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Abstract:  

Braided textile-reinforced composites have become increasingly attractive as protection 

materials for various applications, including sports.,In such applications it is crucial to 

maintain both strong adhesion at fibre-matrix interface and high interfacial fracture toughness, 

which influence mechanical performance of composites as well as their energy-absorption 

capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory 

fibre-matrix adhesion. However, most studies till date focused on the overall composite 

performance rather than on the interface properties of a single fibre/epoxy system. In this 

study, carbon fibres were treated by mixed acids for different durations, and resulting 

adhesion strength at the interface between them and epoxy resin as well as their tensile 

strength were measured in a microbond and microtensile tests, respectively. The interfacial 

fracture toughness was also analysed. The results show that after an optimum 15-30 min 

surface treatment, both interfacial shear strength and fracture toughness of the interface were 

improved alongside with an increased tensile strength of single fibre. However, a prolonged 

surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness 

of the interface due to induced  surface damage. 
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1. Introduction 

Braided textile-reinforced composites have received considerable attention in recent years as 

protection materials in various applications, including sports (i.a. helmets and shin guards) 

[1]. Such composites exhibit high structural stability, excellent damage tolerance and energy 

absorption due to the yarn interlacing. In an impact event the kinetic energy is dissipated 

through a number of mechanisms, including deformation of secondary yarns, primary yarn 

breakage and energy spent to overcome inter-yarn friction  [2]. The ease of incorporating 

different types of yarns enables one to manufacture composites with a wide range mechanical 

and physical property. In such composites, the interaction of yarns as well as stress 

distribution and energy dissipation in them are affected by microscopic structures and the 

adhesion between of the fibres and matrix in the yarn.  

 

It is known that the carbon fibre-reinforced composites (CFRCs) show poor interfacial 

adhesion between fibres and epoxy matrix, due to a chemically inert surface and low surface 

energy of the carbon fibre (CF). Hence, extensive studies have been undertaken to improve 

the interfacial adhesion with different surface treatment methods, including gaseous, solution, 

electrochemical, catalytic, oxidative etching, polymer coating (sizing) and plasma-activation 

methods [3-6]. Amongst these, a use of mixed sulphuric and nitric acids (H2SO4/HNO3) are 

increasingly adopted to functionalize carbon fibres [4-6]. Although interfacial shear strength 

of the composites increases after surface treatment of fibres, their impact resistance is known 

to decrease in some cases. A major challenge in composite manufacture is to obtain CFRCs 

with a combination of high impact resistance and strong interfacial adhesion. Admittedly, 



some studies have dealt with this subject; however, there is limited research into the effect of 

surface treatment on interfacial toughness of CFRCs. Furthermore, most studies addressed 

only the influence of surface treatment on macroscopic properties of composites, fibre yarns 

or plies, rather than individual fibres in the yarn. The relationship between the interfacial 

shear strength and toughness is not well understood, specifically in microscale. [7,8]. 

Therefore, it is crucial to investigate the influence of surface treatment on the tensile strength 

of single fibres, and techniques used to maintain fibre-epoxy interfacial shear strength and 

fracture toughness concurrently [9].  

 

Compared to tensile-strength measurements, it is difficult to assess interfacial shear strength 

between a single fibre and resin. At present, there are primarily four techniques that have been 

developed over the years, namely fibre pull-out, microbond, fibre push-in and fragmentation 

tests [10]. Among them, the microbond test, which was developed by Miller et al. [11] is 

preferred thanks to its simplicity and overall repeatability of experimental results. With regard 

to evaluating interfacial fracture toughness, a quantitative characterization of properties of the 

fiber-matrix interface requires an appropriate approach, which should take into account the 

actual mechanism of interfacial failure as well as non-uniformity of a local stress distribution 

at the interface. For this purpose, numerous models describing stress distributions and 

interfacial failure in fiber-matrix systems were proposed. Several stress-analysis schemes 

have been used to assess the energy release rate G for initiation of an interfacial crack in a 

microbond specimen. A comprehensive theory was developed by Nairn et al. [12-14]. The 

model assumes that the debonding zone extends when the energy release rate reaches its 

critical value GIc; thus, GIc is equal to the interfacial fracture toughness. The value of GIc 

reflects the energy-dissipation capacity during the debonding process of fibre-matrix system. 

Recently, the model was further modified by Scheer et al. [14] and applied to both 



experimental and numerical finite-element (FE) analysis mainly for glass and Kevlar fibres. In 

our study, the method will be applied for the carbon fibre/epoxy system.  

 

When using mixed sulphuric and nitric acids to modify carbon fibres (CFs), the time of 

treatment is of considerable importance. Based on current studies, the suggested time of 

surface treatment varies from a few minutes to several hours for different applications. Han et 

al. [3] pointed out that the tensile strength of CF decreased extensively after two hours of 

surface treatment. Langston et al. [15] stated that the best functionalization efficiency and 

highest oxygen concentration was obtained with the surface treatment of 80 min. Wang et al. 

[16] found that 15 min was preferred to pursue best electrical conductivity of CFs. In this 

study, carbon fibres were treated by mixed acids, and the surface treatment time was 

optimized by balancing the levels of tensile strength of fibre, adhesive strength and fracture 

toughness of CF/epoxy interface.  

 

2. Experimental 

2.1 Materials and Surface Treatment 

The PAN (Polyacrylonitrile)-based AKSAca A-42 carbon fibre with bulk density of 1.78 

g/cm3 and yield of 800 g/km was used. Bakelite® EPR-L20 epoxy resin was used as matrix 

material. The resin was mixed with EPH-960 hardener at the weight ratio of 100:35 and the 

mixture was then degassed for approximately 30 minutes before curing. The acid surface 

treatment employed a 3:1 (v/v) mixture of concentrated H2SO4 and HNO3, with sonication at 

60°C. During the treatment, A-42 carbon fibre was added to 60 ml of the mixed acid solution 

in a beaker. The treatment was carried out at different controlled times from 15 min to 60 min 

at an interval of 15 min. The treated fibres were then placed in another beaker and washed 

several times in DI water until the pH level was around 7. Washing removed all water-soluble 



N- and S-oxides, replacing them with hydroxyl groups through ion exchange; though direct 

N- and S-bonded were retained [4].  

 

2.2 Testing and Characterisation  

A microbond and single-fibre tensile tests were carried out using an in-house developed tester 

equipped with a 250 gram-force (gf) load cell [17]. In a microbond test, a fibre filament was 

first mounted onto a paper holder. Next, epoxy resin droplets were applied on the fibre and 

cured at room temperature for 24 hrs followed by post-curing at 60°C for 15 hrs. As shown in 

Figure 1, in the microbond test, the fibre was pulled at a speed of 1 μm/s while the epoxy 

droplet was constrained from translating along the loading directions by a microvise jaw 

 

Figure 1 (a) Schematic of microbond test; (b) typical load-displacement curve 

 

All specimens were checked under the microscope to observe geometry and embedded length 

of the droplet. Samples with defects (such as kink bands on the fibre or obvious lack of 

symmetry of the droplet) were rejected. Ideal epoxy droplet length was around 80-200 μm. 

This ensures that the required pullout forces exceeds the breaking strength of the fibre. The 

force needed to pull the fibre out of the resin was then determined. Assuming that the 

measured force is equal to a shearing force that is applied to the entire interface and 



distributed uniformly, the apparent interfacial shear strength (IFSSapp) of carbon//epoxy 

interface is determined as  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑑𝑑
𝜋𝜋𝜋𝜋𝜋𝜋

  ,     (Equation 1) 

where Fd is the peak pull-out force, D isthe fibre diameter and l is the embedded length of the 

fibre.  

During the experiment, as the fibre was pulled, the epoxy droplet on the fibre first contacted 

the microvise, which  transferred the load from the fibre to the fibre/epoxy interface. Post-

engagement, the initial load-displacement behaviour was nearly linear as elastic energy 

accumulated followed by a sudden drop in force (see a typical load-displacement plot in 

Figure 1(b)). The stored energy was dissipated with the initiation of an interfacial crack. The 

load did not drop to zero after its peak value as frictional forces were present.  

 

Furthermore, neglecting thermal effects, GIc can be calculated by [14]: 

  𝐼𝐼𝑑𝑑 = 𝜋𝜋𝑟𝑟12�
2𝐺𝐺Ic
𝑟𝑟1𝐶𝐶33𝑠𝑠

 ,     (Equation 2) 

where  

 𝐶𝐶33𝑠𝑠 = 1
2

( 1
𝐸𝐸1

+ 𝑉𝑉1
𝑉𝑉2𝐸𝐸2

) .     (Equation 3) 

In Equation 3, E1, E2, G1, G2, V1, V2, and r1 are the Young’s modulus of fibre, the Young’s 

modulus of epoxy droplet, the shear modulus of fibre, the shear modulus of epoxy droplet, the 

volume fraction of fibres, the volume fraction of matrix droplet (=1-V1) and the diameter of 

fibre, respectively. Herein, all the parameters were obtained from experiments. 

 

Next, tensile tests were carried out, in which single filaments were tested following ASTM 

C1557-03 standard. The single-filament specimen was prepared by mounting a single carbon 

fibre onto a paper holder using cyanoacrylate glue. The sample was placed in the grips of the 



micro-tester equipped with a 250 gf load cell. Both sides of the paper holder were cut by 

scissors before testing, leaving the fibre between the grips intact. Single-filament specimens 

with gauge lengths of 5, 10, 15 and 20 mm were tested at the speed of 1 µm/s. A minimum of 

10 specimens were tested for each gauge length. It should be noted that the strain were 

measured based on the grip movement of the tensile machine. Therefore, the system’s 

compliance correction had to be performed following the procedure described in ASTM 

C1577-03. In this study the system’s compliance (Cs) was determined to be 0.022 mm/N by 

plotting ∆L/F (=Ca, apparent compliance) against l0/A , as shown in Figure 2; here, ∆L is the 

grip movement measured with the machine, F is the failure load, A is the initial cross-

sectional area of the carbon fibre and l0 is the gauge length of the sample. All the results 

presented in this study were calibrated accounting for compliance. 

 

Figure 2 Apparent compliance vs. gauge length normalised with cross-sectional area of 

carbon fibre 

 

The diameter and surface topography of carbon fibers were characterized using a field-

emission scanning electron microscope (FE-SEM, JEOL JSM 6700F) with an emission 

current of 12 µA and accelerating voltage of 5 kV. The geometry of epoxy droplets was 

observed with a Zeiss stereo microscope. The functional groups on the surface of carbon 

fibers were checked with Fourier transform infrared spectroscopy (FTIR). The morphologies 



of CFs after acid etching were examined with an atomic force microscope (AFM) Cypher S 

with the scan rate of 1 Hz. 

 

3. Results and Discussion 

The specimens were examined by FE-SEM to determine changes their diameters caused by 

the acid treatment (Figure 3). Their surface shows grooves along the longitudinal direction of 

fibres. It was found that the number of shallow grooves increased with an increase in 

treatment time. The fibre diameter, measured to be 7.3±0.4 µm, did not alter after acid 

treatment. 

 

Figure 3 FE-SEM topographies of A-42 carbon fibres with oxidation treatment of different 

durations: (a) 0 min; (b) 15 min; (c) 30 min; (d) 45 min; (e) 60 

 

In a microbond test, the debonding force Fd is proportional to the embedded length of the 

epoxy droplet l, according to Equation 1. Therefore, despite the observed experimental 

scatter, the apparent IFSS can be calculated from the slope of linear regression of Fd  vs. l plot, 

as shown in Figure 4. The IFSSapp of the studied carbon//epoxy interface without surface 

treatment was determined to be 28.12 MPa, in a reasonable agreement with other documented 

data [8]. After the surface treatment, the magnitudes of IFSSapp were enhanced as shown in 



Figure 5 and Table 1. After one hour of the suggested treatment, the level of IFSSapp increases 

by 29.2%.  

 

Figure 4 Experimental data and linear regression for measured debonding force and 

embedded length for various surface treatment times: (a) 15 min; (b) 30 min; (c) 45 min; (d) 

60 min 

 

 

Figure 5 Effect of surface treatment on interfacial shear strength between single fibre and 

epoxy 

 

Table 1 Interfacial shear strength before and after surface treatment 



Treatment 
time (min) 

Average 
IFSS (± std. 
dev.) (MPa) 

Coefficient of 
variation (%) 

95% 
Confidence 

interval 
(MPa) 

90% 
Confidence 

interval 
(MPa) 

Increase (%) 

0 28.12 ±2.74 9.8 1.02 0.85 0 

15 30.18 ±3.41 11.3 1.67 1.40 7.3 

30 33.14 ±2.18 6.6 1.19 1.00 17.8 

45 34.84 ±2.60 7.5 1.14 0.96 23.9 

60 36.33 ±2.98 8.2 1.10 0.93 29.2 

 

The effects of surface treatment on the average tensile strength of fibre filaments was 

systematically studied with four different gauge lengths and shown in Figure 6. In single-

filament tensile test, the ultimate strength of carbon fibre decreases with an increase in the 

fibre’s gauge length. The gauge-length effect is mainly attributed to the presence of flaws in 

the fibre. With an increase in gauge length the probability of encountering defects increases,  

lowering correspondently the observed tensile strength. Apparently, the suggested surface 

treatment is not capable to eliminate fully the gauge length effect (partly due to the presence 

of internal flaws that can be cured only by heat treatment above 1200°C [18]); still, it can 

alleviate it with treatment of 15 min and 30 min duration (Fig. 6a). In contrast, the gauge-

length effect was exacerbated when the acid treatment extended to 45 min and 60 min.  

 



Figure 6 Effect of gauge length (a) and surface treatment time (b) on tensile strength of A-42 

carbon fibres  

 

Importantly, the treatment affect beneficially the tensile strength of CFs. Figure 6 (b) depicts 

the relationship between the ultimate tensile strength and  the time of treatment with acids, 

taking samples with the gauge length of 15 mm as example. It is obvious that the tensile 

strength of A-42 carbon fibres peaks at 15 min of acid treatment and then decreases, with 

subsequent flattenning. The degradation of tensile strength implies that additional surface 

defects were introduced by excessive oxidation, increasing the probability of fibre damage 

and fragmentation [18]. Therefore, we conclude that the moderate acid treatment can improve 

tensile strength of CFs  by removing the weak (damaged) surface layer and existing impurities 

from the surface. However, over-oxidation should be avoided. Average values of the Young’s 

modulus in the longitudinal direction E1 of A-42 carbon fibre at different gauge lengths are 

shown in Figure 7. Overall, the Young’s modulus decreased slightly after acid oxidation; the 

decline is due to acid etching that removes microvoids and the amorphous outer layer from 

the carbon fibre surface [15]. Some researchers mentioned also another potential mechanism 

of the modulus variation: a change in the orientation of crystallites in CFs [19]. 

 

 

 Here, the average values of the Young’s modulus were further used to calculate the critical 

energy released rate of the tested samples. 



 

Figure 7 Longitudinal Young’s modulus of carbon fibres before and after surface treatment 

 

The critical energy released rate GIc was calculated according to Equation 2 [8]; the obtained 

results are given illustrated in Figure 8. Although acid treatment always increases IFSSapp, the 

extent of this increase is sensitive to the treatment’s duration. The energy release rate reached 

around 38.9 J·m-2 after 15 min of the surface treatment, dropping to 23.3 J·m-2 when the 

surface treatment time was extended to 30 min. A high GIc value implies a high energy-

dissipation capacity in a fracture process at the epoxy/fibre interface. This study clearly 

demonstrated that the highest GIc and the largest interface strength were not reached at the 

same treatment time.  

 

 

Figure 8 Effect of acid treatment time on critical energy release rate vs  



 

 

Figure 9 FTIR spectrums of A-42 carbon fibres before and after acid treatments of varying 

duration 

 

The effect of surface treatment on the measured interface properties discussed above  is 

mainly due to two aspects, viz, interface functionalization and surface morphologies. The 

obtained FT-IR spectra indicate the absence of hydroxyl –OH (3100-3300 cm-1) and carbonyl 

–C=O groups (1650-1740 cm-1) in the carbon fibre after the acid treatment due to the 

formation of carboxyl -COOH groups [7, 20, 21], as shown in Figure 9. Besides, the 

characteristic bands due to generated polar functional groups were also observed in the 

spectrum of oxidised surface of carbon fibres. Specifically, mixed-acid oxidation introduces –

OH, -CH-, H-bond, -C=O and C-O functional groups successfully on the fibre surface. The 

expected functional groups are illustrated in Figure 9.  The -OH or -COOH groups are capable 

to form covalent interfacial bonds in the cross-linked polymer adhesive, which couple to the 

fibre, effectively transferring stresses between the matrix and the fibre and improving the 

interfacial adhesion [22, 23]. It was also reported that an increasing oxygen content after a 

surface treatment led to the improvement of interfacial shear strength. Furthermore, fracture 

toughness was improved by hydrogen and covalent bonding interaction [24]. Surface 

functionalization results in an increase in the polar component as well as the total surface free 



energy of the fibres. Therefore, the fibre/epoxy interface would present a higher energy 

barrier for crack initiation and propagation [25]. 

 

The surfaces morphologies of the specimens were further examined with AFM, as shown in 

Figure 10. The surface of untreated carbon fibres shows a number of relatively wide parallel 

grooves along their longitudinal direction. With an increase in the treatment time, large 

grooves were removed and the number of shallow grooves increased.. The likely cause of 

such grooves is the removal of amorphous carbon and defective layer on the border of fibrils 

forming a carbon fiber [26]. A removal of the outer layer may also eliminate strength-

degrading surface flaws. Therefore, tensile strength of carbon fibres increased after a 

moderate surface treatment. The evolution of the surface shown in Figure 10 is consistent 

with the obtained FE-SEM images. Table 2 shows that the average surface roughness (Ra) of 

CF increased from 2.40 nm to 4.15 nm with the treatment time. The moderate acid treatment 

made grooves wider and deeper. Etched pits were observed in some regions when surface 

treatment time reached 30 min. After one hour of acid oxidation, the surface was significantly 

etched and damaged. On the one hand, these grooves and pits provide more bonding sites, 

increasing the interfacial adhesion. On the other hand, they introduce serious defects on the 

surface of carbon fibres, decreasing their tensile strength [15]. 



 

Figure 10 Surface morphology evolution of carbon fibre for various surface treatment times: 

(a) 15 min; (b) 30 min; (c) 45 min; (d) 60 min (scan area: 1 µm ×1 µm) 

 

Table 2 Surface roughness of carbon fibres shown in Figure 10 

Treatment time (min) Ra (nm) RMS (nm) 

0 2.40 3.27 

15 2.95 3.67 

30 3.43 4.94 

45 3.94 5.01 

60 4.15 5.77 

 



 

Figure 11 FE-SEM images of fibre/epoxy droplet system before (a) and after (b-d) microbond 

test. Surface treatment times are 0 min (b), 15 min (c) and 45 min (d), respectively 

 

Post microbond test, samples were examined with FE-SEM to verify the location and mode of 

the failure. Figure 11(a) shows an undamaged fibre/epoxy droplet system prior to testing. For 

fibres without the surface treatment, interfacial separation was the main failure mode, 

indicative of poor adhesion (Figure 11(b)). There was no residual epoxy on the surface of 

fibres, which is a direct evidence of weak interface [27]. For fibres with the surface treatment, 

most of the droplets failed in a cohesive failure mode (Figure 11(c)). The failure occurred in 

the interphase region within the resin matrix but close to the fibre surface, i.e. where the shear 

stress reached maximum values during the microbond test. The presence of residual epoxy 

after debonding (Figure 11(c) and (d)) confirmed crack initiation in mode I in the droplet as a 

result of the radial normal stress distribution along the fibre-epoxy interface [23]. Drescher et 

al. [28] showed that a cohesive failure mode at interface provided better interfacial shear 

strength and fracture toughness due to surface interlocking and functional group bonding. 

However, when the interface bonding was too strong, fracture toughness decreased because 



debonding failure occurred in the matrix rather than at the cohesive interphase. This is in 

agreement with studies which claim that a weak interfacial bond dissipates more energy than 

a strong one and that micro-mechanisms such as fiber-matrix debonding or frictional fiber 

sliding are more important for energy absorption than macro-mechanisms such as 

delamination or matrix cracking under certain conditions [28, 29]. Apparently, for future 

applications, the energy dissipation capacity of various forms of CFRCs, such as woven and 

braided textile, can be enhanced by designing a suitable interfacial bond between the fibre 

filaments and the polymeric matrix.  

 

4. Conclusions 

The microbond test was used to evaluate interfacial properties between a single carbon fibre 

and an epoxy droplet. Alongside the apparent interfacial shear strength IFSSapp, the interfacial 

fracture toughness was calculated in terms of the critical energy release rate GIc. The surface 

treatment was optimized by investigating the effects of its duration on IFSSapp and GIc, as well 

as tensile strength of single filaments. Although interfacial adhesion improved with the 

increasing surface-treatment time, the interfacial fracture toughness was observed to peak at 

15 min treatment based on the study conducted here. Surface roughening and functional group 

bonding may have played predominant roles in the enhancement of interfacial properties. 

Apparently, severe surface flaws were introduced by strong acid etching after a longer time of 

treatment (over 30 min), resulting in a reduction of both filament’s tensile strength and 

interfacial fracture toughness. From our study, the surface treatment time of 15 min was 

deemed optimal for an optimal improvement of both the strength and interfacial energy 

dissipation. The microscopic study indicated importance of the cohesive failure mode at 

interface for achieving high fracture toughness.  
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