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Introduction 

There are essentially three areas addressed in the body of this thesis. 

a. The first is a theoretical investigation into the design and development of a practically realizable 

implementation of a maximum-likelihood detection process to deal with digital data transmission over 

HF radio links. These links exhibit multipath properties with delay spreads that can easily extend over 12 

to 15 milliseconds. The project was sponsored by the Ministry of Defense through the auspices of the Sci

ence and Engineering Research Council. The primary objective was to transmit voice band data at a min

imum rate of 2.4 kbls continuously for long periods of time during the day or night. Computer simulation 

models of HF propagation channels were created to simulate atmospheric and multipath effects of trans

mission from London to Washington DC, Ankara, and as far as Melbourne, Australia. Investigations into 

HF channel estimation are not the subject of this thesis. The detection process assumed accurate knowl

edge of the channel. 

In the final simulation, an HF channel estimator was included in the receiver structure of the detector 

for demonstration purposes. Channel estimation and modeling was a separate research topic conducted 

by Frank Mc Verry. The author's contribution was entirely centered in the development of the detection 

process for known time-varying channels. The channel model was directly imported from Mc Verry' s 

work to the computer simulation attached in Appendix 2. This project was commercialized, and the prod

uct was, and probably is, being manufactured by Marconi Communications, Essex, for commercial use, 

or otherwise, today. 

b. The second area (Chapter JO forward) addresses the development of a simple and cost-effective 

mathematical equation to generate sinelcosine waves backed by a U.S. patent. This equation progressed 

over time to fundamentally simplify various transmission-type functions in digital communications and 

speech signal processing. Six/seven patents that carry the basic theme and progression with systematic 

modifications to the equation are described to demonstrate the value, simplicity, and effectiveness of the 
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equation. The main applications of this equation extend from tone generation, tone detection, frequency 

estimation and correction. A simple form of a first order neural network for adaptive frequency estima

tion is also described. This equation was successfully applied to a very low bit rate speech coder, < 2.0 

kb/s for a cost-effective silicon implementation. Acknowledgements are extended to Messrs Bartkowiak, 

Linz, Ireton, Pyi, and Zhao. The patents described in this section are selected to portray a theme or an 

evolution of a tone generation scheme that even by today's standards is extraordinarily simple, elegant, 

and robust. The architecture can also be utilized for detection of tones without any change. The patents 

have been exploited in a number of successful products manufactured by Advanced Micro Devices, Inc. 

c. A third area addressed in Chapter 16 highlights the aspect of efficient partitioning of communica

tions-related signal processing algorithms in multiprocessing silicon architectures. It covers a methodol

ogy to implement a very complex speech compression algorithm in an architecture comprising an 

industry standard central processing unit (CPU) and a simple digital signal processor (DSP) for the North 

American Digital Cellular Standard (IS54). The objective here was low cost and low power consumption 

since mobile telephony requires it. There is no automated, computer- assisted tool available to efficiently 

partition such algorithms across architectures that are tailored for specific requirements. It is generally 

accepted that DSPs are not controllers, and CPUs are not DSPs. This methodology was compared with 

traditional implementations in standard general-purpose DSPs. The results from our implementation 

showed a significant reduction in power consumption, lower clock rate, and flexibility in the implementa

tion. This type of architecture is resident in the majority of portable wireless terminals targeted for the 

wide area or local area networks. 

Most digital communications and control system architectures have CPUs and DSPs integral to the 

system. Therefore, for low cost and optimum performance, it is very desirable to utilize or exploit effi

ciently the existing resources available on the system board. Chapter 16 describes one such scenario. 

More recently, CPU sand DSPs have been integrated on a single silicon substrate, further reducing the 
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overall system cost and improving the performance efficiency due to the proximity of the two compo

nents. This alleviates the need for power consuming interface drivers between the DSP and the CPU. 
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Chapter 1 

Model of a Data Transmission System and Transmission Characteristics 

The data transmission system considered in this thesis is"based on the model shown in Figure 1-1 

"Synchronous Serial Baseband Data Transmission System" on page7. 

This is a synchronous, serial baseband system, where the input to the transmitter filter is a stream of 

regularly spaced impulses. The value, or area, of each impulse, SiO(t - iT), represents the value of the cor

responding signal element. These impulses may represent either binary or multilevel signals. 

The transmission path could either be a lowpass channel, with a frequency limit no greater than about 

10 KHz, or a typical voice frequency channel with a frequency band no wider than about 3 KHz, such as 

could be obtained over a telephone network or an HF radio link. In the latter case, the transmission path 

in Figure 1-1 is assumed to include a linear modulator (at the transmitter) and a linear demodulator (at the 

receiver), the whole forming a linear baseband channel. The HF radio transmission system is a modulated 

carrier system which essentially implies that the band pass channel introduces frequency translation 

effects comprising shifts of one to two Hz in the signal spectrum. This prevents correct detection of a 

baseband signal unless the frequency shift can be determined exactly at the receiver and suitably cor

rected for. In our analysis we assume the received carrier to be locked and timing recovery has been 

established. The system uses a simple approach of modulating the carrier with the original baseband sig

nal, such that the spectrum of the carrier signal lies within the pass band of the transmission path. 

Over practical or band pass channels, the characteristics of the channel are either not known prior to a 

transmission, or may vary considerably (but usually slowly) over time as in the case of HF radio links. It 

is necessary to estimate the sampled impulse response of the transmission channel as accurately as possi

ble for the purposes of acceptable receiver performance. [1] Typical fading rates of an HF radio link are 

in the region of 4 to 15 fades a minute which for transmission rates of lor 2 k elements per sec. have rel

atively little impact on the overall transfer function of the channel. In recent years burst mode transmis-
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sion which covers a few hundred symbols in a frame further improves receiver performance. Therefore, 

where there is "negligible" change in the sampled impulse response of the channel over the time interval 

of interest (-100 symbols) and the receiver has a good estimate of the channel detection processes such as 

equalization and or near maximum likelihood scheme become excellent candidates for HF radio 

receivers [2]. We have assumed throughout our study the sampled impulse response of the channel is 

known. 

The transmitter filter limits the spectrum of the transmitted signal energy to the approximate available 

bandwidth of the transmission path. The transmission path is assumed to be a band pass channel with the 

transmitter to include low pass equivalents of all the filters involved in the linear modulator. The receiver 

includes all the low pass filter equivalents of all filters involved in the linear demodulation process. The 

impulse response of the equivalent baseband channel includes the transmission path and all the transmit

ter and receiver filters. 

Transmission channels introduce noise which cause degradation in the received signal quality impact

ing receiver performance. For practical purposes, noise is assumed to be additive white Gaussian noise. It . 

has been shown that if a data transmission system has a better tolerance to additive white Gaussian noise 

than another, it will also, in general, have a better tolerance to other types of additive noise. In our com

puter simulation of the recommended detection system at end of this chapter, extensive experiments using 

additive un-correlated and correlated Gaussian were conducted to satisfy practical and worst case scenar

ios that the algorithm had to operate in. Furthermore, additive Gaussian noise on a data transmission sys

tem may be readily analyzed theoretically and studied by computer simulation. Noise is introduced at the 

output of the transmission path. It has zero mean and a two sided power spectral density (J 2 , giving the 

zero mean Gaussian waveform w(t) at the output of the receiver filter. Thus, the signal at the output of the 

receiver filter in Figur el-l is: 
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r(t) = ~ Si yet-iT) + wet) 
1 

(1.1) 

where the {si} are the values of the transmitted data elements and the yet) is the impulse response of the 

equivalent baseband channel. The waveform r(t) is sampled once per signal element at the time instants 

{iT}, where i takes on all positive integer values. 

The average transmitted energy per signal element is unity for ensuring that any impairments that are 

generated during transmission are attributed to the transmission medium, not the equipment. Noise com-

ponents {wi} at the output of the equivalent baseband channel are considered as sample values of statisti

cally independent Gaussian random variables with zero mean and variance CJ 2 [3]. At higher rates as 

mentioned earlier, correlated noise is also considered. 

tor: 

s.o(t _ iT)- _... Transmitter L----. 
I ,---. FIlter r-

Transmission 
Path 

I ... (""""\ ... Receiver 
~ Filter 

White Gaussian 
Noise 

Signal Processor I+_~ __ "--~ 
and detector --

t=iT 

. 

Estimator 

Figure 1-1 Synchronous Serial Baseband Data Transmission System 

The sampled impulse response of the channel in Figure 1-1 is given by the g+ 1 component row vec-

V=yOyl·········yg 

where Yi = y(iT). 

The delay in transmission, other than that involved in the time dispersion of the transmitted signal, is 

neglected here, so that Yo ~ 0 and yi = 0 for I <0 and I > g. Y is not, in general, the largest component of V. 
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- - - - -~ - - - --- .~--------------------------

Thus, the sample value of the received signal at the output of the baseband channel, at time t = iT is 

g 
ri = L sl-iYi + wi 

i = 0 

where ri = r(iT) and wi = w(iT), 

(1.2) 

In the signal processor and detector in Figure 1-1, the values of the {s;} are detected from the {ri} 

using anyone of a number of different operations_ The chosen detection process is based on the Viterbi 

algorithm [4], The signal processor and detector have prior knowledge of both V and of the possible val-

ues of si' The average transmitted energy is unity, such that: 

(1.3) 

where s? is the average value of si' 

Hence, if {s} represents a quaternary signal: 

Si =± 11,[5 or ±31,[5 (1.4) 
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Chapter 2 

Digital Modems for Voiceband HF Radio Links 

HF radio links can introduce a combination of mUltipath propagation and Rayleigh fading, which 

result in severe frequency selective fading. This makes it difficult to achieve an efficient use of band

width in a digital communication system. A conventional modem operates at 2400 bits/s, with the simul

taneous transmission of several QPSK (quaternary phase shift keyed) signals. The signal carrier 

frequencies are regularly spaced over the voice frequency band, and differential coding is applied to each 

QPSK signal at the transmitter, together with differentially-coherent detection at the receiver [1).The rea

son for using a parallel modem is that the signal distortion introduced by the multipath propagation can 

be removed from each of the parallel QPSK signals, leading to a realizable modem [5). 

In principle, a more efficient use of bandwidth, together with a better tolerance to additive noise, 

should be achieved by a serial system, employing at the receiver both coherent demodulation and near

maximum likelihood detection. 

The model of the serial data transmission system for an HF radio link is extended from Figurel-lto a 

more realizable structure as shown in Figure 2-1. The data symbols, {Sd are statistically independent and 

equally likely to have any of the m given values. Each transmitted signal element carries the correspond

ing data symbol. In a 2400 bits/s, m = 4, sI=± I±j (j = r-r), and the signal elementlbaud rate is 1200. 

The baseband signal generator and linear modulator in Figure 2 convert the input data symbols {s} into a 

serial data stream of QAM (quadrature amplitude modulated) signal elements, with a carrier frequency of 

1800 Hz. Each signal element itself comprises the sum of two double side band suppressed carrier ampli

tude modulated with their carriers in phase quadrature, the "in-phase" and "quadrature" elements carry

ing the real and imaginary parts, respectively, of the corresponding data symbol Si. The data symbols are 

differentially coded, before transmission, and the corresponding detected data symbols at the receiver are 

differentially decoded. 
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The HF radio link is assumed to have either two or three independent Rayleigh fading sky waves, 

with fixed transmission delays but the same average attenuation [2]. The only additive noise considered 

here is stationary white Gaussian noise with zero mean and a constant power spectral density, which is 

added to the data signal at the output of the HF radio link. The linear demodulator in Figure 2 filters and 

demodulates the received signal, using two linear coherent demodulators whose reference carriers have 

the same fixed frequency and are in phase quadrature. The demodulator removes any constant frequency 

offset in the received QAM signal, but does not track the variations in instantaneous frequency intro-

duced by the HF radio link, the whole of which therefore appears in the demodulated waveform r (t). The 

demodulated signals at the outputs of the "in-phase" and "quadrature" coherent demodulators are taken to 

be real and imaginary valued, respectively, so that the resultant demodulated baseband signal r (t) is com-

plex valued. The sample of the waveform r (t),at a time t = iT, is; 

g 

L 
h=O 

where 

Si_h Yi,h + wr 

Yi = {Yr,o Yr,! • •• •••••• •• yr,g} 

(2.1) 

(2.2) 

is taken to be the sampled impulse of the linear baseband channel in Figure 2. The data symbols {Sj} 

are here considered as the corresponding stream of impulses {Si l) (t-iT)} and the baseband signal genera-

tor as an appropriate linear lowpass filter. The real and imaginary parts of the {w} are Gaussian random 

variables with zero mean and fixed variance, which are either statistically independent or slightly corre-

lated with the neighboring {w} since the r(t) are sampled fairly close to the Nyquist rate. 

A wide range of different near maximum likelihood detectors have been studied and described in pub-

lished literature [3,4,5]. A detailed description of the selected detector for 2400 bitsls transmission rate 

is presented in Chapter 8. 
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Figure 2-1 Model of a Serial Data Transmission System for an HF Radio Link 
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Chapter 3 

The HF Channel 

Section 3.1 Types of Distortion Occurring in HF Channels 

Perhaps the most obvious fonn of distortion which occurs in HF radio transmission is reception via 

reflection from several different ionized layers or else via both one and two (and possibly more), when 

transmitting over very long distances. [1,5,6]. The example ofa typical practical case is given in Figure 

O. This example represents the situation on a 1000 km link on a winter's day. The critical frequency and 

height values quoted are typical for the layer at that time. From these parameters, the MUFs (maximum 

usable frequency) for each layer are calculated from the following equation: 

MUF = Qc Sec ai . (3.0) 

Nonnal operating practice on such a link is to use transmission frequency, called the optimum work-

ing frequency (CWF) which is given by [2]; 

CWF = 0.85 * MUF. (3.1) 

The MUF in equation 3.1 is the highest transmissible frequency over the link and for the given exam-

pIe it is 21.36 MHz and uses the F21ayer reflection. The CWF for the example is therefore 18.16 MHz. If 

the CWF is used as the transmission frequency, this will result in single path reception because it exceeds 

the MUFs for the E and FIlayers. However, such flexibility in operating frequency is not always possible 

in practice, so it is interesting to consider the situation at other possible transmission frequencies. (see 

Table 1). The use of frequencies below 10.84 MHz for this link would be avoided in practice not only 

because of the severe multi-path but because signal attenuation is proportional to ] ,resulting in a badly 

distorted signal with low signal to noise ratio. One further characteristic of interest can be calculated for 

this example, this is the time spread or multi-path spread of the signal at the receiver [5, 7,8]. If the trans-

mitter sends a short pulse shown in Figure 3-6, the time spread of the received signal is the time between 

the reception of the first and the last pulses as shown in Figur e3-6, for the different cases given in Table 
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1. Other discrete paths may be presented in the received signal due to ray splitting. Ray splitting occurs in 

the F, F1 and F21ayers but is dependent on the orientation of the electron motion set up by a wave in the 

ionized layers and the Earth's magnetic field. It is also very dependent on operating frequency, the most 

noticeable splitting occurring at frequencies below the MUF of a layer. Merging of the two rays then 

takes place if operating frequency is further reduced. When transmission occurs via, say, both one and 

two hops, such larger time spreads than that shown in Figure 3-6 can be obtained, time spreads of over 10 

ms have been measured over long distance HF radio links [6]. 

Another form of distortion which occurs on HF radio links is fading [1, 6-10]. This phenomenon can 

be divided into two types, long and short term fading. Long-term fading is the daily or seasonal variation 

in the received signal strength due to the night/day seasonal changes in the structure and ionization of the 

various layers. However, of much greater importance here is the short-term fading which can be sub

divided into two distinct types, called selective (or mUlti-path) and Rayleigh fading [8, 10]. Selective fad

ing is a function of the mUlti-path present in the received signal and its effect is dependent on the different 

frequency components which form the received signal. An example of the effect of the selective fading is 

shown in Figure 3-7. Here, the signal is shown to be a group of 21 sine wave carriers 100 Hz apart. Two 

equal strength paths are received and the path length difference is 300 km, corresponding to a differential 

delay of 1 ms. Constructive interference of the two paths occurs when the path length difference repre

sents an even number of half wavelengths of the received signal. Destructive interference occurs for an 

odd number of half wavelengths. This results in a distorted signal being received (Figur e3-7), and the 

effective amplitude characteristic of the channel is given in Figure 3-7. The example shown in Figure 3-7 

is a simplification of the practical channel, which has time varying characteristics. The time varying 

nature of the actual HF channel is due to the phenomenon of Rayleigh fading. There are several different 

effects which produce this type of fading [8], but, essentially, they are all functions of the short-term vari

ations in the ionization of the reflecting layers and the variation in the position of these layers. Rayleigh 
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fading is that fading that occurs on the one or more paths that constitute the received signal. If one of 

these paths is considered in more detail at the point of reflection in the ionized layer, the situation at one 

point in time can be represented as shown in Figure 3-S. The signal received from this 'single' path is 

made up of the sum of several slightly different paths, all adding randomly at the receiver. Short term 

variations in the ionization of the layer alter the way these paths add at the receiver. If the transmitter is 

simply a sine wave carrier of fixed frequency and amplitude as shown in Figure 3-9 then the received sig

nal will typically have the form shown in Figure 3-9. The amplitude distribution of the envelope of the 

received signal has a Rayleigh distribution from which the name of the fading is derived. The effect of 

this fading on the two equal paths of Figure 3-7 is to alter the positions and depth of the nulls (or selective 

fades) of the effective amplitude characteristic. 

The occurrence of other fading characteristics has been found in practice, such as the Nakagami-Rice 

(or simply Rician) probability distribution [S,II], which is a Rayleigh distribution with a specular (non

fading) component as a result of (say) direct ground wave reception as well as the sky wave paths. Varia

tions in the positions of the reflecting layers also contribute to this fading, especially in the F layer varia

tions as shown in Figur e3-IO for a typicalJune day [1]. Clearly from Figur e3-lO, there are certain times 

of the day, notably from 5 a.m. until S a.m and from 4 p.m. to 7 p.m., when the reflecting layers are mov

ing rapidly in one direction - some 50 km/hour for the F2 layer during the evening. This movement 

would produce a distinct Doppler shift on a received signal via this layer. The magnitude of the shift is, of 

course, frequency dependent but at a typical operating frequency of 15 MHz, the shift would be about 1 

hz. The Rayleigh fading characteristics on the different multi-paths present at a receiver tend to be uncor

related, this being due to the fact that the fading is caused by localized variations in the ionized layers at 

the point of reflection. 

In conclusion, this section has shown that a signal received via an HP channel is composed of one or 

several discrete multi-path components, each component being a faithful representation of the original 
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signal but distorted by fading and this fading is generally uncorrelated with the fading present on the 

other components. The amplitude/frequency and phase/frequency responses conventionally used to char

acterize communication channels have been shown to be an inappropriate measure for time varying HF 

channels where the characteristics are continuously varying. The next section will address the issue of HF 

channel characteristics. 

Section 3.2 Characteristics of HF Channels 

Since conventional methods of channel characteristics are inappropriate for HF channels, the quasi

static characteristics [6] of multi-path spread and fading are used instead. 'Quasi-static' characteristics 

are defined as characteristics which remain fixed or vary imperceptibly slowly when transmissions last

ing up to several minutes are made over the channel. For a different transmission over the same channel, 

these characteristics may have changed significantly but would remain fixed or vary very imperceptibly 

slowly for this transmission. 

The multi-path characteristic of an HF channel is the time difference between arrivals of the first and 

last paths at the receiver as explained in the previous section. This parameter is known variously as multi

path delay spread [7], time spread [10], differential time delay [10, 13], and mUlti-path spread [9] and 

hereafter will be known as the latter. Practical tests have shown that this parameter can vary fr?m 0 ms 

(single path) to 2.5 ms [5] for long distance transmissions using optimum working frequencies 

(Figure 3-11). These tests were performed over a period of four years using some 4000 different trans

missions as data, the transmission links being between London-Moscow, London-Melbourne and Lon

don-New York [5]. Where frequencies lower than optimum are used, multi-path effects become more 

severe as was shown in the previous section and experimental results obtained in this situation are shown 

in Figure 3-12. These results are based on 1600 transmissions for the period June-September 1961 [5]. 

The second parameter used for channel characterization is fading rate, but before discussing and 

quantifying rapidity of fading, it is appropriate here to discuss severity of fading [8] which at first sight 

18 



may appear to be a possible third characterizing parameter of HF channels. The assumption that the type 

of fading occurring on a single HF path has a Rayleigh distribution means, for example, that amplitude, U, 

of the envelope of a single unmodulated sine wave carrier frequency received via this path (Figure3-13) 

has a probability density function: 

(3.2.1) 

This is the Rayleigh probability distribution where vn is the r.m.s. voltage of the fading signal. The 

proportion of time that the fading signal exceeds a value Vo is given by the cumulative distribution func-

tion: 
00 

P( vo) = f r(v)dv (3.2.2) 
v 

Equation (3.2.2) has been evaluated for some numerical cases in Table I which shows the percentage 

of time (P( Vo » that a level relative to the median level of the fading signal is exceeded. 

The severity of the fading on a single path is therefore fixed by the fact that the fading is characterized 

by a Rayleigh distribution. This is distinct from the severity of selective, which is a function of the multi-

path present in the received signal as shown previously. Clearly, the worst case selective fading occurs if 

two equal strength paths are present in the received signal, producing nulls of infinite attenuation at cer-

tain frequencies-the number and location of the nulls in the signal passband being a function of the mul-

tipath spread. If the Rayleigh fading is present on both paths and there is no correlation between the 

fading on each path, the depth and location ofthe nulls will vary with time. However, the selective fading 

is still at its most severe if the r.m.s. values of the fading amplitudes on the two paths are equal. 

Rapidity of fading is determined by the channel auto-correlation function in time or its corresponding 

power density spectrum [8]. It has been shown [8] that this auto-correlation is generally in the form: 

R(t) = R(O)exp( -t 2/2t 0 ) (3.2.3) 

This Gaussian auto-correlation function means that the power density of the fading is also Gaussian 

with a standard deviation of lit 0, known as the correlation (coherence) bandwidth. Fading rapidity can 
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also be expressed as the number of positive crossings per unit time through any specified level. If the fad

ing has a Rayleigh distribution, the correlation bandwidth f s is related to the fading rate, f ,., as follows: 

f r= 1.475 fs (3.2.4) 

Finally, referring to Figure 3-9, the total frequency spread of the faded signal is twice the correlation 

bandwidth of the fading component which modulates the wanted signal, so that a frequency spread of 1 

Hz corresponds to a fading rate of 44 per unit. Typical fading rates for HF channels are between 6 and 16 

per minute. 

A useful technique for displaying the time varying characteristics of an HF channel is the fadeogram 

[9]. This can serve as a useful aid to characterizing practical channels. An example of a fadeogram is 

given in Figure 3-13. It shows the variation of a channel's amplitude characteristics with frequency and 

time. Amplitude variations are shown as variations in intensity on the display, the lighter the display the 

greater is the attenuation at that point. The fadeogram of Figure 3-13 represents a two path signal (after 

demodulation to the voice band) with a Doppler shift of 0.1 Hz on one path and a multipath spread of 

0.67 ms. 

Several attempts have been made at HF channel characteristics [9, 10]. The USAEL classification [9] 

is given in Table 3-3. Here, fading rate is given as the speed of propagation of a selective fade through a 3 

kHz band. Another classification made by CCIR [10] is given in Table 3-4. These are suggested parame

ter values for the testing of HF radio communication equipment on an HF channel simulator. The latter 

models HF channels as two independently fading paths with equal amplitude in the absence of fading, 

equal frequency spreads and no frequency shifts. The HF channels used for test purposes in this thesis are 

based on the CCIR conditions and are given in Table 3-5. The same two path model is assumed, but con

ditions for flutter fading have been altered because the CCIR conditions represent extremely disturbed 

conditions produced by ionospheric storms [1]. The flutter fading conditions given inTabI e3-5 represent 

a fading rate of 88 per minute, which is five times worse than typical. The multipath spread has been 
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increased to 3 ms. These spreads are possible on very long distance links. This multi-path spread means 

that there will on average be ten selective fades in a 3 khz signal bandwidth. 

Section 3.3 Model of HF Channel 

There are two methods available for testing the performance of a transmission system for use on HF 

radio channels [10]. First, the constructed equipment can be used over actual HF channels and its perfor

mance evaluated by error rate measurements. This method of testing has two main disadvantages. First, it 

is difficult to ascertain the weaknesses of the equipment from its performance because poor performance 

may have one or several causes such as impulsive noise, fading rate, multipath or Doppler shift. Sec

ondly, if one system is being compared with another, it is impossible to test both systems over exactly the 

same channel as it is continuously changing over time. The only way of comparing the system is to per

form a large number of test transmissions and find the average performances, but, again, this gives no 

information about the relative strengths and weaknesses of the system in dealing with different forms of 

HF channel distortion. 

The alternative to testing over real channels is to test over a channel simulator [10-14]. This is a 

device that models real channels and simulates the distortion found on such channels. The most important 

properties of simulators are control of distortion and repeatability. Control of distortion means that weak

ness of transmission systems can be isolated by introducing only one or two forms of distortion and 

reducing or omitting other forms of distortion. Repeatability means that a given channel with a certain 

time varying sequence can be obtained as often as required so that two or more different systems can be 

compared on identical time-varying channel conditions. 

Many simulator designs exist and the more relevant ones have been included in the reference [ll, 12]. 

These are baseband simulators, which means that the HF radio transmitter and receiver modulation and 

demodulation processes are assumed perfect and linear and therefore can be omitted, leaving only the sig

nal from the equipment under test, available for processing in the simulator. The main advantage of base-

21 



band simulators is that the input signal extends over a few kilohertz only; so modem digital techniques 

can be employed in their design, thus alloWing very accurate and repeatable characteristics to be 

obtained. Hardware simulators would obviously require the existence of hardware equipment to carry out 

the tests. We,however, modeled the equipment and the HF channel in software to develop detection pro

cesses. This in tum allows considerable flexibility and scalability in the development and understanding 

of the entire system in a computer simulation environment and from an academic point of view the least 

expensive. 

The channel model used in the computer simulation is given in the block diagram form in 

Figure 3-15. This is also the model used in the hardware simulators mentioned earlier. This model con

forms to the CCIR requirement for a simulator which should have two independently Rayleigh fading 

multipath components of equal mean level [10]. The additive noise used in the model has a Gaussian 

probability density function although, on actual channels, this additive noise term is composed of contri

butions from several sources and can highly impulsive in nature [1-5]. For HF radio links naturally 

occurring, additive noise is mainly "atmospheric noise," which is near Gaussian. Man-made noise is gen

erally impulsive noise. A good tolerance to additive Gaussian noise is a very good indication of good tol

erance to atmospheric noise. Stationary, additive white Gaussian noise is assumed because it is the 

standard and generally the most reliable model of the actually occurring noise, and it can be easily mea

sured. If a continuous sine wave signal, V sinw c t, is fed to the input of this channel model, its output is 

given by: 

Vo (t) = v(B 1 (t)sin(w c t + 91 (t» + B 2 (t)sin(w(t+ T) + 9 z(t» + v n (t) (3.3.1) 

B 1 (t) = Randomly time-varying amplitude which has a Rayleigh probability Density function. 

91 (t) = Randomly time-varying phase with a uniform probability density function in the range 

0-21t 

B2 (t), 92 (t) = as Bl (t), 91 (t) but uncorrelated with them. 
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t = Multipath spread 

vn (t) = Gaussian noise voltage 

A digital implementation of the HF channel model in a computer program means that it is neither pos-

sible nor necessary to represent the fading signals Ni (t) as continuous. These signals must be represented 

as discrete samples in time. Exploiting the Nyquist sampling theoreom, the minimum sampling rate 

required to adequately represent N j (t) is twice the highest frequency contained in them. As the fading 

signals have Gaussian spectra, they theoretically contain all frequencies. For example, a 2 Hz frequency 

spread could be adequately represented by a sampling frequency of 10Hz without any aliasing occurring. 

However, in computer simulations involving the HF model used in the computer simulations, the mini-

mum sampling rate required to represent the N j (t) is determined by the sampling rate of the transmis-

sionldetection systems under test. Our systems were operating at 2.4 kbitsts data rate or 1200 samples per 

second for a QPSK constellation. Each sample has to be modified by the fading; therefore a sampling rate 

of 1.2 kHz for the N j (t) is adequate. 

Table 3-1 Effect of Transmission Frequency on Multipath 

Transmission 
Frequency Number of Paths Received 

MHz 

>21.36 0 

14.4- 21.36 . 1 (F2) 

10.84 -14.4 2 (E andF2) 

<10.84 3 (E, FI and F2) 
. 
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Table 3-2 Theoretical evaluations of the percentage of time that a level relative to the median level 
of the fading signal is exceeded 

Level relative to 
Percentage of time Level 

median level offading 
exceeds median level 

signal 
(%) 

(dB) 

8.22 I 

5.21 10 

0 50 

-8.18 90 

-18.39 99 

Table 3-3 U.S.A.E.L. Classification of HF Channels 

Multipath Spread 

Fade rate through 3 Mild O-OAmS the Medium: 0-4.1 mS. Severe: ;:: I mS Three 
kHzband selective fade Two but not three or more selective fades 

selective fades 

Slow: 10 secs or A-I B-1 C-l 
more 

Medium: 2 - 10 secs A-2 B-2 C-2 

Fast: 2 secs or less A-3 B-3 C-3 

Table 3-4 C.C.I.R Classification of HF Channels 

(I) Good Conditions 
Multipath spread :0.5mS 
Frequency spread: 0.1 Hz 

(2) Moderate Conditions 
Multipath spread : ImS 
Frequency spread :. 0.5 Hz 

(3) Poor Conditions 
MuItipath spread : 2mS 
Frequency spread : I Hz 

(4) Flutter fading (if required) 
Multipath spread : 0.5 mS 
Frequency spread : 10 Hz 
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Table 3-5 Characteristics of the Three HF Channels Used in Subsequent Computer Simulations 

Channel Channel 
Frequency Multipath 

Number Description 
Spread Spread 

(Hz) (mS) 

1 Moderate 0.5 1.0 

2 Poor 1.0 2.0 

3 Flutter Fading 2.0 3.0 

Table 3-6 Filter Tap Values to Obtain the Required Frequency 

Frequency TJ T2 T3 T4 Ts Spread (Hz) 

0.5 -1.9 0.903135 -1.9276 0.9316561 -0.946 
1 -1.8036 0.8155376 -1.8524 0.8680474 -0.895 
2 -1.6218 0.6650064 -1.6954 0.753639 -0.801 

Height 

500 km 

(A) ionized layer (C) 

air density strength of solar 
UV radiation 

50 km 

ion density 

Figure 3-1 Formation of an Ionized Layer 
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Figure 3-6 Impulse Response of Multipath Channel 
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Figure 3-14 Baseband HF Simulator 
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~-----------~------------............. 
Chapter 4 

Transmitter and Receiver Filters for the 2.4 K BitS/Sec 4-Point QAM 
H. F. Modem 

(A) Requirements of Filtering 

The combined transmitter and receiver filters should have a sampled impulse response which has as 

short a duration as possible. 

The receiver filter should give adequate attenuation of unwanted components which may be present 

in the signal, e.g. unwanted mains frequency components at 50 Hz and odd harmonics to 250 Hz. There 

may also be tones present at the high frequency side of the signal, for example 4 kHz. 

(B) Filter Desi gn 

The ideal equivalent baseband sampled impulse response of all the combined transmitter/receiver fil-

ters is a delta function (see Figure 4-la). 

In earlier computer simulations, a more practical raised cosine impulse response was assumed which 

gives the sampled values. 

010 (4.1) 

when sampling phase is correct (see Figure 4-lb). A perfect raised cosine pulse has a frequency spec-

trum which extends to infinity, but it can be closely approximated by a Gaussian impulse response which 

gives the sampled values 

............. x 1 x ........... . (4.2) 

when sampling phase is correct (see Figure 4-lc). When x :::; 0.01 this is a good approximation to the 

raised cosine pulse. All other samples «x. 

Given a required sampled Gaussian impulse response, an expression can be obtained for the continu-

ous impulse response in the form, 
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f(t) = exp ~-;f) (4.3) 

T = sampling period. 

From this, the required filter characteristic which has this impulse reponse can be obtained from the 

Fourier transform pair, 

2 2 
e -It (V1) => ITI exp (-1t(fT) (4.4) 

The larger the value of x in (2), the lower is the required bandwidth to generate that impulse response. 

In this work, the largest acceptable value ofx is 0.01, giving the response shown in Figure 4-2. 

From the above data, 

2 
f(t) = e -It(1.I207 1.) 

T 

which transforms to 

2 (normalized) 
F(t) = e -2.1432 (IT) 

(C) Filter Tests 

In order to check that this Gaussian impulse response can be obtained in the bandwidth obtainable in 

the radio equipment, the Gaussian filter was combined with the radio filter characteristics, and the result-

ant impulse response was obtained using a computer program. Further tests were run to ascertain the 

effect of low frequency attenuation which may be necessary if mains interference is a problem. 

The tests were run as follows: 

(1) Gaussian amplitude/frequency response 

- this was run simply to ensure that the correct Gaussian impulse response was obtained. (see 

Figure 4-3). 

(2) Gaussian + extra attenuation at low frequencies - the extra attenuation was obtained by adding a 

3rd order high pass filter characteristic with break frequency at 500 Hz (see Fi gure4-4). 
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(3) = (2) + radio filter amplitude and group delay response 

- this shows the effect the radio filter has on the required Gaussian response 

(Figure 4-5). 

(4) = (2) + radio filter group delay response 

- this shows the effect of the radio filter's group delay characteristic only on the Gaussian response 

(Figure 4-6) 

(5) = (2) + radio filter amplitude response 

- this shows the effect of the radio filter's amplitude characteristic only on the Gaussian response 

(Figure 4-7). 

(0) Conclusions 

The tests in (C) show that it is possible to obtain the required Gaussian response if passband equaliza-

tion of the radio filter group delay characteristic is performed. This could be included in the design of the 

transmitter filter by pre-distorting the signal before it enters the radio. The filtering would be split equally 

between transmitter and receiver for optimum noise performance. 

1 

, -. ~ . 
-2T -T +T 2T t 

Figure 4-1a 
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ChapterS 

2400 BitS/Second Modem 

Transfer functions of transmitter and receiver filters in cascade, H(f) is assumed to have the following 

shape: 

H(f) 

I I 

-2800 -1600 -400 400 1600 2800 f(Hz) 

Figure 5-1 

bearing in mind that the signal element rate is 1200 bauds. 

Thus the transfer function B(f) of the resultant baseband channel is 

B(f) 

-1200 o 1200 fHz 

and the corresponding impulse response is 
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H(t) 

-0.8333 o 0.8333 t(ms) 

This means that when the HF radio link introduces no distortion, there is no intersymbol interference 

in the received sampled signal, the sampled impulse-response of the channel being 

1 00 ... 

However, if now the phase of the receiver timing waveform is shifted by 50%, the sampled impulse 

response becomes approximately 

0.5 0.5 0 O. 

with a loss of 3dB in tolerance to additive white Gaussian noise. 

Again, when the multipath effects on the HF radio link give a resultant impulse response 

-T o T 2T 3T 

with the corresponding sampled impulse response 

10YzYzOO ... 
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and if now the first component (pulse or echo) fades to zero leaving 

1/ 

) 
T 2T 3T 

with a sampled impulse response 

00141400 ... 

there is again a loss of 3dB in tolerance to additive white Gaussian noise relative to that with the optimum 

phase of the timing waveform for these conditions. Thus, the arrangement we are now using is subject to 

a maximum penalty of 3dB in tolerance to noise, and furthermore, it requires the timing waveform to be 

adjusted adaptively to a given phase. 

A preferable arrangement seems to me to be the following: 

A) Use the same transmitter and receiver filters to give a resultant transfer functions H(f) and B(f) as on 

page I, but now sample at exactly twice the rate as before. 

The Viterbi algorithm detector now accepts two new received samples for every detection (vector 

expansion and selection) process, but is otherwise basically unchanged. The disadvantage here is the high 

correlation between neighboring (adjacent) noise components. 

B) Let the transmitter filters now have a transfer function H(f) as shown in FigureS-Ion page 47, and let 

the receiver filters have the following transfer function 
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· 

G(f) 

r I-----~ ------1 I 
-2800 -400 400 2800 

so that the resultant transfer function is still H(f) as before. The average transmitted energy per bit is now 

less than before so that larger magnitudes of si must be used for the same average transmitted energy per 

bit. 

If the resultant transfer function of the receiver input filters and demodulator is 

A(f) 

c 

I I 
-1200 1200 

then the variance of the real ill: imaginary component of a resultant complex valued noise component of 

the detector input is now 

where Y2 No is the two-sided power spectral density of the white Gaussian noise at the input to the 

receiver input filter. 
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----------------------............. 

The advantage of this arrangement is that the noise components are uncorrelated so that the given 

received signal is detected in the optimum manner. Also, the bandwidth of the transmitted signal is 

reduced. 

Each of the two arrangements (A) and (B) have a typical advantage of around I Y2 dB over the current 

system. The arrangements also avoid the need for adjusting the receiver timing waveform to any particu

lar value. There is a strong case for trying the double-sampling systems, since they don't involve much 

increase in equipment complexity. 
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Chapter 6 

Detection of Multilevel QAM Signals 

The basic arrangement assumed here is that used in the systems lB-SB in the paper Detection process 

for severely distorted digital signals (1), last modified according to the arrangement where only the first 

significant component of the latest received signal-element to be involved in the detection process is 

expanded. This arrangement will now be explained. 

The transmitted data symbols {~} are assumed to be 16-level and such that 

s' =so'+j'SI' 1 .1 ,1 

where 
Sl,i = ±l or ±3 

The sampled impulse-response of the channel is 
y= YOYI ... Yg 

where the {Yi} are complex valued. 
The sample received at time t = (i + f) T 

is 

g 

ri+f = L si+f-h Yh + wi+f 
h=O 

where wi+f is the Gaussian noise component. 

SO,i = ±1 or ±3 

Just prior to the reception of ri+f. the receiver holds in store k vectors {x i-d 

where 
Xi. I = xi·n xi.n+1 ... xi.1 

(6.1) 

(6.2) 

(6.3) 

and Xh, for h = i-n, i-n+l, ... , i-I, has one of the 16 possible values of the data symbol sh' On the recep-

tion ofri+f. each of the vectors {Xi.d is expanded into 16 vectors 

where xi.n' xi.n+ I' ... , Xi_I have the given values in Xi_I' for each of the 16 expanded vectors, but ~ has its 

16 different possible values in the 16 vectors. 
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There are therefore 16k expanded vectors. 

Let 

Xi = Xo,i + jx l,i 
(j= H) 

where XO,i = ±I or ±3 
Xl,i = ±I or ±3 

It is assumed that Y f is the first significant component of Y, and of course 0 ::; f::; g. 

On the receipt of ri+f' when the receiver forms the 16k expanded vectors 

it needs to evaluate for each of these vectors the corresponding cost di, which is determined as follows. 

Let 

lIa + jBII = lal + IBI (j= H) 

for any real-valued quantities a and B, where 1a.1 and IBI are the moduli or magnitudes of a and B, respec-

tively. Also, let 

g-f 
vo = ri+f - L xi_h Yf+h 

h=O 

for Q = I, 2, .. _, f 

Then 
f 

di = IIUi-III + L 
Q=O 

Q 

g 

L 
h=O 
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(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 



Notice that vo is not given by setting Q, 0 in equation (6.5). Having detennined d i from equation 

(6.8), IIVill is detennined from equation (6.7), ready for the evaluation of dj+I' 

Letu = uo+ju, 

g-f 
= ri+f - L i-h Yf+h 

h = I 

(j = IT) 

where Uo and u, are real-valued quantities. Then, from equation (6.4), 

vo = u - xi Yf 

= Uo + ju, - (XO,i + jXI,i) (YO,f+ jyl,f) 

= (uo - Xo, i YOf + XI'i Ylof) + j(uI - Xo,i YJof- XI'i YO,f} 

where xi = xO,i + jx I 'i 

XO,i, x I,i' YO,f and Y I,f being real-valued quantities. Thus 

(6.9) 

Associated with each original vector xi_I that is expanded into m vectors {Xj-n xi_n+1 ... xd, there is 

just one value ofvi for each value of i in the range 1 to f, since none of these {vd are functions of xi' 

There are, however, 16 values of vo corresponding to the 16 possible values of xi' 

It can readily be shown that for some of the typical possible values of the parameters involved. 

IIvoll = I Uo - Xo,i (YO,f+ Yu}1 + I urxI,i (YO,r-YI,f}1 

in which case, the four possible values of 

luo - Xo,i (YO,f + Yu}1 

corresponding to the four possible values of xO,i can be evaluated as can the four possible values of 

corresponding to the four possible values of xI,i' and now the 16 possible values of IIvoll are given by 

the different possible combinations (sums) of the two sets of four values taken two at a time. This tech-
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nique could reduce the amount of computation required to evaluate the 16 possible values of IIvoll. Unfor-

tunately, it can also be shown that for certain typical values of the parameters involved 

so that this technique obviously cannot be applied in the manner just described. However, all is not lost 

since it is possible to arrange matters so that the above basic technique can be applied. 

Instead of using the cost dj, as given by equation (6.8), the detector now uses the cost 

f 
L + Q 

Q=I 

where yr* is the complex-conjugate of Yr and as before 

g-f 
Vo = ri+r L xi:h Yr+h 

h=O 

= u - xi Yr (from equation (6.9» 

I 
Yr* I Yr* 

so that Iyd Vo = lYf[ u 

Yr* 
where q = lYf[ u 

= qo + jql 

qo and qI being real-valued quantities. 

= lI(qo -Iyd Xo.i) + j(ql - Iyd xl,i) 11 

= 1 qo -Iyd Xo,i 1 + Iql-Iyd XI,il 

and now the 16 possible values of III~i voll 

are given by the 4 possible values of 
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and the four possible values of 

taking all combinations two at a time. 

I~~ is a unit vector in the complex numbers plane so that II~d* vol = Ivol, but in general 

* . 
111~d voll *- IIvoll· The latter, however, does not matter very much since its effect is no worse than 

that of using the moduli-sum 11 . 11 in place of the Euclidean distance I· I, which is already being done. 

Having said this, it can be seen that a proper multiplication is now required and if there is, in addition, 

some small degradation in performance due to the fact that 

(which, however, need not necessarily be the case,) there does not, on balance, appear to be any very 

great advantage in using this technique. 

It depends critically on the additional complexity involved with the multiplication. 

Where Euclidean distances are used, the technique just described can be applied (with 11 • 11 replaced 

by the appropriate function of 1·1) without the need for an additional multiplication, so that in this case a 

useful simplification should always be possible. 

The most promising simplification to the 16-point QAM system under consideration here is the fol-

lowing modification. It has so far been assumed that 

Si = SO,i + jSl,i 

where sO,i = ± 1 or ± 3 
sI,i = ± 1 or ± 3 

Now let Si = ai + bi 
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where a; = ± 2 ± 2j 
bi = ± 1 ±j 

Notice that in using a 16-point QAM signal whose possible symbol values are shown as follows. in 

the complex number plane each point corresponds to a sequence of four binary digits. i.e. 0100 or 1110. 

etc. 

1101 1111 
• • • • 

1100 1110 
• • • • 

1000 1010 
• • • • 

1001 1011 
• • • • 

It is essential that Gray coding is used. such that for any two immediately neighboring points of the 

16-point QAM signal, the two corresponding binary sequences differ in only one binary digit. This mini-

mizes the error rate in the decoded binary signal at the output of the receiver. Clearly with the new signal 

representation involving a; and bi• the appropriate coding must be used to generate the corresponding 

binary digits. and. of course. the computed error rate must be that in the decoded (and detected) binary 

digits and not that in the detected data symbols I si! . 

The new arrangement operates essentially in the same way as the previous system except that each 

data symbol is now treated as the sum of two symbols ai and bi. The system operates .as follows: 

Just prior to the reception ofri+f' the receiver holds in store k vectors IXa, i-I} 

where 

X.,i.1 = Xa,i-n X.,i_n+1 ... Xa,i-I 

and x.,h' for h = ion. i-n+l •...• i-I. has one of the four possible values of the data symbol ah' and the 

receiver also holds in store k vectors IX b,i-I} where 

Xb,i_1 = xb,i-n xb,i-n+ I ... xb,i_1 
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and xb h' for h = i-no i-n+ 1 •...• i-I. has one of the four possible values of the data symboI1p,. Thus there 
, . 

are 2k stored vectors. The vectors {Xa,i.tl are stored in groups offour. the four vectors in anyone group 

all having the same value of xa,h for some given value of h. For instance. there could be eight groups of 

four vectors 

{Xa,i.l} corresponding to the four different possible values OfXa,i_1 and the four different possible val-

ues of xa,i.2' This would give 32 stored vectors {Xa,i.tl and 32 stored vectors {Xb,i.tl. and so 64 stored 

vectors in all. Each vector Xa,i-I is associated with the corresponding vector ~,i-I' the two vectors 

together defining the vector Xi.1 in equation (6.3) for the original system. Each of the kpairs of vectors is 

associated with a cost. dj.I' which is evaluated exactly as previously described. the vectors Xa,i-I and Xb,i-

I being. for this purpose. replaced by the corresponding vector Xi-I' 

On the receipt of Yi+f. each of the k vectors {Xa,i. tl is expanded into four vectors 

{Xa,i.n xa,i·n+1 ... xa,i-I xa,il 

where xa,i.n. xa,i-n+1 •...• Xa,i-I have the given values in Xa,i.l. for each of the 4 expanded vectors. but Xa,i 

has its four different possible values in the 4 vectors; there are therefore 4k expanded vectors. The 

receiver now evaluates vo. vI •...• vf and hence dj (equation (6.8» for each expanded vector. remember-

ing of course that the corresponding stored vector Xb,i.1 is involved in these computations and taking xb,i 

to have the value zero in every case. k of the 4k expanded vectors are now selected in the following man-

ner. 

The receiver selects k vectors according to the arrangement of system SB. if possible. or system 3B if 

not (see the paper Detection processes for severely distorted digital signals (1). The selection process 

must. however. be modified slightly to suit the new situation. Consider for example the selection of 32 

stored vectors {Xa,i} according to system 3B. For each of the 16 combinations of possible values Ofx",i.1 

and xb,i.I' the detector selects a vector Xa,i together with the associated vector Xb,i_1 and stores the vector 

X.,i' giving 16 stored vectors. Then. for each of the four possible values of x.,i' the detector selects a vec-
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tor X.,i together with the associated vector ~,i-l and stores the vector X.,i. This is repeated another three 

times to give another 16 stored vectors. Notice that the detector must not select four vectors {X.,i}, in 

turn, for each value of x.,i' since this technique leads to the merging of the vectors, and hence to an effec

tive reduction in the numbers of stored vectors. 

Having selected k vectors {Xa,d and stored these, each one of the vectors being associated with the 

corresponding one of the stored vectors {Xb,i-l}' the two vectors of any pair completely defining the cor

responding sequence of temporarily detected data symbols, the k vectors {Xb,i-l} are now expanded, each 

giving 4 vectors 

{xb,i-n xb,i-n+l ... ~,i-l xb,il 

where xb,i-i' xb,i-n+i' ... ,xb,i-l have the given values in Xb,i-l' for each of the four expanded vectors, but 

xb,i has its four different possible vectors in the four vectors. The receiver now evaluates di for each 

expanded vector, remembering, of course, that the corresponding stored vector X.,i is involved in these 

computations. k of the 4k vectors are now selected in the following manner: 

The receiver selects k vectors {Xb,d according to the arrangement of System 5B, if possible, or Sys

tem 3B if not. Consider for example the selection of 32 stored vectors {Xb,i} according to System 3B. For 

each of the 16 combinations of possible values of xb,i-l and x.,i-i' the detector selects a vector Xb,i 

together with the associated vector X.,i and stores the two vectors together with the associated value of d;.. 

This gives 16 stored pairs of vectors and associated costs. Then, for each ofthe 16 combinations of possi

ble values of xb,i and x.,i' the detector selects the appropriate vectors Xb,i and X.,i' and stores these 

together with the associated {d;.}. This gives a total of 32 stored pairs of vectors and associated costs {d;.}. 

The arrangement just described has the advantage that the k = 32 stored vectors expand to just 4k = 

128 vectors, but it has the disadvantage that because the {xb,d are temporarily ignored when the vectors 

{X.,i} are selected, there is bound to be some loss in performance which could be significant. 

The arrangement with 32 stored vectors, just described, can be further simplified as follows: When 
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the detector selects a vector Xa,i together with the associated Xb,i-I for each of the four possible values of 

instead of then repeating this operation another three times, the selection process now tenninates to give a 

total of 16 + 4 = 20 stored vectors. The process then continues as described. It is not clear as to what deg

radation in perfonnance will result from this simplification or whether it is in fact a useful simplification. 

An important property of the basic technique just described is that it can be applied to give a mean of 

more than the two columns that are used in the example described. 

The important property of this selection process here is that whenever a vector Xa.i is selected for a 

given value of say xa,i.1 (or it could be Xa.i or xa,i-2' etc.) then associated with this selected value of 

xa,i_I' four pairs of vectors IXb,i} and Xa,i} must always be selected, having the given value OfXa,i_1 

and also the 4 possible values of xb,i_I' Thus the resultant vectors IX;} are always selected in groups of 

four, having the four possible values of some component xh, that lie in one of the four quadrants: 

Bearing this in mind, it can now be seen that the selection process for the stored vectors can be modi

fied as follows: 

When selecting the 32 stored vectors I Xa,;}, these are selected in eight groups of four vectors, the 

four vectors in anyone group having a given value of xa,h and being associated with four vectors IXb,;} 

having the four different possible values of xb,f' With this arrangement, the eight groups of four vectors 

I Xa,;} can be selected to give either 
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a) the four possible values of xa,i-l and the four possible values of xa,i, as in the example already con-

sidered, or 

b) two possible values of xa,i-2' two possible values OfXa,i_l, and the four possible values OfXa,i' or 

c) one possible value ofxa,i_l, three possible values OfX"i_l and the four possible values of xa,i 

Note that in (b) above the two possible values of xa,i-2 have been determined from the previous detec-

tion process, so that no selection is involved here in which of the values of !f.,i-l to take. Of course, if the 

wrong value of xa,i-2 is selected, it is most unlikely that a complete set of 4 pairs of vectors {x",i} and 

{XbJ} will be available for selection. In the other cases there is a choice in which values of Xa,i-2 or x"i_l 

to take, and these should be taken as the values which give the lowest value of ~, when considering all 

four vectors in each group. 

Obviously there are other arrangements which could be better or simpler, but the three selection pro-

cesses listed on mentioned above are certainly worth considering. 

A further study of the problem suggested that the multiplication of Vo by yt lted in an improved 
IYrl 

tolerance to noise since when the coefficient Y r of Xi in 

Vo = u - Yrxi 

is real then the use of the moduli-sum as the distance measure, i.e. 11 Vi 11, gives the same decision bound-

aries and hence tolerance to noise as does the Euclidean distance. Since the mUltiplication of the signal Vo 

• 
by yf Id involve extensive equipment complexity, a simpler arrangement would be to change the 

I Yrl 
sampled impulse-response of the channel itself by effectively multiplying the input signal after sampling 

• 
by yf. There should now be a further reduction in the complexity of the system. 

I Yrl 
When selecting the value of Xi so as to minimize the error signal v 0, where 

Vo = u - Yrxi 
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and in general u, Yf' xi and Vo are complex valued, the Euclidean distance is minimized when I Vo I is min-

imized or I u - Yf Xi I is minimized so that X; must be chosen to minimize this distance. When Yf is real, the 

possible values of Yf Xi are as follow in the complex number plane: 

• • • • 

• • • • ____________ ~---!.~~t====u 

• • • • 

• • • • 

It can be seen by simple arguments of symmetry that the possible value of )T X; that is now at the min-

imum Euclidean distance from u is also at the minimum moduli-sum distance regardless of where u is. 

Thus both distance measures lead to the same decision boundaries and so to the same tolerance to noise. 

However, when Y f is complex valued, the possible values of Y f Xi could be as follows: 

• • • • • • • • • 
• • • • • 

The Euclidean and moduli-sum distance measures are not now the same. Since under the named con-

ditions, the Euclidean distance measure is the correct (or optimum) measure, the moduli-sum distance 

measure is now sub-optimum. 

Checks must however be made with different multiplying constants on the received signal to check 

the effect of these on the overall detector performance, since this might be adversely affected by the 

change. 

In principle, it seems likely that the reason why the performance of the 16-point QAM system is infe-
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rior to that of the 4-point, at least by 112 dB or so, is simply that an insufficient number of stored vectors 

are available for use in the 16-point system. Any arrangement which either leads to an increase in the 

. number of stored vectors or else results in a more efficient use of these vectors, should give a perfor-

mance at least as good as that obtainable with the 4-point QAM system. The techniques described here 

could help towards this end. 
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Chapter 7 

Reduced-Complexity Detection Process for Multilevel Signals 

The arrangements described in Chapter 6 use the fact that 

where 

bi = ± 1 ±j 

The receiver here forms an estimate xa,i of lli where xa,i = ±2 ±2j • and an estimate xb.i ofbi• where 

Xb.i =±l ±j. 

On the receipt of ri+f the receiver first forms the possible values of x •. i and then using these values. it 

forms the possible values ofxb.i• hence determining the values {~} of the k stored pairs of vectors {X..i} 

and Xb.d. an important feature of the techniques considered is that in selecting the vectors {Xa,;} the 

receiver takes account of the previously selected vectors {Xb.i} and in selecting the vectors {Xb.il it takes 

account of the previously selected vectors {Xa,i}' an efficient use being therefore made of the prior 

knowledge of the received signal in any vector selection process. The price that is paid for this is that the 

receiver must take account of combinations ofthe vectors {x".il and {Xb.d each vector X..i being associ-

ated with four vectors {Xb.i}. Inevitably this reduces the simplification that can be achieved. For the 

greatest possible simplification of the basic system. the vectors {Xa,i} and the vectors {Xb.il must be 

selected quite independently of each other. The basis arrangement now to be considered operates in this 

way and achieves a substantial reduction both in the number of operations and the amount of storage 

required. It may not however operate very well. 

The first part of the receiver treats the received samples {Yd where 

g 
Yi = L i·h Yh+wi 

h = 0 
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as though Yi was in fact equal to 

g 
. L ai_h Yh + wi 
h = 0 

and it implements the detection process of System 5B on this assumption. The detection process is there-

fore that for a 4-point QAM signal. On the receipt ofY i+f the receiver now selects k vectors {Xa.i} where 

X •. i = x •. i_n+! xa,i-n+2 . .. Xa.i 

It then detects lI;-n+! as the value of xa,i-n+! in the stored vector Xa,i associated with the smallest <1j. di 

is here evaluated on the assumption that Si is equal to ai, so that no vectors {Xb,i} are anywhere involved 

in the evaluation of the {<1j} or the subsequent selection of the {Xad. On the detection ofai_n+! the , . 

receiver now discards any stored vector Xa,i in which Xa,i-n+! is not equal to the detected value of lI;-n+!' 

The detected value of ai_n+! is designated lI;-n+! and is added to the previous n+g+f-l detected values 

" , 
a i-2n-g-f+2 a i-2n-g-f+3 ... ai_n+! 

These are used to generate the sequence of n+f symbols {q Q ' for 

Q= i-2n-f+2, i-2n-f+3, ... , i-n+l 

where 

g 
qQ = L a'Q_hYh 

h=O 

and then the corresponding sequence of n+f symbols {r' Q ' for} 

Q = i-2n-f+2, i-2n-f+3, ... , i-n+ I 

where 

r' = r Q - qQ 

This is of course an arrangement of decision directed cancellation of intersymbol interference such 

that with the correct detection of the {a Q }, 

r'Q=rQ-qQ 
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g 

= I. (a Q -h + b Q -h) Yh + w Q 
h=O 

g' 

= I. b Q -h Yh + W Q 
h=O 

g 
I. Q-h Yh 

h=O 

Of course, only r'i_n+ 1 is generated as a result of the latest detection process, the other {r' Q } having 

been generated from the earlier detection processes and having been stored. No great equipment com-

plexity is therefore involved in generating the {r' Q }. 

The second part of the receiver now operates the {r' Q} assuming the correct detection of the {~} and 

so that the above equation holds. Just prior to the generation of r'i_n+1 the receiver holds in store k vectors 

{Xb,i-nf} where 

Xb,i-n-f = xb,i-2n-f+ 1 xb,i-2n-f+2 ... ~,i-n-f 

Just as in the first part of the receiver it is assumed that yf is the first significant component of 

Y = YoYI ... Yg 

so it is again assumed here that yf is the first significant component ofY. Hence, ~,i-n-f is the last compo-

nent of a stored vector just before the generation of r'i_n+I' 

Following the generation of r'i_n+I' the k stored vectors {Xb,i-nf} are expanded, their costs {di-n-f+l } 

, are evaluated on the assumption that 
g 

r' Q = I. Q -h Yh + w Q 
h = 0 , 

and k vectors {Xb,i-n-f+l} are selected, ready for the generation of r i-n+2' The value of bi-2n-f+2 is now 

detected as the value of xb,i-2n-f+2 in the stored vector Xb,i-n-f+ 1 that is associated with the smallest 

The selection process for the vectors {Xb,i-n-f+l} should be that of System 5B, the selection process 

being of course that for a 4-level signal in which xb,i-n-f+1 is the latest received data symbol, this being 

taken as that whose first significant component xb,i-n-f+1 bf is present. 

On the receipt of ri+f+ I' the m ::; k stored vectors (Xa) are expanded into 4m vectors, the value of m 
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depending upon the number of vectors that were discarded because x.,i_n+ 1 was not equal to the detected 

value of a;-n+I- The discarding of some of the stored vectors here means that the selection process must be 

that of System 5B and not System 3B, since the latter selection process will inevitably not always be able 

to select a full set of k vectors, whereas System 5B can and should now be arranged so that the numbers 

of vectors selected according to System lB is always such as to make a total ofk selected vectors. 

The advantage of the arrangement just described is that a large number of column scans can now be 

achieved quite easily since the symbols Xa,h and xb,h are processed quite separately and there is no ques

tion of selecting different combinations of values of xa,h and xb,h' For instance, when there are 32 stored 

vectors {Xa,i} and 32 stored vectors {Xb,h}, the selection process of System 3B would give 8 colunm 

scans for both the {X.,i} and the {Xb,h}' This compares with only 2 or 3 colunm scans obtainable with the 

arrangements previously described.Furthermore, the new arrangement is no more complex than those 

previously described_ 

The disadvantage of the new arrangement is that in the selection of the vectors {x..,i}' the compo

nents {Xb,h} are totally ignored and this could lead to a poor performance. 

The weakness of the new arrangement may possibly be overcome by the following simple modifica

tion. When the m stored vectors {X.,i_I} are expanded, on the receipt ofYi+rl each expanded vector 

Xa,i-n xa,i-n+I ... x.,i_I x.,i 

is associated with the corresponding vectors 

Xb,i-n xb,i-n+I ... xb,i-I xb,i 

where xb,i is taken as the one of its four possible values that mimmizes the cost di of the expanded vec

tors. Both the {X.,h} and {Xb,h} are now involved in computing di, and the {xb,h} associated with the 

expanded vector 

X.,i-n x.,i-n+I _. - xa,i-I x.,i 

were each determined in exactly the same way as was xb,i' that is, when forming the last component of 
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the corresponding vector. Associated with each of the k selected vectors {Xa,i} is the corresponding vec

tor Xb,i' 

Although the technique used here for determining the {Xb,h} does not constitute a particularly good 

selection process, they involve simply the selection of one of the four possible values of xb,i after the 

selection of xa,i in any expanded vector, and so do not greatly increase the complexity of the system. This 

may be enough to give a useful improvement in the selection of the k stored vectors {X.,i}' The {q Q } and 

{r' Q } are formed exactly as before, and the second part of the receiver again forms the k stored vectors 

{Xb,i-n-rl, exactly as described, the components {~.Q} here not necessarily being the same as any {x Q.h} 

involved in the selection s of the {X.,i}' 

Another disadvantage of the technique just described is that the delay in detection is approximately 

doubled, but this probably is not too serious_ The essential virtue of the system is its simplicity coupled 

with the great increase in the numbers of column scans. 

The reason for the discarding of the vectors {Xa,i} is to insure that there is only one sequence of val-

ues 

Xa,i-2n-f-g+2 x.,i-2n-g-f+3 ... Xa.i-n+l 

which are used to form the { q Q } this having in fact already been done in the evaluation of the {~}, so 

that no additional computation is involved in forming the {r' Q }. If however, the discarding of the vectors 

is found to degrade the performance of the detector or to lead to undesirable complexity, the {if Q } could 

be used to form the {qQ} in an additional operation, there being now no need to store any {x.,h} earlier 

than xa,i-n+ 1 and no need to discard any vectors. This is a slightly more complex system; but more versa

tile and less likely to lead to awkward problems. It could therefore well be the better approach. Indeed the 

small increase in complexity involved is the use of the {a' h} to generate the {r'h} as a special operation 

should be more than affected by the complications introduced by the discarding of vectors. 

A final point is that a slightly more complex and effective selection process could possibly be used 
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for the {Xb,h} that are associated with the selection of the {X.,i}, but of course this quickly leads back to 

the arrangements described in Chapter 6 so that there is not too much scope for change here. There is in 

any case no purpose in testing more complicated selection processes for the {l%,h} unless a satisfactory 

performance is not obtained with the other systems described here which should be tested first. 

The basic system just described is about as far as one can go in simplifying the detection process for 

multilevel signals. The basic system can itself be expanded as follows: Just as the receiver uses the finally 

detected values of the {a~ }, for ~ = i-2n-g-f+2, i-2n-g-f+3, ... , i-n+l, to generate the sequence ofn+f 

symbols {q~}, for ~ = i-2n-f+2, i-2n-f+3, ... , i-n+l, where 
g 

q~ = L. 'Q-h Yh 
h=O 

and then the corresponding sequence of n+f symbols {r' ~ }for Q = i-2n-f+2, i-2n-f+3, ... , i-n+l, where 
g 

qQ = L. 'Q -h Yh 
h=O 

so the receiver uses the finally detected values of the {b Q } for Q = i-3n-2f-g+3, i-3n-2f-g+4, ... , i-2n-

f=2 to generate the sequence of n+f symbols {qQ }, for Q = i-3n-2f+3, i-3n-2f+4, ... , i-2n-f+2, where 

now 

qQ = 
g 

L. 
h=O 

and then the corresponding sequence of n+f symbols {r' ~ }, where r' Q = r Q - q ~ as before. This is an 

arrangement of decision directed cancellation of intersymbol interference such that with the correct 

detection of the {b Q } 

r' Q = r Q - qQ 

g 
= L. h + b Q -h) Yh + w Q - b Q -h Yh 

h = 0 
g 

= L. Q -h Yh + w Q 
h=O 

The receiver now operates on these {r' Q }, assuming the correct detection of the {b Q } and so that the 

above equation holds. Thus, just prior to the generation of ri-2n-f+2 (which is the 

70 



of the n+f symbols {r' ~ } the receiver holds in store k vectors {Xa,i-2n-2f+ I} where 

Xa,i-2n-2f+1 = xa,i-3n-2f+2xa,i-3n-2f+3 ... Xa,i-2n-2f+1 

On the generation of r'i-2n-f+2, the k stored vectors {Xa,i-2n-2f+ I} are expanded to give 4k vectors 

{Xa,i-3n-2f+2 xa,i-3n-2f+3 ... Xa,i-2n-2f+2} 

and their costs {dj}are evaluated on the assumption that 
g 

r' = L ~ -h Yh + W ~ 
h=O 

Then k vectors {Xa,i-2n-2f+2} are selected ready for the generation ofr'i_2n_f+3' The value of 

lIj-3n-2f+3 is now finally detected as the value of Xa,i-3n-2f+3 in the stored vector Xa,i-2n-2f+2 that is asso-

ciated with the smallest dj. The selection process for the vectors {Xa,i-2n-2f+2 should be that of System SB 

as before (Notice that di here is of course dj-2n-2f+2)' 

Following the final detection of lIj-3n-2f+3 the receiver has the sequence of n+f+g finally detected val-

ues 

, , , 
a i-4n-3f-g-+4 a i-4n-3f-g+5 •.• a i-3n-2f+3 

and it uses these to fonn the sequence of n+f symbols {q ~ }, where now 
g 

q = L '~-h Yh 
h=O 

and ~ = i-4n-3f+4, i-4n-3f+S, ... , i-3n-2f+3 and then to fonn the corresponding sequence of n+f sym-

bols {r' ~ } where 

r' ~ = r Q - q~ 

and ~ = i-4n-3f+4, i-4n3f+S, .. _ , i-3n-2f+3 

The receiver now operates on these {r' ~ } assuming the correct detection of the {a ~ }, so that 
g 

r'Q = L ~-hYh +w~ 
h = 0 

Thus, just prior to the generation of r'i-3n-2f+3' the receiver holds in store k vectors {Xb,i-3n-3f+2} 

where 

Xb,i-3n-3f+2 = xb,i-4n-3f+3 xb,i-4n-3f-+4 .. - xb,i-3n-3f+2 
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On the generation of r'i-3n-2f+3, the k stored vectors {Xb,i-3n-3f+3} are expanded to give 4k vectors 

{Xb,i-4n=3f+3 xb,i-4n-3f+4 _.. Xb,i-3n-3f+3} 

and their costs are evaluated on the assumption that 

g 

r' Q = L I Q -h Yh +w Q 
h=O 

k vectors {Xb,i-3n-3f+3} are then selected, ready for r'i-3n-2f+4, and so on. 

The value of bi-4n-3f+4 is now finally detected as the value of xb,i-4n-3f+4 in the stored vector Xb,i-3n-

3f+3 that is associated with the smallest di-3n-3f+3' As before, the selection process of System 5B should be 

used. 

It can be seen that by expanding the detection process in the manner described, more reliable values 

are used for the {a: Q } and {b' Q } involved in the generation of {r' Q } through decision directed cancella

tion of intersymbol interference, for the final detection of the {a Q } and {b Q }. This should lead to a better 

detection process. Experience with similar techniques used in other applications suggests that no further 

useful improvement is likely to be achieved by any further expansion, but that a useful improvement 

should be achieved by the arrangement described. The weakness of this system is that it involves a dou-

bling of the equipment complexity, since it doubles both the amount of storage required and the number 

of operations. It also doubles the delay in detection. Notice that the technique of discarding vectors has 

been abandoned here; it does not, on balance, appear to be a desirable thing to do. 
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ChapterS 

Adaptive Arrangement of Near-Maximum Likelihood Detection Process 

Consider first one of the detection processes, Systems lA-SA, described in the paper Detection pro-

cesses for severely distorted digital signals. Just prior to the reception of the sample 

where 

g 

I. 
h=O 

Y = Yo YI ••• Yg 

(8.1) 

(8.2) 

is the sampled impulse-response of the channel, the receiver holds in store k vectors {Xi-I}, where 

Xj-I = xi-n Xj-n+I,'" xi_I (8.3) 

where Xj has one of the m possible values of the data symbol Sj' Associated with each stored vector Xi_I is 

!U!2_22 2 
i_I - UI ,+ U2 + ... + ui-I 

g 
and Uj = rj - I. Xj_h Yh 

h=O 

(8.4) 

(8.5) 

Notice that the vector Xi_I only contains the last n components of the corresponding complete (j-l) 

component vector 

which together with the (j-l) component vector 

detennines the associated !Uj-! f 

Following the receipt ofri each stored vector Xi_I is expanded into m (n+l) - component vectors 
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------------........ 

where Xj_n' Xj_n+ l' "" Xj_l have the values in Xj-l' for each of the m expanded vectors, but ~ has its m 

different possible values in the m vectors. There are now mk expanded vectors. The cost 

(8.6) 

of each of these is now evaluated using the appropriate value IUj-112 which has already been determined_ 

The detector then selects from the mk expanded vectors, k vectors according to one of the selection 

processes of the Systems lA-SA. It removes the first component, Xj_n' from each of these vectors to give 

the k vectors {Xj}, which are stored together with their associated costs. The detected value of sj-n+ 1 is 

taken as the value of the component Xj_n+ 1 in the stored vector 

Xj = Xj_n+l Xj_n+2 ••• Xj (8.7) 

which is associated with the smallest cost. 

The arrangement described so far is the conventional arrangement of anyone of the Systems lA-SA, 

as described in the paper. The adaptive detection process is derived from this in the following changes: 

The first change is to operate the detection process exactly as just described, but after a delay of p 

sampling intervals, where 1 :s; p:S; g. The parameter p is in fact the greatest delay (in sampling intervals) 

in the location of the first "significant" component Yf of the sampled impulse response of the channel (rel-

ative to the first component Yo), likely to be experienced over the time-varying channel. It is therefore the 

greatest value of f for the System lB-SB in the paper. Thus, instead of expanding the k stored vectors {~_ 

I} into mk vectors and then selecting k vectors {Xj} immediately after the receipt of Yj, this same opera-

tion is carried out immediately after the receipt of rj+p' 
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The second change is that just prior to the reception of Ij+p' the detector holds in store the p quantities 

{Zj_l,i} for i = 1,2, ... , P 
g - i 

where zJ'-1 i = L J'-I-h Yh+i , h=O 
(8.8) 

Immediately after the receipt of rj+p' but before any other operation, the detector evaluates 

Zj_l, p+1 
g - p-I 

L j-I-h=Yh+p+1 
h = 0 

x (8.9) 

The appropriate p+ 1 quantities {zj-1, il are now associated with each of the k stored vectors 

{Xj_I}, zi-I,i is an estimated signal component in rj_l+i' 

The third change is that following the expansion of the k stored vectors {Xj-I}, after the reception of 

rj+p' to give mk vectors 

the detector now decides that Yf is the first significant component of Y, where f is some positive integer in 

the range of 0 to g, This is done by examining Y and applying a suitable selection criterion for f (the cri-

terion probably being determined by computer simulation). 

The fourth change is that having made the above decision, the detector replaces Zj-I,f+I, as given by 

equation 8.8 by 

Z'f' J, 

g-f 
L j-Ii'Yh+f 

h=O 
x (8.10) 

This is achieved by adding Xj Yfto Zj_l,f+I' The {Zj_l,i} for i = 1,2, ... , p+ 1 and i;d+1 are left 

unchanged. 

For the m expanded vectors {Xj_n Xj_n+1 ... Xj} 

derived from anyone Xj-1, Xj has its m possible values. It follows that for these expanded vectors, "j,f has 

m different values, but any Zj-l.i has the same value (since it is independent of Xj)' 

The fifth change is that the detector, instead of associating with each of the mk expanded vectors the 
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corresponding cost Iui as determined by equation 8.6, evaluates 

v·2 = (r· 1 . - z, 1 .)2 J J- +1 -J-.l (8.11) 

for i = 1,2, ••• ,f,andalso 

(8.12) 

and then sets 

f+ I 
dj = IUj _112 + .L v? 

I = I 
(8.13) 

Each expanded vector is now associated with the corresponding cost dj. Using these costs, the k vec-

tors {Xj) are selected from the expanded vectors according to the selection process of one of the Systems 

lA-SA. [The selected vectors are stored together with the associated {dj} 1. The detector also evaluates 

(rj _ f x j-h y-;:,2 
\: b=O ") 

+ (8.14) 

for each stored vector, using the given value of IUj-ll2, ready for the next detection process. 

The sixth and final change is that for every stored vector Xj each 

Zj_I,i = 
g - i 
L Xj_I_h Yh+i 

h=O 

is now replaced by the corresponding 

g - i + 1 
Zj,i_1 = L j-hYh+i-1 

b=O 

(8.15) 

(8.16) 

for i = 2,3, ••• , p+I, Zj_I, f+1 having already been replaced by Zj,f' It can be seen from equations 8.15 

and 8.16 that 

Zj,i_1 = Zj_I,i + Xj Yi-I (8.17) 

so that no great complexity is involved in this change. 

The value of Sj_n+1 is finally detected as the value ofxj_n+1 in the stored vector Xj associated with the 
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smallest dj. 

At this stage, the receiver holds in store k vectors {Xj} [together with the associated {~} J. It also 

holds the quantities 

and IVi. It is now ready to receive rj+p+l' 

Since in any set of m expanded vectors that are derived from anyone vector Xj-l, Zj_l.i has the same 

value in all m expanded vectors for any given i, since Zj_l.i is independent of Xj' it is clear that v? has the 

same value in all m expanded vectors, for any given i in the range 1 to f, as can be seen from equation 

8.11. Thus, in the evaluation of <l:i for any expanded vector, 

f 
L 

i = 1 

f 
.2 _ ~ 
1 - ~ 

i = 1 
j-l+i - z.i-l.i (8.18) 

has the same value for all m expanded vectors that are derived from anyone Xj-l' Thus 

(8.19) 

and only the component (rj+f - Zj,f)2 in dj differs in any two of these expanded vectors. 

It can be seen that in the detection process just described, no unduly great amount of computation is 

required. 

The important property of this detection process is that it is fully adaptive, in the sense that the value 

of f chosen for anyone detection process in no way affects the operation of the process for this or any 

other value of f in any other detection process, and in each case the operation performed by the process 

is that appropriate for the given value of f, so that there is no degradation in performance due simply to a 

change in the value of f. 

The detection process can be simplified by using the "moduli-sum" as a distance measure (cost func-

tion) in place of the Euclidean distance (or sum of squares). Now 
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f + I 
dj = IU}!I +.L il 

1 = I 

where 

for i = 1,2, ••• , f, and 

and 
g 

IUj_11 = IUj_21 + Ir}! - L Xj_I_h Yhl 
h=O 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

Both of these arrangements should be tested to determine the loss in tolerance to noise incurred in 

using the moduli-sum distance measure. 

It can be seen that the moduli-sum distance measure avoids altogether the need for any mUltiplication 

or squaring operations and should therefore considerably reduce the amount of computation required. 

Thus if the reduction in tolerance to noise that results from the use of the moduli-sum is not much more 

than '12 dB, this is probably the preferred system. It is assumed here that a 4-point QAM signal is used, in 

which case, the equipment can handle xi as having one of the four values ±I ±j, which means that xi Yh is 

evaluated from Yh simply through sign changes and addition or subtraction. 
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Chapter 9 

Detection Process for a Time-Varying Channel 

A technique has recently been developed whereby it is possible, without undue complexity and with

out any adaptive linear prefiltering, to achieve near-maximum-likelihood detection of a sampled digital 

signal, where there is intersymbol interference extending over several samples of the signal. It is, how

ever, important here that the channel impulse-response does not undergo large changes with time, since 

when it does, a considerable increase in the complexity of the system may be required to maintain correct 

operation. The paper describes a development of the detection process whereby correct operation is 

achieved with a relatively simple system, even when the channel introduces severe frequency-selective 

fading of the type sometimes experienced over HP radio links. Results of computer-simulation tests are 

presented, showing the tolerance of a synchronous serial data-transmission system to additive white 

Gaussian noise, when a 4-point quadrature amplitude modulated signal is transmitted at 2400 bits/second 

over a model of an HP radio link, with two independent Rayleigh fading sky waves and frequency 

spreads of Yl, I and 2 Hz, and when the novel detection process is used at the receiver. Correct estimation 

of the channel is assumed throughout. 
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List of PrincipaI Symbols 

1. a = parameter involved in detennination of f 

2. bi = magnitude-sum distance between It+i and zk-l,i+l' for i=jO. 1 ••••• f-I 

3. ci = square of unitary distance between rk+i and zk.i.i+i' for i=O. 1 ••••• f-I 

4. c'i = square of unitary distance between r'k+i and Z'k.!,i+! for i=O. 1 ••• " f'~I . 

5. dk = cost associated with either a stored vector Qk or an expanded vector Pk 

6. f = location of first significant component in Y i 

7. f' = location of first significant component in Y'i 

8. g+1 = number of components in Yi of Y'i 

9. j= n 
10. m = number of stored vectors held by detector 

11. n = number of components in ~ 

12. Qk = n-component row vector whose ith component is xk.n+i 

13. ri = sample value of demodulated baseband signal at time t=iT 

14. r'i = sample value of demodulated baseband signal at time t=(i-\I2)T 

15. Rk = k-component row vector whose ith component is ri 

16. si = 4-level data symbol 

17. S'i = detected value of si 

18. sk = k-component row vector whose ith component is si 

19. T = reciprocal of signal element rate 

20. ui = possible value of wi 

21. Uk = k-component row vector whose ith component is llj 
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22. Wj = Gaussian noise component in rj 

23. W'j = Gaussian noise component r'j 

24. wk = k-component row vector whose ith component is Wj 

25: Xj = possible value of Sj 

26. Xk = k-component row vector whose ith component is Xj 

27. Yj'h = (h+ I) the component of Yj 

28. Yj'h = (h+I) the component of Y'j 

29. Y'j = sampled impulse-response of resultant baseband channel at time t=(i-V2)T 

30. Zj = possible value of resultant (total) data-signal in rj 

31. zk.l.j+1 = possible component of resultant data-signal in rk+j 

32. Z'k_l,j+1 = possible component of resultant data-signal in rk+j 

33. zk = k-component row vector whose ith component is Zj 

34 . .1. = relative transmission delay of two sky waves 

35. <I> = largest value of the integer f or f' 

36. a2 = variance of Wj 
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1 Introduction 

It is well known that when a transmitted digital signal has been subjected to severe amplitude distor

tion, which may vary considerably during anyone transmission or from one transmission to another, a 

useful overall improvement in tolerance to additive white Gaussian noise can be achieved by using a 

maximum-likelihood detector in place of a nonlinear (decision-feedback) equalizer.I -8 Unfortunately, in 

the implementation of a maximum-likelihood detector by means of the Viterbi-algorithm, an excessive 

amount of storage and an excessive number of operations per received data symbol are involved when

ever the sampled impulse-response of the channel has more than a few non-zero component~-3 This can 

be avoided by inserting an adaptive linear feedforward transversal filter alJead of the Viterbi-algorithm 

detector, the adaptive filter being adjusted to restrict the number of components in the resultant sampled 

impUlse-response of the channel and filter to an acceptable value.9-16 However, when the channel varies 

with time, there may now be difficulties in holding the linear filter correctly adjusted to achieve the 

required resultant sampled impUlse-response, and furthermore there may from time to time be a excessive 

reduction in tolerance to noise relative to that obtained with a true maximum-likelihood detector, due to 

the partial linear equalization of the amplitude distortion introduced by the channe1. I 

An alternative approach that has recently been studied is to modify the detection process itself so that 

... this operates without undue complexity as a near-maximum-likelihood detector, when there are several 

components in the sampled impulse-response of the channe1. l, 17·19 The adaptive linear filter that must in 

practice be used with a Viterbi-algorithm detector can now be discarded, thus avoiding the problems 

involved in the adaptive adjustment of the linear filter. For the correct operation of the near-maximum

likelihood detector, the sampled impulse-response of the channel must of course be estimated, but exten

sive computer-simulation tests (whose details are being published separately) have suggested that this can 

be achieved quite simply and to the required degree of accuracy, for the particular channels under consid

eration here, through the use of appropriate developments of known techniques. 20-22 
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Unfortunately, when the sampled impulse-response of the channel undergoes large changes during 

anyone transmission, alterations must be made, from time to time, in a critical parameter value of the 

near-maximum-likelihood detector (to be described later) and this can introduce appreciable complexity 

into the system. Some basic modifications have therefore been made to this detector to give a system that 

operates correctly and without complex equipment over a time-varying channel of the type just men

tioned. 

The paper describes first the near-maximum-likelihood detector,adapted for use with a channel hav

ing a time-varying complex-valued sampled impulse-response, and it then describes the various modifi

cations that have been made to this detector. The paper then presents the results of computer-simulation 

tests on the novel detector operating on a signal that has been transmitted over a model of an HF radio 

link. 
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2 Model of System 

The model of the data-transmission system is shown in Figur e9-1. The data-symbols {Sj}are statisti

cally independent and equally likely to have any of the four values ±l:!j, where j = f-l 

The baseband signal generator and linear modulator convert the input data-symbols {Sj} into a serial 

stream of signal elements, with an 1800 Hz carrier and an element rate of 1200 bauds, each signal ele

ment itself comprising the sum of two binary double sideband suppressed carrier amplitude modulated 

elements with their carriers in phase quadrature, the binary values of the "in-phase" and "quadrature" ele

ments being determined, respectively, by the real and imaginary parts of the corresponding data-symbol 

Si' The resulting 4-point (4-level) QAM signal is fed to the HF radio link where its spectrum is shifted 

into the HF band, by a process of linear single sideband suppressed carrier amplitude modulation, the 

resulting signal being then transmitted via two independently Rayleigh fading sky waves to the receiver, 

where it s spectrum is returned to the voice band by a process of linear single sideband suppressed carrier 

amplitude modulation. 

The linear demodulator in Figure 9-1 includes at its input a band-pass filter that removes as much of 

the Gaussian noise from the received signal as is possible without unduly distorting the data signal. The 

filtered signal is fed to two linear coherent demodulators whose reference carriers are in phase quadrature 

and have the same frequency, which is constant and equal to the average instantaneous frequency of the 

received signal carrier, thus eliminating any constant frequency offset in the received QAM signal. The 

demodulated signals at the outputs of the "inphase" and "quadrature" coherent demodulators are taken to 

be real and imaginary valued, respectively, so that the resultant demodulated baseband signal r(t) is com

plex valued. 

Two different designs of the equipment filters involved in the baseband signal generator, linear mod

ulator and linear demodulator (Figure 9-1) have been studied and are referred to here as the "ideal" and 

"actual" filters. When the ideal filters are used and when the HF radio link is omitted from Figure 9-1, the 

84 



demodulated baseband wavefonn in the receiver, that results from the transmission of the single data-

symbol si in the absence of any noise, is shaped entirely by the equipment filters and is 

r(t) = Vz si (1 + cos 1tt) 
T 

(9.1) 

over the time interval (i-l)T < t < (i+l)T, being zero elsewhere. The delay introduced by the filters is 

neglected here, and T (+0.8333 x 10-3) seconds is, of course, the sampling interval. The reason for con-

sidering the given short-duration impulse response of the channel is that a Viterbi-algorithm detector can 

now be implemented at the receiver (at least for the purposes of computer simulation), so that the perfor-

mances of the near-maximum-likelihood detectors under investigation here can be compared with that of 

a true maximum-likelihood detector. The response, corresponding to r(t) in equation (9.1), given by the 

actual filters, is shaped over its first part not very differently from r(t) in equation (9.1), but this is fol-

lowed by quite a long tail, which makes Viterbi-algorithm detection impractical. 

The influence of each sky wave on the transmitted data signal is as shown in Figure 9-2, where ql (I) 

and q2 (t) are sample functions of stationary zero-mean Gaussian random processes, each with a low-pass 

Gaussian spectral shaping and a root-mean-square bandwidth of 'A, Vz or 1 Hz, giving a frequency spread 

of 1-2, 1 or 2 Hz, respectively, into the output data signal. The four Gaussian waveforms involved in the 

two sky waves are statistically independent, with the same variance and the same bandwidth so that the 

two output signals have the same mean-square value and frequency spread. The relative delay in trans-

mission of the two sky waves is taken to have a constant value of ~ seconds. The only additive noise 

introduced i the transmission path is stationary band-limited Gaussian noise with zero mean and a flat 

(frequency independent) power spectral density over the whole of the signal frequency band, which is 

added to that data signal at the output of the HP radio link. The important properties of the three different 

channels used in the tests are summarized in Table 1. 

The demodulated wavefonn of any received signal-element (carrying that data-symbol Si) is the sum 
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of two complex-valued pulses, whose peaks are separated by ~ seconds and generally have quite different 

values. The demodulated signal r(t), comprising the stream of demodulated signal-elements to which is 

added a stationary zero-mean baseband Gaussian noise waveform, is sampled, once per received signal-

element at the time instants {iT}. The phase of the sampling instants is assumed to be held adaptively 

adjusted such that a received signal-element is sampled at the peak of the first of the two pulses that make 

up its waveform. The delay in transmission over the channel involving the first of the two sky-waves is 

for convenience neglected here. 

The complex-valued sample of the demodulated baseband signal r(t), at time t=iT, is 

g 
ri = L, i·h Yi,h + wi 

h=O 

and the sequence of complex values given by the vector 

Yi = Yi,O Yi,l • •• Yi,g 

(9.2) 

(9.3) 

is taken to be the "sampled impulse-response" at time t-iT of the linear baseband channel formed by the 

baseband signal generator, linear modulator, HF radio link, linear demodulator and sampler. It is assumed 

throughout that Yi,h = 0 for h < 0 and h> g. The real and imaginary parts of the complex-valued noise 

components {wi} are Gaussian random variables with zero mean and variance d2. With the ideal equip-

ment filters the real and imaginary parts of the {wi} are uncorrelated, whereas with the actual filters they 

are slightly correlated. 

Since in this investigation we are not concerned with techniques for estimating the sampled impulse

response of a channel, such techniques having been studied elsewhere, 20·22 but rather with the perfor-

mance of the near-maximum-likelihood detector relative to an ideal maximum-likelihood detector, it will 

be assumed throughout that the detector has exact knowledge of Yi for all {i}. The results presented for 

any detector therefore represent the upper bound to the performance that can be achieved with the given 

detector, when an estimate of Yi is used in place of its actual value. Tests with an adaptive Viterbi-algo-
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rithm detector have however suggested that, for the time-varying channel used here and with a suitably 

designed channel estimator, no very serious loss in tolerance to noise need result when using an estimate 

of Yj in place of its real value. 

In a practical implementation of the system described here, differential coding would be used at the 

transmitter with the corresponding differential decoding of the detected signal at the receiver. Since the 

purpose of this investigation is to study the performance of the new detector relative to the Viterbi-algo

rithm detector, in which case differential coding has no significant effect, and since, in any case, the cor

rect estimation of the channel is assumed, differential coding is not used. 
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~----------------------............. ..... 

3 Near-Maximum-Likelihood Detection Process 

Let Sk' Rk and Wk be the k-component row-vectors (sequences) whose ith components are si, ri and 

wi' respectively, for i=I, 2, •• " k. Also let~, Zko and Uk be the k-component row-vectors whose ith 

components are xi' zi and ui' respectively, for i-I, 2, ••• , k, where xl has one of the four possible values of 

g 
zi = L i-hYi,h 

h=O 

and ui is the possible value of wi satisfying 

(9.4) 

(9.5) 

In the k-dimensional complex vector-space containing the vectors Rk, Zk and Uk, the square of the 

"unitary" distance between the vectors Rk and Zk is 

(9.6) 

where IUil is the absolute value (modulus) ofui' When all real and imaginary parts of the {wi} are statisti-

cally independent, with zero mean and the same variance, the maximum-likelihood vector ~ is its possi-

ble value such that IUkl2 is minimized. Under the assumed conditions Xk is the possible value of Sk most 

like to be correct. 

Suppose now that in the sampled impUlse-response of the channel (equation (9.3», Yi,fis the first 

component of "significant" magnitude. f is here taken to be the smallest integer such that 

(9.7) 

where a = 0.7, lIyll is the sum of the magnitudes of the real and imaginary parts ofy, and 

IIYi,Q 11 > IIYi,hll (9.8) 

for all {h) other than h = Q . 

The detector temporarily ignores the first f components Xi Yi,o' Xi Yi+l,l' ••• , Xi Yi+f-l,f-l of any 
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received signal-element until the (f+ 1) th component xi Yi+f,f is received when all received components of 

the signal element are taken account of in the detection process. 

Just prior to the receipt of the sample rk+f' the detector holds in store m different vectors {Qk-I}. 

where 

each vector being associated with the corresponding cost (distance) 

g - i 
k+1 - L 

h = 1 

(9.9) 

(9.10) 

which is also stored. m is a multiple of 8. In the evaluation of dk_l • the detector here considers all {Xj} for 

i :::;k-landignores all {xj}fori >k-l. 

On the receipt of rk+feach of the stored vectors {Qk-d is expanded into four (n+l) - component vec-

tors {pd. where 

(9.11) 

The first n components of each of the four vectors {Pk} derived from anyone vector ~_I' are as in 

the original vector ~_I' and the last component xk takes on its four different possible values in the four 

vectors. The cost 

(9.12) 

of each of the 4m expanded vectors is now evaluated and the detector selects from these vectors a set of 

m vectors {Qk} together with their associated costs {dk} in one of the following three different ways 

referred to here as systems 1.2 and 3. 

System 1 starts by selecting for each of the four different possible values of xk-Il+2 where It = ml4. the 

vector Qk with the given value of xk-!l+2 and associated with the smallest~. The process is then repeated 

in turn for xk-!l+3. xk-!l+4 ••••• xk' to give a total of m-4 selected vectors. A vector once selected is not 
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available for selection a second time. A further four vectors {Ok} are finally selected from the remaining 

(non selected) vectors as those with the smallest {dd, regardless of the values of any of their {Xj}. This 

gives the required total ofm selected vectors {Ok}, which are stored together with their costs {dk}. the 

detected value s' k-n+! of the data-symbol sk_n+! is now taken as the value of xk_n+! in the stored vector Qk 

associated with the smallestdk. 

System 2 is a simple modification of system I. It starts by selecting for each of the four different pos

sible values of Xk_A+! where Iv = m18, the vector Ok with the given value of Xk_A+! and associated with the 

smallest dk. The process is then repeated, in turn, for Xk-A+2, Xk-A+3, ••• , xk, to give a total of Ylm selected 

vectors. A further Ylm vectors' {Ok} are finally selected from the remaining vectors as those with the 

smallest {dd regardless of the values of any of their {xi}' The system operates otherwise in exactly the 

same way as system 1. 

System 3 starts by selecting the expanded vector Pk that is associated with the smallest ~ and taking 

the value of xk in this vector as the detected value s' k of the data-symbol sk' The system then discards all 

vectors {Pk} for which xk ~ S'k_n" and from the remaining vectors {Pk}(including, of course, the one orig

inally chosen) selects the m vectors {Ok) associated with the smallest {dk}.1t can be seen from equations 

(9.10) and (9.12) that ifit is necessary to change to the value off in order to maintain the correct opera

tion of the detector, appreciable complexity may be involved in the next evaluation of the {~). The 

detection process has therefore been substantially modified by introducing the following changes into its 

method of operation. 
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4 Detection Process for a Time-Varying Channel 

Suppose that in the given application, the largest value of f is «1>, where «I> ~ g. Just prior to the receipt 

of rk-+<j> (not rk+f) the detector here holds m stored vectors {Qk.l} together with their associated costs {dk_ 

I}' It also holds at this time associated with each vector Qk-I' the «I> quantities 

{Zk-I. i+Jl i = 0, I, ... , «1>-1 

where 

Zk_l. i+ I = 
g - i 
~ 

h = I 
k-h Yk+i. i+h 

and zk_l. i+1 is an estimated (possible) component of the resultant data signal in rk+i' 

(9.13) 

After the receipt of rk-+<j>' the detector evaluates zk_I,$+1 (equation (9.13) with i = «1» for every Qk-I, this 

being the corresponding estimated (possible) component of the resultant data signal in rk-+<j>' Then follow-

ing the expansion of the m stored vectors {Qk-I}, the detector selects the value of fby applying equation 

(9.7) to the prediction of Yk-+<j>' the latter being assumed here to be correct and in practice being evaluated 

in the channel estimator (not shown in Figure9-1). 

In the arrangement A of the detection process, the detector replaces every zk_l. i+1 for i = 0, I, ••• , f 

and for each of the 4m expanded vectors, by 

g - i 

~ 
h = 0 

k-h Yk+i. i+h (9.14) 

This is achieved by adding xk Yk+i.i to zk-l.i+I' The {Zk-l.i+Jl, fori = f+I, f+2, ••• , «I> are left 

unchanged. In the arrangement B of the detection process, the detector replaces It-I. f+l by zk,f' for each 

of the 4m expanded vectors, leaving all the other {Zk-I, i+l} unchanged. 

With the arrangement A of the detection process, the detector evaluates for each expanded vector the 

corresponding cost 
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(9.15) 

, 
which gives the same value for dk as equation (9.12). With the arrangement B of the detection process, 

the detector evaluates for each expanded vector the quantities 

(9.16) 

for i =0, 1, ... , f-l, and 

(9.17) 

and then determines the corresponding cost as 

(9.18) 

With either arrangement of the detection process, m vectors {~} are selected from the 4m expanded 

vectors, according to one of the three selection processes (systems 1-3) previously described and using 

the appropriate set of costs {dd. the selected vectors are stored together with the associated costs. For 

each of these stored vectors, the detector then replaces every remaining zk_l, i+l (equation (9.13» by the 

corresponding zk,i (equation (9.14» and evaluates the quantity 

(9.19) 

ready for the next detection process. The detection of the appropriate data symbol is carried out as 

described for the particular one of the three systems 1-3 in use. It can be seen here that arrangement B is 

not really suitable for use with system 3 since the cost evaluated by arrangement B for an expanded vec-

tor is not the full cost as given by equation (9.12) or (9.15), leading to an inferior detection process in sys-

tem3. 

At this stage the receiver holds in store m vectors {Qk}' and associated with each of these, it holds the 

costs dk, the Ij> quantities zk,l' zk,2' ••• , zk,cp' and IUkI2. It is now ready to receive rk+f+l' when the whole 

of the procedure just described is repeated and so on. 
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In the four expanded (n+l) - component vectors {Ilk} derived from anyone Qk-l, xk has its four pos-

sible values, so that when the arrangement B of the detection process is used, the corresponding four 

{Zk,f} have four different values, but any zk_l, i+l has the same value in the four expanded vectors since 

Zk-l, i+l is independent of xk' It is clear therefore that ci (equation (9.16)) has the same value in all four 

expanded vectors, for any given i in the range 0 to f-l so that in equation (9.18) 

f - 1 
I. ci=ek 

i=O 
(9.20) 

has the same value for all four expanded vectors that are derived from anyone Qk-l' Thus 

(9.21) 

and only the component Irk+f - zk,tl2 has different values in the four expanded vectors. Evidently, when the 

arrangement B of the detection process is used in place of the arrangement A, a useful simplification is 

achieved. 

The detection process can be further simplified by using the "magnitude-sum" distance in place of t 

he "unitary distance in the evaluation of the cost associated with any stored vector. the magnitude-sum 

IIFII of the vector or scalar quantity F is the sum of the magnitude of all real and imaginary components of 

F. With the arrangement B of the detection process, equation (9.18) is now replaced by 

(9.22) 

where 

(9.23) 

fori=O,I, ... ,f-l,and 

(9.24) 

Also 

(9.25) 
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The advantage of this distance measure is that it avoids all the squaring operations that are involved in 

computing a unitary distance, thus significantly simplifying the system. 
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5 Double Sampling 

With neither the ideal nor actual equipment filters is the received signal r(t) being sampled at the 

Nyquist rate, so that the various detection processes described so far do not use all the available informa-

tion in r(t) and hence do not achieve the best available tolerance to noise. Ideally, 2 the receiver input fiI-

ter should be a "noise-whitened matched filter" but this requires to be held adaptively adjusted for the 

channel which is the very thing that the techniques studied here are designed to avoid. the bandwidth of 

both the transmitter and receiver filters could, of course, be reduced appropriately, but the transmitted sig-

nal now uses only a part of the available bandwidth of the transmission path and there is also a significant 

increase in the number of components of Yi' An alternative and preferable approach is to sample the 

received signal at twice the signal element rate, which brings the sampling rate close to the Nyquist rate. 

the samples of r(t) now contain effectively all the information in r(t), enabling an improved performance 

to be achieved by the detector. 

When sampling twice pre received signal-element, the sample of rCt) at time t=iT (T having its previ-

ous value and being therefore the reciprocal of the signal element rate) is again given by ri in equation 

(9.2), whereas the sample of r(t) at time t=i-Y2)T is 

. h y. h+w'· 1- I, 1 (9.26) 

where , " , Y i = Y i,O Y i,l ••• Y i,g (9.27) 

and y'i.h = 0 for i < 0 and i > g. The phase of the sampling instants is here assumed to be such that Y'i,o is 

the first potentially nonzero component of the {Y'i,h} and {Yi.h}, when these are arranged to form the 

, , , 
sequence ••• Y i,O Yi,O Y i.1 Yi,l ••• Y i,g Yi,g ••• 

To be consistent with the previous definition of the sampled impUlse-response of the channel and with 

equations (9.3) and (9.26), the sampled impUlse-response of the channel is now taken to have the two dif-

ferent values Yi and Y'i' depending upon whether the sampling instant is iT or (i-Y2)T, respectively. The 
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real and imaginary parts of the complex-valued noise components {W'i} are Gaussian random variables 

with zero mean and variance r? With the ideal equipment filters the real and imaginary parts of the {w'd 

are uncorrelated whereas with the actual filters they are slightly correlated. There is however, appreciable 

correlation between wi and w'i' the sampling interval here being YzT. Any correlation between the noise 

samples tends, at least to some degree, to reduce the tolerance to noise of any of the detection processes 

described here, so that the receiver filters should be designed to minimize this correlation without either 

increasing the resultant effective bandwidth of the filters or else significantly increasing the duration of a 

received signal-element in r(t). 

Following anyone detection process, two successive received samples r'i and ri are fed to the detector 

before the commencement of the next detection process. The operation of the detector is now exactly as 

described in Sections 3 and 4 for any combination of one of the systems 1-3 and arrangement A or B, 

except that two new received samples are processed instead of just one. Associated with the quantities 21<-

1 i+l' Zk i' ci and cf (in equations (9.13), (9.14), (9.16), and (9.17) respectively) all of which are deter-
" . 

mined as previously described, are the corresponding quantities 

g - i 
Z'k-l,i+l = L 

h = [ 
, 

k-h Y k+i, i+h 

g - i , , 
Z k,i = L k-h Y k+i, i+h 

h=O 

1 ' , 12 ci = r k+i - x k-l, i+l 

(9.28) 

(9.29) 

(9.30) 

for i = 0, I, ••• , f-l, where Yk+</>, f' is the first significant component of Yk+<!>, determined according to 

equation (9.7), and 

'1 / "12 
C f = r k+f - Z k,f 

so the equation (9.15) becomes 

(9.31) 
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(9.32) 

equation (9.18) becomes 

(9.33) 

and equation (9.19) becomes 

(9.34) 

When the magnitude-sum distance is used in place of the unitary distance, the changes correspond to 

those previously described (equations (9.22) through (9.25». It is evident that the detection process with 

double sampling is approximately twice as complex as that when sampling only once per received signal-

element. 
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6 Comparison of Systems 

Extensive computer-simulation tests have been carried out to compare the performances of the differ

ent detection processes described here. The arrangements tested and assumptions made are as described 

in Sections 2-5, and the results of the tests are shown in Figure 9-3-Figure 9-10. The signaVnoise ratio is 

here taken to be 'If dB, where 

'If = 10 log 10 (1Icr2) (9.35) 

the mean-square value of the data-symbol Si, per bit of information carried, being unity, and the mean

square value of both the real and imaginary parts of the noise-component w i (or w'i) being cr2. In every 

case the appropriate correlation has been introduced between the different noise components. Every indi

vidual measurement used in plotting a graph in Figure9-3-Figure9-10 has involved the transmission of 

26,400 data-symbols {si} over a model of the appropriate channel. Since the measurement is to some 

degree affected, not only by the particular random number sequence used for the additive Gaussian noise 

signal but also, rather more seriously, by the random number sequence involved in generating the Ray

leigh fading of each sky wave, care has been taken to use the same random number sequence (from which 

are generated the two independently fading sky waves) for each of the different systems tested and at all 

signaVnoise rations, together with different additive Gaussian noise signals at the different signaVnoise 

rations, the same noise signal being used for all systems at anyone signaVnoise ration. Although this 

reduces the statistical errors in the relative performances of the different systems (probably to no more 

than around ±1h dB), some caution must still be used in interpreting the results. 

Figure 9-3-Figure 9-5 compare the performance of system I, using arrangement A and m = 16 or 32, 

with that of a conventional Viterbi-algorithm detector for ideal equipment filters and for both single and 

double sampling. Figure 9-6-Figure 9-8 compare the performances of systems 1-3, again using arrange

ment A and m = 16 or 32, but now for actual equipment filters and double sampling, and including also 

system 1 with arrangement B. All curves in Figure 9-3-Figure 9-8 apply for both m = 16 and m = 32. The 
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influence on the error rate of the parameter value a is shown in Figure9-9, and the corresponding influ

ence of the phase of the sampling waveform at the receiver (determining the time instants {iT} and {(i

Y2)T)) are shown in Figure 9-10. The two graphs shown here for channel 2 give the upper and lower lim

its of the tolerance to noise for 12 different phases of the timing waveform spaced at intervals of 1/12 of 

the sampling interval Y2T. A very similar variation in performance is obtained over both channels 1 and 3. 

The unitary distance is used throughout Figure 9-3-Figure 9-10 and in every case n = 16. The tests in 

Figure 9-3-Figure 9-8 have been repeated with the magnitude-sum distance and it has been found that the 

degradation in tolerance to noise, resulting form the use of the latter distance measure, always lies in the 

range 0 - Y2 dB. The corresponding graphs are therefore not shown. 

It can be seen from Figur e9-3-Figur e9-5 that, with the ideal filters and with either single or double 

sampling, when the Viterbi algorithm is replaced by system 1 (using arrangement A and m = 16 or 32), 

the degradation in tolerance to noise lies in the range 0-1 dB. However, with either detection process, an 

improvement of some 2 dB in tolerance to noise is achieved when single sampling is replaced by double 

sampling. When the value ofm in system I is reduced from 16 to 8 (the latter curves not being shown in 

Figure 9-3-Figure 9-5), there is a reduction of some 0.2 dB in tolerance to noise. From Fi gure9-6-

Figure 9-8 there does not appear to be any very great difference between the performances of the system 

1-3 so that the precise method used for selecting the stored vectors {Qd does not seem to be critical, so 

long as a sufficient number of vectors is used. It is also evident from Figur e9-6-Figur e9-8 that the 

reduction in tolerance to noise, when arrangement A is replaced by arrangement B, is typically under Y2 

dB, so that the former would only be used where the very best tolerance to noise is required. When the 

value of m is reduced from 1 to 8 (the latter curves not being shown in Figur e9-6-Figur e9-8) there is a 

reduction of some 0.1 dB in tolerance to noise. It should not therefore be necessary to use many more 

than 8 stored vectors, giving a detection process that can be implemented without undue complexity. 

Indeed, when now using arrangement B together with the magnitude-sum distance measure, the detector 
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------------------------............ ... 
appears likely to become relatively simple to implement. These conclusions, of course, require verifica

tion through the detailed design of the detector, which has yet to be done. 

Figure 9-9 shows that, when single sampling is used, the optimum value of "a" (in equation 9.7) is 

0.7, but there is no significant change in the error rate (for either arrangement A or B) as "a" varies from 

0.5 to 0.9, so that the value of "a" does not appear to be critical. It is evident from F igure9-1O that the 

phase of the timing waveform at the receiver does not seriously affect the tolerance of the system to 

noise. 
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7 Conclusions 

When the sampled impulse-response of the channel is known and double sampling is used at the 

receiver, the more effective arrangements of the detection processes studied here give a tolerance to noise 

over the channels tested, which appears to be within about 1 dB of that of a Viterbi-algorithm detector. 

This suggests that in the given application, the adaptive linear filter, normally proposed for use ahead of a 

near-maximum-likelihood detector, may be discarded with no serious loss in tolerance to noise, thus 

avoiding the problems involved with the adaptive filtering of a time-varying channel. The techniques are 

clearly worthy of further investigation. 
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Table 9·1 Channels Used in the Tests 

Frequency spread introduced 
Relative transmission delay 

Channel into the data signal 
for the two sky waves 

Hz 

1 Y2 1 x 10-3 

. 2 1 2 x 10-3 

3 2 3 x 10-3 
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Diagrams 

Figure 9-1 "Model of the Data-Transmission Systems" 

Figure 9-2 "Rayleigh Fading Introduced By a Sky Wave" 

Figure 9-3 "Performance With Ideal Equipment Filters Over Channel 1 " 

Figure 9-4 "Performance With Ideal Equipment Filters Over Channel 2" 

Figure 9-5 "Performance With Ideal Equipment Filters Over Channel 3" 

Figure 9-6 "Performance With Actual Equipment Filters Over Channel 1" 

Figure 9-7 "Performance With Actual Equipment Filters Over Channel 2" 

Figure 9-8 "Performance With Actual Equipment Filters Over Channel 3" 

Figure 9-9 "Influence of the parameter value a on the error rate for system 1 with ideal equipment filters 
and single sampling when operating over channel 3" 

Figure 9-10 "Maximum range of the influence of the phase of the sampling waveform on the error rate 
for system 1 with actual equipment filters and double sampling when operating over channel 
2" 
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Figure 9·2 Rayleigh Fading Introduced By a Sky Wave 

104 

r-

. 

dj 

r-



10-1 

Viterbi AlgOriJ 

- 10-2 Double Sampling 
-.~ 

to -., System 1 -5 
c: Double Sampling 
.~ 

* ~ .. Viterbi Algorith 
~ 10-3 Single Sampling 

System 1 
Single Sampling 

5 7 9 11 13 15 17 19 

Signal/Noise Ratio ('I'dB) 

Figure 9-3 Performance With Ideal Equipment Filters Over Channell 

105 



10-1 

- 10-2 
~.-l -'" -5 
I': 
.~ 

~ 
~ ... 
~ 10-3 

5 

Viterbi Algorithm 
Single Sampling 

Viterbi Algorithm 
Double Sampling 

System I 
Double Sampling 

System 1 
Single Sampling 

7 9 11 13 15 17 19 

SignallNoise Ratio ('I' dB) 

Figure 9-4 Performance With Ideal Equipment Filters Over Channel 2 

106 



Viterbi Algorithm 

10-2 
Double Sampling -,'~ 

'" -" System I ..s Double Sampling = .~ 

B 
~ 
8 Viterbi Algorithm 

Ji 10-3 Single Sampling 

System I 
Single Sampling 

5 7 9 11 13 15 17 19 

SignaI/Noise Ratio ('I' dB) 

Figure 9-5 Performance With Ideal Equipment Filters Over Channel 3 

107 



10-1 

- 10-2 

"' -<I) 

-5 
::: 
.~ 

* ~ ... 
~ 10-3 

5 

Systems 1, 2, 3 
Arrangement A 

System 1 
Arrangement B 

7 9 11 13 15 17 19 

Signal/Noise Ratio ('I' dB) 

Figure 9-6 Performance With Actual Equipment Filters Over Channel! 

108 



--------------........... 

10-1 

System 1 

System 1 Arrangement B 

Arrangement A 

- 10-2 
,'~ 

'" -., 
.s 
:: 
.~ ., 
<d 
~ .... 

~ 10-3 Systems 2.3 
Arrangement A 

5 7 9 11 13 15 17 19 

Signal/Noise Ratio (1jI dB) 

Figure 9-7 Perfonnance With Actual Equipment Filters Over Channel 2 

109 



10-1 

- 10-2 ,'~ 

'" -.s 
= .-
'" ~ 
~ .... 
0 

Ji 10-3 

5 

., ' 

System 1,2 

System 3 
Arrangement A 

Arrangement A 

System 1 
Arrangement B 

7 9 11 13 15 17 19 

Signal/Noise Ratio ('I'dB) 

Figure 9-8 Performance With Actual Equipment Filters Over Channel 3 

110 



0.023 

0.022 

0.021 

0.01 

0.01 

0.01 

0.01 

0.01 

0.012 

0.011 

0.2 

Arrangement A 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Figure 9-9 Influence of the parameter value a on the error rate for system 1 
with ideal equipment fIlters and single sampling when operating over channel 3 

III 



------------------------............ ... 

10-1 

- 10-2 
,'~ 

'" -.s Arrangement A 
c: 
.~ 

B 
~ 

~ 

~ 10-3 

5 7 9 11 13 15 17 19 

Signal/Noise Ratio ('If dB) 

Figure 9-10 Maximum range of the influence of the phase of the sampling waveform 
on the error rate for system 1 with actual equipment filters and double sampling when 

operating over channel 2 

112 



References 

1. CLARK, A. P.,Advanced data-transmission systems (Pentech Press, 1977) 

2. FORNEY, G. D., Maximum-likelihood sequence estimation of digital sequences in the presence of 
intersymbol interference, IEEE Trans., 1972, IT-18, pp. 363-378 

3. FORNEY, G. D., The Viterbi algorithm, Proc. IEEE, 1973,61, pp. 268-278 

4. PULLEYBLANK, R. W., A comparison of receivers designed on the basis of minimum mean-square 
error and probability of error for channels with intersymbol interference and noise, IEEE Trans., 
1973, COM-21, pp. 1434-1438 

5. MESSERSCHMITT, D.G., A geometric theory of intersymbol interference. Part Il: performance of 
the maximum likelihood detector, Bell Syst. Tech. 1.,1973,52, pp. 1521-1539 

6. MAGEE, F. R., A comparison of compromise Viterbi algorithm and standard equalization techniques 
over band-limited channels, IEEE Trans., 1975, COM-23, pp. 361-367 

7. FALCONER, D. D. and MAGEE, F. R., Evaluation of decision feedback equalization and Viterbi 
algorithm detection for voiceband data transmission. Part J, IEEE Trans., 1976, COM-24, pp. 1130-
1139 . 

8. FALCONER, D. D. and MAGEE, F. R., Evaluation of decision feedback equalization and Viterbi 
algorithm detectionfor voiceband data transmission. Part Il, IEEE Trans., 1976, COM-24, pp. 1238-
1245 

9. QUERSm, S. U. H and NEWHALL, E. E., An aooptive receiver for data transmission over time dis
persive channels, IEEE Trans., 1973, IT-19, pp. 448-457 

10. FALCONER, D. D. and MAGEE, F. R.,Adaptive channel memory truncation for maximum-likeli
hood sequence estimation, Bell Syst. Tech .. J., 1973,52, pp. 1541-1562 

11. CANTONI, A. and KWONG, K., Further results on the Viterbi algorithm equalizer, IEEE Trans., 
1974, IT-20, pp. 764-767 

12. FREDRlCSSON, S. A., Joint optimization of transmitter and receiver filters in digitalPAM systems 
with a Viterbi detector, IEEE Trans., 1976, IT-22, pp. 200-210 

13. CANTONI, A. and BUTLER, P., Linear minimum mean-square error estimators applied to channel 
equalization, IEEE Trans., 1977, COM-25, pp. 441-446 

14. DESBLACHE, A. E., Optimal short desired impulse response for maximum-likelihood sequence 
estimation, IEEE Trans., 1977, COM-25, pp. 735-738 

113 



----------------............ 

15. BEARE, C. T., The choice of the desired impulse response in combined linear-Viterbi algorithm 
equalizers, IEEE Trans., 1978, COM-26, pp. 1301-1307 

16. DOAN, H. B. and CANTON!, A., Fast adaptation of equalizer and desired response for digital data 
receivers, Electronic Circuits and Systems, 1978,2, pp. 159-166 

17. FOSClllNI, G. J., A reduced state variant of maximum likelihood sequence detection attaining opti
mum performance for high signal-to-noise ratios, IEEE Trans., 1977, IT~23, pp. 605-609 

18. CLARK, A. P., HARVEY, J. D. and DRISCOLL, J. P.,Near-maximum likelihood detection processes 
for distorted digital signals, Radio and Electronic Engineer, 1978, 48, pp. 301-309 

19. CLARK, A. P., KWONG, C. P. and HARVEY, J. D., Detection processes for severely distorted digi
tal signals, Electronic Circuits and Systems, 1979, 3, pp. 27-37 

20. MAGEE, F. R. and PROAKIS, J. G, Adaptive maximum likelihood sequence estimation for digital 
signalling in the presence of inter symbol interference, IEEE Trans., 1973, IT-19, pp. 120-124 

21. CLARK, A. P., KWONG, C. P. and McVERRY, E, Estimation of the sampled impulse-response of a 
channel, Signal Processing. 1980, 2, pp. 39-53 

22. CLARK, A. P. and McVERRY, E, Channel estimation for an HF radio link, Communications. Radar 
and Signal Processing. 1981, 128, Part F. 

114 



Chapter 10 

Digital Tone Detection and Generation 

Abstract 

This chapter is based on the invention patented under American patent 4,839,842 (S. Asghar, H. Pyi, 

June 1989). 

Fast methods of tone detection and tone generation disclosed are particularly suitable for implementa

tion in a digital signal processor. Chebyshev polynomials are employed to generate periodic waveforms 

and to detect such waveforms. In an alternative aspect of the invention, trigonometric formulae are 

employed to generate periodic waveforms which are representable as the sum of sine and cosine func

tions. Unlike analog techniques, the digital techniques do not entail long delays in the generation or 

detection of tones because a fast iterative recalculation is employed at each step. Accumulated error is 

avoided by restarting the procedure once a predetermined value is exceeded. Independent choice of a 

quality factor and a confidence level is provided by the digital tone detection technique. 
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------------------------............. ... 

DESCRIPTION 

The present invention relates to digital detection and generation of periodic signals and, more particu

larly, to a method using Chebyschev polynomials and trigonometric formulae to approximate periodic 

waveforms. 

BACKGROUND OF THE INVENTION 

Digital tone detection and generation is useful in telecommunications, such as in dual-tone multi-fre

quency (DTMF) used in "two tone" or "multi-tone" signaling. Known in the art are Sinerom, Taylor 

series and discrete fourier transform methods of generation. These methods are computationally complex 

and require a large storage memory. For tone detection, analog filtering of tones followed by analog 

energy detection is employed. 

Conventional tone detection apparatus typically employs an analog tone filter which receives an input 

signal. The tone filter is typically a high-"Q" (quality-factor) providing extremely sharp rise and fall char

acteristics around the resonant frequency. Such analog circuitry is complex and costly to manufacture. 

More importantly, its response is sensitive to changes in temperature, voltage, component values and the 

........ like which result in variations in gain and band-pass characteristics. 

The tone detection apparatus employs an energy detector following the tone filter responsive to the 

filtered signal which requires that a "confidence level" be selected. The energy detector produces a signal 

which is monitored by a decision device which determines whether the detected energy exceeds a 

"threshold" level and produces a binary-valued output therefrom indicating whether the received signal 

has the appropriate frequency at a satisfactory energy level. 

The time required to detect a tone by such apparatus is determined by the Q factor and confidence 

level selected. This time can be substantial if a high level of quality and confidence is required. 
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SUMMARY OF THE INVENTION 

The present invention provides a method for generation and detection of tone signals by digital 

means. In one embodiment of the invention, terms of a Chebyshev sequence are used recursively to digi

tally generate a sequence of normalized tone signals. Because roundoff and truncation errors will propa

gate and accumulate, errors will tend to grow if no corrective action is taken. The method of the instant 

invention provides that when a term in the sequence exceeds a predetermined value, the generation of 

tone signals is restarted. 

The method of the instant invention is particularly suited to digital computation because it involves 

only one left shift, one multiplication and one subtraction to generate each term in the sequence of tone 

signals. Accordingly, little or no delay is experienced in the tone detection according to the invention. 

In an alternative embodiment of the invention, terms of a trignometric formulae are employed itera

tively to generate both cosine and sine wave tone signals. As with the first embodiment, the method of the 

instant invention calls for restarting of the generation of tones whenever a term exceeds a predetermined 

value. The alternative method is equally well suited to digital computation. 

In an application of the digital tone generation method of the instant invention, a method of digital 

tone detection is provided by the instant invention. The term-by-term difference between a sequence of 

measured tone signals and the signal predicted by the corresponding term of the Chebyshev sequence is 

determined. If the absolute value of this difference is less than a predetermined threshold value then it is 

concluded that the measured tone signals have the frequency of the Chebyshev sequence. 

The digital tone detection method ofthe instant invention can be controlled to provide a high "Q" or a 

low "Q" filter. Independently, a selectable confidence level can be provided for the detection. 
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BRIEF DESCRIPfION OF THE DRAWINGS 

Figure 10-1 is a flowchart describing the method of digital generation of tones according to the 

instant invention. 

Figure 10-2 is a signal-flow diagram for the digital generation of tones according to the instant inven

tion. 

Figure 10-3 is a flowchart describing an alternative method of digital generation oftones according to 

the instant invention. 

Figure 10-4 is a signal-flow diagram for the alternative digital generation of tones according to the 

instant invention. 

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT 

Any single tone signal can be appropriately scaled to be represented as a cosine or sine waveform 

using methods well-known to those of ordinary skill in the art. A cosine waveform having a frequency f 

can be sampled at periodic sampling intervals of T time units to produce the sequence {cos (21tITm) m=O. 

1.2.3 .... }. 

Terms of the Chebyschev polynomial are given by the formula 

Cm (x)=cos (m arc cos (x» m=O. 1.2 •.... (10.1) 

A general recursive relationship exists between the terms Cm-I. Cm and Cm+l : 

Cm+1 (x)=2Cm (x)CI (x)-Cm_1 (x). (10.2) 

by expressing the terms Cm_I. Cm and Cm+1 in equation (10.2) in terms of the cosine functions of 

equation (10.1). and using T=arc cos (x) yields 

cos (m+I)21tIT=2 cos (m2.1t.IT). cos 27tIT-cos 21tIT (m-I) (10.3) 

Equation (10.3) thus allows a sequence of normalized tone signals to be recursively generated for val-
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ues of 

m=l, 2, ... , by starting with cos (0-27tIT)=1 and cos (1-27tIT)=cos 27tIT. (10.4) 

The recursive generation of tone signals can thus be effected by repeated recalculation of equation . 

(10.3). For a tone of frequency f and amplitude A, samples can be generated every T seconds resulting in 

the signal waveform 

S=A cos (m(27tfT) (10.5) 

As will be appreciated by those skilled in the art, such recalculations are readily performed by a digi

tal processor, in which the term cos (m(27tIT) can be iteratively calculated by equation (10.3). Roundoff 

and truncation errors will be propagated by such a procedure, however. The errors tend to accumulate and 

would produce a waveform of ever-increasing error if not corrected. By reinitializing the computation 

periodically, this accumulation problem can be avoided 

A flowchart of the method of the instant invention is provided as Figur elO-1. A block 10 is initially 

entered which performs the initialization steps indicated by equation (lOA). A block 12 is next entered 

which performs the iterative calculation of the next sample term according to equation (10.3). Next a 

decision block 14 is entered which tests whether the term calculated in block 12 exceeds 0.999. If not, a 

"No" exit is taken from decision block 14 back to block 12 and the next sample term is calculated in 

block 12. If the test performed in block 14 indicates that the term exceeded 0.999, a "YES" exit is taken 

from block 14 which causes block 10 to be entered. Accordingly, any accumulated error is removed as 

the sequence of terms is reinitialized and restarted once again. In accordance with this method then, the 

calculations to generate one sample at block 12 requires one left shift, one multiplication and one subtrac

tion. 

As described hereinabove, the particular frequency and amplitude desired in the resulting waveform, 

S, is given by equation (10.5). The value used in block 12 of 0.999 is selected to be near the maximum 

value that the cosine function can take (1.0) and yet be readily reached within a few iterations of the loop 
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including the "No" exit. 

Now with reference to Figure 10-2, a signal-flow diagram of an implementation of the method of the 

instant invention is provided. An initialization block 20 generates the first two terms of the sequence of a 

tone signal according to equation (10.4). These signals are received at a first input of a one time-unit 

delay block 22 and a first input of a one time-unit delay block 24. Delay block 22 generates a signal 

received by an adder node 26 at a subtractice input thereto. Adder 26 also receives at an additive input a 

signal generated by a multiplier node 28. Multiplier 28 receives at a first input the signal generated by 

second delay block 24 and at a second input the fixed signal 2cos T. The signal generated by delay 24 is 

also conducted to a second input of delay 22 and the signal generated by adder 26 is conducted to a sec

ond input of delay 24. The signal generated by delay 24 is also conducted to the initialization block 20 

and is the output signal corresponding to equation (10.3). Circuitry internal to block 20 implements the 

test performed in flowchart decision block 14 (Figur el0-I) and resets the signals generated so that the 

first two terms of the sequence of tone signals are conducted to delays 22 and 24. 

Delay blocks 22 and 24 receive control signals (not shown) from initialization block 20 which cause 

the signals at their first inputs to be selected during the first time period after initialization and signals at 

their second inputs to be selected at all other time periods. 

An alternative method of generation is required when both cosine and sine waveforms need be gener

ated. Such is the case when a Quadrature Amplitude Modulation (QAM) scheme is used to transmit digi

tal data over analog teleconununication lines. 

In this case, the trigonometric, identities 

cos(m + 1)21t[I = cosm21t[I· cos21t[I- sinm21t[I· sin21t[I 

sin(m+ I)T = sinmTcosT+cosm21t[I· sin21t[I 

(10.6) 

can be employed in an iterative manner to generate both cosine and sine wave samples of frequency f 

at intervals of T seconds. 
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With reference to FigurelO-3, a flowchart is provided employing the equations (10.6) to generate 

samples of periodic waveforms. A block 50 is initially executed which calls for initialization of the cos 

21tfT and sin 21tfT terms. Such initialization values can be provided by numerical analysis methods know 

to those of ordinary skill in the art. Next a block 52 is entered which employs equations (10.6) to itera

tively calculate the next sample values of cosine and sine. In order to avoid accumulation of truncation 

and roundoff error, a decision block 54 is next entered which tests whether cos 21tfT exceeds 0.999. This 

test results in either a return to the initialization block 50 or the recalculation block 52 as was described 

hereinabove in connection with the Chebyshev method of Figure 10-1. 

With reference to FigurelO-4, a signal-flow diagram of an implementation of the method of the 

instant invention is provided. An initialization block 60 generates the first term of the sequence of tone 

signals. The signal is received at a first input of a one time-unit delay block 62 and a first input of a one 

time-unit delay block 64. Delay block 62 generates a signal received at a first input of a multiplier node 

65 and a first input of a multiplier node 66. The signal generated by delay 64 is received at a first input of 

a multiplier node 68 and a first input of a multiplier node 70. A signal corresponding to cos T is received 

at a second input of multipliers 65 and 68. A signal corresponding to sin T is received at a second input of 

multipliers 66 and 70. 

An adder node 72 receives the signal generated by multiplier 65 at an additive input and the signal 

generated by multiplier 70 at a subtractive input. An adder node 74 receives the signal generated by mul

tiplier 66 at an additive input and the signal generated by multiplier 68 at a subtractive input. The signal 

generated by adder 72 is conducted to a second input of delay 62 and to the initialization block 60. The 

signal generated by adder 74 is conducted to a second input of delay 64 and is the output signal corre

sponding to the second of equations (10.6). 

The signal generated by delay 62 is the output signal corresponding to the first of equations (10,6). 

Circuitry internal to block 60 implements the test performed in flowchart decision block 54 (Figur elO-3) 
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and resets the signal generated so that the first term of the sequence of tone signals are conducted to 

delays 62 and 64. Delay blocks 62 and 64 receive control signals (not shown) from initialization block 60 

which cause the signals at their first inputs to be selected during the first time period following initializa

tion and signals at their second inputs to be selected at all other time periods. 

The method of digitally generating waveforms described in connection with FignrelO-1 and 

Figure 10-2 can be employed to provide a method of digital tone detection. If the tone to be detected is 

given by the sequence of samples 

{I, cos 27tIT, cos 2-27tIT, cos 3-27tff, ... } 

and the tone signals received are represented by the sequence of samples 

{xO,xl,x2,x3, ... } 

(10.7) 

(10.8) 

then, in the case of the method employing the Chebyschev sequence, an error term for each sample is 

given by the equation 

Error=Xn-[(2 cos 27tff)Xn-I-Xn-2J (10.9). 

Equation (10.9) represents the difference between the measured tone signals Xn and the signal pre

dicted by the corresponding term of the Chebyschev sequence Cn, shown in terms of Xn-I and Xn-2. 

If the absolute value of the error is less than a selected threshold value, i.e. 

lerrorl < threshold (10.10) 

then it is determined that the sequence of received samples (8) has the frequency of the sequence (7). 

To control the "Q-factor" employed in conventional tone detectors the threshold value can be low

ered, resulting in a "high-Q" filter, or raised, resulting in a "low-Q" filter. 

Similarly, to increase the confidence level employed in conventional tone detectors, a voting-logic 

scheme can be used. For instance, several previous samples can be used in equation (10.9) to generate the 

predicted signal, rather than merely two, x,,-l and x".2. Then if a predetermined percentage of these sam

ples, such as 90%, satisfy equation (10.10), it is determined that the sequence of received samples (8) has 

125 



the frequency of sequence (7). In this way. the two major parameters affecting the detection of tones can 

be chosen independently. This feature of the instant invention provides a significant advantage over the 

tone detectors of the prior art. 
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Chapter 11 

Apparatus for Adaptively 1\ming to a Received Periodic Signal 

Abstract 

This chapter is based on the invention patented under American patent 5,615,139 (S. Asghar, Y. Zhao, 

Aug. 1994). 

An apparatus for adaptively tuning to a received periodic signal. The apparatus preferably employs 

digital signal processing techniques for algorithmic generation of a sinusoidal estimated output signal, 

determines the difference between the estimated output signal and the received signal, and generates an 

error signal based upon the difference between the estimated output signal and the received signal. The 

error signal is applied to vary at least one factor of the algorithmic determination of the estimated output 

signal appropriately to reduce the error between the estimated output signal and the received signal. 
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BACKGROUND OF THE INVENTION 

The present invention is directed to an apparatus which will adaptively tune to a received periodic 

signal and, in one embodiment, will identify the frequency of the received signal to a user. 

Adaptive tuning to a received periodic signal is useful in a variety of situations, such as tuning to a 

homing beacon or other similar navigational device, or, generally, tuning to or identifying any periodic 

signal of unknown frequency with speed and precision .. 

Prior art devices for identifying and tuning to an unidentified (Le., the frequency is unknown) 

received signal involved filtering the received signal through an array of high Q filters, and establishing a 

frequency range within which the received frequency is propagated by noting which of the high Q filters 

in the array passes the received signal. In order to provide a high degree of accuracy in ascertaining the 

frequency of the received signal, such prior art circuits must necessarily have a large number of high Q 

filters in the filter array. A greater number of filters reduces the interval between detectable frequencies 

and, therefore, increased the accuracy by which the received frequency can be determined. 

Thus, such prior art devices necessarily require that some estimation of the frequency of the received 

signal be known in advance in order that the frequency range detectable by the filter array can be assured 

. to include the frequency expected to be received. In order to search a very wide frequency spectrum, it is 

sometimes required that a 'plurality of prior art devices be employed, with each device addressing a differ

ent range of frequencies. 

The prior art devices thus described are slow to operate, require foreknowledge of the range within 

the anticipated frequency of the received signal will fall, and require the use of analog devices, such as 

high Q filters, which are known by those skilled in the art to be less stable than digital circuit elements, 

especially when subjected to variations of ambient temperature. 

It is desirable that an apparatus be provided for detection of frequency of a received signal which is 
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stable in operation in a variety of environments, which is capable of accurate determination of the fre

quency of the received signal, and which is capable of ascertaining the frequency of the received signal 

speedily. 

SUMMARY OF THE INVENTION 

The'invention is an apparatus for adaptively tuning to a received periodic signal. The apparatus pref

erably employs digital signal processing techniques for algorithmic generation of a sinusoidal estimated 

output signal, determines the difference between the estimated output signal and the received signal, and 

generates an error signal based upon the difference between the estimated output signal and the received 

signal. The error signal is applied to vary at least one factor of the algorithmic determination of the esti

mated output signal appropriately to reduce the error between the estimated output signal and the 

received signal. 

In one embodiment of the present invention, when the error signal is reduced to zero, the algorithmic 

factor which was varied to effect reduction of the error signal is logically treated to ascertain the fre

quency of the received signal and such information is conveyed to a user. 

An alternate embodiment of the invention accommodates white Gaussian noise in tuning to a 

received signal. 

It is therefore an object of the present invention to provide an apparatus for adaptively tuning to a 

received periodic signal which employs digital signaling processing and is stable in a variety of operating 

environments. 

A further object of the present invention is to provide an apparatus for adaptively tuning to a received 

periodic signal which is inexpensive to construct and ascertains the frequency of a received signal with a 

high degree of accuracy. 

Yet a further object of the present invention is to provide an apparatus for adaptively tuning to a 

134 



received periodic signal which effects such adaptive tuning speedily. 

Further objects and features of the present invention will be apparent from the following specification 

and claims when considered in connection with the accompanying drawings illustrating the preferred 

embodiment of the invention. 

DETAILED DESCRIPTION OF THE DRAWINGS 

Figure 11-1 is a schematic diagram of the preferred embodiment of the present invention. 

Figure 11-2 is a schematic diagram of an alternate embodiment of the present invention configured to 

accommodate noise. 

DETAILED DESCRIPTION OF THE INVENTION 

As disclosed in U.S. Pat. No. 4,839,842 to Pyi and Asgh:u; which patent is assigned to the assignee of 

the present invention, a periodic waveform may be represented by the expression: 

cos (m+l) 0=2 cos (m) 0 cos o-cos (m-I) 0; (11.1) 

where 3=2.1t.IT 

f=signal frequency 

T=sampling interval 

Given that the sampling interval T is equal to one over f, (f, equals sampling frequency), the value of 

o may be rewritten as: 

For simplicity of expression, equation (11.1) can be rewritten as: 

(11.2) 
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where xn =cos (n)o 

For any given signal frequency, f, the quantity 2 cos L\. is a constant, K. Thus, equation (11.2) can be 

expressed as: 

K=2cos 0 

(11.3) 

(11.4) 

The relationship expressed in equation (11.3) may be advantageously employed in an apparatus for 

adaptively tuning to a received periodic signal as illustrated in Figur ell-I. In Figur ell-I, an adaptive 

tuning apparatus 10 is illustrated having a first delay circuit 12 receiving an incoming signal xn+1 at an 

input 14. First delay circuit 12 delays incoming signal xn+1 by one clock period and generates a once

delayed signal, xn' at an output 16. Once-delayed signal, Xn, is provided to an input 18 of a second delay 

circuit 20 and to an input 22 of a multiplier circuit 24. Multiplier circuit 24 also receives a multiplier, K, 

at a multiplier input 26 from a multiplier source 28. Multiplier circuit 24 provides a multiplier output sig

nal, Kxn, at an output 30. Second delay circuit 20 delays once-delayed signal Xn one clock period and 

generates a twice-delayed signal, Xn-I' at an output 32. A first summing circuit 34 receives multiplier out

put signal Kxn at an input 36, receives twice-delayed signal Xn-I at a negative input terminal 38, and gen

erates an output signal at an output 40. The output signal generated at output 40 is an estimated signal, 

est. Xn+I' which comprises the difference between multiplier output signal KXn,less twice-delayed signal 

xn_I' 

A second summing circuit 42 receives estimated signal est. xn+1 at a negative input terminal 46, 

receives received signal xn+1 at an input 44, and generates an output signal at an output 48. The output 

signal generated at output 48 is an error signal e which comprises the difference between received signal 

xn+ I' less estimated signal est. xn+ I' 

Error signal e is applied to an input 50 of multiplier source 28. Multiplier source 28 responds to error 

signal e to alter multiplier K provided to multiplier input 26 appropriately to reduce error signal e. 
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When error signal E equals zero, estimated signal est. Xn+l equals received signal Xn+l' and adaptive 

tuning apparatus 10 has successfully tuned to received signal xn+l' 

When error signal E equals zero, it is possible to ascertain the frequency of received signal Xn+l by 

recalling equation (11.4) above, so that for the frequency at which error signal E equals zero, 

K=2cos 0 (11.5) 

where a identifies the target frequency, ft (that is, the frequency of received signal xn+l)' Thus, since: 

(11.6) 

and since fs' the sampling frequency, is known, then ft can be readily determined by the expression: 

(11.7) 

Adaptive tuning apparatus 10 also may include a logic module 54 which receives an input signal from 

multiplier source 28 at an input 56. The input received from multiplier source 28 at input 56 comprises 

the value of K generated by multiplier source 28 when error signal E equals zero. In the embodiment of 

the present invention illustrated in Figur ell-I, it is contemplated that logic module 54 will contain a 

stored arccosine table in appropriate detail to identify, with the accuracy desired, the arccosine of the 

quantity: 

Further logic module 54 stores the value fs of the sampling frequency and the value 1t to enable calcu-

lation offl' the target frequency, according to equation (11.7) above. 

Figure 11-1 is a schematic diagram of an alternate embodiment of the present invention configured to 

accommodate noise. equation (11.3) discussed in connection with the preferred embodiment of the 

present invention illustrated in Figure 11-1, may be rewritten to account for white Gaussian noise in the 
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form: 

x(n) = Wx(n-l) - x(n-2) 

W = 2cos 21tf(n) 
fs 

(11.8) 

where fen) equals a time varying frequency of the received sinusoidal signal and fs equals sampling 

frequency. 

Referring to Figure 11-1, an apparatus 100 is illustrated having a first delay circuit 102 and a second 

delay circuit 104. An input signal, x(n), is received by apparatus 100 at an input 106 to first delay circuit 

102. First delay circuit 102 delays input signal x(n) one clock period and generates at an output 108 a 

once-delayed signal x(n-l); x(n-l) is substantially input signal x(n) delayed one clock period. Second 

delay circuit 104 receives once-delayed signal x(n-l) at an input 110 and delays once-delayed signal x(n-

1) by one further clock period, generating at a twice-delayed signal x(n-2) at an output 112. Once-delayed 

signal x(n-l) is also applied to a multiplier 114 at an input 116. 

A first weighted factor source 118 provides a first weighted factor, Wl(n), to an input 120 of multi-

plier 114. Multiplier 114 generates at an output 122 a weighted once-delayed signal which is substantially 

the product of once-delayed signal x(n-l) and first weighted factor Wl(n). This weighted once-delayed 

signal is applied to an input 124 of a summing node 126. 

Twice-delayed signal x(n-2) is applied to an input 128 of a multiplier 130. Multiplier 130 also 

receives at an input 132 a second weighted factor, W2(n), from a second weighted factor source 134. 

Summing node 126 produces at an output 136 an estimation of input signal x(n), x(n), estimated input 

signal x(n) is applied to an input 138 of a summing node 140. Also received by summing node 140 at an 

input 142 is input signal x(n). Summing node 140 produces at an output 144 an error signal 1::. First 

weighted factor source 118 and second weighted factor source 134 are responsive to error signal to to 

vary first weighted factor Wl(n) and second weighted factor W2(n) appropriately to reduce error signal to 

. That is, Wl(n) and W2(n) are appropriately varied to reduce the difference between input signal x(n) 
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and estimated input signal x(n). As may be seen from inspection ofFi gurell-2: 
A x(n)=Wl (n-l )x(n-l)+ W2(n-l )x(n-2) (11.9) 

Both weighted factors Wl(n), W2(n) are adaptive and are preferably determined by a least mean 

square algorithm, so that: 

Wl(n)=Wl(n-l) + !l£(n)x(n-l) 

W2(n)=W2(n-l) + !l£(n)x(n-2) 

Thus, from Figure 1l~2 and equation (11.9): 
A t(n)=x(n)-x(n)=x(n)-Wl (n-l )x(n-l)-W2(n-l )x(n-2) 

(11.10) 

(11.11) 

(11.12) 

If the input signal x(n) is a pure sine wave, then, from equation (1l.8), Wl(n) would converge to a 

value W defined by the expression: 

W = 2eos 27tf(n) 
fs 

and W2 would have a value of --1. However, one realistically should expect to receive a sine wave 

accompanied by a noise factor. Such a real world situation may be generally expressed by: 

x(n) = x,(n)+N(n) (11.13) 

Xs (n) = signal term 

N(n) = noise term 

In the presence of white Gaussian noise, the inventors have found that the first weighted factor Wl (n) 

does not provide an accurate frequency estimation. Thus, second weighted factor W2(n) is employed to 

estimate noise energy. A correction is then made to first weighted factor Wl(n) to obtain an accurate fre-

quency reading. 

Further considering equation (11.10): 

WI(n) = WI(n-l) + !l£(n)x(n-l) (11.14a) 

~ = gain factor 
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However, 

Wl(n-l) = Wl(n-2) + J.l£(n-l)x(n-2) (11.14b) 

Thus, 

Wl(n) = Wl(n-2)+ ll[E(n)x(n-l) H(n-l)x(n-2) (1l.14c) 

Repetitive substitution yields an expansion of equation (11.14c): 

Wl(m) = Wl(m)+ll[E(n)x(n-1) + E(n-l)x(n-2)+ ... H(m+l)x(m)] (11.14d) 

Therefore: 

n 
Wl(n) = W1(m) +).l L E(k)x(k-l) 

k=m+1 (11.15) 

When the system embodied in the apparatus 100 is in steady state, E (n) is in the presence of noise, a 

small signal moving randomly about zero. In such a steady state, the weighting functions W1(n) and 

W2(n) may be defined as: 

W1(n)=Wl* -tOW1(n) 

W2(n)=W2* +oW2(n) (11.16) 

Comparing equation (11.16) with equation (11.15), and noting a correspondence between the second 

terms of each of equations (11.15) and (11.16), one may note: 

Ifll~O, then IOW1(n)I«1 

and IOW2(n)I«1 

Thus, substituting equation (11.12) into equation (11.15) yields: 

n 
W1(n) = WI(m) +).l L [x(k) - Wl(k-1)x(k-1) - W2(k-1)x(k-2)]x(k-1) 

k=m+l 

Substituting equation (11.13) and (11.16) into equation (11.18) yields: 
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n 
Wl(n)=Wl(m)+Jl ~ [{xs(k)+N(k)}-{Wl*+IlWl(k-l)} 

k=m+l 

{x.(k-l) + N(k-l)} - {W2* + llW2(k-l)} 

{xs(k-2) + N(k-2) }][xs(k-l) + N(k-l»] 
(11.19) 

From equation (11.8), we know that (recall that W2* = -1, in steady state; the case assumed in connec-.. ' 

tion with equation (11.8»: 

• • Xs (k)-Wl Xs (k-l)-W2 Xs (k-2)=O 

Thus, equation (11.19) reduces to: 

n 
Wl(n) = Wl(m) + Jl ~ [N(k) -IlWl(k-l)xs(k-l)-

k=m+l 

Wl*N(k-l) -IlWl(k-l)N(k-l)

llW2(k-l)xs(k-2) - W2*N(k-2)

llW2(k-l)N(k-2)][xs(k-l) + N(k-l)] 

(11.20) 

(11.21) 

Assuming that noise N(k) is independent of signal Xs (k), as is the case with white Gaussian noise 

(that is, N(k) is an uncorrelated signal), then: 

E{N(k)}=O (mean of N(k)=O) 

E{N(k)N(k+n)}=O, when n=O (11.22) 

Therefore: 
~ 

I: xs(k)N(k) = 0 
x=O • and 
~ 

(11.23) 
I: xs(k-l)N(k) = 0 

x=O 

That is, in general: 

~ 

I: xs(k+L)N(k) = 0 
k=O , for any L (11.24) 

Expanding equation (11.21) yields: 
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n . 
Wl(n) = Wl(m) + ~ 1: [N(k)xs(k-l) + 

k=m+l 

N(k)N(k-l) - 3Wl(k-l)xs
2(k-l)-

3Wl(k-l)xs(k-l)N(k-l) - Wl *N(k-l)xs(k-l)-

WlN2(k-l) - 3Wl(k-l)N(k-l)xs(k-l) - 3Wl(k-l)N2(k-l)-

3W2(k-l)xs(k-l)X2(k-2) - 3W2(k-l)xs(k-2)N(k-l)

W2*N(k-2)xs(k-l) - W2*N(k-2)N(k-l) 

3W2(k-l)N(k-2)xs(k-l) - 3W2(k-l)N(k-2)N(k-l)] 
(11.25) 

By equation (11.23) and equation (11.24), we know that all tenns underlined in equation (11.25) 

equal zero, so: 

n 2 
Wl(n) = Wl(m) + ~ 1: [-3Wl(k-l)xs (k-l)-

k=m+l 

Wl *N2(k-l) - 3Wl(k-l)N2(k-l) - 3W2(k-l)X2(k-l)xs(k-2)] 

Recall that when 1~I«l,13Wl(k)I«1 and 13W2(k)I«l, so 

n 
Wl(n):;Wl(m)+~ 1: [-Wl*N2(k-l)] 

k=m+l 

Therefore, 

Wl(n):; Wl(m) - ~Wl *Rn(O) 

Observing that Wl(n) == Wl' when n~oo, equation (11.28) may be expressed: . , 
Wl == Wl(m) - ~Wl Rn(O) 

Applying a similar derivation to equation (11.11) yields: 

, 
W2 == W2(m) + ~Rn(O) 

• ~Rn(O) = W2 - W2(m) 

Substituting equation (11.31) in equation (11.29) yields; 
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WI *;::; WI(m) - WI *[W2* - W2(m)] 

21tfo 
WI *;::; WI(m) - 2cos -f- [W2* - W2(m)] 

s 

21tfO . 
WI*;::; WI(m) +2cos -f- [I + W2(m)] 

s 

Given the cosine function. generally. one can make the following approximations: 

1 
1 < ~~ < 3.6 -2" 

21tfo 
2cos-- = 0 

fs 
3.6 < To <4.4 

fs 
1 fs +-
2 4.4< To < 00 

Substituting equation (11.35) in equation (11.34) yields: 

Wl(m) - [1 + W2(m)] 2 < ~ < 3.6 
fo 

Wl *= Wl(m) 3.6 < ~~ < 4.4 

f 
Wl(m) - [1 + W2(m)] 4.4 < f~ < 00 

As previously mentioned, the quantity 

(11.32) 

(11.33) 

(11.34) 

(11.35) 

(11.36) 

Ps must be greater than two to satisfy the requirements of Nyquist sampling theory. Thus, if 

21tfO Wl(m) ;::; 2cos --
fs 

then equation (13.36) may be represented as: 
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Wl(m) - [1 + W2(m)]-2 Wl(m) -0.35 

Wl * = Wl(m) -0.35 < Wl(m) < 0.28 

Wl(m) - [1 + W2(m)] 0.28 < Wl(m) < 2 
(11.37) 

Thus, given the theoretical background provided by equations (11.8) through (11.37), the operation of 

apparatus 100 illustrated in Figure 11-2 may be further explained in that apparatus 100 includes a fre

quency identification circuit 150. Frequency identification circuit 150 comprises a summing node 152 

which receives second weighted factor W2 from second weighted factor source 134 at an input 154. Sum

ming node 152 also receives at a second input 156 the steady state value ofWz* (=-1). Since input 156 is 

an inverting input, summing node 152 produces at its output 158 a signal representing the quantity 

[1+W2(n)], which signal is received at an input 162 of a multiplier 160. 

The quantity Wl(n) is applied to an input 164 ofa threshold circuit 166. Threshold circuit 166 is pref

erably designed to substantially implement the approximations represented by equation (11.37) above, so 

that the signal, "A", provided by threshold circuit 166 at its output 168 is variable, as indicated in the 

table associated with Figure 11-2, according to the value of signal Wl(n) received at input 164. The out

put signal provided by threshold circuit 166 is applied to an input 170 of multiplier 160 so that multiplier 

160 provides at its output 172 a signal "B". Signal "B" varies as indicated in the table associated with 

Figure 11-2, depending upon the value ofWl(n) received at input 164 of threshold circuit 166. Signal 

"B" is applied to an input 174 ofa summing node 176; the signal Wl(n) is provided to a second input 178 

ofsumming node 176 from first weighted factor source 118, and summing node 176 provides at its output 

180 the value Wl". Thus signal Wl" is calculated by frequency identification circuit 150 in accordance 

with equation (11.37) above. 

The value provided at output 180 of summing node 176 uniquely identifies the frequency of the sinu

soidal signal, Xs (n), received at input 106 of delay circuit 102 through a look-up table or similar arrange-
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ment in a logic circuit (not shown in Figur ell-2). In such manner, a second weighted factor, W2(n), is 

employed to estimate noise energy in the received signal x(n) and second weighted factor W2(n) is 

employed to apply a correction to first weighted factor Wl(n) in order to accurately reflect an index 

uniquely identifying the sinusoidal wave form Xs (n) contained within the received signal xn' which is 

received in the form of equation (11.38), i.e., 

xn = Xs (n)+N(n) (11.38) 

It is to be understood that, while the detailed drawings and specific example given describe a pre

ferred embodiment of the invention, they are for the purpose of illustration only, that the apparatus of the 

invention is not limited to the precise details and conditions disclosed and that various changes may be 

made therein without departing from the spirit of the invention. 
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------------------------------- ----

Chapter 12 

Apparatus and Method for Synthesizing a Sinusoidal Signal 

Abstract 

This chapter is based on the invention patented under American patent 5,745,648 (S. Asghar, M. Ire

ton, May 1997). 

An apparatus and method for synthesizing a sinusoidal signal generated from a plurality of sample 

values taken at sample times in succeeding sample intervals. The signal is defined by a parameter which 

varies by a step value during predetermined sample intervals when the parameter changes from a first 

value to a second value. The apparatus includes a first logic unit for iteratively treating an initial step 

value to generate succeeding samples of the step value and a next step value. The next step value is the 

,step value in a next-succeeding sample interval. A second logic unit is included for iteratively generating 

a next parameter value which is the parameter value during the next-succeeding sample interval. The sec

ond logic unit receives succeeding samples of the step value and iteratively generates succeeding samples 

of an interim parameter value and succeeding samples of a derivative interim parameter value. The 

interim parameter value is the parameter value intermediate a current parameter value in a current sample 

interval and a next parameter value during a next-succeeding sample interval. The second logic unit iter

atively treats the succeeding samples of the interim parameter value and the derivative interim parameter 

value to generate the next parameter value. The second logic unit continues iterative generating of the 

next parameter value until the end of a time interval or until the particular parameter value substantially 

equals the second parameter value. 
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Figure 12-8 

BACKGROUND OF THE INVENTION 

The invention relates to an apparatus and method for generating sinusoidal signals that are modulated 

under control of a signal which is conditioned to perfonn a certain task. 

Specifically, the invention relates to an apparatus and method for generating sinusoidal signals which 

are variable in a particular parameter, such as frequency, from one time frame to another time frame, or 

from one sampling interval to another sampling interval. A representative application of the present 

invention is generation of a sinusoidal signal which is appropriate as a pitch component upon vocal tract 

infonnation which may be imposed to reproduce speech infonnation. 

Earlier sinusoidal signal generating apparatus and methods often have involved a pure pulse approach 

in order that the signal could be digitized. However, a problem with such a pure pulse approach is that the 

required data manipUlations can occur only at specified points in time. Thus, adjacent samples may have 

sufficiently different frequencies that no smooth transition is achievable between samples. 

The improved apparatus and method disclosed for generating sinusoidal signals enables generation of 

a mathematically continuous (as opposed to a discrete sample represented) signal. Such a continuous 

mathematical signal can be finessed from period to period (i.e., sample to sample) to provide smooth seg

ues in the varying signal parameter (e.g., frequency). 

Thus, the present invention provides an apparatus and method for producing a sinusoidal signal and 

calculating transitions of a parameter" on the fly" from a first value to a second value. The preferred 

parameter illustrated in this application is frequency, but the approach and model disclosed apply equally 

well for any sinusoidal parameter. 
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SUMMARY OF THE INVENTION 

An apparatus and method are disclosed for synthesizing a sinusoidal signal generated from a plurality 

of sample values taken at a plurality of sample times. Each respective sample value is generated at a 

respective sample time, the plurality of sample times defining a plurality of succeeding sample intervals. 

The sinusoidal signal is defined by at least one parameter value, a particular parameter value of the at 

least one parameter value varying by a step value during a predetermined sample intervals of the plurality 

of sample interval when the particular parameter value changes from the first parameter value to a second 

parameter value. The apparatus comprises a first logic unit for iteratively treating an initial value of the 

step value to generate succeeding samples of the step value and a next step value. The next step value is 

the step value in a next-succeeding sample interval of the plurality of sample intervals. 

The apparatus further comprises a second logic unit for iteratively generating a next parameter value 

which is the particular parameter value during the next-succeeding sample interval. The second logic unit 

is operatively connected with the first logic unit and receives succeeding samples of the step value from 

the first logic unit. The second logic unit iteratively generates succeeding samples of an interim parame

ter value and iteratively generates succeeding samples of a derivative interim parameter value. The 

interim parameter value is the particular parameter value intermediate a current particular parameter 

value in a current sample interval and a next particular parameter value during a next-succeeding sample 

interval following the current sample interval. The derivative interim parameter value is algorithmically 

related with the interim parameter value. 

Further, the second logic unit iteratively treats the succeeding samples of the interim parameter value 

and succeeding samples of the derivative interim parameter value to iteratively generate the next parame

ter value. The second logic unit continues such iterative generating of the next parameter value until the 
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end of a time interval (or sample interval) or until the particular parameter value substantially equals the 

second parameter value. 

In its preferred embodiment, the second logic unit includes a third logic unit for generating succeed

ing samples of the derivative interim parameter value. The third logic unit receives succeeding samples of 

the step value from the first logic unit and receives succeeding samples of the interim parameter value 

and iteratively generates the succeeding samples of the derivative interim parameter value. 

The particular parameter value is preferably expressed as a particular parameter sinusoidal value; the 

particular parameter sinusoidal value being a sinusoidal value of an angular displacement representing 

the particular parameter value in a phasor representation. 

The step value is also preferably expressed as a step value sinusoidal value being a sinusoidal value of 

an angular displacement representing the step value in a phasor representation. 

Further, the interim parameter value is preferably expressed as an interim parameter value sinusoidal 

value which is a sinusoidal value of an angular displacement representing the interim parameter value in 

a phasor representation. 

Still further, the derivative interim parameter value is preferably expressed as a derivative interim 

parameter value sinusoidal value which is a sinusoidal value of an angular displacement representing the 

derivative interim parameter value in a phasor representation; and the derivative interim parameter value 

sinusoidal value is preferably 90' displaced from the interim parameter value sinusoidal value in a phasor 

representation. 

An advantage of the preferred embodiment of the present invention is that the first logic unit, the sec

ond logic unit, and the third logic unit are embodied as programmable logic units dealing with difference 

equations involving sinusoidal values, as opposed to dealing with equations which require deriving sinu

soidal values from angular value inputs. Such treatment and calculation of the various values required by 

the apparatus and method of the present invention from directly entered values allows speedier calcula-

158 



tion and therefore allows a higher sampling rate for providing samples to represent the· desired sinusoidal 

signal being synthesized. 

A further advantage of the preferred embodiment of the present invention is that such dealing in val

ues, as opposed to deriving values from angular value inputs, also simplifies hardware requirements to 

support such logical activities. 

It is, therefore, an advantage of the present invention to provide an apparatus and method for synthe

sizing a sinusoidal signal which directly employs sinusoidal values in effecting required logical calcula

tions. 

It is a further advantage of the present invention to provide an apparatus and method for synthesizing 

a sinusoidal signal which requires simple hardware. 

It is yet a further advantage of the present invention to provide an apparatus and method for synthe

sizing a sinusoidal signal which can quickly calculate required values for accurately reproducing infor

mation regarding the sinusoidal signal. 
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BRIEF DESCRIPfION OF THE DRAWINGS 

Figure 12-1 is a basic phasor representation of signal synthesis. 

Figure 12-2 is a phasor representation of iterative signal synthesis. 

Figure 12-3a-Figure 12-3f are graphic representations of various cases relating to the sample displace
ment value for a sinusoidal signal. 

Figure 12-4 is a graphic representation of a voice signal with a fundamental sinusoidal signal indicated. 

Figure 12-5 is a schematic diagram of a signal processing system using the present invention. 

Figure 12-6 is a schematic diagram of an embodiment of the present invention. 

Figure 12-7 is a schematic diagram of the preferred embodiment of the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

Figure 12-1 is a basic phasor representation of signal synthesis. In Figure 12-1 , a phasor representa-

tion 10, and its associated, more familiar, orthogonal axes representation 12 are illustrated. In phasor rep-

resentation 10, since the function illustrated is y = cos x, the zero radian angle of displacement is situated 

at the top (north) position of phasor representation 10. If the phasor is displaced counterc1ockwise about 

phasor representation 10 by a phasor angle B, the value A of y = cos x at displacement X=B in two 

dimensional representation 12 corresponds to that phasor displaced by B radians in phasor representation 

10. Thus, phasor angle B is analogous to angular velocity Cl) for a time-related function. Phasor angle B, 

therefore, as illustrated in Figure 12-1, may be expressed as B = dA 
dx 

If the phasor angle B is altered during the traversal of the phasor in phasor diagram 10 (for example, 

in a situation where the frequency of the signal varies) the variation of phasor angle B may be represented 

by a value o. That value 0 step is analogous to angular acceleration (dc.oldt) in a time-based relationship. 

Thus, in Figure 12-1, 0 may be characterized as 0 = dB 
dx 
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Thus, in the orthogonal axes representation 12 of Figur e12-1, a function y = f(x) is represented in 

(x,y) coordinates with displacement in radians (Le., B) represented along the x-axis, and the function 

value y = f(x) = cos x is represented as function value A. 

Figure 12-2 is a phasor representation of iterative signal synthesis. In Figure12-2, a sinusoidal func-

tion (e.g., y = cos x) is represented as being iteratively generated during three iterations with the phasor 

angle B being increased during each iteration by a value I). Such a situation may exist, for example, when 

one wishes to vary a frequency of a sinusoidal signal from a first frequency to a second frequency in lin-

ear fashion by increasing phasor angle B. In such a situation, the predetermined value I) is preferably cho-

sen so that, in altering the sinusoidal signal from a first frequency fl to a second frequency f2, phasor 

. B-B 
angle B may be altered from phasor angle B I to phasor angle B2 such that 2 I = I) 

n 

Where n = number of samples. 

Thus, in Figure 12-2, a first iteration 14 provides that function value A vary from a first function 

value Al to a second function value A2, the phasor angle difference between the function values AI' A2 

being phasor angle B2. However, phasor angle B2 equals phasor angle B 1 plus I). 

In second iteration 16, function value A2 is changed to function value A3• The difference between the 

function values A2, A3 is phasor angle B3 ; phasor angle B3 is equal to phasor angle B3 plus I). 

In third iteration 18, function value A3 is changed to function value A4• The difference between the 

function values A 3, A4 is phasor angle B4 ; phasor angle B4 is equal to phasor angle B3 plus I). 

Thus, in such an iteration where a parameter change is effected by a linearly changing phasor angle, it 

may be seen generally that: 

This is a simplified example which presumes that I) is a constant to provide for linear change from a 

first parameter to a second parameter (in this example the parameter is frequency), Of course, I) could be 

varied according to any relationship (for example: a polynomial relationship, an exponential relationship, 
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or a sinusoidal relationship) without affecting the validity of the relationships illustrated in this descrip

tion. 

Thus, the signal represented by a function which is expressible by a phasor notation, as illustrated in 

Figure 12-1 and Figure 12-2, is modulated by variation of value o. In order to facilitate understanding of 

the present invention and to keep the explanation straightforward, value 0 will be presumed hereinafter to 

vary linearly. that is 0 is presumed to be a constant locally within a given sample or analysis interval. 

By inspection of Figur e12-2, observe: 

cos (An+l) = cos (An +Bn+l) = cos (An +Bn +I» 

cos (An_I) = cos (An -Bn) 

Bn+1 =Bn+S 

Bn+1 = Bn-S 

The following discussion will rely upon the four following relationships: 

cosx (x+y) = 2 cosx • cos y-cos (x-y) 

sinx (x+y) = 2 sinx • cos y-sin (x-y) 

cosx (x+y) = cosx • cos y-sin • sin y 

sinx(x+y) = sinx • cos y+cos • sin y 

(12.1) 

(12.2) 

(12.3) 

(12.4) 

Thus, the iterative modulation of a signal (such as, for example, the cosine signal of FigureI2-2) may 

be algebraically represented as follows: 

Stage I: Determine cos (An +Bn) using equation (12.1) above with x = An' Y = Bn: 

or 

cos (An +Bn) = 2 cos Bn cos An -cos An_1 

This expression may be rewritten as: 

XC A+B = 2 cos Bn xC n -xC n-I 

(12.5) 

[D 1] 
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where: 

XC
n = cos An 

Stage 2: Determine sin (An +Bn) using equation (12.2) above with x = An' Y = Bn : 

(12.6) 

This expression may be rewritten as: 

XS A+B = 2 cos Bn XS n _XS n-1 [D2] 

where: 

XS
n = sin An 

Stage 3: Determine cos (An +Bn +o) using equation (12.3) above, with x = An +Bn}, Y = 0: 

This expression may be rewritten as: 

-or-

Xc -Vc XC yC XS 
n+1 - 0 A+B - 0 A+B 

where: 

yCo=cos 0 

ySo= sin 0 

(12.7) 

[e 1] 

Stage 4: Determine sin (An +Bn +o) using equation (12.4) above, with x = (An +Bn), Y = o. 
(12.8) 
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This expression may be rewritten as: 

sin An+ I = sin (An + Bn) cos 1>+cos (An +Bn) sin 1> 

-or-

Xs _yC XS yS XC n+1 - /) A+B + /) A+B [C2] 

where: 

Stage 5: Determine cos (Bn +1» using equation (12.1) above, with x = Bn, Y = 1>. 

cos (B~ +1» = 2 cos Bn cos li-cos (Bn -1» (12.9) 

This expression may be rewritten as: 

or 

[D3] 

where: 

xB
n =cosBn 

xB n+1 = cos Bn+1 

xB n.1 = cos Bn.1 

Stage 6: For the next iteration replace 

Second Iteration Yalue First Iteration Yalue 

cos (A2 -B2) cosAI 

cosA2 cos (AI + BI + 1» 

cosB2 cos (BI + 1» 

sin(Ar B2) sinAI 

sin A2 sin (AI + BI + 1» 
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----------------------------------- --

Inspection of Figure 12-2 reveals that this is precisely the relationship depicted. In second iteration 16 

the value A2 -B2 equals the value of Al of first iteration 14. Further, in second iteration 16, the value A2 

is equal to the value (A I +B I +0). Still further, the value B2 is equal to B I +0. One will observe that, at the 

start of first iteration 14, all angle differences are equal to phasor angle BI, and at the end of first iteration 

14, all angle differences are the value B2 = (BI +0). The iteration process can be repeated through the six 

stages related above for as long as desired. However, a useful apparatus must be able to change the rate of 

modulation (value 0). The inventors have termed the points at which the rate of change of modulation is 

changed, "corner points" . 

Corner points may be inserted at any time and may, in the extreme, be inserted on a sample-by-sam

pie (i.e., iteration-by-iteration) basis. Frequent insertion of corner points will enable quite close approxi

mation of almost any sinusoidal function by a linearly modulated function (i.e., constant 0). A simple 

representation of corner points is a continuous piecewise linear function. That is, the start of a given lin

ear element of the function occurs at the same point as the end of a preceding linear element. A non-con

tinuous piecewise linear function would not have a common point shared by adjacent linear elements. 

For simplicity, regarding the piecewise continuous linear function corner point case, assume that at a 

corner point 0 changes from 0 to 01. When 0 is changed to 01' stages 1 through 4 of the iteration process 

above may proceed unchanged. At stage 5, however, one knows the values of cos B and cos (B-o) from 

the previous iteration. However, in order to apply equation (12.1) to perform stage 5 using y = 01' one 

requires knowledge of cos B and cos (B-oI). Thus, a corner point process must be inserted between stages 

4 and 5. 

It is worthy of note that we have assumed in this discussion that cos 0 and sin 0 are known. Because, 

in general,o is updated infrequently, cos 0 and sin 0 can be determined by any suitable process (e.g., table 

look-up or sinusoidal generator) without having a great effect upon the overall system complexity. 

Regarding the corner point process intermediate stages 4 and 5, cos (B-OI) is determined using equa-
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tion (12.3) with x = CB-o), y = (0-01). Thus, one must know the value of cos (0-01) and sin (0-01). 

Since these values are required only at corner points, and therefore relatively infrequently, they can be 

determined using the same process used to determine cos 0 and sin o. That is, they can be determined by 

a table look-up, or by a cosine generator, or by other known methods or processes. Further, one also 

requires knowledge of sin (B-o). 

cos (B-o) is known because of its use in the iteration at stage I. 

A well-known equivalent relation in mathematics is that cos2 x+sin2 x = 1. This may be rewritten as 

sin2 x = l-cos2 x, or: 

(12.10) 

Thus, one can determine sin (B-o) given cos (B-o). The sign of equation (12.1 0) is always positive 

because the range of the value of B is preferably chosen to ensure such a result. It is possible, however, to 

determine the sign of equation (12.10) using the below-described procedure. Such a procedure may be 

required in certain circumstances. Further, the below-described procedure is required in later steps for 

computing the sign of the square root when computing sin (An -Bn) from cos (An -Bn). 

In order to determine the correct sign, one must employ a well-known relationship: 

...i.. (cos x) = -sin x 
dx 

Thus, if 

...i.. (cos x) 
dx 

is positive, then sin x is negative and if 

...i.. (cosx) 
dx 

is negative, then sin x is positive. 
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cos B and cos (B-Il) are known from the above-described process; However, this infonnation is not 

sufficient to determine whether the slope of cos x at x = B is positive or negative. 

We can, however, use equation (12.1), with x = B, Y = Il to determine cos (B+il). Such knowledge of 

cos (B-Il), cos B and cos (B+Il) suffices to determine the slope of cos x at x = B. 

There are six possible cases; Figur e12-3a through Figur e12-3f are graphic representations of the six 

cases relating to sample displacement value for a sinusoidal signal. In Figure l2~3a, the function Y = cos 

x passes a minimum point at Ymin. cos (B+Il) is greater than cos B, and cos B is greater than cos (B-Il). 

Thus, the slope of cos x at x = B is positive and cos (B+Il)-cos (B-Il)>o. 

In Figure 12-3b, Y =c os x passes a minimum point at Ymin' cos (B+Il) is greater than cos B, cos (B+Il) 

is greater than cos (B-Il), and cos (B-Il) is greater than cos B. Thus, the slope of cos x at x = B is positive 

and cos (B+Il)-cos (B-Il)>o. 

In Figure 12-3c , Y = cos x passes a minimum point with Ymin' cos (B+Il) is greater than cos B; cos (B

Il) is greater than cos B; and cos (B+il) is less than cos (B-Il). Thus the slope of cos x at x = B is negative 

and cos (B+Il)-cos (B-Il)<O. 

In Figure 12-3d, Y = cos x passes a maximum point at Ymax' cos (B+Il) is less than cos B which, in 

turn, is less than cos (B-Il). Thus, the slope of cos x at x = B is negative and cos (B+Il)-cos (B-Il)<O. 

In Figure 12-3e, Y = cos x passes a maximum point at Ymax' cos (B+Il) is less than cos B; cos (B+Il) is 

greater than cos (B-Il); and cos (B-Il) is less than cos B. Thus, the slope of cos x at x = B is positive and 

cos (B+Il)-(B-Il»O. 

In Figure 12-3f, Y = cos x passes a maximum point at Ymax' cos (B+Il) is B is negative and cos (B+Il)

cos (B-Il)<O. 

The correlation of slope relationship to cos (B+Il)-cos (B-Il) is summarized for Figur e12-3a through 

Figure l2-3f in the following table: 
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Figure 10-3 cos (B + a) - cos (B-3) Slope 

(a) + + 

(b) + + 

(c) - -

(d) - -
(e) + + 

(f) - . -

Thus, the sign of the slope of cos x at x = B, and consequently the inverse of the sign of sin x at x = 

B, is detennined by the sign of the quantity [cos (x+a)-cos (x-a)] at x = B. The above conclusion is based 

upon well-known properties of the function f(x) = cos x and, in particular, knowledge of the shape of that 

function and the fact that the function is continuous and symmetrical about points with a slope of f(x) = 

o. 

Given infinite mathematical precision and accuracy, equation (12.5) will accurately generate cos (An 

+Bn) as n approaches infinity. However, such is not the case for a finite accuracy mathematical system 

(such as a microprocessor- based system). Inaccuracies born of imprecision caused by less than infinite 

accuracy feed back through the calculations and eventually cause divergence from the desired true result. 

The rate of divergence and the speed of onset of significant errors increase as the number of significant 

digits in the arithmetic representation decreases. A correction mechanism is required in order to achieve 

satisfactory performance of a finite system employing the iterative process described for generating a 

sinusoidal sigual. 

Such a correction mechanism recognizes the limitations imposed upon a calculation of the iterative 

generation of a sinusoidal wave as described above by the finite capabilities of a system such as a micro

processor-based system. That is, the employment of difference equations employing actual values for 
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sinusoidal tenns such as cosine and sine, as opposed to deriving the values of cosine and sine from angle 

values, inherently injects error through each iterative calculation. 

There are two correction mechanisms which are useful for the present invention: modular retracking 

and resanitization. 

Modular retracking may be perfonned periodically at any time, but is preferably perfonned at the end 

of a sample analysis frame or period. Modular retracking recognizes that iterative treatment of a sinusoi

dal relationship to accommodate a change of parameter (such as frequency) from a flrst parametric value 

to a second parametric value over a predetermined time period may not precisely result in the particular 

changed parameter having the desired second parametric value at the intended time. As previously men

tioned, such inaccuracy can especially result in a flnite mathematical system. The preferred method for 

accommodating (and correcting) such inaccuracies in the present invention is to determine the step value 

for effecting parametric value change over a second (succeeding) time period (i.e., analysis frame) using 

the actual parametric value at the end of the first time period as the initial parametric value for the second 

time period. That is, the actual initial parametric value is used rather than using the target (Le., expected, 

or theoretical) parametric value in determining the appropriate step value for effecting the desired para

metric value change during the second time period. Thus, the step value required for parametric transition 

in the second time period will reflect real-time conditions. "Blindly" using theoretical values will almost 

certainly result in unacceptable error in a relatively few analysis frames (time periods). 

"Re sanitization" is a tenn coined by the inventors to indicate the process of restoring the "sanity" of 

the presumption that sinusoidal values are accurate in the difference equations (01, 02, 03) and combi

nation equations (Cl, C2) employed in the preferred embodiment of the present invention. 

An example of a resanitization process in connection with the present invention is as follows: 

Step I. Assume the truth of yC /) = cos 0; known XB n = cos Bn ; known 

Step 2. Determine yS/): 
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sin 0 = ± ~ I - COS
20 

VOS = ±~ 1-(Vh2 

Since 0 is known, the above calculation may be made and the sign assigned by the known value of O. 

In the alternative, sin 0 and cos 0 may be supplied by other known means, such as by a look-up table or a 

sine/cosine generator. 

Step 3. Since XB n is a term for a difference equation which is an actual value representing cos En. the 

value of XB n can be > I or <-I. Of course, such a value can never exist for cos!\t. Therefore, we must 

reset XB n as follows: 

IfXBn >1 setXB
n = I 

IfXB <-1 setXB = I n n 

Step 4. Determine sin Bn : 

In general, the sign ofthe above expression should always be positive since Bn will preferably lie in 

the first or second quadrant. Values of B n in the third or fourth quadrant imply either negative frequency 

or aliasing. Neither of those conditions is desirable in most applications. The sign may be determined by 

determining the sign of [cos (Bn +o)-cos (Bn -0)]; that is, [XB n+1 _XB n-I]. as described above in connec-

tion with Figure 12-3a. 

Step 5. Using equation (10.3) [cos (x+y) = os· cos y-sin • sin y], with x = Bn, Y = -0: 

cos (B-o) = XB n-I = cos Bn cos (-o)-sin Bn sin (-0) 

It is well-known that: 

cos (-0) = cos 0 

sin (-0) = -sin 0 
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Thus. the above expression may be written as: 

XB n-I = cos Bn cos o+sin Bn sin 0 

cos Bn is known (Step 1) 

cos 0 is known (Step 1) 

sin 0 is known (Step 2) 

sin Bn is known (Step 3) 

XB n-I is determined. 

Step 6. Using equation (12.3). with x = An. Y = -Bn : 

cos (An -Bn) = xC n-I 

XC n - = cos An cos (-Bn)-sin An sin (-Bn) 

Which may be rewritten as: 

xC n-I = cos An cos Bn +sin An sin Bn 

cos Bn is known (Step 1) 

sin Bn is known (Step 3) 

cos An is assumed as part of the resetting which is effected by the resanitization process. 

sin An may be determined: 

sin An = ± ~ 1 - cos2 An 

The sign is determined by determining the sign of (cos (An +Bn)-cos (An -Bn)); that is, (xC A+B -Xc A. 

B)' One may note that this expression is the same relationship as recited in connection with Step 4 above. 

with An substituted for Bn. and with Bn substituted for O. Thus. xC n-I is determined. 

Step 7. Using equation (12.4). with x = An. Y = -Bn : 

cos (An -Bn) = XS n-I 

XS
n_1 = sin An cos (-Bn)+cos An sin (-Bn) 
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which may be rewritten as: 

XS n.l = sin An cos Bn -cos An sin Bn 

cos Bn is known (Step 1) 

sin Bn is known (Step 3) 

cos An is assumed as part of the resetting which is effected by the resanitization process. 

sin An is known (Step 6) 

Thus, XS n.l is determined. 

In summary, by resetting (Le., assuming the truth, or sanity, of) cos 0 (0'1), cos Bn (XB n)' and cos An 

(XC
n), all other values in difference equations (Dl, D2, D3) and combination equations (Cl, C2) may be 

reset. 

The above is an example of a resanitization process. Other assumptions and variations may be used to 

accomplish the same goal: to restore the "sanity" of presumptions in the difference equations (Dl, D2, 

D3) and combination equations (Cl, C2) to preclude divergence of the relationships because of inaccura

cies born of finite mathematical calculations. 

Clearly the calculations required in the resanitization process and in the modular retracking process 

are relatively time consuming compared with the time required to calculate the various difference equa

tions (Dl, D2, D3) and combination equations (Cl, C2). Accordingly, it is preferable that the modular 

retracking and resanitization processes be effected relatively infrequently as compared with the frequency 

at which the difference equations (Dl, D2, D3) and combination equations (Cl, C2) are exercised. 

Figure 12-4 is a graphic representation of a voice signal with its fundamental sinusoidal frequency. In 

Figure 12-4, a voice signal 20 is illustrated; the fundamental sinusoidal frequency 22 (pitch component) 

related with voice signal 20 is also illustrated. Voice signal 20 is sampled during a plurality of sample 

intervals, represented by sample interval 24. Preferably, analysis of signals 20, 22 occurs during succeed

ing analysis intervals, represented by analysis intervals 26, 28, 30. The period T of signals 20, 22 may 

172 



change, as indicated by the period of signals 20, 22 in analysis interval 26 being a period T n' and the 

period of signal 20, 22 in analysis interval 28 being a period Tn_l -

A representative sample interval for a voice-band signal could be 125 microseconds. A representative 

analysis interval for such a voice-band signal may, for example, involve 160 samples per analysis frame 

for a duration of each analysis frame equal to 20 milliseconds. Of course, the present invention is compat

ible with any signal which may be represented by a fundamental sinusoidal signal or approximated by a 

sinusoidal signal. The present invention is not limited to voice-band signals. The voice-band signal illus

trated in Figure 12-4 is included here for illustration purposes only. 

Figure 12-4 is a schematic diagram of a signal processing system appropriate for processing a signal 

such as the voice-band signal illustrated in Figure 12-4, using the present invention. 

In Figure 12-5, a signal processing system 40 includes an encoder 42, a decoder 44, and a storage unit 

46. Encoder 42 includes an analog-to-digital conversion unit 48 which receives an analog signal (such as, 

for example, signals 20 and 22) at an analog input 50. Analog-to-digital conversion unit 48 converts the 

analog signal received at analog input 50 to a digital representation of that received signal and passes that 

digital representation to a signal analysis unit 52. Signal analysis unit 52 may be employed to determine 

particular aspects of the signal received at analog input 50, such as various parameters (e.g., frequencies) 

and parametric changes from analysis frame to analysis frame. The results of signal analysis performed 

by signal analysis unit 52 are stored in storage unit 46 and are passed to a register 54 in decoder unit 44. 

Data may be stored in storage unit 46 and in register 54, for example, to save the signal analysis output 

from signal analysis unit 52 relating to respective analysis frames. In the alternative, storage unit 46 may 

be eliminated, and appropriate data may be stored in register 54 alone. Information relating to the ana

lyzed signal information from signal analysis unit 52 relating to earlier analysis frames than the currently 

extant analysis frame may be provided from storage unit 46 to register 54 in an appropriate portion of 

register 54 for each respeCtive data frame. 
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A parametric detennining logic unit 56 receives infonnation relating to at least two succeeding data 

frames in order to determine appropriate parameters (such as 0, BD' and the like; representative are 

parameters discussed above in connection with the present invention) for supply to a basic signal synthe

sis unit 58. In this representative apparatus 40 employing the present invention, the present invention 

resides in and generally comprises basic signal synthesis unit 58. Infonnation from register 54 and basic 

signal synthesis unit 58 is provided to a filter unit 60. Filter unit 60 may take the output from basic signal 

synthesis unit 58 which will provide a sinusoidal signal, such as signal 22 in Figure 12-4 (constituting, for 

example, a pitch component for a voice reproduction signal). Filter unit 60 may impose voice tract or 

other information upon the pitch component received from basic signal synthesis unit 58 to produce an 

analog output signal at analog output 62 which substantially faithfully reproduces the analog signal 

received at analog input 50. 

Figure 12-6 is a schematic diagram of an embodiment of the present invention. In Figur e12-6, an 

apparatus 70 includes a next step value iterating unit 72, a next parameter value iterating unit 74, and a 

derivative next parameter iterating unit 76. 

A logic unit 80 in next step value iterating unit 72 receives an input value cos 0 and initial input val

ues cos BD and cos (BD -0) to generate, according to equation (12.9), the value cos (BD +0) at an output 

82. A delay filter unit 84 imposes a delay on the signal appearing at output 82 so that a signal cos BD is 

produced on line 86. Line 86 is fed back through a delay filter unit 88 to provide a feedback input to logic 

unit 80 having the values cos BD and cos (BD -0). Thus, next step value iterating unit 72 iteratively gener

ates step values cos BD on line 86. 

The various delay filter units described in connection with Figure 12-6 are clocked at a predetermined 

time. Theoretically, they are all clocked at once, but as a practical matter they may be just-in-time cascade 

clocked. However they may be clocked, the result is that the input to a given delay filter unit is shifted to 

the output of that delay filter unit at the time the particular delay filter unit is clocked. It is by this clock-
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ing arrangement that iteration is effected by apparatus 70. 

Step value cos Bn on line 86 is applied to a logic unit 90 in next parameter value iterating unit 74. 

Logic unit 90 receives initial values representing cos (An -Bn) and cos An and generates an interim 

parameter value cos (An +Bn), preferably according to equation (12.5). 

Step value cos Bn is also supplied from line 86 to a logic unit 92 in derivative next parameter iterating 

unit 76. Logic unit 92 receives initial values representing sin (An -Bn) and sin An and generates a deriva

tive interim parameter value sin (An +Bn), preferably according to equation (12.6). Both derivative 

interim parameter value sin (An +Bn) and interim parameter value cos (An +Bn) are applied to a logic unit 

94 in next parameter value iterating unit 74. Logic unit 94 receives initial values representing cos 0 and 

sin 0 and generates a next parameter value cos (An +Bn +0) at an output 96, preferably according to equa

tion (12.7). Next parameter value cos (An +Bn +0) is fed back by a line 98 to a delay filter unit 100, and 

thence to a delay filter unit 102, from which iterated values of cos (An -Bn) and cos An are provided to 

logic unit 90. Thus, next parameter value iterating unit 74 iteratively generates interim parameter value 

cos (An +Bn) and next parameter value cos (An +Bn +0). 

Similarly, both derivative interim parameter value sin (An +Bn) and interim parameter value cos (An 

+Bn) are applied to a logic unit 104 in derivative next parameter iterating unit 76. Logic unit 104 receives 

initial values of cos 0 and sin 0, and generates a derivative next parameter value sin (An +Bn +0), prefer

ably according to equation (12.8). Derivative next parameter value sin (An +Bn +0) is fed back via a line 

106 to a delay filter unit 108, and thence to a delay filter unit 100, from which iterated values of sin (An -

Bn) and sin An are provided to logic unit 92. Thus, derivative next parameter value iterating unit 76 itera

tively generates derivative interim parameter value sin (An +Bn) and derivative next parameter value sin 

(An +Bn +0). 

Figure 12-8 is a schematic diagram of the preferred embodiment of the present invention. In 

Figure 12-8, an apparatus 170 includes a next step value iterating unit 172, a next parameter value iterat-
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----------------------------............ .. 

ing unit 174, and a derivative next parameter iterating unit 176. Next step value iterating unit 172 

includes a logic unit 180 which periodically receives input values VCa (representing cos 0), XB n (repre

senting cos Bn), and XB n.1 (representing cos (Bn -0». Initially, logic unit 180 also receives an initial value 

XB n-1 (representing cos (Bn -0» and an initial value XB
n (representing cos Bn)' Logic unit 180 calculates 

a value XB n+1 (representing cos (Bn +0» according to difference equation D3: 

XB n+1 = 2VCa XB n _XB n-1 

The value XB n+1 is applied by a line 182 to a delay unit 184. Delay unit 184 outputs a value (repre

senting cos Bn) on a line 186. Line 186 provides the value XB n (representing cos Bn) to logic unit 180 and 

to a delay unit 188; delay unit 188 provides a value XB n-1 (representing cos (Bn -0» as an input to logic 

unit 180 so that next step value iterating unit 172 may iteratively generate value XB n on line 186. 

Value XB n is applied as an input to a logic unit 190 in next parameter value iterating unit 174. Logic 

unit 190 receives initial values XC n-1 (representing cos (An -Bn», and xC n (representing cos An)' Logic 

unit 190 also periodically receives values XCn (representing cos An) and xC n-1 (representing cos (An -

Bn»- Logic unit 190 generates an interim parameter value output xC A+B (representing cos (An +Bn» 

according to difference equation D 1: 

XC MB = 2 cos Bn xC n -xC n-1 

Value XB n is also applied as an input to a logic unit 192 in derivative next parameter iterating unit 

176. Logic unit 192 receives initial values XS n-1 (representing sin (An -Bn» andXS n (representing sin An) 

. Logic unit 192 also periodically receives values XS n (representing sin An) and XS n-1 (representing sin 

(An -Bn»' Logic unit 192 generates a derivative interim parameter value XS MB (representing sin (An 

+Bn» according to difference equation D2: 

XS A+B = 2 cos Bn XS n _Xs n-1 

Both the derivative interim parameter value XS A+B and the interim parameter value XC A+B are 

applied to a logic unit 194. Logic unit 194 receives inputs VCo (representing cos 0) and VSo (representing 

176 



sin 3). Logic unit 194 generates a next parameter value XC n+1 (repr~senting cos An+I) at an output 196, 

preferably according to combination equation Cl. The next parameter value XC n+1 is fed back via a line 

198 to a delay unit 200 and thence to a delay unit 202 to iteratively provide feedback values ~ n-I (repre

senting cos (An -Bn)) and xC n (representing cos An). Thus, next parameter value iterating unit iteratively 

generates interim parameter value XC A+B and next parameter value xC n+ I' 

Derivative interim parameter value XS A+B and interim parameter value XC A+B are also applied to a 

logic unit 204. Logic unit 204 periodically receives values ye/) (representing cos 3) and VS/) (represent

ing sin 3). Logic unit 204 generates a derivative next parameter value XS n+1 (representing sin A n+l ) pref

erably according to combination equation C2. The derivative next parameter value XS n+1 is fed back via 

a line 206 to a delay unit 208 and thence to a delay unit 210 to iteratively provide feedback values XS n-I 

(representing sin (An -Bn) and XS n (representing sin An)' Thus, derivative next parameter value iterating 

unit iteratively generates derivative interim parameter value XS A+B and derivative next parameter value 

X
s
n+l · 

A parametric determining unit 300 provides periodic inputs at update inputs 302, 304, 306, 308, 310 

involving periodic supply of finite values as previously described in connection with F igureI2-8. 
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Chapter 13 

Apparatus/Method for Analyzing Speech Signals 

to Find Speech Signal Parameter Characteristics 

Abstract 

This chapter is based on the invention patented under American patent 5,339,251 (S. Asghar, M. Ire

ton, April 1998). 

An apparatus and method for locating a plurality of roots of a line spectrum pair expression on a unit 

circle. The method comprises the steps of: (1) receiving an initial value for locating a first site on the unit 

circle; (2) receiving a step value for defining an arc-distance on the unit circle; (3) generating intervals on 

the unit circle, each having a lower limit and an upper limit; the lower limit of the initial interval is the 

initial value and the upper limit of the initial interval is displaced on the unit circle from the initial value 

by the arc-distance; each succeeding interval has its lower limit coincident with the upper limit of the 

next preceding interval and has its upper limit displaced on the unit circle from its lower limit by the arc

distance; (4) evaluating the expression for at least the upper limit and the lower limit of each respective 

interval; (5) recognizing a root of the expression when the expression changes sign within an interval; (6) 

designating each such interval as a solution interval; and (7) generating the lower and upper limits of each 

solution interval to identify where the root is located. The apparatus comprises a waveform generator 

which receives the initial value and the step value and defines the arc-distance, and generates the inter

vals; a zero detector for recognizing roots of the expression when the expression changes sign. 
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BACKGROUND OF THE INVENTION 

Numerous methods have been developed for speech analysis and speech synthesis. The most success-

ful methods thus far are concerned with speech spectrum conservation rather than speech waveform, such 

speech spectrum conservation is sufficient to insure adequate speech quality and intelligibility for many 

purposes. Generally, in a speech analysis and synthesis method, certain predetermined parameters corre-

sponding to particular speech spectra are extracted at an analyzer end and, at the receiver end, the speech 

waveform is synthesized from those predetermined parameters. The difference among the various meth-

ods is the difference in the predetermined parameters. 

Most research has been concentrated on finding predetermined parameters which express speech 

characteristics efficiently. One method, linear predictive coding (LPC), has been successful but has been 

found not as efficient as desired because of quantization characteristics associated with linear predictive 

coding. 

Another idea for speech synthesis and analysis is based on an assumption that a speech signal can be 

approximately represented as an output signal from an all-pole filter. ThePARCOR (pARtial autoCORre-
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lation) lattice filter is employed to implement this assumption. The PARCOR speech analysis and synthe

sis method has been found to be efficient for narrow band speech coding. However, the PARCOR method 

has limitations with regard to data compression. In particular, PARCOR-synthesized speech quality rap

idly deteriorates at bit rates lower than 4.8 kilobits per second. There are two main reasons for this: (1) in 

parameter quantization, between 4 and 8 bits are required for tre P ARCOR coefficients, and (2) the spec

tral distortion due to parameter interpolation increases rapidly as the parameter refreshing period is 

lengthened. 

Another approach to speech synthesis and analysis is the line spectrum pair (LSP) method. The line 

spectrum pair method also employs an all-pole model of speech, and employs line spectrum pair parame

ters which are interpreted as one of the linear predictive coding parameters in the frequency domain. 

Line spectrum pairs (LSP's) are a transformed representation of the canonical linear predictive coding 

(LPC) filter coefficients, which possess some useful characteristics. The LSP representation gives an 

accurate approximation to the short term spectrum using relatively few bits. The LSP representation also 

has the useful property of error localization. For example, an error in a particular coefficient will only 

introduce distortion in the frequency spectrum in frequencies close to the frequency represented by the 

coefficient. These parameters are also useful for vector quantization where good results can be obtained 

using a simple mean squared error measure on the coefficient vectors. 

Any of the above-described methods (LPC,PARCOR, LSP) have heretofore been implemented in 

inefficient, cumbersome, memory-expensive ways. For example, LSP requires either a cosine computa

tion algorithm or a large look-up table in which to store cosine values. The cosine computation is com

plex, and a look-up table requires a large amount of memory, especially if highly accurate results are 

required. 

There is, therefore, a need for a method and apparatus for solving line spectrum pair expressions 

which is efficient in its storage requirements and efficient in effecting root determination. 
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SUMMARY OF THE INVENTION 

The present invention is an apparatus and method for locating a plurality of roots of a line spectrum 

pair expression on a unit circle. In its preferred embodiment, the apparatus comprises a waveform gener

ating unit which has a fIrst input for receiving a representation of an initial value for locating a fIrst site 

on the unit circle. The waveform generating unit also has a second input forreceiving a representation of 

a step value for defIning an arc-distance on the unit circle. The waveform generating unit generates a plu

rality of intervals on the unit circle, each interval having a lower limit and an upper limit. The plurality of 

intervals includes an initial interval and a plurality of succeeding intervals. The lower limit of the initial 

interval is the initial value, and the upper limit of the initial interval is displaced on the unit circle from 

the initial value by the arc-distance. Each respective succeeding interval has its respective lower limit 

coincident with the upper limit of the next-preceding interval and has its respective upper limit displaced 

on the unit circle from its respective lower limit by the arc-distance. The apparatus further includes a 

polynomial zero detecting unit coupled with the waveform generating unit for receiving a plurality of 

intervals and evaluating a line spectrum pair expression for at least the upper limit and the lower limit of 

each respective interval. The polynomial zero detecting unit recognizes the presence of a respective root 

of the line spectrum pair expression when the evaluated expression changes sign within a particular inter

val. The polynomial zero detecting unit designates each such particular interval as a solution interval and 

generates the lower limit and upper limit of each such solution interval. 

For increased accuracy beyond the initial accuracy provided by the predetermined intervals, the appa

ratus may include a half-distance generating unit coupled with the waveform generating unit for generat

ing a half-arc-distance which is substantially 112 the arc-distance. Further included in this improved 

accuracy apparatus is an angle bisecting unit coupled with the half-distance generating unit and coupled 

with the polynomial zero detecting unit which receives the solution intervals from the polynomial zero 
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detecting unit and receives a half-arc-distance from> the half-distance generating unit. The angle bisecting 

unit performs a bisecting operation defining a lower refined solution interval and an upper refined solu

tion interval. The lower refined solution interval has a lower refined lower limit at the lower limit of the 

solution interval and has a lower refined upper limit spaced on the unit circle from the lower refined 

lower limit by the half-are-distance. The upper refined solution interval has an upper refined upper limit 

at the upper limit of the solution interval and has an upper refined lower limit displaced on the unit circle 

from the upper refined upper limit by the half-arc-distance. The improved accuracy apparatus further 

includes a selection unit coupled with the angle bisecting unit and with the polynomial zero detecting 

unit. The selection unit generates a lower limit output and an upper limit output appropriately to indicate 

whether the respective root is located in the lower refined solution interval or in the upper refined solu

tion interval. The apparatus may be employed to further refine accuracy of the location by employing the 

half-distance generating unit and the angle bisecting unit cooperatively to successfully perform the 

bisecting operation to effectively bisect each solution interval into a successive upper refined solution 

interval and successive lower refined solution interval, the respective root being located within one of the 

successive upper refined solution interval and the successive lower refined solution interval. The succes

sive bisecting operation is iteratively effected until a predetermined desired accuracy of the arc-distance 

is included in a successive refined solution interval. 

Preferably, the initial value is expressed as a sinusoidal value of an angular displacement on the unit 

circle and the step value is expressed as a sinusoidal value of a step-angular displacement on the unit cir

cle. 

The invention further includes a method for locating a plurality of roots of a line spectrum pair 

expression on a unit circle which comprises the steps of: (1) receiving a respective representation of an 

initial value for locating a first site on the unit circle; (2) receiving a representation of a step value for 

defining an arc-distance on the unit circle; (3) generating a plurality of intervals on the unit circle, each 
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interval having a lower limit and an upper limit, the intervals including an initial interval and a plurality 

of succeeding intervals (The lower limit of the initial interval is the initial value and the upper limit of the 

initial interval is displaced on the unit circle from the initial value by an arc-distance. Each respective 

succeeding interval has its respective lower limit coincident with the upper limit of the next preceding 

interval, and each respective succeeding interval has its respective upper limit displaced on the unit circle 

from its respective lower limit by the arc-distance); (4) evaluating the line spectrum pair expression for at 

least the upper limit and the lower limit of each respective interval; (5) recognizing the presence of a 

respective root of the line spectrum pair expression when the line spectrum pair expression changes sign 

within a particular interval; (6) designating each such particular interval as a solution interval; and (7) 

generating the lower limit and the upper limit of each such solution interval to identify the arc-distance 

within which the particular root is located. 

It is therefore an object of the present invention to provide an apparatus and method of locating a plu

rality of roots of a line spectrum pair expression which employs sinusoidal values in its calculations to 

determine the roots without deriving the roots from an angular representation associated with the unit cir

cle. 

It is a further object of the present invention to provide an apparatus and method of locating a plural

ity of roots of a line spectrum pair expression on a unit circle which is efficient in its use of memory stor

age space and addressal of that memory storage space in determining the roots. 

It is a still further object of the present invention to provide an apparatus and method for locating a 

plurality of roots of a line spectrum pair expression on the unit circle which may provide increased accu

racy of location of a root by successively bisecting an interval within which a root is determined to be 

located. 
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BRIEF DESCRIPfION OF THE DRAWINGS 

Figure 13-1 is a schematic drawing of the angles and values employed in "stepping around" the unit 

circle to locate roots of a line spectrum pair expression. Figure13-2 is a schematic drawing of angles and 

values employed in approximating the cosine of a bisecting angle of a sector given the cosines of bound

ary angles of the sector. 

Figure 13-3 is a schematic drawing of the preferred embodiment of a waveform generating unit for 

use in the present invention. 

Figure 13-4 is a schematic drawing of the preferred embodiment of a polynomial zero crossing detec

tor unit for use in the present invention. 

Figure 13-5 is a schematic drawing of the preferred embodiment of a half-angle generating unit for 

use in the present invention. 

Figure 13-6 is a schematic drawing of the preferred embodiment of an angle bisecting unit for use in 

the present invention. 

Figure 13-7 is a schematic drawing of the preferred embodiment of the apparatus of the present 

invention. 

Figure 13-8 is a schematic diagram of an alternate embodiment of a waveform generating unit for use 

in the present invention. 

Figure 13-9 is a flow diagram illustrating the preferred embodiment of the method of the present 

invention. 

Figure 13-10 is a block diagram showing an apparatus for analyzing speech signals. 
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DETAILED DESCRIPTION OF THE INVENTION 

Before referring to the figures, a brief theoretical background discussion will be provided. 

It is desirable in modeling vocal tract action to amplify and suppress certain spectral ranges (modifi-

cations of spectrum of "signals" from vocal cords). A basic known canonical feedback digital filter trans-

fer function appropriate for mode ling a vocal tract may be expressed as: 

1 
V(z) = -::-....:....- ; a

O 
= 1 

n 1 
~ ~. z' 

i=O (13.1) 

In models of vocal tract action, there is a need to transmit values of a; to a decoder from an encoder, 

so one must be able to quantize the values of a;. The most preferable quantization technique is the tech-

nique that uses the fewest bits in order to most efficiently employ the apparatus used for such transmis-

sion. 

Generally, the coefficient values aj have some undesirable qualities, such as: some coefficients aj are 

more sensitive than others; sometimes an error in one coefficient aj affects the entire spectrum sought to 

be represented. 

It has been found that it is better to transform the coefficients aj to a quantized transformation value 

which is, necessarily, capable of inversion to recover the original value from which the quantized value is 

transformed. There are many transformations; line spectrum pair (LSP) is one transformation. 

The apparatus and method of the present invention are appropriate for determining roots of the 

expressions which result from the LSP transformation. 

As is well known in the art of speech analysis and speech synthesis, a linear predictive coding (LPC) 

analysis results in an all-pole filter described by a transfer function involving parameters 1\ known as 

LPC coefficients. It is also well known that LPC coefficients are inappropriate for quantization primarily 
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because of their wide dynamic range and variation of different LPC coefficients in their sensitivity to 

errors. 

In summary, an apparatus for analyzing speech signals as described above is shown in Figure13-lO. 

An LPC analysis of speech signals 400 is performed by an LPC analysis unit 402 parameters or coeffi

cients 404. A transformation unit 406 transfonns LPC coefficients 404 to a corresponding line spectrum 

pair (LSP) expression or polynomial 408. Roots 412 ofLSP expression 408 are then determined by a 

root-locating unit 410. As stated above, LPC analysis unit 402 and transformation unit 406 are well

known in the art. Thus, this detailed description focusses upon the details of root-locating unit 410. 

Line spectrum pair parameters may be derived from a consideration of two extreme artificial bound

ary conditions applied to LPC coefficients. The resulting LSP parameters can be interpreted as the reso

nant frequencies of the vocal tract under the two extreme artificial boundary conditions at the glottis. The 

two polynomials which involve the line spectrum pair parameters possess some interesting properties 

summarized as follows: 

(l) all roots of the two polynomials lie on the unit circle in the complex plane; and 

(2) the roots of the two polynomials alternate each other on the unit circle so that the following rela

tionship is always satisfied: 

(13.2) 

Even ro's are derived from one polynomial, and odd ro's are derived from the other polynomial. This is 

referred to as the ordering property of LSP parameters. 

Further, all roots of each of the polynomials (each of the polynomials is a fifth order polynomial) lie 

on the unit circle in the Z-plane (the complex plane) so that when the model (or the system represented by 

the model) is in equilibrium, the roots lie on the unit circle. Outside the unit circle the signal amplitude 

increases, and inside the unit circle the signal damps. 

Preferably, each polynomial is expressed in terms of cos co. The inventors have found that intervals of 
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----------------------........... . 

( ro-~) - 64 

will not miss any roots. Further, bisecting the 

1t 

64 

angle twice to make 

1t 
1t =-

256 

gives sufficient accuracy for purposes of decoding voice data. 

A useful method for more accurately determining the roots, at least approximately, of the LSP poly-

nomials is by approximating the cosine of a bisecting angle within an interval given the cosine of the 

boundary angles, and determining in which half-angle interval the root lies. Thus, one can double the pre-

cision by which one determines where on the unit circle a root lies simply by halving an interval and 

determining within which newly-defined half-interval the root lies. 

It is known that 

cos (A+B)=2 cos A cos B-cos (A-B) 

If we let 

1t 
B=-

64 

(13.3) 

(the incremental value), we can be assured that the intervals are established appropriately that no roots 

will be missed on the unit circle. As a practical matter, however, since the value 

1t 
B=-

64 

is close to zero, the value of 
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1t 
cos--

64 

is too close to 1 to be efficiently handled by digitally configured logical elements. That is, the value of 

cos~ 
64 

involves too many leading nines which must be camed and stored and manipulated throughout the vari-

ous calculations required. Such inefficiency may be avoided by using the value 

1t 1t 
1- cos 64 = 64 

to ease storage and processing requirements. 

Thus, equation (13.3) may be rewritten as: 

cos (A+B)=2 cos A-2 cos A(l-cos B)-cos (A-B) (13.4) 

Equation (13.4) is the equation used in the preferred embodiment of the present invention to "step 

around" the unit circle to locate the five roots of an LSP polynomial expression. However, for ease in 

understanding the invention, the remaining discussions explaining the invention will be based upon the 

expression in equation (13.3). 

Figure 13-la is a schematic drawing of the angles and values employed in "stepping around" the unit 

... circle to locate roots of a line spectrum pair expression. 

In Figure 13-la, ro or the step angle used to "step around" a unit circle 11 to detemune location of 

roots of a line spectrum pair expression is illustrated as being equal to B, so that the radii 16, 18 delineate 

a sector 15 of unit circle 11, and radii 18, 19 delineate a sector 17 of unit circle 11. We know that: 

cos (A+B)=2 cos B cos A-cos (A-B) (13.5) 

Thus, sector 15 has an upper limit equal to the value cos A and has a lower limit equal to the value 

cos(A-B). Further, sector 17 has an upper limit equal to the value cos (A+B) and has a lower limit equal 

to the value cos A. If we let A = ( A - ~ ). and let B = ~ ,then 
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(13.6) 

Therefore: 

cosA = 2cos ~ cos (A - ~) - cos (A - B) (13.7) 

Solving for cos (A - ~): 

(AI B _\ _ cosA + cos (A - B) 
cos \ - --j-

2 2COS~ ~ ~ 
(13.8) 

1 

2cos ~ ~n~ values of predetermined values of the expression 

the bisection of step angle B can be easily performed using a computer apparatus. Typically, in the pre-

ferred embodiment of the present invention, only a very small number of stored values of the expression 

1 

2COs( ~n~ 

will be required. By such successive bisection, the technique for determining a root of an LSP expression 

may be very efficient! y performed to a desired accuracy. 

For the purposes of a coarse search for roots, the value of cos B is a constant stored in a computer 

memory. Recalling equation (13.5): 

cos (A+B) = 2 cos B cos A-cos (A-B) (13.9) 
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if one lets 

B B 
A=T and B=T 

CB B~ B B CB B~ 
cos (2 + 2J =2cosT cosT - cos(2 - 2J 

which reduces to: 

cosB=2cos ~ cos ~ -1 

Solving for cos.1L : 
2 

cos l = J cos B + 1 
2 2 

More generally stated for values of n other than n = 1: 

cos Bn = 
2 

cos B + 1 
2n • 1 

2 

Hence, the cosines of the successively bisected step angles 

may be calculated in sequence and stored as required. 

(13.10) 

(13.11) 

(13.12) 

(13.13) 

One problem which has arisen is that the difference equation expressed as equation (l3.5) is difficult 

to calculate accurately for step angles B when using finite precision arithmetic, a common problem with 

computers. This difficulty arises from the loss of precision induced by leading nines in the value of cos B. 

For example, cos 10 equals 0.999847. 

It is often necessary to work with such small angle or phase increments in determining roots of line 

spectrum pair expressions to a sufficiently accurate certainty. One solution is to use the expression (l-cos 

B) in the computation instead of the value of cos B. 
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Thus, if one substitutes cos B=l-(l-cos B) in equation (13.5): 

cos (A+B)=2 cos A(1-(1-cos B»-cos (A-B) (13.14) 

which expands to: 

cos (A+B)=2 cos A-2 cos A(I-cos B)-cos (A-B) (13.15) 

An advantage of this representation is that (1-cos B) can be scaled so that all of the digits are signifi-

cant. In tenns of finite precision arithmetic implementation, the product (cos A (I-cos B» can be deter-

mined accurately and scaled before summing with the other components. Further, this fonnulation is 

ideal for application at locations in which the precision of the ALU (arithmetic logic unit) employed in a 

computer is greater than that of the multiplier. As a result, the values can be determined with minimal loss 

of precision. 

By similar logic, equation (13.8) requires the use of values of 

cos~~J 
and further bisection will require use of the values 

cos~~1 
It is useful to rewrite equation (13.8) as: 

cosA + cos (A - B) • __ 1:--,.-

2 cos~~J 
(13.16) 

If we let A = A+B, equation (13.15) becomes: 

cosA + cos (A + B) • _---,,1--;-_ 

2 cos~~J 
(13.17) 
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Recall the relationship (Taylor series): 

(I-x)"' = I+x+x2+x.3 + ... ;lxl<I 

Therefore, if we let (I-x) equal 

cos~~~ 
, 

Equation (13.17) may be used to approximate (I-x)"' = I+x. 

Thus if: 

(I-x) = cos ~~ ~ 
then: 

I+X=I+~-COS ~~ 

_-,1,--_ = (I-x)"' 

cos~~~ 

-C-OS-'(=--~-~- = 1 + x = 1 + 0 -cos ~) 

Thus, an approximation to 
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(13.19) 

(13.20) 

(13.21) 

(13.22) 



is provided by the stored values of 

1- cos..1L 
2° 

Since x in this situation is very small by definition of its requirement for this process, then the approx-

imation by the Taylor series is accurate, especially when finite precision arithmetic is being used. 

Thus, substituting equation (13.21) into equation (13.16) yields: 

(13.23) 

As previously mentioned, for sufficiently small angles (10" is sufficiently small), the inventors have 

determined that the expression of equation (13.21) is sufficiently accurate. 

Thus, given (I-cos B), one can perform all of the operations required to determine the cosines of the 

angles of a line spectrum pair calculation using linear search bisection. Such an approach should be com-

patible with finite precision arithmetic generally used in computers. Thus, given equation (13.5): 

cos (A+B) = 2 cos B cos A-cos (A-B) 

let cos X=l-(l-cos X); so that equation (13.5) may be rewritten as: 

1- (l-cos(A+B» = 2[1-(l-cosA»(l-(l-cosB»] - [1-(l-cos(A-B»] (13.24) 

Thus: 

1 - (l-cos(A+B» = 2[1-(I-cosB) - (l-cosA) + (l-cosA)(I-cosB)] - 1 + (l-cos(A+B»(13.2S) 

Further reducing: 

1-(I-cos(A+B» = 2 + 2[-(l-cosB) - (l-cosA) + (l-cosA)(l-cosB)] - I + (l-cos(A-B»(13.26) 

Thus: 

-(I-cos(A+B» = 2[-(I-cosB) - (l-cosA) + (l-cosA)(l-cosB)] + 1(I-cos(A-B» (13.27) 

Thus: 

(l-cos(A+B» = -2[-I(I-cosB) - (l-cosA) + (l-cosA)(I-cosB)] - 1(I-cos(A-B» (13.28) 

(l-cos(A+B» = 2[(l-cosA) - (l-cosA)(I-cosB) + (l-cosB)] - (l-cos(A-B» (13.29) 
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Equation (13.28) enables one to configure a waveform generator accurately for small angle incre-

ments for implementation of the present invention. 

Figure 13-2 is a schematic drawing of angles and values employed in approximating the cosine of a 

bisecting angle of a sector given the cosines of boundary angles of the sector. 

In Figure B-2, a unit circle 10 is illustrated as centered on a center point 12. A sector 14 of unit circle 

10 is delineated by a lower limit at a radius 16 and an upper limit at a radius 18. Radii 16, 18 are separated 

by a step angle B. Step angle B is bisected to two half-step angles 

2L 
2 

Thus, a central point in sector 14 is defined as the value cos A at a point where a radius 20 intersects 

unit circle 10. Radius 20 is defined as a radius displaced from radius 16 by half-step angle 

B 
2 

Consequently, the lower limit of sector 14 as defined by the intersection of radius 16 with unit circle 

10 is a point having a value 

the upper limit of sector 14 defined by the intersection of radius 18 with unit circle 10 has a value of 

Equation (13.3) may be rewritten to fit the scheme of Figurel3-1 as follows: 

(13.30) 

Solving for cos A: 
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2cos ~ 

In Figure 13-1 b, 

are end points of sector 14. Thus, if one knows 

cos l 
2 

(13.31) 

one can solve for cos A. Clearly, one can more finely segment sector 14 by successively bisecting each 

cos 

half-step angle. Thus, the interval between successive radii in defining successively finer sectors may be 

expressed as 

Increasing the value of n will increase accuracy of the model for determining that a root of an equa-

tion lies in a sub-dived sector defined by a step angle of 

For simplicity of explaining the present invention, the relationships below will be discussed using 

n = 1. 

If we let 

X=I-COS~n' 

then the Taylor series (equation (13.16)) provides (l-xr1 ;: I + x, for small x, so that: 
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I 

cos..1L 
2n 

B I l-cosB ~ ) ( ~
2 

I-I-cosT = T 4 + 

(13.32) 

(13.33) 

Thus, one can closely approximate cos A (the cosine of the angle bisecting sector 14 in Figur eI3-1) 

by using equation (13.32), and one can approximate a sub-sector to any desired accuracy by further halv-

ing the sub-sector. 

Figure 13-3 is a schematic drawing of the preferred embodiment of a waveform generating unit for 

use in the present invention. 

In Figure 13-3, a waveform generating unit 20 is illustrated which implements the expression of 

equation (13.4). An input 22 provides an initial value for step angle B to a function generator 24 which 

provides an output (I-cos B) on a line 26. Function generator 24 may be any known manner of device 

which takes an input such as a known step angle B and generates the value (I-cos B) therefrom. That is, it 

may include a read only memory (ROM) or a random access memory (RAM), or a sinusoidal generating 

unit, or any other units known to those skilled in the art which can generate appropriate sinusoidal values. 

Line 26 provides the output from function generator 24 to a leading zero detect unit 28 via a line 27, and 

to a shift unit 30. 

The embodiment illustrated in Figure13-3 detects leading zeroes, contemplating storage and treat-

ment of numbers within waveform generating unit 20 in decimal representation. Of course, other repre-

sentation, storage and treatment formats will require somewhat different scaling techniques, such as 

detecting a sign bit and leading I's or leading zeroes according to the value of the sign bit. Any scaling 

technique appropriate to a value representation approach is contemplated as applicable to and usable in 

the present invention. Leading zero detection is illustrated here in an exemplary role. 
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Leading zero detect unit 28 provides an output at line 32 indicating the number m of leading zeros 

detected in the output provided via line 26, 27 from function generator 24 to leading zero detect unit 28. 

The number of leading zeros m is provided via a line 34 to shift unit 30 and shift unit 30 shifts m places to 

the left to effect a binary multiplication of 2ffi in order to scale the output received via line 26 from func-

tion generator 24. Thus, a scaled value 2ffi (I-cos B) ofthe output value (I-cos B) on line 26 is provided 

on line 36 to a multiplier 38. Considering Figure 13-1 a and Figure 13-3 together, one may note that as the 

phasor, represented by radii 16, 18, 19 rotates counter-clockwise in Figure13-la, the radius is repre-

sented by radius 18 occurs later than radius 16, and the next-occurring phasor in stepping along unit circle 

11 in Figure 13-la is represented by radius 19. Radius 19 intersects unit circle 11 at a point represented 

by the value cos (A+B). Thus, when considering the output 40 of waveform generating unit 20 in 

Figure 13-3, that output representing the value cos (A+B), a delay unit 42 receiving via line 41 the value 

cos (A+B) will generate on a line 43 the value cos A, since cos A is the once-earlier value of the intersec-

tion of the phasor with unit circle 11 as the phasor steps around unit circle 11 by increments measured by 

step angle B. The signal on line 43 representing the value cos A is provided as an input to delay unit 44, 

as an input to multiplier 38, and to a scaling unit 46. Scaling unit 46 shifts digits in the signal carried on 

line 43 to the left one space to effect a binary multiplication by two. Thus, the signal on a line 47 is equal 

to two times the signal present on input line 45. That is, line 47 carries the value 2 cos A. Line 47 pro-

vides that value (2 cos A) as an input to adder 48. 

-
The signal carried on line 36 represents the value 2ffi (I-cos B) and is provided as a second input to 

multiplier 38. Multiplier 38 generates a signal on an output line 50 representing a value 2ffi (cos A (I-cos 

B»; the signal on line 50 is provided as an input to shift unit 52. Shift unit 52 shifts to the right m places 

(m being the number of leading zeroes detected by leading zero detect unit 28) to rescale the signal 

received from multiplier 38 via line 50. Shift unit 52 generates on an output line 54 a signal representing 

the value cos A (I-cos B), which value is provided as an input to scaling unit 56. A multiplier 58 multi-
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plies the output received from scaling unit 56 by the quantity-I and provides a signal to adder 60 which· 

represents the value-2 cos A (I-cos B). 

Delay unit 44 generates a signal on a line 61 representing the value cos (A-B), which is the next-pre

ceding phasor intersect on the unit circle 11 (see Figur e13-la). The value cos (A-B) is provided to a mul

tiplier 62 which mUltiplies that value by-I. Multiplier 62 provides a signal on a line 63 representing the 

value-cos (A-B) as a second input to adder 60. 

Of course, for proper operation of waveform generating unit 20, delay unit 42 must be initialized to 

cos (-B) and delay unit 44 must be initialized to zero to properly initiate operations. 

Adder 60 provides a signal on a line 64 representing the value-2 cos A (I-cos B)-cos (A-B) to adder 

48. Adder 48 provides a signal on line 65 representing the sum of inputs received via lines 47,64 >2 cos 

A-2 cos A (I-cos B)-cos (A-B)!, which (by equation (13.4» equals the value cos A+B. The signal repre

senting the value cos A is generated via a line 66 from line 43 to an output 68. 

In order to facilitate understanding the present invention, like elements will be identified by like refer

ence numerals in the various drawings. 

Figure 13-4 is a schematic drawing of the preferred embodiment of a polynomial zero crossing detec

tor unit for use in the present invention. In Figur e13-4, a polynomial zero crossing detector 69 is illus

trated and includes a waveform generating unit 20 of the sort described in connection with Figure13-3. 

Waveform generating unit 20 receives an input 26 bearing a signal representing the value (I-cos B). 

Waveform generating unit 20 generates the value cos (A+B) at an output 40, and generates a value cos A 

at an output 68. 

A line 70 delivers the value cos (A+B) from line 40 to a polynomial treating unit 72. Polynomial 

treating unit 72 receives the value cos (A+B) via line 70. Polynomial treating unit 72 evaluates the poly

nomial (preferably, in the present embodiment of the invention, a line spectrum pair polynomial) for the 

value received on line 70 and generates an evaluation value of that particular polynomial treated by poly-
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nomial treating unit 72 on an output line 74. The evaluation value of the particular polynomial treated by 

polynomial treating unit 72 for the value provided via line 70 is provided at an input 76 of a sign change 

detecting unit 78. A delay unit 80 also receives the output from polynomial treating unit 72 via a line 82 

and generates an evaluation value for evaluation of the polynomial treated by polynomial treating unit 72 

during a once-previous time. That is, the output of delay unit 80 on line 84 is an evaluation value for the 

polynomial treated by the polynomial treating unit 72 at the value cos A. This evaluation value for the 

polynomial at value cos A is provided to an input 86 of sign change detecting unit 78. Sign change detect-

ing unit sends a sign change detected signal via a line 88 to a buffer 90. 

Buffer 90 also receives via line 40 the value cos (A+B), and via line 68 the value cos A. The sign 

change detected signal provided via line 88 to buffer 90 switches buffer 90 on when there is a sign change 

detected by sign change detecting unit 78. Output 92 of buffer 90 generates an output representing the 

value cos (A+B), and output 94 of buffer 90 generates an output representing the value cos A. Outputs 92, 

94 are updated when a sign change is detected by sign change detector 78 and a sign change detected sig-

nal is provided via line 88 to buffer 90. Stated another way, the values of cos (A+B ) (on line 40) and cos 

A (on line 68) are gated through buffer 90 to outputs 92, 94 when sign change detecting unit 78 detects a 

sign change between its signals received at inputs 76 and 86 and sends a sign change detected signal via 

line 88 to turn on buffer 90. As a result, the signals provided at outputs 92, 94 from buffer 90 are such that 

a zero (i.e., a root) of the polynomial treated by polynomial treating unit 72 lies between the angles A and 

(A+B), which are represented by the values cos A and cos (A+B). 

Figure 13-5 is a schematic drawing of the preferred embodiment of a half-angle generating unit for 

use in the present invention. In Figure13-5, a half-angle generating unit 96 implements the expression of 

equation (13.32). Thus, the output 102 of half-angle generating unit 96 carries a signal representing the 

value I - cos .1L 1 . 
2n+ 

This signal is also applied via a line 104 to a delay unit 100. Delay unit 100 presents at its output line 
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106 a signal representing the value 

cos.1L 
2° 

Reset values are occasionally provided to delay unit 100 via a line 98 representing the value (I-cos 

B). The output carried on line 106 is applied to a scaling unit 108 which shifts digits to the right two 

places to effect a division of the signal received via line 106 by four. Thus, the output of scaling unit 108 

carried on line 110 is a signal which represents the value 

~ -cos 1n-) 
4 

That signal is applied via a line 112 to a leading zero detect unit 114, is applied via a line 116 to a shift 

unit 118, and is applied via a line 120 to a summing unit 122. Leading zero detect unit 114 generates at an 

output line 124 a signal representing m, the number of leading zeros detected in the value received via 

line 112. As described before in discussing leading zero detection, any scaling apparatus appropriate for 

scaling numbers represented in a given format may be employed in place of leading zero detect unit 114. 

The value m is applied via a line 126 to shift unit 118, and via a line 128 to a scaling unit 130. Shift 

unit 118 shifts digits contained in the signal received via line 116 to the left m places to effect a multipli-

cation by the quantity 2m so that the output generated on line 132 from shift unit 118 represents the value 

Scaling unit 130 effects a shift to the left by one place to effect a multiplication by 2 to generate on a 

line 134 a signal representing the value 2 m. The value 2 m is applied via line 134 to a shift unit 136. The 

signal carried on line 132 is applied to a squaring unit 138. Squaring unit 138 generates an output signal 

line 140 representing the value 
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(

I-cos ~ )2 
22m 2 

4 . 

The signal is applied via line 140 to shift unit 136; shift unit 136 generates an output signal on line 

142 representing the value received via line 140 divided by '; , 

(

I-cos ~ )2 
22m 2 

4 

A scaling unit 144 shifts digits in signals received via line 142 to the right one place to effect a divi-

sion by 2 so that signals carried on an output line 146 from scaling unit 144 to summing unit 122 repre-

sent the value 

Summing unit 122 generates on an output line 148 the value 

As we know from equation (13.31), that approximately equals I-cos B/2n+l. 

Figure 13-6 is a schematic drawing of the preferred embodiment of an angle bisecting unit for use in 

the present invention. In Figur eI3-6, an angle bisecting unit 150 implements the expression of equation 

(13.22). Angle bisecting unit 150 receives two inputs 152, 154 which are appropriate for connection with 

outputs 92, 94 of the polynomial zero crossing detector unit 69 illustrated in Figure 13-4. Preferably, 

input 152 receives a signal representing the value cos (A+B), and input 154 receives a signal representing 
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· the value cos A. Both inputs 152, 154 are applied to a summing unit 156. Summing unit 156 generates a 

signal on a line 158 which represents the value 

cos (A+B) + cos A. The signal is applied to a scaling unit 160. Scaling unit 160 shifts digits contained 

in the signal provided on line 158 to the right one space, thereby effecting a binary division by two so that 

scaling unit 160 generates on a line 162 a signal representing the value 

cos(A+B) + cosA 
2 

Line 162 is connected to a multiplier 164. A second input to multiplier 164 is provided via aline 166. 

Line 166 carries a signal representing the value 

l+~-COS ~) 

Thus, the output line 168 from multiplier 164 carries a signal representing the value 

_CO_S..:(A_+B-:
2
",) _+_c_os_A_ • ~ + ~ _ cos ~ )) 

According to equation (13.22), that value equals 

Figure 13-7 is a schematic drawing of the preferred embodiment of the apparatus of the present 

invention. 

In Figure 13-7 a root determining apparatus 170 is illustrated which includes a polynomial zero cross-

ing detector 69 (Figur eI3-4), which includes a waveform generating unit 20 (Figure 13-3); a half-angle 

generating unit 96 (Figur eI3-5); a delay unit 172; and switches 174, 176, 178. Also included in root 

determining apparatus 170 are an angle bisecting unit 150 (Figure13-6); polynomial treating units 180, 
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182,184; zero crossing detectors 186, 188; a select logic unit-190; and a selector unit 192. 

An input is provided to root detennining apparatus 170 via a line 194 in the form of a signal repre-

senting the value I-cos B. This input signal is provided via a line 26 to waveform generator 20 in polyno-

mial zero crossing detector 69, and is also provided via a line 98 and a pole 198 of switch 178 to half-

angle generating unit 96. 

Half-angle generating unit 96 generates a signal on a line 102 representing the value 

B 1- cos --I 2n+ 

and provides that signal to delay unit 172 as well as to an input 214 of angle bisecting unit 150. Delay 

unit 172 generates a signal on a line 200 representing the value 

B 1- cos--
2n 

and applies that value to a pole 202 of switch 178. 

Polynomial zero crossing detector 69 provides at its output 92 a signal representing the value cos 

(A+B), and applies that value to a pole 204 of switch 174. Polynomial zero crossing detector 69 also gen-

erates a signal on its output 94 representing the value cos A, and applies that signal to a pole 206 of 

switch 176. Of course, recalling the explanation of polynomial zero crossing detector 69 in connection 

with Figure 13-4, polynomial crossing detector 69 ensures that the values represented by the signals gen-

erated on outputs 92, 94 bracket a zero solution of the line spectrum pair polynomial treated by the poly-

nomial treating unit 72 (FigureI3-4) in polynomial zero crossing detector 69. 

Switches 174, 176, 178 are arranged for accommodating initial setup of root detennining apparatus 

170 in a first orientation and for accommodating segmenting operations of root detennining apparatus 

170 in a second orientation. Thus, when switch 174 connects pole 203 with pole 204, and when switch 

176 connects pole 205 with pole 206, and when switch 178 connects pole 201 with pole 198, then root 
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detennining apparatus 170 is configured for initial/reset operation. In the initial/reset operation configu

ration, the signal on output 92 is provided to a selector unit 192 at a selector unit input 210, and the signal 

on output 94 is applied to a selector unit input 212 of selector unit 192. Similarly, in the initial/reset oper

ation configuration, the input carried on line 98 representing the value I-cos B is applied to half-angle 

generating unit 96. 

The signal generated by half-angle generating unit 96 on line lO2 is provided via a line lO3 to an 

input 214 of angle bisecting unit 150. Angle bisecting unit 150 provides at its output 168 (F igureI3-6) a 

signal representing the value 

which is applied to a selector unit input 213 of selector unit 192. 

In the initial/setup operation configuration wherein output 92 is connected via poles 203, 204 with 

selector unit input 210, and wherein output 94 is connected via poles 205, 206 with selector unit input 

212, selector unit 192 selects input signals representing the quantity cos (A+B) for application to its out

put 216 as the upper limit Up of a sector (such as sector 15 ofFi gurel3-la) and selector unit 192 selects 

signals representing the quantity cos A from selector unit input 212 for application to its output 218 to 

represent the lower limit ~ of a sector such as sector 15 of Figurel3-la. In such an initial/setup opera

tion configuration, selector unit 192 does not consider signals appearing at its input 213 for application to 

its outputs 216, 218. 

So long as the initial, or coarse, solution of the location of roots is sufficient without further bisection 

of a sector (such as sector 15 of Figurel3-la) root detennining apparatus 170 does not involve angle 

bisecting unit 150 in detennining upper limit Up and lower limit ~ outputs for its outputs 216, 218. Fol

lowing the initial determination of the first sector 15 established by upper limit Up and lower limit ~ by 

root determining apparatus 170, the next iteration of parameters is generated and dealt with, and root 
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detennining apparatus 170 remains in its initial/reset operation configuration as root determining appara

tus 170 "steps around" unit circle 11 in increments established as sectors 15,17 (Figur e13-I). This is so 

in the case where the coarse (or first cut) estimation of location of roots on the unit circle suffices and 

there is no need to further segment sector IS (Figur e13-I) to more finely determine location of roots on 

unit circle 11. 

If a finer segmentation of sector IS is required to more accurately locate roots on unit circle 11, then 

switch 174 is reoriented to connect pole 203 with pole 220, switch 176 is reoriented to connect pole 205 

with pole 222, and switch 178 is reoriented to connect pole 201 with pole 202. In such a segmenting oper

ations configuration, angle bisecting unit 150 is operationally included in root determining apparatus 170 

so that upper limit Up is provided via a feedback line 224 and a line 226 to an input 228 of angle bisecting 

unit 150. Similarly,lower limit Lp is provided via a feedback line 230 and a line 232 to an input 234 of 

angle bisecting unit 150. Still further, input from delay unit 172 is provided via line 200 and via switch 

178 to the input of half-angle generating unit 96. 

Still further,line 226 provides upper limit Up to a polynomial treating unit 180, line 232 provides 

lower limit to polynomial treating unit 184, and output 168 (representing 

from bisecting unit 150 is provided via a line 236 to a polynomial treating unit 182. Polynomial treating 

units 180, 182, 184 preferably are similar to polynomial treating unit 72 (F igureI3-4) in that they each 

provide an evaluation value to the polynomial for which roots are sought by root determining apparatus 

170 for the values provided via their respective input lines 226, 236, 232. Thus, an evaluation value for 

the polynomial for which roots are sought by root determining apparatus 170 is provided for the value 

received via line 226 by polynomial treating unit 180 on an output line 240 to a zero crossing detector 

186. An evaluation value for the polynomial for which roots are sought is provided for the value received 
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via input 236 by polynomial treating unit 182 on an output 242 to zero crossing detector 186 and to a zero· 

crossing detector 188. Similarly, an evaluation value for the polynomial for which roots are sought is pro

vided for the value provided via input 232 on an output line 244 to zero crossing detector 188. 

Zero crossing detector 186 provides an output via a line 246 to a select logic unit 190, and zero cross

ing detector 188 provides an output via a line 248 to select logic unit 190. Thus, select logic unit 190 

receives an indication via lines 246, 248 whether a zero crossing occurs between the values cos (A+B) 

and 

(via line 246) or whether a zero crossing occurs between the values cos A and 

(via line 248). That is, select logic unit 190 selects values to define the interval containing the zero cross

ing: an upper half-sector between lower limit 

and upper limit cos (A+B), or a lower half-sector between lower limit cos A and upper limit 

A signal is provided by select logic unit 190 via a line 250 to an input 252 to selector unit 192 indicat

ing which half-sector contains the zero crossing. 

Selector unit 192 contains logic which (1) defines a sector having an upper limit Up (on output 216) 

set to the value received via input 213 
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and having a lower limit Lp (on output 218) set to the value received via input 212 >cos A! when the input 

from select logic unit 192 via line 250 indicates that the zero crossing occurred in the lower half-sector 

bounded by cos A and 

or (2) defines a sector having an upper limit Up set to the value received via input 210 >cos A+B!, and 

having a lower limit Lp set to the value received via input 213 

when select logic unit 190 outputs a signal to selector unit 192 via line 250 that indicates the zero cross-

ing occurred in the upper half-sector bounded by values 

and cos (A+B). 

If further refinement of accuracy in determining the location of a root on unit circle 11 is required, 

delay unit 172 delivers via line 200 and switch 178 to the input of half-angle generating unit 96 a signal 

representing 

B 1- cos --
2n 

Half-angle generating unit 96 provides a signal representing 

216 



B I-cos --1 20+ 

to input 214 of angle bisecting unit 150 via lines 102, 103. Angle bisecting unit 150 uses inputs received 

at input 214 to further bisect sector 15 whereby each half-sector is now reestablished as a newly-defined 

sector having an upper limit Up and a lower limit ~ which is then bisected. Zero crossing is determined 

to be either in the lower half-sector (line 248 to select logic 190) or in the upper half-sector (line 246 to 

select logic unit 190) of one of the newly-defined sectors. Selector unit 192 proceeds with the half-sector 

containing a zero crossing as a next-newly-defined sector for the next bisecting iteration. 

Figure 13-8 is a schematic diagram of an alternate embodiment of a waveform generating unit for use 

in the present invention. 

In particular, Figur e13-8 illustrates a waveform generating unit for use in the present invention when 

angles A and B are small enough that leading nines in the quantities cos A or cos B indicate it is useful to 

use quantities (I-cos A) or (l-cos B) in their place to ensure that all digits used to represent the required 

values in root determination operations are significant digits. Thus, Figur e13-8 implements equation 

(13.28) to enable one to configure a waveform generator accurately for small angle increments for imple-

mentation of the present invention. 

In Figure 13-8, a waveform generating unit 260 receives an input on a line 262 representing the quan-

tity (l-cos B). The input received via line 262 is provided via a line 264 to a leading zero detect unit 266 

and, via a line 268, to a summing unit 270. Leading zero detect unit 266 generates an output on a line 272 

representing the number m of leading zeroes detected in the input received via line 264. As described 

before regarding leading zero detection, leading zero detect unit 266 may be replaced by any scaling 

apparatus appropriate to the number format used. The signal representing m is applied via a line 274 to a 

scaling unit 276, and is provided via a line 278 to a scaling unit 280. 
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The input signal applied at input line 262 is applied to scaling unit 276 so that scaling unit 276 pro

vides a signal on line 282 representing the signal received via line 262 multiplied times 2m. 

The output signal provided at output 284 of waveform generating unit 260 is a signal representing the 

quantity I-cos (A+B), and the output signal provided at output 286 is a signal representing the quantity 1-

cos A. Delay unit 288 receives the signal provided at output 284 via a feedback line 290 so that the. output 

provided on line 292 from delay unit 288 is a signal representing the quantity I-cos A. That signal is pro

vided to a delay unit 294, to a multiplier 296, and to output 286 via a line 311. Of course, delay units 288, 

294 must be appropriately initialized to ensure proper operation of waveform generating unit 260. 

Delay unit 294 generates a signal on an output line 298 representing the quantity I-cos (A-B), which 

signal is applied to a multiplier 300. Multiplier 300 effects a multiplication by the quantity-I. Multiplier 

296 multiplies the value received via line 282 (Le., 2m (I-cos B» times the value received via line 292 

(Le., I-cos A) and generates a signal on a line 302 representing the quantity i" (I-cos A) (l-cos B). Mul

tiplier 303 multiplies the value received via line 302 by the quantity -I, and produces on line 305 a signal 

representing the quantity-2rn (l-cos A)(l-cos B). 

Multiplier 300 generates a signal on a line 304 representing the quantity-(I-cos (A-B». The signal 

carried on line 304 is applied to a summing unit 306. The signal carried on line 305 is applied to scaling 

unit 280. Scaling unit 280 provides a signal on line 308 representing the signal received via line 302 

divided by 2m, so that scaling unit 280 generates on line 308 a signal representing the value-( I-cos A) (1-

cos B), which signal is applied to summing unit 270. The signal carried on line 292 representing I-cos A 

is also applied via a line 309 to summing unit 270. Summing unit 270 generates a signal on a line 310 

representing the value-(I-cos A) (I-cos B)+(l-cos A)+(l-cos B). 

The signal carried on line 310 is applied to a scaling unit 312 to multiply the signal received via line 

310 times 2. Scaling unit 312 generates a signal on a line 314 representing the value 2 «I-cos A)-(l-cos 

A) (I-cos B)+(I-cos B». The signal carried on line 314 is applied to summing unit 306 so that summing 
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unit 306 generates on output line 284 a signal representing the quantity 2 «I-cos A)-(l-cos A) (1-cos 

B)+(1-cos B»-(l-cos (A-B». 

We know from equation (13.28) that the quantity represented by the signal on line 284 equals the 

value I-cos (A+B). 

Fignre 13-9 is a flow diagram illustrating the preferred embodiment of the method of the present 

invention. In Figure 13-9, the method begins with "Start" at block 320 and a counter n is set to 0 at block 

322. The values cos A and cos (A+B) are calculated (or retrieved from storage, or otherwise determined) 

in block 324 and are employed in block 326 to detennine a solution for the polynomial G(X) for each of 

the two values (cos A = Xn_1, and cos (A+B) = Xn). By block 328 an inquiry is made whether a sign 

change occurred in the values of the polynomial G(X) in the interval between Xn-l and Xn. 

If no sign change has occurred, then no root is present in the interval then being investigated and the 

"No" branch 330 is taken to decision block 332 where a check is made whether all intervals on unit circle 

11 (Figure 13-1a) have been checked. 

If all intervals have been checked, the "Yes" branch 334 is taken to "END" 336. If not all intervals 

have been checked, then "No" branch 338 is taken from decision block 332, counter n is incremented by 

block 340 and fed back via branch 342 to block 324 for recalculation of a new interval Xn_1, Xn. If the 

response in decision block 328 regarding presence of a sign change in the interval being considered is 

affirmative, the method proceeds via "Yes" branch 344 to decision block 346 where inquiry is made 

whether greater accuracy is required in determining location of the root found in decision block 328. If no 

further accuracy is required, the "No" branch 348 is taken to a function block 350 which effects output

ting the interval containing the root (Xn_l> Xn) and then proceeds via branch 352 to decision block 332 for 

determination whether all intervals on unit circle 11 have been checked. Subsequent decisions and opera

tions occur as described above in connection with answers to the query posed by decision block 332. 

If it is decided at decision block 346 that more accuracy is required, then "Yes" branch 354 is taken. A 
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counter p is set at block 356 and provided via branch 358 to block 360. In block 360, an upper limit q, is 

set equal to Xn, a lower limit Lp is set equal to Xn_1, and a half-angle increment HAP is set equal to 

B I - cos --
2P 

initially p = L 

These values are provided via a branch 362 to a block 364. Block 364 implements equation (13.22), 

where the value of upper limit Up is equal to the value cos (A+B) and the value ofIower limit ~ is equal 

to the value cos A. The value Mp indicated in block 364 is the midpoint of the particular segment being 

addressed by block 364 and equals the value 

Using the values computed in blocks 360, 364, block 366 evaluates the polynomial G(X) for those 

values and provides evaluation values to decision block 368. 

Decision block 368 determines whether there is a sign change in the interval between lower limit Lp 

and midpoint Mp. If there is such a sign change, then the root of the polynomial G(X) is in the lower half-

sector in the interval Lp, Mp of the sector determined in block 324 and bounded by x,,-l' x". "Yes" branch 

370 is taken so that the next iterative sector limits for possible subsequent bisecting of the sector are 

established in block 372 for a newly-defined sector: a newly-defined lower limit lp+l being set at the 

original lower limit~, and a newly-defined upper limit Up+l being set at the midpoint Mp. Those newly-

defined limit values ~l' Up+l are provided to decision block 374 and inquiry is made whether further 

accuracy is required. If no further accuracy is required, "No" branch 376 is taken to block 350 where the 

interval containing the root (now defined by newly-defined lower limit ~l and newly-defined upper 

limit Up+l) is output and the method proceeds via branch 352 to query whether all intervals are checked 
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(decision block 332). Subsequent decisions and operations occur as previously described in connection 

with answers to the query posed by decision block 332. 

If further accuracy is required, "Yes" branch 378 is taken to block 380 in which the half-angle incre

ment HAp+1 for the next iteration of accuracy (Le., next bisection of the newly-defined sector established 

in block 372) is calculated implementing equation (13.32). The newly calculated half-angle increment 

HAp.1 is provided via branch 382 to block 364 for calculating of a new midpoint Mp. Determination of 

evaluation values of the polynomial G(X) is effected in block 366 for a new lower limit Lp (as determined 

in block 372), a new midpoint Mp (as determined in block 364), and a new upper limit Up (as determined 

in block 372). The method may continue in this loop (from decision block 368, to block 372, to decision 

block 374, to block 380, to block 364, and to block 366) until the response to the query posed by decision 

block 374 is negative, indicating that sufficient accuracy had been achieved in root location determina

tion, whence the method proceeds via "No" branch 376 from decision block 374 as previously described. 

If decision block 368 determines that no sign change has occurred in the interval Lp, Mp, then "No" 

branch 384 is taken from decision block 368 to block 386. In block 386 a newly-defined lower limit ~1 

is set at midpoint Mp and a newly-defined upper limit Up+1 is set at upper limit Up. Those newly-defined 

limits Lp+1' Up+1 delimit a newly-defined sector established by block 386 which is the upper half-sector 

of the sector defined in block 360. Block 386 provides these newly-defined limit values via a branch 388 

to decision block 374 and the method proceeds thereafter as previously described. 

It is to be understood that, while the detailed drawings and specific examples given describe preferred 

embodiments of the invention, they are for the purpose of illustration, that the apparatus and method of 

the invention are not limited to the precise details and conditions disclosed and that various changes may 

be made therein without departing from the spirit of the invention. 
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Chapter 14 

Apparatus for Generating a Sinusoidal Output Signal 

Abstract 

This chapter is based on the invention patented under American patent 5,189,381 (S. Asghar, A. Linz, 

Feb. 1993). 

An apparatus is disclosed for generating an output signal in response to an input signal having a vari

able input level. The output signal has an output frequency which varies to represent variations in the 

input level. The apparatus comprises a processing circuit for implementing a digital signal processing 

algorithm to generate control signals in response to the input signal, which control signals are representa

tive of the variable input level, and an oscillator circuit for generating the output signal in response to the 

control signals. The control signals include a first control signal representing a first output frequency, a 

second control signal representing a second output frequency, and at least one intermediate control signal 

representing output frequencies intermediate the first and second output frequencies. The processing cir

cuit generates at least one intermediate control signal whenever the output signal varies between the rust 

and the second output frequencies which serves to "soften" the transition between the first and second 

output frequencies and reduces noise which usually is generated by such sudden changes in output fre

quency. 
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BACKGROUND OF THE INVENTION 

Generation of sinusoidal output signals having a variable output frequency responsive to an input sig

nal having a variable input level is a well-known method of effecting digital communications. Common 

applications of such a communications technique are frequency shift keying (FSK), and derivatives of 

FSK such as minimum shift keying (MSK) and Gaussian minimum shift keying (GMSK). 

Generation of such FSK signals is sometimes effected by circuitry involving analog devices, and such 

analog devices are generally builder and less stable (especially in temperature-varying environments) 

than digital devices. 

In apparatuses generating FSK signals employing digital devices, sudden frequency shifts in response 

to changes in signal levels of input signals generally involve undesirable noise during frequency transi

tions. 

It is desirable that stable, generally compact digital devices be employed in digital communications 

effecting FSK operations without generating disruptive noise during frequency transitions. 

SUMMARY OF THE INVENTION 

The invention is an apparatus for generating an output signal in response to an input signal having a 

variable input level. The output signal has an output frequency which varies to represent variations in the 

input level. The apparatus comprises a processing circuit for implementing a digital signal processing 

algorithm to generate a plurality of control signals in response to the input signal, which plurality of con

trol signals is representative of the variable input level, and an oscillator circuit for generating the output 

signal in response to the plurality of control signals. The plurality of control signals includes a first con

trol signal representing a first output frequency of the output signal, a second control signal representing 

a second output frequency of the output signal, and at least one intermediate control signal representing 
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output frequencies of the output signal intennediate the first output frequency and the second output fre

quency. Preferably, each respective intennediate control signal is associated with a respective intennedi

ate frequency. 

The processing circuit generates at least one of the intennediate control signals whenever the output 

signal varies from the first output frequency to the second output frequency or whenever the output signal 

varies from the second output frequency to the first output frequency. Such intennediate frequency gener

ation on every occasion of frequency shift by the oscillator circuit serves to "soften" the transition 

between the first and second output frequencies and reduces noise which usually is generated by such 

sudden changes in output frequency. 

Preferably, the oscillator circuit comprises a first delay circuit which receives a first signal and gener

ates a second signal, which second signal is delayed one clock period with respect to the first signal; and 

a second delay circuit which receives the second signal from the first delay circuit and generates a third 

signal, which third signal is delayed one clock period with respect to the second signal. Further included 

in the oscillator circuit is a multiplying circuit for mUltiplying a signal by a multiplier. The mUltiplying 

circuit receives the second signal from the first delay circuit, receives a multiplier at a multiplier input, 

and generates a multiplier output signal which comprises the second signal multiplied by the multiplier. 

The oscillator circuit further includes a differential circuit which receives the third signal from the second 

delay circuit and receives the multiplier output signal from the multiplying circuit, and generates a sinu

soidal output which is the difference between the multiplier output signal less the third signal; the sinuso

idal output signal is also provided in a feedback loop to the first delay circuit and is received by the first 

delay circuit as the first signal so that the oscillator circuit operates as a recursive oscillator. 

In the preferred embodiment, the multiplier received by the multiplier circuit comprises a constant 

which is representative of the varying input level of the input signal. The multiplier thus is employed as a 

. control signal and may be generated by a control signal generator. Such a control signal generator may, in 
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its preferred embodiment, include a scaling circuit for receiving the input signal and scaling the input sig

nal according to at least one scaling factor to produce the control signal (Le., the multiplier). In an alter

nate embodiment, such a control signal generator may comprise a logic circuit receiving the input signal 

and an array of digital filters. The logic circuit selects one digital filter of the array of digital filters in 

response to the input signallevei. The selected digital filter receives the input signal from the logic circuit 

and filters the input signal to produce a selected control signal appropriate to cause the oscillator circuit to 

generate its sinusoidal output at the correct frequency to represent the respective input signal level at 

hand. Digital filters are provided for producing appropriate control signals to yield intermediate output 

frequencies to reduce noise during output signal frequency excursions. 

It is, therefore, an object of the present invention to provide an apparatus for generating a sinusoidal 

output signal in response to an input signal having a variable input level which employs digital signal 

processing technology to effect such generation. 

It is another object of the present invention to provide an apparatus for generating a sinusoidal output 

signal in response to an input signal having a variable input level which employs digital signal processing 

technology to effect such generation without generating disruptive noise during frequency transitions. 

Further objects and features of the present invention will be apparent from the following specification 

and claims when considered in connection with the accompanying drawings illustrating the preferred 

embodiment of the invention. 

231 



DETAILED DESCRIPfION OF mE DRAWINGS 

Figure 14-1 illustrates the relationship between an output signal and an input signal as contemplated 

by the operation of the present invention. 

Figure 14-2 illustrates the preferred embodiment of an oscillator circuit employed in the present 

invention. 

Figure 14-3 illustrates the preferred embodiment of the present invention. 

Figure 14-4 illustrates an alternate embodiment of the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

A typical frequency modulation scheme encountered in digital communications, and commonly 

encountered in frequency shift keyed (FSK) communication systems, is illustrated in Figure 14-1. In 

Figure 14-1, a digital input signal is illustrated varying over time between -Vref and +Vref so that input 

signal 10 is at a level -V ref from time to to time t 1; shifts to a level + V ref at time t I' maintaining the level 

+ V ref until time t3 ; and shifts to level-V ref at time t3' maintaining level-V ref from time t3 through time ts. 

Output signal 12 is modulated according to the level of input signal 10. Thus, output signal 12 has a 

frequency f1 between time to and time t1 when input signal 1 0 is at value -V ref; output signal 12 has a fre

quency f2 during the interval between time t1 and time t3 when input signal 10 has value+V ref; and out

put signal 12 is transmitted at frequency f1 during the time interval t3 through is when input signal 10 

again has value -V ref' In such manner, the frequency of output signal 12 represents the signal level of 

input signal 10. 

The apparatus of the present invention is based upon the following trigonometric relations: A fre

quency function may be defined as: 
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where fs is a sampling rate and f is a desired frequency. 

If the expression x(n)=Asin(nro) represents a sinusoidal wave output of the apparatus, then the fol-

lowing delayed sequences of that sinusoidal output signal can be defined: Current t-time output: 

x(n)=Asin(nro) [I] 

Output, one time interval later: 

x(n-I)=Asin(nro-ro) 

x(n-I)=Asin(nro)cos(ro)-Acos(nro)sin(ro)[2] 

Output, two time intervals later: 

x(n-2)=Asin(nro-2ro) 

x(n-2 )=Asin(nro )cos(2ro)-Acos(nro )sin(2ro )[3] 

Multiplying Eq. [2] by 2cos( ro) yields: 

[2cos( ro)] [x(n-I) ]=[ Asin(nro )cos( ro)] [2cos( ro) ]-[ Acos(nro )sin( ro)] [2cos( ro) 

Using the trigonometric identity sin(2ro)=2sin(ro)cos(ro) yields: 

[2cos( ro)] [x(n-I)]= [2Asin(nro )cos2 (ro)]-[Acos(nro )sin(2ro)] 

Subtracting Eq. [3] from Eq. [2] yields: 

[2cos(ro)][x(n-I)]-x(n-2) = 2Asin(nro)cos2 (ro)-Acos(nro)sin(2ro)]-

Asin( nro )cos(2ro )+Acos(nro )sin(2ro) 

Reducing the above expression yields: 

2cos(ro)x(n-I)-x(n-2) = ASin(nro)[2cos2 (ro)]-cos(2ro)] 

Recalling that x(n) = Asin(nro), the expression may be rewritten: 

2cos(ro)x(n-I)-x(n-2) = x(n)[2cos2 (ro)-cos(2ro)] 
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Using the trigonometric identity co~(ro) = 1+ cos(2ro) yields: 
2 

2cos(ro)x(n-I)-x(n-2) = x(n) 

This expression may be written in the form: 

x(n) = ox(n-I)-x(n-2) 

where 0 = 2cos(ro), and 0 is a constant for a given frequency, co. 

Thus, the current output x(n) is recursively related to outputs one time interval later (x(n-I» and two 

time intervals later (x(n-2», and the recursive nature of output signal x(n) can be used to generate sine 

waves using a sampling frequency fs that has no specific relationship to the desired frequency (f) to be 

generated, except that the sampling frequency must satisfy Nyquist's sampling theorem (i.e., f 8;:;2f). 

This recursive relationship facilitates simplified sinusoidal output signal generation. Distinct advan-

tages are especially provided in the implementation of such recursive signal generation since prior art 

apparatuses employing look-up tables (read-only memories; ROM) to store wave-form samples, with the 

number of samples required to be stored being dependent upon the relationship between the desired fre-

quency and the sampling rate. In contrast, the recursive capability of the present invention requires only 

two storage locations, regardless of what frequency is desired. Specifically, the recursive capability of the 

present invention facilitates generation of a sinusoidal output signal using two successive signal samples 

[x(n-I), and x(n-2)]. Thus, two storage locations are all that are required for employing the recursive rela-

tionship: one storage location for x(n-l) and one storage location for x(n-2). 

Figure 14-2 is an illustration of the preferred embodiment of a recursive oscillating circuit apparatus 

employing the above-described relationships to advantage. In Figure 14-2, a first delay circuit 16 receives 

a first signal at an input 18 and generates a once-delayed output signal at an output 20. The once-delayed 

output signal is delayed one time period from the first signal received at input 18. The once-delayed out-

put signal from output 20 of first delay circuit 16 is received as an input signal by a second delay circuit 
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24 at an input 22. Second delay circuit 24 produces a twice-delayed output signal at its output 26, which 

twice-delayed output signal is delayed one clock period from the once-delayed output signal received at 

its input 22. 

The once-delayed output signal from first delay circuit 16 is also provided as an input to a multiplier 

circuit 28 at an input 30. Multiplier circuit 28 multiplies the once-delayed output signal received from 

first delay circuit 16 by a multiplier I) received at a multiplier input 32, and provides a multiplier output 

signal at its output 34. The multiplier output signal is provided to a positive node 36 of a summing unit 

38. Summing unit 38 also receives at its negative node 40 the twice-delayed output signal from output 26 

of second delay circuit 24. Thus, summing unit 38 provides at its output 42 a difference signal represent

ing the difference between the multiplier output signal received at its input node 36, less the twice

delayed output signal received at its negative node 40. This difference signal is the sinusoidal output sig

nal x(n). 

Sinusoidal output signal x(n) is provided through a feedback line 44 to first delay circuit 16 and com

prises the first signal received by first delay circuit 16 at its input 18. Thus, there is provided a recursive 

oscillator circuit 15 which provides an output x(n) determined by a multiplier I) received at multiplier 

input 32. Initial conditions are established for oscillator circuit 15 by an input x(1) to first delay circuit 16 

and by an input x(O) to second delay circuit 24. Preferably, x(1)=AsinO>o and x(O)=O, where A signifies 

amplitude of the signal x(l) and COo signifies an initial frequency 

(0)0= 21,0 ) 

The employment of recursive oscillator circuit 15 as illustrated in Figurel4-2 in a communications 

system is illustrated, in its preferred embodiment, in Figur eI4-3. In Figur eI4-3, a communications sys

tem 50 is illustrated receiving a digital signal input at an input 52 to a low pass filter (or signal synthe-
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sizer) 54. Low pass filter 54 employs a sampling frequency fs received at an input 56. A signal "y" is 

generated from low pass filter 54 at an output 58 and passed to a scaling circuit 60. Scaling circuit 60 

comprises a multiplier unit 62 and an adder unit 64 to which output signal "y" is successively applied. 

Scaling circuit 60 applies scaling factors a and ~ to signal y to produce an output I> on line 66 such that I> 

= ay+~. The scaled output I> is applied to recursive oscillator 15 and recursive oscillator 15 generates an 

output signal at line 70 in a manner as described in connection with Figure I 4-2. Thus, the output signal 

at line 70 is a sinusoidal output signal which is defined by control signal I> which is received by recursive 

oscillator 15 via line 66 from scaling circuit 60. 

An alternate embodiment of a communications system employing a recursive oscillator 15 of the type 

illustrated in Figure 14-2 is illustrated in Figure 14-4. In Figure 14-4, a communications system 80 is 

illustrated comprising a logic circuit 82 which receives a digitalinput signal at an input 84. Depending 

upon the signal level of the input signal received at input 84, logic circuit 82 selects an appropriate filter 

among an array of filters FTl, FT2, ... ,FTn for receiving a representation of the input signal on line 86. 

The selected appropriate filter, for example filter FTl in Figure 14-4, filters the representative input sig

nal received on line 86 to produce a control signal I> on a line 88 for provision to a recursive oscillator 15 .. 

Selection of the appropriate filter FTl, FT2, ... , FTn by logic circuit 82 is preprogrammed in logic cir

cuit 82 for effecting generation of a control signal I> to facilitate effecting noise-free transition of the fre

quency of an output signal produced at output 90 to accurately reflect deviations in the signal level of the 

input signal received at input 84 of logic circuit 82. 
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Chapter 15 

Frequency Controlled Recursive Oscillator Having Sinusoidal Output 

Abstract 

This chapter is based on the invention patented under American patent 5,204,642 (s. Asghar, A. Linz, 

April 1993). 

An apparatus is disclosed for generating an output signal in response to an input signal having a vari

able input level. The output signal has an output frequency which varies to represent variations in the 

input level. The apparatus comprises a processing circuit for implementing a digital signal processing 

algorithm to generate control signals in response to the input signal, which control signals are representa

tive of the variable input level, and an oscillator circuit for generating the output signal in response to the 

control signals. The control signals include a first control signal representing a first output frequency, a 

second control signal representing a second output frequency, and at least one intermediate control signal 

representing output frequencies intermediate the first and second output frequencies. The processing cir

cuit generates at least one intermediate control signal whenever the output signal varies between the first 

and the second output frequencies which serves to "soften" the transition between the first and second 

output frequencies and reduces noise which usually is generated by such sudden changes in output fre

quency. 
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BACKGROUND OF THE INVENTION 

Generation of sinusoidal output signals having a variable output frequency responsive to an input sig

nal having a variable input level is a well-known method of effecting digital communications. Common 

applications of such a communications technique are frequency shift keying (FSK), and derivatives of 

FSK such as minimum shift keying (MSK) and Gaussian minimum shift keying (GMSK). 

Generation of such FSK signals is sometimes effected by circuitry involving analog devices, and such 

analog devices are generally bulkier and less stable (especially in temperature-varying environments) 

than digital devices. 

In apparatuses generating FSK signals employing digital devices, sudden frequency shifts in response 

to changes in signal levels of input signals generally involve undesirable noise during frequency transi

tions. 

It is desirable that stable, generally compact digital devices be employed in digital communications 

effecting FSK operations without generating disruptive noise during frequency transitions. 
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--------------------------------------------------------- -----

SUMMARY OF THE INVENTION 

The invention is an apparatus for generating an output signal in response to an input signal having a 

variable input level. The output signal has an output frequency which varies to represent variations in the 

input level. The apparatus comprises a processing circuit for implementing a digital signal processing 

algorithm to generate a plurality of control signals in response to the input signal, which plurality of con

trol signals is representative of the variable input level, and an oscillator circuit for generating the output 

signal in response to the plurality of control signals. The plurality of control signals includes a first con

trol signal representing a first output frequency of the output signal, a second control signal representing 

a second output frequency of the output signal, and at least one intermediate control signal representing 

output frequencies of the output signal intermediate the first output frequency and the second output fre

quency. Preferably, each respective intermediate control signal is associated with a respective intermedi

ate frequency. 

The processing circuit generates at least one of the intermediate control signals whenever the output 

signal varies from the first output frequency to the second output frequency or whenever the output signal 

varies from the second output frequency to the first output frequency. Such intermediate frequency gener

ation on every occasion of frequency shift by the oscillator circuit serves to "soften" the transition 

between the first and second output frequencies and reduces noise which usually is generated by such 

sudden changes in output frequency. 

Preferably, the oscillator circuit comprises a first delay circuit which receives a first signal and gener

ates a second signal, which second signal is delayed one clock period with respect to the first signal; and 

a second delay circuit which receives the second signal from the first delay circuit and generates a third 

signal, which third signal is delayed one clock period with respect to the second signal. Further included 

in the oscillator circuit is a multiplying circuit for multiplying a signal by a multiplier. The multiplying 
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circuit receives the second signal from the first delay circuit. receives a multiplier at a multiplier input. 

and generates a multiplier output signal which comprises the second signal multiplied by the multiplier. 

The oscillator circuit further includes a differential circuit which receives the third signal from the second 

delay circuit and receives the multiplier output signal from the multiplying circuit, and generates a sinu

soidal output which is the difference between the multiplier output signal less the third signal; the sinuso

idal output signal is also provided in a feedback loop to the first delay circuit and is received by the first 

delay circuit as the first signal so that the oscillator circuit operates as a recursive oscillator. 

In the preferred embodiment. the multiplier received by the multiplier circuit comprises a constant 

which is representative of the varying input level of the input signal. The multiplier thus is employed as a 

control signal and may be generated by a control signal generator. Such a control signal generator may. in 

its preferred embodiment. include a scaling circuit for receiving the input signal and scaling the input sig

nal according to at least one scaling factor to produce the control signal (i.e .• the multiplier). In an alter

nate embodiment. such a control signal generator may comprise a logic circuit receiving the input signal 

and an array of digital filters. The logic circuit selects one digital filter of the array of digital filters in 

response to the input signal level. The selected digital filter receives the input signal from the logic circuit 

and filters the input signal to produce a selected control signal appropriate to cause the oscillator circuit to 

generate its sinusoidal output at the correct frequency to represent the respective input signal level at 

hand. Digital filters are provided for producing appropriate control signals to yield intermediate output 

frequencies to reduce noise during output signal frequency excursions. 

It is. therefore. an object of the present invention to provide an apparatus for generating a sinusoidal 

output signal in response to an input signal having a variable input level which employs digital signal 

processing technology to effect such generation. 

It is another object of the present invention to provide an apparatus for generating a sinusoidal output 

signal in response to an input signal having a variable input level which employs digital signal processing 
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technology to effect such generation without generating disruptive noise during frequency transitions. 

Further objects and features of the present invention will be apparent from the following specification 

and claims when considered in connection with the accompanying drawings illustrating the preferred 

embodiment of the invention. 

DETAILED DESCRIPfION OF THE DRAWINGS 

Figure 15-1 illustrates the relationship between an output signal and an input signal as contemplated 

by the operation of the present invention. 

Figure 15-2 illustrates the preferred embodiment of an oscillator circuit employed in the present 

invention. 

Figure 15-3 illustrates the preferred embodiment of the present invention. 

Figure 15-4 illustrates an alternate embodiment of the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

A typical frequency modulation scheme encountered in digital communications, and commonly 

encountered in frequency shift keyed (FSK) communication systems, is illustrated in Figure IS-I. In 

Figure IS-I, a digital input sigual is illustrated varying over time between -Vref and +Vref so that input 

signal 10 is at a level-Vref from time to to to time tl ; shifts to level +Vref at time tl' maintaining the level 

+ Vref until time t3 ; and shifts to level -Vref at time t3' maintaining level -V ref : from time t3 through time 

t5' 

Output signal 12 is modulated according to the level of input signal 10. Thus, output signal 12 has a 

frequency f I between time to and time t I when input signal 10 is at value -Vref ; output signal 12 has a fre

quency f2 during the interval between time tl and time t3 when input signal 10 has value+V ref; and out

put signal 12 is transmitted at frequency fl during the time interval t3 through t5 when input signal 10 
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again has value -V ref. In such manner, the frequency of output signal 12 represents the signal level of 

input signal 10. 

The apparatus of the present invention is based upon the following trigonometric relations: A fre-

quency function may be defined as: 

ro( ffs) = 2Xt-
s 

where fs is a sampling rate and f is a desired frequency. 

If the expression x(n) = Asin(n!ll) represents a sinusoidal wave output of the apparatus, then the fol-

lowing delayed sequences of that sinusoidal output signal can be defined: Current t-time output: 

x(n) = Asin(noo) (1) 

Output, one time interval later: 

x(n-l) = Asin(noo - 00) 

x(n-l) = Asin(noo)cos(oo) - Acos(noo)sin(oo) (2) 

Output, two time intervals later: 

x(n-2) = Asin(noo - 200) 

x(n-2) = Asin(noo)cos(200) - Acos(noo)sin(200) (3) 

Multiplying Eq. [2] by 2cos(00) yields: 

[2cos(00)][x(n-l)] = [Asin(noo)cos(00)][2cos(00)] - [Acos(noo)sin(00)][2cos(00)] 

Using the trigonometric identity sin(200) = 2sin(00)cos(00) yields: 

[2cos(00)][x(n-l)] = [2Asin(noo)cos2(00)]- [Acos(noo)sin(200)] 

Subtracting Eq. [3] from Eq. [2] yields: 

[2cos(00)][x(n-l]- x(n-2) = 2Asin(nro)cos2(00) - Acos(noo)sin(2ro)]- Asin(noo)cos(200) + 

Acos(nro )sin(200) 

Reducing the above expression yields: 
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2cos(oo)x(n-l) - x(n-2) = Asin(noo)[2cos2(oo)] - cos(2oo)] 

Recalling that x(n) = Asin(noo), the expression may be written: 

2cos(oo)x(n-l) - x(n-2) = x(n)[2cos2(2) ~ cos(2oo)] 

U · th· ··d· '() 1 + cos(2oo) SIng e trigonometric 1 entity coS" w = 2 

2cos(oo)x(n-l) - x(n-2) = x(n) 

This expression may be written in the form: 

x(n) = 3x(n-l) - x(n-2) 

where 3 = 2cos(oo), and 3 is a constant for a given frequency, 00. 

Thus, the current output x(n) is recursively related to outputs one time interval later (x(n-l» and two 

time intervals later (x(n-2», and the recursive nature of output signal x(n) can be used to generate sine 

waves using a sampling frequency fs that has no specific relationship to the desired frequency (1) to be 

generated, except that the sampling frequency must satisfy Nyquist's sampling theorem (Le., fx;;; 2f). 

This recursive relationship facilitates simplified sinusoidal output signal generation. Distinct advan-

tages are especially provided in the implementation of such recursive signal generation since prior art 

apparatuses employing lookup tables (read-only memories; ROM) to store wave-form samples, with the 

number of samples required to be stored being dependent upon the relationship between the desired fre-

quency and the sampling rate. In contrast, the recursive capability of the present invention requires only 

two storage locations, regardless of what frequency is desired. Specifically, the recursive capability of the 

present invention facilitates generation of a sinusoidal output signal using two successive signal samples 

[x(n-l), and x(n-2)]. Thus, two storage locations are all that are required for employing the recursive rela-· 

tionship: one storage location for x(n-l) and one storage location for x(n-2). 

Figure 15-2 is an illustration of the preferred embodiment of a recursive oscillating circuit apparatus 

employing the above described relationships to advantage. In Figure 15-2, a first delay circuit 16 receives 

a first signal at an input 18 and generates a once-delayed output signal at an output 20. The once-delayed 
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output signal is delayed one time period from the first signal received at input 18. The once-delayed out-

put signal from output 20 of first delay circuit 16 is received as an input signal by a second delay circuit 

24 at an input 22. Second delay circuit 24 produces a twice-delayed output signal at its output 26, which 

twice-delayed output signal is delayed one clock period from the once-delayed output signal received at 

its input 22. 

The once-delayed output signal from first delay circuit 16 is also provided as an input to a multiplier 

circuit 28 at an input 30. Multiplier circuit 28 mUltiplies the once-delayed output signal received from 

first delay circ~it 16 by a multiplier 0 received at a multiplier input 32, and provides a multiplier output 

signal at its output 34. The multiplier output signal is provided to a positive node 36 of a summing unit 

38. Summing unit 38 also receives at its negative node 40 the twicecdelayed output signal from output 26 

of second delay circuit 24. Thus, summing unit 38 provides at its output 42 a difference signal represent-

ing the difference between the multiplier output signal received at its input node 36, less the twice-

delayed output signal received at its negative node 40. This difference signal is the sinusoidal output sig-

nal x(n). 

Sinusoidal output signal x(n) is provided through a feedback line 44 to first delay circuit 16 and com-

prises the first signal received by first delay circuit 16 at its input 18. Thus, there is provided a recursive 

oscillator circuit 15 which provides an output x(n) determined by a multiplier 0 received at multiplier 

input 32. Initial conditions are established for oscillator circuit IS by an input x(l) to first delay circuit 16 

and by an input x(O) to second delay circuit 24. Preferably, x(1)=AsinOOo and x(O)=O, where A signifies 

amplitude of the signal x(l) and ffio signifies an initial frequency 

( 
21tfo) 000= -f-

s . 

The employment of recursive oscillator circuit IS as illustrated in Figurel5-2 in a communications 

system is illustrated, in its preferred embodiment, in Figur eI5-3. In Figur eI5-3, a communications sys-
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tern 50 is illustrated receiving a digital signal input at an input 52 to a low pass filter (or signal synthe

sizer) 54. Low pass filter 54 employs a sampling frequency fs received at an input 56. A signal "y" is 

generated from low pass filter 54 at an output 58 and passed to a scaling circuit 60. Scaling circuit 60 

comprises a multiplier unit 62 and an adder unit 64 to which output signal "y" is successively applied. 

Scaling circuit 60 applies scaling factors a and f3 to signal y to produce an output 0 on line 66 such that 

0= ay+f3. The scaled output 0 is applied to recursive oscillator 15 and recursive oscillator 15 generates an 

output signal at line 70 in a manner as described in connection with FigureI5-2. Thus, the output signal 

at line 70 is a sinusoidal output signal which is defined by control signal 0 which is received by recursive 

oscillator 15 via line 66 from scaling circuit 60. 

An alternate embodiment of a communications system employing a recursive oscillator 15 of the type 

illustrated in Figure 15-2 is illustrated in Figure 15-4. In Figure 15-4, a communications system 80 is 

illustrated comprising a logic circuit 82 which receives a digital input signal at an input 84. Depending 

upon the signal level of the input signal received at input 84, logic circuit 82 selects an appropriate filter 

among an array of filters Frl, Fr2, ... ,Frn for receiving a representation of the input signal on line 86. 

The selected appropriate filter, for example filter Frl in Figure 15-4, filters the representative input sig

nal received on line 86 to produce a control signal 0 on a line 88 for provision to a recursive oscillator 15. 

Selection of the appropriate filter Frl, Fr2, ... , Frn by logic circuit 82 is preprogrammed in logic cir

cuit 82 for effecting generation of a control signal 0 to facilitate effecting noise-free transition of the fre

quency of an output signal produced at output 90 to accurately reflect deviations in the signal level of the 

input signal received at input 84 of logic circuit 82. 

US Patents 5,189,381 and 5,204,642 are essentially based on the same architecture. The differences 

lie in the claims. Patent 5,189,381 addresses a process for generating an output signal in response to an 

input signal having a variable input level. The output frequency is representative of variations in the input 

level. The claims cover functionality and the process of generating output signals. Patent 5,204,642 
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addresses the actual apparatus for generating a sinusoidal signal recursively, and the claims accordingly 

cover the hardware elements of the architecture. 

250 



. 4573025 

4686489 

5105444 

Feb., 1986 

Aug., 1987 . 

Apr., 1992 

. References 

Related Patents 

McKinzie 

CaspeII 

Gard 

251 

332/102. 

3311DIG. 

332/100. 



252 



Chapter 16 

Communications Processor 

Abstract 

This chapter is based on the invention patented in Europe under patent EP 0 465054 Bl (S. Asghar, J. 

Bartkowiak, May 1995). 

This invention relates generally to processors and more particularly to digital which have the capability 

of processing code excited linear predictive algorithms. 

Recently, cellular telephone systems have become more practical and popular. Their popularity has 

increased to the point where service availability will soon be unable to meet demand. It has therefore 

been proposed to implement a digital cellular network which incorporates predictive speech signal cod

ing for reducing the bandwidth of transmitted speech thereby enhancing system performance and 

enabling time division multiplexing which significantly increases user availability. 

The Telecommunication Industries Association has adopted a standard, Digital Cellular Standard IS-

54, which implements a vector sum excited linear predictive (VSELP) vocoder algorithm for use in the 

United States. This algorithm is computationally intensive, requiring on the order of 6.45 X 106 arith

metic operations per second and 15.6 million instructions per second (MIPS). 

Other areas of the world are also moving toward digital cellular systems. Japan has recently adopted a 

VSELP algorithm similar to the United States, and Europe is moving toward a CELP algorithm referred 

to as Group Special Mobile (GSM). 

Currently, digital signal processors (DSPs) such as the SDP65000 family manufactured by Motorola, 

Inc. are available for implementing digital algorithms such as digital filters, fast fourier transforms, corre

lation functions, etc. Such processors have special features such as modulo addressing, hardware DO 

loops, 24-bit hardware multipliers, etc. to facilitate the large number of high precision arithmetic opera-
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tions required in digital signal processing. DSPs are ideally suited for executing the VSELP and similar 

algorithms except that current models have too Iowa clock rate. TheDSP65000 family, for example has a 

nominal clock rate of 20.48 MHz giving an execution rate of 10.24 MIPS. This can be increased to 27 

MHz for an execution rate of 13.5 MIPS. To accommodate the 15.6 MIPS needed for IS-54, the clock 

rate would have to be increased to about 32 MHz. Such an increase would require redesign of the DSP. 

DE-A-I-3 314600 discloses a communications speech processor comprising a central processing unit 

(CPU), a fast computing circuit and an Input/Output unit, all connected by data and address lines. The 

CPU controls the system, while the fast computing circuit executes the speech processing algorithms. 

In the present specification we describe a communications processor implementing IS-54 and other 

computationally intensive digital signal processing algorithms using conventionally available compo

nents operating at convention clock rates. 

There is also described a communications processor which contains a user programmable functional

ity permitting the execution of instructions in addition to the computationally intensive digital signal pro

cessing algorithm without adversely affecting execution of the algorithm. 

There is also described a communications processor implemented on a single integrated circuit chip. 

In accordance with the invention there is provided an apparatus comprising in a single integrated cir

cuit chip, the combination of a central processing unit (CPU) having an execution unit with a arithmetic 

logic unit and accumulators, a program counter, memory, a clock generator, a timer, a bus interface, a 

chip select unit, and an interrupt processor, a digital signal processor (DSP) having an instruction set to 

carry out a digital signal processing algorithm, an execution unit for carrying out multiply and accumu

late operations and an external interface, an address bus connected between the CPU and the mp, a data 

bus connected between the CPU and the DSP, and scheduling means for static ally scheduling execution 

of the signal processing algorithm between the digital signal processor and the CPU. 

In accordance with other aspects, the digital signal processing algorithm may be a digital speech pro-
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cessing algorithm and the scheduler may be contained in the DSP and may include an interrupt generator 

for generating interrupts to the CPU to command execution by the CPU of portions of the speech process

ing algorithm. The CPU interrupt processor processes the interrupts for the DSP as nonmaskable interrupt 

signals to ensure that execution of the algorithm takes priority over other programs. 

To exploit the advantages of the DSP and CPU, the static scheduler partitions execution of the signal 

processing algorithm to cause all multiply and multiply-accumulate operations to be executed in the DSP 

and all other operations such as add, subtract, divide, compare, etc. to be executed in the CPU. 

In accordance with other aspects of the invention, the speech processing algorithm may be a code 

excited linear predictive coding algorithm and, in particular, may be a vector sum excited linear predic

tive coding algorithm. 

The CPU includes operating system support for permitting user programming of the CPU. The static 

scheduler controls the operating system support to give priority to execution of the signal processing 

algorithm. 

The static scheduler effects simultaneous operation of the CPU and DSP during portions of the execu

tion of said signal processing algorithm. 
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Brief Description of the Drawings 

The above and other objects of the invention will become more readily apparent as the invention is 

more fully understood based on the detailed description below, wherein like reference numerals represent 

like parts throughout andwherein: 

Figure 16-1 is a block diagram showing the main components of the communications processor of the 

present invention; 

Figure 16-2 is a more detailed block diagram of the communications processor of the present inven

tion; 

Figure 16-3 is a block diagram showing the audio interface of Fig u reI6-2; 

Figure 16-4 is a block diagram showing more detail of the Multiplier-Accumulator engine of 

Figure 16-2; 

Figure 16-5 is a block diagram showing the receiver section of the control channel processor of 

Figure 16-2; 

Figure 16-6 is a block diagram showing the transmitter section of the central channel processor of 

Figure 16-2; 

Figure 16-7 is a block diagram showing the frame forrnatter ofFigur eI6-2; 

Figure 16-8 is a block diagram showing the organization of the watch dog timer ofFigur eI6-2; 

Figure 16-9 is a block diagram showing the keypad scanner of the keypad interface of Figur eI6-2; 

Figure 16-10 is a block diagram showing the parallel 110 port of Figure 16-2; 

Figure 16-11 is a functional block diagram showing the communications processor used to implement 

a digital mode cellular telephone application; 

Figure 16-12 is a functional block diagram showing the digital transmit signal flow ofthe processor 

configured as in Figure 16-10; 
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Figure 16-13 is a functional block diagram showing the digital receive signal flow of the processor 

configured as in Figure 16-10; 

Figure 16-14 is a flow diagram showing a basic code excited linear prediction (CELP) process; 

Figure 16-15 is a flow diagram showing a codebook search procedure used in a CELP process; 

Figure 16-16 is a flow diagram showing a revised codebook search procedure; 

Figure 16-17 is a flow diagram showing an implementation of a vector sum excited linear predictive 

(VSELP) encoder; 

Figure 16-18 is a flow diagram showing an implementation of a VSELP decoder; 

Figure 16-19a is timing diagram useful with table 21 to show the partitioning of arithmetic operations 

between the digital signal processor and the central processing unit of Figure 16-2 when implementing a 

VSELP algorithm; 

Figure 16-20 is a block diagram showing the communications processor implementing an analog 

mode operation; 

Figure 16-21 is a flow diagram showing the analog transmit flow of Figure 16-20; and 

Figure 16-22 is a flow diagram showing the analog receive flow of Figure 16-20. 
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Detailed Description of the Preferred Embodiments 

Figure 16-1 shows the communications processor 100 of the present invention. Processor 100 is a 

highly integrated IC for implementing IS-54 of GSM compliant cellular telephones. This handset-resi

dent device combines with RAM and ROM to provide a complete set of functions between audio trans

ducers and an RF modem, including speech processing, user interface and system control. 

One of the key elements of the architecture is the unique combination of a standard microprocessor 

shown in Figure 16-1 as CPU 200 with a dedicated custom DSP engine shown in Figure 16-1 as multi

plier-accumulator (MAC) engine 300 and a multi-port static RAM (SCRAM) 400 to process the VSELP 

and GSM speech compression algorithms. This combination reduces die size while performing both 

voice processing and system control. 

Figure 16-1 shows the organizational relationship of the major components of the communications 

processor 100 of the present invention. CPU 200 may be a convention 80186 type processor such as the 

model80CI86 microprocessor sold by Advanced Micro Devices of Sunnyvale Califomia. This processor 

includes a clock generator 202, a bus interface 204, an execution unit 206, a direct memory access unit 

208, a chip select unit 210, timers 212, and an interrupt processor 214. In accordance with the present 

invention, CPU 200 can be programmed by a user to implement user designated functions and operates in 

conjunction with DSP 300 to carry out VSELP in accordance with IS-54 and other signal processing 

algorithms, as will be explained in greater detail below. 

CPU 200 communicates with SRAM 400 and DSP 300 through a bus system which includes address 

bus 102 and data bus 104. These busses also provide communication to a transmit/receive buffer 500 and 

an audio interface section 600. 

As will be understood by reference to Figure 16-1, communications to a base station or the like, if a 

cellular phone system implementation is adopted, is made through buffer 500 which can connect to a 
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transmission system including a modem, a radio or the like. Communication to the local user is made 

through interface 600 which connects to a microphone ad a speaker, as will be discussed in greater detail 

below. 

Figure 16-2 shows more details of the communications processor 100. As shown in Figur e16-2, the 

on-chip circuitry also includes an operating system support unit 700, a watchdog timer unit 800, a system 

clock 900, a system test logic unit 1000, and a reset and power modes unit 1200. 

User progranuning of the CPU is made available through a keypad interface 1300, a serial display and 

110 bus unit 1400 and one or more parallel output ports 1500. 

A brief description of the function of each component of Figur e16-2 will now be set forth. 

The audio interface 600 is shown in more detail in FigureI6-3. Interface 600 provides an ear piece 

and loudspeaker 604 interface, handset microphone 601 and hands-free microphone 602 interface 620; AI 

D converter 606, D/A converter 608, hardware decimator 610, hardware interpolator 612 and tone ringer 

unit 614. Programmable gain units 616 are provided for all analog inputs and outputs. 

The transmit path of the interface 600 has two inputs which are multiplexed into a programmable gain 

state (6£24 dB; 3 dB steps) connected to an over-sampling AID converter 806. The output of the AID is 

decimated in hardware unit 610 to 16 kHz. This signal is loaded into the on-chip SRAM 400 for use by 

the speech processing engine. With 6 dB of programmed gain, a 625 m V input produces a fyll-scale digi

tal output. 

On the receive side, the 16 kHz output of the speech processor is interpolated in hardware unit 612 

and fed into DI A converter 606. The output of the DI A feeds either the ear piece, loudspeaker, or both. A 

programmable analog gain stage is located in each path (0£-36 dB, 3 dB steps). The earpiece driver can 

drive a 540 Ohm load at 5V P-P. The loudspeaker driver can drive a 40 Ohm load at 5V P-P. With 0 dB of 

gain programmed into either path, a full-scale digital code produces the full-scale output voltage. 

The tone ringer 614 produces a nominal 50% duty cycle rectangular wave form having a programma-
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ble frequency range for 12 kHz to 200 Hz. The amplitude of the output is programmable, starting with a 

SV P-P maximum level, attenuated by up to -36 dB in 3 dB steps. The tone ringer is summed into the 

loudspeaker output. The ringer and loudspeaker output buffer can be operated with the rest of the audio 

interface disabled. 

Analog loop back and input mute function is provided in interface 620. An analog sidetone path, with 

programmable gain (range and resolution) is also provided. 

A reference voltage output, approximately 2.4 Volts, is provided for biasing external circuitry (includ

ing electret microphones). A related pin is provided for filtering the internal bias reference from which 

the reference voltage output is derived. 

A memory interface 622 moves digitized audio between the internal SRAM 400 and the audio inter

face by a dedicated DMA mechanism. Transmit and receive buffer spaces are set aside in the SCRAM. 

These buffers function as FIFOs, and are sufficiently deep to compensate for the block nature of the 

speech processing algorithm. The buffers have fixed base addresses. The memory interface moves data to 

and from the buffers at a rate of 16k words per second in each direction. 

The CPU 200 is a complete 80C186 microprocessor, capable of running at up to 20 MHz. The 

80C186 provides two 16-bit timers, programmable chip select outputs, and an interrupt controller. Some 

of these resources are used internally, and are not available to the user. 

The clock speed of the CPU is dynamically controlled by the system clock generator block 900, with 

the user having programmable control over the clock speed. 

The clock generator block 900 serves as the master distribution point for clock signals used by the 

various block. This centralized scheme is used to reduce power consumption within the communications 

processor 100. The block contains the crystal oscillators and various dividers. One of these dividers is 

associated with the CPU clock input. This divider is programmable, allowing the clock speed, and thus 

the power consumption, of the processor to be reduced whenever the workload on the processor is low. 
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The processor clock speed can also be changed automatically in response to hardware interrupts. If this 

options is selected, any hardware interrupt to the CPU will force the clock speed to maximum. This 

reduces interrupt response latency when operating at NMI, and automatically returned to its previous 

speed upon a return from NMI. After power on reset, the maximum clock speed is applied to the CPU as 

a default. The maximum dividing factor that can be applied to the system clock generator is 64. The CPU 

clock can also be programmed to stop. 

These are three classes of interrupts supported by the CPU: 1) NMI from the MAC engine 300; 2) 

direct interrupts to the CPU; and 3) indirect interrupts. The NMI from the MAC is the basic tasklsched

uler interrupt controlling the switch between speech processing and user CPU time. The NMI is gener

ated by the MAC engine 300, and fed directly to the CPU's NMI input The direct interrupts are those 

connected directly to four maskable interrupts inputs on the CPU 200. The keypad scanner 1300, parallel 

110 1500, and control channel processor 502 generate direct interrupts. The fourth direct interrupt is gen

erated by an indirect interrupt controller, which gathers all remaining interrupts into a single interrupt. 

Any interrupts from external user circuitry feed into the parallel 110 port. 

The 80C186 processor used as CPU 200 has three timers, two have input and output pins, (Timers 0 

and 1), one (timer 2) has no 110 connections. Timer 0 is pinned-out for user access, timer 1 is not used 

either internally or externally, and timer 2 is dedicated to internal functions. 

Al9/S6 INT2-INTAO/+ 

Al8/S5 INT3-INTAlI+ 

Al7/S4 LCSI 

Al6/S3 LOCKI* 

ADl5 MCSO/-PEREQ 

ADl4 MCSIIERROR 

AD 13 I 
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INTl+ Xl 

X2* 

The Multiply/Accumulate (MAC) engine 300 is a special purpose DSP engine designed to work with 

the CPU 200 to perform complex speech processing algorithms. The MAC engine is shown in greater 

detail in Figur e16-4 to include an execution unit 302, a sequencer 304, various loop counters 306, 308 

and address generators 310, 312, an instruction ROM 314, and an external interface to the SRAM 400. 

The MAC may also include conventional DSP features such as a 24 bit X 24 bit hardware multiplier and 

hardware do loops to help carry out its specialized function. 

The MAC engine 300 functions as the master in a master/slave relationship with the CPU 200. Syn

chronization is maintained by non-maskable interrupts (NMIs) generated by the MAC engine 200 and 

transmitted to the CPU 200 NMI input on NMI line 326. A sequence counter is maintained by the MAC 

engine 300. This counter is incremented by the MAC engine 300 every time an NMI is generated, and 

cleared at the end of each frame. The CPU 300 reads the counter as an interrupt pointer. 

The speech algorithms or other signal processing programs to be implemented by MAC 300 are 

microcoded in internal ROM 314 and are not accessible by the user. These algorithms process complex 

speech processing algorithms on sampled speech data stored as blocks in RAM 316. 

Instruction Set -- The MAC Instruction set supports digital speech processing algorithms which 

include such functions as convolution, correlation, interpolation, decimation, vector orthogonalization, 

and recursive filtering these functions are performed on data stored as blocks and the archi tecture of the 

engine reflects this application. The operations necessary to implement these functions include multiply, 

multiply-accumulate, add, subtract, data overflow management, sequential block addressing, data move

ment, and data scaling among others. They are summarized below: 

Accumulator Memory Reference Instructions 

Absolute value of Accumulator 
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Add to Accumulator with shift 

Add to Accumulator with carry 

Add to high Accumulator 

Add to Low Accumulator with sign extension suppressed 

Load accumulator with shift 

Store High Accumulator with shift 

Store Low Accumulator with shift 

Subtract from Accumulator with shift 

Subtract from Accumulator with borrow 

Subtract from High Accumulator 

Subtract from Low Accumulator with sign extension suppressed 

Zero Accumulator 

Memory Address Generator Instructions 

Load address generator 

Modify address generator 

Store address generator 

Multiply Instructions 

Add product register (Preg) to Accumulator 

Load temporary register (Temp) 

Load Temp and accumulate previous product 

Load Temp and store Preg in Accumulator 

Load Temp and subtract previous product 
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Multiply and accumulate. 

Multiply (with Temp, store product in Preg) 

Multiply and Subtract previous product 

Multiply (with Temp) and accumulate previous product 

Multiply unsigned 

Load Accumulator with Preg 

Store High Preg 

Store Low Preg 

Set Preg output shift mode 

110 and Data Memory Operation 

Input data from mailbox 

Output data to mailbox Set External Interrupt flag and load Action Register 

Reset External Interrupt flag 

Enable Loop Counter 

Disable Loop Counter 

As discussed above, the MAC engine 300 operates as the master to slave CPU 200. Control of the 

CPU is achieved by setting an external flag on line 326 which acts as a non-maskable Interrupt (NMI) to 

the CPU. An action counter is updated by the MAC engine which is readable by the CPU on interrupt 

request acknowledge and thereby task synchronization is maintained. Communication of data and control 

parameter to and from the CPU is made via the dedicated dual-pocted RAM 316 which employs a mail

box handshaking mechanism. Static scheduling of the speech processing algorithm between the MAC 

engine and CPU allows this simple and efficient interface to communicate parameters in order to com

pute the algorithm functions. 
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The internal SRAM unit 400 is a single port structure with a multi-port access arbitrator. The SRAM 

unit 400 is accessed by the MAC engine 300, the CPU 200, the audio interface 600, and the control chan

nel processor 502, which is part of the transmit/receive buffer 500. The RAM is organized on byte, word 

(16), and long word (24) boundaries depending on which module is accessing it. The total RAM size is 

consistent with the requirements of the program to be run. The SRAM may be partitioned into separate 

blocks to simplify the access control mechanism. For example, the RAM associated with theFACCH, 

SACCH, CDVCC functions may be located in a separate partition from RAM used for speech data. 

The operating support logic unit 700 is hardware specific to provide task scheduling for the CPU 200 

between a speech processing operation and "user code" received and located in this block. The partition

ing between the speech functions and the user functions is rigidly enforced by a static scheduler. 

In order to support the static partitioning of the CPU between speech processing and non-speech 

tasks, all real-time events, such as interrupts not associated with the speech algorithm, must be presented 

to the CPU 200 only during non-speech windows. The function of the OS support logic block 700 is to 

perform this isolation function. In general, interrupts will automatically be blocked by the fact that the 

speech functions occur during the NMI service routine which cannot be interrupted by other interrupts 

(the NMI is used as the mechanism by which the speech function gains control of 80C186, with control 

being returned to non-speech tasks when a return form NMl instruction is executed). Therefore, no spe

cific logic is required to hold off non-speech interrupts. 

As mentioned above, the CPU operates both as the system CPU and as part of the speech processor. 

What the user actually sees is a portion of the CPU processing capacity. The partitioning between system 

functions and speech processing is enforced by the OS support logic block and a firmware shell. The 

scheduling mechanism is static in nature, giving the CPU resource to the speech operation uncondition

ally at very specific times. When the CPU is not perfonning speech related tasks, it is available for sys

tem functions. As a consequence of the static scheduling, the user sees the CPU for a portion of the time 
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with rigidly enforced gaps when the processor is unavailable. These gaps are transparent to the user, with 

the exception that the CPU is not working on non-speech tasks during the gaps. This means that all sys

tems tasks including interrupts are blocked (held off) during speech processing windows. 

Some handshaking may be required between the OS support logic and the power mode control func

tions to insure that the shut-down and idle modes are entered and exited in an orderly fashion. 

The MAC engine 300 provides the indication as to whether the 80C186 is in speech or non-speech 

mode at any given time. 

The control channel processor 502 functions differently depending on the algorithm being imple

mented, such as whether it is in GSM or IS-54 mode .. The basic function of the control channel processor 

502 is to perform forward error control and cyclic redundancy check (CRC) functions on the data chan

nel, and bit-level processing on the control channel. 

In IS-54 mode, the control channel processor 502 is ideal during analog and call set-up operation, to 

be discussed below. The 80C186 CPU 200 handles all control processing during analog and call set-up 

modes. During digital operation, there are four channels to be processed: SACCH, speech CDVCC and 

FACCH. The presence of Fast Associated Control Channel (FACCH) messages in the data channel must 

be detected and the data processed. Figure 16-5 and Figure 16-6 show block diagrams of the receive and 

transmit sections of the control channel processor. 

ACCH, Receive - as shown in Figure 16-5 receive SACCH data is fed to the control channel proces

sor from the frame formatter on lines 510. Hardware within the control channel processor block 512 

DMAs the data from a shift register to a buffer in internal SRAM. The SACCH data is in encoded form 

(112 convolution code) and interleaved with SACCH data from 23 slot times. The data is not processed in 

hardware, rather, it is moved to an internal RAM buffer. From there it is moved by the 80C186 CPU 200. 

From there it is moved by the 80C186 CPU 200 to a buffer in internal RAM. As shown in Figure 16-6, 

hardware within the control channel processor unit 20 DMAs the data to a shift register 522 inside the 
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control channel processor. 

Speech, Receive - The data channel can contain either Speech ofFACCH data. Since the communica

tions processor 100 does not know in advance which type of data is contained in ant give received frame, 

the data must be processed as both Speech and FACCH data. 

In the receive direction, as shown in Figure 16-5, speech data is split into class 1 and class 2 portions 

in a sequenced 526. The class 1 portion is processed through a 112 convolution code processor 528 and a 

CRC checker 532 before being placed into internal SRAM by controller 534. Class 2 data is placed 

directly into the SRAM by controller 534. ACCH, Receive - The received data channel is also passed 

through the FACCH processor wherein it is fed a 114 convolution decoder 530 and a CRC checker 536. If 

the CRC check is valid, it is an indication that the data was in fact FACCH data, otherwise it is considered 

Speech data.ValidFACCH data is DMAed into an internal RAM buffer. 

Speech, Transmit - On the transmit side (FigureI6-6), the system knows in advance whether the data 

is Speech or FACCH. Speech data tot be transmitted is placed into SRAM by thee MAC engine in class 1 

and class 2 fields. The class 1 field is fed through a 112 convolution encoder 540 and a CRC generator 

542 by DMA unit 546. before being passed to the frame formatter by multiplexer 544. Class 2 data is 

passed directly to the frame formatter by multiplexer 544. 

FACCH, Transmit - FACCH data to be transmitted is placed into a buffer in internal RAM by the 

80C186 CPU 200. From there it is DMAed into the control channel processor and fed through a 114 con

volution coder 550 and a CRC generator 552 before being passed to the frame formatter by multiplexer 

544. 

CDVCC, Receive - The received CDVCC data from the frame formatter is processed through a 12, 8 

hamming code decoder 560 and DMAed to a buffer in internal RAM. From there it is processed by the 

80C186. 

CCVCC, Transmit - The 80Cl86 CPU 200 writes the CDVCC byte to a buffer within the control 
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channel processor. From there it is processed through a 12, 8 hamming code encoder 554 and shipped to 

the frame formatter. 

GSM - In GSM mode, the following functions are performed on the Speech channel: In the receive 

direction, the HOLC (LAPM) bit level processing is handled in the control channel processor, and the 

data is placed in the internal SRAM. In the transmit direction, packets are formatted by the 8OC186 and 

placed into the internal SRAM. From there the control channel processor executes the bit-level HOLC 

protocol and passes the data to the frame formatter. 

Interrupts - The control channel processor generates a direct interrupt to the CPU 200 in response to 

certain status conditions. These conditions include:FACCH, SACCH and CDVCC received data service 

requests; FACCH and SACCH transmission complete indications; speech error mute requests and an 

FACCH error indication. 

The frame formatter 504, which is also part of the transmit/receive buffer 500, functions differently 

depending on the algorithm being implemented, such as on whether it is in GSM or IS-54 mode In IS-54 

mode, the frame formatter assembles and disassembles 20 millisecond transmit and receive slots (two per 

frame). The data is broken down into coded digital verification color codes (CDVCC), slow associated 

control channel (SACCH), and voice/fast associated control channel (FACCH) data streams. The frame 

formatter sits between the serial radio interface 506 and the control channel processor. 

In the transmit direction, speechIF ACCH, SACCH and CDVCC data is combined with sync, guard, 

and ramp bits from units 580, 582 and 584 in multiplex sequencer 586 and sent to the serial radio inter

face 506. The speech or FACCH data is assembled in a buffer 560 by a sequencer 562 that performs a slot 

interleaving operation over two slot times. Because of the nature of the interleaving algorithm, the buffer 

is two blocks deep. Data is transmitted out of one block while the next block is being assembled. 

Since the serial radio interface carries both control and data information, its bit rate is faster than the 

bit rate for the radio. For this reason, a radio bit rate clock is generated for speech operations and the 
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serial radio interface (SRI) bit clock on line 590 is used for transmission and reception of non-speech 

functions. The radio bit rate clock is phase-locked to the recovered slot synchronization. 

The receiver demultiplexes that data received from the serial radio interface into speechIFACCH, 

SACCH, and CDVCC bit streams in a duplexerlsequencer 570. The speech data is deinterleaved and 

stored in a two-slot deep buffer 592. The SACCH and CDVCC data streams are fed directly to the control 

channel processor A sync detector 594 identifies both the slot boundaries as well as the slot ID> 

The serial radio interface 506 (Figure 16-2) combines the bit stream to be transmitted (or received) 

with control commands to and from the CPU and the radio into a single serial bit stream. This is a three 

wire interface having transmit data, receive data and bit clock signals. A framing pattern is embedded 

into the data stream. The definition of this block is totally dependent upon the user radio to which it is 

attached. 

A sanity timer is included in the communications processor lOO. The timer is permanently enabled, 

generating a 2 ms pulse on the RESET/(active low) pin if it times out. Hardware internal to the communi

cations processor is also reset by a watchdog timer 600 (Figure 16-8) time-out; the result is identical to 

activating the RESET Ipin. A hardware reset is generated to the communications processor 100 if a 

counter 802 is not cleared every 2 seconds. If counter 802 is not cleared, an output is generated to reset 

pulse generator 802. A specific key sequence must be written to a Watchdog Key Register 804 by the 

CPU 200 within this 2 seconds after reset and within 2 seconds of the previous update to prevent time

out. 

The key sequence is a two stage function starting from reset. The watchdog timer starts in stage one, 

waiting for a write to the Watchdog Key register. If the value written to the Watchdog Key Register is 

anything buy an A5H, a system reset is generated (just as if the tenninal count had been reached). If the 

write was an ASH, stage two is entered. In stage two, the watchdog timer waits for another write. If the 

write is an 5AH, the timer is reset and stage one is re-entered. If the write is something other than a 5AH, 
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a system reset is generated. 

The watchdog timer has a hardware pinstrapable disable mode, allowing the watchdog to be disabled 

for software development. When the WDTDISABLE pin is tied low, the watchdog timer is enabled. 

When tied high, the watchdog timer is disabled. 

The keypad interface 1300 (Figure 16-2) includes a keypad scanner 1302, shown in Figure 16-9. The 

scanner 1302 supports keypads with up to 25 keys. The scanner works autonomously from the CPU 200. 

Keypad activity is detected and reported via a status register 1304 mapped into the CPU's address space. 

Interrupts are generated when a key is depressed and when it is released. Activity is debounced on both 

depression and release. A wake-up signal is generated ifkeypad activity is detected when MSC is in shut

down or idle modes. an error code is generated if multiple keys are depressed. 

The following functions are performed by the keypad scanner 1302; detection of keypad activity, 

detennination of the identity of the key closure, debouncing of the key down and a key up transitions, 

generations of a direct interrupt to the CPU 200. The status of the keypad is reported via a register 

mapped into CPU 200 user address space. This status includes a not key down code (00000000), a multi

ple keys down code (XXXXXXX1), and codes for each of the keys (RRKKKKKO); R = reserved, K = 

key code and X = don't care. A maskable interrupt is generated when the visible register changes. The 

keypad scanner is designed to operate in a static state when no activity is present, waking up automati

cally upon the detection of activity. 

The serial I/O, display interface 1400 (Figure 16-2) is a three-wire bus allowing the CPU 200 to talk 

to external serial devices such as LCDs. The three-wire serial bus (clock, data in and data out) is provided 

for communicating with the display module and any other serially controlled device that the user 

requires, such as a serial EEPROM. The serial bus is a peripheral to the CPU 200 and is solely under the 

control of user software. The protocol used by the serial bus is to be specified by the user. If multiple 

devices are connected to the bus the parallel I/O port can be used to provide the required chip select func-
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tion. The serial bus can be disabled via software to reduce power consumption. When the communica

tions processor is in shut-down mode, activity on the data input will not wake up the communications 

processor 100. 

The system clock generator 900 produces all clocks internal to the communications processor 100. 

Dynamic control of clock speeds for reduced power consumption is handled in this block, in concert with 

the reset/mode control block. 

The reset and power mode controller 1200 provided power-on-reset and low voltage detection. Sepa

rate reset input and output pins are provided. In addition to the system reset function, control over the 

entering and exiting the various operation modes of the MSC is located in this block. 

Parallel 110 ports 1500 are provided as general purpose 110 pins which can be programmed as either 

an input or an output. The logic state of each output is programmable by the CPU 200 by setting input! 

output select register 1502 (Figure 16-10). 

Pins programmed as Inputs report both the current status at the pin as well as an indication that the pin 

has changed state from a high to a low since last read. A single maskable interrupt is generated to the 

CPU 200 when any input changes stat from a high to a low. This interrupt is maskable on a bit by bit 

basis. At reset, all pins are inputs and the interrupt is disabled. 

The state of pins programmed as outputs directly reflects the logic level programmed into register 

1504 by the cpu 200. 

Control/Status Registers --Four types of registers are utilized, all of which are mapped into CPU 200 

address space. The first type of register 1502 has a bit for each pin, controlling whether that pin is an 

input or an output. The second type 1504 contains a bit for each pin. These bits present the current state of 

input pins, and set the state of output pins. The thirds type 1506 contains one bit per pin, reporting 

-whelliereacli input haifchangedstate since the register was last read; The last type of register 1508 pro- ---

vides an interrupt enable bit for each pin. The parallel port interrupt is a direct interrupt, fed straight to the 
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CPU 200. 

The system test logic block 100 provides hardware for performing system tests on the telephone. 

These tests are determined baed on the algorithm being supported. 

The role of the communications processor 100 can best be shown with reference to drawing of a typi

cal IS-54 cellular telephone. Figure 16-11 shows the" functions required for an IS-54 telephone operating 

in digital mode (GSM operation is similar to this drawing, with the exception that the speech and signal

ling algorithms are different). The communications processor 100 performs the functions within the 

dashed box. 

Figure 16-20 shows the telephone functions for analog operating mode. In this mode, the communica

tions processor performs the all of the required speech and control functions. It is interesting to note that 

communications processor 100 processes the speech and control signals using the same DSP resources 

used for the digital mode. The AID and DI A converters present in the digital mode DQPSK modem are 

used in the analog mode to convert the analog signal present at the radio to and from a digital format. This 

reduces the duplication of hardware that would otherwise be required for dual-mode operation. 

Figure 16-12 shows the transmit path for digital speech processing using the present invention. This 

figure shows: Analog Gain block 616, AID 606, Decimator 610 -- These blocks amplify the input from 

the microphone(s), digitize it and decimate it. 

Hands-Free Attenuator (HF Attenuator) -- This is a programmable attenuator under the control of the 

. hands-free unit which may be provided, if desired. 

High-Pass Filter (HPF) -- This is a high-pass filter with a 120 Hz cut-off. 

DTMF -- DTMF tones to be transmitted are injected into the signal path here by DTMF block. These 

tones can also be generated by the base station. 

VSELP Encoder -- Thespeech compression algorithm is performed by this block. 

CRC - A CRC is calculated for the 12 most perceptually significant bits of each encoded block of 
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speech. 

Convolutional Encoding -- A 112 convolution code is used to process the 77 class 1 bits of each block 

of speech. 

FACCH Convolutional Encoding --When FACCH data is transmitted instead of speech, it is pro

cessed through a 114 convolution coder. 

SACCH Convolutional Encoding -- SACCH data is processed through a 112 convolution coder. 

CDVCC -- The 12-bit CDVCC is constructed using a 12.8 hamming code and passed to the frame 

fonnatter as a serial bit stream. 

Frame Fonnatter -- The CDVCC, SACCH and speechIFACCH bit streams are arranged into frames 

for transmission along with guard time, ramp time and sync bits. 

DQPSK Modem -- The bit stream from the frame fonnatter is converted to an analog fonnat via the 

DQPSK modem. 

RFIFM Modulator -- This block is the "radio" providing FM modulation and RF functions. 

The receive path for digital speech processing is shown in FigureI6-13. In this figure: 

RFIFM Demodulator -- This block is the radio receiver providing RF and FM Demodulation func

tions. 

Differential Quadrature Phase Shift Keying (DQPSK) Modem -- The output of the radio is converted 

into a digital bit stream by a DQPSK modem. 

Frame de-Fonnatter -- The bit stream from the modem consists of frames. The frame de-fonnatter 

separates each frame into SACCH, CDVCC and speechIFACCH data. Additionally, slot synchronization 

is detected in this block. 

Convolutional Decoder -- The 178 bits of encoded class speech data are processed through a 112 con

volution decoder. 

FACCH Convolutional Decoder -- If present, FACCH data is processed through a 114 convolution 
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decoder. 

SACCH Convolutional Decoder -- SACCH data is processed through a 112 convolution decoder. 

CDVCC -- Hamming encoded (12,8 code) CDVCC is decoded in this block. 

CRC -- A 7 -bit CRC was appended to the 12 most perceptually significant class 1 speech bits before 

they were convolutionally encoded by the base station transmitter. This CRC field is checked by this 

block. 

VSELP Decoder -- The VSELP speech expansion algorithm is processed by this block. 

Mute -- Under certain conditions the voice signal must be muted. Any transients created either enter

ing or leaving mute must meet specified amplitude and duration requirements. 

Call Progress Tones -- Tones such as dial tone and DTMF are generated to provide user feedback. 

These tones are injected into the receive path at this point. Note that the tone generator can also be used to 

produce the transmit side DTMF signals. 

Hands-Free Attenuator -- This is a programmable attenuator under the control of the hands-free unit. 

Interpolator, DI A, LPF, Analog Gain Stage -- The interpolator, DI A and low-pass filter recreate the 

analog audio signal which is amplified by the programmable gain output driver(s). 
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Speech Processing (IS-54) 

Introduction -- The speech coding algorithm belongs to a family of speech coders known as Code 

Excited Linear Predictive (CELP) Coders. Such methods employ codebooks to vector quantize the exci-

tation (residual) signal and use. an analysis-by-synthesis approach to determine which code to use to rep-

resent the excitation. The algorithm used is a variation on CELP called Vector-Sum Excited Linear 

Predictive (VSELP) Coding with employs a codebook structure which is predetermined. Such techniques 

reduce significantly the overall codebook search process. The algorithm requires both encode and 

decode functions which employ traditional LPC synthesis methods shown in Figure 16-7. 

CELP Synthesizer 

Figure 16-14 shows the basic speech CELP synthesis routine. The CELP synthesizer in the decoder 

uses a received code to determine which excitation vector from the codebook to use. The codebook con-

tains 128 vectors each of length 40 samples, these vectors being typically random white gaussian vari-

abies. The vector chosen is scaled by a gain term gamma and applied to a set of linear filters to obtain 40 

samples of reconstructed speech. The filters include a "long-term" or "pitch" filter which inserts periodic-

ity into the excitation. The output of the ."long-term" filter is applied to the "short-term" or "formant" fil-

ter which adds the spectral envelope to the signal. 

"Long-term" Filter -- The long-term filter incorporates a single-tap predictor which attempts to pre-

dict the next output sample from one past sample. The transfer function is given by 

1 
B(z) = 1 _ bz-1 

where B(z) is characterized by the quantities band L. L is called the "lag" and for voiced speech 

would typically be the pitch period or a multiple of it. The parameter b is the "long term" predictor coef-

ficient. 
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"Short-tenn" Filter -- The short-tenn filter incorporates a short-tenn predictor which attempts to pre-

dict the next output sample from the previous 10 output samples. This filter is equivalent to the traditional 

LPC synthesis filter and has a transfer function given by 

1 
A(z) = 1 _ L(a[i]z-i) 

fori = Ito 10 

The "short-tenn" filter is characterized by the a[iJ parameters, which are the direct form filter coeffi-

cients for the all pole "synthesis" filter. 

Parameter Update -- The various parameters (code, gain, filter coefficients) are not all transmitted at 

the same rate to the synthesizer. The "short-tenn parameters are updated at the "frame" rate while the 

"long-term" parameters are updated at the "s~bframe" rate. A frame is composed of 4 subframes where a 

subframe is composed of 40 samples and the sampling rae is 8 KHz. 

Short-term Predictor Parameters -- The short-term predictor parameters are the a[i]'s of the short-term 

filters. These are standard LPC direct from filter coefficients and are generated by an LPC analysis tech-

nique called fast fixed-point covariance lattice algorithm known as FLAT. It has the advantage of lattice 

algorithms including guaranteed filter stability, non-windowed analysis and the ability to quantize the 

reflection coefficients within the recursion. 

Analysis-by-synthesis -- The codebook search procedure consists of trying each codevector as a pos-

sible excitation for the CELP synthesizer which is shown in the Figur eI6-8. The synthesized speech 

s'(n) is compared against the input speech and a difference signal is generated. This difference signal is 

then filtered by a weighting filter, W(z), to generate a weighted error signal. The power in the error sig-

nal, e(n), is computed and the codevector which produces the minimum weighted error power is chosen 

as the codevector for the subframe. 

Figure 16-15 shows the routing for carrying out the CELP codebook search. In Figurel6-15 the fol-

lowing are depicted: 
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Weighting Filter W(z) -- The weighting filter serves to weight the error spectrum based on perceptual 

considerations. It is a function of the speech spectrum and is expressed in terms of a[i] parameters of the 

"short-term" (spectral) filter. 

1 - I.(a[i]z-l ) 

W(z) = 1 _ I.(a[i]fz-i) 

The parameter which defines the amount of error weighting is f, which controls the amount of error to 

be allowed in the formant regions of the speech signal. In this implementation, f=O.8. 

A revised CELP codebook search is shown in Figure 16-16. The weighting filter is moved from both 

input paths to the subtracter giving the equivalent configuration shown in Figur eI6-16. Here H(z) is a 

combination of A(z), the short-term (spectral) filter and W(z) the weighting filter. These filters are com-

bined since the denominator of A(z) is canceled by the numerator of W(z). 

1 
H(z) = ------;-

1 - I.(a[i]fz-i ) 

Gain Optimization -- Instead of determining the gain parameter prior to the codebook search based on 

residual energy, a method which would fix the gain for the entire search, an approach is chosen which 

optimizes the gain for each codevector and yields better results. The codevector which yields the mini-

mum weighted error is chosen and its corresponding optimal gain would be used for. This implies that the 

gain term must be updated at the subframe rate. 

Codevector Construction -- The VSELP coder uses an excitation codebook of 27 codevectors which is 

constructed from 7 basis vectors. Defining vm(n) as the m'th vector and ui(n) as the i'th codevector in the 

codebook, then 

ui(n) = SUM{gim I> vm(n)} 
u/n) = A.{girnXVrn(n)} 

for m = 1 to 7; i = 0 to 127; n = 0-39 
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and gim = + 1 if bit m of codeword i = 1 

= -1 if bit m of codeword i = 0 

In other words. each codevector in the codebook is constructed as a linear combination of the 7 basis . 

vectors. The advantages of the VSELP codebook over random codebooks are 

Extremely efficient codebook search procedure 

Low codebook storage requirement 

More robust to channel errors 

Efficient joint optimization of the codeword and "lag" coefficient b 

Bit Allocation -- The basic data rate of the speech coder is 7950 bits per second. This is coded up to 

13 kilobits per second using forward error correction/detection techniques. There are 159 bits per frame 

(20ms) for the speech coder (before error control) which are allocated as follows: 

Short -term filter coefficients 38 bits/frame 

Frame energy 5 bits/frame 

Lag. L bits/frame 7 bits/subframe 28 

Codewords bits/frame 7+7 bits/subframe 56 

b. gamma 1. gamma2 vector quantizer 8 bits/subframe 32 bits/frame 

Figure 16-17 shows a flow diagram of the steps to be carried out in executing the VSELP encoding 

algorithm according to IS-54. Figure 16-18 shows the decoding VSELP algorithm of IS-54. A detailed 

explanation of each of the steps of Figure16-17 and Figurel6-18 can be found in the EIAfITA Project 

Number 2215 publication "Dual-Mode Mobile Station-Base Station Compatibility Standard IS-54" pub

lished in December 1989 by he Electronic Industries Association. which is incorporated herein by refer-

ence. 

Figure 16-19a demonstrates the timing of partitioning of the arithmetic steps required to carry out the 

steps of Figure 16-17 and Figure 16-18. Table 1 below: 
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Table 16·1 

No Function 
No. of Arithmetic Framel 

Comments 
Operations Subframe 

EncoderE DSP CPU F/SF 

DecoderD 

E(D High Pass Filter 1440 F 160 samples 

E® Autocorrelation & Windowing 1870+ 55 F 

E(D Covariance Lattice Algorithm 1475 10 F 

E@) Convert rj to llj 45 SF 

E0) Interpolate llj 20* SF *subframes 1,2,3 only 

E@) Recover to rj • stability 90* 9 SF *subframes I, 2, 3 only 

E(2) Calculate Long-term Predictor Lag 11556 126 SF 

E® Zero-state Response of each code- 2450 F Codebook 1 search 
vector to H(Z) 

E® Interpolate zero-state response 280* SF *subframes 1,2,3 only 

E@ Orthogonalise codevectors 600 1 SF 

E@ Calculate Rm, Dmj 280+ 1120 SF 

E@ Calculate Ci, Gi, Cu, Gu 616 SF 

E@ Calculate Ci2 Gbest & Cbes? Gi 192 SF 

E@ Compare values 64 SF End of codebook 1 
search 

E®' as ® for codebook 2 450 F Codebook 2 search 

E®' as ® fo: codebook 2 280 SF *subframes I, 2, 3 only 

E@' Orthogonalise codebooks 1 and 2 6320 8 SF 

E@' as @r codebook 2 280+ 1120 SF 

E@' as @r codebook 2 61 SF 

E@' as @r codebook 2 192 SF 

E@' as 14 for codebook 2 64 SF End of codebook 2 
search 

E@ Calculate Rec, Rx(i) 240+40 SF Gain Quantisation 
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No Function 
No. of Arithmetic Frame/ 

Comments 
Operations Subframe 

EncoderE . DSP CPU F/SF 

DecoderD 

EO}' Calculate RS, Rpc 22 + 120 SF 

E@ Calculate a, b, c, d, e, f, g, h, i 21 3 SF 

E@ 

E@ Gain error minimisation 2304 SF 

E@ Compare gain error values 255 SF 

E@ Calculate B9 Y 14 Y 24 3 SF 

E@ Generate selected codevectors 560 SF 

E@ Generate combined excitation 120 SF 

E@: Update weighted systnesis Filter 400 SF 

E@ Update long-term Filter states SF Address pointer update 

DQ) Convert rj to a; 45 SF 

DQ) Autocorrelate Postfilter impulse 55+55+10 F Subframe 4 only, item 
resp. interpolate 

DQ) Binominal Windowing of Autocorr. 10 F 

DC£) Levinson Recursion (n) 110 10 F 

D(D Interpolate a; 20* SF *subframes 1,2,3 only 

D@ Convert ro rj - stability 90* 9 SF *subframes 1,2,3 only 

D<Z) Calculate Rq(o) Frame energy SF 

D® Interpolate Frame energy 1 SF 

D® Calculate RS 22 SF 

D@ Transform GS, PO, Pq to Pq Yl4 40+9 3 SF 
Y24 

D@ Generate combined excitation 120 560 SF 

D@ Update systhesis filter A(z) 400 SF 

D@ Update long-term filter states SF Address pointer update 
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No Function 

EncoderE 

DecoderD 

D<3 Update spectral post filter 

D@ Signal scaling 

No. of Arithmetic Frame! 

840 

122 

Operations Subframe 

DSP CPU 

2 

SF 

SF 

F!SF 

Comments 

shows the number of arithmetic operations needed to execute these' various steps of Figure 16-17 and 

Figure 16-18. The circled numerals in Table 1 correspond to the circled num3erals in F igure16-19a and 

in Figure 16-17 and Figure 16-18. In each case a numeral in conjunction with the letter E indicates an 

encoding operation while a number in conjunction with a D indicates a decode operation.Also, some pro-

cessing steps are performed at frame rates'imd others are performed at subframe rates. The digital speech 

data according to IS-54 is divided into 160 sample frames 20 ms long. It cab therefore be seen that 

Figure 16-19a represents one frame period of 20 ms with each line in Figure 16-19a representing one 

subframe period of 5 ms. Operations such as the long term prediction computations are performed once 

for each frame. Short term analyses, onthe other had, are carried out once for each subframe. Table 1 

makes this distrinction by showing a "F" for frame rate operations and an "SF" for subframe operations. 

Figure 16-19a indicates this difference by placing a numeral next to the D or E for subframe rate opera-

tions. for example, "El" means the operaton is being performed for the first subframe, "E2" means the 

operation is being performed for the second subframe, etc. 

Figure 16-19a is a time graph divided into four time lines of 5 ms each. Points or lines above the main 

time line indicate operation of the CPU and points or lines below the main time line indicate operation of 

the DSP or MAC engine. Cross harching indicates simulatenous operations of the CPU and DSP. The 

operations are partitioned here so that mUltiply or multiple and accumulate operations are performed by 

the DSP which is adaped for such calculations due to its hardware mUltipliers, hardware do loops, etc. 

Other operations such as additions, subtractions, divides, square roots, exclusive ORx, look-up tables and 
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compares are perfonned by the CPU. The execution of these partitioned operations is scheduled to take 

advantage of as much simultaneous operation of the CPU and DSP as is feasible in order to reduce the 

total time required to execute the entire procedure. It will be understood by reference to the figures that 

this means some of the calculations are perfonned before they are actually required. 

The partiitioning and scheduling demonstrated by Figur e 16-19a permit the VSELPalgorithm to be 

perfonned effectively and efficiently using conventional clock rates and yet leaves ample time dor the 

CPU to process user programmed routines. 

The communications processor 100 can also be used to handle convention alalog cellular communi

cations. The IS-54 is a dual mode standard providing both digital operation and backward compatibility 

with the existing analog IS-3 standard. As a result, two complete control and voi8ce mechanisms must be 

supported. 

The approach chosen takes advantage of the high bandwidth AID and D/ A resources required in the 

digital modem (digital voice operation) to convert the analog mode signal into digital fonn. ONce the 

analog signals have been digitized, the DSP resources required indigitalmode can be used to process the 

speech (emphasis/de-emphasis, compression/expansion, etc.) and control (SAT, FSK modem, etc). The 

major open architectural decision remaining is the partitoning of these tasks between the DSP engine in 

the MSC and the DSP engine in the digital modem. While the MSC has the horsepower to perfonn the 

required functions using the digital modem;s DSP reduces the data rate required between the communica

tion processor 100 and the digital modem -- this is important since this serial channel is carried in the 

cable between the handset and the radio box in applications where the radio is not built into the handset. 
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Call Set-Up/Analog Conversation 

Since the call set-p functions are essentially the same in IS-54 as those used in IS-3 (same signalling 

. channel fonnat), we can use the same basic architecture for both call set-up and analog conversation. 

The transmit signal flow is shown in Figure 16-20 and the receive signal flow is shown in Figure 16-

21 for analog operation. 

Figure 16-21 shows the following: 

Analog Gain Block, ND, Decimators -- These blocks amplify the input from the microphone(s), dig

itize it and decimate it. 

Hands-Free Attenuator -- This is a programmable attenuator under the control of the hands-free unit. 

Compressor -- This block perfonns a square-root function on the imput data. Specific attach and 

decay times must be met wien responding to steps in input amplitude. 

Preemphasis -- The preemphasis block provides a +6 dB/octaave (20 dB/decade) slope between 300 

and 3000Hz. 

Bandpass Filter -- This is a standard 300-3400 Hz bandpass filter. 

Limiter -- Thelimiter perfonns a clipping function to limit the maximum amplitude into the modula

tor, thus limiting the maximum frequency deviation. 

Low-Pass Filterllnterpolator -- This filter guarantees that any high frequency compnents generated by 

the clipping action of the limiter do not exceed the specified limits. 

SAT Tone Level Adjustment - The level of the received SAT tone is adjusted to produce the desired 

frequency deviation. The tone must be phase-locked to the incoming SAT tone. The SAT tone is added 

tothe voice signal. 

D1MF -- D1MF tones to be transmitted are injected into the signal path here. 

Signaling Tone (ST) -- The required 10 kHz (nominal) signalling tone is injected here. 
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Manchester Encoder and Scaler -- The logic high and low signals are scaled to produce the required 

iiee±8 kHz frequency deviation of the carrier. This scaling is digitally with the resulting signal injected 

prior to the D/ A converter. 

D/A and Low-Pass Filter -- D/A converter and reconstruction filter. Incxludes interpolation. 

RFfFM Modulator -- This block is the "radio" providing FM modulation and RF functions. 

Figure 16-22 shows the following: 

RFfFM Demodulator -- This block is the radio receiver providing RF and FM Demodulation func

tions. 

AID Converter -- Analog to digital converter includes decimation. 

10kHz Bandpass Filter -- This filter detects the presence of a 10 kbps Manchester encoded binary sig

nal (wideband signalling data). This filter is followed by a block that performs detection of bit and word 

synchronization. Presence of the signal precluedes voice or SAT and vice versa. 

6kHz Bandpass Filter -- Bandpass filter centered at 600 Hz to separate out and detect the presence of 

SAT tones. 

SAT Detector -- This block discriminates between three SAT tones generating an indication of the 

presence, or the absence of, any SAT tone within 250 ms. This detection must be performed at leasat once 

every 250 ms. The recovered SAT iss sent to the transmitter where it is phase-locked and retransmitted. 

4kHz Low-Pass FilterfDecimator -- Stqandard voice band limiting filter. 

Deemphasis -- This block is a network having a -6 dB/octave ( -20 dB/decade) slper between 300 and 

3000Hz. 

Expander -- This block computes the square of the incoming data. Specific attach and decay times 

must be met when responding to steps in input amplitude. 

Mute -- Under certain conditions the voice signal must be muted. any transients crated either entering 

or leaving mute must meet specific amplitude and duration requirements. 
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Call Progress Tones -- Tones such as dial tone and DTMF are generated to provide user feedback. 

These tones are injected into the receive path at this point. Note that the tone generatror can Iso be used to 

produce the transmit side DTMF signals. 

Hands-Free Attenuator -- This is a programmable attenuator under the control of th hands-free unit. 

Interpolator, DI A, Analog Gain Stage -- The interpolator and DI A recreate the analog ausio signal 

which is amplified by the progranunable gain output driver(s). these functions are described in more 

detail in the Audio Interface hardware description section. 

Note: The received voicepath is inactive when wideband signalling data is being received. 

Once a call has been estaablished, ethe mobile station can be directed to use a digital channel. 

The foregoing description is intended to describe the present invention but not to limit it. Clearly 

numerous additions, substitutions and other modifications can be made to the invention without departing 

from the scope thereof as set forth in the appended claims. 
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Discussion and Conclusion 

This thesis is essentially a representation of the author's experiences in academia and industry. The 

author was very fortunate to have had the opportunity and guidance from his supervisor who instilled a 

certain discipline in his students to pay constant attention to detail and to the accuracy of data gathered 

from computer simulations. The validity of the data was verified against the anticipated outcome. Basi

cally. the model and the method for developing the model was always under scrutiny. This discipline was 

very successfully adopted in the author's industrial environment and is still being followed presently in 

various projects undertaken. 

The work at Loughborough was directed toward developing an effective and manufacturable detec

tion process for distorted digital data transmitted over time varying channels or channels that exhibit mul

tipath characteristics. In order to achieve the desired model of the system and implementation. a 

considerable number of different detection processes were developed and analyzed for complexity. mem

ory utilization. clock speed. and power consumption. The thesis includes three illustrations of detection 

processes and the final model for the reader. A Fortran-based computer simulation model is also attached 

as an appendix. 

The computer simulation modelling process goes through a number of phases. The most critical phase 

is phase one. where one has to create accurate mathematical representations of the various elements of the 

transmission chain. for instance signal encoding. shaping. propagation channel. matched filtering. and 

signal detection. An accurate representation of additive noise is essential for realistic bit-error-rate analy

sis.Transmitted data must be uniformly distributed and have the attributes of equal likelihood to span 

over all the possible signal values required for transmission. 

The next phase entails conversion of the mathematical representation to a computer model in a 

high-level language such as Fortran. Initially. infinite precision is used to ensure the accuracy of the com

puter model in relation to the mathematical representation. This is very much an ideal-world scenario and 
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,-----------------

allows one to create a "true" resemblance of the theoretical model. We were on a mission to develop a 

system which could be implemented cheaply using off-the-shelf, fixed-point digital signal processors and 

central processing units. Therefore, the model was further modified to run in a fixed-point mode. The 

results generated were compared with the theoretical model, and over a number of iterations the differ

ence was minimized. Obviously factors such as the dynamic range of the signal input at the receiver plays 

a significant part in determining the bit width. DSPs and CPUs generally do not have onboard functions 

such as SIN, COS, TAN, etc. These functions are compute intensive; therefore, creative methods were 

developed to emulate such functions efficiently in the available DSPs or CPU s. 
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Patent Number 

4,994,993 

4,994,801 

4,931,973 

4,839,842 

4,800,517 

16,219,642 

6,218,931 

6,212,551 

6,115,762 

6,108,390 

6,085,314 

6,070,136 
recognition 

6,067,515 

6,044,343 

Appendix 1 

Patents 

Title 

System for detecting and correcting errors generated by arithmetic image moved 
logic units 

Apparatus adaptable for use in effecting communications between an image 
moved between am analog device and a digital device 

Method of generating updated transversal filter coefficients 

Digital tone detection and generation 

Word-sliced signal processor 

Quantization using frequency and mean compensated frequency input data for 
robust image moved speech recognition 

Home-appliance network with nodes identified by direct-sequence spreading 
codes 

Digitized audio data attachment to text message for electronic mail 

PC wireless communications utilizing an embedded antenna 
comprising a plurality of image moved radiating and receiving elements 
responsive to steering circuitry to form a direct antenna beam 

Method of and apparatus for encoding of output symbol size 

Central processing unit including APX and DSP cores and including selectable 
APX and DSP execution modes 

Matrix quantization with vector quantization error compensation for robust speech 

Split matrix quantization with split vector quantization error compensation and 
selective enhanced processing for robust speech recognition 

Adaptive speech recognition with selective input data to a speech classifier 
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6,032,247 

6,032, II 6 

6,026,130 

6,021,133 

6,014,719 

6,009,391 

6,008,856 

6,003,003 

5,991,725 

5,943,493 

5,890,187 

5,794,068 

5,790,824 

5,784,640 

5,781,792 

Central processing unit including APX and DSP cores which receives and pro
cesses APX and DSP instructions 

Distance measure in a speech recognition system for speech recognition using fre
quency shifting factors to compensate for input signal frequency shifts 

System and method for estimating a set of parameters for a transmission channel in 
a communication system 

Communication processing method using a buffer array as a virtually circular 
buffer 

Modulated bus computer system having filters with different frequency 
coverages for devices on the bus 

Line spectral frequencies and energy features in a robust signal recognition system 

Method of using an audio transmission signal to transmit video data image moved 

Speech recognition system having a quantizer using a single robust codebook 
designed at multiple signal to noise ratios 

System and method for enhanced speech quality in voice storage and retrieval sys
tems 

Retargetable VUW computer architecture and method of executing a program cor
responding to the architecture 

Storage device utilizing a motion control circuit having an integrated digital image 
moved signal processing and central processing unit 

CPU with DSP having function preprocessor that converts instruction sequences 
intended to perform DSP function into DSP function identifier 

Central processing unit including a DSP function preprocessor which scans 
instruction sequences for DSP functions 

CPU with DSP function preprocessor having look-up table for translating instruc-
tion sequences intended to perform DSP function into DSP macros ' 

CPU with DSP having decoder that detects and converts instruction sequences 
intended to perform DSP function into DSP function identifier 

310 



5.771.394 

5.771.393 

5.768.613 

5.754.878 

5.745.648 

5.630.165 

5.615.139 

5.507.037 

5,459.750 

5,452.242 

5.424.970 

5.379.388 

5.369.791 

5.347,480 

5.343,414 

. 5.339.251 ( 

5.299.233 

5.291,430 

Apparatus having signal processors for providing respective signals to 
master processor to notify that newly written data can be obtained from one or 
more memories 

Servo loop control apparatus having master processor to control the apparatus and 
second processor dedicated to specific preprogrammed servo loop 
control tasks 

Computing apparatus configured for partitioned processing 

CPU with DSP function preprocessor having pattern recognition detector that uses 
table for translating instruction sequences intended to perform DSP function into 

DSPmacros 

Apparatus and method for analyzing speech signals to determine 
parameters expressive of characteristics of the speech signals 

Servo system controlled by master and second processors through memory being 
accessed for read and write by processors in· separate portions respectively 

Apparatus and method for synthesizing a sinusoidal signal 

Apparatus and method for discriminating signal noise from saturated signals and 
from high amplitude signals 

Apparatus and method for discriminating and suppressing noise within an incom
ing signal 

Method and apparatus for multiplying a plurality of numbers 

Method and apparatus for multiplying a plurality of N numbers 

Digital signal processing apparatus with sequencer designating program routines 

Apparatus and method for discriminating and suppressing noise within an incom
ing signal 

Digital signal processing apparatus 

Apparatus for adaptively tuning to a received periodic signal 

Apparatus for adaptively tuning to a received periodic signal 

Apparatus and method for attenuating a received signal in response to presence of 
noise 

Method and apparatus for multiplying a plurality of numbers 
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5,204,642 

5,200,912 

5,189,381 

5,136,537 

5,043,932 

5,003,309 

4,999,626 

4,996,528 

Frequency controlled recursive oscillator having sinusoidal output 

Apparatus for providing power to selected portions of a mUltiplying device 

Apparatus for generating a sinusoidal output signal 

Method and apparatus for determining the product of two numbers 

Apparatus having modular interpolation architecture 

Apparatus having shared architecture for analog-to-digital and for 
digital-to-analog signal conversion 

Apparatus having a modular decimation architecture 

Apparatus having shared modular architecture for decimation and interpolation 
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Appendix 2 

Computer Simulation Program 
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