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Abstract

We propose a method for matching non-affinely related sparse model and
data point-sets of identical cardinality, similar spatial distribution and ori-
entation. To establish a one-to-one match, we introduce a new similarity
K-dimensional tree. We construct the tree for the model set using spatial
sparsity priority order. A corresponding tree for the data set is then con-
structed, following the sparsity information embedded in the model tree. A
matching sequence between the two point sets is generated by traversing the
identically structured trees. Experiments on synthetic and real data confirm
that this method is applicable to robust spatial matching of sparse point-sets
under moderate non-rigid distortion and arbitrary scaling, thus contributing

to non-rigid point-pattern matching.

Keywords: kdimensional tree; non-rigid point pattern matching; non-rigid

pose estimation; robust point pattern correspondence; motion capture.

1 Introduction

Point pattern matching (PPM) and related topics have been extensively studied within a
rich literature encompassing both theoretical and practical issues in areas such as com-
puter vision, pattern recognition, computational geometry, astronautics, computational
biology and computational chemistry [1, 2, 3, 4, 5, 6, 7].

We propose another application relating to PPM, arising from marker-based optical

motion capture (MoCap) systems, widely used in clinical gait analysis, animation and



computer games, emphasising human motion representation [8, 9]. For MoCap, passive
reflective markers acting as feature points are attached on a human subject. The subject’s
movement can be accurately recorded in “real-time”, represented by a sequence of 3D
feature-point data. Reconstruction of the subject’s movement requires an additional step
of model-baseddentification of the captured point data. The state of the art for model
generation makes use of manual identification of feature points in one frame captured
from a design pose of the subject, such as shown in Fig. 1. Typically, the same marker
protocol and design pose are used on many different subjects, yet manual labelling is
still needed for every new subject model generated. This applies even when the same
subject is used in different MoCap trials, if markers have become detached or displaced.
Model generation is labour intensive, highly non-productive and consequently costly in
commercial situations.

In this study, we relegate the model generation issue in MoCap systems in general to
the robust one-to-one PPM with underlying non-rigidity. Formally, we consider two point
sets that are extracted from two subjects with underlying non-rigidity and non-uniform
scaling, one being the model set with known point identities and the other representing the
observed data. There exists neither a global nor local affine transformation between the
point-sets. Assume we have an identified pointet {p; € (R?, label;), i = 1,... M’}
of one subject in a design pose, calledthedel point-setWe require to match this model
point-set to the corresponding observed pointaet {¢; € ®?, j = 1,... M } of another
subject in a similar pose. SeB and Q have overall spatial distribution similarity and
identical cardinality. However, the data s2is generally corrupted by distribution errors,
due to underlying non-rigid poses and position displacement of feature-point attachment.

Scaling is also not uniform. There are neither global nor local affine transformations



between the model and data sets.

Point pattern matching (PPM) is a fundamental, commonly encountered, yet still open
problem. Feature-based methods for object recognition, motion analysis and image reg-
istration often rely on point pattern analysis to establish a correspondence within two
related point-sets. However, work relevant to PPM is largely restricted to rigid objects
in Euclidean motions, or perspective matches under affine transformations, or piecewise
approaches for non-rigid correspondence [2, 3, 4, 10, 5]. Additionally, uniform scaling is
taken into account. In these cases, geometric hashing [11], a “world-view vector” [12],
or graph/tree-based representation [13, 14], being based on geometric invariance, might
be used to seek an exact one-to-one correspondence in sparse cases under rigid/affine
transformations. Constraint satisfaction, in a manner of least-squares optimisation [15],
Hausdorff-distances [16, 17, 18] or the well-known heuristic Iterative Closest Point (ICP)
algorithm [19, 20], is used to find approximate correspondences and motion estimation
for dense point sets. However, in the absence of rigidity, while yet demanding the exact
correspondence between sparse point sets required for the PPM problem considered here,
the above methods are not applicable.

To deliver an exact correspondence for sparse distribution with underlying non-rigidity,
distribution discrepancy and non-uniform scaling, we appeal to a novel spatial index ap-
proach that is robust for matching such data. Benefiting from the well-studied multidi-
mensional binary search tree (abbreviaked tree) techniques, we propose a n&mi-
larity K-d tree to address the PPM problem presented above.

In the following section, we give a brief review of relatédd tree techniques. In
Section 3, we give details for the propossnhilarity K-d tree developed for robust PPM.

Experimental results using real MoCap data are given in Section 4. The algorithm analysis



using synthetic data and conclusions are stated in sections 5 and 6.

2 Brief review of K-d trees

Many data structures for the tasks of matching and searching multidimensional databases
are instances of the general clasduofary space partitioBSP) trees, such as thed
trees. TheK-d tree was first introduced by Bentley [21], extended tcadaptive kd
tree in [22, 23], and modified with many variants to facilitate implementation of efficient
storage and search [24, 29{-d trees have been used to solve a number of “geometric”
problems in statistics and data analysis, and provide efficient and versatile methods for
accessing large databases, for searching nearest- or farthest- neighbours and indexing
structured data [13, 20].
Flavours ofK-d trees differ mainly in the partition strategies for selecting cutting hy-
perplanes, and in the meaning of interior nodes and leaves. Typically, classicaikes
[21] recursively use axi-orthogonal hyperplanesrfudian partition to divide more-or-
less in half the data set associated with an interior node. Splitting proceeds hierarchically
until a desired number of points remains in the leaves. The hyperplanes are chosen in
sequence to be perpendicular in turn to each ofAfhaxes in a cyclic order. Sudk-d
trees have excellent depth property, being well balanced under median partitioning.
Adaptive K-d trees [22, 23] are constructed in a similar way to clasdicdl trees
with, however, hyperplane directions chosen in a non-fixed order. Taking data tendency
into account, the@daptive kd tree hyperplane at each node is chosen to be perpendicular
to an axis with the largest data extension. Data is split on that axis into a balanced number

of points on each side of the splitting planergdian partition or split through anean-



positionof the data set, to achieve a good aspect ratio. For tree constructimedign
partition, the choice of orthogonal axis is recorded at each interior node; whilad¢an-
position partition, orthogonal-axis and absolute coordinates of the hyperplane are both
stored.

The basidK-d tree structures [13, 25] and many of their variants have been devised for
general or specific practical applications. However, most partition strategies employed in
K-d trees pay little consideration to data distribution. Planes may very possibly split a
dense data portion at an early stage of partition, or pass through some points, making the
tree shapes very sensitive to point position and producing completely different trees for
two similar point-sets with distribution errors. Moreover, tree representation through ab-
solute coordinates cannot lead to consistent tree construction for a corresponding scaled
point-set. While a hybrid<-d tree may prove a fruitful line in future research, we con-
centrate in this paper on developing a new variarthe similarity K -d tree— to address

robust PPM for sparsely distributed non-rigid data.

3 The new similarity K-d tree

We propose a similaritiK-d tree with partitioning based on adaptive spatial low-density
priority order. Like mosK-d trees, we use axi-orthogonal hyperplanes to recursively par-
tition a point-set into subsets, but the splitting hyperplane is located atdbetion of the
largest projected intervalalong the orthogonal coordinat¢, forming thehyperplane-
axis For aK-dimensional point-seP, = {p; € QX} of cardinality|P,| at an interior
nodev, the hyperplane-axi&/,, € K of the splitting plane is determined from Eq. (1) by

the largest)-projected interval), , of the data coordinates,



= A 1
H, max Av.y 1)
where
Ay = max ((Priys — Pr)w | (Priya)w = (Pk,)y) is the maximum coordinate in-
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terval in the direction andi = 1...|P,| is an ordering index. If there is a tie among

maximal candidate intervalgy, ,,, andA, 4., in the sense that
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the choice is biased towards median partitioning for tree balance, and reducing the max-

imal data extent in directiog: max |(p; — Pj)v
pPi,P; €Py

, to maintain a favourable aspect
ratio [23].

In this study, we emphasise tree consistency and robustness not only to distribution
error, but also to non-uniform scaling. For this goal, we store at each interior node during
tree construction the orthogonal hyperplane-axis identifier(e.g. «, y or z in 3D)
and the number of point§;| split to the left subtree. Using the number of left-child
points rather than an absolute partitioning coordinate not only improves the tolerance
to distribution errors and scaling, but also guarantees a feasible consistent interpretation
(refer to Section 4.2) for a corresponding scaled point-set.

An intuitional illustration of the similarityK-d tree using the 2D example data is
given in Fig. 2. We observe that the hyperplanes are so chosen that points with the nearest
normal distances from the cutting planes are maximally distant from those planes. The
planes, in effect, locate the sparsest point distributions in:ttwedy directions. Splitting
prioritised by sparse intervals provides a good heuristic for reducing distribution error

ambiguities. We summarise the similarkKyd tree construction algorithm in Fig. 3.



4 Using the similarity K-d tree for robust PPM

We demonstrate the ability of the proposed similafifyd tree to solve the sparse PPM
problem in MoCap systems as described in the introduction, for a difficult situation of
matching captured feature points from human subjects with underlying non-rigidity, as
illustrated in Fig. 1. All 3D feature point data were obtained from a commercial marker-
based MoCap system - the Vicon 512, composed of 7 cameras with infrared illumination.
The measurement accuracy of marker position in 3D is to a level of a few millimetres in

a control volume spanning metres in linear extent.

4.1 Point-set alignment

In our motion capture system, the world coordinate system has its origin on the ground,
the zy-plane is parallel to the ground, and thexis is vertical. In the case of motion
capture, the two point-seBB = {p; € ®*} andQ = {q; € R*} withidentical cardinality

M may be obtained in different coordinate systems of distinct location and orientation.
They need to be aligned to a consistent coordinate system by centring and rotating. Firstly,

the vector centroidep andcg are calculated as in Eqg. (3).

M M
Z:l Pi ]21 q;
cp = sz , CQ="r 3)

Secondly, the orientation vectoss> andog in the co-centered systems are determined

from the weighted sum in the form of second distribution moments,



op = 17 ;(Pi —cp) |Ipi —cpll,
(4)
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Finally, for alignment, each point i? and Q is transformed with respect to the corre-

sponding centroidp, cg and orientation vectoop, oo, through suitable translation

and rotation.

4.2 Consistent interpretation of point-sets by similarity K'-d trees

We apply the similarityK'-d tree construction (Fig. 3) to the aligned model point78et

to obtain the similarityK(-d treeT’» for the model. Left-right traversal outputs leaves in

an ordered list of labelled model points. Construction information for the orthogonal-axis
and number of points in the left subtree is stored at each interior node during the model
tree building.

Having available the model tréBr, we proceed recursively to extract a consistent
interpretation tred’»(Q) for the aligned observed dafa. We follow the structural in-
formation embedded in its model tree, as shown in Fig. 4. Left to right traversal of the
leaves of tre€l’»(Q) then yields an output sequence of the points in the datal his
point list, together with the output point list from the model tree construction, serve to
define corresponding point-pair matches between modé? setd data se@.

A practical implementation requires only the logical existence of theTsge). It
need not actually be constructed, as only the output list of left-right traversed leaves is

required from the structure, as in Fig. 4.



4.3 Experiment results

lllustrative identification results, all with perfect correspondences, are shown for a num-
ber of human subjects of heights 1.2m to 1.8m in Fig. 5 with representative marker at-
tachments. ldentified points in the observed data sets are labelled consistently through
correspondence with their left-displayed models (labels are omitted in Fig. 5(c) for space
limitations). We also link identified points according to the model protocol for meaning-
ful representation of the underlying non-rigid poses. Fig. 5(a) shows a routine lower-limb
marker protocol used in clinical gait analysis, and Fig. 5(b) a typical marker set for human
character animation. The example in Fig. 5(c) investigated a dense distribution with 51
markers.

The construction of the modét'-d tree need only be performed once for a specific
point distribution of an identified model st Subsequent identifications under similar
distributions require only the logical construction and traversal of the data tree for each
new point set®. The current burden of manually identifying numerous subject data sets
with the same marker protocol in intensive applications is thereby much reduced.

Factors that support correct identification are close pose similarity and low point den-
sity. Generally, tree generation for denser point-sets is sensitive to smaller pose differ-
ences. In this case, pose similarity is a stricter requirement than in the case of matching
sparser point-sets. For instance, to identify a 23 or 33 feature-point pattern as in Fig. 5(a)
and Fig. 5(b), we always achieved180% correct identification rate, despite obvious
differences in flexion, separation and relative position of legs and feet, and in the case
of Fig. 5(b), the opening out, bending and level of the arms. But an extremely dense
and complex pattern, such as shown in Fig. 5(c), may easily result in wrong matches

for unideal data poses, such as obtained from substantial lowering or raising of the arms
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compared to the model.

5 Discussions

5.1 Evaluation and comparison of usingk’-d trees for PPM

To evaluate the robustness of the similariyd tree for PPM, we tested the algorithm
on synthetic data in the 3D case and compared the identification performance with two
typical K-d trees: the classical and adaptive, the latter in both median partition and mean-
position partition versions. We assess #ied trees with respect to the vital problem of
distribution noise in PPM. We generated a setMdéfrandom points in a cube of edge
E = 1000 units as a model set in 3D, fd/ = 50, 75,100 and 200 points witlaverage
coordinate interval = E/M of 20, 13.3, 5 and 2.5 respectively. To obtain corrupted
observed data, we applied zero-mean Gaussian noise of standard devitdieach of
the model point coordinates y andz, respectively. The parametdf = 20 /1 is used
to obtain a normalisedimensionless noisevel. Effectively, N indicates the ratio of
the coordinate noise-spreatr to the average intervalin that coordinate. The purpose
of expressing noise in dimensionless units is to provide a meaningful normalisation for
overlaying identification rates obtained at different axial point densitiés The results
shown in Fig. 6 and Fig. 7 are based on the average fraction of correctly identified points
in 500 randomly generated trials at each dimensionless noiseNevel

Identification rates for 50 and 100 points obtained with similakity trees, classical
K-d trees and adaptivE -d trees versus the dimensionless noise |éVedre shown in
Fig. 6. We observe that the similarify-d tree has the best identification rate over other

K-d trees. In particular aV = 1, when the noise spread is of the same order as the
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average coordinate interval, the similarity tree alone suffers little identification failure.
The method takes advantages of 1) a low-density prioritised partition strategy, 2) subset
counting during model tree building, and 3) data tree reconstruction consistent with its
model tree. All contribute to distribution noise tolerance. The clasdicdltree chooses
hyperplanes in a fixed order and utilises median-partitioning, simulating “subset count-
ing”, thereby also guaranteeing an inherent consistency of tree building for both model
and data sets. It can tolerate data distribution error to a moderate degree. Compared to the
similarity K'-d tree, the classical tree structure is more sensitive to the data distribution, as
it may place a partition plane through a dense data portion without concern to property 1)
above. By contrast, conflicting with consistency property 3), adapfisetrees consider
independently the data tendency of sBtsand Q,, during the partitioning process, caus-
ing ambiguity on the interpretation tree and lowered identification rates. Adafgtide
trees with mean-partitioning, indicated by absolute coordinates, further degrade tolerance
to distribution noise compared to median-partitioning advantaged by “subset counting”.
Fig. 7 shows identification rates for various point numbersandomly generated in a
cube of edgegZ=1000 units, for similarity and classical-d trees. At a given dimension-
less noise leveN, we observe a systematic dispersion in the identification curves, favour-
ing higher identification rates at higher point densities. We ascribe this phenomenon to
the manner of data partitioning at the tree nodes. Each partition of the node data derived
from sorting reduces the number of points in the child partitions, yet still samples the
full pre-partition extents in the othek — 1 coordinate axes. This leads to a reduced
density in those coordinates. Such a divide and conquer strategy associates greater noise
tolerance and reduced likelihood of identification error with each new tree level. Higher

point numbers within the cube will generate deeper tree structures, hence favouring higher

12



identification rates at a given dimensionless noise level.

The classical(-d tree shows only a modest improvement of identification rate with
increased point density. It benefits from the divide and conquer strategy only in a statisti-
cal sense, as median partitioning may occur in locally dense data regions throughout the
algorithm. By contrast, the similarity tree maximises the advantage of increased sparse-
ness by dynamically seeking the least dense region among all dimensions for placing the
partition. Moreover, the method takes advantage of the increased statistical likelihood of
finding wider departures from the mean in the distribution of coordinate intervals, as the
number of points\/ within the cube increases. Our empirical investigation shows that the
relative spatial gainl, ... /I, denoting the average maximum coordinate interval divided
by the average coordinate intervatises with increasing/ (refer also to [26, 27]). The
similarity tree therefore achieves a further systematic identification gain, particularly at
shallower tree levels. The observed increased dispersion (Fig. 7(a)) in the identification
curves for similarity trees over those of the classical trees (Fig. 7(b)) verifies the expected
identification advantage of similaritf(-d trees over the classical-d trees at increasing

point densities for a given noise leval.

5.2 Complexity

An efficient implementation of the similaritX-d tree PPM algorithm reduces sorting
at interior nodes to sorted sublist extraction. The complexity of such an approach is
discussed here.
To create the moddl’-d tree for the seP of M points, there is an initial requirement
of full sorting of the M points along each of th& cartesian coordinate axes, with com-

plexity O(K M log M). We additionally cross-link the sorteld coordinate lists of the
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data, so that given any one coordinate of any point, we can locate the other coordinates of
that point in the lists. Cross linking has &{K M) overhead on storage and processing.
With cross-linked sorted coordinate lists available, a splitting plane at noasi
maintain the initial relative ordering in the split left and right subsets, partitioned at the
biggest gap along the splitting plane ag{s. Cross linking will enable partitioning of
parent lists into left/right child sublists, reorganised so as to be sorted in each of the
coordinates. This allows the hierarchial tree building to continue.
Each complete tree level requir€§ XK' M) complexity to manage the list splitting.
An average oD (log M) tree levels therefore entails a total tree building complexity of
O(K M log M), including initial sorting. This complexity degenerates in a worst case
scenario, where just one point splits off at each tree leve) & M?). Using similar
arguments, establishing the correspondence for the dafd lsetds to the same average

and worst complexity as for model tree construction.

6 Conclusion

We propose a new similarity-d tree method for sparse PPM with underlying non-
rigidity and non-uniform scaling between the model and data sets. The similérity

tree emphasises the robustness to data distribution by adaptive partitioning in low-density
priority order. Optimal splitting planes prioritised by maximal sparse intervals eschew
denser portions. Moreover, data appearing dense in one hyperplane need not appear dense
in another hyperplane, so the adaptive choice of hyperplanes maximises the possibility of
finding sparse regions in the child partitions. The orientation of the splitting plane and the

count of the points in the split subsets are recorded at each interior node, making the tree
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construction invariant to scaling. Therefore, construction of the data tree, consistent with
respect to the counts and optimal splitting planes of the model tree, yields data points
in left-right leaf traversal that robustly correspond to the model points in left-right leaf
traversal. Heuristically, the correspondence is least affected by distribution errors and
scaling.
The similarity K'-d tree has been shown to give superior PPM compared to ather

d trees in synthetic trials, and has been found effective for real-world PPM application
in MoCap. Experimental results demonstrate its successful performance in a difficult
situation: matching point-sets obtained from diverse human subjects. This method has
benefited a number of commercial and medically oriented MoCap projects, automatically
identifying various subjects’ design pose data with respect to a predefined model. This

research enriches the usage of trees for non-rigid PPM.
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Figure 2: A similarityK-d tree with 2D example data: p1(6,-4), p2(4,2), p3(-7,7), p4(3.-

1), p5(7,0), p6(2,-8), p7(5,-6), p8(-8,9), p9(8,8), p10(-3,-4).
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Procedure BuildSimilarityKDTree(P., ):
1. if P, contains only one pointhen
2. Output a leaf node storing this point.
3. else:
4. Sortthe point$,, along each of th& coordinate axes;
5. Determine hyperplane-axis, by Eq. (1);
6. SplitP, into left/right subse®; andP, by locating the hyperplane at the
mid-position of the biggest gap perpendicular to the orthogonal?dxis
7. Create nod&=(V,, (H.,|Pi]), V»), where
Vi : = BuildSimilarityKDTree(?;);

V., = BuildSimilarityKDTree(P;.);

©

return( V).

Figure 3: BuildSimilarityKDTree®,)

Procedure ConsistentSimilarityKDTre&),,, V):
1. if Q, contains only one pointhen
2. Output this point.
3. else:
4. Let(Vi,(H.,|Pi]),Vi)=V
5. SortQ, along the hyperplane-axig, ;
6. SplitQ, into left/right subset®; andQ, with |Q;| = |Py|;
7. ConsistentSimilarityKDTre&l;,V});
8. ConsistentSimilarityKDTre&l,,V,.);

9. end.

Figure 4: ConsistentSimilarityKDTre&X,, V)
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Figure 5: PPM for non-rigid human subjects: model sets (left) followed by three correctly

identified observed data sets. 22
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mean)K -d trees.
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