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Abstract 1 
Site-specific satellite-derived hourly global horizontal irradiance is compared with that 2 
obtained from extrapolation and interpolation of values measured by ground-based weather 3 
stations. A national assessment of three satellite models and two ground-based techniques is 4 
described. A number of physiographic factors are examined to allow identification of the 5 
optimal resource. The chief influences are determined as: factors associated with latitude; 6 
terrain ruggedness; and weather station clustering/density. Whilst these factors act in 7 
combination, weather station density was found to be fundamental for a country like the UK, 8 
with its ever-changing weather. The decision between satellite and ground-based irradiance 9 
data based on accuracy is not   straightforward. It depends on the exactitude of the selected 10 
satellite model and the concentration of pyranometric stations.  11 
Keywords: global horizontal irradiance, national assessment of irradiance models, weather 12 
station density, kriging, satellite-derived irradiance, solar radiation. 13 

1. Introduction 14 
Solar radiation data has many applications, such as solar energy system performance and 15 
bankability assessment, building design of passive heating, cooling and daylighting elements, 16 
and resource assessment for agriculture and forestry. The most reliable i.e. lowest uncertainty   17 
source of solar radiation data is ground-based measurements by weather station networks 18 
and dedicated pyranometric stations (Sengupta et al., 2015). They measure the solar 19 
irradiance actually received at ground level, where solar systems are located. However, their 20 
reliability/uncertainty is conditional upon maintenance and calibration of the instruments. 21 
Pyranometer uncertainty must also be considered in the use of data.  22 
This research investigates three methods to obtain solar radiation estimates for locations 23 
where it is not directly measured. The first is simply to allocate values from the single nearest 24 
measurement point. Here this method is termed “nearest neighbour extrapolation” (NNE) as 25 
in (Perez et al., 1997). Alternative names are “nearest neighbour interpolation”, “proximal 26 
interpolation” and “nearby station method”. The second method is to use an interpolation 27 
method based on the spatially weighted average of several neighbouring measurement 28 
locations. The third alternative approach is to model solar irradiance from cloud images 29 
captured by satellite. Like ground-based measurements, satellite data also has 30 
disadvantages. One shortcoming is lower accuracy at the specific weather location because 31 
the satellite data represents an area of the given pixel size, rather than an exact point.    32 
There are no overall guidelines to direct the choice between ground-based or satellite 33 
irradiance data (Meteonorm, n.d.). This research sets out a data-informed methodology to aid 34 
the decision-making process and applies it to the UK as an example. It provides an extensive 35 
nationwide validation of these two solar irradiance data sources on an hourly basis. The case 36 
study area is the entire UK. This is a non-homogeneous region in terms of climate and 37 
topography and irradiance values vary significantly across the country.     38 
Previous work has focused on distance from weather station as a deciding factor in the 39 
preferred choice of data source. As the distance between the point of measurement and 40 
location where data is required increases, the likelihood of divergence of weather conditions 41 
at the two sites also increases. In general, a distance decay effect may be observed, due to 42 
weather fronts and terrain. A theoretical distance is reached at which the decreasing accuracy 43 
of the ground-based data equals and then falls below the otherwise less accurate satellite-44 
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modelled data. This cross-over or break-even distance was determined as 34 km for hourly 45 
averaged global horizontal irradiance (GHI) data in 1997 (Perez et al., 1997). This research is 46 
discussed in Appendix A. 47 
This original work (Perez et al., 1997) referred to nearest neighbour extrapolation of ground 48 
data, whereas a number of well-known ground data sources (Meteonorm (Meteonorm, n.d.), 49 
PVGIS-classic (JRC, 2012)) use geostatistical interpolation. Interpolation techniques have 50 
been in existence for some time, but more powerful computers have enabled their widespread 51 
use and enhanced understanding. The last 20 years have seen considerable advances in 52 
satellite modelling also. Advances in networking and communication technology have led to 53 
increased availability of data of all types. In this context, this paper examines whether the 54 
historic break-even distance is still the best criterion on which to base a data source decision.  55 
Other factors in the ground-based or satellite GHI data selection are: proximity to mountains 56 
and oceans; urbanisation (associated with high and changeable concentrations of aerosols 57 
and water vapour); high latitude; cloud cover (Hall and Hall, 2010; Perez et al., 2013; Suri and 58 
Cebecauer, 2014); and weather station density (Paulescu et al., 2013). The differences in 59 
accuracy of data derived from extrapolation/interpolation of ground-based sources and 60 
satellite-modelled data in these distinct regions have never (to the authors’ knowledge) been 61 
quantified. 62 
Both ground-based and satellite models are affected by orographic forcing when changes in 63 
elevation occur. When air is blown over mountains or hills, it is forced to rise. As it rises, it 64 
cools, becoming saturated with condensing water and forming a cloud, a phenomenon that is 65 
highly localised. Satellite models produce higher errors in coastal locations and are adversely 66 
affected by scattered cloud, especially at high latitudes (Perez et al., 2013). Broken cloud may 67 
mask the sun. Conversely, thin cloud close to the sun may enhance solar irradiance due to 68 
forward scattering (Yordanov et al, 2013).  Current satellite instruments cannot distinguish 69 
small broken clouds from large thin cloud (Cebecauer et al., 2010).  70 
Satellite values may also fail to distinguish clouds in the presence of bright surfaces e.g. snow 71 
or ice cover, and some types of vegetation. Interpolation of ground data is subject to edge 72 
effects. In the case of the UK, the coast is also the edge boundary of the weather station 73 
network and correlation might be expected. The temporal granularity of hourly weather station 74 
data is too coarse to reflect cloud movements. Thus, it is not at all clear which GHI data 75 
source provides the best accuracy in which geographic circumstance. This research will 76 
investigate this issue.     77 
The accuracy of both ground-based and satellite-modelled GHI will be assessed in terms of 78 
root mean square error (RMSE) and mean bias error (MBE). The following comparisons will 79 
be made: (1) pair-wise comparison of weather station reading to nearest weather station 80 
value; (2) interpolated ground-measurement to nearest weather station record at various 81 
distances; and (3) interpolated ground versus satellite-derived values under differing 82 
geographic scenarios. 83 
In the following, an assessment of solar irradiance models is carried out to direct the decision 84 
between the use of extrapolated/interpolated ground-measured or satellite-modelled 85 
irradiance data. First, the impact of distance to weather station is investigated, followed by the 86 
influence of other atmospheric and topographical factors as detailed above. 87 
This paper is structured as follows. Section 2 describes the data employed and quality control 88 
procedures performed upon it. Calculation of distance decay errors is detailed. Section 3.1 89 
replicates former research with modern data. An investigation of the influence of distance on 90 
whether ground or satellite irradiance data is most accurate, is described. The previous 91 
research is then expanded upon and the results clearly visualised. Section 3.2 investigates 92 
the influence of atmospheric and topographic factors on whether ground or satellite irradiance 93 
data delivers the greater accuracy. These include locational and weather-related features. 94 
Finally, Section 4 summarises findings, interprets the results and offers conclusions. 95 

2. Data and Methods 96 
All data used is hourly global horizontal solar irradiance data for the complete year of 2014, 97 
unless otherwise stated. The case study area is the United Kingdom.  98 



2.1 Ground Data Description 99 
Ground-based solar irradiance measurements available as hourly averages are used from the 100 
UK Meteorological Office Integrated Data Archive System - MIDAS (UK Met Office, 2006). 101 
The UK Met Office currently has a network of over 80 automatic weather stations throughout 102 
the UK which observe irradiance as well as other meteorological conditions. Figure 1 and 103 
Figure 2 provide details of UK weather stations distribution. It may be seen that the 104 
distribution is somewhat uneven. 30% of the stations are clustered in the South East and 105 
Midlands i.e. approximately one-third of the weather stations are positioned in one-fifth of the 106 
nation. In other words, although stations are typically about 40 km apart, this can more than 107 
double, particularly in Wales and Scotland. The weather stations distance distribution has a 108 
small positive skew, with slightly more inter-station distances of less than 20 km and slightly 109 
fewer greater than 80 km. 110 
The instruments at these stations are CM11/CMP11 (Kipp&Zonen) pyranometers, calibrated 111 
by reference to absolute cavity radiometers, traceable to the world radiation standard. 112 
Weather station sensors predominantly rely on rainfall for cleaning.    113 
 114 

 
 

Figure 1: Map of Weather Stations 
Distribution 

Figure 2: Histogram of Weather Stations Nearest 
Neighbour Distances 

 115 

2.2 Ground Data Methodology 116 
The UK Met Office apply quality control procedures to MIDAS data before release. Data 117 
inputs automatically undergo checks to ensure that they are correct and consistent with the 118 
surrounding data points on entry to the Meteorological Monitoring System. Observations are 119 
compared to location-dependant climatological extremes and previous records. The 120 
downloaded MIDAS data was then filtered to remove duplicates, flagged error values and 121 
values less than 0 W/m2. In addition, the following tests recommended by (Journée and 122 
Bertrand, 2011) where applied: 123 

• The global horizontal solar radiation must be less than the extra-terrestrial value when 124 
the solar elevation angle is greater than 2 degrees. 125 

• The global horizontal solar radiation must not exceed the European Solar Radiation 126 
Atlas clear sky value by more than 10% when the solar elevation angle is greater 127 
than 2 degrees. 128 

It was determined that only 7 per 400,000 values were too high. This very small number of 129 
values was ignored. 130 
The distance decay errors for nearest neighbour extrapolation and interpolation of data were 131 
calculated as follows. Firstly, the steps for NNE were: Take GHI values from two nearest 132 
neighbouring weather stations (1 and 2). Consider the value of station 2 to be unknown. 133 



Accordingly, it becomes necessary to use the data from station 1. Validate the accuracy of 134 
station 1 data in these circumstances by comparing it to the real data from station 2. The 135 
distance decay is the distance between the two stations. This procedure is repeated for each 136 
closest weather station pair until all the data has been used. The RMSEs are plotted as a 137 
function of distance to nearest weather station. The NNE method is included in this research 138 
because this is the only method available to many GHI data users. 139 
Secondly, interpolation distance decay errors were obtained. Interpolation takes the values 140 
from several weather stations surrounding the point of interest. These are input into a 141 
mathematical algorithm and weighted according to distance to the desired location to 142 
calculate a GHI value for the unknown site. This paper employs the kriging interpolation 143 
technique, detailed in Appendix B. The reduction in accuracy of interpolation due to distance 144 
decay is assessed by leave-one-out-cross-validation (LOOCV). This may be applied as 145 
follows: Interpolate with 79 weather stations and leave the 80th out. Compare the interpolated 146 
value obtained at the 80th station with the measured value from that site. (Calculate the 147 
RMSE). This is repeated for all stations (i.e. 80 times). Plot the RMSEs as a function of 148 
distance. 149 
In this instance it is not sufficient to simply use the closest station distance to study loss of 150 
similarity between interpolated values with increasing distance. This is because GHI values 151 
from all weather stations are used in the kriging algorithm, not just those from closest to the 152 
location. Therefore, distance is obtained by re-using the kriging algorithm. The weather 153 
stations are treated individually. For each weather station, the distances to the other 79 154 
weather stations are calculated. These values are then interpolated to obtain a value for the 155 
weather station of interest. This is repeated for all stations. The average difference between 156 
the closest station distance and interpolated distance was 11 km, and the maximum 56 km, 157 
for the 79 weather stations.     158 

2.3 Satellite Irradiance Source 159 
Models which generate irradiance from satellite observations may be classified as physical 160 
(Miller et al., 2013) or hybrid (Perez et al., 2013). Hybrid models are also generally referred to 161 
as semi-empirical. Physical models utilise radiative transfer equations and require detailed 162 
information on the composition of the earth’s atmosphere (e.g. cloud vertical distribution and 163 
optical properties, gridded aerosol properties and water vapour) as inputs. Obtaining data of 164 
sufficient quality for accurate results can be problematic. Hybrid models combine regression 165 
between satellite reflectance and corresponding ground measurements with a simplified 166 
radiative transfer algorithm. 167 
Three models are investigated here. (1) CAMS (Schroedter-Homscheidt, 2016) utilises the 168 
Heliosat-4 physical model for satellite image-to-ground irradiance conversion. CAMS 169 
irradiance data is available at 15 minute, hourly, daily and monthly intervals. Hourly data only 170 
is analysed here, in order to be comparable with the ground-based MIDAS data. CAMS has a 171 
spatial resolution of 0.05° (5.6 km) and, in addition to satellite images, requires the following 172 
atmospheric data as inputs: aerosol properties, total column water vapour and ozone. These 173 
are obtained in the form of 3-hourly satellite-derived values and re-analysed via look-up tables 174 
to produce higher temporal resolution data, together with the shorter timeframe cloud satellite 175 
images. (2) SARAH-E (Amillo et al., 2014) is a hybrid model, The data is available in hourly 176 
format. It has a spatial resolution of 0.05° and atmospheric input requirements similar to 177 
CAMS but uses long-term monthly modelled averages for the atmospheric data look-up 178 
tables. SARAH-E data was available for 11 years (2005-2015). (3) Solargis (Cebecauer et al., 179 
2010; Šúri and Cebecauer, 2012) also uses a hybrid approach. Solargis irradiance data is 180 
available at 15 minute, 30 minute, hourly, daily and monthly intervals. Again, hourly data only 181 
is analysed in this research. In addition to daily modelled values of atmospheric optical depth, 182 
water vapour and ozone (which are re-analysed to shorter time intervals), it includes snow 183 
index, snow depth, elevation and terrain shading in the model. Satellite elevation data is 184 
available at higher grid resolution, enabling Solargis to deliver a spatial resolution of 250 m.  185 



3. Results and Discussion 186 

3.1 Influence of distance to weather station on ground or satellite irradiance 187 
data choice 188 
3.1.1 Replication of earlier work 189 
Initially, the example of (Perez et al., 1997) was replicated with modern data by plotting the 190 
nRMSE (normalised by mean of inputs) as a function of distance to produce a semi-191 
variogram-like graph, illustrated in Figure 3. This same graph displays: (i) the nearest 192 
neighbour extrapolation nRMSE as a function of closest station distance; (ii) the kriging 193 
LOOCV nRMSE as a function of interpolated distance; and (iii) the satellite error level band 194 
for each of the three satellite models tested (CAMS, SARAH and Solargis). These satellite 195 
error ranges were taken from validation figures reported in the literature. Each model is 196 
compared to two UK BSRN stations, Lerwick and Camborne. Instruments at BSRN stations 197 
provide data of the highest available accuracy. Since these are at the UK’s northern and 198 
southern extremities, nRMSE is considered to range between these values for the country as 199 
a whole. 200 
Similar to (Perez et al., 1997), the nRMSE is found to increase with distance. However, the 201 
points are widely distributed around the trendlines because of the variability of the UK’s solar 202 
radiation field. The range of spread is almost twice as large in winter as in summer. Large 203 
NNE / interpolation errors still occur at short distances (large nugget) due to variable cloud 204 
cover. An alternative explanation for the spreading of points in Figure 3 is the possibility of 205 
poor ground data, for example, if the stations are not adequately maintained. This is the case 206 
with most networks of automatic weather stations in all countries, although the UK Met Office 207 
is a world-leading provider of weather information. 208 

 209 
Figure 3: Satellite error relative to ground-based nearest neighbour extrapolation and kriging 210 
errors (including trends). Inter-station distances range from 600 m to 97 km. 211 
Figure 4 is a simplified version of Figure 3, for ease of understanding. Trendlines only for 212 
nearest neighbour extrapolation nRMSE and kriging LOOCV nRMSE are marked (points 213 
removed). Satellite errors are shown as a single line for the average UK nRMSE % instead of 214 
a box for the nRMSE % range. (The satellite error average lines are placed at the halfway 215 
mark of the range boxes.) Break-even distances are labelled. The key to the labels is given in 216 
Table 1. 217 



 218 
Figure 4: Satellite error relative to ground-based nearest neighbour extrapolation and kriging 219 
trends.  220 
It may be seen that modern data is far more plentiful than that available to researchers 20 221 
years ago. Nonetheless, the inferences are less clear. Instead of one break-even distance, 222 
there are six possibilities, one for each satellite model and NNE / kriging combination. In fact, 223 
only three break-even distances exist in reality (Table 1).  The CAMS and Solargis satellite 224 
models are more accurate than NNE at all distances, on average. Solargis is also more 225 
accurate than kriging at all distances, on average. This table suggests that for most 226 
applications, NNE should not be used in the UK. Satellite data-derived data always delivers 227 
results closer to reality beyond the break-even distance. 228 
Table 1: Break-even distances for each satellite model and NNE / interpolation combination 229 
Nearest Neighbour 
Extrapolation or 
Interpolation 

Satellite 
Model 

Distance in km of trendline at halfway 
interval of satellite confidence level 
box (average satellite model nRMSE) 

Break-even 
distance label in 
Figure 4. 

Nearest Neighbour 
Extrapolation 

Solargis 0 SolNNE 

CAMS 0 CNNE 

SARAH 7 SNNE 

Kriging Solargis 0 SolK 

CAMS 27 CK 

SARAH 105 SK 

 230 
Several deductions may be observed from Figures 3 and 4. First, it is apparent that, in 231 
contrast to (Perez et al., 1997)’ original work, kriging delivers a large improvement over 232 
nearest neighbour extrapolation. This is because for the current work many more ground 233 
station readings are available (80 plus as compared to 12 in 1997) and the sophisticated 234 
kriging interpolation technique is employed, rather than (Perez et al., 1997)’ simpler Inverse 235 
Distance Weighting (IDW) interpolation. (IDW is necessary when data is sparse. Unlike 236 
kriging, it does not calculate probability. Interpolation can only deliver accurate results with 237 
more than 20-30 points (Huber, 2014).) 238 



Second, satellite models generally perform better than nearest neighbour extrapolation. The 239 
exception is the SARAH model at very low distances. Third, more satellite models are 240 
available and the break-even distance is dependent on the model chosen. Fourth, the satellite 241 
models have a wide confidence level because they are extensively validated at 80 or more 242 
independent weather stations. ((Perez et al., 1997) had just one station available to them for 243 
both parameterisation and evaluation.) Fifth, the break-even distances obtained are 244 
influenced by the number of data points used, especially at the lower end of the distance 245 
scale. Finally, the break-even distances are difficult to extract accurately off the graph due to 246 
level of variation in the data. 247 
3.1.2 Expansion of earlier work 248 
With the benefit of modern computing power, the development of the internet, increased 249 
availability of data and an extra 20 years’ research into satellite modelling and kriging 250 
techniques, it is possible to expand on the original work of (Perez et al., 1997). The data from 251 
many more weather stations is available to the current researchers. In addition, MIDAS data 252 
is entirely independent of ground-based data used for parameterisation of satellite models. 253 
BSRN data is used for this purpose (BSRN, n.d.). The quantity of data also ensures the 254 
independent validation of the kriging technique because leave-one-out-cross-validation is 255 
possible. But perhaps the most significant step forward is the ability to compare NNE / kriging 256 
nRMSE with satellite errors at over 80 weather stations (Figure 5). The 1997 authors had only 257 
one weather station to calculate satellite error.   258 
In contrast to Figures 3 and 4 which compare ground-based data to satellite confidence 259 
intervals, Figure 5 compares extrapolated and kriged data errors at each weather station to 260 
individual hourly satellite errors calculated for each same weather station. The nRMSE values 261 
are calculated as follows. At each one of the 80 weather stations the pyranometric solar 262 
irradiance value for all daylight hours in 2014 (5,116 hours) was obtained. The difference 263 
between the measured irradiance value for every hour and the value provided by each of the 264 
models (NNE, kriging and the three satellite-derived) was calculated. RMSEs were computed 265 
from this, and then the nRMSE, normalised by the mean of inputs. The average nRMSE of all 266 
the daylight hours at each weather station was calculated. The outliers in the Solargis data 267 
arise as follows. The weather station at a distance of 4km is Heathrow. This is known to be 268 
subject to reflections from passing aircraft and heat from the tarmac. The outlier at 42 km is in 269 
the Scottish Highlands where the mountains and latitude are problematic for satellite data.   270 

 271 
Figure 5: Satellite, NNE and kriging nRMSE at each weather station, plotted as a function of 272 
increasing inter-station distance 273 



Figure 6 is similar to Figure 5, except that nMBE is compared to distance, rather than 274 
nRMSE. It may be seen that the CAMS product exhibits positive bias, i.e. overestimation for 275 
all stations. This has been reported several times e.g. (Copernicus, 2016). An empirical 276 
CAMS radiation bias correction is available post-2017 (Copernicus, 2017). This reduces the 277 
CAMS nMBE for UK weather stations to the same range as the other satellite models. 278 

 279 
Figure 6: Satellite, NNE and kriging nMBE at each weather station, plotted as a function of 280 
increasing inter-station distance 281 



 282 
Figure 7: Trendlines of satellite, NNE and kriging nRMSE at each weather station, plotted as 283 
a function of increasing inter-station distance (km). Robust regression used to remove 284 
influence of outliers (Ripley, 2002). 285 
 286 
Figure 7 again shows NNE / kriged and satellite nRMSE at each weather station but in the 287 
form of trendlines, for ease of interpretation. Some interesting information may be gained from 288 
Figure 7. The nRMSE of the NNE and kriging techniques rise steeply with increasing distance 289 
to weather station, whereas the nRMSE of all the satellite models have flat trends. This is as 290 
expected because the satellite data is not connected with the weather stations data. Again, 291 
kriging outperforms NNE and satellite models are more accurate than NNE. (The exception is 292 
SARAH which breaks even with NNE at 10 km.) The key difference between the initial work 293 
with satellite confidence levels (Figure 3) and nRMSE at individual weather stations (Figure 6) 294 
is the break-even distances obtained. These may be read from Figure 6 where the trendlines 295 
cross. It may be seen that kriging breaks even with the SARAH model at 125 km and with 296 
CAMS at 97 km. The furthest UK inter-station distance is 97 km and no point in the UK is 297 
more than 113 km from the sea (Haran, 2003). In the context of the UK, these distances are 298 
therefore not useful. (They could serve as guide to the applicability of SARAH and CAMS 299 
data in larger or landlocked countries.) Kriging breaks even with Solargis at 25 km. This is in 300 
agreement with other independent studies, which have shown Solargis to be the most 301 
accurate of the satellite products they tested (Ineichen, 2014, 2011). 302 
So, of the six possible break-even distances, only one (25 km with Solargis) applies to 303 
conditions in the UK. (These conditions comprise ground data availability and impact of 304 
weather on satellite models.) Kriging of ground-measured data provides higher accuracy than 305 
the other satellite models (CAMS and SARAH) at all distances from weather stations. 306 
Figure 8 repeats the analysis performed in Figure 7 but uses nMBE as a measure of error. All 307 
nMBE values are within the range of pyranometer error (+/- 5%), with the exception of CAMS, 308 
which has now been corrected to this range, as noted above. 309 



 310 
Figure 8: Trendlines of satellite, NNE and kriging nMBE at each weather station, plotted as a 311 
function of increasing inter-station distance (km). Robust regression used to remove influence 312 
of outliers (Ripley, 2002). 313 
 314 
3.1.3 Application of break-even distance to the ground / satellite data 315 
decision 316 
Having determined a break-even distance for kriging and satellite data in the UK, it is now 317 
possible to visualise it. The appropriateness of break-even distance to the decision between 318 
use of interpolated ground-measured or satellite-derived irradiance data will also be reviewed.  319 
Figure 9 draws the areas in the UK which are within 25 km of a weather station. The concept 320 
of break-even distance suggests that kriged data should be used inside the 25 km circles and 321 
Solargis data outside. (Note: the map would be a single colour for SARAH and CAMS 322 
because the break-even for kriging is so large the areas run into each other. Kriging 323 
outperforms SARAH and CAMS for the whole of the UK.) Figure 9 implies that kriging delivers 324 
greater accuracy in 56% of the UK and Solargis is more accurate in 44%.  325 
It is important not to forget that the 25 km obtained is actually the average break even 326 
distance. The actual break-even is different for each station and it is somewhat misleading to 327 
generally apply the average.  Figure 10 indicates that for two-thirds of weather stations, 328 
Solargis is more accurate than kriging at the station. That is, in these locations, a zero break 329 
even distance should apply. Evidently, a different method of comparing kriging and Solargis 330 
errors is required.  331 
 332 



  
Figure 9: Map of 25 km average break-
even distance between kriging and 
Solargis 

Figure 10: Map of weather stations showing 
whether the nRMSE of kriging or of Solargis 
delivers greater accuracy 

Figure 11 displays the result of a two-stage process. The nRMSE of kriging and Solargis at 333 
each weather station are interpolated. These two maps are then compared. If the interpolated 334 
nRMSE of Solargis for a given pixel is less, Solargis is considered to be the best choice of 335 
irradiance data for that pixel. Likewise, if the interpolated nRMSE of kriging for a given pixel is 336 
less, kriging is considered to be the best choice of irradiance data for that pixel. This process 337 
is repeated for the nMBE in Figure 12. 338 

    
Figure 11: Areas of the UK where either 
kriging or Solargis offer highest accuracy, in 
accordance with their interpolated nRMSE 

Figure 12: Areas of the UK where either 
kriging or Solargis offer highest accuracy, in 
accordance with their interpolated nMBE 

It may be seen that there is a slight correlation between the interpolated errors in Figures 11 339 
and 12 and the break-even distances in Figure 9 in the southeast of the country. Average 340 
break-even is an approximate template for selection of the irradiance data source. Figures 11 341 
and 12 suggest that kriging is most accurate where weather stations cluster in the centre and 342 
southeast. Solargis is less accurate in the north, in terms of nMBE. This could be due to 343 
increasing latitude or due to this being a mountainous region. These factors, together with 344 
other geographic influences, are investigated in 3.2. In contrast to the break-even technique 345 



in Figure 9, interpolation of nRMSE (Figure 10) reveals that, in reality, kriging is more 346 
accurate than Solargis in just 14% of the UK. 347 
3.1.4 Pyranometer Uncertainty 348 
Figures 5 and 7 show that Solargis is the most accurate source of irradiance data, of those 349 
tested, followed by kriging. Solargis outperforms kriging at two-thirds of weather stations (Fig. 350 
10). Yet the mean difference between the two approaches is low: 32 kWh/m2 or 4%. This 351 
section briefly investigates whether the differences are large enough to be outside the bounds 352 
of pyranometer uncertainty. (A more detailed investigation will be the subject of further 353 
research.) 354 
 355 
Uncertainty varies with the environment and instrumentation set-up (Strobel et al., 2009). 356 
Instrumentation 1 in (Strobel et al., 2009) is equivalent to the MIDAS data sensors. The 357 
uncertainty boundaries modelled for Instrumentation 1 for Northern Europe by (Strobel et al., 358 
2009) were applied to one year of kriged MIDAS data. It was found that kriged values and 359 
those of the Solargis satellite model only agreed within the range of pyranometer uncertainty 360 
for 17% of daylight hours in 2014. This limited correlation did not correspond to any particular 361 
irradiance values, date or time. Thus, Solargis seems genuinely the best model for the 362 
majority of the UK. Differences cannot be explained by bounds of measurement uncertainty. 363 

3.2 Influence of atmospheric and topographic factors on ground or satellite 364 
irradiance data choice 365 
The following criteria were compared to nRMSE of the three satellite models and of the kriged 366 
data: latitude; mean sea level pressure; distance to coast; clearness index and precipitation 367 
(as representatives of cloudiness); urbanisation; cloud cover; landform; and weather station 368 
distribution. The results are summarised in Figure 23 and Tables 2 and 3. 369 
 370 
Table 2: Influence of Distance to Weather Station, Atmospheric and Topographic Factors on 371 
Irradiance Models 372 
 RELATIONSHIP R SQUARED 

Solargis Krige CAMS SARAH 

MSLP against nRMSE % ** 0.00 0.52 0.01 0.45 

Air Mass against nRMSE % 0.00 0.53 0.00 0.48 

Latitude against nRMSE % 0.00 0.50 0.00 0.40 

Distance to Weather Station against nRMSE % 0.00 0.47 0.00 0.00 

Total Cloud against nRMSE % 0.02 0.38 0.09 0.46 

no. stations in 100 km grid sq against nRMSE % 0.00 0.33 0.00 0.00 

Kt against nRMSE % 0.12 0.20 0.07 0.46 

Precipitation against nRMSE % 0.00 0.15 0.08 0.14 

Std Slope against nRMSE % 0.05 0.13 0.05 0.05 

Relative Humidity against nRMSE % 0.05 0.12 0.01 0.00 

Distance to Coast against nRMSE % 0.01 0.06 0.01 0.01 

AMSL against nRMSE % * 0.05 0.06 0.08 0.07 

Azimuth against nRMSE % 0.03 0.03 0.03 0.00 

Hillshade against nRMSE % 0.03 0.02 0.00 0.01 

no. stations in 45 km radius against nRMSE % 0.00 0.02 0.00 0.00 

* Altitude above mean sea level 

** Mean sea level pressure 

 



 373 
Table 3: Relationships between Geographic, Atmospheric and Topographic Factors in the UK 374 
RELATIONSHIP R SQUARED 

Latitude against Kt 0.41 

Longitude against Kt 0.09 

AMSL against Kt * 0.06 

Std Slope against Kt 0.00 

Latitude against Air Mass 1.00 

Latitude against MSLP ** 0.91 

Latitude against Total Cloud 0.17 

Longitude against Total Cloud 0.14 

Latitude against Relative Humidity 0.04 

Latitude against no. stations in 45 km radius 0.11 

Latitude against no. stations in 100 km grid sq. 0.10 

Latitude against Distance to Weather Station 0.03 

* Altitude above mean sea level 

** Mean sea level pressure 

 375 
3.2.1 Influence of Latitude, Coast, Precipitation, and Urbanisation  376 
 377 
Figure 13 illustrates the relationship between nRMSE of irradiance model and latitude.  378 

 379 
Figure 13: Trendlines of satellite and kriging nRMSE at each weather station, plotted as a 380 
function of latitude 381 
It may be seen that the performance of SARAH and kriging vary with latitude, CAMS and 382 
Solargis much less so. Latitude is known to have a negative effect on satellite models, due to 383 
parallax. The more sophisticated CAMS and Solargis models handle this better. The apparent 384 
influence of latitude on the kriging model is probably a result of the north of the UK being 385 



more mountainous and having fewer weather stations (see sections 3.2.2 and 3.2.3). These 386 
factors cannot be separated in the UK. The statistical significance of decrease in number of 387 
weather stations with latitude (Table 3) is slender. Distribution of stations can be explained by 388 
population density and accessibility (Kilibarda et al., 2015), which in turn are influenced by 389 
terrain. In the UK these tend to decrease northwards but the exceptions are the cities of 390 
Glasgow and Edinburgh in southern Scotland. Figure 14 compares weather station 391 
distribution in terms of count per Ordnance Survey 100 km grid square with major cities and 392 
the motorway network.  393 

 394 
Figure 14: Count of weather stations per Ordnance Survey 100 km grid square  395 
Figure 15 plots the relationship between nMBE of irradiance model and latitude.  396 

 397 
Figure 15: Trendlines of satellite and kriging nMBE at each weather station, plotted as a 398 
function of latitude. Robust regression used to remove influence of outliers (Ripley, 2002) 399 
With the exception of CAMS (now corrected), the nMBE of all irradiance models is within 400 
pyranometer error. The unanticipated phenomenon of CAMS nMBE decreasing northwards in 401 
the UK is in agreement with the map produced by (Wald, 2017). 402 



Higher latitudes may also be associated with increased cloud cover or cloud variability 403 
(Wetherald and Manabe, 1986). In the UK, this was indeed found to be the case. A statistical 404 
test showed an association between clearness index, Kt, (hourly GHI as a fraction of 405 
extraterrestrial irradiance), and latitude (R2 = 0.41) A comparison of nRMSE with Kt found that 406 
all models show increased accuracy with clearer skies (Figure 16). SARAH shows a greater 407 
increase in accuracy with clearer skies than the other models. 408 

 409 
Figure 16: Average hourly nRMSE % per site for 2014 as a function of average hourly 410 
clearness index, Kt per site 411 
Another factor linked to latitude in the UK is atmospheric pressure (mean sea level pressure) 412 
(R2 = 0.91). Low pressure areas, formed between the tropical and polar air masses in the 413 
Atlantic, approach the UK from southwest to northeast, due to the west to east direction of the 414 
upper Polar Front Jet Stream. The correlation between nRMSE of irradiance model and mean 415 
sea level pressure is shown in Figure 17. SARAH and kriging both show some negative 416 
correlation with pressure. That is, the model errors decrease as the pressure increases. High 417 
pressure reduces the formation of cloud, so these two models are performing better under 418 
stable, clear conditions. This has already been seen with the clearness index. MSLP has little 419 
influence on CAMS and Solargis nRMSE because these models are more resilient in the 420 
presence of cloud. 421 



 422 
Figure 17: Average hourly nRMSE % per site for 2014 as a function of average Mean Sea 423 
Level Pressure per site 424 
Plots of nRMSE % at weather station against distance to coast delivered flat trends in all 425 
cases. Proximity to coast is known to impact satellite models. The UK is entirely coastal in 426 
terms of coastal cloud formation and maritime aerosols, so no deductions are possible in this 427 
case. Definitions of ‘coastal’ vary being between 80 and 100 km of shoreline (NOAA Office for 428 
Coastal Management, 2016; Small and Nicholls, 2003). The furthest point from tidal water in 429 
the UK is only 72 km away (Haran, 2003).   430 
A weak association between precipitation and modelled irradiance values was detected. The 431 
weakness of the association is due the fact that cloud cover in the UK frequently does not 432 
result in rain. The connection between relative humidity and irradiance model errors was 433 
likewise found to be slight. Aerosols must also be present for clouds to form (Appendix C). 434 
Kriging does not account for cloudiness at all, whilst Solargis has several innovations which 435 
improve its performance (GeoModelSolar, 2012). 436 
An attempt to correlate RMSEs of modelled irradiances with rural urban classification 437 
(DEFRA, 2013) proved inconclusive. This is probably due to the fact that no UK weather 438 
station is more than 32 km from an urban area. 439 
3.2.2 Cloud Cover 440 
As noted in Section 3.2.1, higher latitudes may be subject to persistent cloudiness and the 441 
frequent appearance of broken clouds. Hourly cloud cover and cloud type (measured in 442 
oktas) from (UK Met Office, 2006) were analysed. The statistical relationship between 443 
average hourly cloud cover and UK latitude is not strong (R2 = 0.17, Table 3). The cloud cover 444 
to longitude association is even less convincing (R2 = 0.04). This is probably because broken 445 
cloud (5-6 oktas) prevails across the majority of the country 90% of the year. However, 446 
interpolation of average hourly cloud cover for 2014 from 286 weather stations (Figure 18) 447 
illustrates a visual link between cloud cover, latitude and longitude. Cloud amount increases 448 
from the southeast to the northwest. Comparison of Figure 18 with the nRMSE % distributions 449 
of the satellite and kriging algorithms in Figures 20 and 21 also suggests causality between 450 
cloud cover and modelled irradiance error. This is especially clear in the cases of kriging and 451 
SARAH (R2 = 0.38 and 0.46 respectively, Table 2). 452 
 453 



 454 
Figure 18: Map of interpolated average hourly cloud cover (2014) 455 
A study of latitude and cloud type indicates a stronger relationship between medium cloud 456 
and latitude than either low or high cloud (Table 4). The way the different clouds form may 457 
explain this observation. Low clouds e.g. cumulus and stratocumulus clouds form over land 458 
when the air is heated by the ground and rises. The air temperature drops and water vapour 459 
condenses. This effect will occur nationwide. Low stratus cloud results from orographic 460 
forcing, with presence of British mountains being linked to latitude. Mid-atlantic depressions 461 
which track across the UK from southwest to northeast generate the following sequence of 462 
cloud cover as they pass through: high, then medium and finally low. The cloud composition 463 
on the weather fronts differs according to air stability and atmospheric temperature gradients 464 
(AQA, n.d.).  465 
Table 4: R Squared value for relationship between cloud types and latitude 466 
RELATIONSHIP R Squared 

Latitude against Low Cloud 0.06 

Latitude against Medium Cloud 0.13 

Latitude again High Cloud 0.02 

 467 
Comparison of cloud type and solar irradiance models reveals that all models are influenced 468 
by low cloud to approximately the same extent (Table 5). Low cloud provides the largest 469 
average contribution to overall cloud cover in the UK (average low cloud = 5 oktas, average 470 
medium cloud = 2 oktas, average high cloud = 1 okta.) Solargis, kriging and SARAH are 471 
influenced by low cloud rather than by medium or high cloud. Low level stratus cloud can 472 
cover most of the sky, medium level altostratus allows more penetration of irradiance, 473 
whereas high level cirrus is wispy (UCAR, 2012). CAMS shows a different pattern of cloud 474 
type influence, possibly due to its more frequent aerosol optical depth input.  475 
Table 5: R Squared value for relationship between cloud types and modelled irradiance errors 476 
RELATIONSHIP Solargis Krige CAMS SARAH 

Total Cloud against nRMSE % 0.02 0.38 0.09 0.46 

Low Cloud against nRMSE % 0.27 0.31 0.36 0.3 

Medium Cloud against nRMSE % 0 0 0.66 0.12 

High Cloud against nRMSE % 0 0 0.54 0 

 477 



3.2.3 Landform 478 
Typical landforms include hills, mountains and plains. Landforms may be categorised by 479 
several physical attributes; the ones of interest to this research are elevation (altitude above 480 
mean sea level - AMSL) and change of elevation (or lack of). Change of elevation is 481 
associated with slope, aspect and prominence (height above lowest contour line) i.e. terrain 482 
ruggedness. AMSL in the UK is low, compared to most other European countries. Even so, 483 
there are over 3,000 mountains in the U.K. with a minimum height of 2,000 feet (610 m), 484 
There are also more than 16,000 “tumps” with a prominence of 30 m (Jackson et al., 2017). 485 
A plot of nRMSE against AMSL revealed a weak relationship (slope of 0.02) for all models. 486 
Therefore terrain ruggedness was investigated. There are several ways to quantify 487 
topographic ruggedness (Cooley, 2016). Here standard deviation of slope is used because it 488 
performs well at all scales and is conceptually simple (Grohmann et al., 2011). The slope data 489 
used was the Shuttle Radar Topography Mission (SRTM) 90 m cell size digital elevation grid 490 
(Pope, 2017). Figure 19 indicates that all models are disadvantaged by complex terrain. 491 
Kriging is more impacted than the satellite models because it does not interpolate in the z 492 
plane. This may also be seen in Table 6 which averages nRMSE % inside and outside of 493 
Less Favoured Areas (LFA). These are EU-defined mountainous and hill farming areas (EU, 494 
2013). 495 

 496 
Figure 19: Trendlines of satellite and kriging nRMSE at each weather station, plotted as a 497 
function of Standard Deviation of Slope 498 
 499 
Table 6: Average nRMSE % inside and outside of Less Favoured (hill and mountain) Areas. 500 
 501 
  Average nRMSE % in LFA Average nRMSE % outside 

of LFA 

Krige 44 34 

Solargis 34 32 

CAMS 54 50 

SARAH 58 53 

 502 



An investigation was carried to out establish the relationship between standard deviation of 503 
slope and the clearness index. In theory, cloudiness should increase with terrain complexity 504 
due to orographic forcing. In fact, the resultant graph based on UK data showed no link 505 
between these variables (flat trend). A Kt/elevation plot was also non-conclusive. The 506 
influence of terrain ruggedness on solar irradiance models in the UK must be due to another 507 
associated factor. Hillshade was generated using ArcGIS software (ESRI, 2014). All the 508 
models show a non-significant reduction in error as shadowing decreases. When azimuth was 509 
studied, the kriging model nRMSE displayed a non-significant relationship. None of the 510 
satellite models showed any correlation to azimuth. The connection between terrain and 511 
irradiance appears to be complex and not easily explained with hourly data (Tables 2 and 3). 512 
Figure 20 illustrates the nRMSE % for each modelled irradiance value at each weather station 513 
in interpolated format (for ease of interpretation). The nRMSE maps are compared to terrain 514 
ruggedness in the form of a map of standard deviation of slope. It can be seen that kriging 515 
and SARAH have high errors in areas of complex terrain (mountains) and lower errors in flat 516 
regions, whereas Solargis is robust against topographic features. 517 

     

Solargis Kriging CAMS SARAH Std Dev of 
Slope 

(a) (b) (c) (d) (e) 

Figure 20: Maps of interpolated nRMSE % of satellite and kriging algorithms compared to 518 
map of Standard Deviation of Slope 519 
Figure 21 investigates the degree to which errors at adjacent weather stations are similar for 520 
each irradiance model. Anselin Local Moran’s I index is calculated, mapped and compared to 521 
the map of terrain ruggedness. Anselin Local Moran’s I allows identification of spatial groups 522 
of objects with features of the same magnitude (Anselin, 2010; Renard, 2017). This index 523 
enables statistically significant groups with high (HH) and low (LL) error values to be 524 
distinguished. Again, in the cases of kriging and SARAH, a link with terrain ruggedness is 525 
detected. 526 

 527 



Figure 21: Maps of Anselin Local Moran’s I index at each weather station for satellite and 528 
kriging algorithms compared to map of Standard Deviation of Slope 529 
There is another way in which terrain may influence solar irradiance. As altitude above mean 530 
sea level (AMSL) increases, the atmosphere becomes thinner (less pressure).  Thus the total 531 
amount of water vapour the atmosphere can potentially hold is decreased and more solar 532 
irradiance penetrates at higher altitudes. However, increases in daily totals of global 533 
irradiance with altitude have been reported as 6-10% per 1000 m (Blumthaler et al, 1997). 534 
The difference in ground height between the highest and lowest UK weather station is only 535 
360 m. Therefore, altitude effect could only account for a small percentage of changes in the 536 
UK solar irradiance data. 537 
Absolute humidity (mass of water vapour in a unit volume of air kg/m3) was calculated from 538 
MIDAS weather station values for relative humidity and temperature using the NOAA Moisture 539 
Calculator (Padfield, 2013).  The trend for water vapour to decrease with rising elevation in 540 
the UK is slender (R2 = 0.01). When absolute humidity is compared to irradiance model 541 
errors, no relationship was found for any of the satellite models (flat trends). This suggests 542 
that they all address altitude effects well. In the case of kriging, nRMSE decreases with 543 
increasing water vapour content (R2 = 0.5), in contrast to expectations. Also, plotting average 544 
hourly global horizontal irradiance against weather station AMSL gave a slight anticorrelation 545 
(R2 = 0.02). These last two statistics suggest that, in upland areas in the UK, the effect of 546 
irradiance increasing with altitude is outweighed by cloud formation associated with rising 547 
terrain. 548 
3.2.4 Weather Station Distribution 549 
Maps of interpolated nRMSE for the irradiance values from the kriging algorithm were 550 
generated, with colour ramps optimised to the kriging error values (Figure 22). These were 551 
overlaid with the location of weather stations. There is a clear visual link between clustering of 552 
weather stations and low errors. (There is, of course, no relationship between clustering of 553 
MIDAS stations and any of the satellite models because these do not utilise MIDAS data.)  554 

 
  

Stretched colour ramp  Classified colour ramp 

(a) (b) 

Figure 22: Maps of interpolated nRMSE % of kriging algorithms overlaid with weather station 555 
location 556 
Several techniques were experimented with to ascertain how to quantify this link 557 
mathematically. Weather station density and neighbour count in distance band gave the 558 
simplest and most reliable results (Table 7).  559 
 560 
 561 
 562 
 563 
 564 



 565 
 566 
 567 
 568 
Table 7: Results of techniques quantifying weather station clustering 569 
Weather Station Density Neighbour Count in Distance Band 

Area No. weather stations 
per 100 x 100 km 
grid square (10,000 
km2) 

No. neighbours 
within 100 km radius 
of each weather 
station 

No. neighbours 
within 45 km radius 
of each weather 
station 

All UK 3 2 (+ station itself = 
total of 3 in circular 
area) 

n/a 

Areas where kriging 
performs best (< 30 
% nRMSE) 

6 n/a 2 (+ station itself = 
total of 3 in circular 
area) 

 570 
Looking at Figures 11 and 14, it is evident that kriging outperforms Solargis where there are 571 
at least 6 weather stations per 10,000 km2 grid square. Kriging outperforms CAMS and 572 
SARAH throughout the UK i.e. where there is a weather station density of at least 3 weather 573 
stations per 10,000 km2 grid square. Three per 10,000 km2 grid square is possibly achievable 574 
for many national meteorological organisations, but perhaps not more than this. It is surmised 575 
that this is the lowest weather station density for interpolation to surpass satellite model 576 
accuracy. PVGIS Classic/Original PVGIS/PVGIS-3 (JRC, 2012a), computed from 577 
interpolation of data from 566 ground meteorological stations throughout the European 578 
Subcontinent, has a new version, PVGIS-4/PVGIS-CMSAF. PVGIS Classic has 2 weather 579 
stations per 10,000 km2 grid square. The new version is based on calculations from CMSAF 580 
satellite images and its authors are convinced it is an improvement on PVGIS Classic in most 581 
places (JRC, 2012b).   582 
3.2.5 Major topographic influences on ground or satellite irradiance data 583 
choice 584 
These are presented in Table 2 and Figure 23. 585 



 586 
Figure 23: Influence of Distance to Weather Station, Atmospheric and Topographic Factors 587 
on Irradiance Models 588 
Reviewing sections 3.2.1 to 3.2.3 (with Table 2 and Figure 23), it is apparent that the SARAH 589 
model is affected by factors associated with latitude and cloudiness (MSLP, Total Cloud 590 
Cover and Kt), and to a lesser extent by terrain. Kriging accuracy is determined by: factors 591 
associated with latitude and cloudiness; weather station clustering; less strongly by terrain. In 592 
the cases of Solargis and CAMS, none of the factors tested heavily influence error 593 
distributions (Figure 23).  594 
Thus, when deciding between ground-measured and satellite-derived irradiance values, 595 
terrain, latitudinal factors and weather station clustering are the factors which matter. Some 596 
satellite models treat problems due to latitude and terrain more successfully than others. The 597 
SARAH model is less accurate than the CAMS and Solargis models. SARAH uses long-term 598 
monthly modelled averages for atmospheric input data (Appendix C). These long-term 599 
monthly aerosol averages smooth daily fluctuations. CAMS and Solargis employ satellite-600 
derived 3-hourly and daily calculated values respectively. Short-term calculated values have 601 
an additional advantage over satellite data in that any missing data is filled in (Cebecauer et 602 
al., 2011), suggesting that Solargis may have the most accurate atmospheric inputs. 603 

4. Conclusion 604 
This research delivers a national assessment of which data source is most accurate for 605 
production of site specific hourly irradiance data: satellite-derived values or ground-based 606 
measurements. Furthermore, it explores the atmospheric and geographic conditions under 607 
which each solar radiation resource delivers the most accurate results. The models tested 608 
may be listed in decreasing order of accuracy as follows: Solargis, kriging of ground 609 
measurements, CAMS, SARAH and nearest neighbour extrapolation of ground 610 
measurements. The exception is where there are at least 6 weather stations per 10,000 km2 611 
grid square. In these circumstances, kriging outperforms Solargis. 612 
It was noted that nearest neighbour extrapolation does not deliver accurate results. Choice of 613 
satellite model is influential. The decision is not between satellite-derived and ground-based 614 
data, but between which satellite model and interpolation of ground measurements.  615 
All the irradiance models evaluated were affected by landform, SARAH and kriging also by 616 
latitude. In the UK these factors cannot be separated since topographic ruggedness increases 617 
with latitude. Generally, it is not the case that some models perform better under certain 618 



terrestrial circumstances than others. Solargis has lower errors over the entire UK than 619 
CAMS, which is in turn is more accurate nationwide than SARAH. Satellite model accuracy 620 
appears to be related to time resolution of atmospheric input data.      621 
Regarding the satellite/interpolated values decision, break-even distance provided guidance, 622 
but it can be enhanced. Rather than distance from weather station, the number of neighbours 623 
in distance band or number of weather stations per 100 x 100 km grid square (weather station 624 
clustering/density), are more effective rules. These demonstrate a closer representation of 625 
reality. Of the datasets tested in this paper, kriging is more accurate than SARAH and CAMS 626 
where there are at least 3 weather stations per 100 x 100 km grid square or 2 neighbours in a 627 
100 km distance band of each weather station. Kriging is more accurate than Solargis where 628 
there are at least 6 weather stations per 100 x 100 km grid square or 2 neighbours in a 45 km 629 
distance band of each weather station. Weather station density is key. It is conjectured that in 630 
countries with less variable climates and landscapes e.g. flat desert, greater interpolation 631 
accuracy may be achieved with fewer ground measurements. For instance, research using 632 
data from ten meteorological stations located in the south and centre of Tunisia (Loghmari 633 
and Timoumi, 2017) has found solar irradiance data may be accurately extrapolated for 634 
distances of 65 – 129 km. 635 
Influence of station network density has been recognised in studies of rainfall and 636 
temperature (Hofstra et al., 2010; Yang et al., 2016) but not previously been investigated for 637 
solar irradiance. 638 
The most recent developments in satellite-based modelling of solar irradiance combine long-639 
term satellite values with short-term high-accuracy ground measurements. This technique of 640 
site adaptation enables the production of enhanced historical data for new sites e.g. solar 641 
farms with measurement facilities. Validation against independent data has shown impressive 642 
improvements in error values (Cebecauer and Suri, 2016; Polo et al., 2016; Ruiz-Arias, J.A., 643 
Quesada-Ruiz, S., Fernández, E.F., Gueymard, 2015). 644 
Satellite data itself will also improve with the launch of the Meteosat Third Generation series 645 
from 2021 onwards. The new satellites will provide images at high spatial resolutions, from 2 646 
km to 0.5 km, as well as higher quality aerosol data. The ability of satellite irradiance 647 
algorithms to handle broken cloud will be enhanced and more accurate data for the radiative 648 
transfer equations will become available. Thus, in future, it may be possible that satellite-649 
derived irradiance values will match or exceed the accuracy of data interpolated from even 650 
the highest density station networks. 651 
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Appendix A: Discussion of (Perez et al., 1997) 832 
This work has been extensively referenced, having received over 176 citations to date 833 
(Google Scholar (Google, n.d.), January 2018). It received 61 citations in the 11-year period 834 
2000-2010 as opposed to the average of 8 in the engineering field (Times Higher Education, 835 
n.d.). Post-2010, with widening availability of satellite data, the citation rate increased, 836 
reaching as high as 19 per year. Citing journals were published in English, French, 837 
Portuguese and Spanish. Most were in the field of photovoltaics, but there has also been 838 
interest from agricultural, terrestrial and oceanic sciences.   839 
Approximately one-third of all citations study satellite modelling of irradiance. However, 840 
utilisation has broadened, particularly in the last three years. There has been a particular 841 
focus on photovoltaic electricity production. Other uses include merging ground-based and 842 
satellite irradiance data, irradiance forecasting, solar panel soiling and grid impacts of PV. 843 
Inputs into other disciplines include leaf area index and evaporation.     844 
Half of all case studies citing (Perez et al., 1997) are based in Europe. Just two have a global 845 
application, Africa/Arabia and South America each comprise 15%, whilst Asia and North 846 
America contribute 5% respectively. Thus, although the original work was based on USA 847 
data, it has mostly been applied in Europe. 848 
Despite the great number of citations, only two groups of researchers have attempted to 849 
emulate (Perez et al., 1997) work. (Martins and Pereira, 2011) obtained a break-even 850 
distance of 60 km for daily solar irradiance data in Brazil. Recent work on daily global 851 
horizontal irradiance (GHI) found the accuracy of the SARAH satellite model surpassed that 852 
of ordinary kriging interpolation of ground-based measurements when the distance to the 853 
closest measurement station exceeded 20 – 30 km (Urraca et al., 2016). This suggests that 854 
modern satellite models ought to deliver a much shorter break-even distance for hourly GHI 855 
than (Perez et al., 1997) figure of 34 km.  856 
Appendix B: Description of kriging technique used in this research 857 
Kriging is widely used (Hofstra et al., 2008), suitable for data containing directional bias and 858 
provides error calculations. Specifically, ordinary kriging is used with an empirical semi-859 
variogram. (The semi-variogram is a graph of the difference in value recorded at pairs of 860 
locations (the semi-variance) on the y-axis, plotted as a function of distance between them on 861 
the x-axis.) The semi-variogram model was selected as exponential, following an investigation 862 
of spatial autocorrelation, visual performance and cross-validation. Data from all the weather 863 
stations is utilised to calculate the end result. The empirical semi-variogram is fitted via the 864 
autofitVariogram technique from R software (Hiemstra, 2015). This obtains the sill and nugget 865 
from the semi-variance and the range from map size. (The sill is the value of semi-variance 866 
on the y-axis at which the exponential semi-variogram flattens. The nugget is the value at 867 
which the graph intersects its y-axis. Theoretically zero, the nugget value results from 868 
measurement errors, subsampling noise and fine-scale environmental variability. Additionally, 869 
it may include discontinuity of the data. In this instance, hourly solar radiation data may be 870 
discontinuous due to passing cloud. The range is the distance on the x-axis at which the 871 
model levels.) The R technique was chosen because of its ability to process the large quantity 872 
of data involved. The average nugget for all the hourly datasets is fairly large. This is caused 873 
by short-scale variability of irradiance in the UK. The country is located adjacent to the Afro-874 
Eurasian land mass where several air masses converge. This causes the well-known 875 
changeability of the weather. (See (Palmer et al., 2017) for further explanation of selection of 876 
kriging and details of its application.) 877 
The R Automap package provides automated kriging. Eighty semi-variograms (the number of 878 
weather stations) are computed for every hour for which data exists. That is 80 x number of 879 
daylight hours e.g. 5100 (12 x 365 plus extra dawn and dusk) = 408,000. Kriging took 880 
approximately 4 hours for one years’ data using an i7 32 GB 8 core computer, using parallel 881 
computing and just-in-time compilation. 882 



Appendix C: Comparison of Atmospheric Input Data for Satellite Global Horizontal 883 
Irradiance Models 884 
The differences in aerosol optical depth input data between the satellite models is charted in 885 
Figure C.1. The data was obtained by the authors from the CAMS and CM-SAF download 886 
sites. It can be seen in Figure C.1(a) that Solargis is very different to SARAH, CAMS less so. 887 
In Figure C.1(b) likewise, a substantial difference between CAMS and Solargis is visible. The 888 
differences are especially marked for sea salt, which is influential in the UK’s maritime 889 
climate.  SARAH uses long-term monthly modelled averages for AODs, whereas Solargis 890 
employs daily calculated values. Long-term averages reduce variation in data, whilst higher 891 
temporal resolution calculated values fill gaps and reflect all changes, hence the disparity. 892 
CAMS takes satellite-derived 3-hourly AOD values which although shorter term, may still be 893 
subject to missing data.     894 
  895 



 896 
(a) 

 
(b) 

 
Figure C.1: Percentage Difference between satellite model partial aerosol optical depths at 897 
550 nm. Location: East Midlands of UK. Time period: January 2010. (a) Difference between 898 
CAMS and Solargis partial AODs and those of SARAH. (b) Difference between CAMS and 899 
Solargis partial AODs 900 
 901 
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