generation for runs 1, 7 and 9 is illustrated in 

figure 9.17. 

Runs 8, 9 and 10 were implemented over a further lOO generation, i.e. 200 

generations in total. As regards run number 9, average fitness after 200 generations 

was 0.0302 in contrast to 0.0273 after 100 generations. Average population fitness 

over 200 generations of the 91ll run is illustrated in figure 9.18. The best design arose 

in generation 77. Neither greater population average fitness convergence nor a more 

optimal best design was achieved over the extended analysis period. Similar results 

were attained for runs 8 and 10. 

338 



0.18 

0.16 

0.14 

'" ill z 0.12 
!: 
~ 

z 
~ 0.1 

~ 
t; 0.08 
ilj 

0.06 

KEY: 

GA run number 1 

GA run number 7 

GA run number 9 

°0L---~1~0--~.~20~·--~~~--~~--~W~--~ooL---~ro~--~80----00~--J'00 
GENERATION 

Figure 9.17 Average Population Fitness per Generation for Runs 1, 7 and 9 

0.2r---~-----r--~~--~--~--~----"---~-----r--~ 

0.18 

0.16 

0.14 

::l 
. ~ 0.12 

!: 
~ 

.z 
. CJ 01 in . 

~ 
t; 0.08 

"' ... 
0.06 

°0L---~2~0~~40~'--~OO~--~OO~--1~OO~--'2LO--~14LO--~100L---~18~0--~200 
GENERATION 

Figure 9.18 Average Population Fitness over 200 Generations for Run 9 

339 



.The best string fitness of the fittest design in each generatio~ typically fluctuates over 

the initial generations prior to leveling out towards the end of the run. Figure 9.19 

iIIustraies the best string data· for runs 1, 3 and 8. 

0.045,---,---.-----,---.-----,-----.--,..-----.--,..-----, 

0.04 

0.035 

~ 
w 

~ 0.03 

i§ 
Hi 
00.025 

m 
"' 

0.02 

0-015 

0-01 L...._....1-__ '----,-....1-__ '--_-'-_--' __ --'-_--' __ --'-_-' 

o 10 20 30 40 50 60 70 80 90 100 

KEY: 

GENERATION 

GA run number 1 

GA run number 3 

GA run number 8 

Figure 9.19 Best Design Fitness per Generation for Runs 1,3 and 8 

Table 9.15 shows the characteristics of the best design resulting from each run. The 

corresponding fitness data is ·portrayed in table 9.16. Table 9.17 specifies the amount 

and percentage by which the ·Iife cycle cost of each of the best designs varies about 

the life cycle cost limit, i.e. 125 000 units. 

340 



Best desiltn resultin~ from run number ••. 

1 2 3 4 5 6 7 8 9 10 

KIN 111 113 1/2 113 114 1/2 3/4 1/4 112 2/3 

P 1 1 2 1 1 2 1 1 1 3 
, , , 

FEIF 3/6 3/6 3/5 113 1 /3 2/4 113 2/5 113 3/4 

Fp 50% 50% 100% 100% 100% 50% 100% 50% 100% 100% 

FT 1 2 1 2 1 2 2 1 1 2 
, 

AEIA 112 1/2 1/2 2/4 2/4 2/4 2/4 112 2/4 112 

Ap 100% 100% 100% 50% 50% 50% 50% 100% 50% 100% 
, 

, 

W 3 3 3 2 3 3 3 1 2 2 

D 3 3 2 3 3 2 3 3 3 2 

C 2 2 2 2 2 2 2 2 2 2 
, 

, , 

(Jp 24 18 8 11 11 23 13 16 27 8 

(JR 1 1 3 1 1 1 1 1 1 1 

(JD 3 3 3 3 3 3 3 3 3 3 

(JPM 18 18 15 15 18 18 15 12 18 18 

Table 9.15. Characteristics of the Best Designs 

The best overall design for the FDS arose in the 2nd run and has a system 

unavailability of 1.263 x 10-2
. This design is over 98.73% available. The best design 

arising in the 1 st has very similar characteristics. It differs primarily in that 1 as 

opposed to 3 pressure sensors are included and the firewater pump is of type 2. 

341 



The fitness of the best desiens in runs ... 

1 2 3 4 5 6 7 8 9 10 

STC 9222.8 8759.3 12683.8 11688.7 9740.6 9132.2 11688.7 12074.3 9740.6 8795.5 

SPMC 8994.6 11123.8 17467.9 16543.5 16543.5 10224.5 14399.5 10819.6 8284.9 16294.6 

TMEC 26934.3 29640.7 38272.8 34647.1 33135.9 28164.4 32502.4 29345.5 24876.6 33916.1 

LCC 116480 120386 120795 123643 122231 125237 121598 109691 113871 106928 

Fsys 0.29 0.403 0.4641 0.243 0.243 0.464 0.2189 0.243 0.342 0.219 

QJ 4.12e-6 3.53e-6 1.07e-5 3.53e-6 3.53e-6 3.54e-6 3.53e-6 2.53e-6 3.53e-6 3.63e-6 

Cb 1.91e-3 1. 8ge-3 2.08e-3 2. 1ge-3 2.22e-3 2.ge-3 2.22e-3 2.36e-3 2.34e-3 2.18e-3 

{b 1.12e-3 1.1le-3 1.13e-3 1.0ge-3 l.le-3 1.12e-3 1.1e-3 1.11e-3 1.13e-3 1.0ge-3 

Q4 9.0e-3 9.63e-3 9.7e-3 9.7e-3 9.63e-3 9.7e-3 9.63e-3 9.75e-4 9.7e-3 9.8e-3 

QsYS 1.267e-2 1.263e-2 1.292e-2 l.3e-2 1.295e-2 l.374e-2 1.295e-2 1.32e-2 1.32e-2 1.3e-2 

Q~yS 1.267e-2 1.263e-2 1.292e-2 l.3e-2 1.295e-2 l.376e-2 1.295e-2 l.32e-2 1.32e-2 1.3e-2 

Table 9.16 Fitness Corresponding to the Best Designs in Table 9.15 
I I , " , 
I I , " , , , , " , 

I I , , " , 

--------------- --------------i---------------~---------------~--------------i---------------~--------------i--------------- ---------------~-------------- ---------------
, . ,. , 
I , ,. , , , 

LCC- 8520 4614 4205 1357 2769 -237 3402 15309 11129 18072 

125000 

% diff 6.8 3.7 3.3 1.1 2.2 -0.2 2.7 12.2 8.9 14.4 

Table 9.17 Difference of Each Designs LCC about the Life Cycle Cost Constraint 

342 



9.6.8.1 Discussion of Results 

GASSOPm is achieving its objective to find fit domains in the search space. Many 

similar parameter combinations are repeated throughout the best designs portrayed in 

table 9.15. As regards the deluge system, both the water and AFFF deluge valve are 

predominantly of type 3. The pipework is consistently of the non-corrosion resistant 

material, i.e. type 2. 

A recurring combination for the firewater pump system is the inclusion of 3 firewater 

pumps, 1 electrically powered and 2 diesel driven. As regards the AFFF pump 

system, two combinations repeatedly arising are the inclusion of 2 100% pumps, 1 

electric and 1 diesel, and 4 50% pumps, 2 electric and 2 diesel. Typically, the fittest 

designs portray balance in the number of electric to diesel pumps, particularly 

regarding those of 50% capacity. 

Failure of the distribution network, i.e. QI, is consistently very low (in the magnitude 

3 x 10-6). The contribution ofQI to the overall system unavailability of the design is, 

therefore, less significant. This is a likely reason for the marked variety in K and N. 

The pressure transmitters are predominantly of type 1, thus, preventing the number of 

spurious trip occurrences from exceeding its limit of 0.75 per year. 

A strong pattern arises in the values assigned to the maintenance test interval 

parameters. The maintenance test interval for the ringmain is set as 1 week for all but 

one of the best designs. The deluge skid is consistently tested at 3 monthly intervals. 

In contrast, the test interval between preventative maintenance tends to be at the 

higher end of its range, i. e. 15 to 18 months. Greater variations exist regarding ()P. 

The total life cycle cost of each of the best designs approaches the limit of 125000 

units. As portrayed in table 9.17, the majority of the best designs make almost 

optimal use of the available resources. 

343 



CHAPTER to 

A SEARCH LOGIC APPROACH 

to.t Introduction 

Having reviewed recent research and literature in the area of optimisation it is 

apparent that the safety system design optimisation problem is unique and as such 

requires an alternative approach to the traditional optimisation techniques. In the 

main difficulties arise due to the lack of an accurate explicit objective function 

over the entire, or even a relatively small part, of the search space. Further 

complications occur as a result of the integer stipulation assigned to all of the 

design variables, in particular when the integer values are low and their restricted 

range small. Attention must also be given to constraints limiting the available 

resources. In addition, certain design variables are dependent on the values 

assigned to other variables. An optimisation method, which manipulates the 

variables independently, may result in an infeasible optimal design. 

to.2 Applicable Features of the Optimisation Literature 

Certain optimisation teclmiques address one or more of the difficulties stated 

above. A specialised method, or methods, could, thus, be created to solve the 

safety system design optimisation problem using an amalgamation of applicable 

features. The following is a discussion of innovative features and the particular 

issue they lend themselves to overcoming. 

The use of random sampling of decision variables within their specified range is 

applied in much of the random search literature. This feature is a simple yet 

effective means of establishing a feasible solution vector. It is both easy to 

program and incorporate within a general optirnisation algorithm In addition, 

random sampling encourages global consideration of the search space, thus 

combating premature convergence or a localised approach. 

344 



The combinatorial heuristic method (Ref 69) introduces an innovative approach 

to fixing design variables using a look-ahead search, that is a means to incorporate 

interaction with the next variable. The look-ahead search is particularly 

applicable for integer design variables that lie within a small restricted range. Of 

most importance is that such an approach is able to consider an elerrent of 

dependency between the system variables. 

The use of tolerable slacks (or fuzzy boundaries) in both Misra's paper (Ref 60) 

and the method of rotating co-ordinates developed further by Rosenbrock to 

include constraints (Ref I) introduces a certain leeway either side of the 

constraint boundaries, thus representing the real decision making process. In 

industry a small extension on resources is deemed acceptable if the resulting 

design shows significant improvement. As stated in reference 60, an optimal 

design will in the main fully utilise all available resources. For this reason the 

incorporation of tolerable slacks ensures that time and effort is not lost analysing 

the interior of the search space. In effect this mimics the simplex method used in 

linear programming without incorporating the mathematical complexity. In 

addition, the use of tolerable slacks shifts the emphasis of function evaluations 

from the objective function to the constraints. This is of particular importance in 

the absence of an explicit objective function. 

Searching from a population of trial points significantly improves the global 

aspects of an approach. Techniques about a specific trial point have a tendency to 

lead to local hill climbing and attainment of a local minimum only. Searching 

from a population of points is particularly advantageous when little is known 

about the search space of the design optimisation problem In such cases the use 

of global optimisation techniques are dictated. 

Knowledge of the search space is established via evaluations of both constraints 

and objective functions. Computer time and effort is assigned to this task. It is 

wasteful to use only the best values calculated and reject all others. As regards the 

safety system optimisation our knowledge of the search space is accumulated 

from function values alone. A method that makes use of the history offimction 

evaluations to steer the search is, therefore, essential. Both CRS and PRS (Refs 4 

and 84) use a clustering or pattern recognition type approach. Clusters of high 

performance designs imply a high quality area of the search space, which deserves 

345 



further attention. Conversely, a cluster of unfit design vectors implies that 

continued search in that area is most likely to be fruitless. 

10.3 A Logical Sean:b Approach 

It was decided to apply a logical search approach to the HIPS optimisation using 

primarily motivation from Misra's technique (Ref 59) and the combinatorial 

heuristic method (Rei 69) introduced in sections 3.2.6 and 3.5.4 respectively. 

Specifically, random sampling and a look-ahead search are combined with the use 

oftolerable slacks about the constraints to improve the efficiency of the search. 

The design variables and their specific stated ranges are specified in section 5.1 of 

this thesis. The range of each maintenance test interval parameter is however, 

modified to 1 to 26 as opposed to 4 to 104 weeks, where 1 corresponds to 4 

weeks, 2 to 8 weeks and so on This modified range is used to limit the number of 

function evaluations required yet retain consideration of the full range of test 

intervals. 

A look-ahead search is carried out about each of the variables N}, N2 , K}, K2, E 

and H. Interaction with the type variables, V and P, and each maintenance test 

interval parameter, B} and i9.?, is considered within each look-ahead search. 

Tolerable slacks must be established about each of the constraints. It is decided to 

set upper bounds equivalent to each limit, therefore ensuring feasibility of the 

resu1ting optimal design. The bands are assigned as follows: 

• 800 units :S cost :S 1 000 units 

• 110 hours :S MDT :S 130 hours 

• 0.6 per year :S spurious trip frequency:s 1 per year 

10.3.1 The Logical Searcb Algorithm 

The steps of the algorithm are automated in a routine termed Search _logic and 

proceeds as follows: 

346 



Step 1. Set the iteration number to 0, i.e. j = O. 
Step 2. The initial point xV) is randomly generated. Ql,. = /(xV)) is evaluated. 

If xv) violates any constraint due to excess cost, MDT or spurious trip 

frequency Qk is penalised in the normal manner (described in section 

6.2.3.1). 

Step 3. Establish a variable ordering, i.e. the order in which the variables are 

considered in the look -ahead search. Initially the ordering is chosen to be 

{Nt. Kt. E, H, N2, K 2, E, Kt. Nt. H, Kz, N2 }. The choice of ordering is 

somewhat arbitrary and as such offers a significant degree of leeway. The 

variables adjacent to one another are however, those that are most likely 

to interact, therefore aiding the look-ahead search. In the main an optimal 

design is established following a single iteration of each variable. An 

additional iteration of each variable is however, implemented and the 

variable order shufiled. This serves two purposes: consideration of 

further likely interactions and confirmation of termination. 

Step 4. Each variable i, where i = I, ... ,n as denoted by the variable ordering in 

step 3, is considered in turn and the following loop executed: 

A) Establish the feasible range of i in view of the fixed values 

assigned to the other variables in the design vector xV) (these 

variables are fixed either as a result of the initial design vector or 

via a previous loop of step 4). 

B) Conduct a look-ahead search involving variable i + 1 and either V 

or P. If the i + Ith variable concerns the pressure transmitters then 

P is involved in the look-ahead search else V is the variable 

considered. The groupings are specified below: 

i + I th Variable 

Nt. N2, Kt or Kz 

EorH 

T e Variable 

p 

V 

i) Establish all possible combinations of the feasible values of i, 

the feasible values of i + I and the type variable (i.e. type I or 

type 2 for V or P). 

ii) For each combination, i.e. modified design vector X\~~'.T' 

where T denotes the type variable P or V, the associated 

347 



system unavailability QB!'.T is established in the following 

manner: 

a) Evaluate system cost, c. Check that the resuhing value lies 

within the tolerable slacks for cost. If c < 800 or c > 1000 

units assign a value of I to the system unavailabiIity of the 

design in question and repeat step 4Biia with the next 

modified design vector. If all combinations have been 

considered go to step 4Biii. 

b) Evaluate the spurious trip frequency, s. Ensure the 

resulting value lies within the tolerable slacks for the trip 

rate. If not proceed as in step 4Biia 

c) For each combination of maintenance test intervals 

calculate the design's MDT. If the MDT falls within the 

respective tolerable slacks evaluate the system 

unavailability associated with the design. Note that the 

number of system unavailability fimction evaluations is 

limited by the use of tolerable slacks and the modified 

range for the maintenance test interval design variables. 

Retain the maintenance test interval combination that 

results in the most optimal system unavailability for the 

design in question. Store the design vector and associated 

system unavailability. 

iii) Compare the system unavailability values, QB!,.T' associated 

with each modified design vector and select the best, denote as 
v) 

Xb . 

iv) Let xV) = xV+1
). If i =n -I go to step 4Bvi, else fix the i lb 

variable and the type variable in xV+1
) using their respective 

values in x~). Note that x~') may be fitter than x V+
1
) as the 

i + I" variable is not fixed in the latter vector. A subsequent 

execution of step 4 fixes the i + lib variable where its value is 

equivalent to that in x~) unless a better alternative is 

established. 

v) Return to step 4A with i =i + I and j = j + I. 

vi) Fix the i lb 
, the i + lib and the type variable in xV+

1
) using their 

respective values in x~). 

348 



vii) Increment), i.e. ) = ) + 1 and store the resulting value in 

Term, i.e. ) =Term. Proceed to step 5. 

Step 5. The resulting best design, xV), considers maintenance test interval values 

for subsystems I and 2 in 4 weekly intervals. Optimise use of the 

available MDT resource for xv) over the full range of test interval values. 

Step 6. Check for tennination Ensure design vectors xV), for 

) = Term - 3, ... ,Term are consistent. Else re-initiate step 4 with i = J. 

The order in which the variables are considered will affect the steps of the 

algorithm and may result in convergence to a different optimal design vector. The 

ordering of variables is considered in more detail in section 10.3.3. 

There are various means to terminate the algorithm Rather than speciJYjng a 

fixed number of iterations the program could be altered to tenninate when, for 

example, the optimal design has consistently attained a specified termination 

criteria over, for example, k iterations, where the ordering is repeated up to this 

point. 

10.3.2 Detailed Results from a Run of Search_logic 

The foUowing is a detailed run through of the Search_logic algorithm, specjJYing 

the output resulting from each step: 

Step 1. )=0 

Step 2. Randomly generate x(O) 

E K./N. H KIN, P V 8\ 8z Qsrs 

I XO) 1 2/3 I 2/2 1 I 23 36 0.00137 

Step 3. Establish variable ordering, {N\, K\, E, H, N2, K2, E, K\, N\, H, K2, N2}. 

Step 4. Consider NI: 

A) Feasible values ofN\ are {2,3,4}. 

B) K\ is the i + I"' variable and as such P is the type variable. 

i) AU'possible combinations of X~,>,K,,P are shown in table 10. L 

Notethat E= I,H= I,Kz/N2 =212, V= I remain fixed. 

349 

Q~s 

0.0061 



x(o) 
N1.K1.T 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

ii) Fitness evaluations are shown in table 10.1. Note that in all but 

rows 5 and 11 the spurious trip frequency lies outside its 

respective tolerable slacks and hence, values are not assigned to 

the maintenance test interval parameters. 

K,IN, P 8, 82 Cost Fsys MDT 

112 1 - - 902 0.551 -
112 2 - - 862 1.51 -
2/2 1 - - 902 0.289 -
2/2 2 - - 862 0.295 -
1/3 I 48 20 922 0.681 130 

113 2 - - 872 2.11 -
2/3 1 - - 922 0.289 -
2/3 2 - - 872 0.301 -
3/3 1 - - 922 0.290 -
3/3 2 - - 872 0.292 -
114 1 52 20 942 0.812 126 

114 2 - - 882 2.71 -

2/4 1 - - 942 0.551 -
2/4 2 - - 882 1.51 -
3/4 1 - - 942 0.289 -
3/4 2 - - 882 0.292 -

4/4 I - - 942 0.289 -
4/4 2 - - 882 0.292 -

Table 10.1 Fitness Evaluations For Designs Considering N, 

iii) The best design, x~o), arises in the fifth row oftable 10.1. 

iv) x(O) = x(1). Fix N, = 3 and P = I in x(1). 

v) i = 2, i.e. consider K, and j = I 

Qsys 

1 

1 

1 

1 

0.0016 

1 

1 

1 

1 

1 

0.0017 

1 

1 

1 

I 

1 

1 

1 

Step 4. Consider K,: 

E H p I~ 1 2/3 I 2/2 I 

A) Feasible values ofK, are {l,2,3}. 

B) E is the i + I"' variable and as such, V is the type variable. 

350 



X(I) 
KI.E,V 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

i) All possible combinations of x~~.E.v are shown in table 10.2, 

where NI = 3, H = 1, K-JN2 = 212 and P = 1 remain fixed. 

ii) Fitness evaluations are shown in table 10.2. Note that only the 

designs in row 3 and 4 lie in the tolerable slacks for cost and 

spurious trip frequency. 

KI E V 01 fJ,. Cost Fsrs MDT Qsrs 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

0 1 - - 652 -
0 2 - - 602 -
1 1 48 20 922 0.681 

1 2 48 16 822 0.847 

2 1 - - 1192 -
2 2 - - 1042 -
0 1 - - 652 -
0 2 - - 602 -
1 1 - - 922 0.289 

1 2 - - 822 0.455 

2 1 - - 1192 -
2 2 - - 1042 -
0 1 - - 652 -
0 2 - - 602 -
1 1 - - 922 0.289 

1 2 - - 822 0.455 

2 1 - - 1192 -
2 2 - - 1042 -

10.2 Fitness Evaluations for Designs Considering KI 

iii) the best design, xii), arises in row 4 of table 10.2. 

iv) X(I) = X(2) Fix KI = I and V = 2 in X(2). 

v) i = 3, i.e. consider E and j = 2 

E H p 

1 1 I 

- 1 

- 1 

130 0.0016 

130 0.0014 

- -
- -
- -
- -
- -

- -
- -
- -

- -
- -

- -
- -

- -
- -

v 
2 

Step 4. Consideration is given to each variable in turn. In total step 4 is carried 

out n - 1. The modifications to the initial design following each 

351 



Fix 

-
NI 

KI 

E 

H 

N2 

K2 

E 

KI 

NI 

H 

KI&NI 

iteration are specified in table 1 0.3. Note that Qsrs is the system 

tmavailability of the best design vector, x~), resulting from an iteration 

of step 4. 

-
xv) E KIINI H K,/N2 P V Q{x~)) 

- -
x(O) 1 2/3 1 2/2 1 1 0.0061 - -
X(I) 1 2/3 1 2/2 1 1 0.00162 -
X(2) 1 113 1 2/2 1 2 0.00143 -
X(3) 0 1/3 1 2/2 1 2 0.00093 -
X(4) 0 113 2 2/2 1 2 0.00079 -
x(S) 0 1/3 2 2/3 1 2 0.00079 -
X(6) 0 113 2 2/3 1 2 0.00079 -
X(7) 0 113 2 2/3 1 2 0.00079 -
X(8) 0 113 2 2/3 1 2 0.00079 

· 
X(9) 0 1/3 2 2/3 1 2 0.00079 

· 
X(IO) 0 113 2 2/3 1 2 0.00079 

· -
X(II) 0 1/3 2 2/3 1 2 0.00079 

-

Table 10.3 Design Alterations through execution of step 4 

Step 5. The resulting optimal design is: 

E K,IN, H K,IN, P V (JI 92 Cost Fsrs MDT 

t X(II) 0 113 2 2/3 1 2 40 24 842 0.847 130 

Step 6. It can be seen from table 10.3 that iterations 5 to 11 portray consistent 

predictions of the optimal design 

10.3.2.1 Further Results 

Table 10.4 specifies the results off our further runs of Search _logic. In each case 

the initial design and the final optimal design achieved are stated, where the final 

design is given in bold. Table 10.4 specifies the fitness components associated 

with the optimal design resulting from each fUll. Execution of the program 

requires an order of minutes. 

352 

Qsrn 

7.92.,.3 



Run No. E K,lN H KiN, P V fA fJ, Qsrs Q~ 

1 x(o) 1 2/3 1 2/2 1 1 23 36 0.00137 0.006\ 

X(II) 0 113 2 2/3 1 2 40 24 7.92e-4 7.92e-4 

2 x(O) 1 4/4 I 3/3 I I 70 50 0.0094 0.0094 

X(II) 0 114 2 2/4 1 2 28 36 8.26e-4 8.26e-4 

3 x(O) 2 111 2 4/4 1 2 40 65 0.0036 0.0067 

X(II) 0 111 2 112 1 1 28 40 0.001 0.001 

, 

4 x(o) 1 113 1 2/3 2 2 89 28 0.004 0.014 

X(II) 0 1/4 2 2/4 1 2 28 36 8.26e-4 8.26e-4 

5 x(O) 2 1/1 1 111 2 2 70 50 0-.013 0.11 

X(II) 0 111 2 113 1 2 32 28 8.31e-4 8.31e-4 

Table 10.4 Results from Runs of Search_Logic 

Run No. Cost MDT Fsrs Qsys Q~rs 

1 X(II) 842 130 0.847 7.92e-4 7.92&-4 

2 X(II) 882 129.6 0.978 8.26e-4 8.26&-4 

3 X(II) 882 129.1 0.681 0.001 0.001 

4 X(II) 882 129.6 0.978 8.26e-4 8.26&-4 

5 X(II) 802 128.6 0.917 8.31e-4 8.31e-4 

Table 10.5 Fitness of Optimal Designs from Runs of Serach _logic 

The best design is achieved in nm number 1 and has a system unavailability of 

7.92 x 10-4. The optimal design achieved in each nm is highly fit, yet there is 

significant variety in the parameter set of each optimum design vector. The 

resulting design is highly dependent on the choice of the initial design point. 

10.3.3 Order of Variables in Search_logic 

The order in which the variables are considered in the look-ahead search 

determines the type of interactions in the parameter set that are analysed. The 

particular ordering used in section 10.3.1 is chosen primarily to focus on 

353 



interactions between the variables in subsystem I and interactions between the 

variables in subsystem 2. The interaction between the number ofESD valves and 

the number of HIPS valves is also investigated. 

Altering the ordering in the automated Serach _logic algorithm is a straight 

forward process. As such, two alternative orderings are considered, tenned 

allordl and allord2. 

10.3.3.1 Alternative Ordering Number 1, altordl 

It is noted that the ordering in section 10.3.1 analysis little interaction between the 

pressure transmitters of each subsystem A1tord 1 aims to rectifY this and hence, 

adopts the variable ordering {NI, K" E, H, N2, K2, E, K" NI, N2, K2, H}. 

Implementing Search _logic with allordl from the same design points as those in 

the previous results section gives the optimal designs specified in table 10.6. The 

associated fitness information for each optimaI design is stated in table 10.7. 

Run No. E K,/N, H K,IN, P V IJt Ih Qsrs Q~s 

I x(o) 1 2/3 1 2/2 1 1 23 36 0.00\37 0.0061 

X(II) 0 113 2 2/3 1 2 40 24 7.92<>4 7.92e-4 

2 x(o) 1 4/4 1 3/3 1 1 70 50 0.0094 0.0094 

X(II) 0 1/3 2 2/3 1 2 40 24 7.92e-4 7. 92e-4 , 
, 

3 x(O) 2 111 2 4/4 1 2 40 65 0.0036 0.0067 

X(II) 0 112 2 2/3 1 2 40 24 7.92e-4 7. 92e-4 

, 

4 x(o) 1 113 1 2/3 2 2 89 28 0.004 0.014 

X(II) 0 1/3 2 2/3 1 2 40 24 7.92e-4 7.92e-4 

5 x(o) 2 111 1 III 2 2 70 50 0.013 0.11 

X(II) 0 112 1 112 1 2 34 26 7.23e- 7.23e-4 

Table 10.6 Results from Runs of Search_Logic UsingAltordt 

354 



Run No. Cost MDT Fsrs QSfS Q~ 

I X(II) 842 130 0.847 7. 92e-4 7.92e-4 

2 X(II) 842 130 0.847 7.92e-4 7.92e-4 

3 X(II) 822 128.7 0.717 7.92e-4 7.92604 

4 X(II) 842 130 0.847 7.92e-4 7.92e-4 

5 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

Table 10.7 Fitness of Optimal Designs Using Altordl within Search_logic 

Using aItordl, consistently fit designs were achieved in each nm. There is very 

little variety between the optimal design vectors, where in the main differences 

arise in the number of pressure transmitters and the number of transmitters 

required to trip the system The fittest design arises in nm number 5 and has a 

system unavailability of 7 .23 x 10-4. 

10.3.3.2 Alternative Ordering Number 2, Altord2 

Due to the fact that the look-ahead search incorporates only variables i and i + I 

certain combinations of pressure transmitters are never explored. In addition, it is 

noted in the previous results that little is achieved by considering variable H a 

second time. For this reason an ordering is established which considers a three

way interaction between NI. N2 and K2 in its latter stage. To compensate for the 

additional computer effort required n is reduced by 1. Hence, altord2 is { NI. K .. 

E, H, N2, K2, E, K .. NI & N2 & K2}, where the 9th iteration of step 4 in the search 

logic algorithm considers all possible combinations of NI, N2 and K2. 

Results UsingAltord2 

Implementing Search _logic with altord2 ordering from the same design points as 

those in the previous results sections gives the optimal designs specified in table 

10.8. The associated fitness information for each optimal design is stated in table 

10.9. 

355 



Run No. E K,lN H K,IN, P V lit fh. Qsrs Q~ 

1 X(O) 1 2/3 1 2/2 1 1 23 36 0.00137 0.0061 

X(lI) 0 1/2 1 1/2 1 2 34 26 7.23e- 7.23e-4 

2 x(O) 1 4/4 1 3/3 1 1 70 50 0.0094 0.0094 

X(lI) 0 112 1 112 1 2 34 26 7.23e- 7.23e-4 

3 x(o) 2 III 2 4/4 1 2 40 65 0.0036 0.0067 

X(II) 0 112 1 112 1 2 34 26 7.23e- 7.23e-4 

. . 
4 x(O) 1 113 I 2/3 2 2 89 28 0.004 0.0014 

X(II) 0 112 I 112 I 2 34 26 7.23e- 7.23e-4 

5 x(o) 2 III I III 2 2 70 50 0.013 0.11 

X(II) 0 112 I 112 1 2 34 26 7.23e- 7.23e-4 

Table 10.8 Results from Runs of Search_Logic Using AltOTdl 

Run No. Cost MDT Fsrs Qsrs Q~fS 

1 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

2 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

3 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

4 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

5 X(II) 802 129.3 0.977 7.23e-4 7.23e-4 

Table 10_9 Fitness of Optimal Designs Using AlloTd2 witbin Search_logic 

Each run results in the same optimal design vector. This design is highly fit, with 

a system unavailability of 7.23 x 10-4 

10.3.4 Discussion of Results 

In the main, the resulting designs are highly fit. An ordering that considers greater 

interaction between the design variables is beneficial. Altord I, considers an 

alternative ordering on the second iteration of each design variable as opposed to 

merely repeating the variable ordering. Interaction between the pressure 

356 



transmitters of each subsystem is, therefore considered. Altord2 considers 

interaction between a number of variables at once as opposed to simply looking 

ahead to the next variable. This requires greater computer effort, which would be 

exacerbated the more complex the system under consideration, however for this 

relatively simple system it proves beneficial. 

The HIPS system has characteristics which lend themselves well to the search 

logic optimisation procedure. Firstly, the system has only a small number of 

design variables and the range covered by these variables is also small. In 

addition, the variables are segregated into two halves, those concerned with 

subsysteml and those with subsystem 2. There is obviously interaction between 

all the design variables, however the simplicity of the system lends itself well to 

establishing an efficient order for the variables to be considered in the look-ahead 

search. 

The search logic approach appears to be both highly efficient and accurate, 

however, its scope of applicability is limited. It is in effect a local approach, 

which is highly dependent on the choice of the initial design vector. This 

dependency on the start point will increase as the complexity of the optimisation 

problem increases. In addition, a high degree of knowledge concerning the 

system is required to establish both the order in which to consider the variables in 

the look-ahead search and the boundaries used for the tolerable slacks. 

To summarise, the search logic approach has proven to be effective for the HIPS 

optimisation, however, its applicability to a larger array of problems is limited and 

it is likely that it will only be useful as a highly localised technique. 

357 



CHAPTER 11 

A STATISTICALLY DESIGNED EXPERIMENT 

11.1 Introduction 

The engineering design process involves setting values of a potentially large number 

of decision variables. Studying the effects of these variables one at a time or by trial 

and error is the common approach to the decision process. This gives rise to an 

inefficient, unstructured design process. 

An alternative to this ad hoc approach is to use a structured method such as that 

offered by Statistically Designed Experiments (SDE) to investigate the best settings 

for the variables (Ref's 10, 38). Statistical design of experiments means making 

many purposeful design changes at once and conducting several tests and evaluations 

before decisions are taken as to what the next steps in the development process should 

be. Experimental design is used in many industrial applications, one typical example 

being production processes. Usually the experimental results will be subject to 

variability or noise. In the applications presented in this chapter the experimental 

design concepts are being used to try to get a starting point for the optimisation. The 

better the starting point the more efficient the optimisation. In effect, this approach is 

expected to achieve 80% of the work required to reach an optimal design using 20% 

of the effort. To assess the design performance a computer analysis (fault trees) is 

being used and so the results are not subject to variability and each experiment only 

needs to be performed once. 

The variables to be changed are called factors. Prior to conducting a statistically 

designed experiment (otherwise known as a factorial experiment) all factors must be 

identified and the possible values of each factor determined. These possible values 

are termed levels. The performance of the engineering system is characterised by a 

measurement of some aspect or function termed the response. 

358 



11.2 Orthogonal Arrays 

Purposeful design changes are achieved using special matrices called orthogonal 

arrays. Consider, for example, a particular system consisting 00 parameters: 

number of valves (A), valve type (B), and number of pressure transmitters (C). As 

regards each parameter 2 settings are chosen to cover the range of interest. These 

factor levels define the experimental region and are listed in table 11.1. The goal is to 

minimise system unavailability and as such the response is the probability of system 
failure (Q SYS ). 

Factor Levels Expt. Columns QS13 

1 2 No. 1 2 3 

A. No. of valves 2 3 1 1 I I 0.2 

B. Valve tvve 1 2 2 1 2 2 0.4 

C. No. of PT's 4 5 3 2 1 2 0.3 

Table 11.1 Factor Levels 4 2 2 I 0.2 

Table 11.2 L!(23
) Orthogonal Array 

The matrix experiment to define the experimental plan is stated in table 11.2. It 

consists of 4 individual experiment designs corresponding to the four rows. The 3 

columns of the matrix represent the 3 factors. The entries in the matrix represent the 

levels of the factors, whose values are indicated in table 11. I. Thus, the first design 

consists of 2 valves of type 1 and 4 pressure transmitters. The matrix experiment is 

the standard orthogonaI array L4 (Ref. 64). For any pair of columns all combinations 

off actor levels occur and they occur an equal number of times. This is called the 

balancing property and it implies orthogonality. This balancing property inherent in 

orthogonal arrays enables the identification of which design changes make the 

difference to the performance of the design. 

A matrix experiment consisting of all possible combinations of the factors is termed a 

'full-factorial'. The run size for a 2-level full factorial design in k factors is 2k, which 

quickly becomes prohibitive for a moderate amount off actors. The problem is 

exacerbated for factors with more than 2 levels. A subset or fraction of the full 

359 



factorial design (a fractional factorial) tends to be used unless there are only a few 

potentially important factors to be studied. In the example above the onhogonal array 

represents a 'one-half fraction' of the 23 design. 

11.3 Steps in a Statistically Designed Experiment 

An outline of the statistically designed experimental procedure is as follows: 

I) Definition of the aim of the experimental plan and selection of the response 

variable. 

2) Selection of the factors that will be changed and the levels that will be used. 

3) Choice of a matrix experiment such that the plan has a systematic and balanced 

pattern. 

4) Analysis of the data from the matrix experiment to determine the effects of the 

various factors. One of the benefits of using orthogonal arrays is the simplicity of 

data analysis. The effects of the various factors can be determined by computing 

simple averages. The estimates of the factor effects are then used to determine 

the optimum factor settings. 

5) Summary of the results in a response table and effects plot. The use of 

engineering knowledge and common sense is essential in interpreting the results. 

6) Validation of conclusions from the experiment using follow-up runs and 

confirmation testing. Experimentation is an important part of the learning 

process, which suggests an iterative approach. As an experimental plan 

progresses some variables are dropped, the region of exploration for some factors 

changed or new response variables considered. 

11.4 Application of the Statistically Designed Experiment to Optimise the HIPS 

The following sections describe the application of a statistically designed experiment 

to optimise the High-Integrity Protection System (lllPS) introduced in chapter 5 of 

this thesis. 

360 



11.4.1 Aim and Response Variable 

The means by which perfonnance of a safety system design is assessed (i.e. the 

response variable) is chosen to be the penalised system unavailability (Q~s ), 

introduced in section 5.2. The primary goal is to determine the optimum level for 

each parameter such that Q~s is minimised. The secondary goal, which is addressed 

throughout the experimental procedure, is to determine the effect (or lack of) that 

each parameter has on Qsrs' maintenance down time (MDT), cost and the spurious 

trip frequency (F sys ). The SDE is essentially a global optimisation procedure which 

initially encompasses a large proportion of the entire search space. Attainment of the 

global minimum, i.e. the primary goal, with this somewhat crude approach is 

unexpected. However, it is expected, through attention to the latter goal, to determine 

promising areas in the search space and hence, a starting point, or points, from which 

to commence a more sophisticated approach. 

11.4.2 Choice of Factors and Levels 

It was decided to include all 10 parameters associated with the HIPS (described in 

section 5. I.I) to perfonn the initial experiment. The intention was to screen out the 

less important factors before carrying out a more detailed follow-up experiment. 

Levels of the factors should be chosen to be sufficiently far apart to cover a wide 

experimental region. This gives the ability to identifY good and bad regions of the 

search space. During subsequent refinement experiments levels closer to one another 

can be chosen. Each factor and their alternate levels selected for consideration are 

listed in table 11.3. Note that parameters Kt, NI, K2 and N2 are denoted as K1, N1, K2 

and N2. This is to avoid confusion with the level of the parameter. For example N1t 

denotes level 1 of parameter N 1. 

361 



Factor Levels 

1 2 3 

E 0 1 2 

KI 1 2 

NI 2 3 4 

H 1 2 

K2 1 2 

N2 2 3 4 

V 1 2 

P 1 2 

()I 30 40 50 

()2 30 40 50 

Table 11.3 Factor Levels Chosen for the Initial Experiment 

Note also that the range of parameters Ki, Ni, K2 and N2 are restricted to ensure that 

each design specified in the matrix experiment is feasible. In order to preserve the 

benefits of using an orthogonal array it is important that all designs in the matrix are 

investigated. If designs corresponding to one or more rows are not analysed the 

balancing property and hence, the orthogonality is lost. 

11.4.3 Matrix Experiment 

An efficient way to study the effects of several factors simultaneously is to plan a 

matrix experiment using an orthogonal array. An orthogonal array is constructed 

from the knowledge of the number off actors, their levels and the desire to study 

interactions. In this initial experiment there are 52-level factors and 5 3-leve1 factors. 

For the purpose of the screening experiment it was decided not to study specific 

interactions. Using the standard methods of constructing orthogonal arrays, the 

standard array ~7(31l) was selected for the matrix experiment. The reader is referred 

to references 51 and 62 for further detail on array construction and standard arrays. 

362 



The 1.-27(313) orthogonal array is given in Appendix VD. It has 13 columns and 27 

rows. Each row has 3 distinct entries, namely I, 2 and 3 (i.e. each column is a 3-level 

column). As such, a 3 level factor can be assigned directly to any column. Five of 

the chosen factors have 2-levels. The dummy level technique was used to assign each 

2-level factor to a 3-level column. The dummy level technique works on the basis 

that if a factor A has 2 levels Al and Az, it can be assigned to a 3-level column by 

creating a dummy level Al , which could be taken to be the same as either Al or Az. 

The choice between taking A3 = Al or A3 = Az depends on a number of issues. For a 

more detailed explanation of this technique refer to reference 6. In columns 1,2,4,6 

and 7 of the matrix experiment in table 11.4 level 3 has been replaced by level I. 

Looking at these columns it is clear that they do not have the balancing property. 

However, for level I in column 3 there are 6 rows with level I in column I (and 2, 4, 

6 and 7) and 3 rows with level 2 in column I. Similarly for level 2 in column 3 there 

are 6 rows with level 1 in column I and 3 rows with level 2 in column I. The same 

can be said about level 3 in column I. This is called proportional balancing. It can be 

shown that proportional balancing is also a sufficient condition for a matrix 

experiment to be orthogonal. Thus, after applying the dummy level technique the 

resulting array is still proportionally balanced and hence, orthogonal. 

The modified Lz7(2'38
) array representing the 27 safety system designs to be 

investigated is illustrated in table 11.4. Parameter Vis assigned to column 1, P to 

column 2 and so on. Empty columns in the matrix (Le. column 11, 12, and 13) are 

removed. Note that keeping one or more columns empty does not alter the 

orthogonality property of the array. The entire matrix of table 11.4 is translated using 

the level definitions in table 11.3 to create a clear experimental plan, see table 11.5. 

363 



Design Column Numbers and Factor Assi nment 

No. I-V 2-P 3-E 4-K1 5-N1 6-H 7-Kl 8-Nl 9-01 10-02 

1 1 I 1 I I I I I I 1 

2 1 I I I 2 I 2 2 2 2 

3 I I 1 I 3 2 2 3 3 3 

4 I I 2 2 1 I 1 2 2 2 

5 1 1 2 2 2 I 2 3 3 3 

6 I I 2 2 3 2 2 I I 1 

7 1 2 3 2 1 1 1 3 3 3 

8 I 2 3 2 2 I 2 I I 1 

9 I 2 3 2 3 2 2 3 2 2 

10 I I 2 2 I I 2 2 2 3 

11 1 I 2 2 2 2 1 3 3 1 

12 1 I 2 2 3 I 2 3 I 2 

13 1 I 3 I 1 I 2 3 3 1 

14 1 I 3 I 2 2 1 3 I 2 

15 I I 3 I 3 1 2 2 2 3 

16 1 2 I 2 1 I 2 3 I 2 

17 1 2 I 2 2 2 I 2 2 3 

18 1 2 I 2 3 I 2 3 3 1 

19 2 I 3 2 1 2 2 2 3 2 

20 2 I 3 2 2 I 2 3 I 3 

21 2 1 3 2 3 1 1 3 2 1 

22 2 I 1 2 I 2 2 3 I 3 

23 2 1 I 2 2 I 2 3 2 I 

24 2 I I 2 3 I 1 2 3 2 

25 2 2 2 1 I 2 2 3 2 1 

26 2 2 2 I 2 1 2 2 3 2 

27 2 2 2 1 3 1 1 3 I 3 

Table 11.4 Modified L:z7 Orthogonal Array for the Initial Matrix Experiment 

364 



Design V P E KI NI H K2 N2 (}I (}2 

No. 

1 I I 0 I 2 I I 2 30 30 

2 I I 0 I 3 I 2 3 40 40 

3 I I 0 I 4 2 2 4 SO SO 

4 I I I 2 2 I I 3 40 40 

5 I I I 2 3 I 2 4 SO SO 

6 I I I 2 4 2 2 2 30 30 

7 I 2 2 2 2 1 I 4 SO SO 

8 I 2 2 2 3 1 2 2 30 30 

9 I 2 2 2 4 2 2 3 40 40 

10 I I I 2 2 I 2 2 40 SO 

11 I I I 2 3 2 1 3 SO 30 

12 I I I 2 4 I 2 4 30 40 

13 I I 2 I 2 I 2 3 SO 30 

14 I I 2 1 3 2 I 4 30 40 

15 I I 2 I 4 I 2 2 40 SO 

16 I 2 0 2 2 I 2 4 30 40 

17 I 2 0 2 3 2 I 2 40 50 

18 I 2 0 2 4 I 2 3 50 30 

19 2 I 2 2 2 2 2 2 50 40 

20 2 I 2 2 3 I 2 3 30 50 

21 2 I 2 2 4 I I 4 40 30 

22 2 I 0 2 2 2 2 3 30 SO 

23 2 I 0 2 3 I 2 4 40 30 

24 2 I 0 2 4 I 1 2 SO 40 

25 2 2 I I 2 2 2 3 40 30 

26 2 2 I I 3 I 2 2 SO 40 

27 2 2 I I 4 I I 4 30 50 

Table 11.5 Experimental Plan with Specified Factor Values 

365 



Each design, dictated by the matrix experiment, was analysed using the analysis 

method described in chapter 5. 

Desi2n No. Cost MDT Fsrs Qsrs Q~s 

1 632 110.9 0.803 1.4e-3 1.4e-3 

2 672 85.8 0.673 2.51e-3 2.51e-3 

3 982 91.5 0.813 2.07e-3 2.07e-3 

4 922 110.5 0.681 2.98e-3 2.98e-3 

5 962 90.5 0.29 3.5ge-3 3.5ge-3 

6 1212 183.7 0.56 8.6e-4 7.46e-3 

7 1152 116.5 2.45 8.28e-3 0.1104 

8 1142 190.7 0.555 2.25e-3 9.67e-3 

9 1432 174.2 1.53 1.25e-3 0.109 

10 902 102.7 0.289 4.2e-3 4.2e-3 

11 1212 142.1 0.690 1.12e-3 3.11e-3 

12 982 140.8 0.552 1. 74e-3 2.97e-3 

13 1172 126.2 0.298 2.91e-3 2.91e-3 

14 1502 199.8 1.22 8.98e-4 0.0217 

15 1212 131.3 0.828 3.25e-3 5.1ge-3 

16 612 111.4 1.183 4.1ge-3 0.0442 

17 872 104.8 1.515 1. 73e-3 0.1017 

18 622 97.1 1.51 2.45e-3 0.1024 

19 1242 117.3 0.638 4.1e-3 4.36e-3 

20 1062 142.2 0.547 2.2ge-3 4.32e-3 

21 1102 130.4 1.33 2.13e-3 0.0573 

22 822 105 0.455 1.6e-3 1.6e-3 

23 642 90.1 0.364 2.31e-3 2.31e-3 

24 622 68.6 0.886 3.87e-3 3.87e-3 

25 1002 143.9 1.96 9.35e-4 0.1025 

26 772 88.9 1.56 5.36e-3 0.1054 

27 792 129 3.66 2.62e-3 0.1026 

Averages 972.4 123.2 1.03 0.003 0.0342 

Table 11.6 Fitness Data for each Design, plus Averages 

366 



Table 11.6 specifies the system unavailability (QSTS)' MDT, cost, spurious trip 

frequency ( F STS ) and penalised system unavailability (Q~s ) for each design. 

11.4.4 Data Analysis 

Data analysis is concerned with estimating the effect of each parameter on the 

penalised system unavailability over the 27 designs investigated. The overall mean 
value of Q~s for the experimental region defined by the factor levels in table 11.6 is 

0.0342 and is denoted by m. The effect of a factor is defined to be the change in the 

response produced by a change in the level of the factor. This is commonly termed 

the main effect. For example, the main effect of the valve type parameter at level 1 

(VI) is given by 

(11.1 ) 

=0.0299 

where mV. denotes the main effect of parameter Vat level 1. Similarly, the main , 
effect of the valve type parameter at level 2 (V 2) is given by 

(11.2) 

=0.0427 

Note that the parameter governing the number ofESD valves (E) assumes each of its 

possible values six times over designs 1 to 18. Similarly, for these experiments, the 

other parameters exhibit this balancing property. As the matrix experiment is based 

on an orthogonal array, all the averages are balanced. The process of estimating 

factor effects is sometimes called the Analysis of Means (ANOM). 

The main effect of each factor at each of its levels is specified in table 11.7. These 

averages are shown graphically in figure 11.1 in what is termed an effects plot. The 

dotted line in this figure defines the overall mean (m). 

367 



Factor Main Effect (ANOM) Sum of % 

Level Squares ANOVA 

1 2 3 (ANOVA) 

V 0.0299 0.0427 9.8e-4 2.1 

P 4.43e-3 0.0876 0.0386 83.1 

E 0.0291 0.0372 0.0361 3.5e-4 0.75 

Kl 0.0385 0.032 2.5e-4 0.5 

Nl 0.0305 0.0282 0.0437 l.3e-3 2.7 

H 0.0316 0.0394 3.6e-4 0.8 

K2 0.045 0.0287 1.6e-3 3.4 

N2 0.027 0.0369 0.0385 7.0e-4 1.5 

(}l 0.0218 0.0431 0.0376 2.2e-3 4.8 

(}2 0.0321 0.0331 0.0373 1.4e-4 0.3 

Table 11.7 Main Effects and Variance of each Factor 

; 21 21 2 31 2 1 2 31 21 2; 2 31 2 3 1 

v p E Kt Nt H K2 N2 .f}1 {}2 

Figure 11.1 A Plot of each Factor's Main Effects 

A better feel for the relative effect of the different factors can be obtained using the 

Analysis of Variance (ANOVA). The sum of squares due to factor Vis equal to the 

368 



total squared deviation of each level of V from the overall mean. 18 designs are 

investigated with Vat level 1 and 9 with Vat level 2. Thus, 

sSv =18(mv, -mY +9(mv, -mY 

=9.8xlO-4 
(11.3) 

where ss v is the sum of squares due to factor V. The sum of squares due to each 

factor is specified in table 11.7. As can be seen the parameter governing the pressure 

transmitter type (P) explains a major portion of the total variation of Q;"s. In fact it 

is responsible for 83.1 % of the variation. This is reinforced in figure 11.1. 

11.4.5 Selecting Optimum Factor Levels 

A primary goal in conducting a matrix experiment is to optimise the product design. 

That is, to determine the best or optimum level for each factor. As regards the HIPS, 

the optimum level for each factor is the level that gives the lowest value of Q~yS in the 

experimental region. The estimated main effects can be used for this purpose. It can 

be seen from figure 11.1 that the settings VI, PI, El, Klz, Nlz, HI, K22, Nh (}h, (}21 

would give the lowest penalised system unavailability. 

The predicted best settings need not correspond to one of the rows in the matrix 

experiment, as is the case here. Confirmation of the actual performance 

characteristics associated with the estimated optimal design is given in table 11.8. 

The value of Q~s realised for the predicted best settings is not as good as the best 

among the rows of the matrix experiment. This implies additional analysis and 

experimentation is needed. 

369 



Subsystem 1 Subsystem 2 V P 

E KIINI (J H K21N2 (J 

0 2/3 30 I 2/2 30 I I --.-.. --... - .. ----~ - - -------.--
MDT 112.7 

Cost 652 

Spurious Trip Frequency 0.28 

System Unavailability 0.0016 

Penalised Svstem Unavailabilitv 0.0016 

Table 11.8 Characteristics of the Estimated Optimal Design 

11.4.6 The Influence of Parameter P 

The main effects of the factors are their separate effects. If the effect of a factor 

depends on the level of another, then the two factors are said to have an interaction. 

The large effect of parameter P dominates the effect of the other parameters. In 

particular the number of pressure transmitters and the number to trip for each 

subsystem are likely to be effected by the pressure transmitter type. 

Figure 11.1 clearly portrays that pressure transmitter type 1 is the optimum level for 

this factor. As such, the main effect of Kl, Ni, K2 and N2 was revised using only a 

subset of the designs in the k7 array. That is, those designs with P set at level I. The 

main effects for each of these variables for P at level I are specified in table 11.9. 

Factor Main Effect for P at level 1 

Levell Level 2 Level 3 

KI 5.96e-3 8.17e-3 

NI 2.9Ie-3 6.26e-3 0.0131 

K2 0.0151 3.62e-3 

N2 4.4le-3 2.ge-3 0.0149 

Table 11.9 Main Effects with Pat Level 1 

370 



The main effects at PI are much lower than those at P2 . Figure 10.2 portrays the 

former effects . 

~ 
:is 
.!l! 
'0; 
> 
'" c: 

::::l 

E ., 
~ en .., ., 
.1Il 
a; 
c: ., 
[L 

• 10-3 

16 

14 

12 

10 

8 

6 

4 

2 

1 2 1 

'"-'" 
V 

/ 

2 31 21 2 31 21 21 2 31 2 31 2 3 

.... ' ~ .. ~~,~~,~~~~ .. ~~-~~~--"-~-~.,, - - V w ~- W 4J _ 
E K1 N1 H K2 N2 -G1 -G2 

Figure 11.2 A Plot of each Factor's Main Effects with P at level 1 

It can be seen that the optimal settings for Ki, Ni, K2 and N2 at PI are levels 1, 1,2 

and 2 respectively, i.e. a I from 2 trip configuration for subsystem 1 and a 2 from 3 

trip configuration for subsystem 2. A confirmation run of the revised prediction 

specifYing the best design gives: 

• MDT = 112.7 hours 

• Cost = 652 units 

• Spurious trip frequency = 0.54 per year 

• Probability of system unavailability = 0.0014 (no penalties incurred) 

This is an improvement over the initial prediction and equals the best in the original 

experiments table. 

11.4.7 Consideration of the Constraints 

To carry out a follow-up experiment it must be determined which factors besides P 

have a strong effect on the response. It was noted that the main effects of each 

371 



parameter were biased by significantly large values of Q;"s, which resulted from the 

exertion of penalties due to constraint violations. As such, the effect of each 

parameter on system cost, MDT and spurious trip frequency was established. 

In a similar manner to that described in section 11.4.4, the main effect of each factor 

level with respect to system cost was established. This data is given in table 11.10. 

In addition, table 11.10 specifies the sum of squares due to each factor and percentage 

of the variation for which the factor is responsible. 

Factor Main Effect with respect to Cost ANOVA % 

Level 1 Level 2 Level 3 ANOVA 

V 961.3 994.5 6613 0.4 

P 933.1 992 20815 l.l 

E 719.8 973.1 1224.2 1144985 62.9 

Kl 970.9 923.4 43150 2.4 

NI 939.8 982 995.3 15114 0.8 

H 887.5 1142 588 0.03 

K2 978.7 969.2 582627 32 

N2 956.4 967.6 993.1 6367 0.3 

81 973.1 973.1 970.9 29 0.002 

82 970.9 973.1 973.1 29 0.002 

Table 11.10 Main Effects and Variance of each Factor with respect to Cost 

The main effect, sum of squares and percentage of the variation were also established 

with respect to system MDT and spurious trip frequency. This data is given in tables 

11.11 and 11.12 respectively. 

372 



Factor Main Effect with respect to MDT ANOVA % 

Level 1 Level 2 Level 3 ANOVA 

V 128.3 112.9 1432.2 5.2 

P 123.6 249.9 373.5 1.3 

E 96.14 125.8 147.7 12052.3 43.7 

K1 123 123.3 0.4 0.001 

N1 116 126.2 127.4 707.1 2.6 

H 114.7 140.2 3919.9 14.2 

K2 123.6 123 2.2 0.008 

N2 122.1 123.7 123.9 17 0.06 

81 146 119.3 104.2 8064.4 29.2 

82 123.9 121.9 112.7 1011.9 3.7 

Table 11.11 Main Effects and Variance of each Factor with respect to MDT 

Factor Main Effect with respect to Fsrs ANOVA 0/0 

Level 1 Level 2 Level 3 ANOVA 

V 0.91 1.23 0.62 4.5 

P 0.66 1.77 7.4 53.3 

E 0.91 l.l4 1.04 0.24 1.7 

K1 1.31 0.89 1.06 7.6 

N1 0.97 0.82 1.3 1.07 7.7 

H 1.04 1.02 2.7e-3 0.02 

K2 1.5 0.81 2.6 18.7 

N2 0.85 l.ll 1.13 0.44 3.2 

81 1.06 l.02 l.01 0.13 0.09 

82 0.9 0.99 l.2 0.43 3.1 
Table 11.12 Main Effects and Variance of each Factor with respect to F srs 

The main effects with respect to cost, MDT and spurious trip frequency are shown 

graphically in figures 11.3, 11.4 and 11.5 respectively. The dotted lines in figure 11.5 

illustrate the main effects for each parameter for those designs with P at level 1 only. 

373 



1300 

1200 

1100 

~1000 / / 

900 
,r / ..... .-/. · .. · · 

800 

700 

150 

140 

130 
I-
0 120 :l!: 

110 

100 

90 

1 21 21 2 31 21 2 31 21 21 2 31 2 31 2 3 .. ...... ' • --- 'W' v p E 

, .,..." 
K1 N1 H K2 N2 {}1 

Figure 11.3 A Plot ofthe Factor's Main Effects Regarding Cost 

\/ ---.... 

2 1 2 1 2 31 21 2 31 21 21 2 31 2 31 2 3 

L...s 
, ... ..... ..... •• _4 _ 

~ ........... ....... - , 

V P E K1 N1 H K2 N2 {}1 {}2 

Figure 11.4 A Plot of each Factor's Main Effects regarding MOT 

374 



1.8 

1.7 

1.6 

~ c: 1.5 
Q) 

~14 
Q) at 1.3 

.9-1.2 
'-
I-
en 1.1 
:J 

.Q 1.0 
'-
:J 
0.0.9 
rn F".-·f'-J 

0.8 " .. . . .~ • 0.7 .. 
G' 

0.6 

. ... ~. e' 
.0 

e. 
.iI .f • • 

0.5 
.. G' 

'0 

21 21 2 31 21 2 31 21 21 2 31 2 31 2 3 

v p E K1 N1 H K2 N2 {}1 {}2 

Figure 11.5 A Plot of the Factor's Main Effects regarding F SYS 

Factors E and H explain a major portion of the total variation of cost, 63% and 32% 

respectively, Additionally, E and H account for a large portion of the total variation 

ofMDT. 01 and to a lesser extent Valso contribute to the variation ofMDT, 

The major parameters which contribute to the variation in spurious trip frequency are 

those associated with the pressure transmitters. However, the parameter governing 

the pressure transmitter type accounts for over 50% of the variation alone. Typically, 

a spurious trip violation is heavily penalised, A design that constitutes pressure 

transmitters of type 2 generally has a high spurious trip frequency and hence, receives 

a substantial penalty. This explains the dominance of parameter P regarding variation 

of the penalised system unavailability. As can be seen in figure 11.5, significant 

variation in the trip frequency still exists in many of the parameters when only those 

designs in the matrix with pressure transmitter type 1 are considered. However, this 

375 



variation occurs below the spurious trip limit (i.e. 1.0) represented by the dotted line 

in the figure. As such, it is estimated that for PI the spurious trip values do not incur 

any penalty and therefore, do not affect the system unavailability. 

Due to consideration given to the effect of the parameters on the constraints of the 

safety system design it was decided to carry out a follow-up experiment addressing 

parameters E, H, V, 81 and fJ2 specifically. (The calculated main effect of fJ2 on 

MDT was not significantly large, however, common sense dictates that there may be 

an error in the numerical information). 

11.4.8 Follow-up Experiment 

A follow-up experiment involving fewer factors can be used to explore the response

factor relationship in more detail. The purpose of this step is to verity that the 

optimum conditions suggested by the initial matrix experiment are indeed accurate 

and determine whether improvements can be made. It is possible that the verification 

experiment may identifY strong interactions between the parameters and highlight 

potentially misleading information. The factors selected for the follow-up experiment 

and their alternate levels are specified in table 11.13. 

Factors Levels 

1 2 3 4 

V 1 2 

E I 2 

H 1 2 

81 25 30 35 40 

82 25 30 35 40 

11.13 Factor Levels in the Follow-up Experiment 

Observations from the screening experiment implied that the inclusion of2 ESD 

valves is not beneficial and indicated the need to study the test intervals in more 

detail. Note that a trip configuration of 1 from 2 and 2 from 3 pressure transmitters 

376 



were included for subsystem 1 and 2 respectively. These parameter values are the 

best settings predicted in the screening experiment. 

11.4.8.1 Design ofa Matrix Experiment 

In this study it was decided not only to estimate the main effects of the 5 factors listed 

in table 10.13 but also to estimate 4 key interactions. The four interactions 

considered to be most important were: 

1) Valve type and ESD valve number, V x E. 

2) Valve Type and HIPS valve number, Vx H. 

3) ESD valve number and HIPS valve number, E x H. 

4) Test interval 1 and test interval 2, B J x (J2. 

Construction of the Orthogonal Array 

An appropriate orthogonal array must be constructed for the stated factors, their 

alternate levels and the specific interactions. We are dealing with a more complicated 

combinatoric problem than that ofthe screening experiment and as a result the 

construction of the orthogonal array is more complex. To ensure that the array fits 

the study it is necessary to count the total degrees of freedom. This detennines the 

minimum number of experiments that must be performed to analyse all the chosen 

elements. In general, the number of degrees of freedom associated with each factor is 

equal to one less than the number oflevels for that factor. The degrees of freedom for 

the follow-up experiment was calculated as follows 

Source 

Two 4-level factors: M and ~ 

Three 2-level factors: V, E and H 

Three 2-factor interactions between 2-level columns 

One 2-factor interaction between 4-level columns 

Total 

377 

Degrees of Freedom 

2x(4-1)=6 

3 x (2 -I) = 3 

3 x (2 - 1)(2 - 1) = 3 

(4-1)(4-1)=9 

21 



Since there are 2-level and 4-level factors it was preferable to use one of the 2-level 

standard arrays. The array must have 21 or more rows in account of the 21 degrees of 

freedom. The next smallest 2-level array is L32 (Ref 63). 

The interaction table given for the L32 array (Ref 63) was used to establish columns 

for each interaction. Factors V, E and H were, thus, assigned to columns 1, 2 and 4 

respectively. Two 4-level columns were required to accommodate (}} and 02. This 

was achieved using the column merging method. Basically, to create a 4-level 

column in a standard 2-level orthogonal array, any two columns and their interaction 

column are merged (the reader is referred to reference 6 for a more detailed 

discussion of this approach). Columns 7 and 8 were arbitrarily chosen to form a 4-

level column for (}1. Column 15, which represents the interaction between columns 7 

and 8, was kept empty. Next, columns 9 and 16 were arbitrarily chosen to 

accommodate 02. The interaction column 25 was kept empty. 

Column 3 contains interaction between columns 1 and 2, so it can be used to estimate 

the interaction V x E. Similarly, column 5 contains interaction between columns 1 

and 4, thus estimating V x H and column 6 can estimate the interaction E x H. 

Finally, column 22 estimates the interaction (}} x 02. All the interaction columns 

were free from main effects. The assignment of factors to the columns of the L32 

array is thus: 

Factor Column Factor Column 

V 1 VxE 3 

E 2 VxH 5 

H 4 ExH 6 

(}1 7,8,15 (}1 x 02 22 

02 9,16,25 

The final matrix experiment shown in table 11.14 (stating only the columns 

corresponding to the main effects) is an orthogonal array. In any pair of columns all 

components occur and they occur an equal number of times. The values of the levels 

of each factor are specified in the table as opposed to using their level code (namely 1 

378 



and 2 for a 2-1evel factor and so on). This gives a clearer indication of the design 

characteristics being investigated in each run. 

De.lgn V E H 01 02 Cost MDT Fsrs Qsrs Q;rs 

No. 

1 1 0 1 25 25 652 135.2 0.542 9.7e-3 l.56e-3 

2 1 0 1 25 30 652 126.2 0.542 1.l5e-3 1.l6e-3 

3 1 0 1 30 35 652 106.2 0.542 1.63e-3 1.63e-3 

4 1 0 1 30 40 652 101.4 0.542 1. 85e-3 1.85e-3 

5 1 0 2 35 25 922 153.6 0.551 7e-4 3.4e-3 

6 1 0 2 35 30 922 137.8 0.551 8.42e-3 1. 72e-3 

7 I 0 2 40 35 922 119 0.551 1.l3e-3 1. 13e-3 

8 1 0 2 40 40 922 110.5 0.551 l.3e-3 1.3e-3 

9 1 1 1 35 25 922 141.7 0.551 1.2ge-3 2.63e-3 

10 1 1 1 35 30 922 132.7 0.551 1.53e-3 1.85e-3 

11 1 1 1 40 35 922 115.3 0.551 2.03e-3 2.04e-3 

12 1 1 1 40 40 922 110.5 0.551 2.32e-3 2.32e-3 

13 1 1 2 25 25 1192 218.4 0.56 4.67e-4 1.08e-2 

14 1 1 2 25 30 1192 202.4 0.56 5.62e-4 9.08e-3 

15 1 1 2 30 35 1192 170.6 0.56 7.87e-4 5.76e-3 

16 1 1 2 30 40 1192 162.1 0.56 9.02e-4 4.95e-3 

17 2 0 1 35 35 602 89.1 0.625 2.33e-3 2.33e-3 

18 2 0 1 35 40 602 85.2 0.625 2.6e-3 2.6e-3 

19 2 0 1 40 25 602 94.4 0.625 1. 94e-3 1. 94e-3 

20 2 0 1 40 30 602 87.1 0.625 2.31e-3 2.31e-3 

21 2 0 2 25 35 822 134.6 0.72 7.15e-4 1.24e-3 

22 2 0 2 25 40 822 127,9 0.72 8.22e-4 8.23e-4 

23 2 0 2 30 25 822 142.5 0.72 6.1e-4 2.03e-3 

24 2 0 2 30 30 822 130 0.72 7.36e-4 7.36e-4 

25 2 1 1 25 35 822 143.5 0.72 l.56e-3 3.4e-3 

26 2 1 I 25 40 822 139.6 0.72 l. 77e-3 2.87e-3 

Table 11.14 Matrix Experiment Table 11.15 Fitness Data 

379 



27 2 I I 30 25 822 137.3 0.72 1.34e-3 2.18e-3 

28 2 I I 30 30 822 130 0.72 1.61e-3 1.61e-3 

29 2 I 2 35 35 1042 133.7 0.81 9.48e-4 l.38e-3 

30 2 I 2 35 40 \042 127 0.81 1.0ge-3 1.l0e-3 

31 2 I 2 40 25 \042 145.1 0.81 7.64e-4 2.5e-3 

32 2 I 2 40 30 \042 132.6 0.81 7.22e-4 1.23e-3 

Table 11.14 Contd. 855.1 132 0.63 1.26e-3 2.6e-3 

Table 11.15 Contd. 

Table 11.15 gives the cost, MDT, spurious trip frequency, system unavailability and 

penalised system unavailability of each design in the matrix experiment. The average 

values of each are specified in bold in the last row. The best design, also stated in 

bold in row 24 of table 11.14 and 11.15, has a system unavailability of7.36 x 10-4. 

11.4.8.2 Data Analysis 

The data in table 11.15 was analysed by the standard procedures introduced in section 

11.4.4 to determine the main effect of each factor with respect to the penalised system 

unavailability. This data is given in table 11.16 and the effects plotted in figure 11.6. 

Factor Level 

1 2 3 4 

V 3.32e-3 1.46e-3 

E 1.93e-3 3.27e-3 

H 1. 97e-3 3.22e-3 

81 3.81e-3 2.5ge-3 2.12e-3 1. 87e-3 

82 3.37e-3 2.46e-3 2. 32e-3 2.23e-3 

Table 11.16 Main Effects of Factors 

380 



*10-3 

E 4 
2» 
en:!::::: 
»= 
~ {il3 
Q)'w tIl .- > 
tIl c 2 c=> 
Q) 

0.. 

1 
12121212341234 

""'-' ""'-' ""'-' '-""",.-' SW' 
, , 

v E H -G1 

Figure 11.6 Main Effects of Factors in the Follow-up Experiment 

It is estimated from the main effects that the settings V2, El, Ht, (J] 4 and (J24 would 

give the lowest penalised system unavailability. A confirmation run gives 

• MDT = 78 hours 

• Cost = 602 units 

• Spurious trip frequency = 0.625 per year 

• Probability of system unavailability = 0.0031 (no penalties incurred) 

This design is comparatively poor and hence, consideration is given to the key 

interactions. 

Table 11.17 represents the data from the interactions V x E and V x H. Specifically, 

the main effect off actor E is calculated at the first level off actor V, then the second 

level off actor V. V x H is considered in a similar manner. Figure 11. 7 illustrates 

these values graphically by plotting the response data in table 11.17 against factors E 

and H for both levels of factor V. 

E H 

1 2 1 2 

V 1 3.65e-3 7.21e-3 1.8e-3 4.7e-3 

2 1.7Se-3 1. 9ge-3 l.3e-3 2.4e-3 

Table 11.17 V x E and V x H Interaction Effects 

381 



*10-3 
~ 
j5 

8 

.!!! 7 .n; 
> 6 .. 
c: 
~ 

5 
E .. 

4 i en 
3 "0 .. 

. !I! 2 • m .. V=2 c: .. 1 0.. 

E, E2 H, H2 

Figure 11.7 Effects Plot for the V x H and V x E Interactions 

Effects were also calculated for the interactions Ex H and (}] x B2. These are given 

in tables 11.18 and 11.19 respectively. An effects plot of the these interactions is 

illustrated in figure 11.8. 

E 

1 2 

H 1 1. 92e-3 2.32e-3 

2 l.54e-3 4.5ge-3 

11.18 E x H Interaction 

Data 

(}1 

(}2 

1 2 3 4 

1 6.16e·3 5.12e·3 1.84e-3 2.16e-3 

2 2.1e-3 1.17e-3 3.7e-3 3.4e-3 

3 3.01e-3 1. 78e-3 1.86e-3 1.85e-3 

4 2.22e-3 1. 77e-3 1.58e-3 1.81e-3 

11.19 (}1 x (}2 Interaction Data 

382 



~ 
*10-3 

:s 
.!!! 7 .0; 
> 6 .. 
c: 

-G1 = 30 

::::l 
5 

E /-1 CD 

i 4 
If) 

3 .., 
CD 
.!I! 
Oi 2 • c: .. 
CD 1 E=O a. -G1 = 40 

H, H2 

Figure 11.8 EtTects Plot for the E x Hand 81 x 82 Interactions 

11.4.8.3 Interpretation of Results 

If there is no interaction between 2 factors an effects plot of one factor against both 

levels of the other will portray two parallel lines. No interaction implies that the 

change in the level of one factor will produce the same change in the response 

regardless of the level of the other factor. In this case, the optimum levels identified 

by the main effects are valid. If the lines on the effects plot are not parallel but have 

the same direction of movement then there is a presence of interaction. However, the 

optimum levels identified by the main effects are likely to still be valid. This is 

termed a synergistic interaction. However, an inconsistent direction of movement on 

the effects plot implies a strong interaction between the factors. In such cases the 

optimum level identified by the main effects can be misleading. This is termed an 

anti-synergistic interaction. 

It is apparent from the main effect and interaction plots that: 

• There is a synergistic interaction between parameters V and E and V and H. The 

interaction is stronger in the former. Data in table 11.17 verifies the main effects 

data (see figures 11.6 and 11.7), which states that the best settings for parameters 

383 



V, E and H are 2, I and I respectively (i.e. valve type 2 with 0 ESD valves and I 

HlPS valve). 

• There is an anti-synergistic interaction between parameters E and H. This makes 

sense as both incur significant cost to the design. Data in table 11.18 contradicts 

that of the main effects data. It can be seen from figure 11.8 that when the 

number of ESD valves is 0 (its optimal setting) the best level for factor H is 2 

(i.e.2 HlPS valves fitted). 

• Strong interaction exists between the maintenance test interval parameters and as 

such the main effects associated with 8i and (J2 may be misleading. The 

implication from figure 11.8 is that the higher maintenance test interval values are 

generally beneficial. This could be due to the fact that such values do not incur a 

penalty as a result of a MDT violation. It is most likely that the fittest designs are 

associated with the lower test values however, such results are obscured by 

penalties due to MDT violation. Despite this, the best settings for both test 

parameters were predicted to be level 2 (i.e. 30 week intervals for each). 

11.4.8.4 Optimum Factor Settings 

The best settings of the factors suggested by the above results are identical to that of 

the best design in the design matrix of the follow-up experiment (note that the best 

settings off actors P, Ki, Ni, K2 and N2 are carried over from the initial experiment). 

As such, a verification experiment is not required to establish the response associated 

with the predicted best design. The performance characteristics of the resulting best 

design are summarised in table 11.20. The safety system is over 99.9% available and 

achieves full use of the MDT resource. 

384 



Subsystem 1 Subsystem 2 V P 

E KIINI 8 H K21N2 8 

0 112 30 2 213 30 2 1 
-._-------.--

MDT l30 

Cost 822 

Spurious Trip Frequency 0.72 

System Unavailability 7.36e-4 

Penalised System Unavailability 7.36e-4 

Table 11.20 Characteristics of the Estimated Optimal Design 

11.4.9 Discussion of Results 

Data analysis of the initial experiment clearly dictated that the optimal safety system 

design should constitute pressure transmitters of type 1. It was further implied that 

the optimal trip configuration using this pressure transmitter is 1 from 2 for 

subsystem 1 and 2 from 3 for subsystem 2. It was noted that penalised designs were 

causing a bias in the main effects and as such, further analysis was carried out to 

determine which parameters had the greatest effect on constraint violation. The 

implication was parameters E, H, Vand 81 are the most influential. Logic dictates 

that the parameter 82 is also influential as regards system MDT. 

In light of this evidence a more detailed follow-up experiment was implemented 

using the factors stated above. A study of potential key interactions was also 

incorporated. It was found that parameters V and E and V and H portrayed a 

synergistic interaction. Whereas, E and H and both test parameters portrayed an anti

synergistic interaction. The interaction plots indicated that the optimal safety system 

design incorporates 0 ESD valves and 2 HIPS valves of type 2 with both test intervals 

set at 30 week intervals. 

385 



The optimum level predicted for each factor corresponded with the best design in the 

follow-up matrix experiment. The system unavailability of the design is 7.36 x 10-4 

with no constraint violations. 

11.5 Application of Local Optimisation Techniques 

Common sense dictates that KI and NI, in addition to K2 and N2 will portray 

significant interaction. A matrix experiment could be developed in a similar vein to 

that described in section 11.4.7 to investigate these interactions further. In the main, 

however, the experimental approach is a global technique that considers the entire 

search space to glean greater knowledge in order to determine potentially good (and 

bad) areas of the space. This knowledge can then be used to assist further, more 

sophisticated techniques. 

The grid-sampling technique and logical search approach, introduced in chapters 8 

and 10 respectively, are in contrast, localised, hill-climbing methods that rely on a 

good start point to achieve an optimal solution. As oppose to further refinement of 

the resulting design specified in table 11.20, denoted by X' , using SDE's, the design 

vector is used as an initial design point in the aforementioned localised approaches. 

Results arising from application of the grid-sampling approach are specified in table 

11.21 and 11.22. As can be seen, the first design predicted to be an improvement 

over X' is inaccurate in its approximation of the spurious trip frequency. The 

boundaries of the search space about the initial design vector are, therefore, reduced, 

a further design predicted and subsequently verified. Again, the predicted design's 

spurious trip frequency is inaccurate. This process continues until the boundaries are 

maximally reduced and hence, a safety system design more optimal then the initial 

design vector, X', is not achieved. An explanation for this could be that X' is 

exceedingly fit. As such, the errors introduced via use of approximate objective 

functions to analyse the search space about the initial design point are large in 

comparison to the difference between the initial design vector and the global 

minimum. 

386 



Predidfd Acrq>ted Actual 

Design Design E K,IN, H K,JN2 P V ~ fh. Qsrs 

No. No. 

Initial Design 0 112 2 2/3 1 2 30 30 
7.36e-4 

1 - 0 1/2 2 1/4 -1 2 30 31 

2 - 0 111 2 114 -1 2 30 30 
-3 - 0 112 2 114 1 2 31 31 

4 - 0 112 2 1/4 -1 2 32 31 

Table 11.21 Grid-sampling approach. Design Characteristics Using ,to) = X' 

Predicted Accepted Predicted Predicted Actual Actual MDT Cost 

Design Design Q SYS FSYS QSYS FSYS 

No. No. 

Initial Design - - 7.36e-4 0.72 130 822 

1 - 5.08e-4 0.913 - 1.24 129.7 842 

2 - 5.33e-4 0.782 - 1.11 130 822 

3 - 5.34e-4 0.913 - 1.24 127.5 842 

4 - 5.34e-4 0.913 - 1.24 125.4 842 

Table 11.22 Grid-sampling Approach: Fitness Values of Each Predicted Design 

The final design resulting from application of the search logic approach with variable 

ordering {Nz, Kz, H, E, NI, KI, H, Kz, Nz, E, KI, Nt} using ,to) = X' is given in table 

11.23. It can be seen that the resulting design has a 1 from 2 as opposed to a 2 from 3 

pressure transmitter trip configuration constituting subsystem 2, in addition to 

modification of the maintenance test interval parameters. An improvement of 1.3 x 

10-5 in system unavailability is achieved resulting in a safety system design which is 

over 99.92% available. The logical search approach implements an accurate 

investigation of the region directly surrounding the value of each variable in the 

initial design vector, whilst considering a degree of interaction between the design 

variables. The initial point proves, in this case, to be sufficiently fit such that the 

believed global optimum of the search space is found. 

387 



E K,IN, H K,/N2 P V 8t Bz Cost Fsrs MDT Qsrs 

Xo) 0 112 2 2/3 1 2 30 30 822 0.72 130 7.36e-4 

X") 0 112 2 112 1 2 34 26 802 0.977 129.3 7.23e-4 

Table 11.23 The Logical Search Approach Using XO) = X' 

11.6 Conclusion and Summary 

To summarise, the use of orthogonal arrays to develop an experimental design is an 

efficient way to study the effects of several control factors simultaneously. It is 

beneficial to adopt an iterative approach to acquire knowledge as the experimental 

plan progresses and thus, adapt the process accordingly. In the worst case scenario 

(i.e. if many factors exhibit strong interactions) good and bad regions of the search 

space are identified and an indication of the relative importance of each factor 

acquired. As such, further exploration can proceed using an appropriate local search 

technique based on the information established. In the best case scenario, the 

optimum level for some, if not all, the factors is determined. Importantly, the 

experimental effort required is much smaller when compared to other methods of 

exploration such as guess and test (trial and error), one factor at a time and full

factorial experiments. 

388 



CHAPTER 12 

CONCLUSIONS AND FUTURE WORK 

12.1 Conclusions 

The aim of the thesis is to analyse optimisation techniques in order to produce 

optimal use of resources in safety system designs, such that the best performance 

possible, not just adequate perfonnance, is obtained. During the study the 

following is determined: 

1) The use of house events in a fault tree structure can be used to represent the 

failure causes of all potential designs. 

2) Converting the fault tree structure to a Binary Decision Diagram results in all 

types of design parameters (component selection, redundancy levels and test 

intervals) being represented by 'probability' values in the analysis. The BDD 

also provides an efficient analysis method for all design options. 

3) The use of a Simple Genetic Algorithm provides a means of optimisation 

which is capable of coping with all the requirements of the design problem 

and the approach was successfully tested on a High Pressure Protection 

System. 

4) The original SGA highlighted potential areas of improvement. The 

modification methods have the following features: 

• Each method modifYing the exploration technique of the MTI parameter 

values improves the use of the MDT resources available and thus, overall 

system perfonnance. 

• ModifYing the cost, and hence spurious trip penalty, enables a certain 

leeway regarding the cost constraint. Good system designs, which cost 

more than the allotted 1000 units, have a greater chance of being 

considered in later generations of the GA 

• Finally, and most importantly, the modified conversion method provides 

an accurate representation of the fitness values of each system design to 

theGA 

5) The modified GA was successfully tested on a Firewater Deluge System. 

6) The use of a Weibull distribution to model the relevant components within the 

modified GA approach enabled consideration of components of wear·out type. 

389 



7) While GA's have been applied here to two safety systems the procedure is 

generic and could equally be applied to optimise the performance of any 

engineering system whose failure causes can be represented by a fault tree. 

8) The grid-sampling optimisation method is an iterative procedure that utilises 

the fault tree analysis technique to assess the performance of any given design. 

If a sufficiently fit initial design vector is used the resulting design makes the 

best use of available resources rather than achieving just an 'adequate' design. 

9) While the grid-sampling method has been applied here to a safety system the 

procedure is generic and could equally be applied to optimise the performance 

of any engineering system whose failure causes can be represented by a fault 

tree. 

10) The search-logic approach was successfully tested on a High Pressure 

Protection System, proving to be both efficient and effective 

11) The statistically designed experiment (SDE) was successful in its ability to 

identifY good and bad regions of the search space for the HIPS optimisation. 

12)The iterative approach of the SDE, adapting the process accordingly as the 

experimental plan progresses, can be applied to optimise the performance of 

any engineering system whose failure causes can be represented by a fault 

tree. 

13)The GA, grid-sampling and search-logic methods are automated, providing 

less of a reliance on engineering judgement. However, both the grid-5ampling 

and the search-logic approach rely on identification of a sufficiently fit initial 

design vector. In addition, the search-logic approach requires identification of 

an appropriate variable ordering. 

14)The SDE is adapted as the plan progresses, where each step depends on 

knowledge gained from previous steps. As such, this approach is not easily 

automated. However, it is efficient in that all information evaluated is used. 

I 5) Constraints on the available resources do not inhibit application of any of the 

methods. Implicit or explicit constraints of the equality or inequality form can 

be incorporated. 

16) Application of the SDE, specifically the development of an orthogonal matrix 

experiment, is restricted somewhat by infeasible design vectors, i.e. designs 

such that variables within the parameter set are non-sensical. For example, the 

number of pressure transmitters is 2 and the number of pressure transmitters 

required to trip the system is 3. 

390 



17) Maintenance activity can be incorporated into the optirnisation scheme of 

each approach if required to provide maximum benefit from the procedure or 

the design can be considered in two stages, as is traditional, with the system 

structure being formulated first and the maintenance activity specified 

afterwards. The range of the maintenance test values that can be considered 

is, however, restricted in the SOE approach. 

18) In application to the High Pressure Protection System the search-logic 

approach proved to be most efficient and effective. However, as regards a 

larger more complex system, such as the FDS, application of the modified GA 

in conjunction with a local search approach, such as the search-logic method, 

to the resulting design would be most beneficial. 

19) The GA is particularly advantageous due to its lack of reliance on engineering 

judgement. It proceeds from a randomly generated population of points and as 

such, knowledge of the system is not required to initiate the search. The 

search continues in an automated fashion, which can be terminated at any 

point and a result obtained. In contrast, both the search-logic and the grid

sampling approach are local in scope and require good engineering judgement 

to detennine an initial design vector. Similarly, the SOE requires a degree of 

knowledge to establish the initial matrix experiment and to plan further 

experiments as the search proceeds. 

12.2 Future Work 

Future work would involve application of each optimisation approach, i.e. GA's, 

grid-sampling, search logic and SOE, to a variety of different safety systems. 

Results from this could lead to the development of alternative optimisation 

approaches or modifications to the original techniques, therefore improving 

efficiency and accuracy. In addition, different optimisation strategies could be 

employed. As opposed to optimising system availability whilst constraining cost, 

cost could be optimised whilst constraining system availability. 

Fault tree analysis has proved itself as a very flexible and useful technique for the 

assessment of system failure characteristics. Incorporating the use of alternative 

analysis techniques, such as Markov methods, could however reduce the 

assumptions necessary when using the fault tree method and, therefore, expand 

391 



the applicability of the optimisation techniques to a more diverse range of 

systems. 

392 



REFERENCES 

1. P.R. Adby, M.A.H Dempster, "Introduction to Optimisation Methods", 

Chapman and Hall, 1974. 

2. KK Aggarwal, J.S. Gupta, and KB.Misra, "A New Heuristic Criterion for 

Solving a Redundancy Optimisation Problem",IEEE Transactions on 

Reliability, Vol. R-24, No. I, pp 86-87,1975. 

3. S.B. Akers, "Binary Decision Diagrams," IEEE Trans. Computers, Vol. C-27, 

No. 6, June 1978. 

4. M.M. Ali, C. Storey, "Modified Controlled Random Search Algorithms", 

International Journal of Computers and Mathematics, Vol. 55, pp229-235, 

1994. 

5. lD. Andrews and T.R. Moss, "Reliability and Risk Assessment," Longman 

Scientific and Technical, UK, 1993. 

6. T. Back, "Evolutinary Algorithms in Theory and Practice", Oxford University 

Press, Oxford, 1997. 

7. J. Baker, "Adaptive selection methods for genetic algorithms", in Proceedings 

of the Second International Conference on GeneticAlgorithms, J. Grefenstette , 
(Bd.), Lawrence Erlbaum Associates, Hillsdale, NJ, 1987. 

8. L.M. Bartlett, lD. Andrews, "Efficient Basic Event Orderings for Binary 

Decision Diagrams", Proceedings of the Annual Reliability and 

Maintainability Synposium, Anaheim, pp61-68, 1998. 

9. L. Booker, "Improving search in genetic algorithms", in Genetic Algorithms 

and Simulated Annealing, L. Davies (ed.), Morgan Kaufmann Publishers, 

1987, pp61-73. 

10. G. Box, N. R. Draper, "Empirical Model-Building and Response Surfaces", 

John Wiley & Sons, 1987. 

11. G. Box, W. Gordon, H Stuart, "Statistics for Experimenters", John Wiley & 

Sons, 1987. 

12. M.l Box, "A New Method of Constrained Optimisation and a Comparison 

with Other Methods", Computer Journal, Vol. 8, pp42-52, 1965. 

13. M. Bouissou, "An ordering heuristic for building binary decision diagrams 

from fault trees," In Proceedings of RAMS '96 Conference, Las Vegas, 

Nevada, pp208-214, 22-25 January 1996. 

14. R.E. Byrant, "Graph-Based algorithms for Boolean function manipulation, " 

IEEE Trans. Computers, Vol. C-35, No. 8, pp677-691, 1986 Aug. 

393 



15. P. Chatteljee, "Modularization of fault trees: A method to reduce the cost of 

analysis," Reliability and Fault Tree Analysis, SlAM, pplOl-137, 1975. 

16. A Chipperfield, "Introduction to genetic algorithms", in Genetic Algorithms 

in Engineering Systems, A. M. S. Zalzala and P.J. Flemming (Eds.), The 

Institution of Electrical Engineers, 1997. 

17. E.K.P. Chong, S.H Zak, "An Introduction to Optimization", John Wiley & 

Sons, Inc, 1996. 

18. S. Contini and G. de Cola, "A top-down approach to fault tree analysis using 

binary decision diagrams," Jour. European des Systemes Automatises, Vol. 30, 

No. 8, ppl115-1130, 1996. 

19. O. Coudert and 1.C. Madre, "A new method to compute prime and essential 

prime implicants of Boo lean functions," In T. Knight and 1. Savage, editors, 

Advanced Research in VLSI and Parallel Systems, pp113-128, March 1992. 

20. P.A Crosetti, "Fault tree analysis with probability evaluation," IEEE Nuclear 

Power Systems Symposium, Nov, pp465-471, 1970. 

21. D. Dasgupta, Z. Michalewicz, ''Evolutinary algorithms -an overview", in 

Evolutionary Algorithms in Engineering Application, D. Dasgupta and Z. 

Michalewicz (Eds.), Springer-VerJag Berlin, Heidelberg, 1997. 

22. K. A De Jong, "Analysis of the behaviour ofa class of genetic adaptive 

systems", PhD thesis, Dept. of Computer and Communication Sciences, 

University of Michigan, Ann Arbour, 1975. 

23. K. De Jong, "Genetic Algorithms: a 10 year perspective", Proceedings of an 

International Conference on Gas and their Applications., 1985. 

24. B.S. Dhillon, "Bibliography of literature offault trees"," Microelectronics and 

Reliability, Vol. 17, pp501-503, 1978. 

25. AK. Dhingra, "Optimal Apportionment of Reliability and Redundancy in 

Series Systems Under Multiple Objectives",IEEE Transactions on Reliability, 

Vol. 41, No. 4, pp577-582, 1992. 

26. L.C. W. Dixon, ''Nonlinear Optimisation", The English Universities Press Ltd, 

1972. 

27. L.C.W. Dixon, G.P. Szego, "Deterministic Vs Probabilistic",Toward Global 

Optimisation 2, North-Holland Publishing Company, 1978. 

28. C.E. Ebeling, "An Introduction to Reliability and Maintainability 

Engineering," The McGraw-HiIl Companies, 1997. 

394 



29. C. M. Fonseca and P.1. Fleming, "Multiobjective genetic algorithms", in 

Genetic Algorithms in Engineering Systems, A. M. S. ZaIzala and P.J. 

Fiemming (Eds), The Institution ofElectricaI Engineers, 1997. 

30. L.R Foulds, "Optimization Techniques. An Introduction", Springer-Verlag 

New York Inc, 1981. 

31. S.1. Friedman and K.J. Supowit, "Finding the optimal variable ordering for 

BinaI)' Decision Diagrams," IEEE Trans. Computers, Vo!. 39, No. 5, pp710-

714, May 1990. 

32. J.B. FusseU and W.E. Vesely, "A new methodology for obtaining cut sets for a 

fault tree," Trans. Amer. Nuc. Soc., Vo!. 15, p262, 1972. 

33. P.M. Ghare, RE. Taylor, "Optimal Redundancy for reliability in Series 

Systems", Operations Research, Vo!. 17, pp838-847, 1975. 

34. M. Gen, R Cheng, "Genetic Algorithms and Engineering Design", John 

Wiley and Sons, 1997. 

35. F. Glover and H Greenberg, "New approaches for heuristic search: a bilateral 

linkage with artificial intelligence", European Journal of Operational 

Research, Vo!. 39, ppI19-130, 1989. 

36. D. Goldberg, B. Korb, and K. deb, "Messy genetic algorithms,: motivation, 

analysis and first results", Complex Systems, Vo!. 3, pp493-530, 1989. 

37. D. E. Goldberg, "Genetic Algorithms in Search. Optimization and Machine 

Learning", Addison-Wesley Publishing Company, 1989. 

38. D. M Grove, T. P Davies, "Engineering Quality and Experimental Design", 

Longrnan Scientific and Technical, 1992. 

39. M. Hamada, "Using statistically designed experiments to improve reliability 

and to achieve robust reliability", IEEE Transactions on Reliability, Vo!. 44, 

No. 2, 1995, pp 206-215. 

40. D.F. Hassl, N.R Roberts, W.E. Vesely and F.F. Goldberg, "Fault Tree 

HandboolC', US Nuclear Regulatory Commission, 1981, NUREG-0492. 

41. E.J. Henley and R Kumamoto, "Reliability Engineering and Risk 

Assessment," Englewood Cliffs, 1981. 

42. F.S. Hillier, G.1. Lieberman, "Introduction to Mathematical Programming", 

2nd ed., McGraw-Hill, Inc, 1995. 

43. D.M. Himmelblau, "Applied Nonlinear Programming", McGraw-HiU,lnc, 

1972. 

44. J. Holland, "Adaption in Natural and ArtifiCial Systems", University of 

Michigan Press, 1975. 

395 



45. A. Homaifar, C. Qi and S. Lai, "Constrained optimisation via genetic 

algorithms", Simulation, Vol. 62, no. 4, pp242-254, 1994. 

46. Y. Hu, C. Storey, ''Efficient Generalised Conjugate Gradient Algoritiuns, Part 

2: Implementation", Journal of Optimisation Theory and Applications, Vol. 

69, No. 1, pp139-152, 1991. 

41. A. Joseph, S.I. Gass and N.A. Bryson, "Neamess and Bound Relationships 

Between an Integer-Progranuning Problem and its Relaxed Linear

Programming Model", Journal ofOptimisation Theory and Applications, 

Vo1.98, No. 1, pp55-63, 1998. 

48. J. Kallrath, J.M. Wilson, "Business Optimisation Using Mathematical 

Programming", Macmillan Press Ltd, 1991. 

49. C.Y. Lee, "Representation of switching circuits by binary decision diagrams," 

Bell Syst. Tech. J., No. 38, pp985-999, July 1959. 

50. N. Liminios and R Ziani, "An algorithm for reducing the minimal cut sets in 

fault tree analysis," IEEE Trans. Reliability, Vol. R-35, No. 5, Dec, pp559-

461,1986. 

51. D. K. J Lin, "Making full use of Taguchi's orthogonal arrays", Quality and 

Reliability Engineering International, Vol. 10, 1994, pp 111-121. 

52. Y. Liu, C. Storey, ''Efficient Generalised Conjugate Gradient Algoritiuns, Part 

I: Theory", Journal ofOptimisation Theory and Applications, Vol. 69, No. 1, 

pp 129-131, 1991. 

53. M. O. Locks, "Modularizing, minimizing, and interpreting the K & H fault

tree," IEEE Trans. Reliability, Vol. R-30, Dec, pp411-415, 1981. 

54. D.G. Luenberger, "Linear and Nonlinear Programming", 2nd ed., Addison

Wesley Publishing, 1991. 

55. D.W. McLeavey, J.A. McLeavey, "Optimisation of System Reliability by 

Branch and Bound", IEEE Transactions on Reliability, Vol. R-25 , No. 5, 

pp321-329, 1916. 

56. Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution 

Programs", Springer Verlag, 1992. 

51. Z. Michalewicz, "A survey of constraint handling techniques in evolutionary 

computation methods", in Evolutionary Programming IV, 1. McDonnell, R 

Reynolds and D. Fogel (Eds.), MlT Press, Cambridge, MA, 1995. 

58. S. Minato, N. Ishiura and S. Yajima, "Shared binary decision diagram with 

attributed edges for efficient Boolean function manipulation," Proceedings of 

the 21h ACMIIEEE Design Automation Con!, pp52-51, June 1990. 

396 



59. K.B. Misra, ''Reliability Optimisation through sequential simplex search", 

International Journal oj Control, Vol. 18, No. 1, 1973. 

60.K.B. Misra, U. Sharma, "An Efficient Algorithm to Solve Integer

Programming Problems Arising in System Reliability Design", IEEE 

Transactions on Reliability, Vol. 40, No. 1, pp81-91, 1991. 

61. J.E. Mitchell, "Fixing Variables and Generating Classical Cutting Planes 

when using an Interior Point Branch and Cut Method to Solve Integer

Programming Problems", European Journal ojOperational Research Vol. 

100, pp623-628, 1997. 

62. D. C. Montgomery, "Design and Analysis of Experiments", Jolm Wiley & 

Sons, 3rd Edition, 1991. 

63. M. S. Phadke, "Quality Engineering using Robust Design", P T R Prentice

Hall, 1995. 

64. R L Plackett, J. P Burman, "The design of optimal multifactorial 

experiments", Biometrika, Vol. 33, pp 305-325. 

65. W.L. Price, "A Controlled Random Search Procedure For Global 

Optimisation", Toward Global Optimisation 2, North-Holland Publishing 

Company, 1978. 

66. W.L. Price, "Global Optimisation by Controlled Random Search", Journaloj 

Optimisation Theory and Applications, Vol. 40, No. 3, pp333-348, 1983. 

67. W.L. Price, "Global Optimisation Algorithm for a CAD Workstation", 

Journal ojOptimisation Theory and Applications, Vol. 55, No. I, pp133-145, 

1987. 

68. D. Quagliarella and A. Vicini, "Coupling genetic algorithms and gradient 

based optimisation techniques", in Genetic Algorithms and Evolution Strategy 

in Engineering and Computer Science, D. Quagliarella, 1. Periaux, C. Polini 

and G. Winter (Eds.), John Wiley and Sons, 1998. 

69. G.V. Reklaitis, A. Ravindran and K.M. Ragsdell, "Engineering Optimisation. 

Methods and Applications", John Wiley and Sons, 1983. 

70. D.M. Rasmuson and N.R Marshall, "F ATRAM - A core efficient cut set 

algorithm," IEEE Trans. Reliability, Vol. R-27, Oct, pp250-253, 1978. 

71. A. Rauzy, "New algorithms for fault tree analysis," Reliability Engineering 

and System Sajety, Vol. 40, pp203-211, 1993. 

72. S. Ronald, "Robust encodings in genetic algorithms", m Evolutionary 

Algorithms in Engineering Application, Das, 1997. 

397 

• 



86. Z.B. Tang, "Optimal Sequential Sampling Policy of Partitioned Random 

Search and its Approximation", Journal ofOptimisation Theory and 

Applications, Vol. 98, No. 2, pp 431-448, 1998. 

87. F.A Tillman, "Optimisation by Integer Progranuning of Constrained 

Reliability Problems with Several Modes of Failure", IEEE Transactions on 

Reliability, Vol. R-18, No. 2, pp47-53, 1969. 

88. F.A Tillman, C. Hwang and W. Kuo, "Optimisation of Systems Reliability", 

Marcel Dekker, Inc, 1980. 

89. T.J. Van Roy, L.A. Wolsey, "Solving Mixed 0-1 Programs by Automatic 

Refonnulation", Operations Research, Vol. 35, pp45-57, 1987. 

90. W.E. Vesely, "A time-dependent methodology for fault tree analysis," Nucl. 

Eng. And Design, Vol. 13, Aug, pp337-360, 1970. 

91. W.E. Vesely and RE. Narum, ''PREP and KIlT computer case for the 

automatic evaluation of a fault tree," Idaho Nuclear Corporation, Idaho FaIls, 

Idaho, IN-1349, 1970. 

92. D.B. Wheeler at ai, "Fault tree analysis using bit manipulation," IEEE Trans. 

Reliability, Vol. R-26, June, pp95-99, 1911. 

93. J.M. Wilson, "Modularizing and minimising fault trees, " IEEE Trans. 

Reliability, Vol. R-34, No. 4, Oct, pp320-322, 1985. 

94. R Yang and I. Douglas, "Simple genetic algorithm with local tuning: efficient 

global optimizing technique", communicated by W. B. Wong, Journal of 

Optimisation Theory and Applications, Vol. 98, No. 2, pp 449-465, August, 

1998. 
95. J.D. Andrews, "Optimal Safety System Design Using Fault Tree Analysis", 

Proc.lmechE, Vol. 208, ppI23-131, 1994. 
96. RM. Sinnamon, "BOO for Fault Tree Analysis", PhD Thesis, 1996. 

399 



APPENDIX I - *.ats File Format 

The fault tree structure file with extension 'ats' is an ASCn file in which each line 

contains a definition for a gate in the fault tree. The format of his file is as follows. 

The name of the gate is stated at the start of the line. Ten columns are allocated to the 

gate name and should, therefore, consist of no more than 10 alphanumeric characters. 

The next 7 columns define the gate type. The type label is one of either AND, OR or 

VOTEmln (stated in upper case). For example a 3 from 5 vote gate would be written 

VOTE3/S. Priority and inhibit gates are replaced by AND gates on creation of the tree 

structure analysis file. Columns 18 and 20 indicate the number of gate and base 

events. The limit is set at 9 of each. The remaining columns are considered in sets of 

10 and are used to represent input names of gates and primary events. Names are left 

justified and gate names precede events. Gates may be defined in the file in any 

order. However, all gates named as inputs to other gates must be defined at some 

point in the file. 

An example tree structure is shown below. 

Gatel AND 

Gate2 VOTE2/4 

Gate3 OR 

I lGate2 

14Gate3 

02X2 X4 

Xl 

X2 X3 X4 

I 



APPENDIX II - '*aqd' File Format 

The quantitative data file with the extension 'aqd' is an ASCII file in which each 

event and its associated data are defined on two lines. This file has the following 

format. 

The event name and failure probability model are specified on the first line. The 

event name is allocated in the flfst 10 columns. The model type indicator is stated in 

the 11th column. The indicators F, R, M, P and H represent the 'fixed', 'rate', 

'MTTF', 'dormant' and 'house' model types respectively. The second line specifies 

the model parameters of which there are 4 or 5 depending on the model type. The 

model parameters for each model type in the required order are: 

F: Unavailability, unconditional failure intensity, (q, w). 

R: Failure rate, repair rate, (A., v). 

M: Mean time to failure, mean time to repair, (!!, ,). 

P: Failure rate, mean time to repair, inspection intervals, (A., " e). 

H: Unavailability (0 or I) folIowed by 3 dummy variables, (0, I). 

Consider the following example of the definition of an event in an '.aqd' file: 

XI R 

0.12,140 

This defines a basic event 'XI' with model code 'R', i.e. a 'rate' probability model is 

being used. The value of each quantitative parameter associated with the rate model 

type is specified in the second row. Specifically, 0.12 represents the failure rate and 

140 the repair rate. No time units need be specified. Time units are assumed to be 

consistent. 

II 



APPENDIX III 

FAULT TREE STRUCTURE FOR THE SYSTEM UNAVAILABILITY 
FAILURE MODE OF THE mGH-INTEGRlTY PROTECTION SYSTEM 

III 



WING VALVE 

FAILS TO 

PROTECT 

MASTER VALVE 

FAILS TOP 

PROTECT 

SAFETY SYSTDI 

FAILS TO 

PROTECT 

ESD VALVE 1 

FAILS TO 

PROTECT 

TOP 

ESD VALVE 2 

FAILS TO 

PROTECT 

HIPS VALVE 1 

FAILS TO 

PROTECT 

HIPS VALVE 2 

FAILS TO 

PROTECT 



RELAY 

RELAY 

CONTACTS 

STAY CLOSED 

G6 

WING VALVE 

FAILS TO 

CLOSE 

Gla 

PNEUMATIC 

LINE REMAINS 

ENERGIZED 

SOLENOID 

VALVE STAYS 

ENERGIZED 

G5 

G4 

COIIP\n"ER 

FAILS TO 
SEND TRIP 

SIGNAL 

G7 

CONTACT 1 

RELAY 

CONTACT 2 

STAY'S 

CLOSED 

SUBSYSTEM 1 

TRIP SIGNAL 

NOT RECIEVED 

COMPUTER 

LOGIC 

FAILS 
STAYS 

CLOSED 

P=2.3e-007 

Rl/2 

P=2.3e-007 

PLC 1 

P=le-005 

SOLENOID 

VALVE STUCK 

SVW 

P=5e-006 

WING VALVE 

FAILS STUCK 

wv 

P=1.14e-005 





DORMANT 

FAILURE 

CHANNEL 1 

G14 

,----_-'1 LL-__________ ---, 

PRESSURE 

TRANSMITTER 

NO. 1 FAILS 

/1 1 "-
~ ____ --' L-____ -, 

PRESSURE PRESSURE 

TRANS NO. 1 TRANS NO. 1 

TYPE 1 FAILS TYPE 2 FAILS 

..-L 

~ 
G16 G17 

.----'1 1'---_--, .--_--.J1 IL-_---, 

PRESSURE FAILURE OF PRESSURE FAILURE OF 
TRANSMITTER TRANSMITTER 
TYPE 1 FIT, PT TYPE 2 FIT PT 
SUBSYSTEM 1 

TYPE 1, NO.1 SUBSYSTEM 1 
TYPE 2, NO.l 

~ ~ 
Pll PT1 1 P12 PT2 1 

F=O P=1.5e-006 F=O P=7e-006 

-------------------- ---_. 

TRUE IF 

K = 1 

o 
I , 









,., 



'0' 



SOLENOID 

VALVE STAYS 

ENERGIZED 

G5 

PNEUMATIC 

LINE STAYS 

ENERGIZED 

G4a 

MASTER VALVE 

FAILS TO 

CLOSE 

Glb 

SOLENOID 

VALVE 

STUCK 

SVM 

P=5e-006 

MASTER VALVE 

FAILS STUCK 

MV 

P=1.14e-005 



ESt) VALVE 2 
,,~ 



ESD VALVE 1 

FAILS STUCK 

VALVE TYPE 

FAILS 

G67 

VB TYPE PAILURE OF 

FITl'ED ESO VALVE 

1. TYPE 1 

V1 

F •• PaS.44e-006 

VALVE TYPE 2 

PAILS 

G6B 

VALVE TYPE FAILURE OP 

Frmm ESO VALVE 

2, TYPE 2 

F_1 P.le-OOS 

ESD VALVE 1 

PAILS TO 

CLOSE 

RELAY 

CONTACTS 

STAY CLOSED 

PNEUMATIC 

LINE STAYS 

ENERGIZED 

SOLENOlD 

VALVE STAYS 

ENERGIZED 

SUBSYSTEM 1 

TRIP SIGNAL 

NOT RECIEVED 

COMFUTER 

ume 
PAILS 

SOLENOID 

VALVE 

S'roCK 

SVE1 

P_Se_006 



ro •••• 



....... .... _ .. s ....... 



0--





DIESEL TANK 
ISOLATION 

VALVE CLOSED 

F=O.Ol 

DIESEL TANK 

ISOLATION 
VALVE BLOCKED 

R=1.8e-005 

DIESEL 

SUPPLY 

LOST 

DIESEL FAILS 

TO START 

OR RUN 

GDFSRl 

DIESEL - LOW 

LEVEL ALARM 

FAILS 

R=3e-005 

OPERATOR 

FAILS TO 
NOTICE LOW 

LEVEL ALARM 

F=O.Ol 

DIESEL GLOBAL 

ENGINE FAILURE 

P=le-006 



"'."_00' .......... 

". 

.... 1. .... , ... .... 



," r ..... 



.. " 

-M' FoO.t. ro .... 



HIPS VALVE 2 

FAILS TO 

""""" 





DORMANT 

FAILURE 

CHANNEL 5 

G306 

r---~I IL-________________________ -. 

PRESSURE 

TRANSMITTER 

NO. 5 FAILS 

6 

PRESSURE 

TRANS NO. 5 

TYPE 1 FAILS 

G308 

~ __ I IL-_--, 

v-l 

PRESSURE PRESSURE 
TRANSMITTER 
TYPE 1 FIT, TRANSMITTER 
SUBSYSTEM 2 TYPE 1. NO.5 

~ 
P21 PT1 5 

F=1 P=1.5e-006 

r" 

PRESSURE 

TRANS NO. 5 

TYPE 2 FAILS 

G309 

.--_-.JI 1'--_--, 

PRESSURE PRESSURE 
TRANSMITTER 
TYPE 2 FIT. TRANSMITTER 
SUBSYSTEM 2 

TYPE 2. NO.5 

~ 
P22 PT2 5 

F=O P=7e-006 

TRUE IF 

K = 1 

~ 
HK1 

F=O 



, .. 



•• 1. ...... 







'0' 



HIPS VALVE 1 

FAILS STUCK 

VALVE TYPE 

FAILS 

G96 

>s VALVE HIPS VALVE 

ryPE 1 1. TY'. 1 

"TIED PAILS 

1IV1 HIPSll 

,-, P .. S .4I4Ie-006 

VALVE TYPE 2 

FAILS 

HIPS VALVE HIPS VALVE 1 

TYPE 2 TY'PE 2 PAILS 

F<.,...." 

HIPS2l 

,-, P-le-OOS 

HIPS VALVE 

PAILS TO 

CLOSE 

COHPIJTER 

FAILS TO 

PNEUMATIC 

LINE STAYS 

ENERGIZED 

SOLENOID 

VALVE STAYS 

ENERGIZED 

TRIP SIGNAL 

RELAY 
CONTACTS 

STAY CLOSED 

SUBSYSTEH 2 

TRIP SIGNAL 

NOT RECIEVED 

COIIPU'I'ER 

LOG1O 

FAILS 

pale-OOS 

1/1 pog.1J&I 

p-2.Je-007 

SOLENOID 

VALVE STUCK 

SVH' 



APPENDIX IV 

FAULT TREE STRUCTURE FOR THE FOR THE SPURIOUS TRIP 
FAILURE MODE OF THE mGH-INTEGRITY PROTECTION SYSTEM 

IV 



~, 

~~ --, 
~ 

SRi!l 

>_2e_OO6 

WING VALVE 

CLOSES 

~, 

~~ 

PNEUMATIC 

LINE 

DE-ENERGIZED 

SOLENOID 

VALVE STAYS 

ENERGIZED 

~, 

TalP UQIlI, 
DVIllOUAY --, 
~ -

P_2e_OO6 

~ =,---'nUP JJl..aL 

P .. le-OOS 

SOLENOID 

VALVE CLOSES 

SPURIOUSLY 

ssw 

WING VALVE 

FAILS 

SPURIOUSLY 

AASTER VALVE 

CLOSES 

PNEUMATIC 

LWE 

DE-ENERGIZED 

SOLENOID 

VALVE STAYS 

ENERGIZED 

SOLENOID 

VALVE CLOSES 

SPURIOUSLY 

MASTER VALVE 

FAILS 

SPURIOUSLY 

MVS 

P=le-006 



,., 



ESD SYSTEM 

SPURIOUSLY 

CLOSES 

g62 

ESD VALVE 1 

CLOSES 

SPURIOUSLY 

ESD VALVE 

TYPE 1 

CLOSES 

ESD VALVE 

TYPE 1 

FITTED 

EVl 

g65 

ESD VALVE 

FAILS 

SPURIOSULY 

SESDll 

g63 

ESD VALVE 

TYPE 2 

CLOSES 

ESD VALVE 

TYPE 2 

FITTED 

EV2 

g66 

ESD VALVE 

FAILS 

SPURIOUSLY 

P=le-005 

PNEUMATIC 

LINE 

DE-ENERGIZED 

SOLENOID 

VALVE STAYS 

ENERGIZED 

g64 

SOLENOID 

VALVE CLOSES 

SPURIOUSLY 

SSVEl 



~~, 

TRIP SIQU.L 

SPIJ~lOUSLY 

.~ 

f\ 
g8 

I 

111T' 
T1UP EDIT IF ~lP $DlT IF 'nil. SENT IP 'nIIP SDI!' IF 
,~u l P~SUlIE ,,- .,~ 

-== -=~ '!'lANS!IlTTEU -~ IS PI'ITm ,,~ ~ PITI'ED 

/~ /~ /~ ~ 
g' 910 gll 912 

I I 
'iANNEL 1 TRUE IF CHANNEL 2 TRUE IF CHANNEL 3 TRUE IF CHANNEL 4 TRUE IF 
rnICATES N = 1 INDICATES N = 2 INDICATES N '" 3 INDICATES N = 4 

TRIP TRIP TRIP TRIP 

A ~ A ~ A ~ A ~ EN3 

F=O F=O F=O F=O 



CHANNEL 1 

INDICATES 

TRIP 

g13 

,-__ ~J IL-______________________ ~ 

CHANNEL 1 TRUE IF 

SENDS SIGNAL K = 1 

1/1 TRIP 

6 ~ 
EKl 

VI l'" 
F=O 

PRESSURE PRESSURE 
TRANSMITTER TRANSMITTER 

1 1 

TYPE 1 TRIPS TYPE 2 TRIPS 

~ 
g15 g16 

,--------', ,'-----, ,---,' ,'------, 

PRESSURE PRESSURE PRESSURE PRESSURE 

TRANSMITTER TRANSMITTER TRANSMITTER TRANSMITTER 

TYPE 1 FIT TYPE 1, NO.1 TYPE 2 FIT TYPE 2, NO.l 

0 
.J. 

~ 
SPTl 1 P2 ( SPT2 1 

I 

-
F=l P=1.5e-005 F=O P=5e-007 



... 







· -





... 



tNDlCAT£S 

"''' 
" . , 

SO!.IN:)ID 

VI\LV£ STArs 

,., 

lNDlCAT£S 

"' .. " .. 



CHANNEL 1 

INDICATES 

TRIP 

g95 

.--_---'1 LL-__________ ---, 

PRESSURE 

TRANS NO. 5 

TYPE 1 TRIPS 

g97 

.--------'1 1'---_---, 

PRESSURE 

TRANS NO 5 

TRIPS 

0 
/1 I" 

PRESSURE PRESSURE 
TRANSMITTER 
TYPE 1 FIT TRANSMITTER 

SUBSYSTEM 2 TYPE 1, NO.5 

PRESSURE 

TRANS NO. 5 

TYPE 1 TRIPS 

g98 

.--------'1 1'--_---, 

PRESSURE PRESURE 
TRANSMITTER 
TYPE 2 FIT TRANSMITTER 

SUBSYSTEM 2 TYPE 2, NO.5 

~ 0 
--'-

.•.. -
P21 SPT1 5 I SPT2 5 

1 

-
F=l P=1.Se-005 F=O P=7e-005 

TRUE IF 

K = 1 

0 
F=O 



/"', 
f .. ~~ \1 
L-- ' . 

.-------~ ~--------------------------. 

'0' 







, .. 



'0' 

:;-, I'----,-_JL_-,---__ JL_-,-----' L-r-_Jl_--r-J '-------.----' '------,-_JL_-,------' L---,-----' '------,-------' L---,-----' 

~ 



APPENDIX V 

FAULT TREE STRUCTURE FOR THE SYSTEM UNA V AILABILITY 
FAILURE MODE OF THE FIREWATER DELlGE SYSTEM 

v 





1 100% PUMP 

FAILS TO 

S.S.W.T.R. 

/l I' .-______________ ~ L ______________ --, 

1 ELEC 
PUMP FITTED 

AND FAILS TO 
S.S.W.T.R. 

(100) 

Gb112 

,--_-'1 1'-_---, 

EP NO.1 OR 1 ELEC 
EL 1 FAILS 

(100) PUMP FITTED 

~ 
F;O 

1 DIESEL 
PUMP FITTED 

AND FAILS TO 
S.S.W.T.R. 

(100 ) 

...L 

Gb113 

,--_-...JI 1'--_--, 

DP NO. 1 OR o ELEC 

DL 1 FAILS PUMPS FITTED 

(100) 

/" 
~ 

HEO 

F;O 



l DZC1llIC 
I'<IIIPS I"ITTED 

MD FAIL 
ro ".S.II.T .•• 

UGOI 

Gb122 

2 ELEC PUMPS 

PAIL 

PRO.'''' 
" • ruUl 

(.001 

Gb125 

EP NO. 2 OR 

EL 2 PAILS 

2 ELEC PUMPS 

FITl'ED 

1:1'110.'''' 
EL'I"AIU 

(1001 

.00\ i'IIKI'S 

S.S .... T ••• 
n ........sI 

" . >0 

-~ 
AND rUUI 

ro ,.s.II.T .•. 
1.00] 

Gb12J 

E + 1D 

PAIL 

Gb1212 

DP NO. 1 OR 

DL 1 FAILS 

(lOO) 

1 ELEe 

PUKP PITTED 

" . U~ D 

-~ 
~rAIUI 

TO S.S.M.T.J. 

Gb124 

2 PROM 2 

DIESEL PUMPS 

FAIL 

DP NO. 1 OR 

DL 1 PAILS 

(lOO) 

DP NO. 2 OR 

OL 2 PAILS 

o ELEe 
PUMPS PIT'I'ED 





,., 



EP NO.1 OR 
EL 1 FAILS 

(100) 

3 E ,1 0 

PUMPS FITTED 

AND FAIL 
TO S.S.W.T.R. 

(4/100) 

Gb143 

3/3E + l/lD 

FAIL (100) 

EP NO. 2 OR 

EL 2 FAILS 

Gb1411 

EP NO. 1 OR 

EL 1 FAILS 

DP NO. 1 OR 

DL 1 FAILS 

(100) 

3 ELEC 

PUMPS FITTED 

HE3 

F=l 



EP NO.1 OR 

EL 1 FAILS 
(100) 

2 E ,20 

PUMPS FITTED 
AND FAIL 

TO S.S.W.T.R. 

(lOO) 

Gb144 

2/2E + 2/2 D 

FAIL (100) 

EP NO. 2 OR 

EL 2 FAILS 

Gb1412 

DP NO. 1 OR 

DL 1 FAILS 

(100) 

DP NO. 2 OR 

DL 2 FAILS 

2 ELEC PUMPS 

FITTED 

HE2 

F=l 



EP NO.1 OR 

EL 1 FAILS 
(100) 

1 6 

1 E .3 D 

PUMP FITTED 

AND FAILS 
TO S.S.W.T.R. 

(lOO) 

Gb145 

I I 

l/lE + 3/3D 

FAIL (100) 

I 
DP NO. 1 OR 

DL 1 FAILS 

(100) 

G 12 3 

Gb1413 

J I 

I 
DP NO. 2 OR 

DL 2 FAILS 

G 12 7 

DP NO. 3 OR 

DL 3 FAILS 

G 13 4 

1 ELEC 

PUMP FITTED 



,-, ,-, 



EP NO.1 OR 
EL 1 FAILS 

(100) 

EP NO. 2 OR 

EL 2 FAILS 

) £ ,2 D 

PUMPS FI'I"l'ED 

AND FAIL 

1'0 S.S.W.T.R. 

(100) 

3/3E + 212D 

FAIL (100) 

Gb156 

EP NO. 1 OR 

EL 1 FAILS 

Gb153 

DP NO. 1 OR 

DL 1 FAILS 

(100) 

DP NO. 2 OR 

DL 2 FAILS 

3 ELEC 

PUMPS FITTED 

HE3 

F=l 



-. 



RP NO.l OR 
EL 1 FAILS 

(lOO) 

EP NO. 2 OR 

EL 2 FAILS 

3 E: .) D 
PUMPS FITTED 

AND F,\IL 
TO S.S.W.T.R. 

(lOO) 

Gb163 

3/3E ... 3!3D 

FAIL (100) 

EP NO. 1 OR 

EL 1 FAILS 

Gb166 

DP NO. 1 OR 

CL 1 FAILS 

(100) 

DP NO. 2 OR 

DL 2 FAILS 

DPNO.30R 

DL 3 FAILS 

3 ELEC 

PUMPS FITTED 

HE3 

F=l 





l' NO.l OJI; 

L 1 fAlLS 
1100) 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 1 OR 

EL 1 FAILS 

FAIL 1'0 

8.8.W.T.It. 

EP NO. 4 OR 

EL 4 FAILS 

DP NO. 1 OR 

DL 1 FAILS 

(lOO) 

DP NO. 2 OR 

DL 2 FAILS 

DP NO. 3 OR 

DL 3 FAILS 

DP NO. 4 OR 

DL 4 FAILS 











.-005 ".0.04 







1.-005 







,., ,., ,., ,., ,., ,., 



). 1 OR 

FAILS 

, •• 0 D 

0IMPlI F'nz» 

>.lID FM" 
TO ~.'.W."'.R. 

'" ,," 

113 E 
FAIL (33) 

B3tG4 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

3 ELOC 

PUMPS FITl'ED 

TO I.I.W.T.R. 

"'"'' 

""" IQtH 

>.lID FA'''' 
TO ••• ,W.T.'. 

lO' >rH 

DP NO. 1 OR 

DL 1 FAILS 

o •• ' 0 

T<> , ••. W.,...,. 
III mm 

1/3 D 

FAIL (33) 

DP NO. 2 OR 

CL 2 FAILS 

CP NO. J OR 

CL J FAILS 

o ELEC 

PUMPS FITTED 



EP NO. 1 OR 

EL 1 FAILS 

1 FROM 2 
ELEC. PUMPS 

FAIL TO 
S.S.W.T.R. 

(33113) 

B3tG21 

1/2E I 1 D 

FAIL (33) 

B3tG20 

2 E ,1 D 
PUMPS FITTED 

AND FAIL 
TO S.S.W.T.R. 

(33 113) 

B3tG5 

EP NO. 2 OR 

EL 2 FAILS 

2 ELEC PUMPS 

FITTED 

HE2 

F=O 

DP NO. 1 OR 

DL 1 FAILS 



EP NO. 1 OR 

EL 1 FAILS 

lE I 1/2 D 

FAIL (33) 

B3tG29 

1 E, 2 D 

PUMP FITTED 
AND FAILS 

TO S.S.W.T.R. 
(33 1/3) 

B3tG6 

1 FROM 2 
DIESEL PUMPS 

FAIL TO 
S.S.W.T.R. 

(33 1/3) 

B3tG30 

DP NO. 1 OR 

DL 1 FAILS 

1 ELEC 

PUMP FITTED 

HE1 

F=O 

DP NO. 2 OR 

DL 2 FAILS 



,., 

,., 



NO. 1 OR 

1 FAILS 

rAIL TO 
S.S.Of.T.R. 

Ol lIll 

2 

B4tG12 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

) I .1 D 

A)Itl rAIL 
TO S.S.W.T.1t 

CH lIll 

2/3 E I 
1/3 E + ID 

FAIL (33) 

B4tG4 

EP NO. 1 OR 

EL 1 FAILS 

1I)I+lI1D 

1/3 E 

FAIL (33) 

B3tG8 

rAlL TO 
S.S.W.T.R. 
0) 1131 

B4tG13 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

OP NO. 1 OR 

OL 1 FAILS 

3 ELEC 

PUMPS FITTED 

HE' 

F=1 



,.,1.= 
....... T ••• 
III 1111 

B4tG1S 

NO. 1 OR 

1 PAILS 

EP NO. 2 OR 

EL 2 PAILS 

UtI nIl. 
TO ....... T .•• 

Ul Illl 

1/1£ • In 0 

2120 PAIL 
1111 

10&·IOD 
~,ro 

•••• W.T ••. 
411 1111 

B4tG16 

B4tGS 

....... T ••• • ...... T ••• 

EP NO. 1 OR 

EL 1 PAILS 

nUlll 

EP NO. 2 OR 

EL 2 PAILS 

DP NO. 1 OR 

OL 1 PAILS 

I" I/U 

OP NO. 2 OR 

OL 2 PAILS 

• ...... T ••. 

III 1111 

B4tGl1 

pp NO. 1 OR 

DL 1 FAILS 

tlP NO. 2 OR 

DL 2 FAILS 

2 ELEC P1)MPS 

FITTED 



NO. 1 OR 

1 FAILS 

Ifl.·1130 
FAIL TO 

•. I .... T.R. 

<33 Ill) 

B4tG19 

1/3 D 

FAIL (33) 

B3tG31 

DP NO. 1 OR 

DL 1 FAILS 

DP NO. 2 OR 

DL 2 FAILS 

1 • ,I 0 

AIItII'AIL 
TO ....... T .... . 

lE +1/3 D I 
2/30 FAIL 

(33) 

B4tG18 

In IfJl 

B4tG6 

DP NO. 3 OR 

DL 3 FAILS 

DP NO. 1 OR 

DL 1 FAILS 

2 FROI'! 3 
DIESEL PUKPS 

rAIL TO 
....... T ..... 

III Ill) 

DP NO. 2 OR 

DL 2 FAILS 

DP NO. 3 OR 

DL 3 FAILS 

1 ELEC 

PUMP FITTED 

HEl 

F=O 



, .. 





, .. 



). 1 OR 

FAlt.S 

OP NO. 1 OR 

ot. 1 FAlt.S 

III ~ •• " D 
~.~ ... , ... ~ ... 
Ul "" 

DStel!! 

2/4 OIESEt. 

PUMPS FAIt. 

(33 ) 

OP NO. 2 OR 

ot. 2 PAII.S 

OP NO. 3 OR 

ot. J FAILS 

12 .' ~ --
,.., •••• W.~ ••• 

"'"" 

l11E + 2/4 0 

3/4 0 

FAIt. (331 

CP NO. 4 OR 

ct. 4 FAILS 

OP NO. 1 OR 

ot. 1 PAIt.S 

.... " ...... 
I" "" 

OP NO. 2 OR 

ct. 2 FAIt.S 

OP NO. J OR 

ct. 3 FAILS 

DP NO. 4 OR 

Ot. 4 FAIt.S 

1 Et.BC 

PUMP FITTED 



4/4 E 
3/4E + 1/2 D 

2/4E + 2120 
FAIL (33) 

4 E ,2 D 

PUMPS FAIL 

TO S.S.W.T.R 
(33 1/3) 

B6tG3 

331/3\ PUMPS 

FITI'ED AND 

FAIL TO 

S.S.W.T.R. 
(6 PUMPS) 

B6tGl 

33 113% PUMPS 

FAIL TO 

S.S.W.T.R. 
(6 PUMPS) 

B6tG2 

3 E ,3 D 

PUMPS FAIL 

TO S.S.W.T.R 
(33 113) 

4 ELEC 

PUMPS FITTED 

HE4 

F=O 

2 E ,4 D 

PUMPS FAIL 

TO S.S.W.T.R. 
(33 1/3) 

6 PUMPS 

FITTED 

H6P 

F=O 





ro. 1 OR 

1 PAILS 

....... T.~. 
III 1111 

BStGll 

EP NO. 2 OR 

EL 2 PAILS 

1 l .1 0 

I'w.K rAIL 
TO S.'_._T.~ 

III :1l1 

B 'L-____________ ----, 

III I • III 0 

rAIl. TO 
•••. ~.T,~. 

III 1111 

B6tGll 

llll '100 
un '2110 
1/)1 'JfIO 
nolI. Illl 

1/3 0 

PAIL (3J) 

EP NO. J OR 

EL J PAILS 

OP NO. 1 OR 

DL 1 PAILS 

DP NO. 2 OR 

DL 2 PAILS 

DP NO. J OR 

DL J PAILS 

1/J 11: • 111 0 

I'UIII'S ' ... 11. 
TO ....... T ••• 

Ul Ill) 

III I • 1I1 0 

' ... 11. TO 
• ...... T ••• 

III 1111 

3 ELEC 

PUMPS FlTTED 



? NO. 1 OR 

:L 1 FAILS 

2 FROM J 

ELEC. PUMPS 
FAIL TO 

S.S.W.T.R. 
(33 1/) I 

2 

B4tG12 

EP NO. 2 OR 

EL 2 FAILS 

2/JE+21)O 

PUMPS FAIL 
TO S.S.W.T.R. 

(33 1/3) 

B6tG12 

EP NO. 3 OR 

EL 3 FAILS 

OP NO. 1 OR 

OL 1 FAILS 

2 FROM 3 
DIESEL PUMPS 

FAIL TO 
S.S.W.T.R. 

(33 1/3) 

OP NO. 2 OR 

OL 2 FAILS 

OP NO. 3 OR 

OL 3 FAILS 



? NO. 1 OR 

L 1 FAILS 

1/3 E 

FAIL (33) 

EP NO. 2 OR 

EL 2 FAILS 

1/3E+3130 
FAIL TO 

S.S.H.T.R. 

133 1/3) 

B6tG13 

EP NO. 3 OR 

EL 3 FAILS 

OP NO. 1 OR 

OL 1 FAILS 

3 FROM 3 

DIESEL PUMPS 

PAIL TO 

S.S.H.T.R. 

IJJ 1/3) 

B5tG17 

OP NO. 2 OR 

OL 2 FAILS 

OP NO. 3 OR 

OL 3 FAILS 



,/4 E + 1/3 D 

PUMPS FAIL 

'0 S.S.W.T.R. 

(33 1/3) 

33 1/3\ PUMPS 

PITTED AND 

PAIL TO 

S.S.W.T.R. 

(33 1/3l 

B7tGl 

33 1/3\ PUMPS 

FAIL TO 

S.S.W.T.R. 

(7 PUMPSl 

4 E ,3 D 

PUMPS PAlL 

TO S,S.W.T.R. 

(33 1/3) 

B7tG3 

B7tG2 

4/4E +1/3D 

3/4E + 2/3D 
2/4£ + 3/3D 

FAIL (33l 

4 ELEC 

PUMPS FITTED 

3/4E+2/3D 

PUMPS PAIL 
TO S.S.W.T.R. 

(33 Illl 

2/4E+3/3D 

PUMPS PAIL 
TO S.S.W.T.R. 

(33 1/3l 

HE4 

F=O 

3 E .4 0 
PUMPS PAIL 

TO S.S.W.T.R. 

(33 1/3) 

7 PUMPS 

FITTED 

H7P 

F=O 



NO. 1 OR 

• 1 FAILS 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

4/4£.1/3D 
PUMPS FAIL 

TO S.S.V.T.R. 
(33 1/3) 

B7tG6 

EPNO.40R 

EL 4 FAILS 

DPNO.I0R 

DL 1 FAILS 

1/3 D 

FAIL (33) 

B3tG31 

OP NO. 2 OR 

DL 2 FAILS 

OP NO. 3 OR 

OL 3 FAILS 



, NO. 1 OR 

L 1 FAILS 

3 FROM , 

ELEC. PUMPS 

FAIL 1'0 
S.S.W.T.A. 

D3 1/31 

EP NO. 2 OR 

EL 2 FAILS 
EP NO. 3 OR 

EL 3 FAILS 

3/4£.2130 

PUMPS PAIL 

TO S.S.W.T.R. 
03 1131 

B7tG7 

EP NO. 4 OR 

EL 4 FAILS 
OP NO. 1 OR 

OL 1 FAILS 

2 FROM 3 
DIESEL PIll!PS 

P .... IL TO 

S.S.W.T.R. 
(33 1/3) 

2 

B4tG20 

OP NO. 2 OR 

OL 2 FAILS 
OP NO. 3 OR 

DL 3 FAILS 



NO. 1 OR 

J 1 FAILS 

2/4 ELEC 

PUMPS FAIL 

(33) 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

2/4 E • 3/3 D 
P\JlUIS F.UL 

TO S.S.W.T.R. 

133 1/31 

B7tG8 

EP NO. 4 OR 

EL 4 FAILS 

OP NO. 1 OR 

OL 1 FAILS 

) ""'") 

DI ESE'L PU!lPS 
FAIL 1'0 

S.S.W.T.R. 

en 1!31 

B5tG17 

OP NO. 2 OR 

OL 2 FAILS 

OP NO. 3 OR 

OL 3 FAILS 



4/4E+2/4D 

PUMPS FAIL 

TO S.S.W.T.R. 
(33 113) 

t 

33 113\ PUMPS 

FITTED AND 

FAIL TO 

S.S.W.T.R. 
(8 PUMPS) 

B8tGl 

,---~I I~ ______________________ ~ 

4 E,4 0 33 1/3\ 8 PUMPS 
PUMPS FAIL 

TO S.S.w.T.R. 

B8tG2 

,-__ ---'1 IL-______________ -----, 

4/4E + 2/40 

3/4E +3/40 

2/4E +4/40 

FAIL (33) 

3/4E+3/4D 

PUMPS FAIL 

TO S.S.W.T.R. 
(33 1/3) 

t 

2/4E+4/4D 

PUMPS FAIL 

TO S.S.W.T.R. 
(33 1/3) 

t 6 

4 ELEC 

PUMPS FITTED 

~ 
HE4 

F=Q 

FITTED 

~ 
H8P 

F=Q 



NO. 1 OR 

1 FAILS 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

H'E+21'D 
_PS FAIL 

TO S.S.W.T_R. 

Illlll] 

B8tG4 

EP NO. 4 OR 

EL 4 FAILS 

OP NO. 1 OR 

DL 1 FAILS 

2/4 DIESEL 

PUMPS FAIL 

(33) 

2 

B4tG21 

OP NO. 2 OR 

DL 2 FAILS 

OP NO. 3 OR 

OL 3 FAILS 

OP NO. 4 OR 

DL 4 FAILS 



NO. 1 OR 

1 FAILS 

, _. 
IIUIIC". FWiP5 

'AlL '1'0 
•. S.W.T.R. 

EP NO. 2 OR 

EL 2 FAILS 

tU Ill) 

3 

BStG8 

EP NO. 3 OR 

EL 3 FAILS 

Ht It • H' D 
_PS I'~IL 

'1'0 •.•. M.T.R. 

EP NO. 4 OR 

EL 4 FAILS 

In 111) 

B8tGS 

DP NO. 1 OR 

DL 1 FAILS 

,_. 
ClalL PmlPS 

r~IL TO 
•••. W.T.R . 

tU 1/3) 

3 

BStG20 

DP NO. 2 OR 

DL 2 FAILS 

DP NO. 3 OR 

DL 3 FAILS 

OP NO. 4 OR 

OL 4 FAILS 



NO. 1 OR 

1 FAILS 

2/4 ELEC 

PUMPS FAIL 

(33) 

2 

B4tG8 

EP NO. 2 OR 

EL 2 FAILS 

EP NO. 3 OR 

EL 3 FAILS 

2ft E • tit D 

PUllPS FAIL 
TO •• i.II.T.R. 

III 1111 

B8tG6 

EP NO. 4 OR 

EL 4 FAILS 

DP NO. 1 OR 

DL 1 FAILS 

DP NO. 2 OR 

DL 2 FAILS 

DP NO. 3 OR 

CL 3 FAILS 

DP NO. 4 OR 

DL 4 FAILS 



-- ....... 





.- ........ 













~_w 

J,.;IICl.TII: 'rUP 
l P.T.·' nT 

GIN7 

Aura START 

FA:ILS 

FAILURE OF 
LOW PRESSURE 

SENSING 

_1"_~J ,
~m 

~w 

IIItrlCl.TII: "-1' 
J P.T.·' .. IT 

G:IN8 

~w 

IIItrlCATII: '!IllP 
, P.T." FIT 

FSU 

R=8e-006 



FAIWRE TO 
INDICATE 'l1I.IP 

''''''''''''' SDGOR FIT 

~ 
GINIO 

I 
PRESSURE TRUE IF TS • 1 

1 PRESSURE 

TRANSMITTER SDlSOR TO TRIP 

NO. 1 FAILS 

0 ~ 
HlTS 

~I I F=l 

P.T. Ne!.l P.T. NO. 1 P.T. 00. 1 

TYPE 1 "nE' TYPE 3 

""TED nTTED nTm> 
AND FAILS AND FAILS AND PAILS 

~ ~ ~ 
GIN12 GIN13 GIN14 

I 
HLURE OF TRUE IF FAILURE OF TRUE IF FAILURE OF TRUE IF 

. T. NO. 1 P.T . P.T. NO. 1 P.T. P.T. NO. 1 P.T. 

TYPE 1 TYPE 1 FIT TYPE 2 TYPE 2 FIT TYPE 3 TYPE 3 FIT 

3 ~ G ~ 8 ~ HPTl HPT2 RPT3 

~=7e-006 F=l R=1.4e-OOS F=O R=2.1e-OOS F=O 



2 FROM 2 

P.T. 'S PAIL 

INDICATE 

Ton. 

GIN18 

TS_1AND 

DORMANT 

PAlLURE OP 

CHANNEL 2 

GIN16 

PRESSURE 

RANSMITTER 

o. 1 FAILS 

PRESSURE 

TRANSMITTER 

NO. 2 FAILS 

FAILURE TO 
INDICATE TRIP 

2 P.T. 'S PIT 

GIN15 

TRUE IP TS • 1 

1 PRESSURE 

SENSOR TO TRIP 

HiTS 

F=i 

1 FROM 2 
P.T. 'S PAIL 

TO DIDlCATE 

TRI. 

GIN23 

TS_2AND 

DORMANT 

PAIUJRE OP 

owmEL 2 

GINi? 

PRESSURE 

TRANSMITTER 

NO. 1 FAILS 

PRESSURE 

TRANSMITTER 

NO. 2 FAILS 

TRUE IF TS • 2 

2 PRESSURE 
SENSORS TO 

TRI. 

H2TS 

F=i 



,., 



P.T. '5 1 AND 2 
PAIL TO 

INDICATE 
n", 

GIN34 

PRESSURE 

:tANSMITTER 

). 1 FAILS 

PRESSURE 

TRANSMITTER 

NO. 2 FAILS 

,,>W'" 
P.T. 'S PAIL 
'1'0 INDICATE: 

~" 

GIN33 

P.T. '5 1 AND 3 
PAIL TO 

INDICATE 

, .. '" 

GIN35 

FAIWRE OF 

"",."''" l 

GIN26 

PRESSURE 

TRANSMITTER 
NO. 1 FAILS 

PRESSURE 

TRANSMITTER 

NO. 3 FAILS 

--------_._--- -

P.T. 'S 2 AND 3 
PAIL TO 

INDICATE 

~. 

GIN36 

PRESSURE 
TRANSMITTER 
NO. 2 FAILS 

PRESSURE 
TRANSMITI'ER 
NO. 3 FAILS 

n", 

H2TS 

F=l 



, .. , .. 





ESSURE 

ISMITI'ER 

1 PAILS 

' ....... , 

PRESSURE 

TRANSMIT'I'ER 

NO. :2 PAILS 

PRESSURE 

TRANSMITTER 

NO. 3 PAILS 

PRESSURE 

TRANSMITTER 

NO. 1 PAILS 

.:r.·. non. 
ro,_an 

....... 
~ 

GIN41 

PRaSSURE 

TRANSMI'M'ER 

NO. :2 PAILS 

.., ........ PRESSURB 

TRANSMITTER 

NO. :2 PAILS 

....... 

PRESSURE 

TRANSMITTER 

NO. 1 PAILS 

............ 



P.T. NO. 2 

"AILURE OF 

?T. NO. 2 

TYPE 1 

2PTl 

R=7e-006 

TYPE 1 
FITTED 

AND FA.ILS 

GIN20 

TRUE IF 

P.T. 

TYPE 1 FIT 

HPTl 

F=l 

PRESSURE 

TRANSMITTER 

NO. 2 FAILS 

GIN19 

P,T. NO. 2 

FAILURE OF 

P.T. NO. 2 

TYPE 2 

2PT2 

R=1.4e-005 

TYPE 2 

FITTED 

AND FAILS 

GIN21 

TRUE IF 

P.T. 

TYPE 2 FIT 

HPT2 

F=O 

P.T. NO. 2 

FAILURE OF 

P.T. NO. 2 

TYPE 3 

2PT3 

R=2.1e-005 

TYPE 3 

FI"M"ED 

AND PAILS 

GIN22 

TRUE IF 

P.T. 

TYPE 3 FIT 

HPT3 

F=O 



PRESSURE 

TRANSMITTER 
NO. 4 FAILS 

0 
'I I' 

P.T. NO 4 P.T. NO 4 P.T. NO. 4 

T'tPE 1 TYPE 2 TYPE 3 

Ft,...." Ft,...." FtM'ED 

AND PAILS AND FAILS AND FAILS 

/'\ ~ ~ 
GIN45 GIN46 GIN47 

I I 

I I I I 
FAIL OF TRUE IF FAIL OF TRUE IF FAIL OF TRUE IF 

?T. NO. 4 P.T. P.T. NO. 4 P.T. P.T. NO. 4 P.T. 

TYPE 1 TYPE 1 FIT TYPE 2 TYPE 2 FIT TYPE 3 TYPE 3 FIT 

0) ~ (0 ~ ( 
~ 

HPTl HPT2 4PT3 HPT3 

- -
R=7e-006 F=l R=1.4e-005 F=O R=2.1e-005 F=O 



,FFF BRANCH 

1 FAILS TO 

S.S.F.T.R. 

FAILURE OF 

APPP PUMP 

MECHANISMS 

AND LINES TO 

S.S.F.T.R. 

FAILURE OF 

AFFF SUPPLY 

FROM Rtu:;HAIN 

TO S.S. FOAH TO 

DELUGE SK.ID 

Gc 

AFFF BRANCH 

2 FAILS TO 

S.S.F.T.R. 

AFFF BRANCH 

3 FAILS TO 

S.S.F.T.R. 

AFFF BRANCH 

4 FAILS TO 

S.S.F.T.R. 

ATIVB 

AFPF TANK 

OUTLET 

ISOLATION 

VALVE BLOCKED 

Gc2 

p=l. Se-006 P=2e-006 



1 ELECTRIC 
PlIKP PITI'ED 

AND FAILS TO 

S.S.P.T.R. 

(100) 

AB1G3 

P NO.1 FAIL 

EL 1 FAILS 1 

100 

AFFF 

1 AFFF 

FAIL 

AFFF BRANCH 

1 FAILS TO 

S.S.F.T.R. 

GAPB1 

I 

PUMP 

TO 

S.S.F.T.R. 

~ 
AB1G1 

100% AFFF 

PUMP FAILS 

TO S.S.F.T.R 

AFf'F D. PUKP 
NO. 1 PITTED 

AND FAILS 1'0 

S.S.P.T.R. 
(100) 

AB1G4 

I 

I 
ELEC PUMP 

DP NO. 1 
FAILS OR 

DL 1 PAILS 

AFFF 

o ELEC 

PUMP FIT (100) 

A ~ A HAE1 

F=O F=O 

I 
AFFF 10D% 

PUMPS 

F=l 

I 
TRUE IF 1 ! 
AFFF PUMP I 

I 
I 

FITTED I 
I 

~ 
HA1P 

F=O 



AFFF BRANCH 

2 FAILS TO 

S.S.F.T.R. 

GAPB2 

~ __ ~I IL-__________________ ~ 

2 AFFF PUMPS 

FAIL TO 

S.S.F.T.R. 

1::\ 
Vl I" 

~ ____ ~ L ______________ ~ 

AFFF 100% 
PUMPS FITTED 

AND FAIL TO 
S.S.F.T.R. 
(2 PUMPS) 

::r 

AB2hG1 

~ ____ I IL-__ _ 

AFFF 100% AFFF 100% 
PUMPS FAIL 

TO S.S.P.T.R. 
(2 PUMPS) 

2h 2 

PUMPS 

~ 
HA100 

F=l 

AFFF 50% 
PUMPS FITTED 

AND FAIL TO 

S.S.P.T.R. 
(2 PUMPS) 

TRUE IF 2 

AFFF PUMPS 

FITTED 

~ 
HA2P 

F=O 



" ." --~-
ru~ TO '.S.r.T.R. 

UOOl 

AB2hG3 

2 t2 £LEe 

PUMPS PAIL 

(lOO) 

AB2bG6 

00.1 PAIL 

1 PAILS 

100 

AD al. 2 nIL 
.u:L l ruu 

UO-Ol 

2 £LEe 

PtJ><PS 

~I." 
_r.t.l~ 

TO •••• r.T ••. 
UJOQIIPSl 

IE.ID "'" 

-~ 
-~, 

TO •••• P.T.~. 
UO-Ol 

AB2hG4 

lE I lD PAIL 

(100) 

AB2bG9 

EPNO.l PAIL 

EL 1 PAILS 

100 

WaI. I 

r.t.lUl '" 
IlL l nIU 

UOOl 

"""F 
£LEe PtJ><P 

FIT 

GI.1D "'" 

-~ All:! p.t.l~ 

TO ....... T ••. 
ru.Ol 

AB2hGS 

2/2 DIESEL 

PAIL (100) 

A' al. I 

r.t.lu '" 
IlL I n.IU 

(1001 

AB2hGIO 

DP 110. 1 

rAIU '" 
lL l r.uu 

UOO) 

"FF 
o ELEC 

FUMF 



2 I',a p 

.~-
nTTUI """ rlllL 
... s.s.r.T .•. 

1/2B + OD 

PAIL (50) 

BP NO. 1 

1 FAILS 

(50) 

iSOI 

AB2fG3 

, EL£<: 

PUMPS 

~ .. UFP 

_rllll. 
....... r.T.Il. 

11..-s1 

AB2fG2 

, ., .1 D --rlT'\"l:ll """ 'Atl. 
... '.S.r.T.Il . 

"GI 

AB2fG4 

l/lE I 1/1D 
FAIL (50) 

ASP NO. 1 

EL 1 FAILS 

(50) 

t.m'1kI.l 
Am. 1 Plll.l.ll 

(50i 

MFF 

BLEC PUMP 

FIT 

.. I In D --nT"faI loRD fAIL 
... •••• r.T ••. 

1/2 DIESEL 

FAIL (50) 

nOI 

AB2fG5 

ADP NO. 1 

ADL 1 PAILS 

(50) 

MFP 

o ELEC 

F<JHP 



AFFF 100% 
PUMPS FI'I"I'ED 

AND FAIL 

TO S.S.F.T.R. 
(3 PUMPS) 

AB3hG1 

.--_--'1 IL-_--, 

AFFF 100% AFFF 100% 
PUMPS FAIL 

TO S.S.F.T.R. PUMPS 
(3 PUMPS) 

AFFF BRANCH 

3 FAILS TO 

S.S.F.T.R. 

GAPB3 

....--_-'1 1'--___________ --, 

3 AFFF PUMPS TRUE IF 3 
FAIL TO 

S.S.F.T.R. AFFF PUMPS 

FITTED 

6 ~ 
HA3P 

V-I I" F=l 

AFFF 50% 

PUMPS FITTED 

AND FAIL 
TO S.S.F.T.R. 

(3 PUMPS) 

~ 
AB3fG1 

.-----'1 1'--_--, 

50% AFFF AFFF 50% 
PUMPS FAIL 

TO S.S.F.T.R. PUMPS 
(3 PUMPS) 

3h 2 6 3f 2 6 
F=l F=O 



NO.! FAIL 

1 FAILS 

100 

~ I! ,1 0 

~-, 
FITTED AND 

FAIL TO s.s.r.T.R. 
(l001 

AB3hG3 

2/2E + 1/1D 

FAIL (lOO) 

AB3hG5 

HP NO. 2 rAlL DP NO. 1 
All. 2 'All.5 'AlLS OR 

11001 OL 1 FAlLS 
11001 

2 ELEC 

PUMPS 

HAE2 

F=l 

"'"" 100' 
~rAlL 

TO S.S.r.T.Il. 
I) Plnll'S) 

EP NO.! FAIL 

EL 1 FAILS 

100 

1 I! .2 0 
AFf'f' ~S 
rI"I"I"ED AND 

rAIL TO s.s.r.'.II.. 
1100) 

AB3hG4 

11lE +2/20 

FAIL (50) 

AB3hG6 

0' NO. 1 Ill' 110. 2 
rAlLS 0It. ,AILII OR 

[It. 1 FAlLG OL l 'AILS 
11001 (1001 

AFFF 

1 ELEC PUMP 

FIT 

HAE1 

F=O 



.... , .. "',~ 
.,.",,,. @]""" 



AFFF BRANCH 

4 FAILS TO 

S.S.F.T.R. 

GAPB4 

4 AFFF PUMPS 

FAIL TO 

S.S.F.T.R. 

Vl I 
r---------------~ L-________ ~ 

100\ AYPP 
2 E ,2 0 

FAIL TO 
S.S.P.T.R. 

MPF 100\ 
PUMPS PITTED 

AND FAIL 
TO S.S.F.T.R. 

(4 PUMPS) 

AB4hG1 

I 

I 
AFFF 100~ 

PUMPS 

A 
F=l 

50 , MPP 

2 E .2 n 
FAIL TO 

S.S.F.T.R. 

AB4fG2 

I 

50\ MPP 

PUMPS FITTED 

FAIL TO 

S.S.F.T.R. 
(4 PUMPS) 

AB4fG1 

I 

AFFF 2/2E + 1/20 

1/2E + 2120 

FAIL (50) 

1 ELEC PUMP 

FIT 

F=O 

I 
AFFF 50% 

PUMPS 

F=O 

I 
TRUE IF 4 

AFFF PUMPS 

FITTED 

F=l 



EP NO.1 FAIL 

EL 1 FAILS 

100 

2/2E + 2/2D 

FAIL (50) 

AEP NO. 2 FAIL 

AEL 2 FAILS 

(100) 

AB4hG3 

100% AFFF 
2 E ,2 D 

FAIL TO 

S.S.F.T.R. 

AB4hG2 

OP NO. 1 
FAILS OR 

OL 1 FAILS 
(100) 

OP NO. 2 
FAILS OR 

OL 2 FAILS 
(100) 

2 ELEC 

PUMPS 

HAE2 

F=l 



UFF I. PUKH 
1 NIll 2 PAIL 

TO •.•. P.T.R. 
1501 

AB3fG6 

ffiP NO. 1 

L 1 FAILS 

(50) 

AlP NO. 2 
I!L 2 fAII.S 

(501 

2121*1(20 

-~~ 
fAIL 1'0 

S.S.V.T.R. 

1501 

AB4fG4 

1/2 DIESEL 

FAIL (50) 

2/2E + 1/2D 

1/2E + 2/2D 

FAIL (50) 

AB4fG3 

1/2E 

FAIL 

+ OD 

(50) 

AB2fG16 AB2fG6 

ADP NO. 1 

.\DL 1 FAILII 
1501 

ADP NO. 1 

ADL 1 FAILS 

(SO) 

AEP NO. 1 

EL 1 FAILS 

(50) 

AD NO. 2 
I!L 2 fJlI.S 

(501 

1121*2120 
Al'Yf" PImPS 

fAIL TO 
S.S.P.T.R. 

1501 

ABHe5 

UPF D. I'UKPS 
1 NIll 2 FITTI!D 

AD!' NO. 1 
AD!. 1 FJlI.S 

1501 

NIll FAIL 
"TO S.8.P.T.R. 

(501 

AB3fG10 

ADP NO. 1 

ADL 1 FAILS 

(SO) 







Ro]o_OtJ ••••• 1 





AFFF FAILURE 

OF ISOLATION 

VAlVE 

AG3 

AtVB ARE' 

--- -------

AFFF SKID 

FAILURE 

AGl 

FAILURE OF 

AFFF VALVE 

TO OPEN 

AFFF BLOCKED 

CHECK VALVE 

R=2.Se-OOS 

=1.8e-OOS P=3e-006 

OLtl TYPE 
,~, 

-,~ 
FITrED AlID 

FAlldl 

AG13 

AINBO HAOIN 

R=3e-OOS F=l 

BLOCKED 

INDUCTOR 

NOZZLE 

AG2 

R=Se-006 

NBII'TYPE 
~, 

~= 
FITTED At/!) 

'MU 

AG14 

MANIN 



~ -
" 

_2e_007 

FAILURE: TO 

ACTIVATE: 

AFFF VALVE 

FAILURE Of' FAlLURB OF 

SOLENOID SOLENOID 

VALVE 1 VALVE 2 

R .. 3e-006 R_2e_005 

-~-

R-le-005 

FAILURE: OF 

AFFF VALVE: 

TO OPEN 

-~ 

-' 

R-4e-005 

-" FAILURE OF -" FAILURE OF 
_ .. 

-~ -~ --AFFF VALVE -, AFFP VALVE 

TYPE 2 
~ 

TYPE J 

AV3 

,., R"3.5e-005 '"' R.2.lIe-005 ,.0 



l'ERSPRAY 

iOLATION 

'ALW 1 

•• n .. IM 
...... nOl< 

WATERSPRAY 

SKID 

FAILURE 

WATERS PRAY 

ISOLATION 

VALva 2 

ISOLATION 

VALva 2 

Sux:= 

Ral. Be-CCS 

ISOLATION 

VALva 2 LEP'T 

CLOSED 

----~ 

FAIWRE OF 

WATERS PRAY 

DELUGE 

WATERSPRAY 

BLOCKED 

STRAINER 

F~2 .Be-CCS 

OLD TYPE 

NOZZLE 

BLOCKED 

RaJe-CCS 

.......... 

WATERSPAY 

BLOCKED 

NOZZLES 

NEW TYPE 

NOZZLE 

BLOCKED 

_.0"" 



WA't'El\SPRAY 
FAIWRE 1'0 

ACTIVATE 

DEWGE 

VALVE 

WATERS PRAY 
V~~ 

TYPE 1 
FI'ITED AND 

FAILS 

WG15 

WATERS PRAY 
VALVE TYPE 1 

FAILS 

R=4e-005 

-" WATER$PRAY 
V~VE 

,.". , 
Frn'EO 

HWVl 

F=l 

WA't'El\SPRAY 
FAIUIRE OF 

DELUGE VALVE 

ro '''" 

004 

WATERS PRAY 
FAILURE OF 

DELUGE VALVE 

WGB 

WATERS PRAY 

VALVE 
~, 

nTrn> "'" 
FAILS 

WG16 

WATERSPRAY """''' WAT£R$PRAY 
VALVE TYPE 2 V~VE 

FAILS 
,."., , 
,,~ 

WV2 HWV2 

R=3.5e-005 F=O 

WATERSPRAY 
V~VE 

,.,PE , ,,_ 
AND FAILS 

WG17 

WATERS'PRAY TRUE IF 
VALVE TYPE 1 WATERSPRAY 

PAILS V~VE 

TYPE 3 

m= 

HWV3 

R=2. Se-DOS F=O 



..,,2 

,AJUJIlI: .... -" 
~- O~ TYPE 
_no _no 
~ .~ 

WVRFO 

a_Se_OO6 '-1 

FAILURE OF 

VALMATIC 

RELEASE 

..,11 

'AJI.IIU .... 

-~ 
V~TIC 

~. 

WVRFN 

R=2e-006 

..., .... u ... 

..,13 

-" -= 
~o 

~ 

~ 

'_0 

. ." 

R_2e_007 

FAILURE OF 

SOLENOID 

VALVE 1 

R:oJe-006 

FAILURE OF 

SOLENOID 

VALVE 2 

R"2e-OOS 

FAIUJRE OF 

VAUtATIC 

RELEASE 

R-le-OOS 



APPENDIX VI 

FAULT TREE STRUCTURE FOR THE SPURIOUS TRIP FAILURE MODE 
OF THE FIREWATER DELUGE SYSTEM 

VI 



ANNEL 1 

IDICATES 

ST 

c""""'" , 
INDICATES 

TR" 

CHANNEL J 

INDICATES 

TR" 

CItANNEL 4 

INDICATES 

nu. 

ST SOLENOID 

VALVE 1 

1\"3e·006 

ST SOLENOID 

VALVE 2 

R"2e-OOS 

VR OLD TYPE 

PITTED AND 

TRIPS 

ST OF OLD 

TYP!! VR 

VALVE 

R-Se-006 

OLD TYPB 

VR VALVE 

FITTED 

VR NEW TYPE 

FI'I'TEO AND 

TRIPS 

ST OF NEW 

TYPE VR 

VALve 

R-2e-006 

NEW TYPE 

VR VALVE 

.,"""" 



CHANNEL 1 

INDICATES 

ST 

/-----.. 
WPSG2 

I 
TRIP 1 P. T. 

INDICATED FITTED 

1 PT FIT 

~ ~ 
WPSG6 SH1S 

I 
F=Q 

PRESSURE 1 PS TO 

TRANSMITTER TRIP 

NO. 1 TRIPS 

f/\ ~ WPSG7 

1" T 
FeO 

PT NO. 1 PT NO. 1 P.T. NO. 1 

TYPE 1 FIT TYPE 2 FIT TYPE 3 FIT 

AND TRIPS AND TRIPS AND TRIPS 

~ .~ /-----.. 
WPSG8 WPSG9 WPSGIO 

I L 

PT NO. 1 PT TYPE 1 PT NO. 1 PT TYPE 2 PT NO. 1 PT TYPE 3 

TYPE 1 FIT TYPE 2 FITTED TYPE 3 FIT 

TRIPS TRIPS TRIPS 

3 ~ B ~ B ~ SHPT2 SHPT3 

R=7e-006 F=O R=1.4e-OOS F=O R=2.1e-OOS F=l 





CHANNEL 3 

INDICATES 

TRIP 

/""'\ 
WGSP4 

I 
TRIP 3 PS'S 

INDICATED FITTED 

3 PS'S FIT 

0 ~ 
'I 1 F=l 

I 
P,S. TO 2 P.S.·S TO 3 P.T.·S TO 

'RIP FROM TRIP FROM 3 TRIP FROM 3 

3 

A /'"\ /~ 
WPSG20a WPSG21a 

I I 
TRIP SENT 2 PS'S TO TRIP SENT 3 P.S. 'S TO 
2 PS'S TO TRIP 3 PS'S TO TRIP 

TRIP TRIP 

/\ ~ A ~ WPSG20 SH3TS 

I1 
I 

F=l F=O 

PT 1 AND 2 PT 1 AND 3 PT 2 AND 3 
TRIP TRIP TRIP 

A 6 A 



'RESSURE 

'-NSMITTER 

1 TRIPS 

PRESSURE 

TRANSMITTER 

NO. 2 TRIPS 

PT NO. l 

TYPE 1 PIT 

AND TRIPS 

PT NO. 3 

TYPE 1 
TRIPS 

SlPTl 

WPSG2l 

PT'I"{PE 

FIT 

1 P.S. TO 

TRIP PROM 

J 

TRIP SENT 

1 PS TO 

TRIP 

WPSG19a 

PRESSURE 

TRANSMITTER 

NO. 3 TRIPS 

PT NO. l 

T'iPE 2 FIT 

AND TRIPS 

PT NO. l 

TYPE 2 

TRIPS 

WPSG24 

PT TYPE 2 

PI'l'TED 

R .. l.4e-OOS 

( 

PT. NO. l 

TYPE l PIT 

AND TRIPS 

PT NO. 3 

TYPE 3 

TlUPS 

WPSG25 

R .. 2.le-OOS 

PT TYPE 

FIT 

1 PS TO 

TRIP 







... 



APPENDIX VII - Lz7(313) Standard Orthogonal Array 

Expt Column 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 2 2 2 2 2 2 

3 1 1 1 1 3 3 3 3 3 3 3 3 3 

4 1 2 2 2 1 1 1 2 2 2 3 3 3 

5 1 2 2 2 2 2 2 3 3 3 1 1 1 

6 1 2 2 2 3 3 3 1 1 1 2 2 2 

7 1 3 3 3 1 1 1 3 3 3 2 2 2 

8 1 3 3 3 2 2 2 1 1 1 3 3 3 

9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 

11 2 1 2 3 2 3 1 2 3 1 2 3 1 

12 2 1 2 3 3 1 2 3 1 2 3 1 2 

13 2 2 3 1 1 2 3 2 3 1 3 1 2 

14 2 2 3 1 2 3 1 3 1 2 1 2 3 

15 2 2 3 1 3 1 2 1 2 3 2 3 1 

16 2 3 1 2 1 2 3 3 1 2 2 3 1 

17 2 3 1 2 2 3 1 1 2 3 3 1 2 

18 2 3 1 2 3 1 2 2 3 1 1 2 3 

19 3 1 3 2 1 3 2 1 2 3 1 3 2 

20 3 1 3 2 2 1 3 2 3 1 2 1 3 

21 3 1 3 2 3 2 1 3 1 2 3 2 1 

22 3 2 1 3 1 3 2 2 3 1 3 2 1 

23 3 2 1 3 2 1 3 3 1 2 1 3 2 

24 3 2 1 3 3 2 1 1 2 3 2 1 3 

25 3 3 2 1 1 3 2 3 1 2 2 1 3 

26 3 3 2 1 2 1 3 1 2 3 3 2 1 

27 3 3 2 1 3 2 1 2 3 1 1 3 2 

VII 






