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Abstract 

This research studies a workforce scheduling and vehicle routing problem 

where technicians drive a vehicle to customer locations to perform service 

tasks. The service times and travel times are subject to stochastic events. There 

is an agreed time window for starting each service task. The risk of missing 

the time window for a task is defined as the probability that the technician 

assigned to the task arrives at the customer site later than the time window. 

The problem is to generate a schedule that minimises the maximum of risks 

and the sum of risks of all the tasks considering the effect of skill levels and 

task priorities. A new approach is taken to build schedules that minimise the 

risks of missing appointments as well as the risks of technicians not being able 

to complete their daily tours on time. 

We first analyse the probability distribution of the arrival time to any customer 

location considering the distributions of activities prior to this arrival. Based 

on the analysis, an efficient estimation method for calculating the risks is 

proposed, which is highly accurate and this is verified by comparing the 

results of the estimation method with a numerical integral method. 

We then develop three new workforce scheduling and vehicle routing models 

that minimise the risks with different considerations such as an identical 

standard deviation of the duration for all uncertain tasks in the linear risk 

minimisation model, and task priorities in the priority task risk minimisation 

model. A simulated annealing algorithm is implemented for solving the 

models at the start of the day and for re-optimisation during the day.  

Computational experiments are carried out to compare the results of the risk 

minimisation models with those of the traditional travel cost model. The 

performance is measured using risks and robustness. Simulation is used to 
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compare the numbers of missed appointments and test the effect of re-

optimisation. 

The results of the experiments demonstrate that the new models significantly 

reduce the risks and generate schedules with more contingency time 

allowances. Simulation results also show that re-optimisation reduces the 

number of missed appointments significantly. The risk calculation methods 

and risk minimisation algorithm are applied to a real-world problem in the 

telecommunication sector. 

Keywords: Scheduling; Vehicle Routing with Time Windows; Stochastic 

Service and Travel Time; Risk Minimisation. 
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Chapter 1  

Introduction 

1.1 Background and motivation  

Globalisation has brought consumers greater choices of goods and services 

with lower costs. At the same time, it also brings greater challenges for the 

providers of goods and services to stay profitable in a more competitive 

environment. Meeting customers’ expectation and promised schedule visits is 

vital for the profit and reputation of service or goods delivery companies. 

Hence these companies need to continuously view their operation efficiency. 

Task scheduling is a common problem for most organisations regarding 

efficiency, i.e., assigning resources including employees to perform tasks to 

optimise some criteria considering operational constraints. It is crucial to 

ensure that the available resources match the expected workload.  

Many services or goods delivery companies may be influenced by one of the 

current challenges in logistics optimisation: the high degree of dynamics and 

uncertainty. We consider the problem where resources (i.e., technicians) 

deliver a service at customer premises, for example, repairing a telephone line. 

Every customer is given a time window (e.g., 8.00am to 10am) by the 

company at which a technician must start the service. If the job is not started 

by the end of this time window, the appointment is considered as missed and 

the company must pay for failing the appointment. Two main uncertainties 

need to be considered when tasks are assigned to technicians: the time which 

is taken to complete a given task and the travel time. Each technician drives a 

vehicle to customer locations to perform the tasks assigned to him/her. Thus, 

the problem carries features of the Vehicle Routing Problem (VRP) which is 

one of the major problems in the field of logistics and transportation. Dantzig 
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and Ramser (1959) were the first to consider the optimum routing of a fleet of 

gasoline delivery trucks between a terminal and a large number of service 

stations supplied by the terminal. It generalises the well-known Travelling 

Salesman Problem (TSP) which has been studied extensively. VRP has 

become one of the typical combinatorial optimisation problems, and 

significant achievements have been made in both theoretical and practical 

aspects over the last several decades. 

Research in VRP in the first stage focused on deterministic cases, it has since 

been extended to include constraints that align better with real-life applications. 

These extended versions include VRP with time windows (Fisher et al., 1997), 

the heterogeneous VRP (Golden et al., 1984), the open VRP (Li and Tian, 

2006; Li et al., 2009), the VRP with backhauls (Deif and Bodin, 1984) and the 

multi-period VRP (Zäpfel and Bögl, 2008). However, these research works are 

mostly confined to deterministic models, which assume that all related 

information is known and determined before scheduling. In recent years, the 

social and economic operating environment has changed a lot. On the one 

hand, massive uncertain information appears since the number of economic 

activities increases dramatically. However, the rapid development of computer 

technology helps to reduce the chaos resulted from the uncertain information. 

It is urgent for people to utilise this information to create more wealth, which 

suggests that the strategies and the technical methods for dealing with the 

indefinite information directly decide the efficiency and profit level of an 

economic entity. 

Furthermore, the growing interest in enhancing customer satisfaction has 

motivated researchers and businesses in building more customer-oriented 

models, for instance, taking time windows into consideration as an intrinsic 

component of workforce scheduling and VRPs (Ehmke et al., 2015). 

Therefore, service provision organisations have to increasingly focus on 
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providing customer satisfaction and reassurance in the delivery process of 

offering good services or items. Meanwhile, most activities in real-world 

scheduling problems tend to be uncertain. For instance, at arrival onsite, a 

technician may realise the task is not matching his skills or tools, or tasks take 

longer or shorter than expected (Herroelen and Leus, 2005). Hence the 

environment in which services need to be delivered is inherently dynamic and 

subject to disruption in the workstack estimates as well as in the execution of 

jobs by workforce (Lesaint et al., 2000).  

Additionally, Real-life scheduling problems, for instance in domains such as 

workforce scheduling in the utilities or communications sectors, have to deal 

with large numbers of diverse and multi-skilled resources and usually many 

different types of work. These problems need to address different job priorities, 

e.g. in terms of the importance of work, whether it is appointed or not, and in 

which time window the work can be delivered, and varying resource 

availabilities and capabilities. Some of these characteristics, such as travel or 

task times, or whether a resource is correctly skilled to complete a task, are 

only approximately known in advance. Schedules are built based only on 

average, approximate characteristics without explicitly considering the 

underlying uncertainties risks service failure. For example, traditional 

scheduling approaches might well put a high priority task at the end of a 

technician’s schedule if that reduces overall travel. However in real-life, this 

last task might become impossible to complete if there are any delays in 

previous tasks, and it might thus be better to move the high priority task to an 

earlier slot accepting longer travel. In order to meaningfully balance between 

various objectives, such as travel and job completion, in real-world scenarios, 

uncertainty considerations should be part of both the problem model and the 

scheduling approach. In this thesis, we present an approach to illustrate how 

risk can be incorporated into and considered by the scheduling algorithm. 
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1.2 Research framework and intended contributions 

To begin with, a flow chart in Figure 1.1 is used to demonstrate the research 

framework. This will be followed by a description for each of the crucial steps. 

 

Figure 1.1 Research framework 

 

Simpson’s rule and Monte Carlo method 

Accumulation method 

Summation method 

Priority task risk minimisation model  

Linear risk minimisation model 

Non-linear risk minimisation model 

SA method 

Local search 

Problem formulation 

Develop conceptual model 

Risk definition & formulation 

Risk estimation & calculation 

Data collection, analysis & 
interpretation 

Propose risk minimisation 
models 

Solve models 

Re-optimisation 
simulation 

Test & result comparisons 

Conclusions 
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1.2.1 Research problem 

VRPs basically aim to find a way to visit a given set of customer locations 

using a fixed set of vehicles in such a way that a cost function, often the total 

distance or total travel time, is minimised. In the most basic version of this 

problem, each customer must be visited by precisely one vehicle, and each 

vehicle performs one trip, starting and ending at a depot location. The problem 

is then to decide for each vehicle which set of customer locations it visits, and 

in which order it visits them. Typically, a set of operational constraints must 

be fulfilled. These can limit the number or set of possible locations a given 

vehicle can visit, the time at which a given location is visited, the order in 

which a set of locations must be visited and so on. 

The research problem in this thesis inherits the basic VRP constraints, but also 

has its distinctive features because it is about delivering services rather than 

goods to customer locations. The time spent at each customer location is 

significant for the technician to perform the service task while the time spent 

on travel is relatively short; there is no vehicle capacity constraint but there is 

a maximum daily worktime constraint; each task requires certain skills which 

can be performed by a subset of all the technicians; tasks may also have 

different priorities; there is an agreed time window for starting the service for 

each customer, and a risk of missing the time window exists due to 

uncertainties in service and travel times.  

The aim of this research is to study the workforce scheduling and vehicle 

routing problem for service delivery from a new perspective, building 

schedules that minimise the risks of missing appointments as well as the risks 

of technicians not being able to complete their daily tours on time. A better 

schedule could help in improving the level of customer satisfaction. Therefore, 

the company may become more competitive and attract more customers.  
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1.2.2 Definitions and calculation methods 

The risk in the research problem is defined as the probability distribution of 

the arrival time to any customer location considering the distributions of 

activities prior to this arrival. Based on the analysis, three methods for 

calculating the risk of missing the corresponding time window will be 

explored: a mathematical integral expression, a numerical calculation method 

and an efficient and highly accurate estimation method. These attribute to the 

first contribution of this research. 

1.2.3 Models 

The second contribution is to develop new workforce scheduling and vehicle 

routing models with the objective of minimising the risks and thus increasing 

the likelihood of successful service delivery, and to implement an efficient 

algorithm for solving the models and for re-optimisation. The re-optimisation 

framework runs the model multiple time during the day, e.g., besides 

generating initial schedule at the beginning of the day, the schedule may be re-

optimised at 12:00 (BST) and 16:00 (BST) based on the operation information 

gathered from technicians, in order to increase the success of arriving in time 

at customer sites within their given time window. 

1.2.4 Experiments and analysis 

The third contribution is to investigate through computational experiments the 

benefits of the risk models in comparison to the traditional travel cost model.  

The performance will be measured using risks, robustness and number of 

missed appointments. Simulation will be used to obtain the number of missed 

appointments. The effect of re-optimisation will also be tested via simulation.  

The risk calculation methods and risk minimisation models are applied to a 

real-world problem in the telecommunication sector. 
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1.2.5 Conclusions 

The experiment results demonstrate that the new models significantly reduce 

the risks and generate schedules with more contingency time allowances.  

Simulation results show that re-optimisation dramatically reduces the number 

of missed appointments. The risk calculation methods and risk minimisation 

algorithm are applied to a real-world problem in the telecommunication sector. 

Based on this research, two conference papers have been published, “Service 

Scheduling to Minimise the Risk of Missing Appointments” in the 

Proceedings of the Computing Conference 2017(IEEE technically sponsored), 

and “Incorporating Risk in Field Services Operational Planning Process” in 

the SGAI-AI 2018, Artificial Intelligence XXXV in LECT NOTES COMPUT 

SC. 

1.3 An overview of the thesis  

The remainder of this thesis is structured as follows.  

Chapter 2 introduces the literature on the risks defined in several areas and 

disciplines, in particular in Vehicle Routing, Scheduling, and corresponding 

variants problems. Also, heuristic methods are reviewed in terms of the 

complexity in our problem. 

Chapter 3 defines the risks and provides a thorough analysis of the risk, 

various methods to calculate it, and a comparison of these methods. 

Chapter 4 presents several risk models in view of different business cost and 

valuation.  

In Chapter 5, the local search and heuristic search methods used to solve these 

models are described.  
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Experiment results are presented in Chapter 6. The experiments compare the 

risk models with the traditional travel cost model using various performance 

measures.  

Finally, Chapter 7 completes the thesis with the conclusions, summary of 

contributions, and some suggestions for future research. 
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Chapter 2  

Literature Review 

This chapter begins by exploring how risk is defined in different areas. It then 

defines the vehicle routing problems and describes how they have evolved 

over the years, followed by a review of scheduling problems related to our 

research. The main aim of these sections is to identify where our research fits 

in current literature. Additionally, for the complicated non-linear optimisation 

model in our problem, various heuristic methods are reviewed.  

2.1 Risks 

In risk management, the risk is defined as the effect of uncertainty on 

objectives (IRM, 2018). The deviation from the expected target is regarded as 

the effect, and the target could be positive or negative. Concerning objectives, 

they can be in various aspects, such as financial, health and safety, 

environmental goals, etc. The risk may be applied at different levels, for 

example, strategic, organisation-wide, project, product and process. It is often 

expressed as a combination of the consequences of an event (including 

changes in circumstances) and the associated likelihood of occurrence. 

Potential events and consequences are two critical features of the risk.  

Moreover, uncertainty is the state of, even partial information related to, 

understanding or knowledge of an event, its consequence, or likelihood (ISO, 

2018).  

2.1.1 Risks in different areas and disciplines 

Risks exist in many areas. In enterprises, enterprise risks consist of credit risks, 

interest rate risks, liquidity risks, market risks, and operational risks. 
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Regarding medical devices, risks are associated with harm to people and 

damage to property or the environment. In the project management area, the 

risk refers to the likelihood that a project will fail to meet its objectives. A 

general project risk management process includes Identify Analyse, Plan 

Response, Monitor and Control. As for natural disasters, risks may arise from 

floods, earthquakes for example.  In the information technology area, risks are 

the potential that a given threat will exploit vulnerable points of an asset or 

group of assets and then it may cause harm to the organisation. With the aim 

to understand better the risk in our problem, some literature is reviewed on 

risks in different areas. 

2.1.1.1 Job scheduling 

Branda et al. (2016) studied the fixed interval scheduling problem which is to 

find a machine assignment for jobs with fixed starting and working times. 

Risks in this problem are random delays in working times. Stochastic 

programming and robust colouring formulations were considered to tackle this 

problem. Moreover, for small simulated instances, CPLEX solver was used. 

While for larger instances, a Tabu search algorithm shows more efficient. 

Jamili (2016) focused on a Job Shop-Scheduling Problem (JSSP) which is to 

assign ideal jobs to resources at particular times. The JSSP is a robust job shop 

scheduling problem under disruptions. In the research, he gave the definitions 

and calculations of buffer times and then utilises the buffer times to solve this 

problem. The objective for this problem is to minimise the makespan. In 

addition, two robustness indexes are considered to control the delay: one is 

𝐸𝐸�𝐷𝐷𝑖𝑖𝑖𝑖� < 𝜆𝜆𝑖𝑖𝑖𝑖, where the expected delay of operation (𝑖𝑖, 𝑗𝑗) is less than a pre-

determined threshold 𝜆𝜆𝑖𝑖𝑖𝑖 ; the other is 𝑃𝑃�𝐷𝐷𝑖𝑖𝑖𝑖 > 𝜂𝜂� < 𝛾𝛾 , in which the 

probability of occurring a delay bigger than 𝜂𝜂 is always smaller than 𝛾𝛾. 
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2.1.1.2 Stochastic vehicle routing problems with time window 

Ehmke et al. (2015) defined the risk as the probability that individual time 

window constraints are violated, and the objectives are still based on 

traditional routing costs. They considered the risk into constraints and defined 

different service levels. Therefore, they wanted to minimise the costs while 

ensuring service levels. A chance-constrained programming model was used 

to solve this problem: restrictions were placed on the probability that 

individual time window constraints are violated. Li et al. (2010) also used a 

stochastic programming model with recourse in terms of different optimisation 

criteria. 

Andreatta et al. (2016) considered a real application related to the optimisation 

of ground handling operations, where the aircraft needs specific operations 

before/after departure/landing, and the specific ground service equipment are 

required by these operations. They defined the risk as a disruption if an 

equipment cannot serve an aircraft on time (for example because the previous 

aircraft is late, or the delay cumulated along the service route is sufficiently 

large, or because of a breakdown or other unforeseen events), so that a 

customer originally included in a route may be reached after the end of its time 

window. The objective is to minimise a weighted sum of the total distance 

travelled and the expected number of disruptions. They also used a recourse 

action which is to put a penalty in the objective function based on how much 

the expected arrivals at customers exceed the deadlines.  

2.1.1.3 Pickup and Delivery Problems 

Ghilas et al. (2016) studied the pickup and delivery problem with time 

windows, scheduled lines and stochastic demands. This problem concerns 

scheduling a set of vehicles to serve a set of requests. The expected request 

demands are known in distribution when planning, but are only revealed with 
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certainty upon the vehicles’ arrival. A part of the transportation plan can be 

carried out on limited-capacity scheduled public transportation line services. 

The risk of this problem arises from uncertain demands. They proposed a 

scenario-based sample average approximation approach for this problem. 

Meanwhile, an adaptive large neighbourhood search heuristic embedded into 

the sample average approximation method was used to generate good-quality 

solutions.  

Elgesem et al. (2018) modelled a practical single-ship routing problem with 

stochastic travel times as a stochastic traveling salesman problem with pickups 

and deliveries. The risk in their model is related to the probability that the 

route length is within a threshold and the goal is to maximise the probability. 

They showed that the uncertainty is determined by the layout of the relevant 

terminals and their distance to the anchorage. They proposed a simulation 

method to address the particular sailing pattern and re-evaluation process to 

handle some error in the approximation. 

2.1.1.4 Project management 

Pantouvakis and Maravas (2013) discussed the time and cost uncertainty 

modelling in project management, and they reviewed the uncertainty of 

projects and programmes. In the goals, the uncertainty tends to lie within the 

remit of the owner and sponsor and in the methods with the remit of the 

steward, the project manager, and the contractor. Outside of the project, the 

general macroeconomic and political environment and the legal framework 

affects project outcomes. At the level of the project, machine reliability, labour 

and machine productivity, unpredictable conditions, and flaws in defining 

project scope are crucial in shaping the outcome. 

Bai et al. (2016) discussed about managing small projects under uncertainties. 

The problem is when dealing with uncertain customer arrivals, a contractor 
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has the incentive to accept multiple projects to keep his crew busy in order to 

string along his customers. The uncertainty is the unknown number of 

customers while the contractor wants to make good use of his crew. Also, the 

contractor faces the risk of customer abandonment and customer complaint. 

To quantify this trade-off, they proposed a queuing model to examine the 

optimal admission policy in terms of the maximum number of projects that a 

contractor should accept at any point in time. 

In the financial management of projects, Zhang and Elmaghraby (2014) 

studied the uncertainty where the duration and the cost of activity are 

modelled as random variables. They proposed a new concept of “alphorn of 

uncertainty” (AoU) to describe the domain of cumulative cost variation 

throughout the life of a project, and also applied it to assess the project’s 

financial status over time. Moreover, they concluded that AoU may be a 

promising method for the financial management of projects under uncertainty. 

They also revealed that financial status under uncertain conditions is not 

sensitive to an activity’s choice of duration distributions or the form of cost 

functions. However, the financial status can be greatly affected by payment 

rules. 

2.1.1.5 Supply chain 

Considering the logistics service supply chain, the uncertainty lays in the 

operation time for Functional Logistics Service Providers (FLSPs) in a mass 

customisation service environment. Liu et al. (2015) considered a scheduling 

model of logistics service supply chain based on the mass customisation 

service and uncertainty of FLSP’s operation time to minimise total scheduling 

costs, minimise the difference between the scheduled and actual time of each 

service process, and maximise the average satisfaction of FLSPs. 
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In the robust environmental closed-loop supply chain, the uncertainty is the 

cost parameters of the supply chain and demand fluctuations. In the paper 

from Ma et al. (2015), they tried to minimise the economic cost and the 

second objective function is to minimise the environmental influence. 

2.1.1.6 Information systems 

In information systems, security risks are caused by various interrelated 

internal and external factors. Security risk analysis mainly focuses on 

analysing vulnerabilities and threats to the information resources and deciding 

what countermeasures to take for reducing risk to an acceptable level. Feng et 

al. (2014) utilised the probability of the threats and the expected loss due to 

the vulnerability of those threats to measure these risks. A security risk 

analysis model was also proposed to identify the causal relationships among 

risk factors and analyse the complexity and uncertainty of vulnerability 

propagation. 

2.1.1.7 Nature disaster 

As data analysis develops, the studies on risks caused by natural disasters 

become more feasible and reliable. Liu et al. (2013) measured the risk as the 

exceedance probability distribution of multi-hazard risk. They addressed the 

risk assessment in China’s Yangtze River Delta by developing a simple and 

practicable multi-hazard risk assessment method, which uses information 

diffusion theory to overcome the difficulty arisen from a lack of historical or 

spatial data on the natural hazard-induced loss.  

2.1.1.8 Risk management 

Risk management is an important function in organisations as companies 

undertake increasingly complex and ambitious projects. Those projects should 
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be executed successfully, in an uncertain and often risky circumstance. There 

is no unanimous definition of a risk, but it is common to define a risk 

materialising as the probability or likelihood for an event with negative or 

unlikely happening consequences (Hopkin, 2012).  

A risk matrix is a widely used tool during risk assessment to define the level 

of risk by considering the category of probability or likelihood against the 

category of consequence severity. This is a simple mechanism to increase 

visibility of risks and assist management decision making (Cox Jr., 2009). 

Some research in the above disciplines also refers the probability as the risk, 

so the risk is the probability of late arrivals as the basic definition in our 

problem. Once the distribution of late arrivals can be obtained, the risk would 

be well defined and calculated. 

2.1.2 Differences 

The problems in the above areas discussed may have some similarity to our 

problem or at least may help spark some thoughts. We summarise their 

similarity and difference with our research. Our research focuses on 

minimising the risk of missing an appointment with considering the time 

window for each customer. This is different from the vehicle routing problem 

with time windows where the objective is based on traditional routing costs. In 

the pickup and delivery problem they also consider time windows and the 

demand is stochastic but the times spent at customers’ sites are short. Job 

scheduling problems consider disruptive events and the propagation of delay 

on tasks, but they generally do not consider travel time or time windows. In 

project management and supply chain, the interpretation of risk differs from 

ours. More focus is placed on the outcome of projects at financial or timescale 

level from personal, organisational or liability risk. 
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Additionally, differed from analysing the reasons and factors that cause and 

affect risks profoundly, this research study attributes the risk of missing 

appointments to the uncertain task durations and travel times. These 

uncertainties are obtained from the duration and travel time data, therefore, it 

is not a focus on investigate the reasons and factors that give and influence 

distributions of such duration and travel time.  

In the next section we discussed the origins of VRP and its variants, and also 

described how features of our research problems relate to some of the existing 

literature. 

 

2.2 The vehicle routing problems 

2.2.1 Variants of the VRP 

It has been 60 years since Dantzig and Ramser (1959) proposed a 

mathematical programming formulation and algorithms for the truck 

dispatching problem, which is commonly regarded as the first proposal of the 

VRP. VRP can be treated as a generalisation of the TSP, and over these years, 

dozens of different versions of the VRP have been introduced, and as the 

utilisation of optimisation packages have improved, hundreds of models and 

approaches have been proposed for the VRP. 

 

2.2.1.1 Capacitated and distance-constrained VRP 

Capacitated VRP (CVRP) (Fischetti et al., 1994) is the fundamental version of 

the VRP, where all the customers correspond to deliveries, and the demands 
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are deterministic, known in advance, and may not be split. The vehicles are 

identical and based at a single central depot, and only the capacity restrictions 

for the vehicles are imposed. The objective is to minimise the total cost to 

serve all the customers. It could be described as follows. 

Let 𝐺𝐺 = (𝑉𝑉,𝐴𝐴) be a complete graph, where 𝑉𝑉 = {0,1,⋯ ,𝑛𝑛} is the vertex set 

and 𝐴𝐴 is the arc set. Vertices 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 correspond to the customers while 

vertex 0 stands for the depot. Let 𝑐𝑐𝑖𝑖𝑖𝑖 represent the travel cost from 𝑖𝑖 to 𝑗𝑗. If the 

cost matrix 𝑐𝑐  is asymmetric, then the corresponding problem is called 

asymmetric CVRP. Otherwise, we have 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗𝑗𝑗 , the problem becomes 

symmetric CVRP. Let 𝑑𝑑𝑖𝑖  to be the known demand of the customer 𝑖𝑖(𝑖𝑖 =

1,2,⋯ ,𝑛𝑛), and the demand of the depot is denoted by 𝑑𝑑0 = 0. A set of 𝐾𝐾 

identical vehicles are available, each with capacity 𝐶𝐶. Assume that 𝐾𝐾 is not 

smaller than 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚, where 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 is the smallest number of vehicles needed to 

serve all the customers. The capacitated VRP is to find 𝐾𝐾 with minimum cost, 

and such that  

1. Each vehicle route visits the depot; 

2. Each customer vertex is visited by exactly one vehicle; 

3. The sum of the demands of the vertices visited by the same vehicle 

does not exceed the vehicle capacity 𝐶𝐶. 

The Distance-Constrained VRP is a VRP where the capacity constraint is 

replaced by a maximum length (or time) constraint. Let 𝑡𝑡𝑖𝑖𝑖𝑖 be the length of the 

arc (𝑖𝑖, 𝑗𝑗). Moreover, a service time 𝑠𝑠𝑖𝑖 can be added to the travel times of the 

arcs, therefore, 𝑡𝑡𝑖𝑖𝑖𝑖=𝑡𝑡𝑖𝑖𝑖𝑖′ + 𝑠𝑠𝑖𝑖
2

+ 𝑠𝑠𝑗𝑗
2

, where 𝑡𝑡𝑖𝑖𝑖𝑖′  is the original length of the arc(𝑖𝑖, 𝑗𝑗). 

Generally, the length matrix is used as the cost which means 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖 for all 

(𝑖𝑖, 𝑗𝑗). Therefore, the objective of the model is to minimise the total length of 

the travel routes, as well as the service time if it is considered. 
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2.2.1.2 VRP with time windows 

The VRP with time windows (VRPTW) is an extension of the CVRP 

(Solomon, 1987), where capacity constraints are imposed and a time interval 

[𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖], called a time window, is associated with each customer 𝑖𝑖. The service 

must start within the time window. The VRPTW is to find 𝐾𝐾 with minimum 

cost, and such that  

1. Each vehicle visits the depot; 

2. Each customer vertex is visited by exactly one vehicle; 

3. The sum of the demands of the vertices visited by the same vehicle 

does not exceed the vehicle capacity 𝐶𝐶; 

4. For each customer 𝑖𝑖, the service begins within the time window [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖], 

and the vehicle stops for 𝑠𝑠𝑖𝑖 time instants. 

2.2.1.3 VRP with back-hauls 

The VRP with Back-hauls (VRPB) is an extension of the CVRP 

(Goetschalckx and Jacobs-Blecha, 1989), where the customer vertices are 

partitioned into two sets. The first subset 𝐿𝐿  contains 𝑛𝑛  line-haul customers 

who require a given quantity of product to be delivered. The second subset 𝐵𝐵, 

contains 𝑚𝑚  back-haul customers who have a given quantity of inbound 

product must be picked up. Customers are numbered so that 𝐿𝐿 = {1,⋯ ,𝑛𝑛} and 

= {𝑛𝑛 + 1,⋯ ,𝑛𝑛 + 𝑚𝑚}  . In the VRPB, all the line-haul customers must be 

served before any back-haul customer. The VRPB is to find 𝐾𝐾 with minimum 

cost, and such that  

1. Each vehicle visits the depot; 

2. Each customer vertex is visited by exactly one vehicle; 
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3. The sum of the demands of the line-haul customers visited by the same 

vehicle does not exceed the vehicle capacity 𝐶𝐶, and the total pickup 

quantity of the backhaul customers visited by the same vehicle also 

does not exceed 𝐶𝐶; 

4. In each vehicle route all the line-haul customers precede the backhaul 

customers. 

2.2.1.4 VRP with pickup and delivery 

In the basic version of the VRP with Pickup and Delivery (VRPPD) 

(Savelsbergh and Sol, 1995), each customer 𝑖𝑖 is associated with two quantities 

𝑑𝑑𝑖𝑖  and 𝑝𝑝𝑖𝑖 , representing the demand of homogeneous commodities to be 

delivered and picked up at customer 𝑖𝑖 respectively. The demand of goods from 

customer 𝑖𝑖 may be met by the goods picked up from the other customer, and 

the goods picked up at this customer 𝑖𝑖  also can be delivered to another 

customer. For each customer 𝑖𝑖, 𝑂𝑂𝑖𝑖 denotes the vertex that is the origin of the 

delivery demand, and 𝐷𝐷𝑖𝑖  denotes the vertex that is the destination of the 

pickup demand. The VRPPD is to find 𝐾𝐾 with minimum cost, and such that  

1. Each vehicle visits the depot; 

2. Each customer vertex is visited by exactly one vehicle; 

3. The current load of the vehicle must be nonnegative and may never 

exceed the vehicle 𝐶𝐶; 

4. For each customer 𝑖𝑖, the customer 𝑂𝑂𝑖𝑖, if  different from the depot, must 

be served by the same vehicle and before customer 𝑖𝑖; 

5. For each customer 𝑖𝑖, the customer 𝐷𝐷𝑖𝑖 , if is different from the depot, 

must be served by the same vehicle and after customer 𝑖𝑖. 
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2.2.2 The stochastic VRPs 

Real life is always filled with much uncertain dynamic information, and with 

the economic development, this uncertain information generates an 

increasingly significant impact on business activities. Stochastic programming 

is a framework for modelling optimisation problems that involve uncertainty, 

whilst deterministic optimisation problems are formulated with known 

parameters. However, real-world problems almost invariably include some 

unknown parameters. Using the historical data, the statistical information 

about these parameters may be obtained. Thus, stochastic programming 

models take advantage of the fact that probability distributions governing the 

data are known or can be estimated, so that the goal here is to find a feasible 

solution for all such data and maximise the expectation of some function of 

the decisions and the random variables. More specifically, such models are 

formulated, solved numerically or analytically, and investigated in order to 

provide useful information to a decision-maker. 

The Stochastic VRP (SVRP) is the VRP with some random elements of the 

problem. Typical examples are stochastic customer demands and stochastic 

travel times. Another kind of SVRPs has stochastic customers. In this case, 

each customer has a probability of being present. Sometimes, more intricate 

problems combine the stochastic demands with stochastic customers. These 

variants of the SVRPs are discussed in the following subsections.  

The SVRP is different from the deterministic VRP in several fundamental 

aspects. The concept of a solution is different, several fundamental properties 

of the deterministic VRP do not hold in the stochastic VRP anymore, and 

solution methodologies are relatively more complicated (Gendreau et al., 

1996). The SVRP is often considered as computationally intractable, due to 

the fact that it combines the features of stochastic and integer programs. 
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However, the SVRP represents the real problems better. Thus, heuristics and 

metaheuristics for solving the SVRP have become popular in recent years. 

Many computational algorithms have been proposed for tackling this kind of 

problems.  

The SVRP is a branch of the framework in stochastic programming. 

Commonly stochastic programming is modelled in two phases. In the first 

phase, a priori solution is generated. In the second phase, the realisations of 

the random variables become known, and then a recourse or corrective action 

could be applied to the solution generated in the first phase. The recourse 

usually encloses a cost or a saving that may have to be considered when 

designing the first stage solution. 

2.2.2.1 The VRP with stochastic demands 

Most SVRP studies focus on the VRP with stochastic demands (VRPSD) 

where customer demands are illustrated by random variables. More 

specifically, each 𝑑𝑑𝑖𝑖  is replaced by a random variable 𝜉𝜉𝑖𝑖 . The first stage 

solution to this problem would consist of a set of 𝑚𝑚 vehicle routes so that each 

customer site is visited exactly once. After the first stage solution has been 

determined, the actual demands are revealed. It may then be impossible to 

implement the first stage solution as planned since the total demand of a route 

may exceed the capacity, i.e., route failures may occur. A possible second 

stage policy would be to follow each route as planned until the vehicle 

capacity becomes attained or exceeded, return to the depot to unload, and then 

resume collections at the customer on the planned route where route failure 

occurred. In this case, the recourse action consists of performing a return trip 

to the depot. 

Tillman (1969) was the first to propose an algorithm for the VRPSD based on 

the Clarke and Wright saving algorithm (Clarke and Wright, 1964). A second 
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major seminal work is due to Stewart and Golden (1983), in which a chance-

constrained model and two recourse models are presented. The chance-

constrained model, in which some constraints hold at least with a predefined 

probability, designs the route sets and minimise transportation costs under 

stochastic chance constraints. The first of the two recourse models consider 

the probability of exceeding the vehicle capacity as a penalty, while the 

second recourse model uses a penalty proportional to the expected demand in 

excess of the vehicle capacity. Bertsimas (1988) also made a contribution to 

the study of the VRPSD. He derived several theoretical properties, lower and 

upper bounds for different strategies, and asymptotic theorems for the 

problems.  

Laporte et al. (1989) considered the depot location as a decision variable. 

Their work deals with the problem with more general demand distributions. 

Properties and formulations for the recourse version of the problem have been 

studied by Dror et al. (1993), Louveaux and Laporte (1990), Bastian and 

Rinnooy Kan (1992), Bertsimas (1992) and Dror (1993). Heuristics are 

described in the works of Dror and Trudeau (1986), Bouzaïene-Ayari et al. 

(1993), and Dror et al. (1993).  

2.2.2.2 The VRP with stochastic customers 

In the VRP with stochastic customers (VRPSC), customers are present with 

some probability 𝑝𝑝𝑖𝑖 , while customer demands are usually assumed to be 

deterministic. The VRPSC is an extension of the Traveling Salesman Problem 

with Stochastic Customers (TSPSC). To tackle this problem, in the first stage 

the Hamiltonian path through vertices for each vehicle is generated, and the 

set of present vertices is revealed. Moreover, the vehicle capacity must be 

considered, and it is necessary for each vehicle to return to the depot. In the 

second stage solution, absent customers are skipped. Waters (1989) gave three 
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alternatives for the customers who do not want to be visited in a particular 

period: continue with the same planned routes; bypass the absent customers, 

and use semi-fixed routes; move to variable routes by using entirely new 

schedules. Laporte et al. (1994) proposed an exact algorithm based on the 

Integer L-Shaped Method (Laporte and Louveaux, 1993) which is capable of 

solving instances of size 𝑛𝑛 < 50 . Few studies focus on the problem with 

stochastic customers, because as the technology is improving, it becomes 

easier to know the omitted customers before scheduling.  

2.2.2.3 The VRP with stochastic customers and demands 

The VRP with Stochastic Customers and Demands (VRPSCD) combines the 

VRPSC and the VRPSD. Jézéquel (1984), Jaillet (1988), Trudeau and Dror 

(1992) all worked on the problem in the early stage. The definition proposed 

by Bertsimas (1992) seems the most interesting. In a first stage, one 

determines a set of routes starting and ending at the depot and visiting each 

customer exactly once. The set of customers with zero demand (absent 

customers) is then gradually revealed, but the actual demand of every 

remaining customer becomes known only when the vehicle arrives at the 

customer’s location. In the second stage, the first stage routes are followed as 

planned, with the following two exceptions: (1) any absent customer is 

skipped; (2) whenever the vehicle capacity becomes exceeded, it returns to the 

depot to unload and resumes collections starting at the last visited customer. If 

for any customer the vehicle capacity becomes precisely attained, the vehicle 

then returns to the depot and resumes collections at the next present customer 

along its route. 

Gendreau et al. (1995) were the first to propose an exact algorithm for this 

challenging problem based on the Integer L-Shape algorithm. In terms of 

heuristic methods, Gendreau et al., (1996) proposed a Tabu search heuristics 
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for this problem. By comparing with known optimal solutions on problems 

whose sizes vary from 6 to 46 customers, it was found that this heuristic 

method generates an optimal solution in 89.45% of cases, with an average 

deviation of 0.38% from optimality. 

 

2.3 The stochastic VRP with time windows 

With increasing customer expectations and as customer-oriented business 

models develop, the problem with delivery time windows has drawn much 

more attention in the schedule of delivery routes. In this kind of problem, a 

time window [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] constraint is associated with each customer. There have 

been a considerable number of recent papers on how to solve the VRPTW, 

including Baldacci et al (2012), Vidal et al. (2013) and Hashimoto et al. 

(2013). 

As the uncertainty in scheduling draws more attention, the consideration of 

time windows and stochastic demands or travel times in vehicle routing 

problem has become more applicable in recent years. Ong et al. (1997) 

suggested a selection criterion and a sequential heuristic. Jabali et al. (2012) 

studied a variant for the VRP where customer demands are stochastic, and 

demands are revealed upon arrival at customer locations. A failure occurs 

when a vehicle reaches a customer and does not have sufficient capacity to 

collect the realised demand. They formulated the VRPSD as a two-stage 

stochastic programming model and solved it using an integer L-shaped exact 

algorithm, in order to minimise the sum of the planned routes cost and the 

expected recourse cost.  

Laporte et al. (1992) were the first to consider stochastic service and travel 

times in the VRP model. They restrict the total duration along a route for each 
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vehicle under a given level instead of considering time windows. They 

presented general branch and cut algorithms for two models: a chance-

constrained model where the objective is to minimise planned route costs 

while limiting the route duration within a given threshold; a recourse model 

where the objective is to minimise route costs and expected penalty costs. 

Lambert et al. (1993) modelled the collection of cash and negotiables between 

banks and branches as a vehicle routing problem with constraints. As well as 

the deterministic case, they also investigated the case with stochastic travel 

times and solved the integer mathematical programs with a heuristic method.  

Kenyon and Morton (2003) considered SVRP that plan optimal vehicle routes 

with random travel and service times. Contrary to other researches where the 

objective is to minimise total travel costs, their models’ objective functions 

depend on the completion time. They presented a branch-and-cut approach for 

small sample space and a Monte Carlo sampling-based solution procedure 

when the cardinality of the sample space is large. Mazmanyan and Trietsch 

(2014) addressed the stochastic TSP involving minimising the due date in the 

objective with respect to a service level constraint, assuming that the 

distribution of the tour length is normal or lognormal. They provided effective 

heuristics to solve the problems. 

Some papers discussed the reliability of routes. Cook and Russell (1978) used 

a simulation to examine the suitability of deterministically-generated routes 

for the SVRP with uncertain demand and travel times. Their model aimed to 

minimise total expected travel times. Lecluyse et al. (2009) introduced the 

variability of traffic flows into the VRP problem, and they used a lognormal 

distribution in their experiments. As more risk-taking behaviour is taken into 

account, the optimal route shows a slightly longer travel time, but is more 

reliable. They also proposed a balance between the average travel time and 

variance in the objective function in terms of different risk tolerance planners.  
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Lee et al. (2012) investigated the VRP where the goal is to minimise travel 

time while considering uncertain travel time and demand, and customer 

deadlines (i.e., a late time window). They defined the travel time and demand 

in uncertainty sets and achieved a robust solution by utilising a Dantzig-Wolfe 

decomposition approach (Dantzig and Wolfe, 1960) and a dynamic 

programming algorithm. Agra et al. (2013) modelled a realistic VRP in 

maritime transportation where travel times belong to an uncertainty polytope, 

hence their research yields a robust optimisation problem. They contributed to 

reducing the number of extreme points of the uncertainty polytope, and 

implemented a cutting–plane algorithm to solve the robust instances easily. 

A number of authors used a recourse model for the stochastic VRP with time 

windows (SVRPTW), where arrival times before and after the customer time 

windows are discouraged through penalties in the objective instead of hard 

constraints. Taniguchi et al. (2001) modelled the problem to minimise the total 

routing cost, which consists of service and vehicle running cost, travel time 

between customers, waiting time and delay time for customers. They 

represented travel times with the lognormal distribution and solved the model 

with a dynamic traffic simulation approach. Ando and Taniguchi (2006) 

proposed the time windows-probabilistic model for VRP where the 

uncertainty of travel times is considered. The fixed cost of used vehicles, 

operation costs and early arrival and delay penalties at customers are studied 

in the model, as well as the CO2, NOX and Particle Materials emissions. Given 

a linear two-piecewise function as the penalty, combined with the probability 

of arrival time, they obtained the penalty distribution of early arrival and delay 

according to arrival time. They used probe vehicle data to estimate travel 

times and a Genetic Algorithm (GA) to solve the problem. 

Taş, et al. (2013) studied a VRP with soft time windows and stochastic travel 

times, and their model consists of transportation costs, which is not only the 
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distance travelled and a number of vehicles, but also the drivers’ total 

expected overtime, and service costs based on early and late arrivals. They 

provided a Tabu search algorithm to deal with the problem. Another paper of 

Taş, et al. (2014) investigated a VRP with soft time windows and stochastic 

travel times where soft time windows allow early and late servicing at 

customers by incurring some penalty costs and uncertainty of travel times 

follow Gamma distributions. The objective is the same as the previous 

research. They applied a column generation procedure to solve it.  

Russell and Urban (2008) studied a VRP with soft time windows where travel 

times are random variables. They assumed shifted Gamma distributed travel 

time and a variety of penalty structures. They also developed a Tabu search 

metaheuristic to tackle the problem. Yan et al. (2014) studied the SVRPTW 

for cash transportation and employed the time-space network flow technique 

to formulate the potential routes of vehicles. Their objective considered the 

operating costs as well as the unanticipated penalty cost concerning early and 

late arrival situations. Ehmke and Mattfeld (2011) provided information 

models to represent the traffic network in terms of time-dependent travel time 

data sets to improve the efficient and reliable vehicle routing optimisation in 

urban areas. They used data mining to filter sophisticatedly and aggregate 

travel data.  

Some researchers have investigated the problem using a chance-constrained 

model. Li et al. (2010) studied stochastic travel and service times, as well as 

time windows. They considered both a chance-constrained and a recourse 

model. In their Chance-Constrained Programming (CCP) model, driver 

duration and time windows are expected to be feasible with a given confidence 

level, and a Tabu search based heuristic was applied to solve this model. In 

terms of the recourse model, the priori set of vehicle routes is determined then 
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the expected correction costs of route failure are obtained after a stochastic 

simulation realising the travel and service time.  

The objective of the model is to minimise the number of vehicles used and the 

total travel time. Then the recourse models focus on how much the expected 

arrival at every customer exceed the deadline and regard it as a penalty to put 

it in the objective function. Branda (2014) applied sample approximation 

technique to stochastic programming problems with mixed-integer bounded 

sets of feasible solutions and chance constraints. The VRP problem they 

studied is with time windows, random demand and random travel times.  

The problems most closely related to ours are reviewed next. Chang (2005) 

who proposed a nonlinear stochastic integer program with recourse formulates 

the VRP with time windows and uncertain demands, which is similar to the 

task duration in our problem. The objective of his model was to minimise the 

total cost of the first-stage solution and the expected recourse cost of the 

second-stage solution. The total cost of the first-stage problem includes the 

total travel cost for all routes and the total waiting cost for all customers, while 

in our model we consider the risk of missing appointments in the objective.  

When a vehicle capacity is attained or exceeded, recourse actions are needed 

and recourse costs incurred in order to finish the planned route schedules. He 

applied the integer L-shaped method to develop a heuristic for this problem. 

Lei et al. (2011) then developed an adaptive large neighbourhood search 

metaheuristic for this problem. They used the modified Solomon benchmark 

instances in their experiments, and the computational results show that their 

approach is practical and superior to others.  

Taş (2013) studied a VRP associated with real-life environments where travel 

time is stochastic with a known probability distribution, and in our research 

the travel time is assumed to follow normal distributions. His model aimed to 
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balance transportation costs and service costs and he developed a new solution 

procedure based on Tabu search. Additionally, a VRP where travel times are 

both time-dependent and stochastic and a VRP where the time window is 

relaxed with respect to a customised percentage were investigated. He focused 

on the uncertainty of the travel time whereas we consider both the stochastic 

task duration and the uncertain travel time. 

Jula and Dessouky (2006) investigated a stochastic TSP with time windows 

where travelling times and service times are stochastic. They developed a 

methodology to estimate the mean and variance of arrival time at each 

customer location. They constructed an acceptable route if the probability of 

arriving at each customer location in the route within their time window is 

greater than the service level and ran simulations to show the efficiency of the 

algorithm. In our research, the probability of arriving at the customer site is 

defined as the risk. Then based on this estimated arrival times, a dynamic 

programming approximated algorithm is proposed to minimise the expected 

travel cost along the route.  

Chang et al. (2005) studied the VRP considering time windows and uncertain 

travel times which is similar to our problem. And their routing problem is for 

hazardous materials shipments, so the uncertain attributes include not only the 

travel time but also risk-related measures. They investigated a new algorithm 

that propagates means and variances of the uncertain travel times along the 

TSP routes according to the convolution of a normal distribution. They also 

argued that even the distribution of the arrival time is not normal, as the paths 

extended more links, the Central Limit Theorem suggests the arrival time will 

become normal distributed. One more important assumption they considered 

was "no waiting" which means only the upper bound of the time window are 

considered as a constraint. Whereas in the paper of Chang et al. (2009) they 

considered the waiting time that the vehicle arrives before the lower bound of 
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the time window as “wasting resource” in the stochastic TSP with hard time 

windows. We consider the lower bound of the time window when dealing with 

the start time and consider the upper bound of the time window when 

discussing the risk. Chang et al. also provided an efficient heuristic for this 

multi-objective problem. 

Ehmke and Campbell (2014) discussed the delivery mechanism in congested 

metropolitan areas, and they argued that it is valuable to access additional 

information on travel time variation in order to model the lateness and its 

propagation properly. Consideration of travel time with time-dependent 

mechanism outperformed the one of non-time-dependent. They concluded that 

a simple buffer approach is suitable to reduce lateness for downtown areas 

while a fixed buffer is not efficient to model the traffic condition in suburban 

areas. Ehmke et al. (2015) investigated the VRP with time windows and 

carefully considered the start service time and the arrival time distribution 

changes because of the time windows, for every customer. In our research, we 

also discussed how the time windows affect the start service time and then the 

arrival time for following tasks. But they still used a chance-constrained 

approach, in which the objective remains based on traditional routing costs, 

while we consider risks in the objective.  

In a recent paper by Jaillet et al., (2016)  considered a series of routing 

problems with deadlines, which is similar to the upper bound of a time 

window in our model, and with stochastic travel times. They introduced 

“lateness index” to measure the deadline violation level of a given criterion, in 

order to handle risk and ambiguity caused by the uncertain travel times. The 

aim of their routing optimisation is to minimise the lateness index. They 

developed an exact algorithm involving Lagrangian relaxation and Benders 

decomposition to deal with the problem. Damm et al. (2016) considered the 

assignment of a series of service tasks to a group of technicians, the priority 
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values associated with tasks, different skills and working hours for the 

technicians increase the complexity of the problem, we also consider these 

features in our problem. They developed a heuristic method and a customised 

biased random-key genetic algorithm. 

Overall, most VRP models focus on routing costs, or some may consider the 

cost of overall customer service delays, for example, the delay for each worker 

that he might not finish his work in the whole day, which is related one of the 

risks in our model. However, only few researches proposed models that focus 

on the service level at individual customers. Additionally, the job operation 

time is short to neglect for VRP because most of the jobs are delivery and 

pick-up works, while the task operation time is a crucial feature in our 

problem. Hence this is the reason why we investigate risks on the customer 

level to fill the research gap. 

Our problem not only decides vehicle routes i.e. as a SVRPTW, but also 

decides the schedule of customer tasks to vehicles/technicians and hence can 

be viewed as a scheduling problem especially because the technicians spend a 

major part of the time in a day on executing the service tasks. A brief literature 

review on scheduling problem related to our research follows in the next 

section. 

 

2.4 Scheduling problems 

Robust optimisation is widely used in the project scheduling problem with 

uncertain activity durations, but there are no time windows in this problem. 

Bruni et al. (2011) addressed the Resource-Constrained Project Scheduling 

Problem (RCPSP) to minimise the project make-span, with uncertain activity 

durations and deterministic renewable resources. The uncertain duration is 
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represented by independent random variables with known cumulative 

probability distribution function, which is similar to the assumptions for task 

duration in our model. Bruni et al. (2017) proposed an adaptive robust 

optimisation model to obtain the resource allocation decisions which minimise 

the worst-case make-span, under uncertain activity durations subject to 

interval uncertainty, thus the level of robustness is controlled by a protection 

factor. They also adopted a tailored decomposition approach to solve the 

problem.  

Wang et al. (2018) discussed a job-shop scheduling problem with uncertain 

working times. They also established a robust optimisation model based on 

bad scenarios for risk-averse decision makers. They applied a problem-

specific neighbourhood structure in a hybrid local search algorithm which 

combines the Simulated Annealing method and Tabu search. Chakrabortty et 

al. (2017) improved the objective for the RCPSP with stochastic activity 

durations to minimise both the project make-span and the sum of deviation 

penalties of all activity uncertainties. They also called the perturbations in the 

scheduling as risks as we do. They developed six different heuristic 

approaches based on the robust optimisation concept to seek feasible and high-

quality solutions. 

Drwal (2018) addressed single machine scheduling problems with the 

assumption that completion due-dates are not known precisely and only 

available at time intervals. The objective of their model is to minimise the 

weighted number of late jobs, as we consider late jobs in our simulations. And 

their model can be converted to a min-max regret problem to find a robust 

solution. It is usually applied in the preparation of a schedule for medical staff 

at a hospital, where the success of treatment depends on whether a patient is 

treated on time and the due date for the effectiveness of the treatment is 

uncertain.   
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Overall, most researchers consider uncertain activity durations in their 

scheduling models as we do in our model, but they rarely consider time 

windows and travel times because jobs are usually carried out on machines at 

the same site, rather than delivery jobs. 

To sum up, our problem can be considered as an extension of the VRP which 

is NP-hard. When the number of customers is large, solving the problem 

optimally will require impractical computation time. In addition, the 

characteristics of the risk force us to use a non-linear model if we would like 

to consider all the complicated factors in our model. However, with the 

approximation method for risk distributions, we can easily calculate the risks 

for any given schedule. Therefore, heuristic search methods may be applied to 

find near-optimal solutions to the problem. The next section reviews heuristic 

methods used for related VRP variants. 

 

2.5 Heuristic methods for related VRPs 

Heuristics for solving VRPs can be broadly classified into two categories: 

constructive heuristics, including two-phase heuristics, and improvement 

methods. Constructive heuristics build a feasible solution while keeping eyes 

close on solution cost, but they do not contain an improvement phase. Two 

main techniques are used for constructing VRP solutions: merging existing 

routes by a savings criterion and assigning vertices to vehicle routes by an 

inserted cost. In terms of two-phase heuristics, they are divided into two 

classes: cluster-first, route-second methods and route-first, cluster-second 

methods. In the first case, vertices are first organised into some feasible 

clusters, and a vehicle route is constructed for each of them. In the second case, 

firstly a tour is built on all vertices, and then it is segmented into feasible 

vehicle routes. Lastly, improvement methods focus on upgrading any feasible 
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solution by performing a sequence of edge or vertex exchanges within or 

between vehicle routes. Metaheuristics are also improvement methods. 

2.5.1 Constructive heuristics 

2.5.1.1 Clarke and Wright Savings Algorithm 

The Clarke and Wright savings algorithm (Clarke and Wright, 1964) is one of 

the best-known heuristic methods for the VRP and remains widely used in 

practice nowadays. It is based on the notion of savings. A feasible solution 

consists of 𝑛𝑛 back and forth routes between the depot and a customer. At any 

given iteration, two routes (𝑣𝑣0, … , 𝑣𝑣𝑖𝑖 , 𝑣𝑣0) and �𝑣𝑣0, 𝑣𝑣𝑗𝑗 , … , 𝑣𝑣0� can be merged 

into a single route �𝑣𝑣0, … , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 , … , 𝑣𝑣0�  whenever this is feasible, thus 

generating a saving 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖0 + 𝑐𝑐0𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖 . There are two kinds of saving 

algorithms, a sequential version and a parallel version. In the sequential 

version, exactly one route is built at a time, excluding routes with only one 

customer, whereas in the parallel version, more than one route may be built at 

a time. In the first step of the algorithm, the savings for all pairs of customers 

are calculated, and all pairs of customer points are sorted in descending order 

of the savings. Secondly, each pair of points is considered at a time from the 

top of the sorted list of point pairs. When a pair of points �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� is considered, 

the two routes that visit 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗  are combined if they are feasible.  

Cordeau et al. (2002) pointed out that the parallel version is much better in 

practice. Moreover, the Clarke and Wright algorithm can be widely used 

because of its simplicity. However, this method seems to be time-consuming 

since all savings need to be computed, stored and sorted (Laporte et al., 1992). 

When implementing the savings heuristic, computing the maximum saving 

value should draw much attention. The calculation procedure of the Clarke 

and Wright savings algorithm is fast and very flexible, but sometimes the 

solution may be found very far from the optimal solution. Moreover, due to 
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the mess of the un-routed points and the difficulty to the combination of 

boundary points, the Clarke-Wright algorithm is only suitable for solving 

small, simple VRP. 

2.5.1.2 Sweeping Algorithm 

The sweeping algorithm was popularised by Gillett and Miller (1974), which 

is in the family of cluster-first, route-second methods. This algorithm 

considers the VRP from the view of planar instances. Initially, feasible 

clusters are formed by rotating a ray centred at the depot. Then a vehicle route 

is generated for each cluster by solving a TSP. Some further implementations 

include a post-optimisation phase in which vertices are exchanged between 

adjacent clusters, and routes are re-optimised. A simple implementation of this 

method is as follows. Assume each vertex 𝑖𝑖  is represented by its polar 

coordinates (𝜃𝜃𝑖𝑖 ,𝜌𝜌𝑖𝑖), where 𝜃𝜃𝑖𝑖  is the angle and 𝜌𝜌𝑖𝑖  is the ray length. Assign a 

value 𝜃𝜃𝑖𝑖∗ = 0 to an arbitrary vertex 𝑖𝑖∗ and compute the remaining angles from 

(0, 𝑖𝑖∗) . Rank the vertices in ascending order of their 𝜃𝜃𝑖𝑖 . In the first step, 

choose an unused vehicle 𝑘𝑘 . Secondly, starting from the unrouted vertex 

having the smallest angle, assign vertices to vehicle k as long as its capacity or 

the maximal route length is not exceeded. In tightly constrained dynamic 

VRPs, 3-opt may be applied after each insertion. If un-routed vertices remain, 

go to the first step. Finally, optimise each vehicle route separately by solving 

the corresponding TSP (exactly or approximately). 

One good feature of sweep algorithm is intuitive, but due to the fact that the 

sweep algorithm for solving VRP is not convergent definitely, the calculation 

process and results do not show the advantage over other algorithms.  In 

addition, according to Cordeau et al. (2002), another limitation of sweep 

method is its greedy nature which makes it hard to deal with extra constraints 

and planner structure limits its applicability. Therefore, the application field of 
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sweep algorithm seems quite narrow due to these shortcomings, so few people 

now use sweep algorithm to solve VRP. 

2.5.1.3 Fisher and Jaikunar Algorithm 

Another well-known algorithm is the Fisher and Jaikumar algorithm (Fisher 

and Jaikumar, 1981). Instead of using a geometric method to form the clusters, 

it solves a Generalised Assignment Problem (GAP). In the GAP, there are 

some agents and a number of tasks. Any task can be assigned to any agent, so 

that some cost and profit may vary depending on the agent-task assignment. 

Furthermore, each agent has a limit and the sum of the costs of tasks assigned 

to it cannot exceed this limit. It is necessary to find an assignment in which all 

agents do not exceed their limits and the total profit of the assignment is 

maximised. Then the Fisher and Jaikumar algorithm can be described as 

follows. Let there be in total 𝐾𝐾  vehicles in service and denote them by 

1,2,3,⋯ ,𝐾𝐾 respectively. The number of nodes to be served is denoted by 𝑛𝑛, 

and 𝑐𝑐𝑖𝑖𝑖𝑖 denotes the costs (distance, time etc.) involved in traveling from node 𝑖𝑖 

to node 𝑗𝑗. Firstly, 𝐾𝐾 notes are arbitrarily chosen from the set of 𝑛𝑛 nodes which 

are to be served and they are denoted by 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑘𝑘, which means each node 

is joined to one vehicle. Secondly, compute the cost 𝑑𝑑𝑖𝑖𝑖𝑖 involved in inserting 

node 𝑖𝑖  into the route cluster of vehicle 𝑘𝑘  as 𝑑𝑑𝑖𝑖𝑖𝑖 = min{𝑐𝑐0𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑗𝑗𝑘𝑘 + 𝑐𝑐𝑗𝑗𝑘𝑘0,

𝑐𝑐0𝑗𝑗𝑘𝑘 + 𝑐𝑐𝑗𝑗𝑘𝑘𝑖𝑖 + 𝑐𝑐𝑖𝑖0} − (𝑐𝑐0𝑗𝑗𝑘𝑘 + 𝑐𝑐𝑗𝑗𝑘𝑘0). In addition, solve a GAP with costs 𝑑𝑑𝑖𝑖𝑖𝑖 , 

customer weights 𝑞𝑞𝑖𝑖 , and vehicle capacity 𝑄𝑄 . Lastly, solve a TSP for each 

cluster corresponding to the GAP solution. 

The procedure iterates between solving a GAP master problem that assigns 

vertices to vehicles, and solving a TSP to determine the best vehicle route for 

each vehicle. The method has the advantage of producing a feasible solution, 

even if it is not ran to completion. Also, since it repeatedly solves a GAP and a 

TSP, it can benefit directly from any improvement in algorithms for these two 

problems (Laporte, 1992). 
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2.5.1.4 Christofides, Mingozzi, and Toth Algorithm 

Christofides, Mingozzi and Toth (1979) proposed a truncated branch-and-

bound algorithm. This method could be described as follows. 

Step 1 (initialisation). Set ℎ ≔ 1 and 𝐹𝐹ℎ ≔ 𝑉𝑉 ∖ {0}. 𝐹𝐹ℎ is the set of unrouted 

vertices at level ℎ. 

Step 2 (route generation). If 𝐹𝐹ℎ = 0 , stop. Otherwise, select an unrouted 

customer 𝑖𝑖 ∈ 𝐹𝐹ℎ and generate a set 𝑅𝑅𝑖𝑖 of routes containing 𝑖𝑖 and customers in 

𝐹𝐹ℎ. These routes are gradually generated using a linear combination of two 

criteria: savings and insertion costs. 

Step 3 (route evaluation). Evaluate each route 𝑟𝑟 ∈ 𝑅𝑅𝑖𝑖 using the function𝑓𝑓(𝑟𝑟) =

𝑡𝑡(𝑆𝑆𝑟𝑟 ∪ {0}) + 𝑢𝑢(𝐹𝐹ℎ\𝑆𝑆𝑟𝑟), where 𝑆𝑆𝑟𝑟 is the vertex set of route 𝑟𝑟, 𝑡𝑡(𝑆𝑆𝑟𝑟 ∪ {0}) is 

the length of a good TSP solution on 𝑆𝑆𝑟𝑟 ∪ {0}, and 𝑢𝑢(𝐹𝐹ℎ\𝑆𝑆𝑟𝑟) is the length of a 

shortest spanning tree over the remaining unrouted customers. 

Step 4 (route selection). Determine the route 𝑟𝑟∗ yielding min𝑟𝑟∈𝑅𝑅𝑖𝑖{𝑓𝑓(𝑟𝑟)}. Set 

ℎ ≔ ℎ + 1 and 𝐹𝐹ℎ: = 𝐹𝐹ℎ−1\𝑆𝑆𝑟𝑟∗. Go to step 2. 

By comparing the computation of several heuristic methods, Laporte and 

Semet (2002) pointed out that for less computational effort, the truncated 

branch-and-bound algorithm tends to produce better solutions than the sweep 

algorithm. 

2.5.2 Improvement methods 

2.5.2.1 Lin-Kernighan heuristic 

In the 𝜆𝜆 -opt algorithm, during each step, 𝜆𝜆  edges of the current tour are 

replaced by other 𝜆𝜆 edges so that a shorter tour is achieved. That is to say, in 

each step a shorter tour is obtained by deleting 𝜆𝜆  edges and putting the 
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resulting paths together in a new way, possibly reversing one or more of them. 

Nevertheless, the downside of the approach is that 𝜆𝜆 must be determined in 

advance. It is complicated to know which λ to use so that the best compromise 

between the quality of a solution and the running time can be achieved. Lin 

and Kernighan’s algorithm overcomes this drawback by changing the value of 

𝜆𝜆 during the algorithm execution, deciding the value of 𝜆𝜆 at each iteration.  

The algorithm is unique regarding exchanges (or moves) that convert one tour 

into another. Given a feasible tour, the algorithm aims to reduce the length of 

the current tour by performing exchanges over and over again, until a tour is 

obtained where no exchange can yield an improvement. One may repeat the 

process many times from initial tours generated in some randomised way.  

The bottleneck of this method is the searching way for the exchanges. In order 

to increase efficiency, only exchanges that have a reasonable chance of 

leading to a reduction of tour length should be considered (Helsgaun, 2000). 

Therefore, many modified algorithms focus on this point to enhance efficiency. 

2.5.2.2 Lagrangian relaxation heuristic 

Stewart and Golden, (1984) make use of the Lagrangian relaxation ideas to 

move the capacity constraints into the objective function, in order to transform 

the VRP into a modified multiple TSP. More specifically, The objective 

function min∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑘𝑘  and the capacity constraints ∑ 𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 ≤ 𝑄𝑄,𝑘𝑘 =

1,⋯ ,𝑚𝑚,  are transformed into  min ( ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑘𝑘 + ∑ 𝜆𝜆𝑘𝑘(∑ 𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 − 𝑄𝑄)𝑘𝑘  

and 𝜆𝜆𝑘𝑘 ≥ 0,𝑘𝑘 = 1,⋯ ,𝑚𝑚. After the Lagrangian relaxation procedure, an arc 

exchange procedure, which is also referred to as a 3-opt procedure, is adopted 

to solve the relaxed problem. The key to this algorithm is determining the 

values for the Lagrangian multipliers (𝜆𝜆𝑘𝑘,𝑘𝑘 = 1,⋯ ,𝑚𝑚). If feasibility is the 

only goal, a very large value for 𝜆𝜆𝑘𝑘 may meet this need, but the result would 

be far from optimal. Therefore, firstly 𝜆𝜆𝑘𝑘  is set of a value that most likely 
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produce an infeasible solution and then the value is incremented at each 

iteration until the 3-opt procedure generates a feasible solution to the VRP.  

Due to the property of the multipliers, the limitation of this algorithm is that 

the performance is highly related to the selection of the value of Lagrangian 

multipliers and the initial feasible solution. 

2.5.3 Metaheuristics 

In recent years, many researchers are inspired by the natural world and apply 

the features and functions of the natural creatures to solving a practical 

problem. Consequently, a series of metaheuristics have been proposed for the 

VRP. Compared with classic heuristics, Metaheuristics perform a much more 

thorough search of the solution space, allowing inferior and infeasible moves, 

as well as recombination of solutions to create new ones (Cordeau et al., 2002). 

By doing this, the development for the VRP is to get out of the local optimal 

solutions. Although some may notice that the improvements in solution 

quality are obtained at the expense of running time and algorithm simplicity. 

There are six main types of metaheuristics that have been applied to the VRP: 

Simulated Annealing, Deterministic Annealing, Tabu Search, Genetic 

Algorithms, Ant Systems, and Neural Networks (Gendreau et al., 2002).  

2.5.3.1 Tabu Search 

By imitating the memory function of human brains, Glover (1989) first 

proposed and formalised Tabu search. Local (neighbourhood) searches take a 

potential solution to a problem and check its immediate neighbours to find an 

improved solution. Local search methods tend to become stuck in suboptimal 

regions or on plateaus where many solutions are equally fit. However, Tabu 

search enhances the performance of local search by relaxing its basic rule and 

making use of memory structures. First, at each step worsening moves can be 

accepted if no improving move is available, for example, the search is stuck at 
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a strict local minimum. In addition, if a potential solution has been previously 

visited within a certain short-term period or if it has violated a rule, it is 

marked as “Tabu” (forbidden) so that the algorithm does not consider that 

possibility repeatedly. The termination criterion is that the objective function 

has not been improved for some iterations, or a certain fixed number of 

iterations is reached. The pseudo-code for Tabu search is shown in Table 2.1. 

The speed of searching a solution of Tabu search is fast, and in the searching 

process, it accepts inferior solutions. Therefore, this method can jump out of 

local optimal solutions and then turn to search other areas, which can help to 

find a better solution even a global solution. The limitation of Tabu search is 

that it strongly depends on the initial solution. A good initial solution can lead 

to a better solution in the searching space, whereas a bad initial solution may 

decrease the searching speed. Since in the search process it only has one initial 

solution and moves the current solution to another one in each iteration, which 

limits the stability and global searching capability of the algorithm.  

Table  2.1 Pseudo-code for Tabu search 

Start  
          Initialise the customer and depot locations, 
          Initialise the distances and travel times, 
          𝑘𝑘 ← 0, 
          Generate the initial solution 𝑠𝑠𝑘𝑘, 
          Repeat 
                        Generate a set of feasible solutions 𝐴𝐴𝑘𝑘+1, 
                        Evaluate the solutions in 𝐴𝐴𝑘𝑘+1, 
                        Select the best solution 𝑠𝑠𝑘𝑘+1 from 𝐴𝐴𝑘𝑘+1, 
                        Update Tabu list, 
                        Update penalty coefficient, 
                        𝑘𝑘 ← 𝑘𝑘 + 1, 
           Until termination condition is met 
Finish 



41 
 

There have been improvements and changes to the classic Tabu search 

algorithms, such as Tabu-route heuristic Gendreau et al. (1994), the Taillard 

Tabu search algorithm (Taillard, 1993) and the granular Tabu search algorithm 

(Toth and Vigo, 2003). Moreover, Rochat and Taillard (1995) introduced a 

useful and powerful concept, the adaptive memory, which can be used to 

enhance any Tabu search-based algorithm. Hence, this reactive Tabu search is 

widely used for solving optimisation problems since then.  

2.5.3.2 Simulated Annealing 

The Simulated Annealing (SA) approach is a probabilistic method proposed in 

Kirkpatrick et al. (1983) and Černý (1985) to find the global minimum of a 

cost function that may have several local minima. Burkard and Rendl (1984) 

were the first to apply the SA method to solve quadratic assignment problems 

and their computational results indicated that they could obtain the best-known 

solution with a relatively high probability. 

The SA algorithm was originally inspired from the process of annealing in 

metal work, a technique involving heating and controlled cooling of a material 

to increase the size of its crystals and reduce their defects. Both are attributes 

of the material and its thermodynamic free energy defines them. Heating and 

cooling the material has an influence on both the temperature and the 

thermodynamic free energy. While the temperature is decreased by the same 

amount of cooling, the cooling will decrease the thermodynamic free energy in 

a bigger or smaller amount, concerning the rate that it happens, with a slower 

rate producing a bigger decrease.  

In simulated annealing, a temperature variable is used to simulate this heating 

process. It may initially be set high and then allowed to slowly “cool” as the 

algorithm runs. While this temperature variable is high, the algorithm will be 

allowed, with a higher probability, to accept solutions that are worse than the 
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current solution. This step gives the algorithm the ability to jump out of any 

local optima as it explores the solution space. The chance of accepting worse 

solutions is reduced due to the decline of the temperature, which allows the 

algorithm to gradually focus in an area of the search space close to the 

optimum solution. Table 2.2 shows the pseudo-code for SA (Burkard and 

Rendl, 1984). 

Table  2.2 Pseudo-code for Simulated Annealing 

Start 
          𝑘𝑘 ← 0, 
         Initialise 𝑇𝑇(𝑘𝑘), 
         Select a current initial solution 𝐸𝐸𝑐𝑐 at random, 
         Evaluate point 𝐸𝐸𝑐𝑐: 𝑣𝑣(𝐸𝐸𝑐𝑐), 
         Repeat  
                     Repeat 
                                  Select a new point 𝐸𝐸𝑛𝑛 in the neighbourhood of 𝐸𝐸𝑐𝑐, 
                                  Evaluate the new point 𝐸𝐸𝑛𝑛: 𝑣𝑣(𝐸𝐸𝑛𝑛), 
                                  If 𝑣𝑣(𝐸𝐸𝑛𝑛) < 𝑣𝑣(𝐸𝐸𝑐𝑐) or if r < 𝑝𝑝(𝐸𝐸𝑛𝑛 − 𝐸𝐸𝑐𝑐) 
                                      with 
                                      𝑝𝑝(𝐸𝐸𝑛𝑛 − 𝐸𝐸𝑐𝑐) = exp �− 𝐸𝐸𝑛𝑛−𝐸𝐸𝑐𝑐

 𝑇𝑇(𝑘𝑘)
� 

                                      and 
                                     𝑟𝑟 a random number from a uniform distribution, 
                                 Then 𝐸𝐸𝑐𝑐 ← 𝐸𝐸𝑛𝑛 
                      Until termination condition 
                      𝑇𝑇(𝑘𝑘 + 1) = 𝑇𝑇0

ln𝑘𝑘
, 

                      𝑘𝑘 ← 𝑘𝑘 + 1, 
         Until convergence is reached 
Finish  

This notion of slow cooling is what makes the SA algorithm remarkably 

effective at finding a solution close to the optimal one when dealing with large 

problems which contain numerous local optima. A fundamental property of 

metaheuristics is accepting worse solutions because it is beneficial to a more 

extensive search for the optimal solution. Moreover, according to Gendreau et 
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al., (2002), it has been shown that SA asymptotically converges to a global 

optimum.  

2.5.3.3 Genetic Algorithms 

The Genetic Algorithm (GA) is a search metaheuristic method and belongs to 

the larger class of evolutionary algorithms, which generate solutions to 

optimisation problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover. Essentially, it is an efficient 

global search method. It can automatically collect and accumulate knowledge 

about the search space during the search process, and adaptively control the 

search process to find an optimum solution. 

The evolution is an iterative process, usually starts from a population of 

randomly generated individuals, and a generation is defined as the population 

in each iteration. Moreover, the fitness of every individual is closely related to 

the value of the objective function in the optimisation problem, and is 

evaluated in each generation. The fitter individuals have more chance to be 

stochastically selected from the current population as parents whose genomes 

are recombined and possibly randomly mutated to form a new generation. 

Then the new generation of candidate solutions is used in the next iteration of 

the algorithm. Furthermore, the algorithm usually terminates when either a 

maximum number of generations has been constructed, or an ideal fitness 

level has been reached for the population. The pseudo-code for a simple GA is 

illustrated in Table 2.3.  

GA is the first method that searches the optimal solution from more than one 

start point, and it can learn from the natural selection principle to present the 

complicated scenarios regardless of the field of the issues. Therefore, GA has 

been widely used in many different areas such as system optimization, 

machine learning, and project control and so on. However, based on the 
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computational results for VRP, Gendreau et al., (2002) pointed out that the 

genetic algorithms outperformed some Tabu search developments. In addition, 

according to Baker and Ayechew (2003), the results of the GA method 

combined with a neighbourhood search method shows this approach is 

competitive.  

Table  2.3 Pseudo-code for a simple genetic search 

Start 
          𝑘𝑘 ← 0, 
          Initialise 𝑃𝑃𝑘𝑘, 
          Evaluate 𝑃𝑃𝑘𝑘: 𝑣𝑣(𝑃𝑃𝑘𝑘), 
          Repeat 
                        𝑘𝑘 ← 𝑘𝑘 + 1, 
                        Select a new population 𝐹𝐹𝑘𝑘 from  𝑃𝑃𝑘𝑘−1, 
                        Generate a new population 𝑃𝑃𝑘𝑘 by modifying 𝐹𝐹𝑘𝑘, 
                        Evaluate 𝑃𝑃𝑘𝑘: 𝑣𝑣(𝑃𝑃𝑘𝑘), 
          Until convergence is reached 
Finish 

 

2.5.3.4 Ant Colony Algorithms 

Ant Colony Algorithms (ACAs) are inspired from an analogy with real ant 

colonies seeking for food. In the natural world, ants mark the paths they travel 

by laying an aromatic essence called pheromone. Initially, ants stroll randomly, 

and return to their colony once they find food while laying down pheromone 

trails. Then if other ants find such a trail, they are likely not to keep travelling 

at random, but to instead follow the path, returning and reinforcing it if they 

eventually find food. Over time, a short path gets marched over more 

frequently, and thus the pheromone density becomes higher on shorter paths 

than longer ones. Therefore, when one ant finds a good path from the colony 

to a food source location, other ants tend to follow that path, and positive 



45 
 

feedback eventually leads to all the ants following a single path. This 

observation led Colorni et al. (1991) to propose a new class of metaheuristics 

for solving combinatorial problems: Artificial ants searching the solution 

space simulates real ants exploring their environment, objective function 

values are corresponding with the quality of food sources, and values recorded 

in an adaptive memory are associated with the pheromone trails.  

During each iteration of the algorithm, each ant moves from a state 𝑥𝑥 to state 𝑦𝑦, 

regarding a complete intermediate solution. Thus, each ant 𝑘𝑘 computes a set 

𝐴𝐴𝑘𝑘(𝑥𝑥) of feasible expansions to its current state during every iteration and 

moves to one of these in terms of a probability. For ant 𝑘𝑘, the probability 𝑝𝑝𝑥𝑥𝑥𝑥𝑘𝑘  

of moving from state 𝑥𝑥 to state 𝑦𝑦 is based on the combination of two values: 

the attractiveness 𝜏𝜏𝑥𝑥𝑥𝑥  of the move which indicates the number of artificial 

pheromones of that move; and the visibility 𝜂𝜂𝑥𝑥𝑥𝑥 of the move, implying how 

proficient it has been earlier to make that particular move. The pseudo-code 

below demonstrates the ACA. 

Table  2.4 Pseudo-code for ACA 

Start 
           Initialise the attractiveness 𝜏𝜏, and the visibility 𝜂𝜂, 
           Repeat 
                         For each ant repeat 
                                    Choose the next state to move into, 
                                    Add that move to the Tabu list for each ant, 
                         Until each ant completed a solution 
                         Update 𝜏𝜏 and 𝜂𝜂 for each ant that completed a solution, 
                         If the local best solution is better than the global solution, 
                         Then save the local best solution as the global solution, 
           Until termination condition is met 
Finish  

ACA can deal well with large size problems and according to Bullnheimer et 

al. (1999), the performance of ACA is competitive with other metaheuristics 
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such as TS and SA, and outperform neural network method. The limitation is 

the need to choose appropriate parameters which impacts performance a lot. In 

addition, it is a probabilistic method. Therefore, in every run, the solutions 

may be different so that one needs to run several times to get a central 

tendency. 

2.5.3.5 Neural Networks 

Neural networks (NN) are computational models composed of units that are 

richly interconnected through weighted connections, like neurons in the 

human brain: a signal is sent from one unit to another along a connection and 

is modulated through the associated weight. Although superficially related to 

their biological counterpart, artificial neural networks exhibit characteristics 

related to human cognition. In particular, they can learn from experience and 

induce general concepts from specific examples through an incremental 

adjustment of their weights. The idea of using NN for combinatorial problems 

emerged from the work of Hopfield and Tank (1985). They proposed an NN 

model and utilised the energy function to illustrate that the network is 

convergent to a steady state. It is verified that as the algorithm proceeds, the 

value of energy function always decreases until it converges to local optima. 

Therefore, to apply this model to optimisation problems, the cost function and 

restrictions are all included in the energy function. Although the algorithm has 

been improved by several researchers, due to the inflexibility of the model and 

complexity of the network, the performance of the algorithm is behind other 

metaheuristics (Gendreau et al., 1994; Rochat and Taillard, 1995). 

2.5.3.6 Hybrid Algorithms 

An algorithm that incorporates two or more other algorithms that solve the 

optimisation problem is called a hybrid algorithm. It combines the desired 

features of the selected algorithms so that the overall algorithm is better than 
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the individual components. For example, Alfa et al. (1991) applied a 3-opt 

based simulation annealing algorithm. Another example is that Potvin et al. 

(1996) proposed a hybrid approach to VRP using NN and GA.  

In addition, Baker and Ayechew, (2003) first used a sweep method to obtain 

an initial population and then applied a hybrid of genetic algorithm with 

neighbourhood search methods to tackle the VRP, and the results show that 

this approach is competitive with Tabu search and SA in terms of computing 

time and solution quality. Therefore, we may conclude that sometimes hybrid 

algorithms behave better than a single method, and this gives researchers more 

inspirations to find a proper way to tackle a particular optimisation problem. 

2.6 Summary 

From the literature review, we can see that there have been many previous 

studies in different fields concerning about risks of missing targets such as 

missing deadlines. However, there is little research on the analysis of how to 

calculate the risks in situations where a series of stochastic events happen, and 

the distribution of the event start time may be distorted by time window 

constraints. One part of this research is to fill in the above gap by studying the 

distributions of the task start times of the service delivery operation and hence 

the first contribution of this thesis is the method proposed to calculate the 

distributions of the risk for such a problem. . 

While there is a rich literature on VRP and scheduling problems and some of 

them consider risks, most of them try to minimise the travel cost in terms of 

distance or time. Risks are usually limited in the constraints if considered.  

Therefore, another part of this research is to schedule the tasks and route the 

vehicles to minimise the risks of missing customer appointments. 
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As risk minimisation models are new, this research also conducts 

computational experiments to compare the new models and the traditional 

travel time model with respect to different performance measures. 

  



49 
 

Chapter 3  

Risk Estimation  

In this chapter, risk is defined for our problem and several methods are 

proposed to calculate risks. Then the reliability of each method is tested and 

compared. Real data are analysed and shown to follow the assumptions of our 

proposed method i.e., the summation method for risk calculation. Regression 

models are used to improve the estimation of the summation method and 

finally factors affecting risk are discussed. 

Recent years have seen a growing interest in the development of vehicle 

routing algorithms to cope with uncertain situations found in real-world 

applications. For example, an organisation in the communication sector 

encounters a scheduling problem when they assign their technicians to do 

different tasks. For customers’ convenience, the firm gives customers chances 

to choose their preferred time windows. However, usually the task duration is 

not exactly the same as the estimated time and differs for each task. As a 

consequence one intractable problem is that the technician might miss the next 

customer if the task of the current customer takes too long time. It is 

reasonable for the firm to reduce this risk in order to improve their service 

satisfaction. After reviewing the literature on risks in different subjects, the 

risk for the real-world problem that is considered in this thesis is defined as 

below. 

3.1 The definition of risks 

The field technician scheduling problem considers the assignment of a set of 

jobs or service tasks to a group of technicians. The tasks are located in 

different places within a city, with different time windows and processing 
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times. In terms of uncertainty in a problem, it is natural to think of the risk as 

the probability over a threshold. Therefore, given a schedule, with a sequence 

of tasks �𝑖𝑖1,  𝑖𝑖2, 𝑖𝑖3,⋯  �  allocated to technician 𝑘𝑘  and the start point of 

technician 𝑘𝑘 is 𝑘𝑘𝑘𝑘0, which is the depot. Then some notations are as follows.  

𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘  the travel time of technician 𝑘𝑘 between 𝑖𝑖 and 𝑗𝑗; 

𝛿𝛿𝑘𝑘𝑘𝑘 the uncertain working time of technician 𝑘𝑘 at customer 𝑖𝑖; 

[𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] the time window for customer 𝑖𝑖. 

The risk of missing the appointment for task 𝑖𝑖 is the probability of the arrival 

time 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 being later than the time window 𝑏𝑏𝑖𝑖, which is the shaded area of the 

curves shown in Figure 3.1.  

 

Figure  3.1 Risk definition 
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3.2 Propagation of risks 

Without loss of generality, to simplify the model, we assume that the travel 

time is certain at this stage. Therefore, for each technician, the arrival time at 

the 1st task is specified, which is the start time from the depot plus the travel 

time between the depot and the site of the 1st customer 𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1. Then we can 

ensure the arrival time of the 1st task within its time window through 

controlling the start time at the depot 𝑠𝑠𝑘𝑘0. For this task, the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘1 is 

also the task start time 𝑆𝑆𝑆𝑆𝑘𝑘1 and they are constants, i.e., 

 𝑆𝑆𝑆𝑆𝑘𝑘1 = 𝐴𝐴𝐴𝐴𝑘𝑘1 = 𝑠𝑠𝑘𝑘0 + 𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1 .  

Thus, the risk of the 1st task, which demonstrates that the technician arrives at 

1st customer after the customer preferred time window, can be as low as zero, 

which is 

 𝑅𝑅𝑘𝑘1 = P�𝐴𝐴𝐴𝐴𝑘𝑘1 > 𝑏𝑏𝑖𝑖1� = 0.  

First of all, in this problem the task working time is stochastic, so we suppose 

all the task working times 𝛿𝛿𝑘𝑘𝑘𝑘 are independent random variables and follow 

pre-known distributions, here they are assumed to follow the normal 

distribution.  

Because the 1st task start time is constant and the task working time 𝛿𝛿𝑘𝑘𝑖𝑖1 is a 

random variable, the finish time 𝐹𝐹𝐹𝐹𝑘𝑘1 for the 1st task is stochastic and follows 

a normal distribution of the same variance with the 1st task working time 𝛿𝛿𝑘𝑘𝑖𝑖1, 

we have 

 𝐹𝐹𝐹𝐹𝑘𝑘1 = 𝑆𝑆𝑆𝑆𝑘𝑘1 + 𝛿𝛿𝑘𝑘𝑖𝑖1 .  
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Considering the travel time from the 1st customer to the 2nd customer 𝑑𝑑𝑘𝑘𝑘𝑘1𝑖𝑖2 

which is deterministic, the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘2 at the 2nd customer is uncertain 

and it has the normal distribution shape the same as the finish time 𝐹𝐹𝐹𝐹𝑘𝑘1, thus, 

 𝐴𝐴𝑇𝑇𝑘𝑘2 = 𝐹𝐹𝐹𝐹𝑘𝑘1 + 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2 = 𝑆𝑆𝑆𝑆𝑘𝑘1 + 𝛿𝛿𝑘𝑘𝑖𝑖1 + 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2 .  

It depends on the time the technician starts  𝑠𝑠𝑘𝑘0, the travel time from the depot 

to the 1st customer 𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1, the duration of the 1st task 𝛿𝛿𝑘𝑘𝑘𝑘1 and the travel time 

between the 1st and 2nd customers 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2, i.e., 

 𝐴𝐴𝐴𝐴𝑘𝑘2 = 𝑠𝑠𝑘𝑘0 + 𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1 + 𝛿𝛿𝑘𝑘𝑖𝑖1 + 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2 .  

Then the risk for the 2nd task will be the probability of the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘2 

being greater than the upper limit of the time window 𝑏𝑏𝑖𝑖2, which is 

 𝑅𝑅𝑘𝑘2 = 𝑃𝑃�𝐴𝐴𝐴𝐴𝑘𝑘2 > 𝑏𝑏𝑖𝑖2�  

 = 1 − Ρ�𝐴𝐴𝐴𝐴𝑘𝑘2 ≤ 𝑏𝑏𝑖𝑖2�  

 = 1 − � 𝑓𝑓𝑘𝑘1(𝐴𝐴𝐴𝐴𝑘𝑘2)
𝐴𝐴𝐴𝐴𝑘𝑘2≤𝑏𝑏𝑖𝑖2

d𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘2  

 = 1 − � 𝑓𝑓𝑘𝑘2(𝑋𝑋𝑘𝑘2)

𝑏𝑏𝑖𝑖2

−∞

d𝑋𝑋𝑘𝑘2,  

where 𝑋𝑋𝑘𝑘2  denotes 𝐴𝐴𝐴𝐴𝑘𝑘2  and the distribution function of 𝐴𝐴𝐴𝐴𝑘𝑘2  is denoted as 

𝑓𝑓𝑘𝑘2. The arrival time 𝐴𝐴𝐴𝐴𝑘𝑘2 is a random variable but the technician can also 

arrive at the customer before the lower limit of the time window 𝑎𝑎𝑖𝑖2. In this 
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case the technician has to wait until time 𝑎𝑎𝑖𝑖2 to start working. Then the time 

the technician starts working at the 2nd customer is 

 𝑆𝑆𝑆𝑆𝑘𝑘2 = max�𝐴𝐴𝐴𝐴𝑘𝑘2,  𝑎𝑎𝑖𝑖2�,  

where 𝐴𝐴𝐴𝐴𝑘𝑘2 follows a normal distribution and 𝑎𝑎𝑖𝑖2is a constant. Due to the shift 

of the earliest time 𝑎𝑎𝑖𝑖2, the start time 𝑆𝑆𝑆𝑆𝑘𝑘2 is not normal distributed anymore. 

More specifically, suppose that the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘2 follows the distribution 

in Figure 3.2(a) and the lower bound of the task time window 𝑎𝑎𝑖𝑖2 is 9:00, then 

the distribution of the task start time 𝑆𝑆𝑆𝑆𝑘𝑘2 will turn out to be the distribution 

shown in Figure 3.2(b), the probability at 9:00 will be the sum of the 

probability of that arrive anytime up to 9:00. From Figure 3.2(b), it can be 

seen that the distribution of the start time 𝑆𝑆𝑆𝑆𝑘𝑘2 does not align with a normal 

distribution. 

 

(a) Arrival time at the 2nd task 

 

(b) Start time at the 2nd task 
 

Figure  3.2 Arrival time and start time at the 2nd task 
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 𝐹𝐹𝐹𝐹𝑘𝑘2 = 𝑆𝑆𝑆𝑆𝑘𝑘2 + 𝛿𝛿𝑘𝑘𝑘𝑘2  

 = max�𝐴𝐴𝑇𝑇𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝛿𝛿𝑘𝑘𝑘𝑘2  

 = max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝛿𝛿𝑘𝑘𝑘𝑘2 .  

So the arrival time of the 3rd customer 𝐴𝐴𝐴𝐴𝑘𝑘3  is the sum of the finish time 

𝐹𝐹𝐹𝐹𝑘𝑘2 and the travel time from the 2nd customer site to the 3rd customer 𝑑𝑑𝑘𝑘𝑘𝑘2𝑖𝑖3, 

which is  

 𝐴𝐴𝐴𝐴𝑘𝑘3 = 𝐹𝐹𝐹𝐹𝑘𝑘2 + 𝑑𝑑𝑘𝑘𝑘𝑘2𝑖𝑖3  

 = max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝛿𝛿𝑘𝑘𝑘𝑘2 + 𝑑𝑑𝑘𝑘𝑘𝑘2𝑖𝑖3  

 = max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,  

where we suppose  

 𝑋𝑋𝑘𝑘3 = 𝛿𝛿𝑘𝑘𝑘𝑘2 + 𝑑𝑑𝑘𝑘𝑘𝑘2𝑖𝑖3 .  

It is easy to see that 𝑋𝑋𝑘𝑘3 follows a normal distribution of the same variance 

with the 2nd task duration 𝛿𝛿𝑘𝑘𝑘𝑘2 where the travel time 𝑑𝑑𝑘𝑘𝑘𝑘2𝑖𝑖3  is deterministic. 

Then the risk for the 3rd task which is the probability of the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘3 

being greater than the upper limit of the time window 𝑏𝑏𝑖𝑖3, that is 

 𝑅𝑅𝑘𝑘3 = Ρ�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘3 > 𝑏𝑏𝑖𝑖3�  

 = Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 > 𝑏𝑏𝑖𝑖3�  
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 = 1 − Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3�  

 = 1 − Ρ�𝑋𝑋2 + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3 ,  𝑎𝑎𝑖𝑖2 + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3�  

 = 1 − Ρ�𝑋𝑋𝑘𝑘2 + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3 ,  𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3 −  𝑎𝑎𝑖𝑖2�  

 = 1 − � 𝑓𝑓(𝑋𝑋𝑘𝑘2,𝑋𝑋𝑘𝑘3
𝑋𝑋𝑘𝑘2+𝑋𝑋𝑘𝑘3≤𝑏𝑏𝑖𝑖3
𝑋𝑋𝑘𝑘3≤𝑏𝑏𝑖𝑖3− 𝑎𝑎𝑖𝑖2

)𝑑𝑑𝑋𝑋𝑘𝑘2𝑑𝑑𝑋𝑋𝑘𝑘3  

 = 1 − � 𝑓𝑓𝑘𝑘𝑘𝑘2(𝑋𝑋𝑘𝑘2)𝑓𝑓𝑘𝑘𝑘𝑘3(𝑋𝑋𝑘𝑘3)
𝑋𝑋𝑘𝑘2+𝑋𝑋𝑘𝑘3≤𝑏𝑏𝑖𝑖3
𝑋𝑋𝑘𝑘3≤𝑏𝑏𝑖𝑖3− 𝑎𝑎𝑖𝑖2

𝑑𝑑𝑋𝑋𝑘𝑘2𝑑𝑑𝑋𝑋𝑘𝑘3,  

where 𝑋𝑋𝑘𝑘2,𝑋𝑋𝑘𝑘3 are independent and  

 Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖3� = Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� ≤ 𝑏𝑏𝑖𝑖3 − 𝑋𝑋𝑘𝑘3�  

 = Ρ�𝑋𝑋𝑘𝑘2 ≤ 𝑏𝑏𝑖𝑖3 − 𝑋𝑋3,  𝑎𝑎𝑖𝑖2 ≤ 𝑏𝑏𝑖𝑖3 − 𝑋𝑋𝑘𝑘3�.  

It can be derived from the property for the maximum of several random 

variables 𝑌𝑌1,𝑌𝑌2,⋯ ,𝑌𝑌𝑛𝑛 that (Wackerly et al., 2014) 

 P(max{𝑌𝑌1,𝑌𝑌2,⋯ ,𝑌𝑌𝑛𝑛} < 𝑦𝑦) = P(𝑌𝑌1 < 𝑦𝑦,𝑌𝑌2 < 𝑦𝑦,⋯ ,𝑌𝑌𝑛𝑛 < 𝑦𝑦).  

Similarly, because the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘3 is a random variable, it is possible 

that the technician arrives at the customer before the lower limit of the time 

window 𝑎𝑎𝑖𝑖3 . Then the technician has to wait until time 𝑎𝑎𝑖𝑖3 to start working. 

Thus, the start working time at the 3rd customer is 
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 𝑆𝑆𝑆𝑆𝑘𝑘3 = max�𝐴𝐴𝐴𝐴𝑘𝑘3,  𝑎𝑎𝑖𝑖3�  

 = max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3}.  

Then after working at the 3rd customer with the duration 𝛿𝛿𝑘𝑘𝑘𝑘3  which is a 

normal random variable, the finish working time at the 3rd customer 𝐹𝐹𝐹𝐹𝑘𝑘3 will 

be 

 𝐹𝐹𝐹𝐹𝑘𝑘3 = 𝑆𝑆𝑆𝑆𝑘𝑘3 + 𝛿𝛿𝑘𝑘𝑘𝑘3  

 = max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝛿𝛿𝑘𝑘𝑘𝑘3  

Note, that the finish time is not normally distributed. Then the arrival time of 

the 4th customer after traveling from the 3rd customer to the 4th customer 

𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖4  will be 

 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘4 = 𝐹𝐹𝐹𝐹𝑘𝑘3 + 𝑑𝑑𝑘𝑘𝑘𝑘3𝑖𝑖4  

 = max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝛿𝛿𝑘𝑘𝑘𝑘3 + 𝑑𝑑𝑘𝑘𝑘𝑘3𝑖𝑖4 ,  

 = max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝑋𝑋𝑘𝑘4,  

where  

 𝑋𝑋𝑘𝑘4 = 𝛿𝛿𝑘𝑘𝑖𝑖3 + 𝑑𝑑𝑘𝑘𝑘𝑘3𝑖𝑖4 .  

Thus the risk for missing the appointment of the 4th customer is 
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 𝑅𝑅𝑘𝑘4 = Ρ�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘4 > 𝑏𝑏𝑖𝑖4�  

 = Ρ�max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝑋𝑋𝑘𝑘4 > 𝑏𝑏4�  

 = 1 − Ρ�max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4�  

 = 1 − Ρ�𝑋𝑋𝑘𝑘2 + 𝑋𝑋𝑘𝑘3 + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 ,𝑋𝑋𝑘𝑘3 + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 − 𝑎𝑎𝑖𝑖2 ,  𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 − 𝑎𝑎𝑖𝑖3�  

 
= 1 − � 𝑓𝑓𝑘𝑘2(𝑋𝑋𝑘𝑘2)𝑓𝑓𝑘𝑘3(𝑋𝑋𝑘𝑘3)𝑓𝑓𝑘𝑘4(𝑋𝑋𝑘𝑘4)

𝑋𝑋𝑘𝑘2+𝑋𝑋𝑘𝑘3+𝑋𝑋𝑘𝑘4≤𝑏𝑏𝑖𝑖4
𝑋𝑋𝑘𝑘3+𝑋𝑋𝑘𝑘4≤𝑏𝑏𝑖𝑖4− 𝑎𝑎𝑖𝑖2
𝑋𝑋𝑘𝑘4≤𝑏𝑏𝑖𝑖4− 𝑎𝑎𝑖𝑖3

𝑑𝑑𝑑𝑑𝑘𝑘2𝑑𝑑𝑋𝑋𝑘𝑘3𝑑𝑑𝑋𝑋𝑘𝑘4, 
 

due to the fact that 𝑋𝑋𝑘𝑘2,𝑋𝑋𝑘𝑘3,𝑋𝑋𝑘𝑘4 are independent and 

 Ρ�max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4�  

 = Ρ�max{max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖3} ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4�  

 = Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4,  𝑎𝑎𝑖𝑖3 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4�  

 = Ρ�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4 − 𝑋𝑋𝑘𝑘3,  𝑎𝑎𝑖𝑖3 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4�  

 = Ρ�𝑋𝑋𝑘𝑘2 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4 − 𝑋𝑋𝑘𝑘3,𝑎𝑎𝑖𝑖2 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4 − 𝑋𝑋𝑘𝑘3,  𝑎𝑎𝑖𝑖3 ≤ 𝑏𝑏𝑖𝑖4 − 𝑋𝑋𝑘𝑘4�  

 = Ρ�𝑋𝑋𝑘𝑘2 + 𝑋𝑋𝑘𝑘3 + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 ,𝑋𝑋𝑘𝑘3 + 𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 − 𝑎𝑎𝑖𝑖2 ,  𝑋𝑋𝑘𝑘4 ≤ 𝑏𝑏𝑖𝑖4 − 𝑎𝑎𝑖𝑖3�.  

Therefore, by the method of induction in mathematics, the risk of missing the 

𝑛𝑛th task is 
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 𝑅𝑅𝑘𝑘𝑘𝑘 = 1 −�⋯� �𝑓𝑓𝑘𝑘𝑘𝑘𝑙𝑙(𝑋𝑋𝑘𝑘𝑘𝑘)
𝑛𝑛

𝑙𝑙=2𝐷𝐷
𝑑𝑑𝑑𝑑𝑘𝑘2𝑑𝑑𝑋𝑋𝑘𝑘3 ⋯𝑑𝑑𝑋𝑋𝑘𝑘𝑘𝑘,  

where 

 𝐷𝐷 = {(𝑋𝑋𝑘𝑘2,⋯ ,𝑋𝑋𝑘𝑘𝑘𝑘): � 𝑋𝑋𝑘𝑘𝑘𝑘
𝑛𝑛

𝑙𝑙=2
≤ 𝑏𝑏𝑖𝑖𝑛𝑛 ,� 𝑋𝑋𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙=3
≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖2 ,  

 � 𝑋𝑋𝑘𝑘𝑘𝑘
𝑛𝑛

𝑙𝑙=4
≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖3 ,⋯ ,𝑋𝑋𝑘𝑘𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑛𝑛 − 𝑎𝑎𝑖𝑖𝑛𝑛−1}.  

In addition, in the analysis above  𝑋𝑋𝑘𝑘2,⋯ ,𝑋𝑋𝑘𝑘𝑘𝑘 follow the normal distribution 

since the task durations 𝛿𝛿𝑘𝑘𝑘𝑘1 ,⋯ , 𝛿𝛿𝑘𝑘𝑘𝑘𝑛𝑛−1  are normally distributed, and then the 

probability density functions (PDFs) 𝑓𝑓𝑘𝑘𝑘𝑘2 ,⋯ ,𝑓𝑓𝑘𝑘𝑘𝑘𝑛𝑛 are well defined. 

Furthermore, the mathematical expression for risks also works if the task 

durations follow any other distributions besides normal distributions, such as 

Gamma distributions, shifted normal distributions, and so forth. 

 

3.3 Calculations of risks 

The risk mathematical expressions described in the previous section are of the 

multiple integral formats. Multiple integrals of a Riemann integrable function 

in 𝑛𝑛  variables, 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) , over a domain 𝐷𝐷  in 𝑛𝑛 -dimensional space 

(Larson and Edwards, 2016) can be described as 

 �⋯� 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 ⋯𝑑𝑑𝑥𝑥𝑛𝑛
𝐷𝐷

.  

More specifically, as is shown in Figure 3.3, the double integral 𝐼𝐼 =

∬ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅  is the volume under the surface 𝑓𝑓(𝑥𝑥,𝑦𝑦) over the region 𝑅𝑅 at 

the bottom which is the domain of integration, while the surface is the graph 

of the two-variable function to be integrated (Larson and Edwards, 2016). 
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Figure  3.3 Double integral 

Numerical integration is the most direct application of function interpolation. 

In engineering calculations, since many functions of the indefinite integral 

cannot be expressed by a simple function, for example, only some values at 

discrete points can be derived, or the function is the solution of a differential 

equation which does not have an explicit representation. Under these 

circumstances, the numerical integration is widely used to obtain the solution 

of an integral in an acceptable amount of time. 

3.3.1 The Simpson’s rule and Monte Carlo method 

Given the polynomial is the most straightforward function class, the Lagrange 

polynomial interpolation is used widely in the integral calculation. Given 

𝑛𝑛 + 1  points 𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , then the Lagrange polynomial interpolation 

equation (Epperson, 2007) is 

 𝑝𝑝𝑛𝑛(𝑥𝑥) = ��
𝑥𝑥− 𝑥𝑥𝑖𝑖
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0
𝑖𝑖≠𝑘𝑘

𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑛𝑛

𝑘𝑘=0

.  

Since 𝑝𝑝𝑛𝑛(𝑥𝑥) estimates the function 𝑓𝑓(𝑥𝑥), 𝐼𝐼(𝑝𝑝𝑛𝑛) can be an estimate of 𝐼𝐼(𝑓𝑓), 

thus, 

 

𝐼𝐼 
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⎩
⎪
⎨

⎪
⎧ 𝐼𝐼𝑛𝑛+1(𝑓𝑓) = 𝐼𝐼(𝑝𝑝𝑛𝑛) = �𝐴𝐴𝑘𝑘𝑛𝑛𝑓𝑓(𝑥𝑥𝑘𝑘)

𝑛𝑛

𝑘𝑘=0

,

𝐴𝐴𝑘𝑘𝑛𝑛 = � 𝜌𝜌(𝑥𝑥)�
𝑥𝑥− 𝑥𝑥𝑖𝑖
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0
𝑖𝑖≠𝑘𝑘

𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
,     𝑘𝑘 = 0,1, … ,𝑛𝑛,

  

where 𝜌𝜌(𝑥𝑥) is a weight function. 

Suppose 𝜌𝜌(𝑥𝑥) ≡ 1, and 

 𝑥𝑥𝑘𝑘 = 𝑎𝑎 + 𝑘𝑘ℎ, ℎ =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

,𝑘𝑘 = 0,1, … ,𝑛𝑛.  

 It yields the Newton-Cotes formulas, of which the rectangle rule and the 

trapezoidal rule are examples. Simpson’s rule, which is based on a polynomial 

of 2nd order, is also a Newton-Cotes formula (Levy, 2010). The core thought 

of these rules is to use the quadratic interpolation as shown below. 

Rectangle rule: 

 � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≈ (𝑏𝑏 − 𝑎𝑎)𝑓𝑓 �

𝑎𝑎 + 𝑏𝑏
2

�.  

Trapezoidal rule: 

 � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≈ (𝑏𝑏 − 𝑎𝑎)

𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)
2

.  

Simpson’s rule: 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈
𝑏𝑏 − 𝑎𝑎

6
�𝑓𝑓(𝑎𝑎) + 4𝑓𝑓 �

𝑏𝑏 + 𝑎𝑎
2

� + 𝑓𝑓(𝑏𝑏)�.  
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More specifically, Figure 3.4 (a) shows the rectangle rule estimation of the 

integral. The blue line denotes the original function 𝑓𝑓(𝑥𝑥), the integral is the 

light blue area between 𝑥𝑥 = 𝑎𝑎 and 𝑥𝑥 = 𝑏𝑏, above 𝑦𝑦 = 0 and below 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), 

while the estimation uses the rectangle area within 𝑥𝑥 = 𝑎𝑎, 𝑦𝑦 = 𝑏𝑏,𝑦𝑦 = 0 and 

the orange line 𝑦𝑦 = 𝑓𝑓(𝑚𝑚), where 𝑚𝑚 is the middle point between 𝑎𝑎 and 𝑏𝑏, i.e. 

𝑚𝑚 = 𝑎𝑎+𝑏𝑏
2

. Figure 3.4 (b) demonstrates the trapezoidal rule that uses the 

trapezoidal area within 𝑥𝑥 = 𝑎𝑎,𝑦𝑦 = 𝑏𝑏,𝑦𝑦 = 0  and the orange line 𝑦𝑦−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)

=

𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

 to estimate the integral.  

Then the Simpson’s rule replaces the integrand 𝑓𝑓(𝑥𝑥)  by the quadratic 

polynomial 𝑃𝑃(𝑥𝑥)  where the orange line stands for in Figure 3.4(c), which 

takes the same values as 𝑓𝑓(𝑥𝑥) at the endpoints 𝑎𝑎, 𝑏𝑏 and the midpoint 𝑚𝑚 = 𝑎𝑎+𝑏𝑏
2

. 

Suppose 

 𝑃𝑃(𝑥𝑥) = 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶,  

then we have 𝑃𝑃(𝑎𝑎) = 𝑓𝑓(𝑎𝑎), 𝑃𝑃(𝑏𝑏) = 𝑓𝑓(𝑏𝑏) and 𝑃𝑃(𝑚𝑚) = 𝑓𝑓(𝑚𝑚), thus 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈ �𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑,  

 �𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 =
𝐴𝐴
3

(𝑏𝑏3 − 𝑎𝑎3) +
𝐵𝐵
2

(𝑏𝑏2 − 𝑎𝑎2) + 𝐶𝐶(𝑏𝑏 − 𝑎𝑎).  

Note that 

 𝑏𝑏3 − 𝑎𝑎3 = (𝑏𝑏 − 𝑎𝑎)(𝑏𝑏2 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎2),  

 𝑏𝑏2 − 𝑎𝑎2 = (𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 + 𝑎𝑎).  
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Therefore, 

 
𝐴𝐴
3

(𝑏𝑏3 − 𝑎𝑎3) +
𝐵𝐵
2

(𝑏𝑏2 − 𝑎𝑎2) + 𝐶𝐶(𝑏𝑏 − 𝑎𝑎)  

=
𝑏𝑏 − 𝑎𝑎

6
[2𝐴𝐴(𝑏𝑏2 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎2) + 3B(𝑏𝑏2 − 𝑎𝑎2) + 6𝐶𝐶]  

=
𝑏𝑏 − 𝑎𝑎

6
�(𝐴𝐴𝑎𝑎2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶) + (𝐴𝐴𝑏𝑏2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶) + 4𝐴𝐴 �

𝑎𝑎 + 𝑏𝑏
2

�
2

4𝐵𝐵 �
𝑎𝑎 + 𝑏𝑏

2
� + 4𝐶𝐶�,  

then 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈
𝑏𝑏 − 𝑎𝑎

6
�𝑓𝑓(𝑎𝑎) + 4𝑓𝑓 �

𝑏𝑏 + 𝑎𝑎
2

� + 𝑓𝑓(𝑏𝑏)�.  

Another widely used variant of the Simpson’s rule is Simpson’s 3 8⁄  

rule(Jeffreys et al., 1999), it is based upon a cubic interpolation rather than a 

quadratic interpolation and it is as follows 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈
𝑏𝑏 − 𝑎𝑎

8
�𝑓𝑓(𝑎𝑎) + 3𝑓𝑓 �

2𝑎𝑎 + 𝑏𝑏
3

� + 3𝑓𝑓 �
𝑎𝑎 + 2𝑏𝑏

3
� + 𝑓𝑓(𝑏𝑏)�.  

   

(a) Rectangle rule                                 (b) Trapezoidal rule (c) Simpson’s rule 

Figure  3.4 Rectangle, trapezoidal and Simpson’s rule 

𝑎𝑎 𝑏𝑏 𝑚𝑚 𝑎𝑎 𝑏𝑏 𝑚𝑚 𝑎𝑎 𝑏𝑏 𝑚𝑚 
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As the figures illustrate above, among the three rules Simpson’s rule is the 

most accurate approach for numerical integral. Furthermore, to make the 

approximation more accurate, one usually divides the interval [𝑎𝑎, 𝑏𝑏] into a 

certain number 𝑛𝑛  subintervals, applies an approximation rule for each 

subinterval and adds up these 𝑛𝑛 results. For example, the Simpson’s rule for 

single integral on the interval [𝑎𝑎, 𝑏𝑏] which is split up into 𝑛𝑛 subintervals with 

𝑛𝑛 an even number, is given by 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈
ℎ
3
�𝑓𝑓(𝑥𝑥0) + 2 � 𝑓𝑓�𝑥𝑥2𝑗𝑗�

𝑛𝑛 2⁄ −1

𝑗𝑗=1

+ 4�𝑓𝑓�𝑥𝑥2𝑗𝑗−1�
𝑛𝑛 2⁄

𝑗𝑗=1

+ 𝑓𝑓(𝑥𝑥𝑛𝑛)�,  

where 𝑥𝑥𝑗𝑗 = 𝑎𝑎 + 𝑗𝑗ℎ for 𝑗𝑗 = 0,1,⋯ ,𝑛𝑛 − 1, 𝑛𝑛 with ℎ = (𝑏𝑏 − 𝑎𝑎) 𝑛𝑛⁄ . 

Additionally, Monte Carlo integration is a powerful method for computing 

complicated or higher-dimensional integrals (Kalos and Whitlock, 2008). 

Monte Carlo approach is a sampling method based on probability theory. 

More precisely, let us draw random numbers in a set 𝑅𝑅 covered the integrand 

𝑓𝑓(𝑥𝑥) in the 𝑥𝑥𝑥𝑥-plane (dots in the Figure 3.5), then the integral of the function 

𝑓𝑓(𝑥𝑥) is approximately given by the size of the total area 𝑅𝑅 where we sample 

the dots, 𝑆𝑆(𝑅𝑅), times the fraction of points that fall under the curve 𝑓𝑓(𝑥𝑥) 

where area 𝐷𝐷 shows No. (𝐷𝐷) over the number of all points No. (𝑅𝑅), i.e. 

 �𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑 ≈
No. (𝐷𝐷)
No. (𝑅𝑅) ∙ 𝑆𝑆

(𝑅𝑅).  

It is clear that the larger the number of random points is considered, the more 

accurate the calculation of this integral is. A weakness of Monte Carlo method 

is its uncertainty, different results may be obtained for the calculation of the 

same integrand function. However it does save considerable time for the 

calculation when the integral tends to be in more than five dimensions. 
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Figure  3.5 Basic idea of Monte Carlo method 

In terms of the multiple integrals in the risk mathematical expression, the 

calculation method for an 𝑛𝑛-dimensional function is to apply the Simpson’s 

rule on each direction of the multiple integral. While the Monte Carlo 

integration works as random sampling points in the 𝑛𝑛-dimensional set and 

distinguishing the number of points in the integral domain. 

Therefore, in order to ensure the efficiency of the calculation, Monte Carlo 

integration is used for the integrals of more than 5-dimensions, while the 

Simpson’s rule method is used to calculate the integrals for 5-dimensions or 

lower to guarantee the accuracy.  

3.3.2 The accumulation method 

Consider that in a schedule, risks of all tasks for each technician will be 

calculated. Therefore, instead of calculating the complicated integrals in multi-

dimensions for each task, one way is to calculate the risk based on the 

distribution of the previous task finish time, this is where the accumulation 

method is proposed. The Simpson’s rule and Monte Carlo method is based on 

the distributions of all the previous task durations, whereas the accumulation 

 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥 

𝑦𝑦 𝑅𝑅 

𝐷𝐷 
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method uses a discrete approximation to represent all distributions for the 

calculation. This method is based on the one-dimensional interpolating 

integral function (Levy, 2010). 

More specifically, as we explained before, the arrival time at the 2nd customer 

is normal distributed which is  

 𝐴𝐴𝐴𝐴𝑘𝑘2 = 𝑠𝑠𝑘𝑘0 + 𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1 + 𝛿𝛿𝑘𝑘𝑖𝑖1 + 𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2 .  

Then the start time considering the time window 𝑎𝑎𝑖𝑖2 is not normal which is 

 𝑆𝑆𝑆𝑆𝑘𝑘2 = max�𝐴𝐴𝐴𝐴𝑘𝑘2,  𝑎𝑎𝑖𝑖2� = max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2�.  

Then we estimate the distribution of max�𝑋𝑋𝑘𝑘2,𝑎𝑎𝑖𝑖2� by transfer it into discrete 

distribution, which is to set the probability  Ρ(𝑋𝑋𝑘𝑘2 ≤  𝑎𝑎𝑖𝑖2) as the probability 

of Ρ(𝑋𝑋𝑘𝑘2 =  𝑎𝑎𝑖𝑖2), set Ρ(𝑎𝑎𝑖𝑖2 < 𝑋𝑋𝑘𝑘2 ≤  𝑎𝑎𝑖𝑖2 + ℎ) as the probability of Ρ(𝑋𝑋𝑘𝑘2 =

 𝑎𝑎𝑖𝑖2 + ℎ) , set Ρ(𝑎𝑎𝑖𝑖2 + ℎ < 𝑋𝑋𝑘𝑘2 ≤  𝑎𝑎𝑖𝑖2 + 2ℎ)  as the probability of Ρ(𝑋𝑋𝑘𝑘2 =

 𝑎𝑎𝑖𝑖2 + 2ℎ)  and so on, where ℎ is the unit length of the discrete subintervals 

for 𝑋𝑋𝑘𝑘2. Then the arrival time at the 3rd customer is 

 𝐴𝐴𝐴𝐴𝑘𝑘3 = max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3.  

The sum of the 2nd task duration and the travel time between the 2nd and 3rd 

customers 𝑋𝑋𝑘𝑘3 follows a normal distribution, and it also can be approximated 

into the discrete distribution with the subintervals of length ℎ. Then add the 

two distributions together to pursue the distribution of 𝐴𝐴𝐴𝐴𝑘𝑘3 in the way that the 

probability value of each bar of the 𝑆𝑆𝑆𝑆𝑘𝑘2 distribution multiples the probability 

value of each bar of the 𝑋𝑋𝑘𝑘3 distribution to get the probability of each value of 

𝐴𝐴𝐴𝐴𝑘𝑘3 where 𝐴𝐴𝐴𝐴𝑘𝑘3 = 𝑆𝑆𝑆𝑆𝑘𝑘2 + 𝑋𝑋𝑘𝑘3. 
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Then the risk of missing the 3rd task appointment is that 

 𝑅𝑅𝑘𝑘𝑘𝑘3 = 𝛲𝛲�𝐴𝐴𝐴𝐴𝑘𝑘3 > 𝑏𝑏𝑖𝑖3� 

 = 𝛲𝛲�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 > 𝑏𝑏𝑖𝑖3� 

 = 𝛲𝛲�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 = 𝑏𝑏𝑖𝑖3� 

 +𝛲𝛲�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 = 𝑏𝑏𝑖𝑖3 + ℎ� 

 +𝛲𝛲�max�𝑋𝑋𝑘𝑘2,  𝑎𝑎𝑖𝑖2� + 𝑋𝑋𝑘𝑘3 = 𝑏𝑏𝑖𝑖3 + 2ℎ� 

 +⋯ 

               
(a)  Arrival time at the 2nd customer (b)  Start time at the 2nd customer 

           
(c)  Work time distribution             (d)  Arrival time at the 3rd customer 

Figure  3.6 The accumulation method 
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As an example, let us assume that a technician has 3 tasks and travel times are 

ignored to simplify the problem. The technician will start work at 7:00, and 

the 1st task time window is from 7:00 to 9:00. Because there is no uncertainty 

before the 1st task, there is no chance to arrive at 1st customer later than 9:00 

which means no risk for the 1st task. Suppose the average duration time of the 

1st task is 3 hours and this duration time is a random variable with variance of 

1. Then after he finishes the 1st task, the distribution of the arrival time at the 

2nd customer follows the distribution which is 𝐴𝐴𝐴𝐴𝑘𝑘2~𝑁𝑁(10,1) and is discretely 

described in Table 3.1 column 2 and Figure 3.6 (a). It implies that the average 

arrival time is 10:00, and the standard deviation is 1 hour. The 2nd customer 

time window is from 9:00 to 11:00, and then the risk for this task will be the 

total probability of the arrival time after 11:00, which is 

𝑅𝑅𝑘𝑘2 = 𝛲𝛲(𝐴𝐴𝐴𝐴𝑘𝑘2 > 11) 

 = 𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘2 = 11.5) + 𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘2 = 12) + 𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘2 = 12.5) + 𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘2 = 13) 

 
= pdf(𝐴𝐴𝐴𝐴𝑘𝑘2 = 11.5) ∙ 0.5 + pdf(𝐴𝐴𝐴𝐴𝑘𝑘2 = 12) ∙ 0.5 

         +pdf(𝐴𝐴𝐴𝐴𝑘𝑘2 = 12.5) ∙ 0.5 + pdf(𝐴𝐴𝐴𝐴𝑘𝑘2 = 13) ∙ 0.5 

 = 0.2237, 

where pdf(∙) is the PDF value, and 0.5 is the length of subintervals ℎ.  

As it is illustrated in Section 3.2, the start work time at the 2nd customer will 

be of the distribution in Table 3.1 column 3 and Figure 3.6 (b). The PDF 

values of the arrival time before 9:00 are all added to the one of 9:00 to 

construct the discrete 𝑆𝑆𝑆𝑆𝑘𝑘2, i.e., 
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 p(𝑆𝑆𝑆𝑆𝑘𝑘2 = 9) 

 
= p(𝐴𝐴𝐴𝐴𝑘𝑘2 = 7) + p(𝐴𝐴𝐴𝐴𝑘𝑘2 = 7.5) + p(𝐴𝐴𝐴𝐴𝑘𝑘2 = 8) 

         +p(𝐴𝐴𝐴𝐴𝑘𝑘2 = 8.5) + p(𝐴𝐴𝐴𝐴𝑘𝑘2 = 9) 

 = 0.4474. 

 

Table  3.1 Arrival and start time discrete distribution at the 2nd customer 

Time PDF (Arrival) PDF (Start) 

7 0.004432 0 

7.5 0.017528 0 

8 0.053991 0 

8.5 0.129518 0 

9 0.241971 0.447439 

9.5 0.352065 0.352065 

10 0.398942 0.398942 

10.5 0.352065 0.352065 

11 0.241971 0.241971 

11.5 0.129518 0.129518 

12 0.053991 0.053991 

12.5 0.017528 0.017528 

13 0.004432 0.004432 
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Table  3.2 Work time distribution of the 2nd task 

Time(Hour) PDF Time(Hour) PDF 

0 0.004432 3.5 0.352065 

0.5 0.017528 4 0.241971 

1 0.053991 4.5 0.129518 

1.5 0.129518 5 0.053991 

2 0.241971 5.5 0.017528 

2.5 0.352065 6 0.004432 

3 0.398942   

 

Then suppose the combination of the 2nd task duration time and travel time 

between the 2nd and 3rd task follows the discrete distribution in Table 3.2 and 

Figure 3.6(c), i.e., 𝑋𝑋𝑘𝑘3~𝑁𝑁(3,1), where the mean of the 2nd task duration time 

is 3 hours and the standard deviation is 1 hour. The accumulation method is to 

add each segment of the work time to each segment of the start time, and 

multiply their probabilities to have the new distribution. Then if the 

summation of the time is the same, the probabilities will be added up. For a 

instance, in terms of the arrival time 11:00, the production of the start time of 

the 2nd task 9:00 and 2nd task duration time 2 hours will contribute the 

probability, as well as 9:30 and 1.5 hours, 10:00 and 1 hour, 10:30 and 0.5 

hour, 11:00 and 0 hour, so the probability regarding the arrival time of 11:00 

will be the sum of the probabilities of these five segments, i.e., 
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    𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘3 = 11) 

= 𝑃𝑃(𝑆𝑆𝑆𝑆𝑘𝑘2 = 9) ∙ 𝑃𝑃(𝑋𝑋𝑘𝑘3 = 2) + 𝑃𝑃(𝑆𝑆𝑆𝑆𝑘𝑘2 = 9.5) ∙ 𝑃𝑃(𝑋𝑋𝑘𝑘3 = 1.5) 

         +𝑃𝑃(𝑆𝑆𝑆𝑆𝑘𝑘2 = 10) ∙ 𝑃𝑃(𝑋𝑋𝑘𝑘3 = 1) + 𝑃𝑃(𝑆𝑆𝑆𝑆𝑘𝑘2 = 10.5) ∙ 𝑃𝑃(𝑋𝑋𝑘𝑘3 = 0.5) 

         +𝑃𝑃(𝑆𝑆𝑆𝑆𝑘𝑘2 = 11) ∙ 𝑃𝑃(𝑋𝑋𝑘𝑘3 = 0) 

= pdf(𝑆𝑆𝑆𝑆𝑘𝑘2 = 9) ∙ pdf(𝑋𝑋𝑘𝑘3 = 2) ∙ 0.52 + pdf(𝑆𝑆𝑆𝑆𝑘𝑘2 = 9.5) ∙ pdf(𝑋𝑋𝑘𝑘3 = 1.5) ∙ 0.52 

      +pdf(𝑆𝑆𝑆𝑆𝑘𝑘2 = 10) ∙ pdf(𝑋𝑋𝑘𝑘3 = 1) ∙ 0.52 + pdf(𝑆𝑆𝑆𝑆𝑘𝑘2 = 10.5) ∙ pdf(𝑋𝑋𝑘𝑘3 = 0.5) 

       ∙ 0.52 + pdf(𝑆𝑆𝑆𝑆𝑘𝑘2 = 11) ∙ pdf(𝑋𝑋𝑘𝑘3 = 0) ∙ 0.52 

= 0.447 × 0.242 + 0.352 × 0.129 + 0.399 × 0.054 + 0.352 × 0.017 

       +0.242 × 0.004 

= 0.04566, 

then the value of the PDF of the arrival time will be this probability divided by 

the length of subintervals (i.e. 0.5 hour here), 

    pdf(𝐴𝐴𝐴𝐴𝑘𝑘3 = 11) 

= 𝑃𝑃(𝐴𝐴𝐴𝐴𝑘𝑘3 = 11) ÷ 0.5 

= 0.0913, 

as is the PDF value regarding the arrival time of 11:00 shown in Table 3.3. 

Therefore, the accumulation method can calculate the distribution of arrival 

time at the 3rd task, shown in Table 3.3 and Figure 3.6 (d). Additionally, the 

length of intervals in this example is 0.5 hour for simplicity of the description, 

however, in the risk calculation for real scenarios we used 1 minute as the 

interval length. 
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Table  3.3 Arrival time distribution of the 3rd task 

Time PDF Time PDF 

9 0.00099 14.5 0.10411 

9.5 0.00470 15 0.05890 

10 0.01605 15.5 0.02939 

10.5 0.04276 16 0.01279 

11 0.09132 16.5 0.00480 

11.5 0.15911 17 0.00152 

12 0.23008 17.5 0.00039 

12.5 0.28149 18 0.00008 

13 0.29694 18.5 0.00001 

13.5 0.27430 19 0.10411 

14 0.22397   

Therefore, in a similar way we can calculate the risks of 𝑅𝑅𝑘𝑘4, … ,𝑅𝑅𝑘𝑘𝑘𝑘. Through 

this method, we could utilise the distribution and calculation of the previous 

tasks so that it is more convenient to obtain the risk for a large number of tasks 

for one technician, since this method is just to loop the same part in terms of 

programming. We have tested this idea on a single technician, and it works 

fast and the result is accurate as well. The result for later tasks may not be as 

accurate as the first several because of the accumulation effect. 

3.3.3 The summation method 

For large sample data, it is common to assume the work times follow normal 

distributions or that the number of customers is large enough to justify using 
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the central limit theorem. A property of the normal distribution (Lemons, et al., 

2002) is summarised as below. 

Property Suppose 𝑋𝑋 and 𝑌𝑌 are independent random variables that are normally 

distributed, with means 𝜇𝜇1, 𝜇𝜇2  and standard deviations 𝜎𝜎1,𝜎𝜎2  then their sum 

𝑋𝑋 + 𝑌𝑌 is also normally distributed with mean 𝜇𝜇1 + 𝜇𝜇2 and variance 𝜎𝜎12 + 𝜎𝜎22.  

Naturally, the calculation will become more straightforward and faster if we 

could utilise this property. It has been known that if time windows are ignored, 

the mean and variance of a job at a given point are just the accumulation of 

means and variances of the task duration times and travel times of the same 

technician up to the current task. From the analysis of the risk propagation, in 

the real world, the start working time 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 is not normally distributed for all 

the tasks because of the impact of the earliest time of the time window 𝑎𝑎𝑖𝑖. 

However, it is reasonable to approximate the impact of time window 

constraints without losing the benefits of fast computation. Therefore, 

different thresholds and similar behaviours are considered and adjusted to 

follow the normal distributions as below.   

• If the arrival time is earlier than the lower limit of the time window 

with the probability more than 84% then the arrival time distribution is 

omitted and the lower bound of the time window is used as the start 

time without the variance; 

• If the probability of arrival time after the lower limit of the time 

window is more than 84% then the normal distribution of the arrival 

time is used as the distribution of the start time; 

• If the absolute difference between the mean of the arrival time and the 

lower bound of the time window is within a standard deviation of the 
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arrival time, then the adjusted mean and standard deviation of the 

arrival time is used for the start time. 

When the lower limit of the time window is one standard deviation after the 

mean arrival time, the probability of the arrival time before the lower limit of 

the time window is 84%, because for any normal distribution 𝑃𝑃(𝑋𝑋 > 𝜇𝜇 + 𝜎𝜎) =

15.86%. More specifically, as it is shown in Figure 3.7 (a), the mean of the 

arrival time 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)  is before one standard deviation 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)  downward 

movement of the lower limit of the time window 𝑎𝑎𝑖𝑖 , where the standard 

deviation is the one of the arrival time variable, i.e., 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) ≤ 𝑎𝑎𝑖𝑖 − 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘). 

It is the same to say that with the probability of more than 84%, the arrival 

time is earlier than the given time window. Thus for this scenario, the 

uncertainty of the arrival time can be ignored because the technician arrives 

early enough so that the waiting time absorbs the risk of missing the 

customer’s time window. Then the earliest time window 𝑎𝑎𝑖𝑖  is used as the 

mean of the start time 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 and no variance is considered, so the variance of 

the current task working time contributes the uncertainty of the arrival time at 

the next customer mostly. 

Figure 3.7 (b) shows the scenario that the mean of the arrival time 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) is 

after a standard deviation 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) upward move of the lower limit of the time 

window 𝑎𝑎𝑖𝑖 , i.e., 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) ≥ 𝑎𝑎𝑖𝑖 + 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) , which means that with the 

probability of more than 84% the arrival time is after the earliest time of the 

given time window. Therefore, the lower limit of the time window does not 

shift the distribution of the arrival time much comparing the start time 

distribution, especially the right tail of the distribution which combined with 

the current task duration 𝛿𝛿𝑘𝑘𝑘𝑘 attributes most of the risk for the next customer. 

Then the mean and variance of the arrival time are kept the same for the start 

time distribution.  
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In terms of the most complicated scenario as shown in Figure 3.7 (c) and (d), 

the mean of the arrival time 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) is within one standard deviation 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) 

of the lower limit of the time window, i.e., 𝑎𝑎𝑖𝑖 − 𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) < 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) < 𝑎𝑎𝑖𝑖 +

𝜎𝜎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘), but we still would like to use normal distribution for the start time 

considering the time window, thus we use an adjusted mean 𝜇𝜇𝑎𝑎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) and an 

adjusted variance 𝜎𝜎𝑎𝑎2(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) for the normal distribution of the start time, where 

the analysis is much based on the data investigation, illustrated in details in 

Section 3.5. This estimation benefits calculating the risks relatively accurate 

and saves computing time due to the summation property of the normal 

distribution. 

For example, suppose the task time window [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] is from 11:00 to 13:00 and 

the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖 follows normal distribution with the variance 1 hour, if 

the mean of the arrival time 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) is before 10:00, we use 11:00 as the mean 

of the start time and no variance, which also can be seen as the normal 

distribution 𝑁𝑁(11,0). Then if the mean of the arrival time 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘) is after 

12:00, we use the normal distribution 𝑁𝑁(𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘), 1) as the start working time 

distribution. Lastly, if 𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)  is between 10:00 and 12:00, the normal 

distribution with adjusted mean and variance 𝑁𝑁(𝜇𝜇𝑎𝑎(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘),𝜎𝜎𝑎𝑎2(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)) is used 

as the start time distribution. 
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𝜇𝜇 − 3𝜎𝜎       𝜇𝜇 − 2𝜎𝜎          𝜇𝜇 − 𝜎𝜎           𝜇𝜇           𝜇𝜇 + 𝜎𝜎        𝜇𝜇 + 2𝜎𝜎      𝜇𝜇 + 3𝜎𝜎 

𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)               𝑎𝑎𝑖𝑖                               𝑏𝑏𝑖𝑖  

𝜇𝜇 − 3𝜎𝜎       𝜇𝜇 − 2𝜎𝜎          𝜇𝜇 − 𝜎𝜎           𝜇𝜇           𝜇𝜇 + 𝜎𝜎        𝜇𝜇 + 2𝜎𝜎      𝜇𝜇 + 3𝜎𝜎 

𝑎𝑎𝑖𝑖           𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)       𝑏𝑏𝑖𝑖  

𝜇𝜇 − 3𝜎𝜎       𝜇𝜇 − 2𝜎𝜎          𝜇𝜇 − 𝜎𝜎           𝜇𝜇           𝜇𝜇 + 𝜎𝜎        𝜇𝜇 + 2𝜎𝜎      𝜇𝜇 + 3𝜎𝜎 

𝑎𝑎𝑖𝑖  𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)                 𝑏𝑏𝑖𝑖  

𝜇𝜇 − 3𝜎𝜎       𝜇𝜇 − 2𝜎𝜎          𝜇𝜇 − 𝜎𝜎           𝜇𝜇           𝜇𝜇 + 𝜎𝜎        𝜇𝜇 + 2𝜎𝜎      𝜇𝜇 + 3𝜎𝜎 

𝜇𝜇(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘)    𝑎𝑎𝑖𝑖                                 𝑏𝑏𝑖𝑖  

(a) 

(b) 

(c) 

(d) 

Figure  3.7 Relationship between the mean arrival time and the time window 

 



76 
 

3.4 Reliability of the risk calculation 

As there are several methods to calculate or estimate the risk, the accuracy and 

reliability of these calculations need to be verified so that these methods can 

be used in the risk minimisation procedures. Maple is used to calculate the 

accurate integral for comparison. 

3.4.1 Reliability of the Simpson’s rule method 

To start with, we calculate the risk by utilising the Simpson’s rule. Due to the 

fact that Maple cannot calculate higher integrals, first we only compare the 

results with the calculation of the single, double and triple integrals by Maple 

and by using Simpson’s rule in Java.   

Table  3.4 Example result comparison between Maple & Simpson’s rule 

For example, suppose the travel times are omitted, all the tasks are identical, 

and their duration times follow the normal distribution 𝑁𝑁(2,1), where the 

mean of the duration is 2 hours and the variance of the random variable is 1 

hour. The technician start work at 7:00, then the 1st task finish time is the 

same as the arrival time for the 2nd task 𝐴𝐴𝐴𝐴𝑘𝑘2 = 𝐹𝐹𝐹𝐹𝑘𝑘1 = 𝑋𝑋𝑘𝑘1~𝑁𝑁(9,1), where 

the mean of the arrival time is 9:00 and the variance is 1 hour. The details are 

Task 
number 

Task 
duration 

Distribution 
Time window 
𝑎𝑎𝑖𝑖            𝑏𝑏𝑖𝑖 

Risk by 
Maple 

Risk by 
Simpson’s 

rule 
Error 

1st task 𝑋𝑋𝑘𝑘1 𝑁𝑁(9,1) 7:00 - 9:00 0 0 0% 

2nd task 𝑋𝑋𝑘𝑘2 𝑁𝑁(2,1) 9:00 - 11:00 0.02275 0.02272 -0.132% 

3rd task 𝑋𝑋𝑘𝑘3 𝑁𝑁(2,1) 11:00 - 13:00 0.08693 0.08699 0.069% 

4th task 𝑋𝑋𝑘𝑘4 𝑁𝑁(2,1) 13:00 - 15:00 0.15316 0.15325 0.059% 
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shown in Table 3.4. The relative error (Golub and Van Loan, 2013) is defined 

as  

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑅𝑅(𝑆𝑆) − 𝑅𝑅(𝑀𝑀)

𝑅𝑅(𝑀𝑀)
,  

where 𝑅𝑅(𝑀𝑀) and 𝑅𝑅(𝑆𝑆) is the risk calculated by Maple and by the Simpson’s 

rule in Java respectively. The risk is as we defined before, which is the 

probability of the arrival time after the upper bound of the time window. It can 

be seen in Table 3.4 that the results of the Simpson’s rule method are accurate. 

However, calculating the risk of 6th task for the example in Table 3.5 takes a 

long time using the Simpson’s method. This is because the five-dimensional 

matrix used in the Simpson’s rule takes more time to calculate. The drawback 

is not significant when only calculating risks for one technician, but when it 

comes to more technicians and a large number of tasks, the calculation takes 

much longer. 

3.4.2 Risk approximation of the summation method 

In the example in Section 3.3.2, the arrival time 𝐴𝐴𝐴𝐴𝑘𝑘2 is supposed to follow 

normal distribution 𝑁𝑁(10,1), which means the mean of the arrival time is 

10:00 and the standard deviation is 1 hour. Moreover, the distribution of the 

2nd task duration and travel time between the 2nd and the 3rd tasks 𝑋𝑋𝑘𝑘3 is a 

normal distribution 𝑁𝑁(3,1), and the curve in Figure 3.8 shows the normal 

distribution 𝑁𝑁(13,2), while the bar chart shows the discrete distribution of the 

arrival time 𝐴𝐴𝐴𝐴𝑘𝑘3 at the 3rd customer obtained by the accumulation method.  

It can be seen that the distribution of the arrival time to the next task can be 

approximated as a normal distribution even though the start time is affected by 

a time window earliest time 𝑎𝑎𝑖𝑖, especially the right tail of the distribution is 
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usually used to calculate the risk, where the discrete distribution and the curve 

are very close. This is further discussed and analysed in Section 3.5. 

 

Figure  3.8 Arrival time at the 3rd customer and a normal estimation 

 

3.4.3 Comparison of different methods 

This section focuses on comparing the Simpson’s rule and the Monte Carlo 

method, the accumulation method and the summation method in term of 

running time and quality of results. An example is used to test these 

approaches. There are seven tasks allocated to a technician and suppose 

technician working time at each customer follows different normal 

distributions, of which the means and standard deviations are shown in Table 

3.5, as well as the task time windows and travel times. Note that these times 

are in minutes and the earliest or upper limit of a time window is the number 

of minutes starts from 0:00. Then the risk calculation results from these three 

methods and the corresponding running time are illustrated in Table 3.6. The 

absolute error (Golub and Van Loan, 2013) is sufficient to show the accuracy 

among methods and is defined as  
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 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅 − 𝑅𝑅(𝑆𝑆),  

where  𝑅𝑅 represents the risk calculated by the accumulation method or the 

summation method, 𝑅𝑅(𝑆𝑆) gives the risk calculated by the Simpson’s rule and 

Monte Carlo method. We use 𝑅𝑅(𝑆𝑆) as the standard value because in the last 

section the risk obtained by the Simpson’s rule and Monte Carlo method is 

shown to be close to the integral result calculated by Maple. 

From the risk and error results in Table 3.6 and 3.7, it can be seen that the 

risks given by the summation method are not far away from those from the 

other two methods, and so it is reasonably accurate for use in a simulator or 

dynamic scheduling tool as the calculation is fast. 

Table  3.5 Test example 

Task number Mean Standard 
deviation 

Lower limit 
of the time 

window 

Upper limit 
of the time 

window 
Travel time 

1 60 40 450 632 14 

2 31 40 567 717 93 

3 46 40 608 758 90 

4 31 40 674 824 33 

5 40 40 744 894 22 

6 25 40 816 966 40 

7 30 40 923 1073 45 
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Table  3.6 Risk result 

Risk Simpson’s & M.C. Accumulation Summation 

Task 1 0 0 0 

Task 2 0.00215 0.00089 0.00216 

Task 3 0.27833 0.27566 0.27388 

Task 4 0.39300 0.38839 0.38087 

Task 5 0.32722 0.31616 0.31736 

Task 6 0.37398 0.36193 0.36863 

Task 7 0.23619 0.23934 0.24702 

Maximum 0.39300 0.38839 0.38087 

Sum 1.61088 1.58237 1.58992 

Running time 
(msa) 3460 28 2 

a. Milliseconds 

Table  3.7 Error result 

Risk Accumulation Summation 

Task 1 0 0 

Task 2 -0.00126 0.00001 

Task 3 -0.00267 -0.00445 

Task 4 -0.00461 -0.01213 

Task 5 -0.01106 -0.00986 

Task 6 -0.01205 -0.00535 

Task 7 0.00315 0.01083 

Maximum -0.00461 -0.01213 

Sum -0.02851 -0.02096 
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3.5 Data analysis 

In this section, we first discuss the raw data of task duration and how we 

processed them, then the travel time and the risk in our problem are analysed 

and discussed. Generally the travel time and the task duration are estimated as 

variables following normal distributions. Additionally, the scenario when the 

travel time and task duration follow Gamma distributions are also studied. 

3.5.1 Raw data collection, cleaning and processing 

We gathered real schedule data of 12 months from an industry company which 

offers web services in the UK. The raw data obtained by SQL query consists 

of 72113 task operating records that have many features. We choose some 

features that are most relevant for our problem. An instance of the data is 

shown in Table 3.8 and the featured are as follows. 

Domain: the geographical region where the tasks located; 

Task type: the type of the task; 

Skill code: the skill required to do the task; 

Appointment type: type of the appointment, NOT APPT if the task is not 

appointed. APPT if the task is appointed. 

Technician id: identifier of the technician who has completed the task; 

Technician type: a classification of the technicians who have completed the 

task; 
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Provision or repair: another feature of the task, repair if the task it is repairing 

a firm or customer asset, provision if the task is the installation of a new asset; 

Estimated task duration: planned task duration in minutes; 

Estimated travel: planned travel time in minutes to reach the task from the 

previous task or start location of the technician; 

Actual task time: actual time in minutes spent on the task; 

East task coordinate: the east coordinate of the task; 

North task coordinate: the north coordinate of the task. 

According to our risk assumption, the probability of the arrival time at the 

customer site, the task duration distribution and the travel time distribution are 

crucial for our problem. Firstly we investigate the actual task time distribution. 

Two critical parameters in our model are the mean and variance of the task 

duration, which we need obtain from processing the historical data. There are 

214 task types in the raw data, and some of them only have few records, thus 

we grouped the tasks with the same domain, task type, skill code, appointed 

type, provision or repair and estimated task duration together, then we analyse 

the most representative task groups that have a large number of records, the 

actual task time of these tasks contributes to obtaining the distribution of the 

task duration. Meanwhile, the matching between the estimated task duration 

and the actual is tested. 

For example, there are 1291 records for a repair type of task, the records with 

the actual task time negative or greater than 250 minutes are neglected as 

outliers, then the histogram as shown in Figure 3.9 is obtained. We found the 

mean and standard deviation of the actual task duration is 88.13 minutes and 
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38.80 minutes respectively, while the estimated task duration is 85 minutes. 

Therefore it can be concluded that the estimated task duration in the database 

is reliable, and the standard deviation for the actual task duration is not only 

beneficial for this problem but also useful in further analysis. The curve in 

Figure 3.9 illustrates the PDF of the normal distribution 𝑁𝑁(88.13, 38.802), 

which approximates the actual task time distribution well. 

 

Figure  3.9 Distribution of a repair task with a normal fit 

The distribution plots on the actual time spent on the most representative kinds 

of tasks, reveal that most of the tasks satisfy Gamma distributions while 34.6% 

of tasks follow normal distributions. Moreover, the Central Limit Theorem 

(CLT) is stated as below. 

Theorem Lindeberg-Lévy CLT (Billingsley, 1995). If the random variables 

𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 form a random sample of size 𝑛𝑛 from a given distribution with mean 

𝜇𝜇 and variance 𝜎𝜎2(0 < 𝜎𝜎2 < ∞), then for each fixed number 𝑥𝑥, 
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 lim
𝑛𝑛→∞

Pr �
𝑋𝑋𝑛𝑛���� − 𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

≤ 𝑥𝑥� = Φ (𝑥𝑥),  

where Φ  denotes the cumulative density function (CDF) of the standard 

normal distribution. 

The CLT is a statistical theory stating that given a sufficiently large sample 

size from a population with a finite level of variance, the mean of all samples 

from the same population will be approximately equal to the mean of the 

population 𝜇𝜇 . Furthermore, all the samples will follow an approximately 

normal distribution pattern, with all variances being approximately equal to 

the variance of the population divided by each sample size 𝜎𝜎2 𝑛𝑛⁄ . This result 

helps to justify the use of the normal distribution as a model for many random 

variables that can be thought of as being made up of many independent parts. 

Therefore, it is sufficient to assume the actual work time aligns with a normal 

distribution as a large enough number of records can be gathered to analyse.  

Hence the summation method can be used to calculate the risks since most of 

the real data follows the normal distribution.  

Moreover, Figure 3.10 shows the distribution for a provision task of 3792 

records following a Gamma distribution, and the curve illustrates the Gamma 

distribution Γ(4.58,0.046) which fits the actual work time distribution well, 

where the 4.58 and 0.046 are the shape and scale parameters for a Gamma 

distribution respectively. The mode of the Gamma distribution is 77.83 

minutes, and the mean is 99.89 minutes, while the estimated task duration is 

85 minutes which is between the two values. Even though many types of tasks 

align with Gamma distributions, we may still consider the actual task time as a 

normal distribution because the task time cannot be negative. 
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Figure  3.10 Distribution of a provision task with a Gamma fit 

Furthermore, the standard deviation for the actual task time is 46.68 minutes. 

Together with distribution analysis of other tasks we found the standard 

deviation of the actual task time on average is approximately 40 minutes. Then 

to simplify the calculation in the schedule, we suppose the standard deviation 

for all kinds of tasks is 40 minutes.  

In order to apply our model to solve the problem in the real world, raw data of 

tasks and technicians were collected, cleaned and analysed, with the following 

features.  

For tasks: 

Task id: identifier of the task; 

Skill code: the type of the task; 

Task location latitude: the latitude of the task location; 
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Task location longitude: the longitude of the task location; 

Importance score: the priority level of the task; 

Estimated task duration: the mean of the normal distribution in minutes for the 

task; 

Task standard deviation: the standard deviation of the normal distribution in 

minutes for the task; 

Earliest time window: the lower limit of the time window; 

Latest time window: the upper limit of the time window; 

Primary target: the primary service target time; 

Secondary target: the secondary service target time. 

For technicians: 

Technician id: identifier of the technician; 

Skill code: a classification of the technician having the skills; 

Period start: the time of the technician to start working; 

Period end: the time of the technician to end working; 

Lunch start time: the time that the technician starts to have lunch; 

Lunch duration time: the time for lunch; 
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Technician location latitude: the latitude of the technician’s start location; 

Technician location longitude: the longitude of the technician’s start location; 

Absence time: the time period that the technician offline from working; 

Travel speed: the technician average travel speed between any two locations. 

Some example data are shown about the task and technician information 

respectively in Table 3.9 and 3.10. 
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Table  3.8 Raw data 

DOMAIN 
TASK 
TYPE 

SKILL 
CODE 

APPOINTMENT 
TYPE TECH ID TECH TYPE 

PROV 
REPAIR 

ESTIMATED 
TASK 

DURATION 

ESTIMATED 
TRAVEL 

ACTUAL 
TASK 
TIME 

EB A RBASIC NOT_APPT 803180718 Home DL Repair 60 27 18.35 

EB A RBASIC NOT_APPT 801778498 Visiting DL Repair 60 12 90.03 

EB A461 BTAIL NOT_APPT 600596705 Visiting DL Provision 284 28 66.28 

EB A461 BTAIL NOT_APPT 802966221 Visiting DL Provision 284 29 60.67 

EB FLTP01 FRM7A NOT_APPT 801864559 Home DL Provision 19 27 34.2 

MF FSTP01 FRM9A NOT_APPT 608327608 Home MWF Provision 13 16 48.53 

EB FSTP15 FRM9A NOT_APPT 605510706 Home DL Provision 20 38 55.78 

EB I1 OBASIC APPT 600596705 Home DL Provision 45 17 75 

MF I1 OBASIC APPT 607102220 Home DL Provision 45 18 6.13 

MF I1 OBASIC APPT 606334042 Home DL Provision 60 13 191.1 

EB I1 OBASIC APPT 803275117 Home DL Provision 68 11 87.32 

EB I1 OBASIC APPT 802035958 Home DL Provision 68 6 180.9 
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Table  3.9 Task data 

TASK ID SKILL 
CODE LATITUDE LONGITUDE 

IMPORT
ANCE  

SCORE 

TASK 
DURA
TION 

TASK 
SD EARLIEST TIME LATEST TIME PRIMARY 

TARGET 
SECONDARY 

TARGET 

N1-F00319789 TNK64 53.4107694 -2.9958578 55 84 40 05/05/2015 02:00 05/06/2015 00:00 05/05/2015 02:00 05/05/2015 11:59 

N1-F00321271 TNK64 53.3811978 -2.8688846 55 84 40 15/05/2015 08:00 05/06/2015 00:00 15/05/2015 08:00 15/05/2015 11:59 

N1-M18571693 SYX70 53.8257924 -3.025423 80 40 40 16/05/2015 15:16 05/06/2015 00:00 30/04/2015 04:18 30/04/2015 04:18 

N1-M18545981 SYX70 53.8257924 -3.025423 80 40 40 16/05/2015 15:17 05/06/2015 00:00 18/03/2015 04:21 18/03/2015 04:21 

N1-M18564454 SYX70 53.8404195 -2.8814023 80 40 40 16/05/2015 15:17 05/06/2015 00:00 20/04/2015 04:21 20/04/2015 04:21 

N1-M18476186 TNK64 53.5352439 -2.1719586 55 84 40 16/05/2015 15:18 09/06/2015 00:00 19/03/2015 08:00 19/03/2015 08:00 

N1-P18487183 DMSB 53.3864713 -2.5953483 55 45 40 16/05/2015 15:18 05/06/2015 00:00 27/01/2015 04:16 27/01/2015 04:16 

N1-P18492162 DMSB 53.4109216 -2.5580813 55 45 40 16/05/2015 15:18 05/06/2015 00:00 03/02/2015 04:16 03/02/2015 04:16 

S1-000019487 CXM24 54.3293699 -2.7457504 30 17 40 01/06/2015 13:56 08/06/2015 13:56 08/06/2015 13:56 09/06/2015 09:56 
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Table  3.10 Technician data 

TECH 
CODE 

SKILL CODE 
PERIOD 
START 

PERIOD 
END 

LUNCH 
START 

LUNCH 
DURAT

ION 
LATITUDE LONGITUDE 

ABSE
NCE 
TIME 

SPEED 

605479188 

"CTF61","CTF6","21CA7","CTF5","FOX01","BT-0008", 
"CTF3", "CTF2","21CA11","CTF7","FOX02","POP1", 
"CGGC","CADC","CAD4RM","SYX80","CSXC","21CA17"
, "AXE80","CNN2","21CA16","CTF8","CTF9","AGE34", 
"CTF1","FOX03T","FOX03","21CA6","21CA12", 
"PWR3G","CGI1","21CA1","CIP2","CGC1","LMDF1","CN
N1","CNN3","21CA10","FCP1", "21CA15", "FOX03S", 
"CTF4", "PWR3","CXM01" 

03/06/2015 
07:00 

03/06/2015 
16:30 

03/06/2015 
11:30 

30 53.494092 -2.038277 0 60 

700848018 

"CPP3","CTF6","21CA3","21CCM1","CTP4","CTA4","BT-
0011", "CIP2", "BT-0010", "21CA2","TAN01","AGE99", 
"BT-0008", "CTF61", "PLN","NN2","21CA10","CTF4", 
"CTF2","NN1", "21CA7","CIP4","CGC1","21CA17", 
"CTA3","SYX80","TXD10","CTF5","AXE80","21CA4","C
GGC","21CCM2","CGI1","CPP4","CTM3","CTF1","CXM0
2","CTS4","CXM24","21CQA", "CXM01","CTF3", 
"SOC01","CIP3" 

03/06/2015 
07:00 

03/06/2015 
16:30 

03/06/2015 
11:30 

30 53.52773 -2.193125 0 60 
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In Table 3.11 the means and standard deviations of the actual task times for 

several essential task types comparing the estimated task times, the number of 

records used to calculate the mean and standard deviation are shown. It can be 

seen that for the task type with large numbers of records, the estimated task 

time is close to the average actual task time, such as IFTTC8, R1CEWLR and 

R1LNWLR. Take R1CEWLR for example, the estimated task time is 75 

minutes, based on 4598 records of the actual task time for this task type, the 

mean is 79 minutes. As for the task of fewer records, the estimated task time 

does not always fit the actual task time well. For example, the mean of the 

actual task time of the task type R1CAFTTC is 89 minutes whereas the 

estimated task time is 60 minutes, with 29 minutes difference.  

Table  3.11 Task type data 

Task type Estimated (minsa) Mean (minsa) SD (minsa) No. of records 

IFTTC8 30 38.23 23.53 3966 

P1PR01FJR 30 26.46 18.97 2984 

R1PCDTFNK 45 57.41 36.22 1903 

R1CAFTTC 60 89.43 47.69 802 

R1 75 73.67 47.03 1795 

R1CEWLR 75 79.01 45.41 4598 

R1DEDTFNK 75 83.20 40.91 3812 

I1PR06LLU 85 99.88 46.48 3792 

R1CIDTCE 85 88.33 40.41 1379 

R1LNWLR 95 100.16 51.35 4050 

R1NSYAPP 105 92.81 49.68 832 

R1CALLSF2 120 101.21 47.97 1703 
a. Minutes 
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The standard deviations are also investigated. For long estimated task times 

such as R1CEWLR, I1PR06LLU and R1LNWLR, it is approximately 45 

minutes, and for short estimated task times like IFTTC8 and P1PR01FJR, it is 

around 20 minutes. While the average standard deviation obtained by all the 

72113 task records is 50.47 minutes. Consequently, 25 minutes is used as the 

standard deviation for short time tasks which are estimated shorter than 45 

minutes, and 45 minutes is used as the standard deviation for long time tasks 

where the estimated task times are longer than 45 minutes in the risk 

calculation. 

3.5.2 Travel time analysis 

Kaparias et al. (2008) introduced a measure of travel time based on the log-

normal distribution, and this measure was implemented in the dynamic routing 

algorithm of an intelligent car navigation system. Rahman et al. (2018) 

proposed that there is a significant difference of bus travel time distributions 

around 8 kilometres (km) of the distance between a real-time bus location and 

a bus stop: the bus travel time distribution converges from a rightly skewed 

distribution to a more symmetrical distribution from a shorter to a longer 

distance to the bus stop, lognormal distributions are the best models for the 

scenario when the distance is less than 8 km and normal distributions well 

approximate the travel time for the distance to the bus stop more than 8 km.  

Arezoumandi (2011), Pu (2011), Rakha et al. (2006) and Richardson and 

Taylor (1978) concluded the travel time follows a lognormal distribution for 

private car commuter journeys. Uno et al. (2009) analysed some real travel 

time data from the Global Positioning System (GPS) and proposed that the 

travel times for buses conform lognormal distributions, and they also 

estimated the travel time distributions of arbitrary routes by statistically 

summing up directly observed composite travel time distributions. Russell and 

Urban (2008), Taş et al. (2014) supposed that the travel times approximately 
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follow Gamma distributions, while Chang et al. (2009), Hall (1986), Kulkarni 

(1986) Wellman et al. (1995) used normal distributions for travel times.  

In terms of our research problem, the travel time is assumed to be normal 

distributed if it is considered as uncertain. The standard deviation is obtained 

via historical travel data, which is approximately 20 minutes, and the mean of 

the distribution is the travel time used in the model with deterministic travel 

times. Since the latitudes and longitudes for technicians and customers are 

available, the distance between any two locations is easy to calculate via the 

following method.  

If 𝑙𝑙𝑙𝑙𝑙𝑙  denotes the latitude of location 𝐴𝐴  in radian and 𝑙𝑙𝑙𝑙𝑙𝑙  denotes the 

longitude of location  𝐴𝐴 in radian. While 𝑙𝑙𝑙𝑙𝑙𝑙 denotes the latitude of location 𝐵𝐵 

in radian and 𝑙𝑙𝑙𝑙𝑙𝑙 denotes the longitude of location  𝐵𝐵 in radian. 𝑅𝑅 denotes the 

radius of the earth, which is 6378.137 kilometres (Moritz, 1980). Then the 

distance between 𝐴𝐴 and 𝐵𝐵 (Kells et al., 1940) is 

𝐷𝐷 =  𝑅𝑅 ∙ arccos(sin 𝑙𝑙𝑙𝑙𝑙𝑙 sin 𝑙𝑙𝑙𝑙𝑙𝑙 + cos 𝑙𝑙𝑙𝑙𝑙𝑙 cos 𝑙𝑙𝑙𝑙𝑙𝑙 cos(𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙)). 

The distance 𝐷𝐷 is the straight-line distance between 𝐴𝐴 and 𝐵𝐵. Then comparing 

the real road distance with the straight-line distance between two locations via 

Google Map, and we found that the real road distance is approximate 1.3 

times of the straight-line distance. Some examples are shown in Table 3.12. 

Given the latitudes and longitudes of location A and B, the straight-line 

distance between A and B can be obtained by the above formula, also the real 

road distance is gathered from Google Map data. Then the multiplier is 

calculated by 

multiplier =  
real road distance

straight-line distance
. 
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The multiplier is approximately 1.3. Therefore, the travel distance is  

  𝑇𝑇𝑇𝑇 = 1.3 ∙ 𝐷𝐷 = 1.3 ∙  𝑅𝑅 ∙ arccos(sin 𝑙𝑙𝑙𝑙𝑙𝑙 sin 𝑙𝑙𝑙𝑙𝑙𝑙 + cos 𝑙𝑙𝑙𝑙𝑙𝑙 cos 𝑙𝑙𝑙𝑙𝑙𝑙 cos(𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙)). 

Then suppose the travel speed is 40 km/h so that we can calculate  the 

deterministic travel time. Furthermore, if one prefers more accurate travel time, 

he may obtain the instance travel time via Google Map API at any specific 

time. 

Table  3.12 Distance examples 

A Latitude A Longitude B Latitude B Longitude 
Straight-line 

distance 
(km) 

Real road 
distance 

(km) 
Multiplier 

53.4107694 -2.9958578 53.3811978 -2.8688846 9.06 10.4 1.148 

53.8404195 -2.8814023 53.8257924 -3.025423 9.61 11.4 1.186 

53.8404195 -2.8814023 53.3864713 -2.5953483 53.88 73.3 1.360 

53.494092 -2.038277 53.4109216 -2.5580813 35.59 52.0 1.461 

 

3.5.3 Exploratory risk data analysis 

Initially, the scenario where task duration and travel time follow normal 

distributions is investigated. Given a technician, the arrival time at his 1st task, 

𝐴𝐴𝐴𝐴1  is a random variable that follows a normal distribution due to the 

stochastic travel time. Because a time window is associated with each task, the 

distribution for the start-operating time is not the same shape as the arrival 

time considering the lower limit of the time window. From section 3.2, the 

start time of the 1st task, 𝑆𝑆𝑆𝑆1 is a random variable that 𝑆𝑆𝑆𝑆1 = max{𝐴𝐴𝐴𝐴1,𝑎𝑎1}, 

where 𝑎𝑎1 is a constant representing the lower limit of the time window. Then 
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after doing the 1st task and travel from the 1st to the 2nd customer, the 

technician arrives at the 2nd task and the arrival time is a variable such that 

𝐴𝐴𝐴𝐴2 = max{𝐴𝐴𝐴𝐴1,𝑎𝑎1} + 𝛿𝛿1 + 𝑑𝑑12, where 𝛿𝛿1is the stochastic task duration and  

𝑑𝑑12 is the uncertain travel time. Since the task operating time and the travel 

time are both normal distributed,  𝛿𝛿1 + 𝑑𝑑12 can be regarded as one random 

variable of the task and travel time, 𝑇𝑇𝑇𝑇1 . The parameters for this normal 

distribution can be obtained using the property for the sum of normally 

distributed random variables.  

The risk of the 2nd task is defined as the probability, 𝑃𝑃(𝐴𝐴𝐴𝐴2 > 𝑏𝑏2), of the 

arrival time being later than 𝑏𝑏2, the upper bound of the time window for the 

2nd task. It is easy to see that 𝐴𝐴𝐴𝐴2 = max{𝐴𝐴𝐴𝐴1,𝑎𝑎1} + 𝑇𝑇𝑇𝑇1  is not normally 

distributed because the start time of the 1st task, 𝑆𝑆𝑆𝑆1 = max{𝐴𝐴𝐴𝐴1,𝑎𝑎1} does not 

follow a normal distribution. Therefore, technically a normal distribution 

cannot be used to calculate the probability 𝑃𝑃(𝐴𝐴𝐴𝐴2 > 𝑏𝑏2) directly, but as we 

mentioned in Section 3.4.2 the risk is defined in the area at the right tail of the 

arrival time distribution which seems to fit the normal distribution well. Hence 

the normal distribution is used to estimate the skewed start time distribution. 

The relationship between the risks calculated by the accumulation method and 

the summation method are investigated next. The accumulation method shows 

the risk (risk by accumulation) in terms of the shifted start time by the way 

that we discretise the start time distribution 𝑆𝑆𝑆𝑆1 and the task and travel time 

distribution 𝑇𝑇𝑇𝑇1, then calculate the discrete distribution for the arrival time 

𝐴𝐴𝐴𝐴2. While in the summation method the time window effect on the risk (risk 

by summation) is discussed regarding three cases. The risk is defined 

previously as 𝑃𝑃(𝐴𝐴𝐴𝐴2 > 𝑏𝑏2) = 𝑃𝑃{max{𝐴𝐴𝐴𝐴1,𝑎𝑎1} + 𝑇𝑇𝑇𝑇1 > 𝑏𝑏2} , hence we 

propose that the time window boundaries 𝑎𝑎1 and  𝑏𝑏2 will affect the power of 

the estimate. We use the risk by accumulation as the benchmark to investigate 

the behaviour of the risk estimation by the summation method because the risk 

by accumulation is close to the real risk.  
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It is straightforward to see that the closer the average arrival time 𝜇𝜇 is to the 1st 

task lower limit of the time window, 𝑎𝑎1, the more the start time distribution 

changes. If the lower limit 𝑎𝑎1 = 𝜇𝜇 − 2𝜎𝜎 , the effect of the time window is 

small as is shown in Figure 3.11 (b) comparing the original arrival time 

distribution shown in Figure 3.11 (a). Whilst if the time window is closer to 

the average arrival time, such as 𝑎𝑎1 = 𝜇𝜇 − 0.5𝜎𝜎, the effect of the time window 

to the start time distribution is shown in Figure 3.11 (c), the shape of the start 

time is quite different from the arrival time. As for the scenario when the mean 

of the arrival time 𝜇𝜇 is much earlier than the time window 𝑎𝑎1, e.g., 𝑎𝑎1 = 𝜇𝜇 +

2𝜎𝜎, the start time is at time 𝑎𝑎1 with a high probability so that the variance of 

the arrival time can be omitted.  

 
Figure  3.11 Time window effect 

(a) Same as the arrival time when no time 
windows applied 

(b) 𝑎𝑎1 = 𝜇𝜇 − 2𝜎𝜎 

(c) 𝑎𝑎1 = 𝜇𝜇 − 0.5𝜎𝜎 (d) 𝑎𝑎1 = 𝜇𝜇 + 2𝜎𝜎 
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The 1st task and travel time 𝑇𝑇𝑇𝑇1 follow the same normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2) 

and let 𝑎𝑎1 = 𝑝𝑝𝑝𝑝, 𝑏𝑏2 = 𝑞𝑞𝜎𝜎2, where 𝜎𝜎2 = √2𝜎𝜎 is the standard deviation for the 

estimated normal distribution of the arrival time at the 2nd task which is 

𝑁𝑁(2𝜇𝜇, 2𝜎𝜎2) . Without loss of generality, assume the normal distribution is 

standard, i.e., 𝜇𝜇 = 0, 𝜎𝜎 = 1,  thus 𝑎𝑎1 = 𝑝𝑝, 𝑏𝑏2 = 𝑞𝑞 ∙ √2. Then the relationship 

between the risk by accumulation and risk by summation in terms of 𝑝𝑝 and 𝑞𝑞 

will be discussed as follows. 5000 pairs of 𝑝𝑝  and 𝑞𝑞  are randomly chosen 

between 0 and 3 in Java to construct samples by using the Random function in 

the package java.util.Random, and the risk by accumulation for the 2nd task is 

calculated by the accumulation method, while the risk by summation is 

calculated by 𝑃𝑃(𝐴𝐴𝐴𝐴2 > 𝑞𝑞)  where 𝐴𝐴𝐴𝐴2~𝑁𝑁(0,2)  in Java using the package 

jsc.distributions.Normal.  

Furthermore, we assume that the mean of the arrival time 𝐴𝐴𝐴𝐴2 is earlier than 

the upper limit of the time window at the 2nd customer 𝑏𝑏2, and the difference 

between 𝐴𝐴𝐴𝐴2 and 𝑏𝑏2 is at most 3 standard deviations of the arrival time 𝐴𝐴𝐴𝐴2, 

which is to say 𝑏𝑏2 is at the right tail of  the distribution of 𝐴𝐴𝐴𝐴2, under this 

assumption the risks are comparable and hence this assumption is used for all 

scenarios.  If the mean of the arrival time is after 𝑏𝑏2, then there is at least 50% 

risk to miss the appointment, which will be regarded as high risk in the 

scheduling process.  

Now first we discuss the overall scenario where the mean of the arrival time 

𝐴𝐴𝐴𝐴1  varies before or after the lower limit of the time window 𝑎𝑎1  within 3 

standard deviations. To analyse the data, firstly the risk by accumulation is 

plotted against the risk by summation which is demonstrated in Figure 3.12, 

the two risks show a significant linear relationship. The correlation between 

these two risks is 0.997, which is significant at the 0.01 level (2-tailed) as is 

shown in Table 3.13. The results provide evidence that the risk by summation 
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can be used instead of the risk by accumulation. This will save a lot of time in 

a scheduling engine.  

 
Figure  3.12 Risk by accumulation and risk by summation 

Table  3.13 Risk correlations 

In statistical modelling, regression analysis is widely used for estimating the 

relationships among variables. Linear regression includes the method of least 

squares for modelling and analysing the relationship between a dependent 

 Real Estimated 

Risk by 
accumulation 

Pearson Correlation 1 .997** 

Sig. (2-tailed)  .000 

N 5000 5000 

Risk by 
summation 

Pearson Correlation .997** 1 

Sig. (2-tailed) .000  

N 5000 5000 

**. Correlation is significant at the 0.01 level (2-tailed). 

Risk by summation 
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variable and one or more independent variables. More specifically, regression 

analysis helps one understand how the typical value of the dependent variable 

changes when any one of the independent variables is varied, while the other 

independent variables are held fixed. 

Table  3.14 Regression Model I Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients T Sig. 

95.0% Confidence 
Interval for B 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

1 
(Constant) -.001 .000  -5.443 .000 -.002 -.001 

Risk by 
summation 1.033 .001 .997 954.455 .000 1.031 1.035 

a. Dependent Variable: real 
 

Table  3.15 Regression Model I Summaryb 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate Durbin-Watson 

1 .997a .995 .995 .01111 2.006 
a. Predictors: (Constant), estimate 
b. Dependent Variable: real 

 

Based on the high correlation between the risk by accumulation and the risk 

by summation, a regression model I can be obtained as shown in Tables 3.14 

and 3.15. The regression equation is as follows, 

regressional risk by accumulation = −0.0012 + 1.0033 ∙ risk by summation,  

and the p-values for these coefficients are 0.000, 0.000. Figure 3.13, show the 

residual values, the differences between the conditionally-imputed values for 

risk by accumulation and the fitted values, i.e., 
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 residual = risk by accumulation − regressional risk by accumulation.  

In Figure 3.13, most residual values fall between -0.02 and 0.02 which are 

relatively small. The adjusted R-square is 0.9945 for this model and it can be 

interpreted that the risk by summation can predict the risk by accumulation 

well. 

 

Figure  3.13 Risk Residual of regression model I 

 

Moreover, in Figure 3.12, increasing numbers of extreme values can be 

observed as risks increases, these outliers force us to consider the behaviour of 

the risk residual, which is the value of the risk by accumulation minus the risk 

by summation, then the risk residuals are plotted according to risks by 

summation in Figure 3.14. As shown in the figure, most residuals are pretty 

symmetrically distributed around 0 when the risks are relatively small i.e., less 

than 20%. Then as the risk increases the residual increases but even when the 

risk hits 50% the residual is not more than 0.1.  



101 
 

 
Figure  3.14 Risk Residual 

However, if we discover a more accurate risk by summation model, and 𝑝𝑝 and 

𝑞𝑞 get closer to 𝜇𝜇 which is 0 here, the difference between two risks is more 

significant. As discussed before, 𝑝𝑝  is the low limit of the time window 

expressed as the number of standard deviation from the mean arrival time at 

the first customer, 𝑞𝑞  is the upper limit of the next task time window 

represented as the number of standard deviation from the mean arrival time at 

the second customer. Then different scenarios may appear with regard to 

different 𝑝𝑝, 𝑞𝑞 values. Therefore, to approximate the risk by accumulation more 

accurately in terms of the risk by summation, the time-window boundaries 𝑝𝑝 

and 𝑞𝑞 can be included. 

Overall, the regression model II (as shown in Tables 3.16 and 3.17) obtained 

by the 5000 sample values is that 

Risk by summation 

R
es

id
ua

l 
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regressional risk by accumulation 

=  0.0011 + 0.0055𝑝𝑝 + 0.0027𝑞𝑞 + 1.048 ∙ risk by summation, 

and the p-values for these coefficients are 0.2477, 0.0000, 0.0000 and 0, which 

means the intercept term is not significant to be non-zero. And the residual for 

this regression is shown in Figure 3.15, the adjusted R-square is 0.9956, which 

may mean that  this model is just a little better than Model I but as two more 

explanatory factors are introduced to calculate the risk, this estimate becomes 

much more complicated. 

Table  3.16 Regression Model II Coefficientsa 

 

Table  3.17 Regression Model II Summaryb 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

95.0% 
Confidence 

Interval for B 

B Std. 
Error Beta Lower 

Bound 
Upper 
Bound 

1 

(Constant) .001 .001  1.156 .248 -.001 .003 
P .006 .000 .032 33.794 .000 .005 .006 
Q .003 .000 .016 6.451 .000 .002 .004 

Risk by 
summation 1.048 .002 1.012 420.032 .000 1.043 1.053 

a. Dependent Variable: real 

Mode
l R R Square Adjusted R 

Square 
Std. Error of 
the Estimate 

Durbin-
Watson 

1 .998a .996 .996 .00999 1.990 

a. Predictors: (Constant), estimate, p, q 
b. Dependent Variable: real 
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Figure  3.15 Risk Residual of regression model II 

 

If we consider the scenario that 𝑝𝑝 ∈ [−3,−1) and 𝑞𝑞 ∈ (0,3], as an example 

shown in Figure 3.11 (b). Based on the analysis of 5000 new random samples 

in this scenario, we only treat the risk by summation as the explanatory 

variable (the independent variable), and then the regression model III shows 

that 

 regressional risk by accumulation = −0.0002 + 1.0011 ∙ risk by summation, 

where p-values for the coefficients are 5.9 × 10−36 and 0. The residuals are 

plotted in Figure 3.16, which shows that the absolute values of residuals are 

mostly less than 0.5%. Moreover, the R-square for this model is 1.0, which 

means the risk by summation explains the risk by accumulation well. 

Therefore, for the scenario that the earliest time window 𝑎𝑎1 ∈ [𝜇𝜇 − 3𝜎𝜎, 𝜇𝜇 − 𝜎𝜎), 

it is reasonable to use the normal distribution estimation model I for the arrival 

time 𝐴𝐴𝐴𝐴2 that 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝜇𝜇(𝑆𝑆𝑆𝑆1) + 𝜇𝜇(𝑇𝑇𝑇𝑇1)  

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝜎𝜎2(𝑆𝑆𝑆𝑆1) + 𝜎𝜎2(𝑇𝑇𝑇𝑇1).  
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Figure  3.16 Risk residuals of regression model III 

 
Figure  3.17 Errors of estimation model I for p∈[-3,-1) 

And consider the approximation absolute error (Golub and Van Loan, 2013) 

that 

 error =  risk by accumulation − risk by summation.  

The errors show values as small as 0.5% in Figure 3.17, which are similar to 

the residuals of regression model III, because the regression model is close to 

the estimation that 

 regressinal risk by accumulation = risk by summation.  
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Then we consider the scenario that 𝑝𝑝 ∈ (1,3] and 𝑞𝑞 ∈ (0,3], which is shown in 

the example of Figure 3.11 (d), the variance of the arrival time is omitted 

because of the long waiting time. Therefore the risk by summation is 

calculated by the summation method where the lower bound of the time 

window, 𝑎𝑎1  and the mean of the task and travel time 𝑇𝑇𝑇𝑇1 are added as the 

mean of the arrival time 𝐴𝐴𝐴𝐴2, and the variance of 𝐴𝐴𝐴𝐴2 is same as the variance 

of 𝑇𝑇𝑇𝑇1. i.e., the estimation model II for the arrival time 𝐴𝐴𝐴𝐴2 is 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝑎𝑎1 + 𝜇𝜇(𝑇𝑇𝑇𝑇1)  

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝜎𝜎2(𝑇𝑇𝑇𝑇1).  

Based on the risk by summation from the above model and the risk by 

accumulation, the regression model IV is given that 

regressional risk by accumulation = 0.0020 + 1.0153 ∙ risk by summation, 

where p-values for the coefficients are 5.4 × 10−74 and 0. The residuals are 

mostly within 2% and the R-square for this model is 0.9985, which means the 

risk by summation can explain the risk by accumulation well. Thus, for the 

scenario that the lower bound of the time window, 𝑎𝑎1 ∈ (𝜇𝜇 + 𝜎𝜎, 𝜇𝜇 + 3𝜎𝜎], it is 

also reasonable to use the estimation that 

 regressinal risk by accumulation = risk by summation.  

and the errors according to the risks by accumulation are shown in Figure 3.18.  
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Figure  3.18 Errors of estimation model II for p∈(1,3] according the risk by 

accumulation 

From the figure we can see that the errors are not as small as the ones in the 

scenario 𝑝𝑝 ∈ [−3,−1) because of ignoring the start time variance, however, 

for this scenario the technician arrives much earlier than the time window, 

therefore the risk is usually relatively small and when the risks are smaller 

than 10%, the errors are less than 2%. Moreover, if we consider the relative 

error (Golub & Van Loan, 2013) which is  

 
relative error =  

risk by accumulation − risk by summation
risk by accumulation

, 
 

then the relative errors are less than 10% of the risk regarding to the large 

values in absolute errors. Thus the conclusion is that the estimation model II 

can be used for the scenario when the lower bound of the time window𝑎𝑎1 ∈

(𝜇𝜇 + 𝜎𝜎, 𝜇𝜇 + 3𝜎𝜎]. 

Then as for the scenario 𝑝𝑝 ∈ [−1,1] and 𝑞𝑞 ∈ (0,3], we introduce a normal 

distribution estimation for the start time. As we analyse before, the term 

max�𝐴𝐴𝐴𝐴𝑘𝑘2,  𝑎𝑎𝑖𝑖2� makes the risk not aligning with a normal distribution. It is 

the maximum value of a random variable and a constant number, then if we 

expand the constant number to a random variable, a research (Nadarajah and 

Risk by accumulation 

Error 
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Kotz, 2008) gave the exact distribution of the maximum and minimum of two 

Gaussian random variables. Suppose 𝑋𝑋1and 𝑋𝑋2 are Gaussian random variables, 

then the mean and variance of 𝑋𝑋 = max{𝑋𝑋1,𝑋𝑋2} are 

𝐸𝐸(𝑋𝑋) = 𝜇𝜇1Φ�
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
� + 𝜇𝜇2Φ�

𝜇𝜇2 − 𝜇𝜇1
𝜃𝜃

� + 𝜃𝜃ϕ�
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
�,  

𝐸𝐸(𝑋𝑋2) = (𝜎𝜎12 + 𝜇𝜇12)Φ�
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
� + (𝜎𝜎22 + 𝜇𝜇22)Φ�

𝜇𝜇2 − 𝜇𝜇1
𝜃𝜃

� + (𝜇𝜇1 + 𝜇𝜇2)𝜃𝜃ϕ �
𝜇𝜇1 − 𝜇𝜇2

𝜃𝜃
�,  

where 𝜃𝜃 = �𝜎𝜎12 + 𝜎𝜎22 − 2𝜌𝜌𝜎𝜎1𝜎𝜎2, 𝜌𝜌 is the correlation between 𝑋𝑋1and 𝑋𝑋2, Φ(∙) 

and ϕ(∙)  are the PDF and CDF of the standard normal distribution 

respectively. Nadarajah and Kotz (2008) also stated that if the standard 

deviations 𝜎𝜎1,𝜎𝜎2  of the two Gaussian random variables are identical, the 

Gaussian random variable with the mean 𝐸𝐸(𝑋𝑋) and variance 𝐸𝐸(𝑋𝑋2) − 𝐸𝐸2(𝑋𝑋) 

can well approximate the distribution of 𝑋𝑋 = max{𝑋𝑋1,𝑋𝑋2}. As more different 

between 𝜎𝜎1 and 𝜎𝜎2, the estimate gets worse. 

In terms of our risk model, a constant which is the lower limit of the time 

window is used replacing one of the Gaussian random variables and the 

correlation 𝜌𝜌 = 0,  therefore the parameters of the normal distribution 

estimation for 𝑆𝑆𝑆𝑆1 = max{𝐴𝐴𝐴𝐴1,𝑎𝑎1} are  

𝐸𝐸(𝑆𝑆𝑆𝑆1) = 𝜇𝜇1Φ�
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

� + 𝑎𝑎1Φ�
𝑎𝑎1 − 𝜇𝜇1
𝜎𝜎1

� + 𝜎𝜎1ϕ �
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

�, (3.1) 

𝐸𝐸(𝑆𝑆𝑆𝑆12) = (𝜎𝜎12 + 𝜇𝜇12)Φ�
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

� + 𝑎𝑎12Φ �
𝑎𝑎1 − 𝜇𝜇1
𝜎𝜎1

� + (𝜇𝜇1 + 𝑎𝑎1)𝜎𝜎1ϕ�
𝜇𝜇1 − 𝑎𝑎1
𝜎𝜎1

�, (3.2) 

where 𝜇𝜇1 and 𝜎𝜎1 are the mean and standard deviation of the arrival time 𝐴𝐴𝐴𝐴1 

(Ehmke et al., 2015). Then the risk by summation of the 2nd task is obtained 

via the 𝑆𝑆𝑆𝑆1 estimation and the normal distribution of the task and travel time 
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𝑇𝑇𝑇𝑇1, thus the normal distribution estimation model III for the arrival time 𝐴𝐴𝐴𝐴2 

is 

 𝜇𝜇(𝐴𝐴𝐴𝐴2) = 𝐸𝐸(𝑆𝑆𝑆𝑆1) + 𝜇𝜇(𝑇𝑇𝑇𝑇1) (3.3) 

 𝜎𝜎2(𝐴𝐴𝐴𝐴2) = 𝐸𝐸(𝑆𝑆𝑆𝑆12) − 𝐸𝐸2(𝑆𝑆𝑆𝑆1) + 𝜎𝜎2(𝑇𝑇𝑇𝑇1). (3.4) 

Comparing with the risk by the accumulation method, a regression model IV 

is 

regressional risk by accumulation = 0.0033 + 0.9702 ∙ risk by summation, 

with p-values of parameters are both 0 and R-square is 0.9997. Therefore, we 

also can conclude that the estimation that  

risk by accumulation =  risk by summation  

works for the estimation model III. The errors for this estimation are at most 1% 

as shown in Figure 3.19.  

 
Figure  3.19 Error of estimation model III for p∈[-1,1] 
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Overall, it can be concluded that for different relations between the arrival 

time 𝐴𝐴𝐴𝐴1 and the lower limit of the time window, 𝑎𝑎1, the estimation model I, II 

and III can approximate the distribution of the start time 𝑆𝑆𝑆𝑆1  as a normal 

distribution well.  

3.5.4 Gamma distribution estimation and addition  

From analysing the data from the communication provider we found that some 

task duration time follows Gamma distributions. Also, it is widely known that 

the sum of two independent normally distributed random variables is normal, 

where the mean is the sum of the two means, and its variance is the sum of the 

two variances. It would be very useful for real-world problems if we could 

find a similar property for Gamma distributions. 

Consider random variables 𝑋𝑋𝑖𝑖 𝑖𝑖 = 1, … ,𝑛𝑛, having Gamma distributions with 

shape parameter 𝛼𝛼𝑖𝑖 > 0 and scale parameter 𝛽𝛽𝑖𝑖 > 0,  and denote 

𝑋𝑋𝑖𝑖~Γ(𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖). 

Then the PDF of 𝑋𝑋𝑖𝑖 shows (Papoulis and Pillai, 2002) 

𝑝𝑝(𝑥𝑥𝑖𝑖) =
𝑥𝑥𝑖𝑖
𝛼𝛼𝑖𝑖−1

𝛽𝛽𝑖𝑖
𝛼𝛼𝑖𝑖Γ(𝛼𝛼𝑖𝑖)

𝑒𝑒−𝑥𝑥𝑖𝑖/𝛽𝛽𝑖𝑖 , (3.5) 

and the mean and variance are 

𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑋𝑋𝑖𝑖) = 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖, 

𝜎𝜎𝑖𝑖2 = 𝑉𝑉(𝑋𝑋𝑖𝑖) = 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖
2. 
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First there is a property of the summation (Papoulis and Pillai, 2002), if all 𝑋𝑋𝑖𝑖 

are independent and their distributions have the same scale parameter, i.e., 

𝛽𝛽𝑖𝑖 = 𝛽𝛽 for all 𝑖𝑖, then  

𝑌𝑌 = �𝑋𝑋𝑖𝑖

𝑁𝑁

𝑖𝑖=1

~Γ��𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,𝛽𝛽�. 

Second, as for the cases where 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁  are independent but have 

different scale parameters, Mathai (1982) has given a number of expressions 

for the density of 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛  in terms of different techniques, 

different assumptions of 𝛼𝛼𝑖𝑖  or 𝛽𝛽𝑖𝑖 . Mathai and Saxena (1978) expressed the 

density according to a confluent hypergeometric function in 𝑛𝑛 − 1 variables 

where 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are distinct. Then Moschopoulos (1985) diversified Mathai’s 

method and led to a single Gamma series for the density and distribution 

function of 𝑌𝑌. The exact density of 𝑌𝑌 is given by the following theorem. 

Theorem if {𝑋𝑋𝑖𝑖}, 𝑖𝑖 = 1, … ,𝑛𝑛 are independently distributed as (3.5), then the 

density of 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 can be expressed as  

𝑔𝑔(𝑦𝑦) = 𝐶𝐶�
𝛿𝛿𝑘𝑘𝑦𝑦𝜌𝜌+𝑘𝑘−1𝑒𝑒

− 𝑦𝑦
𝛽𝛽1

Γ(𝜌𝜌 + 𝑘𝑘)𝛽𝛽1
𝜌𝜌+𝑘𝑘

∞

𝑘𝑘=0

, 𝑦𝑦 > 0, 

and 0 elsewhere, where 𝜌𝜌 = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 𝐶𝐶 = ∏ (𝛽𝛽1/𝛽𝛽𝑖𝑖)𝛼𝛼𝑖𝑖𝑛𝑛

𝑖𝑖=1 , and 

𝛿𝛿𝑘𝑘+1 = 1
𝑘𝑘+1

∑ 𝑖𝑖𝛾𝛾𝑖𝑖𝛿𝛿𝑘𝑘+1−𝑖𝑖𝑘𝑘+1
𝑖𝑖=1 ,𝑘𝑘 = 0,1,2,⋯. 

Furthermore, as Stewart et al. (2006) said if the convolution is an end itself, 

these methods are satisfactory, if it is just a step in a continuing argument, a 

simple closed expression to approximate the convolution would be much more 

useful than a numerical method, even at the cost of a small approximation 
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error. Consequently, they proposed an approximation of  𝑌𝑌  as a Gamma 

distribution. Suppose 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛  with independent 𝑋𝑋𝑖𝑖~Γ(𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖); 

the mean and variance are 

𝜇𝜇 = 𝐸𝐸(𝑌𝑌) = �𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 

𝜎𝜎2 = 𝑉𝑉(𝑌𝑌) = �𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

. 

Then the approximate distribution for 𝑌𝑌 is 

Γ(𝛼𝛼,𝛽𝛽), with  𝛼𝛼 =
𝜇𝜇2

𝜎𝜎2
,𝛽𝛽 =

𝜎𝜎2

𝜇𝜇
. (3.6) 

This approximation fits the convolution well if the number of scale parameters 

𝛽𝛽𝑖𝑖  is less than 10 and if the shape parameters 𝛼𝛼𝑖𝑖  are greater than 1. The 

researchers also compare the skewness and kurtosis, the PDF and CDF and the 

95% percentage points between the approximate and exact distributions to 

illustrate the accuracy of the approximation. Note that this approximation 

aligns with our problem because there are always less than ten tasks for each 

technician and the shape parameters are on average 3.5 according to the 

analysis of the task duration historical data.  

Table  3.18 Sum of Gamma distributions 

 Task 1 Task 2 Task 3 Sum 

Alpha 3.5000 3.5000 3.5000 9.0000 

Beta 0.0700 0.0350 0.0233 0.0300 

Mean 50 100 150 300 

Mode 36 71 107 267 
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An example is given to show the approximation fits the data. Let us suppose 

there are three tasks and their parameters and moments are as shown in Table 

3.18 and the approximation Gamma distribution parameters are as stated in the 

Sum column, where the approximation is obtained by (3.6). The task durations 

of Tasks 1, 2 and 3 are randomly generated and added together, 5000 samples 

are generated to constitute the real task duration distribution of their sum, 

which is demonstrated as the blue wave. The estimated Gamma distribution 

obtained by the above approximation is shown as the red curve in Figure 3.20.  

 
Figure  3.20 Approximation of a Gamma distribution 

Then from Figure 3.20, it is sufficient to say that the approximation Gamma 

distribution fits the real Gamma distribution summation well. Therefore, it is 

reasonable to use this approximation to calculate the risks if the task duration 

is considered as a Gamma distribution.  

The above estimation of the summation works well when the technician can 

start the task immediately when he/she arrives at the customer’s site, i.e., the 

beginning points of the two Gamma distributions are at the same time points, 
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which means the origin point of the arrival time is after the lower bound of the 

task time window. However, in real-life circumstances, the lower bound of a 

time window influences and shifts the task duration distribution a period 

behind the start time point of the Gamma distribution for the arrival time, as is 

the blue curve shown in Figure 3.20. Therefore, the distribution of the start 

time cannot be estimated by the previous method directly. However, it can be 

seen that the distribution of the start time (i.e., the variable which is the 

summation of the arrival time and task duration) follows a Gamma distribution 

with the same shift from the origin point as the task start time. 

 
Figure  3.21 Sum of Gamma distributions for two tasks operation start times 

Table  3.19 Sum of Gamma distributions with shift (minutes) 

 Task 1 Task 2 Sum 

alpha 3.500 3.500 3.689 

beta 0.058 0.058 0.040 

mean 60 50 92 

shift 0 30 30 
 

Task 1 Sample Task 1 Gamma Task 2

Task 2 Gamma Task 1+2 Sample Task 1+2 Gamma
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More specifically, suppose the red curve in Figure 3.21 demonstrates the 

Gamma distribution of Task 1 and the corresponding parameters are shown in 

Table 3.19, and without loss of generation, the uncertainty of the travel times 

can be neglected for simplification, and suppose the origin point for the 

Gamma distribution of the arrival time is also the origin point for the 

distribution of the operation time for Task 2. So the distribution of Task 1 

stands for the distribution of the arrival time, and the blue curve shows the 

Gamma distribution of Task 2 operation time. Because of the lower bound of 

the time window, there is a shift (suppose it is 30 minutes) regarding the Task 

2 operation time, which means the arrival time is 30 minutes earlier, then the 

technician has to wait for 30 minutes to start Task 2. 

For example, a sample gives that the technician works on Task 1 for 25 

minutes and Task 2 starts from 30 minutes, and then he spends 40 minutes on 

Task 2, so the arrival time at Task 3 is 30 + 40 = 70 minutes. Whereas, if a 

sample gives that the technician stays at Task 1 for 45 minutes and Task 2 for 

40 minutes, then the arrival time at Task 3 is 45 + 40 = 85 minutes. 

Consequently, by taking 5000 pairs of samples, we may have a population of 

the summation for Task 1 and 2 operation times, where its distribution is 

shown as the green dash curve in Figure 20. Then from those sample figures 

one may obtain the parameters 𝛼𝛼 and 𝛽𝛽 if the arrival time is supposed to be a 

Gamma distribution. The solid green curve shows the PDF of the Gamma 

distribution in terms of the 𝛼𝛼 and 𝛽𝛽 obtained from sample figures. We notice 

that the solid green curve fits the sample distribution well, which helps us 

assessing that the arrival time at Task 3 can be regarded as a Gamma 

distribution with the shift as the same as the lower bound of the time window 

of Task 2. 

This estimating approach is based on real data and fast computation-wise. In 

the heuristic searching process, we use this sampling method to calculate the 
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parameters for the Gamma distribution with shift as an estimation of the 

arrival time distribution, and use the estimation equations (3.6) in the scenario 

that the origin point of the distribution for the arrival time is later than the 

lower bound of the time window for the task operation time, in order to save 

calculation time.  

Gamma distributions are sometimes the more accurate choice to model 

distributions occurring in real-life scenarios, e.g., for certain travel and task 

times. In this section, we outlined how this type of distribution, instead of the 

Normal distribution, can be used in our approach to risk modelling. In the next 

chapter we will describe the metaheuristic used to find the optimal schedule. 

 

3.6 Factors affecting risks 

Based on the risk definition, several characteristics of the risks can be 

observed. 

Proposition 2.1 Risk increases as it propagates over time along the task 

schedule. 

As mention previously for each technician the risk increases as it propagates. 

To illustrate this, suppose the means of the arrival time distribution are all 

equal to 0, all having the same distribution type, i.e., normal. Figure 3.22 

shows that when the means of the arrival times are all 1 hour before their 

corresponding time windows, the risks, which are represented as the areas 

greater than 1, get larger from the 2nd task to the 4th task. This is because the 

variance increases, as each task has its own uncertainty and these uncertainties 

accumulate, there is more uncertainty of arrival times at later tasks. 
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Figure  3.22 Risk comparisons 

Proof 2.1 Base 1: Let the mean arrival time for technician 𝑘𝑘  at task 𝑖𝑖1  be 

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1� and the mean travel time 𝜇𝜇�𝑑𝑑𝑘𝑘𝑖𝑖0𝑖𝑖1� from the depot to first task for 

any engineer 𝑘𝑘, we have omitted the 𝑘𝑘 for simplicity of notation, but this hold 

for any engineer’s schedule. Then 𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘1� =  𝜇𝜇(𝑑𝑑𝑘𝑘𝑘𝑘0𝑖𝑖1) . The standard 

deviation of the arrival task 𝑖𝑖1 is the variation of the travel from the depot to 

the first task, 𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1� = 𝜎𝜎(𝑑𝑑𝑘𝑘𝑖𝑖0𝑖𝑖1). Then the mean and standard deviation of 

the arrival time for the second task are  𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2� = 𝜇𝜇�𝛿𝛿𝑘𝑘𝑖𝑖l� + 𝜇𝜇(𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2) and 

𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘2� = 𝜎𝜎�𝛿𝛿𝑘𝑘𝑖𝑖l� + 𝜎𝜎(𝑑𝑑𝑘𝑘𝑖𝑖1𝑖𝑖2). 

Suppose the latest time to start the task as always 𝑏𝑏 minutes after the mean start 

time of the task, and 𝜎𝜎�𝑑𝑑𝑘𝑘𝑘𝑘1𝑖𝑖2� > 0, by definition 𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2� > 𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1� and 

𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1~𝑁𝑁 �𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1�,𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1�� ,𝐴𝐴𝑅𝑅𝑘𝑘𝑖𝑖2~𝑁𝑁 �𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2�,𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2�� then 

� 𝑓𝑓𝑘𝑘𝑖𝑖2�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖2�+𝑏𝑏

> � 𝑓𝑓𝑘𝑘𝑘𝑘1�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖1�+𝑏𝑏

. 

Induction step: ∀ task 𝑛𝑛 in any one schedule, will have a higher risk of failure 

than its previous task 𝑛𝑛 − 1 if 𝜎𝜎�𝑑𝑑𝑘𝑘𝑖𝑖n−1𝑖𝑖n� > 0, and then 
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� 𝑓𝑓𝑘𝑘𝑘𝑘𝑛𝑛�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�+𝑏𝑏

> � 𝑓𝑓𝑘𝑘𝑖𝑖𝑛𝑛−1�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n−1�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n−1

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n−1�+𝑏𝑏

 

holds as  

𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n� = 𝜎𝜎� 𝛿𝛿𝑘𝑘𝑘𝑘n−l� + 𝜎𝜎�𝑑𝑑𝑘𝑘𝑖𝑖n−1𝑖𝑖n� > 𝜎𝜎�𝛿𝛿𝑘𝑘𝑖𝑖n−2� + 𝜎𝜎�𝑑𝑑𝑘𝑘𝑖𝑖n−2𝑖𝑖n−1� = 𝜎𝜎�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n−1�. 

 

Proposition 2.2 The wider the time window, the lower the risk.  

Proof 2.2 For any task 𝑛𝑛 if the upper bound of the time window 𝑏𝑏1 < 𝑏𝑏2   

another upper bound then 

� 𝑓𝑓𝑘𝑘𝑘𝑘𝑛𝑛�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛�+𝑏𝑏1

> � 𝑓𝑓𝑘𝑘𝑖𝑖𝑛𝑛�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖𝑛𝑛�+𝑏𝑏2

 

holds, hence the narrower the time window the higher the risk.  

To illustrate the effect on risks of having different time windows, we let the 

widths of time windows change whilst everything else remains the same. It is 

clear to see that the risk decreases as the time window gets wider. This is as 

expected because a larger time window gives the technician more opportunity 

to arrive at the customer in time. For example, Figure 3.23 shows that the 

arrival times are mostly around 12:00, and the risk if the time window is from 

11:00 to 13:00 is higher than the one if the time window is from 10:30 to 

13:30. Therefore, one way to reduce risks is to expand the time window to a 

reasonable extent, but a large time window may not be convenient for 

customers.  
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Figure  3.23 Time window width effect 

Proposition 2.3 The less uncertainty in the task and travel times, the lower the 

risk. 

Proof 2.3 Let 𝜎𝜎1�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n� = 𝜎𝜎1�𝛿𝛿𝑘𝑘𝑖𝑖n−l� + 𝜎𝜎1�𝑑𝑑𝑘𝑘𝑖𝑖n−1𝑖𝑖n� and 𝜎𝜎2�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n� =

𝜎𝜎2�𝛿𝛿𝑘𝑘𝑖𝑖n−l� + 𝜎𝜎2�𝑑𝑑𝑘𝑘𝑖𝑖n−1𝑖𝑖n� denote two different standard deviations for any 

task n. If 𝜎𝜎1�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n� < 𝜎𝜎2�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�  and  𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n~𝑁𝑁 �𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�,𝜎𝜎1�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n��,  

𝐴𝐴𝐴𝐴′𝑘𝑘𝑖𝑖n~𝑁𝑁 �𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘n�,𝜎𝜎2�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n��. Then 

� 𝑓𝑓𝑘𝑘𝑘𝑘𝑛𝑛�𝐴𝐴𝐴𝐴
′
𝑘𝑘𝑘𝑘n�𝑑𝑑𝐴𝐴𝐴𝐴

′
𝑘𝑘𝑘𝑘n

∞

𝜇𝜇�𝐴𝐴𝐴𝐴′𝑘𝑘𝑘𝑘n�+𝑏𝑏

> � 𝑓𝑓𝑖𝑖𝑛𝑛�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�𝑑𝑑𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n

∞

𝜇𝜇�𝐴𝐴𝐴𝐴𝑘𝑘𝑖𝑖n�+𝑏𝑏

, 

hence less uncertainty leads to lower risk. 

The variations of task and travel times are another factor affecting the risks in 

our model, suppose all else equal, if the standard deviation is larger, the 

distribution of the task duration, as well as the arrival time, is flatter, the risk is 

higher. As it is shown in Figure 3.24, the green shaded area which represents 

the risk with larger standard deviation is bigger than the blue one which stands 

for the risk with relatively small standard deviation. It models the real-world 

fact that with high task duration uncertainty the risk tends to be higher. 
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Figure  3.24 Task uncertainty effect 

Additionally, a good estimation of the task duration is beneficial to reduce 

risks. One way to better estimate the task duration value may be to identify 

samples of tasks and group these task samples according to more specific 

characters such as skills, locations, types, etc. The other approach could be 

behavioural, knowledge or human management process oriented, for instance, 

to improve technician abilities and skills, so that it reduces the uncertainty 

upon work effort completion. 

In a nutshell, we give the risk expression for our problem in this chapter. The 

Simpson’s rule and Monte Carlo method, accumulation method and 

summation method are proposed to calculate risks, followed by the tests on the 

reliability of each method. Furthermore, real data are analysed in Section 3.5 

and shown to follow the assumptions of our proposed method i.e., the 

summation method is suitable for risk calculation. Task duration is shown to 

follow the normal distribution and a method for calculating travel time 

through coordinates is proposed.  

Additionally, regression models are used to demonstrate the effectiveness of 

the estimation of the summation method. And finally, factors affecting risk are 

discussed on the parameter basis. Based on the knowledge of risks in this 

problem, risk minimisation mathematical models are proposed in the 

following chapter. 
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Chapter 4  

Risk Minimisation Models 

In this chapter, mathematical models to minimise the risk of missing an 

appointment and the risk of engineers’ working beyond their working days are 

formulated; both non-linear and linear models are considered. Additionally, 

how the model changes if the tasks have different priorities and if the risk is 

defined as the task needs be completed within the time window rather than just 

starting, is also examined.  

In the real life, most service activities tend to be uncertain, for instance, new 

tasks arrive, tasks do not match engineers or tools, tasks take longer than 

expected (Herroelen and Leus, 2005). Therefore, this research concerns a 

service scheduling problem to minimise the risk of missing appointments, 

where the risk arises from these uncertainties. Moreover, it becomes 

increasingly important for firms to focus on customer satisfaction, rather than 

only on offering good quality goods and services. A better schedule can help 

them improving the level of customer satisfaction and consequently becoming 

more competitive and attracting more customers.  

This research focuses on the stochastic vehicle routing problem, in which 

technicians drive to customer sites to provide services. In the problem we 

assume that service times and travel times are stochastic, and a time window is 

required to start the service for each customer. 

As we can see from the literature review on risks, most previous relevant 

research uses a chance-constrained approach to the problem. Some consider 

the probability of route duration exceeding the threshold of the driver’s 

workload while others set restrictions on the probability of individual time 

window constraints being violated (Li et al., 2010). However, their objectives 
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are still some forms of traditional routing costs whilst we try to minimise the 

risks. 

 

4.1 A non-linear risk minimisation model 

To model the problem, we first introduce some notion. There are K available 

vehicles each used by a technician. The locations and the road network can be 

expressed on a complete graph  𝐺𝐺 = (𝑉𝑉0,𝐴𝐴), where 𝑉𝑉0 = {0, … ,𝑁𝑁} is a set of 

vertices which denote locations and 𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉0, 𝑖𝑖 ≠ 𝑗𝑗} is a set of arcs. 

Vertex 0  represents the depot. The set of customers is 𝑉𝑉 =  𝑉𝑉0\{0} =

{1, … ,𝑁𝑁} . Each customer 𝑖𝑖 ∈ 𝑉𝑉  has a time window  [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖]  for starting the 

service. If the technician arrives at customer 𝑖𝑖 before 𝑎𝑎𝑖𝑖 , it is necessary for 

him/her to wait until 𝑎𝑎𝑖𝑖. Further notations are listed below. 

Parameters 

𝑀𝑀  a large number; 

𝐶𝐶  the maximum number of customers that can be served by each 

technician; 

𝑏𝑏0  the maximum daily work time for each technician; 

𝒦𝒦 the set of available technicians 𝒦𝒦 = {1, … ,𝐾𝐾}; 

𝒦𝒦𝑖𝑖 the set of technicians who can perform the task for customer i, a 

subset of  𝒦𝒦; 

𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘  the travel time of technician 𝑘𝑘 between locations 𝑖𝑖 and 𝑗𝑗; 
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𝛿𝛿𝑘𝑘𝑘𝑘  the uncertain work time of technician 𝑘𝑘 at the customer 𝑖𝑖, a random 

parameter with known and independent probability density; for 

modelling convenience, we define 𝛿𝛿𝑘𝑘0 = 0. 

𝑆𝑆𝑆𝑆𝑘𝑘0 = 0, the start time of technician 𝑘𝑘 at the depot; 

Variables 

𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘  a binary variable equal to 1 if technician 𝑘𝑘 travels directly through 

arc  (𝑖𝑖, 𝑗𝑗) and 0 otherwise; 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘  the arrival time of technician 𝑘𝑘 at customer 𝑖𝑖; 

𝐴𝐴𝐴𝐴𝑘𝑘0  the arrival time of technician 𝑘𝑘  at the depot after completing all 

his/her tasks of the day; 

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘  the service start time of technician 𝑘𝑘 at customer 𝑖𝑖; 

𝑅𝑅𝑘𝑘𝑘𝑘  the risk of technician 𝑘𝑘 arriving late at customer 𝑖𝑖; 

𝑅𝑅𝑘𝑘0  the risk of technician 𝑘𝑘  not finishing work within the maximum 

work time.  

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚   the maximum among all risks in the schedule.  

The model for the problem can then be formulated below: 

minimise  𝑤𝑤 ∙ 𝑅𝑅max + � �𝑅𝑅𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑉𝑉0𝑘𝑘∈𝒦𝒦

  (4.1) 

Subject to: 

�𝑥𝑥𝑘𝑘0𝑗𝑗
𝑗𝑗∈𝑉𝑉

= �𝑥𝑥𝑘𝑘𝑘𝑘0
𝑖𝑖∈𝑉𝑉

≤ 1,   ∀ 𝑘𝑘 ∈ 𝒦𝒦 (4.2) 
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�𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑗𝑗∈𝑉𝑉0

= �𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑗𝑗∈𝑉𝑉0

,        ∀ 𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝒦𝒦 (4.3) 

� � 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑗𝑗∈𝑉𝑉,𝑗𝑗≠𝑖𝑖𝑘𝑘∈𝒦𝒦

= 1, ∀ 𝑖𝑖 ∈ 𝑉𝑉 (4.4) 

��𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

≤ 𝐶𝐶 + 1,      ∀ 𝑘𝑘 ∈ 𝒦𝒦 (4.5) 

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 + 𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘 − 𝑀𝑀�1 − 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘� ≤ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ,∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉0, 𝑖𝑖 ≠ 𝑗𝑗,∀𝑘𝑘 ∈ 𝒦𝒦 (4.6) 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ≤ 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘, ∀ 𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝒦𝒦 (4.7) 

𝑎𝑎𝑖𝑖 ≤ 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘, ∀ 𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝒦𝒦 (4.8) 

𝑅𝑅𝑘𝑘𝑘𝑘 = Ρ(𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 > 𝑏𝑏𝑖𝑖) �𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑗𝑗∈𝑉𝑉0

,     ∀ 𝑖𝑖 ∈ 𝑉𝑉0,∀𝑘𝑘 ∈ 𝒦𝒦 (4.9) 

𝑅𝑅max ≥ 𝑅𝑅𝑘𝑘𝑘𝑘, ∀ 𝑖𝑖 ∈ 𝑉𝑉0,∀𝑘𝑘 ∈ 𝒦𝒦   (4.10) 

𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 = 0,   ∀ 𝑖𝑖, 𝑗𝑗 ∉ 𝑉𝑉,∀𝑘𝑘 ∉ 𝒦𝒦𝑖𝑖   (4.11) 

𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 ∈ {0, 1},   ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉0,∀𝑘𝑘 ∈ 𝒦𝒦   (4.12) 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘, 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘, 𝑅𝑅𝑘𝑘𝑘𝑘, 𝑅𝑅𝑇𝑇𝑇𝑇, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0,   ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉0,∀𝑘𝑘 ∈ 𝒦𝒦   (4.13) 

The objective (4.1) is to minimise the weighted sum of the maximum risk of a 

schedule and the total risk for all tasks. The weight  𝑤𝑤  can be chosen 

sufficiently large to ensure the maximum risk is minimised first. Constraints 

(4.2) and (4.3) ensure that each technician starts from and finishes at the depot 

and goes along a connected tour. Constraints (4.4) indicate that each customer 

is served by one technician. Constraints (4.5) guarantee that each technician 

serves no more than 𝐶𝐶  customers. Constraints (4.6)-(4.8) ensure the time 

relationship if technician 𝑘𝑘  serves customer 𝑖𝑖  and then customer  𝑗𝑗 , and he 

should start each task in the time window. Equations (4.9) define the task risks 

and the risk of technician 𝑘𝑘  working longer than  𝑏𝑏0 . Constraints (4.10) 

calculate the maximum risk used in the objective function.  Constraints (4.11) 
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ensure that each task is assigned to a technician with the required skills.  

Constraints (4.12) and (4.13) are binary and non-negativity constraints. 

Due to the nature of probabilities that are used to express the risks, this model 

is not linear. The complexity of risks makes the model difficult to solve 

directly by using existing methods. Nevertheless, the model describes the 

problem clearly, showing the constraints and the way of calculating the 

objective. These can be helpful when implementing heuristic solution methods. 

In order to obtain a linear risk model, we make some assumption about some 

problem parameters. 

 

4.2 A linear risk minimisation model 

In this section, we propose a linear model under the following two 

assumptions. 

(1) Each task duration follows a normal distribution and their variances are 

the same, all equal to 𝜎𝜎2. The travel times are deterministic. 

(2) The objective is only to minimise the maximum risk. 

Under these assumptions, the arrival time to a task can be considered as 

approximately normally distributed. The risk of a task is linked to the 

corresponding standard normal z-score. If 𝑋𝑋 follows a normal distribution, the 

standard form of 𝑋𝑋 has a standardised normal distribution (Kalbfleisch, 2012), 

i.e., 

𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2)  ⟹ 𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

~𝑁𝑁(0,1). 
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Then minimising the maximum risk can be achieved by maximising the 

minimum z-score for all tasks. This is illustrated by Figure 4.1. On the 

standard normal distribution of arrival times, after normalising, we can see 

that 𝑅𝑅1 = 𝑃𝑃(𝑍𝑍 > 1) is bigger than 𝑅𝑅2 = 𝑃𝑃(𝑍𝑍 > 1.5). Because the value of 

the risk is not necessary in the risk minimisation model as long as the order of 

these values in every schedule can be obtained, the model can be linear since 

calculating risks is replaced by comparing the z-score. 

 

Figure  4.1 Z-score demonstration 

Most notations in Section 4.1 will be used for this model as well. The 

following list re-defines and introduces new notations. 

Parameters 

𝐼𝐼  the set of tasks for each technician numbered in the visiting order, 

𝐼𝐼 = {1, … ,𝐶𝐶} and 𝐶𝐶 is the maximum number of customers that may 

be served by each technician; 

𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘  the travel time of technician 𝑘𝑘 between locations 𝑙𝑙 and 𝑗𝑗; 

𝜇𝜇𝑘𝑘𝑘𝑘 the mean of the task duration that technician 𝑘𝑘 spends at customer 𝑗𝑗;  
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𝜎𝜎2 the variance of the task duration time, supposed to be identical for all 

tasks; 

Variables 

𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘 a binary variable equal to 1 if technician 𝑘𝑘  serves customer 𝑗𝑗   as 

his/her 𝑖𝑖th task and 0 otherwise; 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 the arrival time of technician 𝑘𝑘 at his/her 𝑖𝑖th task; 

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘  the start time of technician 𝑘𝑘 serving his/her 𝑖𝑖th task; 

𝑍𝑍𝑘𝑘𝑘𝑘  the standard z score of the risk probability for technician 𝑘𝑘’s 𝑖𝑖th task; 

𝑍𝑍𝑘𝑘0  the standard z score of the risk probability for technician 𝑘𝑘  work 

beyond the maximum work time of the day. 

𝑍𝑍  the lower bound of the standard score of the risk probability for all 

tasks. 

The objective for this model is to minimise the maximum risk in the schedule 

and the formulation is linear as shown below. 

maximise 𝑍𝑍  (4.14) 

Subject to: 

∑ ∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 1, ∀𝑗𝑗 ∈ 𝑉𝑉 (4.15) 

∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ 1, ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼 (4.16) 

∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ ∑ 𝑦𝑦𝑘𝑘𝑘𝑘−1𝑗𝑗𝑗𝑗 ,   ∀𝑖𝑖 ≥ 2,∀𝑘𝑘 ∈ 𝒦𝒦  (4.17) 



127 
 

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘−1 + � [(𝜇𝜇𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘)𝑦𝑦𝑘𝑘𝑘𝑘−1𝑙𝑙]
𝑙𝑙

+ 𝑀𝑀�𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘 − 1� ≤ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘, 

∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼\{1}, 𝑗𝑗 ∈ 𝑉𝑉 (4.18) 

𝐴𝐴𝐴𝐴𝑘𝑘1 ≥ 𝑆𝑆𝑆𝑆𝑘𝑘0 + ∑ 𝑑𝑑𝑘𝑘0𝑗𝑗𝑦𝑦𝑘𝑘1𝑗𝑗𝑗𝑗 , ∀𝑘𝑘 ∈ 𝒦𝒦  (4.19) 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ≤ 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘, ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼  (4.20) 

∑ 𝑎𝑎𝑗𝑗𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≤ 𝑆𝑆𝑇𝑇𝑘𝑘𝑘𝑘, ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼  (4.21) 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 ≤ ∑ 𝑏𝑏𝑗𝑗𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 , ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼  (4.22) 

√𝑖𝑖 − 1 ∙ 𝜎𝜎 ∙ 𝑍𝑍𝑘𝑘𝑘𝑘 ≤ ∑ 𝑏𝑏𝑗𝑗𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 − 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 + 𝑀𝑀(1 − ∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ), ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼  (4.23) 

√𝑖𝑖 ∙ 𝜎𝜎 ∙ 𝑍𝑍𝑘𝑘0 ≤ 𝑏𝑏0 − 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 − 𝜇𝜇𝑖𝑖 − ∑ [(𝜇𝜇𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑘𝑘𝑘𝑘0)𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘]𝑗𝑗 + 𝑀𝑀(1 − ∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ),

∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑖𝑖 ∈ 𝐼𝐼  (4.24) 

𝑍𝑍 ≤ 𝑍𝑍𝑘𝑘𝑘𝑘 , ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑖𝑖 ∈ 𝐼𝐼  (4.25) 

𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘 = 0,   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝑉𝑉,∀𝑘𝑘 ∉ 𝒦𝒦𝑖𝑖   (4.26) 

𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘 ∈ {0, 1},   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝒦𝒦   (4.27) 

𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘, 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘,𝑍𝑍𝑘𝑘𝑘𝑘,𝑍𝑍 ≥ 0,   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝑉𝑉, ∀𝑘𝑘 ∈ 𝒦𝒦   (4.28) 

Constraints (4.15) indicate that each customer is served by one technician. 

Constraints (4.16) and (4.17) make sure that each position in the task list of 

each technician can have no more than one task and that the tasks are in 

consecutive positions from the start of the list. Constraints (4.18) show that for 

each technician the arrival time of the current task cannot be earlier than the 

completion time of previous task plus the travel time from there to the current 

task. Constraints (4.19) are the special case for the first task of each technician.  

Constraints (4.20) and (4.21) ensure that the start time is after both the arrival 
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time and the lower limit of the time window. Constraints (4.22) require that 

the expected arrival time to a task is before the upper limit of its time window. 

Constraints (4.23) calculate the z-score corresponding to the task risks, each 

risk is defined as the probability of the standard normalized value of the 

arrival time being greater than 𝑍𝑍𝑘𝑘𝑘𝑘 . Constraints (4.24) calculate the z-score 

corresponding to risks of the technicians work beyond the maximum work 

time of the day. 𝑍𝑍 denotes the minimum of all 𝑍𝑍𝑘𝑘𝑘𝑘 as is shown in constraints 

(4.25). Constraints (4.26) ensure that the technician assigned to each task has 

the required skills.  Constraints (4.27) and (4.28) are binary and non-negativity 

constraints. 

One of the assumptions for this model is that the travel times are deterministic.  

This can be relaxed to a less restrictive assumption that the travel times are 

normally distributed with mean of 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘 and standard variance of 𝜎𝜎. In this case, 

the model needs only minor change, changing √𝑖𝑖 − 1 in constraints (4.23) to 

√2𝑖𝑖 − 1 and √𝑖𝑖  in constraints (4.24) to √2𝑖𝑖 + 1.  

More specifically, as for the start time of a technician’s 𝑖𝑖th task, there are 

𝑖𝑖 − 1 tasks with stochastic duration time of the same standard deviation 𝜎𝜎, 

hence √𝑖𝑖 − 1𝜎𝜎 was the standard deviation of the start time distribution for 

technician 𝑘𝑘’s 𝑖𝑖th task in constraints (4.23), i.e., 

√𝑖𝑖 − 1 ∙ 𝜎𝜎 ∙ 𝑍𝑍𝑘𝑘𝑘𝑘 = 𝑋𝑋𝑘𝑘𝑘𝑘 − 𝜇𝜇𝑘𝑘𝑖𝑖, 

where 𝑋𝑋𝑘𝑘𝑘𝑘 is a value of the random variable for the arrival time and 𝜇𝜇𝑘𝑘𝑘𝑘 is the 

mean of the normal distribution for the arrival time. Here the upper bound of 

the time window 𝑏𝑏 is used as  𝑋𝑋𝑘𝑘𝑘𝑘 to obtain the z-value which represents the 

risk in the model. In addition, constraints (4.24) consider the finish work time 

for the final task of technicians, so the 𝑖𝑖th task also contributes the uncertainty 

in the finish time if the technician has 𝑖𝑖 task in total. This explains that √𝑖𝑖 ∙ 𝜎𝜎 

is the standard deviation for the finish work time.  
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As for the scenario considering uncertain travel time with the same standard 

deviation 𝜎𝜎 as the task duration, there will be 𝑖𝑖 travels, i.e., from the depot to 

the 1st task, the 1st to the 2nd task, until the (𝑖𝑖 − 1)th to the 𝑖𝑖th task. Therefore, 

the standard deviation turn from √𝑖𝑖 − 1 ∙ 𝜎𝜎  to √2𝑖𝑖 − 1 ∙ 𝜎𝜎  in terms of the 

arrival time, and turn from √𝑖𝑖 ∙ 𝜎𝜎 to √2𝑖𝑖 ∙ 𝜎𝜎 regarding to the finish time of the 

final task. The modified model for this case will still be linear. 

 

4.3 Priority task risk minimisation model 

In real-world problems, tasks usually have different importance or priorities 

according to the business objectives. Therefore, tasks with different priorities 

need be considered differently. If a technician fails to start a high priority task 

then the penalty or cost would be higher. For instance, an emergency task may 

have high priority, a task for an important customer may have high priority, 

the task with great influence may have high priority, etc. In risk management, 

risk usually has two dimensions: probability and impact. When assessing the 

significance of any given risk, it is necessary to consider both dimensions 

(Hillson and Hulett, 2004) and the risk is the product of the two dimensions 

(Dumbravă and Vladut-Severian, 2013), i.e. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 

Therefore, to consider different task priorities, a priority task risk model is 

formulated by modifying the nonlinear model in section 4.1. Each task is 

given an importance score and the priority task risk is defined as the 

previously used probability multiplied by the corresponding task importance 

score, i.e. 

𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘 = 𝑅𝑅𝑘𝑘𝑘𝑘 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 , 
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where 𝑅𝑅𝑘𝑘𝑘𝑘 is the probability of technician 𝑘𝑘 missing the time window of task 𝑖𝑖, 

𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘 is the priority task risk for technician 𝑘𝑘 missing the time window of task 

𝑖𝑖, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is the importance score of task 𝑖𝑖. Therefore, the priority task risk 

model is identical to the non-linear risk model except that the priority task 

risks 𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘 are minimised instead of the task risks 𝑅𝑅𝑘𝑘𝑘𝑘.  

Then the model for problem considering task priorities is formulated below: 

minimise   𝑤𝑤 ∙ 𝑅𝑅max + ��𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ∙ 𝑅𝑅𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑉𝑉0𝑘𝑘∈𝐾𝐾

 (4.29) 

Subject to:   (4.2) – (4.9), (4.11) – (4.13), and 

𝑅𝑅max ≥ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ∙ 𝑅𝑅𝑘𝑘𝑘𝑘, ∀ 𝑖𝑖 ∈ 𝑉𝑉0,∀𝑘𝑘 ∈ 𝒦𝒦 (4.30) 

The objective (4.29) is to minimise weighted sum of the maximum priority 

risk and the total priority risk in the schedule. Constraints (4.30) are a 

modified version of constraints (4.10), calculating the maximum priority risk.  

Other constraints are the same as those of the model in section 4.1. 

In addition, as it is mentioned before, the risk increases as it propagates along 

a technician’s task list. Thus, in the optimal solution of this priority risk model, 

the tasks with high priority will be scheduled in the early places to keep a low-

risk level for the whole schedule. 

 

4.4 Other risks 

In the previous models, we focus on the arrival-in-slot risk, where the arrival 

time is used to define the risk. There are four factors contributing to this kind 

of risks. 
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• uncertain task duration risk  

• uncertain travel time risk 

• task priority affecting the weight of the risk  

• roster time risk of the technician working over their roster time 

In the scheduling, these risk factors may be considered individually or 

combined according to the optimisation purpose.  

In some situations, instead of arrival-in-slot risk, the finish-in-slot risk may be 

considered. In such cases, it is required that the task starts and finishes in a 

time window. The risk is defined as the probability that the finish time falls 

after the upper limit of the time window, i.e., 

 𝑅𝑅𝑘𝑘𝑘𝑘 = P(𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 > 𝑏𝑏𝑖𝑖),  

Where 𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 is the finish time of Task 𝑖𝑖 by technician 𝑘𝑘, and can be calculated 

as 𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 + ∑ 𝛿𝛿𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗∈𝑉𝑉0 . Therefore, from the definition, it is clear that 

all previous analysis can be used to model the problem of minimizing the 

finish-in-slot risk. Again, most notations in Section 4.1 will be used for this 

model as well. The following lists re-defined and new notations: 

[𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖]  Time window for starting and finish the task at customer 𝑖𝑖, 𝑖𝑖 ∈ 𝑉𝑉0,  

𝑅𝑅𝑘𝑘𝑘𝑘  The probability of technician 𝑘𝑘 finishing late than the upper limit 

of the time window at customer 𝑖𝑖; 

The model for the problem is formulated below: 

mininise   𝑤𝑤 ∙ 𝑅𝑅max + ��𝑅𝑅𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑉𝑉0𝑘𝑘∈𝐾𝐾

 (4.31) 

Subject to: (4.2) – (4.8), (4.10) – (4.13), and 
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𝑅𝑅𝑘𝑘𝑘𝑘 = Ρ�𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 + ∑ 𝛿𝛿𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗∈𝑉𝑉0 > 𝑏𝑏𝑖𝑖�∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗∈𝑉𝑉 , ∀ 𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝒦𝒦 (4.32) 

𝑅𝑅𝑘𝑘𝑘𝑘 = Ρ(𝐴𝐴𝐴𝐴𝑘𝑘0 > 𝑏𝑏0)∑ 𝑥𝑥𝑘𝑘𝑘𝑘0𝑗𝑗∈𝑉𝑉0 ,     ∀𝑘𝑘 ∈ 𝒦𝒦. (4.33) 

The objective is still to minimise the weighted sum of the maximum risk and 

the total risk in the schedule. Constraints (4.32) and (4.33) calculate the task 

risks and the risks of technicians finishing work beyond the maximum work 

time of the day, respectively. Other constraints are the same as those in the 

model in section 4.1.  

In addition, another scenario frequently happens is that technicians may be 

unable to finish a task, for example, the technician finds out his/her skill level 

do not match the task when he/she arrives at the customer. Some other 

instances are the technician needs more tools or the task needs further work.  

In these cases, there is a risk for the task being interrupted. For such scenario, 

a second visit by a technician on the same day is usually arranged and the 

schedule cannot anticipate this for now. For further study on the interrupted 

risk, it is necessary to have more data about the tasks and technicians to 

anticipate this scenario. 

Overall, risk minimisation models were demonstrated in this chapter. The non-

linear risk minimisation model was given for general cases, while the linear 

risk minimisation model is simplified by adding some constraints. Moreover, 

considering different types of tasks, the risk was redefined in the priority task 

risk minimisation model, and also some other risks were mentioned here. 

These models are the fundamentals of the following chapters, since Chapter 5 

shows our methods to solve these risk minimisation models, and Chapter 6 

illustrates the model experiments and corresponding results.    
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Chapter 5  

Heuristic Solutions 

The risk models in Chapter 4 clearly present the problem in different settings.  

However, it is difficult to apply them in practice. This is because the 

assumptions for the linear model may not be satisfied in most practical 

problems while the other models are highly nonlinear due to the complicated 

probability expressions. In addition, our problem can be considered as an 

extension of the VRP which is NP-hard. When the number of customers is 

large, solving the problem optimally will require impractical computation time. 

On the other hand, with the approximation method for risk distributions, we 

can easily calculate the risks for any given schedule. Therefore, heuristic 

search methods may be applied to find near-optimal solutions to the problem.  

Considering the definition of risks, the sequence of tasks performed by a 

technician in an optimal schedule would not be significantly different from the 

order of their time windows. Thus, a neighbourhood-based search method with 

the guidance of the time windows would be effective.  

We chose to use local optimisation and SA method to search for a task 

schedule with minimum risk. This is firstly because we are minimising risk 

rather than distance. For problems of minimising distance, such as TSP or 

VRP, a new move can be obtained by switching any pair of these customers, 

which may make a better solution. However, the objective for our problem is 

to minimise the risk, i.e., the probability of arriving a customer after the upper 

bound of the time window. Hence, for any technician, there is no reason to 

assign to him/her a customer with a later time window before a customer with 

an early time window, because in that way one task would have almost no risk 

whereas the other would have high risk, and this would not be a good solution. 
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A good schedule tends to be that tasks are arranged according to their time 

windows for every technician. Therefore, in the scenario of tight time 

windows, another good solution may be just a local move from the current one.  

Secondly, population based search methods such as GA starts from diverse 

and different initial solutions, and then the new solutions generate can be 

completely different by the crossover and mutation. So they search for 

solutions in a large search space, not necessarily in the neighbourhood 

anymore. However, in this research, the solution will not be far away from a 

schedule in which tasks are assigned to technicians according to the upper 

bound of task time windows. Hence, the efficiency will not be high if we use 

GA because it will waste time on a lot of useless solutions.  

Thirdly, apart from these population-based methods we may have the local 

search, SA and Tabu search to choose. Tabu search may be a competitor 

because it also can jump out the local optima. Future work could consider 

using Tabu search on the tests and experiments. This chapter presents the SA 

algorithm for solving our problem and the implementation details. 

5.1 SA for our problem 

SA mimics the process of metal annealing. Since its introduction, it has been 

successfully applied to solve many combinatorial optimisation problems 

including VRP. Starting from an initial solution, SA generates a neighbouring 

solution; if the new solution is better, it is accepted as the new current solution, 

and otherwise it may still be accepted with a probability. The ability of 

accepting worse solutions with probability helps to avoid the search being 

trapped to local optima. The probability is set high at the beginning and is 

gradually reduced as the search continues. This allows the algorithm to 

gradually focus in an area of the search space close to the optimum solution. 
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5.1.1 Initial schedule generation 

Before carrying out the searching process, it is important to start from a good 

initial schedule, especially for heuristic methods. According to the character of 

this problem where tasks have time windows, one method to generate a 

solution is to sort all tasks according to the upper limit of their time windows 

as the non-scheduled task list, then for the first technician, assign the first 

comparable task in the task list to him/her, delete the task from the non-

scheduled task list, then do the same assignment for the next technician. Once 

all technicians get their first task, start the assignment to the first technician 

again until all tasks are scheduled. The pseudo-code is shown in Table 5.1. 

Consequently, the initial schedule constructed by this method is better than the 

schedule built by assigning tasks to technicians randomly. 

Table  5.1 The pseudo-code for generating an initial schedule 

Start 
Sort non-scheduled tasks in ascending order of the upper limit of their time 
windows; 
𝐾𝐾 ← total number of technicians 
𝑇𝑇 ← total number of unscheduled tasks 
Repeat  

For technician 𝑘𝑘 = 1 to 𝐾𝐾 
For task 𝑡𝑡 = 1 to 𝑇𝑇 

If technician meets task’s skill 
Assign the tth task in the list to technician 𝑘𝑘; 
Remove task 𝑡𝑡 from the list; 
𝑇𝑇 ← 𝑇𝑇 − 1; 
Jump out the loop for the task list; 

End if 
End for  

End for 
Until 𝑇𝑇 = 0 

End 
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5.1.2 Objective value calculation 

The maximum risk and the average risk of tasks in the schedule are considered 

in the scheduling objective. As we mentioned in the last chapter, we use the 

following calculation as the objective value, 

𝑓𝑓 = 𝑅𝑅max +
1
𝑛𝑛
∙ � �𝑅𝑅𝑘𝑘𝑘𝑘

𝑖𝑖∈𝑉𝑉0𝑘𝑘∈𝒦𝒦

, 

where 𝑛𝑛 is the total number of tasks in the schedule, 𝑅𝑅max is the maximum 

risk and 𝑅𝑅𝑘𝑘𝑘𝑘is the specific risk for technician 𝑘𝑘 while doing task 𝑖𝑖. Once the 

schedule is changed, the objective function should be recalculated.  

The risks are calculated by the summation estimation method and the pseudo-

code for its implement function is shown in Table 5.2. 

Furthermore, if the priority risk model is considered, the objective becomes 

𝑓𝑓 = 𝑅𝑅max ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥 +
1
𝑛𝑛
∙ � �𝑅𝑅𝑘𝑘𝑘𝑘 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

𝑖𝑖∈𝑉𝑉0𝑘𝑘∈𝒦𝒦

, 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥 is the importance score of the task which has the maximum risk 

value, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is the importance score of the task 𝑖𝑖. Then if one would like to 

consider the traditional model with minimising the average travel time, the 

objective would be 

𝑓𝑓 =
1
𝑛𝑛
∙ � � 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘

𝑖𝑖,𝑗𝑗∈𝑉𝑉0𝑘𝑘∈𝒦𝒦

, 

where 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘 is the travel time between adjacent tasks 𝑖𝑖  and 𝑗𝑗  carried out by 

technician 𝑘𝑘. 
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Table  5.2 The pseudo-code for the risk calculation function 

Start 
𝐾𝐾 ← total number of technicians 
For technician 𝑘𝑘 = 1 to 𝐾𝐾 

Mean of the process time: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← techinian 𝑘𝑘 rostered start time; 
Variance of the process time: 𝑉𝑉𝑉𝑉𝑉𝑉 ← 0; 
𝑇𝑇𝑘𝑘 ← total number of scheduled tasks for technician 𝑘𝑘 
For task 𝑡𝑡 ← 1 to 𝑇𝑇𝑘𝑘 

If 𝑡𝑡 = 1 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + mean of the travel time from the depot to the 
1st task; 
𝑉𝑉𝑉𝑉𝑉𝑉 ←  𝑉𝑉𝑉𝑉𝑉𝑉 + variance of the travel time from the depot to the 
1st task; 

Else 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ← 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  + mean of the duration time of task 𝑡𝑡 − 1 + 
mean of the travel time from task 𝑡𝑡 − 1 to task 𝑡𝑡; 
𝑉𝑉𝑉𝑉𝑉𝑉 ←  𝑉𝑉𝑉𝑉𝑉𝑉  + variance of the duration time of task 𝑡𝑡 − 1 + 
variance of the travel time from task 𝑡𝑡 − 1 to task 𝑡𝑡; 

End if 
If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < lower bound of the time window of task 𝑡𝑡 - 𝑉𝑉𝑉𝑉𝑉𝑉 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = lower bound of the time window; 
𝑉𝑉𝑉𝑉𝑉𝑉 = 0; 

Else if 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 > lower bound of the time window task 𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉 
No change for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑉𝑉𝑉𝑉𝑉𝑉; 

Else 
Use estimated 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑉𝑉𝑉𝑉𝑉𝑉 by equations 3.1-3.4 

End if 
Calculate the risk of this task 

End for 
Calculate the risk of this technician working overtime 

End for 
Calculate the objective value of the schedule 

End 
 

5.1.3 Operators to generate neighbour solutions 

There are two operators used to generate neighbour solutions in the searching 

process: the swap operator and the insert operator. Given a certain task, the 

swap operator swaps the task with another task, as long as the skill codes are 
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matched with technicians’ and their time windows overlap. The swap operator 

function is shown in Table 5.3. 

Table  5.3 The pseudo-code for the swap operator 

Start 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← false 
Repeat 

Randomly select technicians 𝑘𝑘1 and 𝑘𝑘2; 
If both scheduled task lists of 𝑘𝑘1and 𝑘𝑘2 are not empty 

Randomly select task 𝑡𝑡1 from the scheduled task list of 𝑘𝑘1; 
Randomly select task 𝑡𝑡2 from the scheduled task list of 𝑘𝑘2; 
If 𝑘𝑘1meets 𝑡𝑡2 ’s skill requirement, 𝑘𝑘2meets 𝑡𝑡1 ’s skill requirement 
and time windows of 𝑡𝑡1, 𝑡𝑡2 are overlapping 

Withdraw 𝑡𝑡1 from task list of 𝑘𝑘1 and assign it to 𝑘𝑘2; 
 Withdraw 𝑡𝑡2 from task list of 𝑘𝑘2 and assign it to 𝑘𝑘1; 
 Update route information for 𝑘𝑘1and 𝑘𝑘2; 
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← true; 
End if 

 End if 
Until 𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is true; 

End 
 

The insert operator withdraws a task from a technician and allocate it to 

another technician. As is shown in Table 5.4, it takes out a task and assigns it 

to another technician who has the matched skill and places it in an appropriate 

position in the technician’s task sequence according to the upper limits of task 

time windows. To be more specific, given a task 𝑚𝑚 of technician 𝑝𝑝 and task  𝑛𝑛 

of technician 𝑞𝑞, the swap operator exchanges the task  𝑚𝑚 of p and task 𝑛𝑛 of q. 

The insert operator withdraws the task 𝑚𝑚 from technician 𝑝𝑝 and assigns it to 

technician 𝑞𝑞. For example, a technician has 3 tasks and their time windows are 

8:00 to 10:00, 10:00 to 12:00 and 15:00 to 17:00, while the time window of 

the task which will be assigned to this technician is 13:00 to 15:00, then it will 

be the 3rd task for the technician and the task with time window 15:00-17:00 

will become his/her 4th task. 



139 
 

Table  5.4 The pseudo-code for the insert operator 

Start 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← false 
Repeat 

Randomly select technicians 𝑘𝑘1 and 𝑘𝑘2; 
If the scheduled task list of 𝑘𝑘1is not empty 

Randomly select task 𝑡𝑡1 from the scheduled task list of 𝑘𝑘1; 
If 𝑘𝑘2meets 𝑡𝑡1’s skill requirement  

Withdraw 𝑡𝑡1 from 𝑘𝑘1 and add it to the scheduled task list of 𝑘𝑘2; 
Sort the new scheduled task list of 𝑘𝑘2 according the time order 
of the upper limit of the time windows; 

 Update route information for 𝑘𝑘1and 𝑘𝑘2; 
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙 ← true; 
End if 

 End if 
Until 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is true; 

End 
 

5.1.4 Local search 

In general, local search is widely used for solving computationally hard 

optimisation problems. Local search is usually used on problems that can be 

formulated as looking for a solution maximising a criterion among loads of 

candidate solutions. It yields high-quality solutions by iteratively applying 

small modifications (local moves) to a solution in the hope of finding a better 

one, until a solution deemed optimal is found or a time bound is elapsed. 

Initially, the above two operators are used separately in a local searching 

process. Instead of randomly selecting technicians and tasks in the two 

operators, the process starts from the first task of the first technician and 

searches until the last task from the last technician in the schedule. Then return 

to the first technician and keep searching until no improvement is found in 

neighbourhood solutions. 

 



140 
 

Table  5.5 The pseudo-code for the swap searching process 

Start 
Initialisation: Generate an initial schedule 𝜔𝜔 as described in section 5.1.1 or 
using the schedule obtained by the last searching process; 
Calculate objective 𝑓𝑓(𝜔𝜔); 
Set the best solution as this solution; 
Repeat 

𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ←false; 
𝐾𝐾 ← total number of technicians; 
For technician 𝑘𝑘1 = 1 to 𝐾𝐾 
 For technician 𝑘𝑘2 = 1 to 𝐾𝐾 

𝑇𝑇1 ← number of scheduled tasks for technician 𝑘𝑘1; 
𝑇𝑇2 ← number of scheduled tasks for technician 𝑘𝑘2; 

For task 𝑡𝑡1 = 1 to 𝑇𝑇1 
For task 𝑡𝑡2 = 1 to 𝑇𝑇2 

If task 𝑡𝑡1 and task 𝑡𝑡2 swap successful (skills feasible) 
A new schedule 𝜔𝜔′ is generated in the neighbourhood 
of 𝜔𝜔 by the swap operator, calculate objective 𝑓𝑓(𝜔𝜔′); 
If  𝜔𝜔′ is better than 𝜔𝜔 based on the two-objective 
checking 

Accept 𝜔𝜔′ as the current solution 𝜔𝜔 and update the 
best solution with 𝜔𝜔′; 
update 𝑇𝑇1 and 𝑇𝑇2; 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ←true; 

Else 
Stay with the current solution 𝜔𝜔; 

End if 
End if 
𝑡𝑡2 ← 𝑡𝑡2 + 1; 

End for 
𝑡𝑡1 ← 𝑡𝑡1 + 1; 

End for 
𝑘𝑘2 ← 𝑘𝑘2 + 1; 

End for 
𝑘𝑘1 ← 𝑘𝑘1 + 1; 

End for 
Until 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is false; 

End 

Furthermore, we found that the search result is better if we use the maximum 

risk and the average risk as primary and secondary objectives in the search 

rather than using their weighted sum as the combined objective. Hence in the 
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local search, we accept a better schedule if its maximum risk is smaller or the 

maximum risk is the same but the average risk is smaller. Details of the swap 

searching process are shown in Table 5.5. The insert searching process is 

similar, and is shown in Table 5.6. Additionally, the swap and insert searching 

processes are repeatedly used to obtain a better final schedule. 

Table  5.6 The pseudo-code for the insert searching process 

Start 
Initialisation: Generate an initial schedule 𝜔𝜔 as described in section 5.1.1 or 
using the schedule obtained by the last searching process; 
Calculate objective 𝑓𝑓(𝜔𝜔); 
Set the best solution as this solution; 
Repeat 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ←false; 
𝐾𝐾 ← total number of technicians; 
For technician 𝑘𝑘1 = 1 to 𝐾𝐾 

For technician 𝑘𝑘2 = 1 to 𝐾𝐾 
𝑇𝑇1 ← number of scheduled tasks for technician 𝑘𝑘1; 
𝑇𝑇2 ← number of scheduled tasks for technician 𝑘𝑘2; 
For task 𝑡𝑡1 = 1 to 𝑇𝑇1 

If insert task 𝑡𝑡1 to technician 𝑘𝑘2 successful (skills feasible) 
A new schedule 𝜔𝜔′ is generated in the neighbourhood of 𝜔𝜔 
by the swap operator, calculate objective 𝑓𝑓(𝜔𝜔′); 
If  𝜔𝜔′ is better than 𝜔𝜔 based on the two-objective checking 

Accept 𝜔𝜔′ as the current solution 𝜔𝜔 and update the best 
solution with  𝜔𝜔′;  
update 𝑇𝑇1 and 𝑇𝑇2; 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ←true; 

Else 
Stay with the current solution 𝜔𝜔; 

End if 
End if 

𝑡𝑡1 ← 𝑡𝑡1 + 1; 
End for 

𝑘𝑘2 ← 𝑘𝑘2 + 1; 
End for 

𝑘𝑘1 ← 𝑘𝑘1 + 1; 
End for 

Until 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is false; 
End 
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5.1.5 The SA procedure and implementation 

Even though local search has been shown to be the most popular class of 

approximate algorithms because of its simple concept and easy application, a 

drawback is that it is usually trapped in local optima. Thus we use the SA 

heuristic method to escape from the local optima and obtain a better and near-

optimal result.  

The SA search process is controlled through two loops. The outer loop 

controls the temperature decrease. We adopt the commonly used geometric 

decrease, which allows the temperature decrement gets smaller and smaller. At 

each temperature, the inner loop searches for a fixed number of iterations. 

With the above components, the SA procedure for our problem can be 

summarised in Table 5.7. 

In the SA method, the temperature decreases as the following way (Burkard 

and Rendl, 1984) 

new temperature = old temperature ∙ 𝛼𝛼, 

where 𝛼𝛼 = 0.005 in our implementation. Then let Ω be the solution space, 

𝑓𝑓:Ω → ℜ be an objective function defined on the solution space. The goal is 

to find a global minimum, 𝜔𝜔∗𝜖𝜖Ω such that 𝑓𝑓(𝜔𝜔) ≥ 𝑓𝑓(𝜔𝜔∗) for all 𝜔𝜔𝜔𝜔Ω. The 

acceptance probability for a candidate solution 𝜔𝜔′ is that (Burkard and Rendl, 

1984) 

𝑃𝑃 = �exp �−
𝑓𝑓(𝜔𝜔′) − 𝑓𝑓(𝜔𝜔)

𝑇𝑇
�          if 𝑓𝑓(𝜔𝜔′) − 𝑓𝑓(𝜔𝜔) > 0

1                                                if 𝑓𝑓(𝜔𝜔′) − 𝑓𝑓(𝜔𝜔) ≤ 0.
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Generally, for a traditional vehicle routing problem, the cost is the total travel 

distance, so that the acceptance probability usually is that (Osman, 1993) 

𝑃𝑃 = � exp �−
𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇
�          if 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0

1                                                      if 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 0.
 

where 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the total travel distance for the new schedule and 

the current schedule respectively, and 𝑇𝑇  is the current temperature. The 

distance is usually the same scale as the temperature. However, the objective 

in our problem is about the risk, which is a probability and is naturally 

between 0 and 1. Thus, the scale is much smaller compared with the 

temperature. Therefore, a factor 𝛽𝛽  is introduced to let the acceptance 

probability make sense. Therefore, the acceptance probability for a worse 

solution in our SA method is 

𝑃𝑃 = exp �−[(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛)

− (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)] ∙
𝛽𝛽
𝑇𝑇
�. 

Generally we use 

𝛽𝛽 = 200 ∙ 𝑇𝑇0, 

where 𝑇𝑇0  is the initial temperature. One may use a dynamic 𝛽𝛽  in terms of 

temperature changes to enhance the SA search. From the definition of the 

probability, it is easy to see that the probability is high when the temperature is 

high, in order to accept a worse solution by a high chance at the beginning of 

the searching to jump out the local optima. Then as the temperature gets lower, 

the probability to accept a worse schedule gets smaller so that a stable solution 

can arrive.  
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Table  5.7 The SA search procedure 

Start 
Initialisation: Generate an initial schedule 𝜔𝜔 as described in section 5.1.1, 
calculate the objective 𝑓𝑓(𝜔𝜔), set the best solution as this solution, set 
initial temperature 𝑇𝑇, terminating temperature 𝑇𝑇𝑒𝑒 , temperature changing 
factor 𝛼𝛼 < 1, max number of iterations at each temperature 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚. 
Repeat 

Set 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ← 0 
Repeat 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 1; 
Generate a new schedule 𝜔𝜔′ in the neighbourhood of 𝜔𝜔, by swap 
or insert operator selected randomly, calculate objective 𝑓𝑓(𝜔𝜔′); 
If 𝑓𝑓(𝜔𝜔′) < 𝑓𝑓(𝜔𝜔) 

Accept 𝜔𝜔′ as 𝜔𝜔 and update the best solution if appropriate; 
Else 

Draw a random number 𝑟𝑟 from a uniform distribution [0, 1]; 

If 𝑟𝑟 < 𝑒𝑒
𝑓𝑓(𝜔𝜔)−𝑓𝑓(𝜔𝜔′)

𝑇𝑇 ∙𝛽𝛽 
Accept 𝜔𝜔′ as 𝜔𝜔; 

End if 
End if 

Until 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≥ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 
𝑇𝑇 = 𝛼𝛼𝛼𝛼; 

Until 𝑇𝑇 ≤ 𝑇𝑇𝑒𝑒 
End 

Additionally, if one would like to use this SA algorithm on the traditional 

model where travel time is minimised, there are only two modifications 

needed. One is to replace the risk objective function with the total travel time 

objective function as we mentioned in Section 5.1.2. Another is to give a huge 

travel time cost penalty to the solution if any of the time window constraints or 

the technician work time constraint is violated. 
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5.2 Applying the algorithm and simulations 

The SA algorithm can be applied to generate a schedule once a day at the 

beginning of the day and the resulting schedule is used for operation of the 

whole day. 

It can also be applied multiple times a day. That is, a schedule is generated 

with the SA at the beginning of the day and is followed by the technicians in 

the operation, then it is re-optimised later in the day by rerunning the SA with 

updated information from the operation. 

While the objective is to minimise the risks in making the schedule, the actual 

performance of the schedule, or the methods used for making the schedule, 

can be observed in practice in terms of the number of task time windows 

missed for the day. Simulation can also be used to evaluate and compare the 

performance of different models. 

Simulation aims at mimicking the operations of a real-world process or system 

over time. Workforce Scheduling Simulation reproduces the operation in the 

way it is perceived from the workforce scheduling system side, and to observe 

the behaviour of a work allocation system over time. To study such behaviour, 

a simulation model is developed, and the key characteristics, behaviours and 

functions of the physical or abstract system or process are illustrated in the 

model. The applications of simulation are vast, such as manufacturing 

(Benedettini and Tjahjono, 2009), engineering and project management (Shi 

and Vickers, 2016), military applications (Robinson, 2002), business process 

(Robinson, 2002), transportation modes and traffic (Mualla et al., 2018), 

healthcare (Almagooshi, 2015), etc.  

Simulation benefits the study of and the experimentation with the internal 

interactions of a complex system or a subsystem within a complex system. 
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Moreover, the knowledge obtained during the simulation could be valuable to 

improve the system under investigation. Most importantly, simulation can be 

used to verify analytic solutions, and animation shows a system in some 

simulated operations so that the plan can be visualized. Therefore, we 

introduce simulation into our models.  

Furthermore, Monte Carlo simulation is a computerised mathematical 

technique that allows people to account for risk in quantitative analysis and 

decision making. It demonstrates to the decision-maker a range of possible 

outcomes and the probabilities they will occur for any choice of action. It 

involves a range of values, from a probability distribution, for any factor 

which has inherent uncertainty to perform risk analysis by building models of 

possible results. It then calculates results repeatedly, each time using a 

different set of random values from the probability components. Depending on 

the uncertainties and the specified value ranges for them, this simulation 

usually involves massive recalculations in the process. Monte Carlo simulation 

gives distributions of possible outcome values, and probability distributions 

are a much more realistic way of describing uncertainty in variables of a risk 

analysis. 

5.2.1 Optimisation once for a day 

The SA search algorithm can be applied to solve any optimisation model to 

make a schedule for the day.  This can be the risk model, the priority risk 

model, or the travel time model. Then simulation can be used to simulate the 

operation following the schedule and observe the number of missed tasks as 

the evaluation for the schedule.  The implementation of the simulation process 

is outlined below. 

Recall that the analysis in the risk models is based on that the task duration 

and travel times are assumed to be uncertain and follow normal distributions, 
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however in reality, the task operation time or travel time becomes determined 

once it has happened. Therefore, to investigate the performance of a schedule 

in real-world scenarios, one best way is to execute the resulting schedule in the 

real-world, or use simulation to test the model. We realise the task duration 

based on the task corresponding distribution, i.e., the value of the real task 

duration time is randomly sampled from the assumed task duration distribution 

which is a normal distribution with known mean and variance. In addition, to 

be more reliable, we give a lower bound of 5 minutes and an upper bound of 

three standard deviations plus the mean. So if a realisation value is outside the 

range, another sample value should be generated.    

Then we realise the resulting schedule simulation in the way that we generate 

a report object at the end of the day, which contains the information such as 

the report time, the reporting technician, the finished tasks, the real operation 

time for tasks, etc. The details will be discussed in the next section, because 

we use the reports from different time points in the re-optimisation simulation. 

For this single optimisation simulation, it is simplified to only one report at the 

end of the day. 

5.2.2 Re-optimisation 

In most research and real-world operations, like the way described in the last 

subsection, the scheduling process often searches once every day at the 

beginning of the day, then the resulting schedule is delivered to technicians to 

perform and is not amended in the day. However, as time goes on, the service 

times of the completed tasks and the travel times of the completed trips are 

realised and become known, which may or may not be the same as the 

estimated values used in the initial schedule. As a result, the risks for the later 

tasks are changed and the schedule will not be optimal for the rest of the day. 

With convenient modern communication tools, the updated information in the 
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operation can be reported by the technicians back to the scheduler, and the 

schedule can be re-optimised during the day. Consequently, the performance 

of the schedule and the quality of the services may be improved. Such a re-

optimisation framework can be implemented in practice, and can be simulated 

as well. 

Briefly speaking, the re-optimisation uses the SA algorithm to search a 

resulting schedule at the beginning of the day. Then the engine constructs a 

schedule of the unreached tasks (the remaining non-started tasks in the earlier 

schedule) at the report time, using the SA algorithm. The information of 

unreached tasks is included in the reports returned by technicians. The re-

optimisation procedure is shown in Table 5.8. 

Table  5.8 The re-optimisation procedure 

Start 

𝑇𝑇0 ← the initial optimise time; 
𝑇𝑇𝑖𝑖 ←the report time for the 𝑖𝑖th report; 
𝑁𝑁 ← total number of optimisations; 
Generate an initial schedule 𝜔𝜔(𝑇𝑇0) by SA; 
For 𝑖𝑖 = 1 to 𝑁𝑁 − 1 

Process 𝜔𝜔(𝑇𝑇𝑖𝑖−1)  and construct the report 𝑅𝑅(𝑇𝑇𝑖𝑖); 
Generate a new schedule  𝜔𝜔(𝑇𝑇𝑖𝑖)  by SA for the unreached tasks in 
𝜔𝜔(𝑇𝑇𝑖𝑖−1) at 𝑇𝑇𝑖𝑖; 

End for 
Construct the final report 𝑅𝑅(𝑇𝑇𝑁𝑁); 

End 

The reports returned to the searching engine contain the information at the 

time it is reported, the id of the technician who sends the record, completed 

tasks, failed tasks, the status (the technician is doing a task, travelling or 

waiting), the location, and the statistics of the estimated remaining time if the 
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technician is doing a task. The method to construct a report for a given 

technician is illustrated in Table 5.9. 

Table  5.9 The report construction procedure 

Start 
𝑇𝑇 ←the report time 
𝜎𝜎 ← the standard deviation for the task being performed when the 
technician gives the report; 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← the technician start roster time; 
If the technician scheduled task list is not empty 
𝑁𝑁 ← total scheduled task number; 
For 𝑖𝑖 = 1 to 𝑁𝑁 
𝑡𝑡𝑖𝑖 ← the 𝑖𝑖th task; 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + travel time from the last position to 𝑡𝑡𝑖𝑖’s location; 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← false, this value will change to true if there is 
any remaining task at 𝑇𝑇; 

If 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑇𝑇 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←true, the technician is traveling at 𝑇𝑇; 
Set the remaining time as 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇, standard deviation as 𝜎𝜎 and 
location as 𝑡𝑡𝑖𝑖’s location; 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←true; 
Jump out the for loop; 

End if 
If 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < the lower bound of 𝑡𝑡𝑖𝑖’s time window 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the lower bound of 𝑡𝑡𝑖𝑖’s time window; 

End if 
If 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑇𝑇 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← true, the technician is waiting at 𝑡𝑡𝑖𝑖; 
Set both the remaining time and standard deviation as 0  and 
location as 𝑡𝑡𝑖𝑖’s location; 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← true; 
Jump out the for loop; 
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End if 
If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ←true if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ the upper bound of 𝑡𝑡𝑖𝑖’s time window; 

Add 𝑡𝑡𝑖𝑖 to the missed task list; 
Else 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + realised duration time of  𝑡𝑡𝑖𝑖; 

End if 
If 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇 

Add 𝑡𝑡𝑖𝑖 to the past task list (missed tasks are also in this list);  
If 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇 

Set both the remaining time mean and standard deviation as 0 
and location as 𝑡𝑡𝑖𝑖’s location; 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ←true; 
Jump out the for loop; 

End if 
Else  
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←true; 
Add 𝑡𝑡𝑖𝑖 to the doing task list; 
Set the remaining time mean as 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇, standard deviation as 
𝜎𝜎 and location as 𝑡𝑡𝑖𝑖’s location; 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← true; 
Jump out the for loop; 

End if 
End for 
If 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = false 

Set the remaining time as 0 and location as 𝑡𝑡𝑇𝑇’s location; 
End if 

End if 
End 

Then apply this report construction for every technician in a schedule 𝜔𝜔(𝑇𝑇𝑖𝑖−1), 

we can get a series of reports 𝑅𝑅(𝑇𝑇𝑖𝑖) to generate an initial schedule for the 

unreached tasks at the reported time 𝑇𝑇𝑖𝑖. The variables in the class Report are 

shown in Table 5.10 to demonstrate the information we have in the report. It 
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can be implemented in the following way: Remove the past tasks which is in 

the reports, from the scheduled task list in 𝜔𝜔(𝑇𝑇𝑖𝑖−1), and update the start time 

mean and variance, and the start locations; then apply the SA on this schedule 

to generate the solution 𝜔𝜔(𝑇𝑇𝑖𝑖) for technicians to execute from 𝑇𝑇𝑖𝑖.  

Table  5.10 Variables in class Report 

Variable Type Explanation 

Id String a specific id for the report record 

reportTime Date the time the report returned 

Resource Resource the technician who sends the 
report 

doneTasks ArrayList<Task> the tasks the technician have 
done 

taskRealTimes ArrayList<Long> the task real duration time of the 
completed tasks 

lateTasks ArrayList<Task> the list of tasks that the 
technician arrives late 

isDoingTask boolean denote whether the technician is 
doing a task at the report time  

isTraveling boolean denote whether the technician is 
travelling at the report time  

processTask Task record the task if the technician 
is doing a task 

estimateRemainingTime Long 
the estimated mean remaining 
time of the task duration that the 
technician is doing 

remainingTimeSd Long 
The estimated standard deviation 
of the remaining time of the 
operating task 

locationLatitude Double The latitude of the technician 
location at the report time 

locationLongitude Double The longitude of the technician 
location at the report time 

From the technician report at certain time points, we may know the latest task 

execution so that an action may be taken in the next optimisation schedule. For 

examples, suppose Technician 1 has a task which has exceeded regular 
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operation time significantly, hence the risks for the remaining tasks in the 

technician’s task list get higher. Meanwhile, Technician 2 may finish his/her 

task earlier than expected and the time windows of his/her remaining tasks are 

at later time slots. In this case, it is an ideal solution to assign Technician 2 to 

do the remaining tasks of Technician 1, and let Technician 1 to do the tasks of 

Technician 2. Consequently, re-optimisation during the day could theoretically 

improve the schedule performance as compared to only scheduling once at the 

start of the day.  

Additionally, as we mentioned before, the report construction could be used 

on the singular estimation by using one reported time such as 7:00pm in the 

evening. Generally, at that time, all tasks would be executed and the total 

number of missed tasks could be gathered. Also, one may investigate the 

behaviours of different models or the improvement that the re-optimisation 

gives to the task scheduling system in terms of the number of missed tasks, as 

well as the time cost of the re-optimisation.  

To summarise, in this chapter we have presented the details of the local search 

and SA methods for our problem, the ways of applying SA such as re-

optimisation, and the way of evaluating the resulting schedules using 

simulation. The next chapter will report the experiments that evaluate and 

compare different models solved by the SA method, using several different 

measurements.  
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Chapter 6  
 

Computational Experiments 

This chapter investigates the performance of the risk minimisation models 

presented in Chapter 4 by comparing their results with that from a traditional 

travel time minimisation model. The searching algorithms developed and 

described in Chapter 5 have been applied to solve the models. The 

investigation evaluates the model performance using a number of different 

measures. 

All the computational experiments were carried out using Eclipse Java 

integrated development environment on a personal computer with a 64-bit 

windows 7 system, Intel Core i5-4210U 1.7GHz-2.4GHz CPU, 8G RAM. 

Since the data and models are unique to this problem, Java applications give 

more flexibility and can be personalised for different scenarios.  

 

6.1 Input data and the initial schedule 

Our testbeds consist of information from the company’s database. This 

includes the task information i.e., the task ID, the mean and variance of the 

task duration time, the upper and lower limits of the time window, the task 

location coordinates, the task required skill, and the task importance level. The 

technician information includes the technician ID, start and end rostered times, 

the technician start location, as well as the technician skill capability. The 

input data are of JSON format because JSON is a lightweight data format 

which is easy to parse and generate by computers, and widely used as the data 

format in communication sectors.  
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As we explained in Section 3.5.2, the travel distance is the straight-line 

distance between any two locations defined by their coordinates, combined 

with a correction factor 1.3, which means the real travel distance is 30% 

longer than the straight-line distance. Then the travel time is calculated by the 

average speed of 40 km/h. 

First, the testbed of the experiments in Section 6.2 composes of 50 technicians 

and 300 tasks. Using this testbed in Section 6.2.3, different lengths of time 

windows are considered i.e., 3 hours, a half day or a whole day. The local 

search method is used to generate a solution in Section 6.2 and the SA method 

is also tested in Section 6.2.1. Second, in the testbeds for the experiments in 

Section 6.3, 6.4 and 6.5, there are 17 technicians and 100 tasks. The SA 

method is used for tests in these sections. Third, for the experiments in a 

prototyping tool of the scheduler from a communication company, 593 tasks 

and 157 technicians constitute the testbed in Section 6.6. Metaheuristic 

methods are used here. Additionally, the testbed of 12 resources and 100 tasks 

is used in the experiments in Section 6.7 to demonstrate the advantage of 

multi-optimisations. The SA method executes the search procedure during the 

simulation.  

It is widely acknowledged that to start from a good initial solution benefits a 

heuristic method. According to the nature of the task time windows, a relative 

good initial schedule can be obtained in the way as we explained in Section 

5.1.1. More specifically, for the case of 50 technicians and 300 tasks, all tasks 

are sorted according to the upper bound of their time windows and compose a 

list, then loop from the 1st technician, suppose the 1st task is compatible with 

him/her, then assign it to him/her, and delete the task from the list. Then for 

the 2nd technician, now the previous 2nd task becomes the 1st task in the list, 

suppose the 2nd technician is unable to do this task, then check the 

compatibility with the 2nd task (i.e., the 3rd task in the previous list), and 
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suppose he/her meet this task skill requirement so assign the 2nd task to 

him/her and delete this task in the list. In a similar way, for every technician, 

always check from the 1st task in the list until finding a compatible task. Then 

if the assignment is carried out for all technicians once, start from the 1st 

technician again until all the tasks are allocated.  

6.2 Basic experiments 

In this section, the testbed is composed of 50 technicians and 300 tasks with 

all the information available for each task and technician as described above.  

6.2.1 Experiment on the risk model 

The local search used here is first the insert process, then the swap process, 

and repeat both processes for four times. In the end, the resulting schedule 

shows the allocation of tasks to technicians, the risk for each task, the 

maximum risk and the sum of the risks for all tasks. 

Table  6.1 Risk comparison of the initial schedule and the resulting schedule 
Risk Initial schedule Local Search SA method 

Maximum risk 1.0 0.05062 0.04978 

Average risk 0.25979 0.00662 0.00490 

Running time (msa) - 32663 576931 
a. Milliseconds 

In this basic experiment, a specific time window is set for each task, and the 

same priority (or no priority) is assigned to all tasks. Table 6.2 shows the 

initial schedule and the resulting schedules after the local and SA searching 

process. From the table, it is clear that the searching algorithm greatly 

improves the initial schedule. In the resulting schedule, the maximum risk 

decreased significantly, and the average risk is small. The SA method shows a 
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better solution while taking longer time to find it. Hence, we may conclude 

that the searching methods are effective.  

6.2.2 Experiment on the risk model with priorities 

It is more realistic that tasks appear to have different importance or priority 

according to the business objectives. If a technician fails to start a high priority 

task, then the penalty should be higher. In this experiment, an importance 

score is assigned to each task to represent the priority of the task. For the same 

testbed as of the Section 6.2.1, 300 tasks are considered, 50 of them are with 

high priority, 100 of them are with medium priority, and the others are with no 

priority. 

Consequently, it is beneficial for the cost model to take into consideration the 

task priority. In order to reach this objective, the risk penalty is multiplied by 

the task importance score. In other words, the higher the importance score, and 

the higher the risk cost should be. 

Table  6.2 Average position for tasks of different importance scoresa 

Task importance Risk model Priority risk model 

High 3.47 3.22 

Medium 3.57 3.48 

Low 3.58 3.73 
a. The average task position in its corresponding technician’s tour in the 

corresponding model 

The tasks are still with specific time windows. The high priority tasks tend to 

be scheduled early to avoid the high penalty cost. Table 6.2 shows the average 

positions of tasks with different priorities in the task sequences of the 

corresponding technicians. The task position gives the position in the task list 
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of a route for that task. For example, a task with a high importance score is at 

position 1 demonstrates that this task is assigned to its technician as his 1st 

task.  

From Table 6.2 it can be seen that the high priority tasks are moved in the 

resulting schedule, from an average value of 3.47 to 3.22. As a result of 

minimising the penalty for high priority tasks, the risk of those with low 

priorities will increase, it can be seen from the table that the average task 

position for the tasks with a low priority from value 3.58 to 3.73. Additionally, 

the differences seem not significant because tasks of the same priority have all 

kinds of time windows in the data and the length of the time window is short 

as 2 hours or 3 hours, there’s rare possibility to adjust positions for all tasks 

while the objective of reducing the possibility of missing tasks should be 

satisfied first. However, the difference will be significant when we consider 

wider time windows which we will discuss later. 

Table  6.3 Searching results (value of objective functions and running time) 

a. Milliseconds 

Moreover, as shown in Table 6.3, the average risk is a bit higher in the 

priority risk model than in the case where all tasks have the same priority, this 

is to decrease the risk for high priority tasks. And from Table 6.4 we can see 

that minimising the priority-weighted risk will decrease three quarters of the 

risk for high priority tasks and a half of the risk for medium priority tasks on 

average. 

Risk Risk model Priority risk model 

Maximum  0.05062 0.09302 

Average 0.00662 0.00817 

Running time (msa) 32663 30551 
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Table  6.4 Average task riska 

Task importance Risk model Priority risk model 

High 0.00684 0.00146 

Medium 0.00666 0.00389 

Low 0.00652 0.01325 
a. The average task risk of the schedule in the corresponding model according to 

different task priorities 

6.2.3 Risks of tasks under different time windows 

It is very common in practice that the service company give only two types of 

time windows for customers to choose. In this case, the time window for any 

task is either in the morning or in the afternoon. Using these two common time 

windows, from Table 6.5 one can see that the results for the tasks with and 

without priorities have a similar relationship to the situation where tasks 

having specific time windows. The results of the positions of the morning and 

afternoon task are shown in Table 6.6. As shown in the table, the important 

tasks are all moved forward during the searching process when the importance 

scores for tasks are considered.  

Table  6.5 Searching result for tasks with morning and afternoon time windows 

a. Milliseconds 
 

Risk  Risk model Priority risk model 

Maximum  0.08637 0.12461 

Average 0.00608 0.00804 

Running time (msa) 30306 36244 
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Comparing the results for the tasks with specific time windows and those for 

the tasks with two larger time windows (morning and afternoon), it can be 

seen that the wider time window makes the risk smaller, which verifies the 

statement about the effect of the size of a time window on the risk as we 

discussed in Section 3.6. 

Table  6.6 Task position for tasks with different priorities and time windowsa 

Importance & time 
window (TW) Risk model Priority risk model 

High importance 3.58 2.98 

Morning TW 2.27 1.53 

Afternoon TW 5.11 4.59 

Medium importance 3.61 3.22 

Morning TW 2.05 1.68 

Afternoon TW 5.17 4.75 

Low importance 3.53 3.96 

Morning TW 2.02 2.51 

Afternoon TW 5.00 5.39 
a. The average task position in its corresponding technician’s tour of the 

corresponding model 
 

If we consider the time windows as the whole day which is from 8 am to 6 pm 

(BST). Due to the wide time windows, the risks are all relatively small. Thus, 

the task importance scores have to be large enough to force the searching 

engine to schedule the important tasks in early positions. Table 6.7 gives the 

task positions in terms of different task priority weights for risks. The result in 

the small priority column comes from the risk model with the priority values 

of 1, 100 and 10000 as the low, medium and high importance score, 
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respectively. The figures from the large priority column are obtained assuming 

the priority values of 1, 105 and 1010. As we consider the large time windows, 

we also conducted a test which set an additional target time for high 

importance tasks i.e., 12 am, so that the important tasks can be scheduled as 

early as possible in the day. The priority values are 1, 100 and 10000 here 

respectively. Table 6.8 shows the average risk of the tasks with the low, 

medium and high importance scores. 

Table  6.7 Task position comparison 

Model High 
 importance 

Medium 
importance 

Low 
 importance 

Identical prioritya 3.58 3.63 3.53 

Small priority valueb 2.35 2.68 4.57 

Large priority valuec 1.90 2.39 4.91 

Additional targetd 1.11 3.07 4.73 
a. The resulting schedule by minimising risks 

b. The resulting schedule by minimising small-priority-weighted risks 
c. The resulting schedule by minimising large-priority-weighted risks 

d. The resulting schedule by minimising medium-priority-weighted risks with a 
midday target time for high priority tasks 

Table  6.8 Risk comparison 

Model High 
 importance 

Medium 
importance 

Low 
 importance Total average 

Identical 
prioritya 1.10×10-4 1.07×10-4 9.89×10-5 1.03×10-4 

Small priority 
valueb 0 1.1×10-7 3.06×10-4 1.53×10-4 

Large priority 
valuec 0 0 3.73×10-4 1.87×10-4 

Additional 
targetd 0 1.8×10-7 4.1×10-4 2.1×10-4 

a. The resulting schedule by minimising risks 
b. The resulting schedule by minimising small-priority-weighted risks 
c. The resulting schedule by minimising large-priority-weighted risks 

d. The resulting schedule by minimising medium-priority-weighted risks with a 
midday target time for high priority tasks 
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It can be concluded that applying the task priority to risks can schedule high 

importance tasks in earlier positions and the average risk of missing the high 

importance tasks decreased significantly, no matter whether the priority values 

are small or large. It is reasonable that the tasks with high priorities are 

conducted first as high risks are prioritised. Furthermore, if we use a huge 

importance score such as 1010, the resulting schedule shows that the tasks of 

high importance are executed as technicians’ 1st or 2nd task because the figure 

gives the average position is 1.90. If high importance tasks are given a midday 

target time, the average task position for high priority tasks is 1.11, which 

means high priority tasks will be executed first in the resulting schedule.  

Therefore, in the scenario of the whole day time windows for tasks, the 

decision maker may use different values of priorities or additional target time 

to balance between different targets in scheduling.  

 

6.3 Comparisons among models 

The testbed consists of 17 technicians and 100 tasks, in section 6.3.1 we 

assume the task duration is normally distributed, and in section 6.3.2 the task 

duration follows a Gamma distribution in the experiments.  

6.3.1 Comparison between risk models and the traditional VRP model 

VRP manages the design of a set of routes with the minimal cost that meet the 

demands for services and goods of a set of customers with different 

geographic locations, while satisfying a number of operational constraints at 

the same time. Because the searching goals of the risk models differ from the 

traditional travel cost, it is meaningful to compare the experimental results of 

the traditional cost with the ones from the risk perspective. The travel time 
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model is proposed to model the VRP with the traditional travel cost, the risks 

are considered neither in the constraints nor in the objective function, whereas 

the time windows constraints are strictly valid.  

In our experiments, the risk in the risk models is a result of the uncertain task 

duration and the fluctuating travel time. Several factors are considered during 

the scheduling process, the time windows, the mean of the estimated duration 

time, the variance of the duration time, the required skill levels and the task 

importance scores are different among tasks. Each technician additionally has 

a unique start depot and a skill capability level. The travel time variance is 

distinct in the morning compared to the afternoon. The distributions of 

uncertain factors in the model are all supposed as normal distributions.  

Hence there are three scheduling models, the travel time model is for a 

traditional scheduling problem in which the objective is to minimise the 

average travel time; while the risk model and priority risk model aim at 

minimising the combination of maximum risk and the average risk of all tasks 

with the consideration of both the stochastic task time and the uncertain travel 

time. In the risk model, all tasks are treated as having the same importance 

while for the priority risk model each task has one of the two different 

priorities. To see the effect of considering risks in the scheduling, as well as 

the effect of considering task priorities, we suppose that the priorities are 

distinguished as two levels: high and low. 

Figure 6.1 shows the average risks of high and low priority tasks for the three 

models. When comparing the travel time model with the risk model it can be 

seen that the average risk for all tasks for the travel time model is much higher 

than that obtained when minimising the task and travel risk. This is reasonable 

because we did not consider risk when minimising the total travel time during 

scheduling. Although Figure 6.1 shows that the average risk for the travel time 
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model is not too high in value, this is because the time window constraints can 

limit the risks to some extent in the travel time model. 

 

Figure  6.1 Risks for different models 

Furthermore, the task importance or priority is a key factor in business 

operations. If a technician fails to start a top priority task in its time window, 

the penalty cost will be higher. Therefore, the priority task risk is introduced in 

the scheduling where the priority risk of a given task is defined as the risk of 

the task multiplied by an adjusted task importance score, so that it lets high 

priority tasks take precedence over low risks. The importance of a task is 

given one of two scores, 1 and 100, and a pre-determined adjusted factor is 

used to adjust the priority task risks. Thus, the priority risk is given by  

priority risk = task risk ×
task importance score

factor
. 

According to the data from the telecommunication organisation, the 

importance scores of their tasks vary between 25 and 300, so here we use 1 

and 100 to simplify the model. Also the adjusted factor can be different values 
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in terms of the value of the priority tasks. In this test, the factor value used is 

30.  

The priority risk is defined and only used as an objective in the priority risk 

model solution process. For a fair comparison, the risks of missing 

appointments (i.e., the task risk) in the schedule result are calculated in the 

same way as for the other two models and shown in the figures. As we can see 

in Figure 6.1, the risk of high priority tasks is smaller at a cost of the increased 

risk for low priority tasks. 

Table  6.9 Travel time for different models 

Model Travel time model Risk model Priority risk model 

Average travel 
time (minutes) 10.74 18.49 19.28 

A comparison of the average travel time is shown in Table 6.9. The average 

travel time is the total travel time spent by all technicians divided by the total 

number of tasks. As expected, the travel time model results in the smallest 

travel time among the three models; but the risk model and priority risk model 

also show relatively short travel time. An explanation could be that by 

minimising the risks, there is a side effect of minimising the travel time 

simultaneously. Specifically, the risk is considered as the probability of the 

arrival time after the upper limit of the time window, and the mean of the 

arrival time is associated with estimated durations of all previous tasks and 

travel times for each technician. Therefore, during scheduling, when we try to 

minimise risks we also minimise the travel time simultaneously. 

6.3.2 Comparison assuming Gamma distributed task duration 

In this section, the same experiments are conducted as the last section. The 

difference is that the task duration and travel time here both follow a Gamma 
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distribution. The dataset is the same as the previous test, but the shape 

parameters are the same, which are 3.5 here, for all tasks according to the data 

analysis from the communication organisation. Then given the task duration 

mean from the data, we may obtain the scale parameter for each task. 

 

Figure  6.2 Risks for different models 

Figure 6.2 shows that the average risks of high and low priority tasks 

respectively for the three models. From the comparing of the travel time 

model and the risk model, the average risk for all tasks in the case of the travel 

time model is higher than twice of that obtained from minimising task risk and 

travel risk together. This is expected as we did not consider risk when 

minimising the total travel time during scheduling. Figure 6.2 also 

demonstrates that the average risk in the result of the travel time model is not 

very high in value, and this is because of time window constraints in the travel 

time model (instead of being driven by cost objectives minimisation in the 

other two models). 
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Table  6.10 Travel time for different models 

Model Travel time 
model Risk model Priority risk 

model 
Average travel time 

(minutes) 13.14 31.64 32.31 

For the priority risk model, Figure 6.2 shows the risk of high priority tasks is 

smaller at a cost of the increased risk for low priority tasks. As expected, the 

travel time model results in the shortest travel time among the three models, 

which is shown in Table 6.10; but the risk model and the priority risk model 

do not show extremely long travel time values.  

 

6.4 Schedule structure with different priority tasks 

From the definition of risks, a conclusion can be drawn that the risk increases 

as it propagates due to the increase in the variance of the arrival time along the 

task list of each technician. The position of the task in the planned tour of 

visits is important information to verify the robustness of the plan during the 

day against disturbances. Inheriting the experiments on the three models in 

Section 6.3.1 and from Figure 6.1 in that section, we notice that the risks for 

high priority tasks becomes smaller on average in the priority risk model 

compared with that in the risk model. Then after analysing the structure of the 

task priority at each position in the task list for every technician, we can find 

that high priority tasks are completed at the early position in the tour of visits 

under the time window conditions. It models the real-world fact that 

technicians prefer to do the important task first to make sure its completion 

achievable. 
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In our application case, the average number of tasks for each technician is 5.9, 

which is derived from 100 tasks divided by 17 technicians. Figure 6.3 

illustrates the number of high priority tasks for all technicians as the vertical 

axis (figures on lines) according to each ordinal position in the task list as the 

horizontal axis. For instance, on average 6.5 technicians have a high priority 

task as his/her 1st task in the scheduling result obtained by the priority risk 

model, whereas 5.5 technicians by the risk model and 5.4 technicians by the 

travel time model.  

 

Figure  6.3 High priority task position composition 

Moreover, the high priority tasks at position 1 and 3 are more in the priority 

risk model than those in the risk model, which means that the high priority 

tasks are executed earlier both in the morning and in the afternoon. More 

specifically, even though considering importance score in the risk calculation 

can stimulate the scheduler to assign the top priority tasks as early as possible, 

the nature of the task time windows limits the ordinal positions of all 

important tasks to be in the 1st place. Namely, if the task time window is in the 

afternoon, the engine would not assign the task as the 1st task of any technician. 
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Additionally, with more top priority tasks moving to the early positions, there 

are less important tasks assigned at the late time in a day, so that the number 

of the top priority tasks drop at the 7th task position for the priority risk model 

while the other two models still have some tasks assigned at later positions. 

Furthermore, the number of the important tasks in the schedule obtained by 

the risk model which has no consideration of task importance during 

scheduling shows evenly distributed regarding different ordinal task positions 

in technician scheduled task lists. For example, there are on average 5.5, 5.2, 

5.1 and 5.5 top-priority tasks as technicians’ 1st, 2nd, 3rd and 5th task as is 

shown in Figure 6.3. 

Additionally, we can notice that the graph also indicates that technicians may 

have at most 8 tasks in both risk models. Whereas in the case of the travel time 

model, some technicians may have more than 8 tasks which is a really tight 

schedule hence the risks for missing these appointments can be much high.  

On the contrary, there is a cost for valuing top priority tasks: the less important 

or ordinary tasks are pushed to late positions as is shown in Figure 6.4. Note 

that the number of technicians at each task position for low priority tasks looks 

twice as that for high priority tasks, because there are 30 high importance tasks 

and 70 low importance tasks. Consequently, the sum of the number of 

technicians on all positions will be 30 for high importance tasks, and 70 for 

low importance tasks.  

The ordinary tasks in the priority risk model are assigned on average at a later 

position than those in the risk model. In the meantime, the risks of ordinary 

tasks in the priority risk model are consequently higher than those in the risk 

model without priorities, so that the risks of the tasks with a high importance 

score could be much smaller. Additionally, the difference of the improvement 

for the top priority tasks or the cost for the low importance tasks between the 
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risk model and the priority risk model depends on the factor when calculating 

the priority risk in the model. The larger the factor is, the less the effect of the 

importance score is and the smaller the difference between the two models 

becomes, and vice versa. In terms of our testbed with a factor of 30, after 

considering the tasks with different priority levels in the scheduling, the risks 

for top priority tasks is three times lower than those in the risk model, and the 

risks for ordinary tasks is three times higher than those in the risk model. 

Last but not least, we may observe that the number of tasks in the travel time 

model and the risk model did not fluctuate as much as that in the priority risk 

model. It makes sense due to the fact that the scheduler treats all the tasks with 

no difference in the travel time model and the risk model, while the tasks have 

different weights according to the task significance in the priority risk model.  

 

Figure  6.4 Low priority task position composition 
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6.5 Productivity of technicians 

Productivity is widely used to describe various measures of the efficiency of 

operations. A productivity measure is traditionally expressed as the ratio of 

output to inputs used in a production process, i.e., output per unit of input. 

Productivity is a crucial factor in the operations performance of firms and 

organisations. Moreover, productivity growth also helps businesses to be more 

profitable. There are many different definitions of productivity and the choice 

among them depends on the purpose of productivity measurement and data 

availability. 

In the case of the application in the telecommunication sector, the productivity 

for a technician to deliver field engineering services in a real scheduling 

problem is introduced in the view to study the technicians’ behaviour, it can be 

defined as 

technician′s productivity =
work hours 
roster hours

. 

Note that the work hours are the summation of the means of the scheduled 

tasks, the means of the travel time between any two locations.  

On the account of the same experiment, Figure 6.5 shows the relative 

frequency of the number of technicians (vertical axis) according to the value 

of productivity (horizontal axis). For example, there are around 63.5% of 

technicians whose productivity is between 60% and 70% when building the 

start-of-day service visits plan by the risk model.  



171 
 

 

Figure  6.5 Productivity distribution 

Moreover, the shape of the distribution for the productivity obtained by the 

priority risk model is similar to the one from the risk model. In other words, 

the variances of the productivity for the two risk models are much smaller 

compared with the variance for the travel time model from Table 6.11, i.e., a 

large number of technicians have the productivity of the average value, which 

is around 70%.  

Table  6.11 Productivity for different models 

Productivity Travel time 
model Risk model Priority risk 

model 

Average 61.5% 67.5% 68.3% 

Standard deviation  23.7% 4.6% 4.6% 

The productivity of the technicians in the schedule obtained by the travel time 

model aligns with an even-like distribution as is shown in Figure 6.5, which 

means the technician workload for the schedule from the travel time model 

fluctuates much among technicians. Meanwhile, the technicians in the 

schedules from the risk model and priority risk model have an even workload, 
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that is to say, few technicians have extremely few or many tasks scheduled to 

him/her, hence a robust schedule is obtained by the two risk models. 

 

6.6 Contingency  

As the problem derives from an industry case, there are lots of measurements 

to evaluate the performance of the models and the resulting schedules in terms 

of economic benefits for organisations, such as the contingency are introduced 

in this section. Contingency refers to costs that will probably occur based on 

past experience, but with some uncertainty regarding the amount. The 

contingency allowance is designed to cover the costs which are not known 

exactly at the time of the estimate but which will occur on a statistical basis 

(Jelen and Black, 1983). 

Normally, while approximating the cost for a project in business, product or 

other item or investment, there is always uncertainty as to the precise content 

of all items in the estimate, how work will be performed, what work 

conditions will be like when the project is executed and so on. These 

uncertainties are risks to the project. The estimated costs of the risks are 

referred to by cost estimators as cost contingency in business risk management.  

As to the risk defined in our models, the contingency for a task can be given as 

the time gap between the start time at the task and the upper bound of the task 

time window. More specifically, given a task in a schedule, the contingency is 

calculated as the difference between the mean of the start time distribution and 

the upper limit of the task and is expressed in minutes. As is shown in the 

following tables, contingency is usually analysed as an average value of a 

group of tasks. 
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The collaborated organisation has applied the risk component in their 

scheduling engine, and the results demonstrated in this section come from 

experiments in a prototyping tool of the scheduler as is shown in Figure 6.6. 

 

Figure  6.6 Scheduler demonstration visualizer 

Gamma distributions model the uncertainty of the tasks in this test. 

Furthermore, the scheduling engine of the tool considers many factors in the 

optimisation objectives which are inherently present into the complicated real-

world use cases, for instance the costs include the task unallocated cost, task 

setup variable cost (cost for setting up the relevant resource between two 

sequential tasks), task service fixed cost (cost for the relevant resource to 

perform the task at the relevant time position), etc., where the task unallocated 
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cost represents the cost that a task is not able to be allocated, and the variable 

cost and the fixed cost are associated with the travel time costs in the case of 

human resources (the field engineering team).  The risk cost is the summation 

of the task related risk likelihood multiplied the task risk impact for all tasks. 

Then if the resulting schedule is searched by an SA method without 

considering risks in the objectives, the task risk cost term is zero in the 

objectives values box (risk impact is set to zero). Whereas, if we consider risks 

in the objectives, the value of the task risk cost is not zero anymore.  

The complication in the real-world model also gives massive information 

about the tasks in a schedule, so we extract mainly the useful statistics from 

the database as several tasks of a schedule are stated in the Table 6.12, where 

the schedule is on 9th Jan 2018. TASK ID gives the unique task identity 

number and RESOURCE CREW ID gives the technician identity code, while 

POSITION shows the ordinal position for the task in its assigned technician 

job list. 

The EARLIEST TIME and LATEST TIME give the lower and upper bounds 

of the task time window respectively, and as we can see the tasks have 

extremely wide time windows for this communication service organisation, for 

instance, a task has the time window from 08:00 on 9th Jan 2018 to 00:00 on 

6th Feb 2018. Thus, an extra time called PRIMARY TARGET is proposed as 

the upper limit for the calculation of the risks. The columns MEAN 

DURATION and TRAVEL show the mean of the task operation time and the 

travel time in minutes respectively. 

Furthermore, tasks in the test are composed of two types as are distinguished 

in the column TASK TYPE, and for task type 1 the risk is defined as the not-

to-attend-by risk where the arrival time at the task is used to calculate the risk. 

At the same time, for task type 2 the risk is called the not-to-complete-by risk 

when the task completion time is applied to obtain the risk. In fact, the 
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distribution of the task completion time results from combining the 

distribution of the arrival time at the task and the one of the task duration time. 

Therefore, the column NOT TO ATTEND BY shows the value of the not-to-

attend risk and NOT TO COMPLETE BY gives the value of the not-to-

complete risk. So that if the task is of type 1, it only has the not-to-attend risk 

and if the task is of type 2, the not-to-complete risk is considered as the risk 

when scheduling.  

Moreover, the importance score as is shown in the column IMPORTANCE 

SCORE is more complicated than the one defined in previous tests, the values 

vary from 25 to 300, and the values of the RISK IMPACT are calculated 

based on the task importance score and the features of the group that the task 

belongs to in the system. Then the column RISK WEIGHTED COST gives 

the value of the risk cost which is defined as  

risk cost = � risk likelihood × risk impact
all tasks

, 

where the risk impact depends on the task importance score, and the risk 

likelihood is either the not-to-attend risk or the not-to-complete risk which 

depends on the task type in the system.  

Additionally, the start time at a task is uncertain in our models and follows a 

normal-like distribution, so the column ESTIMATED START TIME 

demonstrates the mean of the start time distribution in a time format. Then the 

contingency can be derived in the way that 

contingency = primary target − estimated start time, 

and Contingency is expressed as of minute units in our analysis.  
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Table  6.12 Part of a result schedule from the database of the demo 

 

RESOURC
E CREW ID TASK ID TASK 

TYPE 

NOT 
TO 

ATTE
ND 
BY 

NOT 
TO 

COMP
LETE 

BY 

IMPOR
TANCE 
SCORE 

POSI
TION 

EARLIEST 
TIME 

LATEST 
TIME 

RISK 
IMPACT 

RISK 
WEIG
HTED 
COST 

ESTIMAT
ED START 

TIME 

PRIMARY 
TARGET 

MEAN 
DURA
TION 

TRA
VEL 

600138240 AV-
SS0JUR24 1 0  175 1 09/01/2018 

08:00 
06/02/2018 

00:00 0.58333 0 09/01/2018 
08:06 

09/01/2018 
13:00 105 6 

600138240 AV-
SS0JUB64 2  0 125 2 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
10:01 

08/01/2018 
17:00 95 10 

600138240 AV-
SS0JVA88 2  0 125 3 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
11:52 

10/01/2018 
13:00 95 16 

600138240 AV-
SS0JVA83 2  0 125 5 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
14:16 

10/01/2018 
13:00 95 9 

600172886 AV-
SS0JUL77 1 0  200 1 09/01/2018 

08:00 
06/02/2018 

00:00 0.66667 0 09/01/2018 
08:04 

09/01/2018 
13:00 120 4 

600172886 AV-
SS0JRW48 2  0 125 2 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
10:08 

04/01/2018 
13:00 30 4 

600172886 AV-
SS0JVD10 2  0 125 3 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
10:42 

08/01/2018 
16:00 75 4 

600172886 AV-
SS0JUT39 1 0  175 5 09/01/2018 

13:00 
06/02/2018 

00:00 0.58333 0 09/01/2018 
13:14 

09/01/2018 
17:00 75 4 

600172886 
AV-

NGW3410
6 

2  0 125 6 09/01/2018 
06:00 

06/02/2018 
00:00 0.41667 0 09/01/2018 

14:34 
18/01/2018 

21:00 105 5 

600563165 AV-
SS0JUR46 2  0 125 1 09/01/2018 

06:00 
06/02/2018 

00:00 0.41667 0 09/01/2018 
08:00 

09/01/2018 
18:30 95 8 
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We found that apart from the given task type, the tasks can be divided into 

three groups based on the task primary target time. The tasks with the target 

time before 09 Jan 2018 belong to failed tasks, and the tasks with the target 

time after that day are defined as future tasks, while the tasks with the target 

time within the day are called present tasks. We noticed that the tasks of type 1 

are all present tasks whereas only tasks of type 2 have time windows on a 

different day other than 09 Jan 2018. Therefore, type 1 tasks and type 2 tasks 

with the time window within 09 Jan all belong to the group of present tasks. 

Additionally, the task with a task importance score more than 200 is regarded 

as a task with high importance, and the importance score between 125 and 200 

defines a task with medium importance, so that a task with a score less than 

125 is a task with low importance. 

Table  6.13 Average Contingency (minutes) for present tasks (with risk cost) 

Average 
Contingency Task importance 

Start time High Medium Low 

09/01/2018  
08:00 303 347 626 

09/01/2018  
08:00 - 09:00 294 362 624 

09/01/2018  
09:00 - 10:00 205 324 543 

09/01/2018  
10:00 - 11:00 158 307 469 

09/01/2018  
12:00 - 13:00 240 240 363 

09/01/2018  
13:00 - 14:00 211 218 241 

09/01/2018  
14:00 - 15:00 151 157 294 

09/01/2018  
15:00 - 16:00 No tasks 311 No tasks 

Total 262 309 515 
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Table  6.14 Number of tasks as to different Contingency (with risk cost) 

No. of tasks Task importance 

Average contingency (minutes) High Medium Low 

0 – 50 0 0 0 

50 – 100 0 0 1 

100 – 150 8 2 0 

150 – 200 8 13 4 

200 – 250 18 42 7 

250 – 300 33 45 5 

300 – 350 0 1 4 

350 – 400 0 1 10 

400 – 450 0 2 13 

450 – 500 0 3 6 

500 – 550 0 6 10 

550 – 600 1 12 19 

600 – 650 1 1 11 

650 – 700 0 1 11 

700 – 750 1 0 17 

750 – 800 0 0 2 

 

There are two resulting schedules, one is obtained by considering risks in 

objectives and the other is without considering risks in objectives. Table 6.13 

shows the average Contingency for each group of tasks where the start time is 

within the same time slot and at the same importance level. Table 6.14 
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demonstrates the frequency for different average Contingency of tasks in 

terms of different importance levels. These two tables show statistics of the 

schedule searched with risks in objectives in the model, whereas Table 6.15 

and 6.16 shows those of the schedule obtained without risks in objectives. 

Moreover, we also acquired Contingency for failed and future tasks, but as we 

could imagine Contingency is negative for the failed tasks and is extremely 

large for future tasks. Therefore, it is more valuable to discuss Contingency of 

present tasks as the four tables show. 

 

Table  6.15 Average Contingency (minutes) for present tasks (no risk cost) 

Average 
Contingency Task importance 

Start time High Medium Low 

09/01/2018  
08:00 287 322 647 

09/01/2018  
08:00 – 09:00 300 396 634 

09/01/2018  
09:00 – 10:00 120 298 555 

09/01/2018  
10:00 – 11:00 143 318 454 

09/01/2018  
11:00 – 12:00 89 245 380 

09/01/2018  
12:00 – 13:00 240 240 326 

09/01/2018  
13:00 – 14:00 209 221 295 

09/01/2018  
14:00 – 15:00 143 157 250 

09/01/2018  
15:00 – 16:00 115 311 179 

Total 245 303 507 
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Table  6.16 Number of tasks as to different Contingency (no risk cost) 

No. of tasks Task importance 

Average contingency (minutes) High Medium Low 

0 – 50 2 0 0 

50 – 100 1 0 1 

100 – 150 2 2 2 

150 – 200 11 3 3 

200 – 250 3 7 6 

250 – 300 17 49 6 

300 – 350 33 42 5 

350 – 400 0 1 3 

400 – 450 0 1 8 

450 – 500 0 4 10 

500 – 550 0 2 5 

550 – 600 0 5 8 

600 – 650 1 10 20 

650 – 700 1 2 9 

700 – 750 0 0 10 

750 – 800 1 1 22 
 

What is more, we compared some statistics between the two schedules. In 

Table 6.17 and Figure 6.7, Contingency of high importance tasks between two 

schedules is put together to investigate the improvement. As we can see, 

including risks in the objectives increases Contingency a lot for top priority 

tasks, especially for those tasks scheduled at the time close to noon in the 

morning or in the late afternoon. The more the Contingency, more flexibility 
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one technician may have to work on the task, so that more chance to be 

successful to arrive at or finish the task in time. 

 
Figure  6.7 Contingency for high importance tasks 

Table  6.17 Contingency of high importance tasks 

 Contingency (minutes) 

start time No risk cost With risk cost Improvement 

08:00:00 287 303 17 

08:00:00 – 09:00:00 300 294 -6 

09:00:00 – 10:00:00 120 205 85 

10:00:00 – 11:00:00 143 158 15 

11:00:00 – 12:00:00 89 No task – 

12:00:00 – 13:00:00 240 240 0 

13:00:00 – 14:00:00 209 211 2 

14:00:00 – 15:00:00 143 151 8 

15:00:00 – 16:00:00 115 No Task – 

Total  245 262 17 
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Meanwhile, Table 6.18 and Figure 6.8 give Contingency of low importance 

tasks between the two schedules. As we may observe, the average 

Contingency for the less important tasks scheduled in the early morning or the 

early afternoon decreases a little in order to make room for top priority tasks. 

However, the average Contingency for the tasks scheduled in the late morning 

or late afternoon also increases which is similar to the improvement for top 

priority tasks. Therefore, a conclusion can be reached that considering risks in 

the objectives will increase Contingency on average for all the tasks with 

different importance scores, and improve the schedule to carry out tasks with 

more success. 

Table  6.18 Contingency of low importance tasks 

 Contingency (minutes) 

start time No risk cost With risk cost Improvement 

08:00:00 647 626 -21 

08:00:00 – 09:00:00 634 624 -9 

09:00:00 – 10:00:00 555 543 -12 

10:00:00 –  11:00:00 454 469 14 

11:00:00 – 12:00:00 380 428 48 

12:00:00 – 13:00:00 326 363 37 

13:00:00 – 14:00:00 295 241 -54 

14:00:00 – 15:00:00 250 294 44 

15:00:00 – 16:00:00 179 No task – 

16:00:00 – 17:00:00 127 No task – 

Total 507 515 8 
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Figure  6.8 Contingency for low importance tasks 

In addition, Table 6.19 shows the not-to-attend-by risks between two 

schedules while Table 6.20 gives the not-to-complete-by risks. Obviously, 

both kinds of risks decrease and the number of risk-free tasks increases when 

the engine use risks in the objective functions. Moreover, the number of 

missed tasks, which represents the potential number of tasks that technicians 

may fail to make or finish in time, is defined as 

No. of missed tasks = average risk × No. of tasks. 

In fact, the number of missed tasks is the unweighted total risk of all tasks. 

Thus from the table, we can see that when risks are considered in objectives, 

the total risks of two types both drop a lot compared to the resulting schedule 

with no risks considered to the schedule.  
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Table  6.19 Not-to-attend-by risks 

No. of tasks NOT_TO_ATTEND_BY 

Risk No risk cost With risk cost Decreased 

> 10% 6 0 6 

5% - 10% 7 3 4 

0% - 5% 15 7 8 

0% 192 210 -18 

Missed task 1.91 0.29 1.62 

 

 

Table  6.20 Not-to-complete-by risks 

No. of tasks NOT_TO_COMPLETE_BY 

Risk No risk cost With risk cost Decreased 

> 10% 3 0 3 

5% - 10% 1 0 1 

0% - 5% 2 2 0 

0% 368 372 -4 

Missed task 2.23 0.04 2.18 

 

6.7 Multi-optimisations 

As is illustrated in Chapter 5.2, simulation is beneficial to verify analytic 

solutions, and the operation plan can be monitored at different time positions 

in the day, which is the reason we introduce simulation into our models. 
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6.7.1 Simulation comparison between the travel time and the risk models 

It has been discussed in Chapter 5.2.1 that the realisation of a schedule is 

straightforward to generate a duration time for each task, and then the number 

of the failed tasks at the end of the day is counted to assess the behaviour of 

the schedule. With the aim to have some failed tasks in a given schedule, the 

test sample we used in the simulation is of 100 tasks and 12 technicians. In 

other words, one technician on average has 8.3 tasks, which can be regarded as 

a tightly scheduled task list, so that some tasks may be missed. Here if the 

technician arrives at a customer site after the upper bound of the task time 

window, this task will be regarded as a failed task or a missed task. 

Meanwhile, the average risk of tasks in such schedule is high, even as much as 

15% chance to miss the appointment for some tasks. Otherwise, suppose all 

task risks are smaller than 1% in a schedule as we obtained before, it usually 

occurs that there are no failed tasks when we realise the schedule in the 

simulation. Thus, it is hard to assess the improvement of a schedule that 

includes the risks in the optimisation.  

In addition, because the task duration following a normal distribution or a 

Gamma distribution does not affect the task behaviour significantly, it is 

assumed that all the task durations are normally distributed in the simulation 

tests. Also, without loss of generality, we assume all the tasks require the same 

skills and all the technicians have the ability to deal with these tasks. 

Table  6.21 Number of failed tasks in simulations 

Simulation 
Travel time 

optimisation once 
in a day 

Risk optimisation  
once in a day 

Total number of failed tasks in 
30 tests 362 248 

Average number of failed tasks 12.07 8.27 
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Simulation is run to compare the risk models with the traditional travel time 

model using the number of missed appointments. The figure drops from on 

average 12.07 to 8.27 as is shown in Table 6.21. The missed tasks are not 

many because the time window constraints are considered in the travel time 

model.  

 

6.7.2 Results from the re-optimisation simulation 

A simulation of the single optimisation realises a schedule which implements 

optimisation once at the beginning of the day, then the number of failed tasks 

can be acquired in the end. Whereas, a simulation of the multiple 

optimisations shows the effect of the re-optimisation in the way that after the 

initial optimisation, the resulting schedule is followed in the operation until the 

second optimisation time point, then the number of failed tasks up to this time 

point can be obtained, and based on the process status we optimise the 

schedule for the remaining tasks, then the new schedule is carried out until the 

next optimisation time and follows the same procedures. Finally, the total 

number of the failed tasks accumulated in the process during the day is 

assessed. 

Table  6.22 Number of failed tasks in simulations 

Simulation 
Single 

optimisation  
in a day 

Multi-optimisation  
in a day 

Total number of failed tasks in 
30 tests 248 132 

Average number of failed tasks 
per test 8.27 4.40 

The simulation for 100 tasks and 12 technicians runs 30 tests and results are 

shown in Table 6.22, and the optimisation time points are at 8:00, 11:00, 14:00 
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and 17:00 (BST). From the table we can see that the number of failed tasks in 

the simulation of the multiple optimisations drops significantly compared to 

the one of the single optimisation, from on average 8.27 failed tasks to 4.4 

tasks. Thus, the simulation verifies our thoughts that by introducing re-

optimisation, the risk of missing appointments can be decreased further, and 

the re-optimisation improves the schedule dynamically. 

Table  6.23 Schedule at 8:00 (BST) 

Resource id Task id 
Lower limit of 

the time 
window 

Upper limit of 
the time 
window 

Risk  

7 40 08:00:00 11:00:00 0.00000 

7 3 08:00:00 11:00:00 0.000007 

7 38 08:00:00 11:00:00 0.078459 

7 56 10:00:00 13:00:00 0.044039 

7 53 10:00:00 13:00:00 0.384512 

7 75 12:00:00 15:00:00 0.187905 

7 94 14:00:00 17:00:00 0.138337 

7 27 14:00:00 17:00:00 0.297542 

7 95 14:00:00 17:00:00 0.461294 

8 8 08:00:00 11:00:00 0.000000 

8 41 08:00:00 11:00:00 0.037560 

8 60 10:00:00 13:00:00 0.025286 

8 65 10:00:00 13:00:00 0.203328 

8 78 12:00:00 15:00:00 0.102347 

8 72 12:00:00 15:00:00 0.376922 

8 91 14:00:00 17:00:00 0.230421 

8 84 14:00:00 17:00:00 0.430325 
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More specifically, a part of the schedule result at 8:00 (BST) is shown in 

Table 6.23, we can see that Task 65 is scheduled initially to Technician 8, and 

it has a high probability of being missed in the initial schedule and it actually 

fails in the simulation result if there is no re-optimisation action. Then from a 

part of the report gathered at 11:00 (BST) in Table 6.24, it can be seen that 

Technician 8 spent longer than expected on his 1st and the task he/she is doing, 

especially at the 2nd task site, he was going to spend 100 minutes to finish the 

job while the expected working time is 65 minutes.  

Table  6.24 Report at 11:00 (BST) 

Resource 
id Task id Task 

status 
Task start 

time 
Travel 
time 

Real 
duration 

time 

Mean of 
the 

estimate 
duration 

7 40 Finish 08:04:23 4 53 45 

7 3 Finish  08:57:40 0 48 50 

7 38 Finish  09:48:57 3 56 60 

8 8 Finish  08:16:26 16 80 65 

8 41 Doing 09:54:49 18 100 65 

 

However, we re-optimise at 11:00, and the new schedule at 11:00 shown in 

Table 6.25 illustrates that Task 65 is assigned to Technician 7 as his/her 1st 

task from 11:00, this ensures that Task 65 is successfully carried out. And in 

the initial schedule, Technician 8 would go to Customer 60 before visit 65, 

which would increase the possibility of missing Task 65. Therefore, the results 

conclude that multi-optimisation at different time points in a day can improve 

the schedule with the up-to-date task operating time.  
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Table  6.25 Schedule at 11:00 (BST) 

Resource id Task id 
Lower limit 
of the time 

window 

Upper limit 
of the time 

window 
Risk 

7 65 10:00:00 13:00:00 0.000000 

7 60 10:00:00 13:00:00 0.269380 

7 22 12:00:00 15:00:00 0.140170 

7 19 12:00:00 15:00:00 0.386894 

7 91 14:00:00 17:00:00 0.220154 

7 84 14:00:00 17:00:00 0.448647 

8 54 10:00:00 13:00:00 0.000000 

8 82 12:00:00 15:00:00 0.000000 

8 75 12:00:00 15:00:00 0.158527 

8 94 14:00:00 17:00:00 0.117360 

8 28 14:00:00 17:00:00 0.355559 
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Chapter 7  

Conclusions and Future Research 

This chapter concludes the thesis by summarising the contributions and 

suggesting opportunities for further research and development.  

7.1 Conclusions and summaries 

This research has analysed the risks observed in service-delivery operations 

and considered the risks in the operational planning process from a new 

perspective. The research makes three contributions to the new workforce 

scheduling and vehicle routing problem with time windows and stochastic 

durations. 

• Calculating the risks considering their propagation from one task to the 

next, and proposing efficient methods for estimating the risks; 

• Developing new workforce scheduling and vehicle routing models 

with an objective of minimising the risks, and implement a simulated 

annealing algorithm for solving the models and for re-optimisation; 

• Conducting computational experiments to evaluate the performance of 

the new models and compare the results with those from the traditional 

travel time model, also applying the risk calculation methods and risk 

minimisation models to a real-world problem in the telecommunication 

sector.  

First, after reviewing risks in different areas and discussing variants of VRPs 

in Chapter 2, the creative definition, expression and estimation for risks are 

given in Chapter 3, which are derived from the analysis of the real data from a 

telecommunication organisation.  
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Then the Simpson’s rule and Monte Carlo method and a new developed 

accumulation method are used to calculate the multi-integral expression of 

risks for all kinds of distributions of task duration times. Thereafter, a 

summation method is proposed to calculate risk which works well when the 

task duration time is normally distributed. The start time of each task does not 

align exactly with a normal distribution due to the effect of the lower limit of 

the time window, but the summation method supposes the start time is 

approximately normal distributed so that the summation property for normal 

distributions is used to obtain the arrival time distribution of the next customer, 

and the property can benefit calculating the risks relatively accurate and 

saving computing time. 

Therefore, in order to have the approximate normal distribution for the start 

time, a stratified estimation method analyses three kinds of relations between 

the arrival time and the lower limit of the time window and constructs three 

estimation models to approximate the distribution of the start time as a normal 

distribution. Afterwards, the summation method can utilise this estimation to 

obtain the risks in models. 

Second, increasing customer satisfaction is always a popular topic for 

managers and researchers with the aim to build a more customer-oriented 

business. It is particularly true when planning geographically distributed 

services in the fields. Therefore, it is important for service providing 

organisations to consider visiting time windows, the stochastic service time 

and travel time in the workforce scheduling and VRPs. 

The risk models proposed in Chapter 4 are another contribution where the 

risks are incorporated into the set of objectives to be minimised during the 

optimisation process, whereas previous relevant researches use a chance-

constrained approach to the problem. For instance, some of the previous works 
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consider the probability of route duration exceeding the threshold of the 

driver’s workload, while the others set extra restrictions on the probability of 

individual time window constraints to be violated. Furthermore, the objectives 

of the problem are related to traditional routing costs in these approaches. 

Additionally, it is valuable to consider tasks possessing different importance 

or priority according to the business objectives. Therefore, the priority task 

risk model is proposed to deal with this case, and the priority risk would be the 

task risk multiplies the corresponding task importance score. 

To solve the models, a simulated annealing algorithm is implemented in 

chapter 5, utilising the swap and insert operators for generating neighbouring 

solutions and the risk estimation method for calculating the objective value of 

solutions. The algorithm is used to produce a whole-day schedule at the start 

of the day and also to re-optimise the schedule at certain time points 

considering new information. 

The third contribution is investigating the effect of the risk models and re-

optimisation on the service delivery performance through computational 

experiments. A travel time minimisation model is used as a benchmark for 

comparison.  The results are presented in chapter 6. 

In terms of risks of missing appointments, the average risk of the schedule 

drops from 40.97% in the travel time minimisation model to 11.11% in the 

risk minimisation model. Furthermore, if we consider the priority when 

minimising risks, the average risk for high priority tasks decreases to 1.78% at 

a cost of increasing the risk of 4.82% for low priority tasks. 

The comparison is also done in terms of contingency. The contingency 

increases on average for both high and low priority tasks, and especially 

significantly for high priority tasks if we consider the risk cost in the objective 
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comparing with the test of excluding the risk cost. Moreover, there is no task 

scheduled in the late morning and afternoon when scheduling considering the 

risk cost. 

Simulation is run to compare the risk minimisation models with the traditional 

travel time model on the number of missed appointments. The missed 

appointments drop from on average 12.07 tasks to 8.27 tasks. In addition, the 

missed tasks are not numerous because the time window constraints are 

considered in the travel time model.   

Simulation is also used to compare the approach of optimising once at the 

beginning of the day with the approach that re-optimises the schedule during 

the day. The results show that re-optimisation can reduce the number of 

missed appointments by half of the number in the original schedule execution. 

Additionally, the risk component has been incorporated into the scheduling 

engine of the collaborating organisation in the telecommunication sector, as 

part of the objective function.  

7.2 Future research 

For further investigation, the research undertaken in this thesis could be 

extended so that more practical findings can be obtained. 

To start with, in the thesis, the effect of the lower bound of the time window is 

regarded primary and significant to the start time for a given task, and further 

to the arrival time for the task following the given task. While trying to 

minimise the risks of arriving task sites later than the upper limits of their time 

windows, the tasks are assumed to be carried out even though the technician 

arrives late. For some service systems, one may argue that with the probability 

of the arrival time later than the upper bound of the time window, the 
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technician would not be able to execute the task and if this happens the service 

time for this task should not be included in calculating the risk for the next 

task. Therefore, it is meaningful and useful to investigate the risk propagation 

under such strictly hard time windows. 

Furthermore, the task duration which follows either a normal distribution or a 

Gamma distribution is studied in the thesis. Further research could investigate 

the combination of Gamma and normal distributions for the task duration, 

which may better reflect the realistic task duration.  This investigation might 

be useful to some other areas involving a combination of Gamma and normal 

distributions. 

In the re-optimisation part of this research, experiments are carried out for the 

situation where information is updated and the model is run at fixed time 

points. It would be interesting and beneficial to apply the risk minimisation 

model in an event-driven framework, where the model will dynamically 

update the risks according to external events such as the task progression or 

completion, task rejection, task actual delays. 
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