Loughborough University
Browse
Published.pdf (2.45 MB)

Sculpting and fusing biomimetic vesicle networks using optical tweezers

Download (2.45 MB)
journal contribution
posted on 2018-06-14, 12:48 authored by Guido Bolognesi, Mark S. Friddin, Ali Salehi-Reyhani, Nathan E. Barlow, Nicholas J. Brooks, Oscar Ces, Yuval Elani
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-Triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.

Funding

This work was supported by EPSRC fellowship ref. EP/N016998/1 awarded to Y.E., by EPSRC grants EP/J017566/1 and EP/K503733/1, by an Imperial College research fellowship awarded to A.S.-R., and by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607466.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Nature Communications

Volume

9

Issue

1

Citation

BOLOGNESI, G. ... et al., 2018. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nature Communications, 9 (Article number: 1882), DOI: 10.1038/s41467-018-04282-w

Publisher

Springer Nature © The Author(s)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2018-04-10

Publication date

2018-05-14

Notes

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

eISSN

2041-1723

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC