
13. LL.::J:.D No.' c. -....".:> r--. S'7 './ _!..:> o;.J .1 U "'/ _ 7 0

~.. LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TiTlE

_____ -.: ___ ~_O_I)~~_~ ~~/_~ _________________ _

---------------------------- -- --- ----- - -------
ACCESSION/COPY NO.

-VOL~NO~----'-- -ClL~~t~-U:-~----------------- ~
- .

- f DEC 198

SOME ASPEX:TS OF THE EFFICIENT USE OF

MULTIPROCESSOR CONTROL SYSTEMS

by

Michael Charles Woodward

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of Doctor of.Philosophy of the
Loughborough University of Technology, January, 1981

. Supervisor: I. A •. Newman,PhD.
Department of Computer Studies.

-.
by Michael Charles Woodward; 1981 ~- ..

> •

L<»Jghbor.u!jh Unlven1ty

.f T ~b<\.lc,y U~r.Y .'. -:1 3\
"", ... -
;.It.SS

t =~c. \'!:J?.flOi/o'l-
I

DECLARATION

I declare that the following thesis is a record of research

work carried out by me, and that the thesis is of my own

composition. I also certify that neither. this. thesis nor· the

original work contained therein has been submitted to this or

any other institution for a degree.

M.C.WooDWARD

; .:.

';,."" ... "
\" ;.:.

" '. ",.., ,,"'"

:""~"'''.'' . ", -: .11: • ,
I . '" .• ;

~ >.-•• ,',,, /, ('

..
:t-•• '_. " .. "'~"'"

' •.•••. >, ,;:'.:

ACKNOWLEIXiENENTS

The author would like-to_express his thanks to all those who have

assisted with the research reported in this thesis: to

Dr. I. A. Newman for his direction-and encouragement; to.

Professor D. J. Evans for his interest and to many colieagues for

times of discussion. Thanks are also expressed to Mrs. S. Mercer

for her dextrous typing. Thanks must also be given-to the Science

Research Council for-the provision of a Research Studentship.

Finally, many thanks must go to the author's parents for their

concern and encouragement during the years of research.

CONTENTS

CHAPl'ER 1: INTRODUCTION

1.1. Introduction

1.2. Efficiency Considerations

1.3. Motivation for Research

1 .3.1. Hardware Level .

1.3.2.Systems Software

1.3.3.User Software

1.4. Proposed Areas of Investigation

1.5. Framework of Thesis

CHAPl'ER 2: MULTIPROCESSOR HARDWARE

2

4

6
6

7
8

9
10

2.1. Introduction 13

2.2. Multiprocessor Organisation 15

2.3. Commercial Multiprocessors 21

2.4. Multiprocessors in Research 23

2.5. Multiprocessor Systems and Reliability 34
2.6. Memory Contention 36

CHAPl'ER 3: SOFTWARE CONSIDERATIONS IN MULTIPROCESSORS

3.1. Introduction

3.2. Operating System Organisation

3.3. Synchronisation

3.4. Software Reliability

3.5. Parallel Processing

CHAPl'ER4: THE INVESTIGATION OF A MODEL OF A
. MULTIPROCESSOR

4.1. Introduction

4.2. Model of a Multiprocessor

4.3. Derivation of Computing Power

4.4. Round-Robin Servicing

41

43

46

51

53

57

58

63

67

4.5. Priority Servicing 69

4.6. Constraints for Effective Configurations 74

4.7. Analysis of Performance. 76

4.8. Refinement of Servicing.Policy 80

4.9. Application of Formulae 87· .

CHAPTER 5: THE ABSTRACT RESOURCE RING - A
SYNCHRONISING TOOL

5.1. Introduction

.5.2. The Abstract Resource Ring

5.3. Multiple Rings

. 5.4. Temporary Resources

5.5. A Comparison of. Synchronising Tools

5.6. Multiple Users of a Resource

CHAPTER 6: THE ABSTRACT RESOURCE RING AND RELIABILITY

6.1. Introduction

6.2. Classification of Failures

6.3. Initial Death Detection

6.4. Rigorous Death Detection

6.5. Failure Within ARR Routines

6.5.1. GETRES Routine

6.5.2~ PUTRES Routine

6.5.3. Recovery Procedure

6.6. Addition and Replacement of Processors

6.7. Reliable Update

6.8. Application of Reliable Update to .the ARR
6.9. Failures Due to Other Errors

6.10.Self.Stabilising Techniques

CHAPTER 7: PARALLEL PROCESSING AND THE APPLICATION OF
THE ABSTRACT RESOURCE RING

7.1. Introduction

7.2. System Configuration

7.3. Parallel Processing System Design

94
96

104

108

112

125

130

131

133

139

147

147

147

149

151

153

159
160

.162

167

168

170

I

7.4~ ARR Implementation

7 ~5. Reliability and Recovery Procedures

7.6. Performances

173
178.
181

CHAPTER 8: GARBAGE COLLECTION - A MULTIPROCESSOR APPLICATION

8.1. Introduction

8.2. Definition of Terminology

8.3. Lamport's Algorithm

8.4. Chaining Algorithm

8.5. Comparison of Marking Algorithms

CHAPTER 9: CONCLUSIONS

188
191
192
194

200

9.1. Summary 206
9.2. Areas for Further Research 209

REFERENCES: 211

APPENDIX 1: AN IMPLEMENTATION OF THE ABSTRACT
RESOURCE RING 221

APPENDIX 2: AN IMPLEMENTATION OF THE RELIABLE UPDATE 251

CHAPTER 1

INTRODUCTION

I

I

1.1. Introduction

Computer technology, particularly at the circuit level, is fast

approaching its physical limitations. As future needs for greater

power from computing systems grows, increases in cfrcuit switching

speed (and thus instruction speed) will be unable to match these

requirements.

Greater power can also be obtained by incorporating several processing

units into a single system. This ability to increase the performance

of a system by the addition of processing units is one of the major

advantages of multiprocessor systems. Four major characteristics of

multiprocessor systems have been identified (,28) which demonstrate

their advantage. These are:-

Throughput

Flexibili ty'

Availability

Reliability

The additional throughput obtained from a multiprocessor has been

mentioned above.. This increase in the power of the system can be

obtained in a modular fashion with extra processors being added as

greater processing needs arise. The addition of extra processors

also has (in general) the desirable advantage of giving a smoother

cost - performance curve (63'). Flexibility is obtained from the

- 2 -

increased ability to construct a system matching the user 'requirements

at a given time without placing restrictions upon future expansion.

With multiprocessor systems; the potential also exists of making

greater use of the resources within the system.

Availability and reliability are inter-related. Increased availability

is achieved, in a well designed system, by ensuring that processing

capabilities can be provided to the user even if one (or more) of the

processing units has failed. The service provided, however, will

probably be degraded due to the reduction in processing capacity.

Increased reliability is obtained by the ability of the processing

units to compensate for the failure of one of their number. This

recovery may involve complex software checks and a consequent decrease

in available power even when all the units are functioning.

-3 -

1.2. Efficiency Considerations

The use of multiprocessor systems potentially provides many

advantages over single processor systems. However, caution must be

expressed as regards the potential of multiprocessor systems. These

two aspects are summed up in two well known proverbs:

"Many hands make light work"

"Too many cooks spoil the broth".

A certain overhead has to be faced in the construction of multiprocessor

systems. At the hardware level, this overhead is manifest in the cost

of interconnection between the processors and memory of the system.

This may impose delays within the hardware not experienced by a single

processor system. Also, the interaction between processors places an

overhead upon realisable processing power. In practical realisations

of multiprocessor systems, these overheads must be considered, and it

is known t!lat for certain organisation, a limit exists upon the number

of processors that may be usefully added to a system (35).

At the software level, similar problems of interaction between the

processors arise. If they are actually to co-operate then it is

necessary for the processors to synchronise. This may be due to

operating system functions or because of interaction between tasks'

running on different processors. The synchronising overheads can prove

to.be unnecessarily large if there .is a PO?r.choice of synchronising

tool.

- 4 -

The interactions between tasks can also impose great inefficiencies.

A poorly designed program may impose many more synchronisations upon

various tasks than a well designed solution to the same problem.

Poor' design may, therefore, impose extra costs upon the processing

capacity of the system as a whole.

The meaning of the term efficiency is, of course,contentious and a

definition of the concept, in the context of multiprocessor systems,

is needed to ,enable an effective discussion of the "efficiency" of

such systems to be undertaken. Efficiency may be expressed as the

amount of useful work which can be accomplished in,relation to the

potential capacity of the components. ' At the hardware level, the

potential capacity of a multiprocessor system could be expressed as the

sum,of the power of the components in terms of work which could be

accomplished. The realisable power is reduced by the overheads

associated with the interconnection of and interaction between the

processors. This available power would be further reduced at the

software level by the costs of intercommunication and synchronisation.

- 5 -

1.3. Motivation for Research'

The problems associated with multiprocessor systems (indeed with any

computer system) may be split into three broad classes:-

i) Hardware

ii) Systems Software

iii) User at Application Software.

If an overall system is to be efficient, that is ,make good use of the

total system resources, all three areas must be considered and given

due merit. The power of a system with sophisticated hardware and a

well designed operating system may be wasted if badly designed or

inappropriate applications are executed on it.

1.3.1. Hardware Level

It is, perhaps, at this level that consideration should first be given

to efficiency as, no matter how well designed, software run on poor

hardware cannot make it operate faster than is feasible as the

maximum power of the system is inevitably limited by the hardware.

For multiprocessors with shared memory, one of the major areas of

consideration must be that of memory contention. The degree of

memory contention is dependent upon the number of processors accessing

the shared memory and the use to Which it is put. As will be noted

in Chapter Two, some,authors have developed complex models to study

- 6 -

, I

the behaviour of multiprocessor systems, yet these are often

specialised, being applicable to only a specific class of hardware.

1.3.2. Systems Software

Having designed and built (or purchased) a multiprocessor system,

several possibilities lie before the user in the organisation of the

software on the machines. Whatever regime is chosen for the multi­

processor, be it· master/slave, an anonymous treatment of the processors

or a compromise, questions will arise as regards synchronisation·

between the processors and also as regards recovery on the failure of

one (or more) of the processors.

One of the major advantages of multiprocessor systems is their ability

to provide processing capabilities even when one or more of the

processors have failed. If use is to be made of this ability to

recover; then some forms of hardware synchronisation may be unacceptable •

... As will be seen (Chapter Three), if one processor has lowered a

semaphore and all other processors are waiting and the running processor

dies then the system may permanently hang waiting for the semaphore

to be raised.

Of the software .mechanisms. that have been developed, most (e.g. critical

regions, readers and writers) require a lower level of synchronisation

upon which they may be based. Some algorithms have been developed

whereby synchronisation may be achieved by software, but rarely are

these algorithms considered in terms of reliability or error recovery.

- 7 -

The algorithms also tend to become less efficient'as the load

placed upon them increases.

1.3.3. User Software

Having obtained an efficient system, the problems at the user level

then become apparent. On single processor systems, the bad

construction of programs can yield vast inefficiencies in machine

usage. Some design methodologies are being popularised nowadays (20,44),

and these have been shown to provide improvements in efficiency over

many level.s, including those of systems analysis and programming.

With multiprocessor systems, the potential for resource wasting

increases with the possibility of processes vying for a resource instead

of co-operating over its use.

When designing multiprocess (or parallel) programs, care and foresight

must be used to develop programs which suitably represent the

parallelism of the problem. The techniques that should be used in the

detection and exploitation (either human or automatic) of a problem

are not yet fully understood, though some progress is being made in

this direction (64).

- 8 -

1.4. Proposed Areas of Investigation

There are, therefore, an extremely large number of topics relating

to multiprocessor systems which would merit investigation and,

indeed, there is much research work currently being undertaken in

this area. Since the overall efficiency of a multiprocessor system

relies ·on the efficiency of' each of the three areas mentioned above,

consideration has been given to a topic from each, though greater·

emphasis is placed upon the second area.

It was felt, from the above discussion, that,at the hardware level,

there was scope for a general model which would be of use in the early

stages of a system design exercise and would provide some bounds for

the maximum realisable power of a multiprocessor system. The model

should take into account the type of interconnection and the type of

use to be made of the system.

At the level of systems software, it was decided to investigate the

subject of synchronisation between the processors. As was noted

above, certain disadvantages exist with the algorithms found in the

literature, and it was hoped that a reappraisal of the problem could

produce a solution with different operational characteristics.

Finally, a particular user application was chosen for investigation

to highlight the difficulties of designing user software for a

multiprocessor system.

- 9 -

1.5. Framework of Thesis

Chapter Two discusses the. possible organisations of multiprocessor

systems and outlines the problems faced at the hardware level with

each organisation. Chapter Three deals with the corresponding

software organisations and problems. The difficulties of synchronisation

between processors are discussed and the existing, published, solutions

are described. Some aspects of the current state of research into

reliability are also described in the chapter.

In Chapter Four, a model of a multiprocessor system is introduced.

This model is then used to develop formulae for bounds which may be

placed upon the memory contention experienced by multiprocessor

computer systems. Results obtained from these are compared with

timings from actual hardware.

Chapter Five deals' with the development of a software synchronisation

tool (the Abstract Resource Ring or ARR). Two distinct implementations

of the basic technique are introduced. The tool is compared with

other algorithms found in the literature. In Chapter Six, the ARR is

developed with specific reference to reliability and error recovery

within multiprocessor systems. In Chapter Seven, the role of the ARR

in a parallel processing system is described, including discussion of

its use in the realm of reliability.

Chapter Eight, by way of an example, shows the difficulties of writing

';'10 -

"efficient" software for multiprocessor systems.

Finally, the thesis is drawn to a close by bringing together some

conclusions and pointing to areas where further research might be

pursued~

•

-11 -

CHAPTER 2

MULTIPROCESSOR HARDWARE

I

2.1. Introduction ~

In 1966 Flynn (31) introduced a classification for digital computers,

which is in common use today. By observing parallelism in both the

instruction stream'and the data stream for computers, four classes

were identified:-

1) Single Instruction Single Data Stream (SISD)

This is the standard serial uni-processor system

2) Single Instruction Multiple Data Stream (SIMD)

In this classification, a single instruction is executed by

several arithmetic units with different data. This yields the

array or vector processors

3) Multiple Instruction Single Data Stream (MISD)

This class of hardware ,would involve a single data item being

operated upon by several different, instructions. A realistic

interpretation of a processor of this class is difficult, although

it may include a Dataflow architecture.

4) Multiple Instruction Multiple Data Stream (MIMD)

In this class of hardware· lie systems of processors which may

Operate independently upon different sets of data with different'

programs yet may also co-operate upon.a computation if required.

- 13 -

The latter classification may be subdivided into loosely coupled and

tightly coupled multiprocessor systems. Most network systems and

distributed' computing applications (e .g. (69» would be examples

of loosely coupled MIMD computers. The processors have no shared

storage medium; being connected by relatively low speed communication

lines only. With closely-coupled multiprocessors, however, the

individual processors have access to a shared or common storage

medium and may communicate or co-operate through this medium. Usually

this storage medium is core (or a similar high speed random access

medium), though shared disc or drum systems equally fall into this

classification, as would independent machines with separate stores

and a high speed memory to memory link.

This thesis is, however, concerned with the shared memory version of

the latter group of machines (i.e. closely coupled MIMD systems).

In the following section, various hardware organisations for this type of

system are described ... Some special purpose systems which have been

developed by various research teams are then discussed. The chapter

closes by describing two further areas of research in multiprocessor

hardware.

- 1Z. -

2.2. Multiprocessor Organisation

The basic model of a multiprocessor system is of a number of processor

units connected to memory and input~outputdevices. It is the manner

of this connection which gives rise to the different organisations.

Enslow (28) has "identified three fundamentally different system

organisations. used in multiprocessors:

• Time shared or common bus

• Crossbar switch matrix

• Multiport memories

••• the entire scope of interconnection schemes is much larger and

certainly more complex ••••• these categories nonetheless form a

useful base for a discussion of the organisation of multiprocessor

systems •••• 1I

a) Time. shared or common bus (Figure 2.2.1)

With this organisation, all the system components (processors, memory

modules and I/O devices) are connected by a common communication path.

(the bus)~ The operation of this system is in concept simple, though

in practice it may be quite complex. A unit wishing to communicate

with another must first ascertain that the. bus is free. It then places

on the bus the address of the requested unit together with any other

information required in the communication. Units which may potentially

receive communication must inspect the bus for their address being

- 15 -

I/O MEMORY J PROCESSOR I PROCESSOR

I 1
r . 1 1

I/O
PROCESSOR MEMORY PROCESSOR

a) Time-shared/Common Bus Organisation - Single Bus

I/O MEMORY' PROCESSOR PROCESSOR
.

.

.I/o I I MEMORY I PROCESSOR PROCESSOR

b) Time-shared/common Bus Organisation - Dual Bus

Figure 2.2.1.

- 16 -

transmitted. The necessary synchronisation over the use of the

bus may ,be handled by an interface between each component and the

bus in co-operation with a single arbitration unit for the bus.

With this organisation, however, as the number of components increases,

the load placed upon the bus increases, and the bus may become a

bottleneck. Also,' if the bus fails, then the system as a whole is

unusable. To overcome both these problems, the bus may be duplicated,

though this greatly increases complexity.

b) Crossbar,switch matrix (Figure 2.2.2.)

With this organisation, the number of connections between processors

and memories is increased such that a different access path exists

from each processor to each of the memory modules. The important

characteristic of these systems is that transfers to or from each

memory module can potentially be made simultaneously. Whilst this

design is not complex, much' Circuitry is required to cope with the

potential contention at each interconnection in the crossbar. An

example given in the literature (29) gives, for a twenty-four

32-bit processor system with 32 memory modules, the number of

circuits required in the crossbar switch as two to three times the

number required for an IBM System 360 Model 75.

Expansion of this organisation is, however, conceptually straight-

- 17-

Mo M1 ••• MN
.

I/01

Po

.

!/°2

P1
.

•
•
•

•
•
•

I/Ol

....

Pm

Figure 2.2.2. Cross-bar Switch Organisation

- 18 -

forward requiring only the size of the switch to be increased.

c) Multiport Memories (Fig. 2.2.3)

If the logic controlling switching and arbitration, which is

distributed among the interconnections in the crossbar, is concentrated

at the interfaces to the memory modules then multiport memory systems

are obtained. Often, preassigned priorities are given to the parts

.to reduce the contentions which may arise allowing the system to be

configured as required at each installation. One advantage with

multiport memory systems is the ease with which private memories

(that is memories accessible to only one processor) may be given to

each processor. (Figure 2.2.3b) This has advantages with respect to

security against unauthorised access of data, but has. disadvantages

with respect to reliability. Since only the one processor may access

data in its private memory, if that processor fails,access cannot

be made to the data and it is "lost".

Another disadvantage with multiport memories is due to the fixed

number of ports (which is generally small). This restricts the number

of processors that can be connected to a single memory module and

. thus limits the maximum size of the system.

Unfortunately, although this classification is intended to provide

a general description of the hardware; many practical systems cannot be

neatly assigned to one or other of the categories.

- 19 -

.

Po P,

Mo M, M2
.

M}
-

.. ..
.

I/Oo I/O,

a) Multiport Memory - No Private Memory

Po P,

1

I
Mo M, M2 . M}

I
.

T

~ I/o,

b) Multiport Memory - With Private Memory

Figure2.2.}. Multiport Memory Organisation

- 20-

2.3. Commercial Multiprocessors

Many computer manufacturers are willing to supply multiprocessor

systems. Indeed, many so-called uniprocessor systems are actually

multiprocessor systems, with the different processors being given

well defined tasks. Examples of such systems are the larger ICL

1900 systems and the CDC 6600, in which specially designed processors

are dedicated to the role of peripheral processors, relieving the

main processo~ of this duty.

Some manufacturers, e.g. IBM, CDC and UNIVAC, supply multiprocessor

systems with operating systems able to take advantage of the whole

configuration. Examples of this are the IEM 370/158 MP and IBM 370/

168 MP both of which may be operated under OS/VS2 (1,51). These

systems contain no local memory, but contain special hardware to

perform some memory mapping as well as handling inter-processor

interrupts and the serialisation of processor cycles. ' The serialisation'

is required to prevent interruption of instructions requiring several

,memory cycles (e.g. Test and Set). Hardware is also included to

enable one processor to interrogate, or set, the status registers of

another. The OS/VS 2 operating system allows the processors to be run

in multiprocessor mode or as several uniprocessors. The control

program is considered in two parts. One part is concerned with

servicing functions local to each processor, the other with global

functions of the multiprocessor as a whole. Locks, software flags,

are used to prevent several processors performing sections of code

- 21 -

simultaneously.' These locks enable software functions to be

serialised in a similar manner to the hardware.

Other manufacturers are willing to supply multiprocessor

configurations, though without any software to control the system

·inmultiprocessor mode. Examples of these are Ferranti, Texas

Instruments and Perkin Elmer. Such systems will contain the hardware

necessary to handle bus contention, though.in some instances,

instructions requiring multiple memory cycles may be interruptable.

- 22 -

2.4. Multiprocessors in Research

Many organisations and research groups are currently investigating

the problems peculiar to multiprocessor systems, leading, in some

instances, to the building of multiprocessors. Often, however, the

hardware designs of these machines cannot be directly related to one

of the major classes considered in the previous section.

One of the foremost groups is that at Carnegie-Mellon University.

In 1971, a project was started there to develop a multiprocessor

computer system based on the PDP-11 minicomputer. This resulted in,

the now famous, CMMP system (67). The project arose, not only to

perform research in multiprocessor systems but also to provide

computational power for existing projects. The organisation of the

system is shown in Figure 2.4.1.

Each processing element, up to a design total of 16 in the development

system, consists, of a processor, some. local memory and some local

devices. Two crossbar switches have been added. The first connects

the processors to shared memory, the second connects them to shared

peripherals. Each processor may access all shared devices and all

shared memory. The processing elements include interface hardware,to

these crossbar switches to convert locally generated addresses into

addresses suitable for the switch architecture.

The hardware also contains a system clock, providing a clock interrupt

to all the processors, and an interprocessor interrupt mechanism.

~ 23 -

.

y • SMP • MEllOR
•

I
PROC~

ESSOR • • •

CLOCK

INTERRUPT
.

. . .

. 1 T . ..,
DEVI CES SKP

.

T I .

. .

Figure2.4.1. Basic CMMP Hardware Organisation

- 24 -

With the latter, one processor may interrupt any number of its . . .

. counterparts at one of several interrupt levels.

One of the. areas that provided some design. problems was the area .of

memory contention (see section 2.6.).· Calculatio!l3 based on Strecker's

formulae (59) were made during the design stages to attempt to find

cost-effective processor and memory configurations. Research was also

undertaken in aspects of systems software. This led to the development

of the kernel of the operating system, called HYDRA (66). HYDRA is

not in itself an operating system, but provides all the mechanisms

for building one.

The group are currently developing a multiprocessor system, Cm",

based on microprocessors which 'is intended to be a testbed for

exploring a number of research questions concerning multiprocessor

systems, for example: potential for deadlock, structure for inter-

processor control-mechanisms,modularity,-reliability and techniques

for decomposing algorithms into parallel co-operating processes"(60) •.

The hardware design chosen for this system, whilst forming a multi-

processor system with all memory sharable, closely links memory modules

with processors. A network of buses provides access to non-local

memories, as is shown in Figure 2.4.2.

Each processor-memory module contains a local switch (Slocal). This

switch provides the first level of memory mapping. References to the

local memory are serviced directly. References to non-local memory

- 25 -

Kmap

P-8-M P-8-M P-S-M

Inter­
Cluster
Bus

P."S-M

r
I
I
I
I

Processor

L __

Kmap

P-S-M

Slocal

Memory and Devices

l
I
I
I
I

---1

a processor­
memory. module

(P-S-M)

Figure 2.4.2. A Simple Cm· System·

- 26 -

modules are placed, by the Slocal, onto a bus connecting the switch

to a Kmap processor. The ~~aps are mapping processors which provide

the routing mechanism for access to remote memory modules.· Each

Kmap is connected to several processor-memory modules to give a

.clust·er and the clusters are also connected by buses.

When a Kmap processor receives a request for memory access, the

request is sent either to the correct Slocal, if the reference is made

to memory within the cluster, or the request is p~ssed to another ~ap

for servicing.

This hardware organisation gives highly asymetrical memory access times.

Access to local memory suffers minimal degradation, while accesses

to remote clusters may experience a large overhead due to the routing

of the request. In order to ma~e efficient use of the hardware, a

large proportion of memory accesses should be to the local memory.

"It has been hypothesized that the local -iJ.i t· ratiow ould lie in the

range 85 to 95 percent, in which case, the effect of non local

references would be I reasonably' small". (61·)

A second unusual hardware organisation has been developed by a group

in Siemens AG. The 8MS 101 (46·) is also a multi microprocessor systeai,

but designed with particular reference to problems of the class of

large systems of differential equations or on-line process control.

In many senses, the system is not strictly a multiprocessor (the

processors do not directly share some common store) yet all processors

- 27 -

can access the memories of other processors.

The basic hardware de"sign is shown in Figure 2.4.3. The' system

comprises a main processor consisting of a processor and memory. This

is connected via a single bus to several further processor-memory

modules. Each of the modules is interfaced to the bus through a

switch. The main processor controls the bus and also the switches in

each of the modules. Each of the modules has the capacity for

independent program execution. "
\

The operation of the system falls into distinct phases while running

a program. Firstly, the main processor distributes the code and data

among the modules. Each of the modules then completes its portion of

the workload." In the third phase any results or variable changes

derived by the modules are distributed to the other processor allowing

the cycle to be repeated. "The switches are used to govern the

" " distribution of the information derived, allowing it to be directed-

in a" number of ways.

In the United Kingdom, several groups are investigating the problems

of multiprocessor systems. One group is concerned with the development

of the CYBA-M system (2,26,32)~his system consists of up to 16 Intel

8080 microprocessors, each with some private memory. These micro

processors are connected, via a switch, to two banks of shared memory.

The organisation is shown in F1gure 2.4.4. Program segments performing

well defined functions are assigned to each processor, indeed the

- 28 -

I

MAIN PROCESSOR

MODULES

•

•
•

Figure 2.4.3. Basic SMS 101 Design

- 29 -

Global Memory

. .

Global Memory Ports
.

I
P-S-M15

P-S-M14

. P-S-M13

• • • . •

.

P-S-M2

P-S-M1

. P-s-Mo

Image Memory Ports

Image Memory

Figure 2.4.4. CYBA-M Hardware Organisation

-30-

system is envisaged as a testbed for proving the validity of such

assignments. The Global memory is used'for inter-process

communication. The memory is logically divided into several sections,

or lines, each of which is dedicated to a particular communication

path. The Image memory is. used for accessing peripherals, which are

all memory mapped. Again, the memory is partitioned into lines with

lines being associated with peripheral registers. Some of the Image

memory lines have semaphores associated with them to enable contention

over shared peripherals to be resolved. All processors derive their

timing from a common clock.

One processor also has connections to the private memories of

all the other processors. This processor is used to downline load

the program, segments to the individual processors and also to provide

•
control and monitoring facilities. To this special processor is

attached a keyboard, floppy disc and other peripherals to aid in the

,. ~----- setup of the system and the following monitoring.

Another group, at Sussex University, is developing a multiprocessor

system which may have application in the office situation (34). The

arrangement of this system is of a number of communication highways

to each of which several computers (either minis'or micros) are

attached. The communication highways are themselves interconnected

via highway coupler processors (Fig. 2.4.5). ,The communication highways

all use the same protocol, with each processor being interfaced to

the highway. This interface includes some buffering of messages to be '

- 31 -

H.C.

o
H.C.

_ ... _---~,
H~C •. H.C. -.

00

- 32 -

transmitted/received on the highway.

It is envisaged that the system would be organised (at the software'

level) with each processor containing a single application program

performing a dedicated function, e.g. a terminal processor or a file

handler. Each processor would also contain ,the necessary software t~

drive the interface to the highway, this being called the nucleus.

As the application programs require service (e.g. access to a file)

messages are sent, via the communication network, to the processor

running,the appropriate service program.

The same group is also investigating the problems at the software

to hardware, interface in multiprocessor systems (,57).

- 33 -

2.5. Multiprocessor Systems and Reliability

One of the major advantages of multiprocessor systems is their ability

to continue operation even when one of the processors fails. This

ability has been used to advantage in many situations ,where high

availability is one of the system requirements. These 'applications

range from process control, to networking. Often, however, special

purpose hardware has to be added to enable an adeq~ately high degree

of reliability to be obtained.

The TRANSPAC network system (69) in France is typical of many

applications where redundancy (that is the duplication of components)

is used. In this network, the major routing nodes,are dual processors,

with many of the other components, including memory modules, being

duplicated. One of the two processors at each node operates as the

routing processor. The second processor, together with a special

hardware module, act asa watchdog 'over the main processor. If a

failure occurs within the processor, then the second processor

assumes responsibility for the routing of the network traffic.

Recently, an American Company, Tandem Computers Incorporated, have

begun marketing a multiprocessor system, the Tandem Non-Stop System

(62). It' is claimed, as a consequence of the design and implementation

of the hardware and software, that the system can be configured

automatically to continue processing despite the failure of any

component. A high degree of redundancy is present in the hardware with

- 34 -

most components duplicated and redundancy of a higher order may be

incorporated. Some less common features, such as multi-part disc

drives, have also been included. However, it appears that the

hardware may not be con figured to provide memory shared between

processors.

A special purpo'se operating system, the Guardian Operating System, is

available and it is claimed that, with the use of the facilities it

provides, the failure of hardware components may be made transparent

to the users of the system.

- 35 ~

2.6. Memory'Contention

One subject of particular interest in the field of multiprocessors

is that of memory contention (or memory clashing). In a system where,

several processors are connected to a storage module, it,is possible

for two or more of the processors to simultaneously request access

to the shared storage. In this situation, only one may actually

have its request honoured with the others being delayed until they

in turn can be serviced.

Many authors have developed statistical models of such situations

and have carried out analysis of their performance, and these have

appeared in'the literature (13,14,etcJ. A variety of models have

been considered, though each has normally been applicable to a certain

type of hardware. A survey of the techniques has been produced by

, Bhandakar and Fuller (8), but some comments on a few representative

papers are given below.

Baskett and Smith (6) consider a model of a multiprocessor

consisting of a number of processors and memory modules, each of

which may be accessed by all the processors. All the processors and

memories are synchronised, that is, all the processors make their

requests at the same time with each'memory taking the same time to

service the requests. If two (or more) processors make a request to

the same memory module then only one of the requests is serviced. The

access pattern of the processors is random, with all the memory modules

- 36 -

having an equal probability of selection. The authors consider their

model particularly applicable to systems where the hardware is bound

by the speed of its memory, with emphasis on interleaved memory.

They also acknowledge that their model may "describe only a minority

of current or proposed multiprocessor systems.1t,

Bhandakar (7) also. considers a model in which the processors have

no private memory. The model is of a number of processors and memory

modules connected by a crossbar switch. The access pattern to the

modules is again random, being considered (for each processor) as a

sequence of Barnoulli Trials. The phases of a memory access are

considered in much more detail with parameters being incorporated into

the model to describe the states of the processor and memory during an

access. The extra complexity enables Bhandakar to remove the

synchronisation constraint present in Baskett and Smith's work.

Bhandakar also ignores the effects of input/output operations, as is

. the general· practice in the literature, claiming support from Strecker·

(59).

Sastry and Kain (56·) model a system similar to the above, with·a

number of processors and memory modules. Each processor can access

every memory module, with arbitration logic being incorporated in the

memory module to resolve the contention. They direct their investigation

towards a situation in which instructions and data are stored in

separate memory modules enabling, a form of pipelining to be incorporated.

- 37 -

Generally, the analysis adopted to derive formUlae from the model

, is that of Discrete Marcov Chains. This is, indeed, the method
I

adopted by all of the above. Having derived formulae to predict

the amount of contention that is experienced by their model, the

authors provide simulation results, ~~d occasionally measurements

from multiprocessor systems, to support these calculations.

Sastry and Kain, having adopted a model with certain attributes

(the separation of code and data) demonstrate the relationship between

the memory contention experienced and the parameters of the model

defining the attributes. Kurtzburg (47) considers the problem of

allocating jobs among a number of memory modules. Having developed

his model, the parameters are varied to show how the distribution

affects the theoretical memory contention.

Many of the organisations are of a more specialised nature, as is

,indeed acknowledged by Baskett and"Smith." Other models rely on '

specific organisational decisions to be made by the operating system,

the model of Sastry and Kain being such an example. These models,

and those making similar assumptions or design decisions,are clearly

applicable to a small cross-section of multiprocessor systems.

Other models,for' example Bhandakar's require very detailed information

on the performance characteristics of the system components. Whilst

giVing very accurate predictions for the given specification, even

slight modification in the hardware may invalidate the accuracy of the

- 38 -

/
/

prediction& Also, the more detailed (and, probably, greater quantity

of) parameters to the model may make calculations more complex.

In Chapter Four, a model of a multipro~essoris presented which is

applicable to a larger number of hardware organisations and, whilst

a number of parameters are required, these are not of a highly detailed

nature as some of those in the literature.

- 39 -

CHAPTER 3

SOFTWARE CONSIDERATIONS'IN

MULTI PROCESSORS

"

3.1. Introduction

The programs written to solve·problems·often contain discreet sections

which do not necessarily have to be executed in a fixed order. On

a uni-processor system, the various stages must inevitably be

executedsequentially. When-a multiprocessor system is used, however,

this constraint is removed giving the potential for several parts of

a program to be run simultaneously.

In order to exploit the natural parallelism in programs, certain

. restrictions must be placed upon the software operating on the multi­

processor. The processors must be-allocated to the tasks, or parallel

sections, within a program and there must be some synchronisation,

for example where two or more parallel sections meet (terminate).

The synchronisation may be performed purely by software or be based

upon some underlying hardware mechanism.

A method must also be· provided whereby the user of a multiprocessor

system may express the parallelism within his program, either explicitly

or implicitly •. This may be .by the use of language constructs which

generate parallel code or by requesting automatic generation of

parallel code from a sequential program.

With the availability of several processors in a multiprocessor system,

processing may continue despite the failure of one of their number.

If this advantage is to be taken, the software on the multiprocessor

- 41 -

must be able to recover from the death of a processor,and possibly

retrieve its workload.

In the next section the basic organisation of multiprocessor operating

systems is considered. The problems of both synchronisation and

reliability are then considered. Finally, the chapter closes with.

a brief consideration of parallel processing.

- 42 -

3.2. Operating System Organisation

The operating system is that part of the software on a computer

that manages the resources (devices, memory, central processor time).

The operating system provides the mechanism for the execution of

programs and the environment in which they run.

"'Three basic organisations have been used in the design of operating

systems for multiprocessors: master-slave; separate executive. for

each processor; symmetric or anonymous treatment of all processors"

(28). Each organisation provides different operational characteristics.

With the master-slave organisation, the operating system routines are

always executed in the same processor, the 'master'. If one of the

slave processors requires a service that must be provided by the

operating system, a request must be made to the master processor. This'

may cause a delay within the slave processor. Since the operating system

only runs in one processor, the problems of multiple update of system

tables and device access cannot arise. A means whereby communication

between the master and the slaves may take place must, however, be

provided.

The master-slave organisation has some disadvantages. Foremost amongst

these is the reliance of the whole system upon the master processor.

If the master fails then the system as a whole will be lost. It may

be possible to redesignate one of the slaves as a new master, but this

would (probably) require action from either operators or engineers.

- 43 -.

Also, if the, master cannot keep pace with the service requirements

of the slaves, then the idle time of the slaves may increase

significantly. Despite being comparatively inflexible, this

organisation is relatively simple to implement.

With a separate executive (or operating system) on each machine, the

characteristics are very different •. Each processor is capable of

servicing its own needs and manages its own (local) resources. Each

processor, therefore, maintains its own set of tables. Some tables,

representing'the shared resources, must be shared between the processors

and therefore require synchronised access. Thus ,this organisation gives

several co-operating but potentially independent systems. The

supervisory code, under this scheme, may be placed in shared memory

in which case only one copy need reside in memory, or it may be placed

in the local memory of each system. The failure of one of the

processors will not cause a catostrophic failure, as in the case of the

- -._ .. --~ ._-- ,. - mat?ter-slave organisation,' since no one. processor. p~~vides all the"

supervisory functions. However, some recovery of the shared tables

may b'e required before the remaining processors may proceed to

(correctly) use the shared resources. Some facilities (e.g. some i/o

devices) will be lost if they are accessible only through the failed

processor.

With the third approach, in which all processors are treated as any

other resource, all resources will be shared, that is the tables

defining their state ,will be shared. The maBtership "floats",among

-44-

the processors, though several may be executing supervisory code

at once. Clearly, each shared resource may have ,only one master, this

being decided through the synchronisation required prior to them

being accessed. Because no one processor has any special privileges

or properties, if one of the processors fails, then only the processing

power of the whole system need be affected. Again, system tables may

need to be recovered, but the possibility exists for graceful

degradation to take place. Also, as a processor acts as one of the

system resources, scope exists for better load sharing.

- 45 -

3.3. Synchronisation

In the previous sectio~ it was noted that, for a multiprocessor system,

the need for synchronisation between the processors arises in order,

to prevent two copies of , the executive simultaneously accessing a

shared table or device. This need for table lockout occurs not only

at' the'operating system level, but at all levels of software on

multiprocessor systems. Brinch Hansen (10) provides a useful

Survey of synchronising techniques.

The most famous form of synchronisation is the semaphore, originally

proposed by Scholten and Dijkstra. A semaphore is basically an integer

variable upon which two indivisible operations may be performed.

These operations are variously known as P and V, Wait and Signal or

Down and Up. The V operation causes the semaphore to be incremented.

The P operation causes the semaphore to be decremented unless the

'value of the semaphore would become negative.' In this case, the

,processor performing the P operation waits until it may be completed.

Many examples of the use of semaphores may be found in the literature

(11). Brinch Hansen (10) noted, however, that as, originally

proposed,semaphores may leave some processors permanently blocked.,

This may be overcome by assuming some scheduling policy within the P

and V operations.

Critical Regions (22) provide a similar technique to semaphores.

A critical region is basically an area of code associated with a

- 46 -

shared variable. Each shared variable may be associated with,several

different code segments. The critical region mechanism ensures that,

for each shared variable, only one processor is allowed to execute

one of the areas of code associated'with that variable. Critical

regions provide an excellent medium for describing the use of and

protection'of shared data structures.

A modification of critical regions leads to the so-called Conditional

Critical Regions (38). Not only is a section of code associated

with a shared variable, but also a list of conditions to be satisfied

before entering the region is given. The region is entered only when

all the conditions are satisfied.

The elegance of these tools has led to discussion in the literature

(9,18) as to their suitability in certain contexts •

. . . For shared resources,another approach is to create a resource manager.

process. Processes then wishing to access the resource must make

requests to the resource manager. This requires a message queue, to

which processes add their requests~ The addition of these requests

must be an indivisible operation with respect to the processes. That

is, if two processes attempt to add a message to the queue simultaneously,

one will complete its addition before the second may make its addition

and they will not mutually interfere. The resource manager removes

messages from this queue, processing the requests as required.

- 47 -

Wirth (65) has noted that the message queueing techniques and

semaphoresare remarkably similar, a semaphore merely being a queue

with no attached messages. An example of this class of tools are

Hoare's Monitors (36).

All of these techniques may be used.to great advantage upon uni­

processor systems where indivisible operations may be guaranteed.

However, if several processors are used then these techniques require

some lower level of synchronisation upon which they maY be based.

Brinch Hansen (10) suggested that a hardware lockout device ('arbiter')

was required. Indeed, in many multiprocessor systems, such devices

have been implemented in hardware, for example the IBM 360/158 MP and

168 MP systems, as described in section 2.3, contain several

instructions that may be used for this purpose.

In the absence of special hardware, it becomes necessary to develop

synchronising algorithms using standard instruction sets. This problem

of performing synchronisation between processors using only read and

store instructions, . originally proposed by Dijkstra, was first solved

by Dekker (22), and generalised by Dijkstra (21) •. However, as

Dijkstra noted, the method is cumbersome and potentially very time

consumptive. Furthermore, Knuth (45) noted that one or more

processors may be blocked indefinitely since the algorithm relies on

a 'first past the post' mechanism, having no memory of the waiting

time spent by a processor attempting to gain control.

Several authors (12, 27, 45) have proposed refinements to the algorithm to

- 48 -

reduce,the time taken and to introduce some element of scheduling.

All these algorithms, however, maintain the basic structure of the

original solution. 'The improvements culminated in an algorithm (48)

, which guarantees safe access to a resource fn a multiprocessor

environment. on a first-come-first-served basis.'

The method adopted in all .these cases is to allow one processor access

to the shared resource and, when the processor has finished with the

resource, it is freed to allow another processor to gain access to it.

Thus the resource is alternately in use· (or "owned" by a processor)

and free. A processor, when it requires access to the shared resource

must wait for that resource to become free. Then, if no other

processor simultaneously requires the resource, it will become the

owner and proceed to use the resource. Complications arise, however,

When many processors attempt to gain ownership of a resource

Simultaneously since there must be a "competition" to decide who

becomes the new· owner. Indeed,even if a single processor only requires

access to the shared resource, it must take part in the "competition"

to discover that no other is also attempting to access it.

When this "competition" arises, the processors have to decide which

of their number is to become the new owner. As the number of processors

requiring access to the resource increases, the decision making becomes

more complex and, in a general purpose algorithm" the case where all

processors may require access needs to be catered for. As the

complexity increases, so does the cost of performing the synchronisation.

- 49 -

This may be observed from the (sometimes complex) looping structure

of the algorithms in the literature. This results in the cost

(overhead) of synchronisation rising at least proportionally with

the number of processors being synchronised. For heavily used system

tables, the cost may become unacceptable.

- 50 -

3.4. Software Reliability

Much" research is now being carried out in the field of fault­

tolerant systems and other areas of increased reliability at the

software level. This has led to the design of new languages and

methodologies. With multiprocessor systems', the need for reliable

software lies not only in obtaining correct programs, but also in

withstanding processor (or other component) failure. ·Since the

multiprocessor system contains several processors, there is the

potential for performing useful work despite the failure of one of

them. However, some recovery of shared data structures may be

necessary before resuming the computational workload of the dead

processor, if, indeed, the latter is. possible.

Of the major manufacturers, IBM provides a process (the Alternate CPU

Recovery process (15» which is invoked on the death of a processor

in the tightly coupled multiprocessor system described in Chapter Two.

The process is initiated when a special interrupt is received

indicating that a processor has died. The use of the ACH process

enables.various components of the system to be checked and recovery

action to be taken as required. The problems facing the ACR, and

associated routines, are sometimes complex. The"considerable range of

states that the processors may be in when the death, and ensuing

interrupt, occurs contribute to the complexity of the problem. The

recovery relies on the recovery process being able to ascertain much

information on the dead processor at its point of death. Once the.

- 51 -

recovery is complete, the system is then free to continue running,

but providing a degraded service due to the reduced processor power.

Research is also being carried out into techniques for software error

recovery (54,55,68) •. The aim of the group at Newcastle University is to

provide a methodology which will not only cope with process failure,

but also with errors due to inadequate or faulty design or coding.

Due to the complexity of the software required for multiprocessor

systems, the ability to withstand some design faults and continue to

perform useful work in the presence of errors would be of advantage.

The approach taken is to provide the equivalent, at the software level,

of standbycomponents at the hardware level. It is accepted practice

to write programs (especially those which are large and complex) in

blocks (be they subroutines, procedures or modules, etc.). These

blocks may be written in terms of sub-blocks; and so on. Each block

may be viewed as providing an operation within. the total system. A

block is turned into a recovery block by adding an 'acceptance test'

at the end of the block and zero or more stand-by blocks (alternates).

The acceptance test is a logical expression by which the correct

operation of the block may be tested. ; If the operation has failed,

then one of the alternates is used.· However, before the alternate is

entered, ·the state of the process is restored to that current just

before entry to the block which failed. A software technique for

providing this ability to restore a process to an earlier state has

been described in the literature (39).

- 52 ;.;

3.5. Parallel Processing

Even when the' organisational problems of multip~ocessors at the

hardware and operating system level have been resolved, there still

remains the task of applying the system to the solution of problems

in an efficient manner. However, the whole topic of parallel

programming has recently gathered momentum due to recent hardware

developments. The falling cost of processors and the availability

of Array processors, such as the Illiac IV, and Vector processors

as well as the multiprocessor systems described above, have contributed

to this interest.

The, so called, array and vector processors, which are of the SIMD

classification (see section 2.1), consist of a large number (often

thousands) of small processing elements attached to a host. Parallelism

is obtained, in such,systems, by arranging for all the processing

-~~~'-elements to perform the same single operation, but on different values.

Algorithms to run upon these systems thus need to be formulated in

terms of arrays of values upon which operations are performed. This

makes such hardware particularly suitable for the solution of large

numerical problems.

Research is also being carried out into the automatic detection of

parallelism within programs. This research may be partitioned into

two main groups:-

- 53 -

a) Statement level

b) Block level

At the. statement level, single statements, particularly arithmetic,

are· considered. It is hoped that techniques to enable these

statements to be compiled for optional parallelism may be derived.

A survey of such research may be found in the. literature (64).

However, due to the great frequency of synchronisation required

between processors when using this form of parallelism, it is not a

viable technique when using a multiprocessor system of the type being

considered.

At the block level, several statements can be grouped together and

the blocks can be considered for execution in parallel. This

technique provides a much more cost effective means of achieving

parallelism on a multiprocessor system. As the size of these groups

. of instructions· increases; ·so the relative cost of the inter-processor

synChronisation will diminish, assuming that the groups are mutUally

independent. Results have been obtained (30) showing that the

effective degree of parallelism obtainable is indeed dependent upon

the length of these groups.

Proposals have been in existence for many years (19,22) for language

extensions to enable parallelism to be expressed in programs. This

approach enables programmers to directly insert parallel properties

into their programs in a manner which they deem suitable to the

application.

- 54 -

The suggestion "that parallel composition of communicating sequential

processes is a fundamental program structure method" has recently

appeared in the literature (37). A formal notation, based on

Dijkstra's guarded commands (24.), is presented which allows the

communication between processes to be expressed. The communication

is of the form of messages and not through shared variables.

- 55 -

CHAPTER 4

THE INVESTIGATION'OF A MODEL

OF A MULTIPROCESSOR
. .

4.1. Introduction

It was noted in Chapter 2 that many detailed or complex models

have been developed in the study of the theoretical computing

power which can be realised in a multiprocessor system. Also

noted was the fact, that these formulae are, in general, specialised,

to a small class of hardware. It would be valuable if a more

general tool were available which would enable an estimate of the

maximum power that would be realised from a given multiprocessor

system to be evaluated. Conversely, it may be desirabl~ given a

particular workload, to evaluate the number of processors that may

efficiently be included in the system.

In this chapter, therefore, a simple model of a multiprocessor

system is presented and from the study of this model, an attempt

is made to derive a formula for an upper bound to the computer

power which may be realised.

- 57 -

4.2. Model of a Multiprocessor

The basic hardware model is of a collection of N, possibly

different, processors. The characte'ristics of each processor are

given by, two variables, the execution speed of the processor, in

instructions per'second~ and ,the private memory size, in instructions.

These are denoted by ri and si for the ith processor respectively.

All the processors are linked to a large block of common memory.

Information, either code or data, can be transferred between common

memory and the private memory of any of the processors at the rate

of I blocks of information per second. Each of these blocks contains

, b instructions giving an effective common to private (or private to

common) memory transfer speed of lb instructions per second. These

two parameters represent the line speed and bandwidth of the

communication line between common and private memory. A processor

may directly access the common memory for an instruction or data

word without requiring it to be stored in its own private memory.

The time required to perform this operation is expressed as the time

to access private memory (inherently included in the processor

execution speed) plus a fraction, fo of the transfer time between

common memory and private memory. An assumption inherent in the

model is that all accesses to common memory suffer some degradation

whether memory contention ,takes place or not. This is due to the

need for a contention resolving "black-box" to be placed in the

access path to common memory of each proc,essor (see Figure 4.2.1).

If required, the degradation caused by this "black-box" may be

- 58 -

P M

P M

•

• ..
•

P M

P M

Shared
Memory

Contention
Resolver

Figure 4.2.1. Modelled Multiprocessor System.

- 59 -

ignored by setting f to zero.

The instruction was chosen as the unit of data since no confusion

over existing terminology, largely manufacturer dependant, would

arise. With the modularityof current hardware, it "may seem that

a model catering for multiple memory modules would be" necessary,

but by the correct choice of the values for the parameters specifying

the common memory,the operational characteristics of several blocks

of common memory may be obtained.

By suitably altering the values of the parameters, the model can be

applied to a variety of hardware configurations, including

•

a) Many processors each working from private memory using the

common memory for communication only

b) Many processors each with no, or very little, private

memory linked to a single block of common memory

c) Many processors each with limited private memory, using the

common memory as a data base.

The same model may also be used for many processors accessing a

common disc system as a variation on a) or c) above. In this case,

tre data access fraction, f, will have a value of one, since any

data accessed must be copied to the private memory before it can be

used.

- 60 -

In order to make calculations of computing power, the workload

for. the multiprocessor system must be incorporated into the model.

The unit of work which is most clearly associated with users is

that of the program. It would appear that, ideally, a general set

of programs, or benchmarks, would be necessary. However, it is

not possible to select a set of programs which would be representative

of all situations. Furthermore, the theoretical analysis of such a set

would be extremely difficult. It was, therefore, decided to examine

the operation of the hardware model by postulating that a single

program is run repetitively on all the processors.

It is further postulated that the program is initially loaded into

the common memory but can only be executed from private memory. The

program instructions, therefore; must be copied from common to

private memory before execution can take place. Clearly, the private

memory may not be sufficiently large to accommodate the whole of the

program, in which case several copying operationswQuld be required

during the course of the run of the program in a manner analagous

to paging (no attempt is made to mode.l this activity but it is

implicitly included in the parameter ci defined below).

The characteristics of the program used in the model are

a) E, the execution length, or number of instructions

executed by the processor in completing the program

b) ci' the transfer or copy size, that is the total number

of·instructions that have to be copied from common to

- 61 -

private memory

.
"c) a data access rate of 1 access to common memory per d

instructions executed"

d) no external input or output operations.

Each of the parameters plays an important role in the model. E,

the execution length, is effectively a normalisation constant or

scaling function for the evaluation of computing power. The

incorporation of ci into the model allows short regular bursts of

high rates of access to common memory. This parameter would be

used when investigating systems performing copying operations to

or from common and private memories. If no such function is

performed, this parameter may be omitted (by setting it to zero).

The variation in the parameter d can be used in the investigation of

systems using only common memory (d having a value of one or less)

through to systems rarely accessing common memory (d being large).

Thus, causing a representative program to be run repetitively on

all the processors places no great restriction upon the workload

that can be modelled since various classes of program may be

considered by suitably varying the parameters of the representative

program.

- 62 -

4.3. Derivation of Computing Power

A measure of the computing power of a multiprocessor system is

the number of representative programs processed per unit time by

the multiprocessor configuration, denoted by Pm.

In order to determine the effective performance of the system,

this must be compared with the computing power of the same

computers working separately. That is the number of representative

programs p;ocessed per unit time by the separate processors, Ps.

Taking the model described above, the time for the ith processor

to execute the representative program, whilst working separately,

would be

E/ri seconds

Thus the number of programs executed by the N separate processors

in unit time (Ps) is

•
Ps =

The total time for a program to run in one of the N processors in

the multiprocessor configuration has four components', namely

a) the time required to transfer the program from common

memory to the private memory of an individual processor.

- 63

b) the time required to execute the program

c) the time overhead of making data accesses to common

memory

d) the time spent waiting to be serviced by the memory. This

delay, due to memory contention,may occur in two instances

- i) while copying instructions to private memory

- ii) while "performing data accesses to common memory.

The first three components are obtainable from the model directly

a) program copy time

cilb transfers are required to copy the program to the

private memory of the.ith processor. This takes cil (lb)

seconds

b) execution time

This component is identical to that for the single processor

'case," that is E1ri seconds for the-i th processor ,

c) common memory access overhead

The overhead for each data access is f/l seconds. During

execution of the program, a total of E1d accesses are made

to common memory giving a value of Efl (dl) seconds for this

component. It is implicitly assumed that a data item is of

an equivalent size to an instruction, however d could be

altered to model other data sizes.

The fourth component, that due to contention over common memory,

-64-

is dependent upon the strategy used by the hardware to distribute

memory cycles between the processors. In order to obtain bounds

for computing power of a multiprocessor, two distinct strategies are

considered.

The first strategy treats all processors as strictly equal, and

provides a common memory cycle to each processor in strict rotation

(Round-Robin). With this strategy, there is the potential for

(large) delays while accessing the common memory. Delays will

inevitably arise due to memory contention in any practical situation,

but it is possible, with this model, for a processor to wait for a

memory cycle even if no other processor is accessing the memory.

Under these circumstances this theoretical strategy gives a greater

common memory access overhead than would practically be experienced

due to memory contention alone, and when included in performance

calculations it will therefore provide lower performance figures

--than could be experienced in practice.

In contrast to the first strategy, the second imposes an inherent

order upon the processors. A memory cycle will always be. allocated

to the highest processor in this ranking list currently making a

request, thus giving a Priority servicing policy. To obtain an

upper bound for performance an assumption is made about the ordering

of the memory requests from the processors. It is assumed that the

memory requests made by the processors are synchronised so that no

processor ever waits for service from the common memory unless all

- 65 -

the memory cycles are being used by the processors of higher rank.

Thus no overheads or delays are experienced due to common memory

contention provided that the total number of requests made by the

processors does not exceed the capacity of the memory. There is

still, however, a delay due to accessing the shared memory via

the interface hardware.

Since, with this strategy all common memory cycles are being used,

P'riority represents the maximum processing power. When all the

memory cycles have been used, further processors may not access the

memory. This limit to processor power will be discussed in Section

Six of this chapter.

In the next two sections, the formulae for the computing power of a

multiprocessor system are derived for the two memory servicing

policies.

- 66 -

4.4. Round-Robin Servicing

As noted above, the waiting time (the component dependent upon

the memory servicing policy) arises in two situations. Firstly,

the waiting time while copying is the time required for the N-1

memory cycles between each copy. These N-1 cycles take (N-1)/1

seconds, and hence the total time spent waiting by the ith processor

while copying is

Ci (N-1) / (lb) seconds 4.4.1.

The second factor in the waiting time is due to waiting for a

memory,cycle while making a data access to common memory. The

elapsed tim'e between accesses is d/ri seconds for the i th processor.

After this time, the processor has to wait for its next memory

cycle. 'The time spent waiting, Yi, is therefore

Yi = xN/l - d/ri seconds 4.4.2.

where x is the minimum integer such that

4.4.3.

That is, it is on the xth memory cycle due to the processor since

its last access that its next request is honoured.

This overhead is for each of the &Id accesses, giving a total waiting

time, while performing data accesses, for the ith processor of

(YiE) / d seconds 4.4.4.

- 67 -

where y is given in equation 4.4.2.

The total time to run a representative program on the ith processor

with Round-Robin common memory servicing, TR, may now be evaluated

as the sum of the four components

TRi = Ci/{lb) +. E/ri+. Ef/{dl) + (Ci{N-1)/{lb) +. (YiE)/d)

4.4.5.

simpli fying,

4.4.6.

Hence, the number of programs completed per unit time on processor

i is

1/l'Ri

and the total number ,of programs run on the system as a whole (JRi)

,-~.-~~. ,. is given by

N

JRi = [(1/TRi)

i = 1

and expanding ,

N

4.4.8.

JRi = [(1/{CiN/{lb) +. E{1/ri +. r/{dl) +. Yi/d»)

i = 1

where Yi is given in 4.4.2.

- 68 -

4.5. Priority Servicing

As mentioned in Section Three, the processors are assumed to be

exactly synchronised and that no processor waits for servicing

unless all common memory cycles are taken by.processors of higher

priority. When all memory cycles are being utilised by a number

of processors, any other processors added to the system (at a

lower priority) will· be unable to access the common memory.

The processing power of the configuration under this form of common

memory servicing can be evaluated by considering the operation of

the processors in priority order.

Since the highest ordered processor experiences no delay, the time

taken to complete a representative program on this.processor TP1

in the sum of the first three components

Since only the first and third components involve usage of the

common memory, there is a period of time during which the common

memory is free, given by

F/r1 seconds

The processor with second highest priority will take

TP2 = C2 /(lb) + F/r2 + Ef/(dl) seconds

- 69 -

to run the representative program and can, therefore, potentially

complete

programs in time TP1' Since each run of the representative program

requires access to the common memory for a time of

C2l(lb) + Ef/(dl) seconds

The time spent accessing common memory in time TP1 is given by the

product of equations 4.5.4. and 4.5.5., that is

If the time given by 4.5.6. is less than, or equal to, the

execution time of the first processor, given by 4.5.2, then the

assumption made regarding memory clashing may be applied and,

therefore, all"common memory accesses made by the second processor

overlap the execution time of the first processor.

A smaller amount of time will remain when the common memory is not

being acces~ed. This time is given by the difference between

equations 4.5.2. and 4.5.6., namely

The argument may be continued for subsequent processors until the

free time of the common memory is inadequate to allow the common

- 70 -

memory accesses of the-next processor, denoted byNL, to be

satisfied.

Systems with fewer than NL processors will, therefore, from 4.5.4.

complete

representative programs in time Tp1, where TPi is the time for the

ithprocessor to complete.the representative program (cf.4.5.1.).

Hence the number of representative programs executed in unit time

on a multiprocessor system with fewer than NL_processors and a _

Priority servicing policy for common memory, JP, is

-N

Jp = (1/TP1) L (Tp1/TPi)
i = 1

and simplifying

or

N

Jp = L (1/Tpi)
i = 1

N

Jp = L (1/(~/(lb) + E/ri + Ef/(dl»)

i = 1

This throughput represents each of the N processors working at

maximum speed. When the number of processors reaches or exceeds

the capacity of the common memory, the NL th processor cannot achieve

- 71 - _

its maximum throughput and all subsequent processors will be

unable to access common memory and therefore perform no useful

work. Thus the throughput obtained from,a configuration withN·

processors where N~ NL lies between that obtained for a

configuration with NL - 1 processors and that obtained from a

system with NL processors as given by formula 4.5.10.

Graph 4.5.12. shows a typiCal Priority curve with the characteristic

cut-off.

- 72 -

t.....
L-
a
I

i--:.)
U

I
I--,.....,
:3

7.>8·' c. _

':>6
'- -
24_

,22_

22.

18_

16.

1 A.

12_

13.

-r:

o. 'oco ,t>1
. ~

O. \ooo~ ro

F 'D. o.s

0-,f".----,--,-~--_;_--..---;__--,--___:----__,
13 12 1-7 16 18 22 2-r 26· ")8 L.

Figure 4.5.12. Priority Curve Showing Cut-off

- 73 -

4.6. Constraints for Effective Configurations

With Priority servicing used to allocate shared memory cycles,

it was demonstrated that there was a limit to the number of

processors which could access the memory. A system containing a

greater number of processors would inevitably lead to a waste of .

resources since some of the processor could not perform useful work,

being unable to access the shared memory. This limit is ,from 4.5.7.,

NL-1 = 1'+ max integer k such that

k

«E'/r 1) - L (Tp1/Tpi) (Ci/(lb) + Ef/(dl»»O
i = 2

4.6.1.

From the original specification of the model, the Priority common

memory servicing strategy gives the highest,possible throughput

since the slowdown factor is due only to the hardware inter-

"'~"-' connection and no memory clashing factor is included.

The Priority servicing strategy makes optimum use of memory cycles,

with no time being wasted due to contention between the processors.

Any cut off which exists with the Priority servicing must, therefore~

apply to all other servicing strategies. Given parameters which

characterise both the constituent processors in a multiprocessor

configuration and the workload to be placed upon the system, a limit

to the useful number of processors may be evaluated. In practice, it

might be anticipated that this ideal situation would be unattainable,

- 74 -

in which case the effective maximum number of processors which

could usefully be connected would be less than that given by NLo

;. 75 -

I

4.7. Analysis of Performance

In Section Three, it was postulated that the effective performance

of the multiprocessor computer system could be found by comparing

the computing power of the multiprocessor (Pm) with that of the

computers running separately (Ps). This may be accomplished by

expressing Pm as a percentage of Ps. The effective performance (EP)

may therefore be evaluated for the two servicing strategies using

N

= 100 (i~1 (1/(Ci/(lb) + ~ri + Ef/(dl»»

%

These formulae describe a situation where the processors and local

memories have different characteristics. In practice, most multi-

processor systems might be expected to consist of combinations of

identical (or near identical) processors. The formulae 4.7.2. and

- 76 -

.4.7.4. can be simplified in this case. In the remainder of this

chapter it will be assumed that all the processors are identical.

This, however, places no restrictions upon conclusions drawn in

later sections.

If all processors are assumed to be identical,'all.subscripts

disappear and the summations may be replaced by a multiplication,

factor. The equations 4.3.2., 4.4.9. and 4.5.11. for Ps,' JR and

Jp respectively may be simplified to give

Ps = Nr/E

JR = N/(CN/(lb) +E(1/r + f/(dl) + yid»~

with y = xN/l - d/r

where x is the minimum integer such that

xN/l? d/r

Jp = N/(C/(lb) + F;/r + Ef/(dl», .

Rewriting equations 4.7.2. and 4.7.4. with these simplified

equations, values for the effective performance will be given by

Round-Robin:

EPR = 100(N/(CN/(lb) + E('t/r + f/(dl) + y/d)))/(Nr/E) %

4.7.8.

Priority:

EPp= 100 (N/(C/(lb) + F;/r + Ef/(dl))}/(Nr/E) %. 4.7.9.

- 77 -

Simplifying, these become

EPR = 100 F/(r(CN/(lb) +E(1/r + f/(dl) + y/d») %
4.7.10

EPp = 100 EKr(C/(lb) + FIr + Ef/(dl») %

These two formulae for effective performance apparently provide

the bound6on the performance of the multiprocessor system which

were sought. However, by observing the predictions of the formulae

for a particular choice of the parameters (shown in Fig.4.7.12), it

is seen that under some circumstances the efficiency achieved with

the Round-Robin servicing is equal to that with the Priority

servicing. This clearly violates the upper-lower bound hypothesis.

- 78 _.

c...D
z:
0---<

~
<:
w.J
CL

C-""I
z:
0---<

:::3=
C)
I
U?

u...;
---I
Cl...
L::
<:
><
w.J ------_._.

C)
. 0---<

t--
<:
0:::

:::I:: .. CL
'<:

0:::
. C-I")

.. Er' E\?Ief-\;W..<. ~~~ ,

X10-1 01' CA ,"~~

10

9.

8_

,.,
I.

6

5.

4_

3.

2_

1.

0_ .

~'"2.

C " o. "1.~!." '0'"
e. ... o· Icco oi. I"'''

B:o l-D

0 5 i 0 'r; Iv
I

20 25 30 35 40 45 50 o = Nb. '?, ~.\n.. ... \-':~ e,c"b--W t&
cbI-". oc.u", -\" ez, "'" ... ~"j

: Figure 4-.7.12. Peaking characteristic of Round-Robin
servicing policy.

- 79 -

4.8. Refinement of Servicing Policy

If the denominator of the right hand side of equation 4.7.11 is

denoted by v then equations 4.7.10 and 4.7.11 may be rewritten in

terms of v as

EPR = 100 E/(v + (N-1)rC/(lb) + E/d) %

EPp = 100 E/v %

where v = rC/(lb) + E + rEf/(dl)

·4.8.1.

4.8.2.

The two extra terms in the denominator of equation 4.8.1 are due

to the waiting times while copying from common memory and while

making data accesses to the common memory. The deficiency in the

Round-Robin strategy now becomes apparent. If these two extra

terma,

(N-1)rC. /(lb) +E/d 4.8.4.

can become zero, or very small, the Round-Robin strategy instead

of reflecting the case where there is memory interference, becomes

equivalent to the Priority servicing strategy. This will occur,

in general, if both y and C themselves become very small. In

practice both of these conditions may hold. C would be small if

the private memory· of the individual processors is large and very

little copying were required in relation to execution length. The

waiting.time for a data access to common memory (y) can be zero if

the access is requested when a cycle is offered, that is when (from

equation 4.4.2)

d/r = x (N/l) 4.8-5.

- 80-

,

I

where x is some integer •.

The possibility for the waiting time to become zero will clearly

give rise to'a "peaking" characteristic to the function defined

by 4.7.10, as has·be~n seen in Fig. 4.7.12.

In practice, common memory requests do not. occur at strictly

regular time points, but are distributed about these time points.

While the mean arrival time may be coincident with the offering of

a memory cycle, the mean waiting time will not be zero •

. This can be illustrated by conSidering the case in which the

probability. of arrival of a common memory request can be represented

by an arbitrary distribution function with a mean at the point at

which a memory cycle is offered. This is illustrated in Figure

4.8.6.

Any request which arrives before the memory cycle is offered must

wait until it is offered, while any request that arrives afterwards

must wait for the next cycle. Thus the mean waiting time is

TA

~. ~ (TA - t) 3t +

t = t1
I h (TB - t) St

t = TA

and this must have a non-zero value. In the general case where

the mean is not coincident with the offer of a cycle, the mean

waiting time can be expressed as

- 81 -

Distribution function

h

• t •

Times when memory
cycles offered

>
time

Figure 4.8.6. Distribution of Memory Requests

- 82 -

TB

]
= 0

J'
-h
d

-rp

2
~
6
~

~

y = g (xN/l - d/r) 4.8.8.

where g is a function which reflects the actual distribution of

data access requests.

Various distributions were in~estigated, and Table 4.8.10. shows

the mean waiting time for the four. distributions shown in Figure

4.8.9. To produce the table, the following values were chosen

for the parameters of the distribution as shown in Figure 4.8.6

t2 - t1 =TB - TA =1

the mean of g, r(g) = (t2 + t1)/2 4.8.11.

This choice of parameters describes a situation where a request

can arrive at any time between two successive offerings of a memory

cycle. The value of M in the table is the distance

. 4.8.12.

that is, the offset of the mean from the offer of a memory cycle.

~-~~-- From th,i table it can- be seEm that the three distributions giVe

similar waiting times so, for ease of calculation, the triangular

distribution is adopted throughout the remainder of this chapter.

Figure 4.8.13 shows the same graph as Figure 4.7.12, but with the

triangular arrival distribution applied to smooth the peaking.

- 83 -

I
I

'/1\'
/ \
: \

i \
, ;' \

\

/

f \

\
\

\

\
\

a) Triangular

b) Eliptical c) Truncated Normal

Figure 4.8.9. Arrival Distributions

- 84, -

M Triangular Elliptical Truncated Normal·

• Truncated at 95% confidence limits·

Table 4.8.10. Comparison of Arrival Distributions

. - 85 -

f\l~'l.

~ = o. nl.""" lob
•

---..----:--:--:---,c---:---:----.--:---:-,_, .,....'---,...----'---~--'-;1".
°C
!J 1Q ,'le,

\.}' '.

C\' "'SM~~~W.\iIS>
k~O-et4'> 6~ ... ~ "":'-"3

• Figure 4.8 .13. ,Smoothed' Peaking of Round-Robin Servicing
, Policy"

" ,-.

58

4.9. Application of Formulae,

In this section examples of the use of the formulae are given

showing comparisons with both simulation studies and practical results

obtained from multiprocessor systems.

The primary test-bed for the formulae was a simulation program

written in BASIC. The simulation program contained variables

corresponding to the major parameters' of the model presented in

this chapter. The variables cover the number of processors, the

frequency of access to shared memory (for both data access and

program copying) and the memory speed.

Each of the processors in the simulation model would repeatedly

execute the program, specified by the memory access parameters,

until a pre-specified number of time steps had been completed.

"When the simulation firiished the number of representative programs

executed by each processor was reported. Memory accesses in the

simulation model were not made at strictly regular intervals, an

element of randomness being incorporated into their arrival. This,

randomness represented the situation where memory requeatswere evenly

distributed over the memory cycle.

Two algorithms were encoded for the resolution of memory contention.

The first of these corresponds to the Priority servicing policy.

At each memory cycle, the processors are searched in order as in

- 87 -
, i

the Priority policy. The second corresponds to the Round-Robin

policy, with. memory cycles being offered in strict rotation.

Due to the ideal representation of the hardware inherent in the

Priori ty model (that is no memory contention) '" it would be expected

that results obtained from the formula would overestimate the

throughput as determined by the simulation. Also, this overestimate

would increase as the potential for contention increases. The

results for the Round-Robin servicing would, however, be expected

to correspond more closely to those from the simulations.

Table 4.9.1'. shows some results obtained from the'simulation studies.

It is seen that the results correspond to those expected, with

greater discrepancy being shown in the Priority servicing. Also,

as the frequency of accesses to the memory increases (either by

increasing the data access rate or by increasing the number of

,...---.. ~~·-·processors), there is a drop in actual performance obtained from

the simulation.

Experience for predicting the performance of real hardware was

obtained using the dual Interdata Model 70 system within the

Department of Computer Studies at Loughborough University. The

memory of the system is 1 micro second. The memory contention

resolving mechanism is complicated due to the fact that the shared

memory is physically attached to one of the processors. When the

other processor wishes to access the shared memory, it bids for

- 88 -

--~-~~- -~~----------------

PRIORITY ROUND-ROBIN

THIDRY I SIMULATION THIDRY SIMULATION
Max Av Min Max Av Min

..

1)N=2 ;D=5 90.9 82.1 81.7 81.7 76.9 78.0 77.8 77.7

2)N=5;D=5 90.9 73·9 73.9 73.7 62.3 62.6 62.4 62.3

3)N=2;D=50 99.0 98.1 98.1 98.0 97.0 97.1 97.0 97.0

4)N=5;D=50 99.0 98.0 98.0 98.0 94.3 94.5 94.4 94.3
.

Notes: 1) No program copying

2) Memory Speed = 1 micro second

3) All values show effective performance in %

Table 4.9.1. Comparison of Theory with Simulation Results

- 89 -

access to the memory and suffers a delay of 1 micro second. Also,

while it is accessing the shared memory, the first processor may

not access its own private memory.

Two programs were used in a·test of the formulae. These programs

involved access to the shared memory, but at differing rates.

Values for the parameters to the formulae were obtained from the

programs and these were used to obtain comparative results. Table

.4.9.2. shows the results obtained. The potential expansion of the

system can be found by evaluating the formulae for a greater number

of processors. Figure 4.9.3. shows the curves for the first of

these two testa, and it can be seen that the processor limit is 20.

In (29), a formula, developed by UNIVAC, is cited for evaluating

the extra performance achievable from the addition of extra

processors. Results are quoted for the 1108 system. Table 4.9.4

shows the corresponding predictions based upon the formulae derived'

in this thesis. The values adopted for the parameters are an

instruction time and memory access time of ~sec, with memory being

accessed in one word units. It is assumed that common memory is .

accessed every instruction with accesses to common memory increasing

access time by one eighth.

-90-

f-,-'
Cf.'
L:..;.
f--

-<
f--
-<:
CJ
ee::
~

. f--

.2
~

D-::
C)
L

f--

.........
_J

C)

f--
. , <::
-~'-"CY.:: '

::.L.~
r.:....

, <r:
ee::
Lr:J

Cl
v.

8.

'~j i:

S.

," ,
v.

t

3.

2.

'. 'r,11

~~
. J

.,
f. 4

'. ,.1, 5,·' ~, 'jCl '2 ,1/
(J 11 ~
~ = 1-10 •

','.{.>, " "

E: 0·\0,00'

R.~ O··\1n

~'" 'D· \00'1)

't!,,,,)',0

'6:.1..0

:F "- C.S

....'0T-,
I.' "'0

• 1<:>'1- '

1518 20 22 2·1 2sn
~",f~~

Figure' 4.9.3. G;aph for' Interdata Test 1,'

.... '

Observed Priority Round-Robin

TEST 1 90. 8% .. 94.7% 85. 'i%

TEST 2 70.4% 75.0% 60.0%

Table 4.9.2. Comparison with Timings from Dual Interdata
Model 70

UNIVAC FORMULA
WITH 2 PROCESSORS 85.9)6

PRIORITY 91.4%

.

ROUND-ROBIN 49.7%

.. . , '

Table 4.9.4. Comparison with UNIVAC Formula

- 92 -

I

I

CHAPTER 5

THE ABSTRACT RESOURCE RING

- A SYNCHRONISING TOOL

-" ----

5.1. Introduction

This chapter, and that following, are concerned with the description

of the development of a reliable synchronising tool to enable

resource sharing and mutual exclusion within multiprocessor systems.

Again, the model ofa multiprocessor is of several processes

connected to same shared memory but without any hardware

synchronisation available, except that required to prevent mUltiple

accesses to shared memory".

As discussed in Chapter Three, existing software solutions to the

synchronising problem in these circumstances have some inherent

deficiencies. These include the potentially large amount of

computational time required to synchronise, when demand becomes

high, and the possibility, with some of the algorithms, that one or

more of the processes can be blocked, indefinitely. In this

chapter, we approach a solution by re-appraising the problem and in

the following chapter the synchronising tool, so developed, is

investigated with respect to ·reliability.

As has been noted, the time is spent in discovering a new owner for

the resource and the ensuing "bartering". If the method of

discovering the new owner could be modified, or removed, then the

cost of synchronisation may be reduced. One method whereby this may

be achieved is to make the "resource free" state illegal and.give the

current resource owner. the responsibility of locating anew owner and

passing ownership, instead of merely relinquishing the resource;

-94-

;

~"

As will be seen later, this technique, which may be· termed a

resource master technique, has performance advantages when the

shared resources are reasonably heavily used but means extra

overheads when the resource is' used infrequently.

The resource sharing takes place between processes on the different

processors. The problem of resource sharing may, therefore, be

split into two phases

i) the sharing of the resources. between processors (or more

correctly between the schedulers on the processors)

ii) the distribution of the resource between the processes on

a particular processor.

The latter problem can be readily handled by existing techniques,

it being exactly the problem faced on a standard uni-processor with

the scheduling system. acting as a master or controller. Consideration

is therefore given to the former phase, that is the sharing between

processors where no mastership exists.

- ~ -

5.2. The Abstract Resource Ring

The problem of managing access to a single resource will first be

considered and this will later be generalised to cover the

management of several resources.

<

A data structure will be required to represent the current

ownership of the resource and those processors wishing to use it.

Clearly, this must be placed in the shared memory of. the multi-

processor system if all processors are going to access it. It will

also be necessary to have algorithms to access and alter the fields

of the data structure to enable the required resource sharing to

take place.·

A node is required in this data structure for each processor which

may wish to access the shared resource •. A suitable ordering of the

---nodes is in the form of a closed ring •. Each- node is required to

maintain information on whether the processor requires use of the

resource and also whether the processor is the current owner or not.

This may be held in two boolean fields known as WANT (which if set

indicates that the processor requires the resource) and CAN (which

if set indicates that the processor.is the current owner). Also,

a separate field (NEXT) containing a pointer to the next node on the

ring is required.' The whole data structure must be accessible to

all the processors, and each field must be individually addressable.

This structure is known as an Abstract Resource Ring (ARR).

- 96-

I '

Two algorithms are required, firstly to enable a processor to gain

access to the resource and secondly to relinquish it. The

algorithm for gaining access to the resource (GErRES) consists

of setting,the WANT flag and then, conceptually, looping inspecting

the,CAN ,flag until it is set. Once the CAN flag is set, then the

processor has become the owner of,the resource and may freely use it.

The second algorithm, to relinquish the resource (PUTRES), consists

of clearing the WANT flag then inspecting the WANT flags of the other

'processors. When one is found set then ownership (indicated by the CAN

flag) may be passed. This is accomplished by the processor clearing its

own CAN flag and then setting that of the requesting processor. The

second processor will then discover that its CAN flag is set and will

then start to use the resource. These two algorithms are shown in

Figure 5.2.1.

~'---'--'--In order to demonstrate that these basic algorithms can provide. a

satisfactory resource sharing tool, it is necessary to show that

only one processor may become the owner of the resource.

Theorem

If all accesses to the Abstract Resource Ring are made only

through the GErRES and PUTRES algorithms, then the number of

set CAN flags can never increase.

- 97 -

getres =

putres =

i: = our processor number;

WANT of node [i]:= set;

~ CAN of node [iJ = clear ~

nothing

od· -'
end· --'

begin

end· -'

i: = our processor number;

WANT of node [i] := clear;

j: = i;

~ WANT of node [j] = clear ~

advance j to next processor number

od· -'
CAN of node [i]

CAN of node [j]
= clear;

= set

Figure 5.2.1. Basic GErRFoS and PUTRFoS algorithms

- 98 -

,
Proof

i) Consider firstly the GETRES algorithm. 'In,this algorithm, the

CAN flags ,are 'not assigned to, only the CAN flag of the node

corresponding to the processor is inspected. Therefore the number

of set CAN flags cannot increase by using GETRES.,

ii) The PUTRES algorithm has two steps involving the alteration

of CAN flags. Firstly, that in which the CAN flag of the curre'nt

owner is cleared and secondly that of setting the one of the new

owner. If the number of set CAN flags is not to increase then two

conditions must be fulfilled _

a) The CAN flag must be set prior to clearing, otherwise the

'number set increases by 1 i.e. PUTRES must not be executed

unless the CAN flag is set

b) The resource should not be passed to more than one new

processor i.e. PUTRES should not be executed twice in the

same machine.

The first condition can be met by ensuring that the CAN flag is

set prior to passing'the ownership. The second by ensuring, within

the operating system, that a PUTRES of the resource is not started

twice.

If both of these conditions are met then firstly the number of set

CAN flags is decremented and then incremented, leaving the total

unchanged. If the Abstract Resource Ring is initialised with a

single CAN flag set (a single owner) then there can never be more,

- 99 -

than a single owner following a sequence of GETRES and PUTRES

operations and the necessary resource protection is obtained.

When the PUTRES algorithm is invoked, a search is made of the ARR

for another processor to pass ownership of the resource to. If

none is found the algorithm does not terminate, but continually

loops. Clearly, this is highly undesirable since it may be some

time before the resource is required again. To overcome this

excessive use of processor time a separate PUTRES activity is

created to dispose of the resource. This may be a separate process

or a function of the operating system. This activity periodically

checks the resource ring, attempting to relinquish ownership until

the resource can be disposed of.

Basically, the problem is to decide when next to check whether it

is possible to pass ownership. Two strategies may be employed in

--- --determining this time:-

a) Periodic restart

b) Interrupt restart

With solution a), the PUTRES activity is restarted periodically,

that is, after each search of the ARR, the activity suspends itself

for a period of time. It may also be incorporated into a section

of the operating system which is executed periodically, for example

)he scheduler. - To reduce system overheads with the ,latter
• f;:

implementation, a flag should be set when the resource is owned but

- 100 -

not wanted so that the scheduler only performs the check when the

flag is set.,

W~th the second solution, the interrupt restart, the PUTRES activity

is only restarted when another processor requests ownership, that is

as a function of the GETRES algorithm. A mechanism is, therefore,

required whereby a processor performing a GETRES may restart the

PUTRES activity in another processor (if present).

A mechanism whereby this may be accomplished is by using interrupts.

If a hardware path corresponding to the Abstract Resource Ring is

formed such that each processor may raise an interrupt in its

successor processor, then when a GETRES is initiated, an interrupt

can be sent to the successor. Clearly, the successor need not be '

the owner so whenever an interrupt is received by any processor it

must be passed to its successor. Thus the interrupt will circulate

--~--·---round the ring. When the processor with the-PUTRES activity is

interrupted, it should restart the activity. As a consequence, the

resource ownership will be passed to the requesting processpr.

As the interrupt is passed round the ring, it will eventually reach'

the processor which initiated the cycle. Clearly, there is no need

for the interrupt to pass any further. ,If each processor maintains

a count which is increment each time an interrupt is sent and

decremented when one is received then the interrupt should be passed

only if the count is negative.

- 101 -

Since interrupt cycles are started when a GETRES is initiated

then two (or more) interrupt cycles may be in progress simultaneously

if several processors request the resource (see Fig. 5.2.2.).

However, when one processor receives an interrupt, it is not passed

on if there is one outstanding, so the many interrupt cycles are

cOalesced into one.

The performance characteristics of the two solutions (the Periodic

Restart and Interrupt Restart) are different with each performing

better under certain conditions. With the periodic solution, the

PUTRES activity may be needlessly restarted if the periodic time is

too short. However, if the time is too large, there may be excessive

delay in passing the resource. There is, however, no requirement

for an interrupt path to exist between the processors.

With the interrupt restart, if a GETRES unilaterally causes an

interrUpt to be sent then one could be issued while the resource

is still in use. Also,the interrupt path must be created.

With both solutions, the PUTRES activity and GETRES must be non­

interruptable with respect to each other (except for the waits).

This is to prevent the resource, in a "partially-passed-on" state

being claimed by the GETRES causing the basic assumptions to be

violated.

- 102 -

/

\
\

\

Interrupt A initiated
interrupt B terminated

,..----.,

'0 .

Interrupt B initiated
interrupt A terminated

Path of Interrupt A •
Path of Interrupt B -.-.-~

Figure 5.2.2. Multiple Interrupt Cycles

- 103 -

5.3. Multiple Rings

So far, the discussion has been based upon a single resource.

However, in a multiprocessor system many·resources will be shared'

and each will therefore need protecting with a synchronising mechanism.

Therefore the mechanism described above needs extending with several

resources.

The function of· the Abstract Resource Ring will be split into two

parts and each will be considered separately, these being

a) the handling of the ring nodes

b) the operation of the PUTRES activity.

Firstly, the basic ring structure and operation. Clearly, a ring

structure similar to the structure already devised will be required

for each resource. Since every resource may not be used by all the

--·-------processors, the resource rings may not be, identical. The rings need

only contain nodes for those processors which may access the resource.

The functions of GETRES and PUTRES also need to be modified to include

a parameter giving the identification of the resource required. Each

processor will require a routing table to convert this identification.

into a pointer to the appropriate node. One.simple technique whereby

this may be accomplished is by numbering each resource and using that

number as an index to a row of pointers. If this scheme is followed,

a structure of the type shown in Figure 5.3.1. is obtained.

- 104 _.

P1

8-
P3

Resource
2

Resource 3

Resource
1

Figure 5.3.1. Multiple Resource Ring Structure

- 105 -

With the PUTRES Activity, using the second solution (the interrupt

Wakeup mechanism), complications arise if multiple PUTRES activities·

are in existence ·on a particular processor, as may, in general,

be the case. When an interrupt is received from the predecessor,

the question arises as to which of the PUTRES activities should be

restarted. If multiple PUTRES activities are· created then either

some message needs to arrive with the interrupt to indicate for

which PUTRES activity it is intended or all the PUTRES activities

should be resumed. Another disadvantage with this solution is the

potential number of interrupts circulating, and the associated

counting complexity. A more rational approach would be to unify the

mechanism. The PUTRES activities could be merged into a single

.routine, which could check for resources owned but not wanted, with

an interrupt manager being created. When the GErRES routine decides

an interrupt should be issued, a request is made to the interrupt

manager. When an interrupt is received, the interrupt manager will

restart the resource checker and then perform the necessary counting

and pass the interrupt if required.

Clearly, the sending of two interrupts in quick succession will

frequently make little difference in response. Some of the interrupt

requests from the GErRES routine may be ignored by the interrupt

manager, for example, if it has just passed. an interrupt round the

ring or if two processes perform a GErRES for different resources in

quick succession.

With the first solution, that of periodic restart, the existence of

- 106 -

multiple PUTRES activities causes no difficulties with restart.

The only disadvantage is the potential number of activities which

may be in existence and the corresponding overhead within the

scheduling system and possible reduction in the number of user

processes which can be supported. If several PUTRES activities

would consume too many scheduler resources (e.g. items in the

scheduler list), a single resource checking procedure could be

adopted as for the interrupt restart. If the PUTRES activity is

incorporated into the scheduler, then a,count of owned but not

wanted should be maintained. The scheduler then,need only check

if the count is non-zero.

- 107 -

5.4. Temporary Resources

It has been assumed in the previous sections that the ring structure

was a permanent part of the system. It "is reasonable that, for

certain permanent shared system resources, the ring structure

should be created at system ,initialisation, in the same way as other

system tables, with a node for each processor in the system. However,

many of the resources used in the system will be of a transitory

nature, being required only during the running of certain sets of

complementary programs. It would be possible to create a number of

rings at system initialisation time which may be used for these

transient resources. However, this may cause unwanted interaction

between two (otherwise independent) programs which happen to be using

one particular resource ring for two completely different transient

resources. Some mechanism must therefore be provided to enable

dynamic creation of resource rings.

We require a procedure for uniquely creating rings, adding new nodes

to existing rings and distinguishing between the different resources.

One possible solution would be to maintain a table giving identifying

information about the temporary resources and a pointer to a node on

the ring. A system resource ring will also be required to protect

this shared table as it is a sensitive resource. This ring may

suitably be called CREATE and the table RESOURCES.

A processor running a process requiring access to a temporary resource

- 108 -

must first call an allocation routine to obtain the resource number

of the temporary resource. After all the processes referencing this

temporary resource have completed, the processor should-remove itself

from the resource ring by calling a deaUocafion routine.

The allocation procedure claims ownership of the CREATE resource

to obtain access to the RESOURCES table. The table is inspected

to see if a resource ring for that resource already exists. If a

ring exists, then a new node-is added to the ring for the processor.

Adding a node to one of the rings consists merely of altering the

pointer and not the_value fields. Since the pointers are only

modified when a new node is added to (or removed from) the ring and

the corresponding processor must own the CREATE resource, only one

processor may be modifying the pointers. The addition should be made

in a wa:,r such that the rin-g is never broken, that is, the pointer

(NEXT) field of the new node should be set to point to its successor

---- -- before the NEXT field- of-its future predecessor is -altered. If a ring

does not exist a free resource number is chosen and the description of

the resource is entered in the RESOURCES table. A ring consisting

of-a single node is created and a pointer to this node is placed in

the entry for the new resource. In both cases, .the number of the

temporary resource is returned.

_The deallocate procedure operates in the opposite manner. Firstly,

both the resource to be deallocated and the CREATE resource are

- 109 -

claimed. This is necessary to prevent several nodes being removed

simultaneously and also to prevent another processor searching the

ring while the node is being removed. Note that CREATE should. be

claimed last to prevent possible deadlock.

If the processor performing the deallocate is the only processor on

the resource ring, then the entry for that temporary resource is

removed from the resources table, enabling that entry to be used

for another temporary resource in the future, and CREATE is released.

If, however, other processors are still on the ring, then the processor

performing the deallocate must wait for one of the other processors

to request the resource. While waiting, however, the CREATE resource

should be released to allow other processors access to the RESOURCES

structure. As with PUTRES, this waiting can be achieved more readily

by creating a separate activity to allow the scheduler to continue.·

. When a request is made,. the processor should remove itself· from the

ring and pass ownership to the requesting processor.

The operation of these two procedures is shown pictorially by the

state of the data structures at various stages in Figure 5.4.1. A

possible implementation of these procedures will be found as part of

Appendix 1.

- 110 -

CREATE· CREATE

XYZ

P1

Initial State P1:R:=ALLOCATE ("XYZ")

CREATE

XYZ

P1 P2

P2:R:=ALLOCATE (''XYZ")

CREATE CREATE
.

,/'-

V 011 XYZ --
~

1--- --- -

r----·:--

P2

P1: DEALLOCATE (R) P2: DEALLOCATE (R)

Figure 5.4.1. Example of operation of Allocate and
Deallocate routines.

- 111 -

5.5. A Comparison of Synchronising Tools

For a synchronising algorithm to be a viable tool in a multiprocessor

system, it must not consume too many of the system resources during

operation. Two factors, at least, are"a useful indication of the

performance of such an "algorithm. "These two factors are th~ amount

of time during which the resource is requested but is unowned and

the amount of time between becoming owner of the resource and being

able to use it. These may be thought of as the times between

requesting a resource and being allocated it and from being allocated

it to using it. The Abstract Resource Ring will be compared with

two other synchronising tools found in the literature. These are

.firstly Dekker's original solution to the problem as described by

Dijkstra (22) and secondly a more recent solution devised by

Lamport (48). These two algorithms are reproduced in Figure 5.5.1.

The algorithms will be compared on the two characteristics noted above.

Firstly, algorithm response time. Ideally, a processor should be

able to use a resource immediately after it has been passed (or

gained) ownership. By inspection of the algorithms, it is seen that

both the Dekker and Lamport algorithms contain multiple loops. In

particular, both algorithms require a processor to inspect the state

of all" other processors with possible secondary loops in certain

circumstances. In contrast, however, the algorithm for the Abstract Resource

Ring contains only a single tight loop upon a single variable.

In order to investigate this static cost of accessing a resource

- 112 -

claim =

label:

release =

besin

i: = our processor number;

!!.h.ll! turn <.:> i .!!2.

c[i}:=1;

gb [turn) = 1 ~
turn: = i

fi
od' -'
c[i]:=O;

~ j : = each processor number except ourselves .!!2.

od

end' -'

end' -'

gc [j) ~ 0 then

goto label

i : = our processor number;

turn: = 0;

c [i1: = 1 • , .
b [i1: = 1

where b and c are arraya dimensioned 0 to N, both initialised to

1, and turn is initialised to O. Processor numbers range

from 1 to N.

Figure 5.5.1 a) The Dekkar algorithm

- 113 -

,

claim =

end' -'

release =

end' -'

i : '= our processor number;

choosing [i] : = 1;

number [i) : = 1 + maximum of number [1) to number [N]

choosing [iJ: = 0;

for ' j : = each processor number do - -

od

while choosing [j 1 < '> 0 do

nothing

od' -'
~ number [j]<> 0 and

(number [j] , j) <.(number [iJ, i) ~

nothing

i : = our processor number;

number [i) : = 0

where choosing and number are dimensioned 1 to N, both initialised

to 0 and ' (i,j) <. (k,l) ;: (i< k) or ((i = k) and (j < 1»

Figure 5.5.1. b) The Lamport algorithm

- 114,-

empirically, the algorithms of Lamport and the ARR were encoded on

a single processor system, but with the data structure that would

be required for several. Calls to the.GETRES and PUTRES routines

were placed in a loop. Table 5.5.2 gives the times obtained with

various numbers of processors. The cost of the nested loops can

be observed in the times given in the table.

Secondly, what may be called wasted resource time. This is the

time during which at least one processor requires the resource, but

due to the transitional state of passing ownership (or gaining

ownership) the resource remains unowned, or owned by a processor

which does not require the resource. With the Dekker and Lamport .

algorithms, this cost factor is due to the 'bartering' nature of the

algorithms and the fact that the resource is freed after it has been

used by a processor. With the Abstract Resource Ring, this overhead

may be incurred when a processor performs a PUTRES but no processor

requires the resource.' If a processor later requires· the resource,

it will be unable to obtain ownership immediately, but will have to

wait for the owning processor to check for unwanted resources. The

ARR therefore contains some tuning facility in that the frequency of

checking for resources may be altered either by changing the frequency

with which interrupts are sent or the .time step between reactivations

of the PUTRES activity. If the frequency is increased, the overhead

of wasted resource time will decrease, but the cost of performing
,

the check will increase.

- 115 -

..
.

Loop Size ARR Lamport's Algorithm'

N = 4 N = 8 N= 16
.

1000 ·0.81
. .

0.94 1.06 1.31

10000 8.03 9.44 10.64 13.04

20000 16.05 18.88 21.29 26.08

30000 24.07 28.35 31.95 39.15
...

• N gives the number of processors in the ring

Note: all times are in. seconds

Table 5.5.2. Response time comparison

- 116 -

Shared resources which are heavily used, that is when one processor

releases the resource another requires it will suffer negligible

overhead with the Abstract Resource Ring since a PUTRES will always

be completed with no requirement fora delay following a retry.

However, the overheads for the Dekker and Lamport algorithms will

increase with the number of processors taking part in the resource

sharing. Both these algorithms have a section of code which,ideally,

would be executed by a single processor at one time. Checks have to

be made for multiple execution of that section of code, with possible

retries in the case of Dekker's algorithm •. As the number of

processors increases, so does the possibility of simultaneous

execution of the critical section of code by several processors and

correspondingly the potential overhead of the· algorithms.

It is worth noting that if a resource is heavily used (as mentioned

above) then the only overhead associated with the Abstract Resource

Ring is the cost of locating the new owner within the PUTRES routine,

that is, the cost of searching the ring structure~

To confirm these predictions, the performance of the algorithms was

tested under simulation conditions. The simulations were of a coarse­

grained nature, with an algorithm-step as opposed to a machine

instruction being executed by each processor in turn. This is a

sufficient formulation of the algorithms, since no action between

algorithm steps may affect the synchronisation being performed, and

each step is a single action.

- 117 -

The simulation program was written in the BASIC language and

enabled a number of resources to be shared amongst a number of

processors. Both the number of resources and the number of

processors were supplied as input data. Each processor would

randomly choose one of the available resources, claim that resource,

hold it for a number of algorithm steps and then relinquish the

resource. A further number of algorithm-steps would elapse before

that processor would again choose a resource and repeat the cycle.

The size of the time periods holding and not holding the resource

were specified by input data. The three algorithms were incorporated

into the simulation progr~.

The three algorithms were compared under various configurations and

workloads. Figure 5.5.3 shows graphs drawn from some of the results

obtained from the simulations. All the graphs show the operation

with six resources being shared. Two of the graphs a) and b) show

----- results for a varying number of processors while graphs c) and d)

show results for varying workload, that is frequency of resource

access. For each variant, a graph is given showing the two critical

measures of the performance of the algorithms. The wasted time,

expressed as a p:rcentage of total elapsed time, is shown in graphs

a) and c) and graphs b) and d) show the total resource usage expressed

as a percentage of total possible resource usage.

From these graphs, it can be seen that a performance similar to that

predicted is obtained. As the load upon the resource sharing

mechanism is increased, either by increasing the number of processors

- 118 -

L,.J
-L .. '

CY-:
L~

f·-
t"'-f

.... r:,
:~J::

:0'"

,
X~ r.1

/J

I

·1 j) . , (.
J_

Cl
'-'

Q
l).

:"
I ,

f' .L

r.;
.).

1.

3.
I
I.:.

• I

,
D .~ ~
I .~
~ . ~ ::E·_-3 ::.. ___ ·-,- .. ~-:--------~=c_----___ =::r:p---:--- u;-

fA
L . _ .'

·T~~~~_T_-=-- "--:------3:::E:-:-:-. --'--:;;-'i::"
. __ .L ' -'..- ',. - - -~-~...:,;:r-__ ~" __

-----:.._-= .. =

U\

Cl>

~
[z. .

0 .. -----,----
•• , ,
·V) ") 11 5 ~ .q , .)

1 't 16 18 I.
• ,} ,(, I/.;

N0M8ER or PROC[SSORS

"-. ,-

'. . - . .

'J I'
i

1
~ , -

r.;
<.1.

1

o -'--'~--' --r--·_·-_·:"· .. -----
'I --,

/

---"---
1/ , c

" ,I 1 4

'~jI'18[R er PRcnSSORS.

.---:----"--., ~

11~ ,) ll:
J

I
)0 _;0

•
'" • 1/\ • 1/\

. I

o·
N·

I . '

,'- "

; :'

",,' ..

'; .:.

~: . - -'.'

.. ,,..,
:!-.- .

1--··

.. , '

C
<..1 .•

i' U.

" I ,

G .1

r:, .
0..1.

·4

'J
,J,

')
L.

I

1 .. J

[XTfRN/,L

' ..

.' ;/-C­
.~-

--,------ -;-::--...--'
;7

.1

,
'" , U\ .,
U\

f
g,
.
r..

,
v', n' .. ,\' '0

. t..:...'. . .1
' '"":"' ---, . .. _"

--,
"

11) ,

: ""

o
LI.

'7

G

f' \
J,

'1
') ,

L.

,Q -; '_._"
(./ - 0 __ -. •

i Q _,','
v"':

i
'-7, "
I ;)

.~ .. -

'," .

•
~
~
11\,

G>

~'
'M
r..

or by increasing the frequency of access to the mechanism, so the

performance of the Abstract Resource Ring improves.against that of the

other two algorithms. Under light usage, where frequent use of the

PUTRES activity will be required, the ARR performs poorly compared

to Lamport's algorithm. As the number of processors increases, the

Abstract Resource Ring rapidly improves in performance and with a

heavy workload gives considerably improved performance (only half of

the overheads) against Lamport's algorithm.

Therefore the Abstract Resource Ring is most suited to the protection

of heavily used resources, in particular potential system, bottle necks.

In Chapter Seven it will be shown that even with less frequently

used resources the ARR gives acceptable performance.

Another aspect that should be considered when comparing the various

algorithms is their ability to distribute the resource usage among

---~--- the processors.' As' was noted in Chapter Three,---some synchronisation

algorithms may allow processors to remain blocked indefinitely if

resource usage is heavy. The algorithm developed by Dekker falls

into this category. Lamport, however, has 'developed an algorithm

which guarantees service on a first-come - first-served basis.

With the Abstract Resource Ring, however, some scheduling may be

incorporated. If the standard searching algorithm is used then no

processor will be blocked, the use of the resource being on a form

of Round-Robin. However,this search algorithm may be replaced by

- 123 -

another which locates the next user of the resource on another

basis, for example on priority. This adds an extra dimension of

flexibility to the ARR.

- 124 -

5.6. Multiple Users of a Resource

In the preceding sections of this chapter, it has been assumed

that for each protected resource, only a single processor may

access that resource at a given time. However, a class of problems

have been described, the.readers and writers problem (17), in which

several types of resource use exist. With some of these types it

is possible for several users to simultaneously access the shared

resource.

With the Abstract Resource Ring as described, this is not directly

attainable. It may also be necessary, within the scope of multiple

users, to periodically reduce the number of processors allowed to

access the resource. For example, a file may be read by any number of

processors, but when one requires to write to that file, it may be

necessary to stop any other reading and writing.

Two very similar solutions to this problem are presented in this·

section, the first using the Abstract Resource Ring in its current

format, the second using a modified form of the ARR.

making note in the data block· as necessary. Access to the data

block is then released by calling PUTRES. This approach requires

that the code handling the usage information block be placed in the

user program. This may place unwanted management responsibilities

upon the user, although great flexibility may be achieved by

careful structuring of the data block.

The second approach involves modification of the Abstract Resource

Ring. As will be seen in the next chapter, the modification improves

error recovery capabilities of the ARR. If the ARR data structure

is altered (in some sense inverted) to consist of a node per

processor as before, but consisting of only a WANT flag and pointer

to the next. node in the ring. The CAN flags can be replaced by a

single location for each. resource ring. This location will contain

the name (number or other identification) of the processor currently

owning the resource. The GETRES procedure now loops inspecting this

--~"- .. - --new OWNER location ,until the processor',s identification is placed

in it. PUTRES places the name of the new owner in the location rather

than clearing and setting the CAN flags.

If multiple users of a resource are required, they may be incorporated

into the ARR by providing several OWNER locations for each ring. The

number of OWNER locations would specify the maximum number of

simultaneous users of the resource. A call to the GETRES routine

would specify the resource required and also the number of ownership

locations required. The processor would loop within the GETRES

routine until the required number of ownership locations contained

- 126 -

,

its name and would then be able to use the resource.

Unfortunately, this algorithm is not sufficiently strong to

counteract a possible deadlock. This may be shown by considering

a case where four ownership locations exist and two processors

require three of these locations each. It would be possible for

the processors to obtain two of the ownership locations each thus

blocking the other, and the resource.

This problem may be overcome by only allowing a single processor to

obtain "multiple ownership" at anyone time. This may be accomplished

by adding another location, say MULTIPLE, similar to the OWNER locations.

Before a processor may attempt to obtain multiple ownership, its

identification must be placed in MULTIPLE. The problem arises when

two processors partially claim multiple ownership but insufficient

ownerships remain to complete either,the problem attacked by the

--.-.- Banker' sAlgori thm (22) •. Since any processor between one passing

an ownership and the mUltiple requester which will have a request

honoured requires only a single ownership of the resource, the

ownership will be used and then be passed on, eventually to the

. multiple requester. After sufficient ownerships have circulated and

been claimed by. the multiple requester, it will use the resource.· A

consequence of this strategy of having a single multiple oWner is

that a processor requiring multiple ownership of a "higher order"

than that which it already has must not retain any of its ownerships

until its identification is placed in MULTIPLE since the ownerships

- 127. -

may "be required by another processor. This implies that, in general,

a processor may not increase its ownership while keeping those it

has.

Once a processor has achieved its required number of ownerships, it

may pass the MULTIPLE location to another processor since it may

only relinquish the ownerships it ha~without any possible deadlock.

The PUTRES and PUTRES ACTIVITY must be modified to pass all the

ownerships held but only passing to a processor which has need of

an ownership, there being no advantage in passing on ownerShip to a

processor which already has its requirements met.

- 128 -

· .

CHAPTER 6

THE ABSTRACT RESOURCE RING

AND RELIABILITY

6.1. Introduction

"The use of computers in on-line control situations and for
other applications giving rise to ever-more stringent reliability
and availability specifications, resulted in the construction
of systems including two or more central processing units ••••••
As a result of the multiplicity of units in such multiprocessing'
systems, failure of anyone would degrade, but not immobili~e,
the system, since a supervisor program could re-assign activities
and configure the failed unit out of the system." (50)

If the potential for increased reliability in a multiprocessing system

is to be realised, then care must be taken to ensure that the shared

resources, in,cluding system tables, cannot be corrupted or lost due

to the failure of a system component (e.g. the central processing unit).

In this chapter, a brief classification of failures is made then the

design of the Abstract Resource Ring is re-analysed and an alternative

implementation is discussed which enables graceful degradation of the

multiprocessor system to take place for one of the classes of failure~

- 130 -

6.2. Classification of Failures

Failures may be categorised into two main groups, namely

1) Hardware failures

2) Software failures

Each of these groups may be subdivided into the following two partitions

a) Cessation of operation

b) Fault in operation

Examples of the type of failure in the four subgroups are

1a) Cessation of operation of a processor may arise if the operator

switches off a processor or if a power failure occurs

1b) Faults in hardware can arise in many ways evidencing themselves

in such phenomena as 'dropped bits' in memorY accesses, a failure

in addressing, etc •

. ~. 2a) Cessation of process execution may arise because of, a system

deadlock, or a scheduler malfunction

2b) Faulty operation of a process may be evidenced in "random"

corruption of code or data due to incorrect coding •.

Whilst perfect security and reliability is clearly desirable it can

never be achieved in the hardware. At best, the probability of

failure can be reduced to a suitably low level. Many of today's

reliable systems provide their reliability at a heavy cost in terms

- 131 -

of duplicated components and special logic. Yet with the current

state of the art , many areas of potential error are being overcome.

For example, store protection and addressing mechanisms have largely

overcome the problem of. user programs corrupting system code and

data. Thus, reliability against a certain type of failure can

frequently be achieved in a cost-effective manner. In the bulk of

this chapter, consideration will be given to providing reliability

to cover class 1a) of failures above, with respect to the CPU only.

In sections 9 and 10 of the chapter, brief consideration is given

to other errors.

The standpOint from which the solution presented in the next section

was taken was to provide a version of the Abstract Resource Ring

which would allow the remaining processors to continue to share the

resources after the failure of one or more processors.

--,----~-. - ..

- 132 -

6.3. Initial Death Detection

The starting point for the investigation was the Abstract Resource

Ring with a single resource'using the interrupt mechanism to ensure

that the resource ownership would be transferred. However, this

arrangement will not work as it stands if one or more of,the

processors on the interrupt ring ceased operation ("died"). Two

possibilities could arise:

a) (see Figure 6.3.1.) The interrupts would not complete a

cycle of the ring, proceeding no further than a dead processor. In

the Figure, processor A can never receive an interrupt to cause it

to pass the resource, so it will be lost to all processors except

A itself

b) A second, and possibly more catastrophic, situation is that

,the dead processor owned the resource when it died. The resource

would then remain unusable.

Clearly some action is required when a processor dies. This action

is required in two phases, firstly the death of the processor must

be detected and secondly recovery action must be taken for the dead

processor. It is worth noting that for the system to continue to

give a response, though degraded, the only recovery that ~ be

taken is that of the shared resources. This is because the processors

are assumed to be otherwise independent. Thus it appears that

recovery action is only necessary if the deaa processor was actually

using, that is had ownership of, the shared resource. This

- 133 -

~ , /'

~nterruPts
/

D

Resource
Requestors

c

00

o

Figure 6.3.1.

- 134-

Dead Processor

Resource
Owner B

o

information is readily accessable from the ring data structure by inspection

of the CAN/WANT flags for the resource to which the dead processor

has access. This makes the Abstract Resource Ring system a very

good medium for death detection and error recovery initiation •

. The first.solution followed naturally from the constraint which.

must be placed upon the recovery:-

only one processor may perform recovery action on the death of

another.

A suitable candidate for the processor performing the death detection

is the predecessor of the dead processor, .. this always being unique.

in a ring structure. If, when an interrupt from the ring is received

by a processor, it acknowledges receipt of that interrupt by sending

a reply to its predecessor, then the predecessor may ascertain whether

its successor is dead or alive. If. a reply is received, within a

suitable time span, then· the successor is assumed to be alive,

otherwise it is deemed to be dead. Once a processor has discovered

that its successor is dead, recovery action may be taken.

The form of the error recovery, for the single resource, is shown

in Figure 6.3.2. Firstly, the state of the WANT flag of the dead

processor is remembered and it is then cleared. This step is to

prevent the resource ownership need lessly passing to the dead

processor •. The processor performing the recovery should now wait for

a sufficient length of time for a processor which maybe in the

- 135 - .

no

GETRES yes

clear WANT

yes

grab resource

is WANT
set?

reinstate resource

remove from ring

Figure 6.3.2. Basic Flowchart for Recovery Procedure

- 136 -

no

progress of passing ownership to the dead processor.

Secondly, the CAN flag is inspected. As stated above, no recovery

action on the resource is required unless the CAN flag is set. If

this situation arises, the ownership of the resource may be forcibly

acquired by the (unique) predecessor of the dead processor (termed

"grabbing") by clearing the CAN flag of the dead processor and

setting its own. The need for the constraint above now becomes

apparent. If several processors attempted to recover from the death

of another processor, then more than one of them could become the

owner of the resource during the recovery period. This would violate

the basic premise of the mechanism.

If both the CAN flag and WANT flag of the dead processor were set

then not only did it own the resource, but it was potentially using

it. In this case,some recovery action must be taken to.check the

.----.-.. -internal consistency of the resource. This may involve a number of

steps, for example comparing forward and backward pointers within

a data structure etc. In section seven of this chapter, a description

of a technique is given whereby a shared data structure may be updated

in a manner such that it may be restored to a self consistent state

even if the update was only partially made.

·Having returned the resource to a useable state, if necessarY,

recovery action needa to be made to the ARR structure. This recovery

. is required even if the dead processor was not using the resource.

The ring structure mechanism will not function since interrupts

- 137 -

cannot pass the dead processor. The dead processor must be removed

from the ring, and the corresponding interrupt path needs to be

reformed. Prior to removing the node corresponding to the dead

processor,' the recovery processor should obtain the resource, if it

does not own it, by performing a GETRES. The condition is laid down

that a processor may only remove a node from the ring if it owns

the corresponding resource. Since only a processor performing a

PUTRES, and hence owning the resource, may inspect the nodes of

other processors, no other processor may be inspecting the ring while

the node of the dead processor is being removed(by the resource ownerl.

The removal is easily accomplished by replacing the NEXT field of

the recovery, processor's node with that of the dead processor.

With the above mechanism, a system sharing a single resource may

gracefully degrade in the presence of a single failing processor.

However, many deficiencies remain in the system. In the next section,

these deficiencies will be presented and solutions to them will be

given.

- 138 -

6.4. Rigorous Death Detection

The following deficiencies can be observed in the recovery aspect

of the Abstract Resource Ring as described in the previous section:

i) recovery takes place within a single resource environment only

ii) in general, recovery cannot be made from multiple deaths

(see below)

iii) a processor in a repeated stop/start state may be deemed dead,

but "come back to life" and potentially cause havoc by using a

resource ownership which has been removed from it

iv) the potential need for operator intervention to reconnect lines'

to ensure that the interrupt path corresponds to the Ring Structure.

To show the validity of point ii),above, consider Figure 6.4.1. Processors

A and B have both died, with B owning and using the resource - none of

processors A, C or D want the resource. On discovering the death of

processor A, as shown in the flowchart of Figure 6.3.2, processor D

performs a GETRES on the shared resource. However, that GETRES can

never be satisfied since the owning processor is dead and cannot be

recovered. That is, a form of deadlock arises.

The development of,the Abstract Resource Ring will be described, and

it will be shown how the developments overcome the deficiencies above.

The first matter to be considered is the recovery with multiple

- 139 -

/

A

/

/

D 0 0 B h. r

/

c o 0

Figure 6.4.1.

- 140 -

rings. In section 5.3. it was postulated that a single process

on each processor (the interrupt manager) should administer the

interrupt prompting mechanism. Any prompting interrupts would then

circulate the Ring Structure passing to every processor, not just those

capable of sharing a particular resource. This led to the conceptual

splitting of the Abstract Resource Ring into two classes of rings:

a) "Software" Rings - the ring structures used within the

sharing of particular resources

b) "Hardware" Ring - a ring structure showing the physical

ordering of the processors, and used by

the interrupt manager on each processor.

This breakdown of functions naturally allows pr~cessor death

detection to take place within the context of the Hardware Ring, on

a similar principle to that employed with a single-resource. The

death detection, therefore, becomes independent of the actual resource

sharing.

, -'-

The interrupt manager's function is modified to include the reply/

time out mechanism, as proposed in the previous section, to enabl~

the death detection to take place. When a death is detected, the

recovery·process must firstly rebuild the Hardware ring by removing

the node for the dead processor and arranging (with possible operator

intervention) for the interrupts to be sent to the new successor.

This may be accomplished because of the independence of the Software

and Hardware Rings. It has been seen that, with a single resource,

- 141 -

detection of multiple deaths was severely handicapped. But for

the interrupt manager operating under the Hardware Ring, the death

detection may be continued before recovery of any of the Software

rings is·started.

Having rebuilt the Hardware Ring, the recovery process may then

perform any recovery necessary for each Software Ring to which the

dead processor is attached. The operations performed will be directly

comparable to those for the single resource case. The WANT flags of

all resources not owned by the dead processor should first be cleared

to prevent it becoming an owner, and thus increasing the cost of

recovery. For a particular ring to which the dead processor is

attached, it may be that the recovery processor has no node as it is

a temporary resource. In this case, before any necessary grabbing of

the resource or other recovery action which may be necessary can take

place, the recovery processor must add itself to the ring by the

technique described in section 5.4. Since this technique relies on

the CREATE resource, it may be necessary to overlap recovery

procedures if a second (or later) death caused the (temporary) loss

of CREATE. Once the recovery of the resource is completed, the

processor should remove itself from the ring. Also, removal of the

dead processor's node is not as straightforward as in the single

resource case, since the recovery processor need not be the predecessor

of the dead processor on a Software Ring. The Software Ring may need

to be searched to locate the predecessor. The need to own the resource

before removing a node is again required since several processors

may otherwise be searching the ring.

- 142 -

With the Software Rings, however, (except in the case of transient

resources (see section 5.4.» there is no strict need to remove

the nodes of' the dead processors. The reason for the removal of

nodes of dead processors was to enable further death detection to

be performed. Since death detection operates independently of the

Software Rings, the removal of nodes need not take place. If the

nodes are removed then it reduces the size of the Software Ring,

reducing searching costs, however when the processor is brought back

into the system after being repaired the cost of , adding it back to

the rings from which it had been removed must be paid.

Thus, by separating the resource sharing and error recovery aspects
"

of the Abstract Resource Ring, deficiencies i)and ii) above have

been overcome.

The need for operator intervention (point iv» is due to the need

-----", for'an interrupt path existing between adjacent processors. Some

multiprocessors systems have an inter-processor interrupt mechanism

(51), yet others do not. In the latter case, external I/O ports

may need to be used back-to-back (as in the system described in

Chapter Seven). When a processor dies, rearrangement of cabling may

therefore be necessary in order to keep the physical interrupt path

corresponding to the internal Hardware Ring structure. This operator

intervention may be undesirable, and is potentially error prone. An

alternative approach to the interrupt mechanism was therefore sought.

The solution to the problem proved straightforward once the principles

concerned had been isolated. The basic requirement, from the error

recovery aspect, is that a processor indicates (or fails to indicate)

that it is alive. As has been suggested previously, two basic

methods may be used to achieve this indication. It may be either

i) on demand

. or ii) periodic.

The interrupt mechanism is an example of the first type. A processor

indicates that it is alive by replying (on demand) to an interrupt.

The alternative might be expected to be of the second type.

If each processor maintains a local clock variable readable by all

processors, and this clock is guaranteed to be correct (to within a

fixed accuracy) to the "real time" maintained by the system as a

whole, then a processor may safely be deemed dead if its local time

is outside the required accuracy. A simple realisation of this

would be to have a location containing system time and have each

processor copy this time into their local time locations, say every

second. If the difference between system time and the local time

of any processor exceeded one second, then that processor would be.

assumed dead. A degree of safety may be added by using a cruder·

accuracy for checking the copy.

These local times would replace part of the nodes in the Hardware

Ring, and the interrupt manager would be replaced by a process which

periodically checked the local times to detect dead processors. This

death checking process needs to compare the local time for its successor

- 144 -

against the current system time.' If the processor is dead then recovery

action should be taken. However, if multiple deaths are to be handled

then the following processor should be inspected. This should continue

until all the dead processors immediately following the checking

processor are found.

With this technique, no operation intervention is required during the

recovery action overcoming point iv) above. However, the problem of

maintaining the system clock arises. Initialisation of any clock requires

operator interaction, and so when this action is performed, the system

clock can be initialised. Each successive processor may then initialise

its local time from the system clock. If all processors are given the

responsibility of maintaining the system clock according to the rule:-

"Each periodic interrupt, the local time is advanced. If this·

time is later than system time then the system time is advanced"

then some advantages follow. If all the processors are operating

correctly, then the local time on each will advance in step. If,

however, one of the processors dies (or stops), its local time will

lag behind the system time maintained by the others, and if it

restarts, it will not reset the system time. This difference between

system time and local time may be used to improve trapping of the

stop/start effect of point iii) above. If the local time of the

processor bears a greater discrepancy to the system time than the.

guaranteed accuracy then the system on that processor could deem itself

dead, and terminate any further access to shared resources on the

assumption that recoverY action had been taken. Note, however, that

- 145 -

if the processor was about to update a shared resource or the ring

structure when it stopped it may, on restart, continue with that

update, causing possible corruption of data if recovery had taken

place. Local time would need to be reset as a specific act if a

processor is legitimately restarted after a failure.

If the. local time accuracy is not a fixed quantity but made flexible

for each processor, then when a processor is about to enter a known

stop/start state (for example single-shot operation) the accuracy

could be made very crude. This operation would clearly be a function

of the Hardware Ring, with the accuracy for each processor being

stored in its node on that ring.

From the above discussion, the periodic scheme for handling the

function of the Hardware Ring has certain advantages. The first of

these is the ability of the total system to reconfigure itself.

--- without the need for operator intervention. In some applications,

this may be of some importance. Also, the stop/start state may be

more easily handled and, with the periodic technique, a processor

may incorporate some self checking against stop/start. However, it

does require a clock to be present on each machine in the ring.

Against the periodic scheme the arguments of the previous chapter

may be raised, that is needless restart of.the checking processes

and the ensuing processor. overhead.

-146 -

6.5. Failure within ARR Routines

So far, no consideration has been given to the consequences of

a processor failing during any of the Abstract Resource Ring routines.

Those procedures which need to be considered are GETRES, PUTRES,

the allocate and deallocate routines and the recovery procedure.

Of these, the allocate and deallocate come under the class of general

resources, since they involve a data structure protected by a resource

ring (CREATE). Recovery techniques may be applied to them as to any

other data structure.

The remaining three, however, need separate consideration •

. 6.5.1. GETRES routine

The only operation this routine performs upon the ARR data structures

.----- is to alter the value of the WANT flag. If a processor fails during

execution of this routine the ARR will appear either with or without

the appropriate WANT flag set.· Neither of the two conditions is

illegal, so failure within GETRES is safe.

6.5.2. PUT RES routine

The consideration given to PUTRES also applies to the PUTRES Activity.

The act of clearing the WANT flag cannot affect the legality of the

ARR data structure if a failure occurs, nor can the searching of the

ring. However, the passing of ownership between processors poses

difficulties. The·processor passing the resource needs to clear its

- 147 -

own CAN flag-and set that of the second processor. This clearly

takes more than one operation on most computers, so the processor

may fail between the two steps.

If the processor clears its own flag prior to failing, then the

ring appears to have no owner. However, if the setting and clearing­

operations are interchanged and the CAN flag of the new owner is set

prior to failing, then after recovery two owners of the resource

exist. Both situations break the basic condition for correct

operation of the Abstract Resource Ring.

The. technique of reliable update,described in section seven of this

chapter, may be used to guarantee a legal state of the ring structure

data.

Another solution may be obtained by adopting the OWNER location

-------techhique described in section 5.6.(that is. of maintaining a location

holding the identification of the current owner of the resource rather

than many CAN flags). The problem arises because a single piece of

information, that is the current owner of the resource, has been

distributed amongst. several nodes. In general, this distribution

of information raises many reliability problems. In this context; if

the distributed ownership information is replaced by the single

OWNER cell, the passing of ownership becomes a single operation and

difficulties with failure no longer remain,. since the location will

either contain the old owner or the new owner of the resource •

. - 148 ;..

The technique of section 7 of this chapter is the generalisation of

this technique.

6.5.3. Recovery Procedure

Two possible illegal conditions may arise if a failing processor

was executing a recovery procedure.

a) The death of the recovering process may occur after the

original processor has been removed from the ring but before

it has had complete recovery action taken over its resources.

b) An invalid structure within one of the resources may be

generated due to partial recovery being performed upon it.

Consider the latter possibility first. If the processor was actually'

performing recovery upon the resource, then it must have ownership

of the resource. The recovery procedure itself should be constructed

.~-------in a manner which,- if it is being performed as a processor which­

dies, the recovery may be restarted.

The ring structure is altered on two occasions (see Figure 6.3.2.).

Once when nodes are removed and once when the resource_is grabbed.

The removal of a node involves the changing of a single location in

the node (the NEXT field) and is a single operation and is therefore

safe with respect to a failure. However, the grabbing of a resource

is not a single operation, but it is an operation corresponding to

that of the PUTRES routine. Using the single ownership location as

described earlier, this operation may be made safe.

- 149 -

The second major condition to be considered is to be able to

continue the recovery of the original dead processor. If the

interrupt mechanism is employed, the node in the Hardware Ring

for the dead processor is removed before any recovery action is

taken. So the death of the first processor cannot be rediscovered

if the recovery processor dies. Yet, as has been noted, if the node

remains, it may not be possible to recover from multiple deaths.

'The node must therefore be removed. It then remains that a processor

must maintain a list of processors from whose deaths it is recovering

in order that they may be resumed on its own death, if the need

arises. The addition to this table must take place before the node

iS,removed from the Hardware Ring.

With the periodic death detection, no extra action need be taken.'

Since processors may discover more than one death at a time, the

need to remove a node from the Hardware Ring does not arise, so

.---'~~~~rediscovery of'a death is possible and' a partial recovery cannot be

lost. A consequence of this is that'when the periodic restart of

the PUTRES activity is used, a dead processor should not be removed

from the Hardware Ring until it has had all its resources

recovered.

- 150 -

6.6. Addition and Replacement of Processors

Once a processor has failed and been repaired, it would be desirable

to be able to add it back to the system, refltoring it to full power.

Also, the addition of new processors may be possible. Some method

must therefore be found whereby nodes can be added to both the

Hardware and Software Rings. The rings may be split into two groups

a) those to which the new processor has to be added by another

e.g. the CREATE resource

b) those to which the new processor may add itself e.g. one of

the temporary resources.

The criterion upon which a processor is added is dependent upon the

criterion for removing a node. For some nodes, the removal criterion

is that the predecessor on the Hardware Ring must remove the node

(corresponding to group a) above), whereas for others, the criterion

is the ownership of the CREATE resource (corresponding to group b)

above).

For class a) of rings above, another processor is requested to add nodes

for the new processor to each of.the rings necessary. The nominated

processor should be the new processor's predecessor if the new processor

is present on the Hardware Ring. If the new. processor is being added

to the Hardware Ring, it should be placed as the successor of the adding

processor in order to reflect the detection criterion. The request may

either be by operator command or a request from the processor via a

message system, or any other convenient method.

- 151 -

For those rings governed by the CREATE resource, the processor

may add itself by calls to the Allocate routine (see 5.4.).

- 152 -

6.7. Reliable Update

In this section, and those following, brief consideration is given

to other reliability aspects. In this section, an algorithm is

described which permits alteration of multilocation values to be

performed safely despite the class of failures under consideration.

The procedure assumes that updates by different processors are

mutually exclusive, i.e. that synchronisation already exists.

The difficulty with updates of multilocation values is that they are

not usually point (indivisible) operations with respect to the failing

of a processor. That· is, the update takes several steps (instructions)

and the processor may fail between any two steps. Thus, after the

processor has failed, part of the new and part of the old values are

found in the locations. A procedure, known as "Reliable Update" was

developed whereby a point operation is introduced into the update.

-~~-~The-extra reliability obtainable by the application of this procedure

is achieved at the expense of both storage and processing time.

The straightforward update fails because we have a data structure

changing from one state to another over several steps. The point

operation· is introduced to show when the change from the old values

to new takes· place. In order for this to be possible, we require two

sets of locations. One contains the old values and the other the new

values. Before the complete update is made, the old values are used.

Once the new values are stored, the locations containing the new

- 153 -

values are used. The point operation is introduced to indicate

which set of values is to be used.'

The operation of the procedure may be demonstrated by considering

the update of ,the table shown in Figure 6.7.1., The table contains,

a count of elements, followed by that number of elements and then

the sum of the elements.

If we now wish to add the number 4 to the table, three locations,

must be changed. The count of elements must become 5, 4 must be

added to the table (say in the sixth location) and a new total must

be placed in the seventh location.

In order to, be able to perform this update using the Reliable Update

procedure, each entry of the table is duplicated. A single bit (or'

bistable) is associated with each entry. The two values for each

---- "-entry are known as "value'" and "new value" and the bistable is -

known as "indicator". There must also be another bistable for the

table as a whole, called "flag". Initially, all bistables are

assumed to be zero and the correct entries for the table are in the

value fields (see Figure 6.7.2.).

The procedure falls into four steps, namely

i) For each entry to be changed, store the new value in the

corresponding new value field and set indicator (the order of

the two operations is irrelevant)

- 154-

14 I 12 5 I 3 6 I 26 I I
Figure 6.7.1. Origional Table

Flag El
Value 4 12 5 3 6 26

New value - - - -. - - .

Indicator 0 0 0 0 0 0 0 .

Figure 6.7.2. Table for use with Reliable Update

-155 -

ii) Set flag

iii) Copy all the altered entries from the new value field to

the value field and then clear indicator (the copy ~ be

performed first)

iv) Clear flag.

The state of the table after each phase of the procedure is shown

in Figure 6.7.3., and an example of the coding is given in Appendix 2.

Clearly, if the update is completed by the process performing it,

then the data structure conforms exactly to the assumptions made

about it on entry, that is all bistables are zero and the correct

values are all in the value fields. Two conditions need to be

satisfied for the procedure to be able to withstand a failure of the

type proposed in section two of this chapter;

a) correct and consistent values may be obtained from the data

·structure after the failure

b) .the data structure must be able to be brought in line with

the assumptions made about its state before entering the

procedure.

The crucial phase in the procedure· is step ii) and it is this step

which provides the indivisible operation for the update. If this step

is completed then the data structure is considered to be updated. If

it is not, then.noupdate has been made to the data structure.

To obtain a correct value from the table, the following rule should

- 156 -

If 12 5 3 6 26 - .

5 - - - - If 30
.

1 0 0 0 0 1 1 0 0
..

a) After Step i)

.

If 12 5 3 6 26 -
5 - - - - If 30

1 0 0 0 0 1 1 0 0 .

b) After Stepii)

5 12 5 3 6 If 30

5 - - - - If 30

0 0 0 0 0 0 0 0 0

c) After Step iii)

5 12 5 3 6 If 30 Gl
5 - - - - If 30

0 0 0 0 0 0 0 0 ·0

d) After Step iv)

Table 6.7.3. Table During Reliable Update

- 157 -

be used

Rule:- The correct value is contained in the. value field unless

both flag and the corresponding indicator are set in which case

it is in the new. value field.

Before flag is set, according to the rule, the value field is used

for the correct value, giving the appearance of the table not being.·

updated. However, when the flag is set, the values for the entries

. which have been· changed are found in the new value field since their·

indicator is set. The copying phase returns the data structure to

its.initialstate with modified values.

To recover the data structure one of two operations is performed

depending upon the state of flag. If the flag has not been set then

the update has not taken place and all that is required is to clear

all the indicators which are set (the contents of the new value

fields being irrelevant). If;·however, the flag·is·set then the

update may be completed by the recovery process performing the

remaining copy steps required to bring the data structure to a correct

state. The flag should then be cleared •.

This procedure is a candidate for safe update of shared resources.

such as the RESOURCES table.

- 158 -

6.8. Application of Reliable Update to the AAA

If the implementation of the Abstract Resource Ring based on the

OWNER flag is used the overhead of the Reliabl,e Update need not be

imposed on the basic structures and routines. If each field of

the ring structures can be implemented using a single location then,

no special security measures need be taken (see section five of this

chapter).

However, if the proposal of section 5.4. for dynamic creation of

rings is incorporated then the Reliable Update must be used. As

was' noted, the RESOURCES table i~ a shared resource. "Access to the

resource is only made while the CR~TE resource is owned; and access

is therefore made by only one processor. As such the RESOURCES table

is a candidate for use with the Reliable Update. This will impose

an extra overhead upon the Allocate and Deallocate routines.

With that addition to the Allocate 'and Deallocate routines, the

complete Abstract Resource Ring mechanism can be maintained correct

and consistent even in the presence of multiple failures of the

class considered.

- 159 -

6.9. Failures Due to Other Errors

In this section, brief mention is made of other types of failure

and their effect upon the operation of the Abstract Resource "Ring

mechanism.

Clearly, as with all systems enabling resource sharing, the

possibility of deadlocks is present. The problems of deadlocks

have been known for some time (16). Two basic methods can be used

to overcome deadlock problems. Firstly, by use of pre-emption to

force a process to release (temporarily) a resource (40) and

secondly to prevent deadlock from arising in the first place (33,40).

Brinch Hansen describes the Hierarchal Resource Allocation technique

(11) for deadlock prevention. This is the technique used within

the current implementations of the Allocate, Deallocate and Recovery

---,-'-- routines. Each of these routines requires the use of two' resources'

(the CREATE resource and one other) and so a potential for deadlock

exists. If the resources are claimed in one fixed order (the same

for all processors) and are released in the reverse order, the

deadlock cannot take place. So the three routines always claim the

CREATE resource last and release it first.

The possibility of. deadlock within.the ARR routines has, therefore,

been removed. However, by bad design of a total system based upon

the Abstract Resource Ring, deadlocks could still arise •.

- 160 -

A second area to which consideration must be given is that of

corruption of the data structures. With all systems" simple or

complex, some data is crucial to the safe running of the whol~

system. The data structures for the ARR fall into this category. ,

At best, corruption may merely cause a delay in the system by

unsolicited setting of a WANT flag. Various levels of degradation

may be experienced up to complete system failure, for example

a single Software Ring may be corrupted causing the loss of one

resource only or major corruption may take place requiring the

system to shutdown. Extra checks may be incorporated to validate

the various ring structures on ,access, but this will naturally lead

to an increase in overheads and still cannot guarantee consistency.

- 161 -

6.10. Self Stabilising Techniques

This section is concerned with the adaption of some theoreti'cal

work performed by Dijkstra. 'One specific case of data corruption,

due either to hardware or software failure, is the setting of

multiple CAN flags within a Software Ring. This implies that

several processors may (wrongly) use the resource. The question

posed by this situation is whether it is possible to return from

this erroneous or illegal state to the correct state of having just

a single owner of the resource. It should be noted that with the

version of the ARR having the single ownership location this problem

cannot arise.

Dijkstra has published a paper (23) on self-stabilising systems in

which he presents examples of systems where, by applying only valid

state-transitions within a system, the system will return to a valid

-- '<---- state from an invalid state within a finite time.- -Each system has _

a (finite) number of privileges and with each privilege there is a

corresponding state transition. At each step a daemon, either

centralised or distributed, chooses one of the privileges existing ,

and the corresponding state transition is made. The system is said

to be self stabilising if it will return to a legitimate state

irrespective of the privilege chosen at each step by the daemon •

•

If the ARR could be made self stabilising, then it would be able to

recover from the illegitimate state with multiple CAN flags set.

,Whether, in practice, this is desirable is questionnable since for

- 162 -

a period of time the critical resource may be accessed by several

processors potentially damaging the resource beyond repai~'

Dijkstra provides three examples of systems which have the self

stabilising property. The first of these causes,a single privilege

to circulate amongst the finite-stale machines in the system. This

system may, therefore, possibly,be allowed to provide the facilities

provided by the Abstract Resource Ring.

We follow the notation of Dijkstra, that is

L refers to the state of the left hand neighbour of a machine

S refers to the state of the machine itself

R refers to the state of the right hand neighbour

to which is added

W refers to the secondary state of the machine, and corresponds

-to the WANT flag of the Abstract Resource Ring~

For the system to be described, L, S and R are all represented by

integer value in the range 0 to N, where there are Nmachines in

the system. W is a boolean value giving true or false.

A system which describes the operation of the ARR is given by the,

following privileges and state changes

for the bottom machine:

if L = S ~ !!.2! W ~ S: = S + 1(~ N + 1) fi 6.10.1

- 16} -

." .

for the other machines:

if LIS and not W then S: = L fi - ---

for all machines:

if GErRES called'then W := true fi -
if PUTRES called then W := false fi , - - -_ ..

6.10.2

6.10.3

6.10.4

The following physical interpretation may be placed upon these rules.

Rules 6.10.3 and 6.10.4 govern the setting and clearing of the WANT

flag when GErRES and PUTRES are called. Rules 6.10.1' and 6.10.2

cause the ownership to permanently circulate unless a WANT flag is

set, in which case ownership will rest with that machine until the

WANT flag is cleared. It should be noted that the ownership (indicated

by the presence of the privilege) is passed to all processors, not

just those wish~ng to use the resource, So a much greater frequency

of checking for unwanted resources must be performed •

Dijkstra provides no proof for his assertion that the system he

describes is self-stabilising, but assuming it is, it can be argued

that the system described above is also self-stabilising. As

mentioned above, we have kept within,the, constraints of the original

system. 'Utat is,each of the finite state"machines has K states,

where K is greater than the number of machines. In the above system

of N machines,each machine has N + 1 states. Also, at each step at

least one machine will have one of the privileges given in 6.10.1 or

6.10.2 or will be using the resource and will eventually cause PUTRES

to be called causing the state change given in 6.10.4.' Thus the system

- 164 -

above reduces to that given by Dijkstra but with a delay placed

upon the privileges 6.10.1 and 6.10.2 while a machine uses the

resource.

- 165 -

CHAPTER T

PARALLEL PROCESSING AND THE APPLICATION

.. OF THE ABSTRACT RESOURCE RING .

. . .

•

7.1. Introduction

In this chapter, the application of the Abstract Resource Ring to

an SRC project (under grant BRG 7010) awarded to the Department of

Computer Studies at Loughborough University is described. The

project comprised three. distinct sections including the development

ofa parallel processing system and the investigation of algorithms

run on the system.

In the next section,thesystem as delivered by the manufacturer is

described. Then the overall design of the parallel processing system

and the role of the Abstract Resource Ring is outlined. Details are

then given of the implementation of .the ARR describing the basic

operation and the error recovery,capabilities. Finally, performance

figures are given for various aspects of the ARR.

'-167 -

7.2. System Configuration

The hardware supplied to the department consisted'of an Interdata

Model 55 dual processor system (42) with various peripherals. The

two processors are known as systems A and B. System A (a Model 70

processor)'has 32kb core memory while system B (originally a Model'50

processor but since ,upgraded to a Model 70) has 64kb of core memory.

Both processors have several I/O ports capable of supporting terminals

and each has a general I/O interface board, known as a Universal

Logic Interface (ULI) (43). System B also has a 9.6 Mb disc system

and a clock.

The Model 55 system also includes hardware to enable sharing of core

store. Switches are provided to allow various address ranges of store to

be shared, but of those which may be obtained only one is of interest.

In running parallel programs, the system is configured so that System

A has access ,to the top.(high address) .32kbof System B's memory. This

gives the symmetric configuration shown in Figure 7.2.1, with the two.

processors having 32kb private memory and sharing 32kb of common memory.

The address space is the same for both machines, that is the common

memory is addressed from 32k to 64k-1 by both processors.

Various items of software were delivered with the system including a

Disc Operating System (DOS) (41), compilers for FORTRAN and Assembler

and various utilities. DOS, however, was not designed to run the dual

configuration, being a crude interactive, single user, non-multi­

programming system to run only one processor.

- 168 -

disc clock

B

terminals

ULI
(. 64kb memory
memory interface/

. addressing logic

ULI

32kb memory

A

terminals

a) Physical Configuration

disc clock

P I 32kb t prlva e memory

'- B
te rminals ~ r-

utI
- •... - ..

32kb shared m emory

L.-

r-

'\
ULI memory interface
1 logic .

te ~1W.J A -
.

32kb pr1vate memory

b) Logical Configuration

Figure 7.2.1. Dual Interdata Configuration

- 169 -

,7.3. Parallel Processing System Design

Much of the design of the parallel processing system arose from the

nature of the operating system as supplied by the manufacturer. At

an early stage it was decided that the parallel processing system

would run as a subsystem under DOS and that both processors would

run an independent version of DOS. That is, the operating system

would remain largely unaltered and all necessary synchronisation and

resource management would be handled by the parallel processing sub-

system. Also, since DOS is a uni-processing system, the'''program''

run by each processor would be the parallel processing system

scheduler.

• A parallel program is considered to be one which initially consists

of a single stream of instructions. This stream may divide into

several parallel branches (which may or may not consist of similar

-'se'quences of code). - These branches later. merge together at a single

point to reform the original single stream. Anyone of the parallel

streams may itself branch and then rejoin. At anyone time, a number

of streams of code may exist and each is considered as one of a set

of parallel processes any of which may be executed.

The parallel processing scheduler. provides all the facilities necessary

for the creation and deletion of parallel processes, and the

maintaining of the correct hierarchal ordering of the processes. The

scheduler maintains a list (in shared memory) of the processes to be

run together with process ordering information.

- 170 -

Each processor, then, runs the scheduler which searches the

scheduler list for a process (synonymous with a parallel path)

which it may run. When one has been located, the scheduler jumps

to that process, causing it to be executed. On completion of the

process, return is made to the scheduler. Two routines, based on

standard parallel statements, were developed to enable a process

to enter the scheduler. The first, FORK, causes new paths (processes)

to be created and the second, JOIN, causes several paths to be merged·

together.

More detailed information may be found elsewhere (4,5).

No synchronising hardware or software was available with the system,

yet an obvious need for such a tool existed. It was decided,

therefore, that the Abstract Resource Ring should be used to provide

the synchronising facilities required for the parallel processing

system. In fact, the ARR was originally designed to meet this··

problem. The use of the ARR would arise in two situations. Primarily,

the ARR would be used by the parallel processing system itself to

protect its own access to the scheduler list. Secondly, an interface

to the ARR would be provided to enable high level constructs, such

as critical regions, to be implemented within user· programs •. Just as

no synchroniSing mechanism existed on the machines, so no interprocessor

interrupt was available •. An external interrupt path had, therefore, to

be created. It was decided to use the ULIs. available on the machines

since they were easier devices to control and operated at much greater

- 171 -

,speeds (1.9 MBytes/Sec) than the terminal parts. Also,small quantities

,of data could' be tran~mi tted using only' the control lines.

- 172 -

7.4. ARR Implementation

In this section, the implementation of the Abstract Resource Ring

for the parallel processing system is described. Two different

implementations have been made, and both will be discussed. The

first (and original) implementation provides death detection

facilities, but no error recovery is included whereas the second.

implementation provides full error recovery capabilities.

The original implementation was based upon the "on request"

philosophy, that is it employs interrupt sending for passing the

resource and for death detection.

The interrupt manager functions of the ARR mechanism were incorporated

into the driver for the ULI. This interrupt manager can be entered

in two contexts, either by an interrupt being raised on the ULI or

.b~ the GETRES routine requesting the manager to send an interrupt.·

The interrupt ~anager has power to ignore requests from GETRES if it

deems that interrupts may arrive too rapidly at the other processor.

Due to the philosophy and design of DOS, many of the functions of the

ARR which were described in terms of individual processes may not be

encoded as such. The process to check for unwanted resources, which

should be initiated by the interrupt manager when·an interrupt is

received from the predecessor, was incorporated into the interrupt

'manager while the death detection and reporting was distributed between

- 173 -

the interrupt manager and the GETRES routine.

The GETRES routine raises the resource request flag, then loops

(for a fixed maximum number of times) inspecting the CAN flag. If

this flag is set then return is made from the routine. If, however,

the flag is not set within the number of loops then a request is

made to the resource manager for an interrupt to be sent. The GETRES

routine then waits in a secondary loop (also of ' a fixed size)

inspecting not only the CAN flag but also a reply word. This reply

word, cleared by the GETRES routine, is set every time a reply is

received by the interrupt manager. The GETRES routine may leave this

second loop prematurely on two counts. If the CAN flag is set then

return is made from the GETRES routine, it now being irrelevant to

current needs whether the processor is dead or not. This is only

true of a two processor system since in this case there can never be

the need for one processor to check its successor for death on behalf

_____ '_ of a third which actually, requires a resource. The GETRES routine

also leaves the second loop if the reply word is set, returning to

the start of the first, loop to wait before sending another interrupt.

If, however, the second loop is completed before a reply is received,

then the other processor is deemed dead, a message is reported by the

GETRES routine for the operator and the parallel program is abandoned

with no error recovery taking place. Note that an infinite loop is

an acceptable solution, as the parallel processing system is running

in a uniprogramming environment. The algorithm is shown in Figure

7.4.1.

- 174 -

getres -

begin

end' -'

i , - our processor number;

WANT of node [i] : = set;

while true do

od -

count : = time before next interrupt sent;

while • count > 0 do

g CAN of node (i) = set then

return

fi' -'
count = count - 1

od' -'
send an interrupt;

count : = time allowed for reply;

while count>O and no reply received do

g CAN of node [i) = set ~

return

fi' -'
count = count - 1

od' -'
if count = 0 then

the other processor is dead;

report error;

stop

fi

Figure 7.4.1. Implementation Algorithm of GErRES'
- 175 -

The software was written with a fixed number of resources (eight)

of which one represents the synchronisation within the parallel

processing'scheduler, and the remainder are for use by application

programs.

The second implementation of the ARR provides the same user interface

as the previous one. However, full death detection and error recovery

procedures are incorporated, giving a powerful system for the user.

The improved system also uses the interrupt mechanism for notification

purposes but it is built into a modified version of the DOS system

allowing the resource checking and error recovery to appear as

separate processes.

Withthia implementation, the GETRES routine requires no communication

with other parts of the ARR, so having set the WANT flag, a single

loop upon the CAN flag is adequate. Again, an infinite loop ,is

allowable since, as will be seen, the other processes are interrupt

driven and are run to completion. As with the earlier implementation,

each time the loop is completed, an interrupt is sent before the loop

is restarted.

The ULI driver has incorporated into it not only the code to drive

the ULI but also the code to enable the initiation of the process

which checks for unwanted resources and code to start a recovery

process if a dead processor is detected. Whilst all the steps of

the recovery process are not required for the two processor situation,

- 176 -

it being possible· to treat this as a special case, the software

has, nevertheless, been designed with more processors in mind.

Indeed, more processors may be added to the system with only

minimal modification being required to the data structure. The

recovery process is invoked if the successor on the hardware ring

fails to reply to ·an interrupt within a fixed time. This process

enters the name of the dead processor in the table of dead processors,

and proceeds to remove it from the hardware ring. Having removed the

dead processor from the hardware ring, the PUTRES Activity is initiated.

The PUTRES Activity not only checks for unwanted resources and attempts.

to pass them to another processor but also checks each resource ring

to see if the successor of this processor is still alive. If this

processor is dead (i.e. its name is present in the table of dead

processors) the.node for the ring is removed and if the resource was

owned and being used by the dead processor, the integrity checking!

recovery process for that resource is initiated •. The identification of

this process is contained within the nodes of the ring. If no process

identification is contained in that field of the node, then it is

reported that the resource has been reinstated, but without an integrity

check. Currently, only the parallel processing resource has any

recovery incorporated and this recovery is described in the next

section.

The PUTRES Activity is also initiated at periodic·intervals~

- .177 -

7.5. Reliability and Recovery Procedures

In this· section, the reliability aspects incorporated into the

parallel processing system, that is for the associated resource,

will be described.

With several processors corporately working on a parallel program,

it would be desirable to have the program completed even if one of

the processors failed. This may include a processor failing while

executing one of·the parallel processes (paths). The need may

therefore arise for a path to be restarted by a different processor

in order to complete the program as a whole. To be able to restart a

path, the variables for that process must be restored to their value

before the path was originally started. Also independence must exist

between that path and any other.

Information upon the current state of each path (that is whether it

is being executed or not and if so by which processor) is maintained

within the scheduler list. It is therefore possible to discover if a

processor which has died was executing one of the parallel processes.

Part of the function of the recovery routines is to search the

scheduler list for any paths being undertaken by the dead processor

and to make them restartable by another processor.

Currently, the function of restoring the path to its original state

has to be performed by the applications programmer. Some routines have

- 178 -

been written whereby, prior to starting a path, the initial values

of variables which could be altered may be saved. Within the path,

the process may interrogate the scheduler to discover if the path

has been restart~d. If it has then a further routine enables the

saved variables to be returned to their original value. The scheduler

maintains information on which variables have b·een saved by which

paths. When paths are successfully completed, any space occupied

by variables held for that path is freed for future use. Figure 7.5.1.

gives an: example of the use of these routines.

The reliable version of the Abstract Resource Ring has been used on

an experimental basis. A number os parallel algorithms have been

run on the dual processor system, and failure has been induced by

switching off the power to one processor. The error recovery routines

have functioned, although, with some algorithms, the saving of

variables has proved expensive in time. Some of this overhead can,

however, be attributed to the need to make these routines callable

explicitly for the FORTRAN source,which incurs checking by the run

. time system. Ideally, the calls to the variable saving routines would

be inserted automatically by a "parallel FORTRAN" compiler with much

of the run time checking removed.

With some algorithms, notably those of an iterative nature, the

inclusion of variable saving has proved unnecessary, as the formulation

of the algorithm will withstand data that is not completely updated.

- 179 -

fSHARED X (20,3)'

C INITIALISE SHARED ARRAY X

'C
• •

C OBTAIN A NEWAR~ TO SAVE MODIFIED VARIABLES
C

$SAVEI
C
C NOW SAVE THE ARRAY X - TYPE IS REAL
C

C

00 10 I = 1, 20
00 11'J = 1, 3
~SAVE REAL, X (I, J)

11 CONTINUE
10 CONTINUE

C ' NOW GENERATE PARALLEL PROCESSES - ONE PER COLUMN
C

~OOPAR 100 I = 1, 20
C
C CHEX:K TO SEE IF THIS PATH HAS BEEN RESTARTED
C

IF (RESTRT (DUMMY) .~. 0) GOTO 20
C
C YES - IT HAS BEEN RESTARTED
C ' -' RESTORE OUR COLUMN OF X
C

C

00 19 J = 1, 3
$REST REAL, X (I, J)

19 CONTINUE
20 CONTINUE

C ,REMAINDER OF PATH MODIFIES THE COLUMN OF X

C
• •

C END OF THE PATH ;.. WHEN ALL PATHS TERMINATE SO
C WILL THIS SAVE ~
C

100 *PAREND,

Figure 7.5.1. Example Use of the Restart Routines

- 180 -

.i-,

7.6. Performances

In this section, results are presented for various algorithms run

on the parallel processing system at Loughborough •. The times shown

in·Table 7.6.1 are given for the original implementation (labelled

ARR in the table), the implementation with added reliability (RARR)

and, for comparison, an implementation of Lamport's algorithm (see

section 5.5.) (L).

Times are given for:-

i) the total elapsed time of the programs, that is the time

taken from starting the program until the last processor

finished. (T)

ii) the processor idle times, that is the time when processors

were either waiting for a path to execute or for a resource

to be passed to them. l:l'.)

iii) the nett processing time, that is the time when the

processor was performing the algorithm (which is given by i) -

and iv) the total nett processing time, that is the total of iii)

for the two processors. Li>o~\)

The table also shows the time taken when the same algorithm is run

on a single processor both with and without the ARR parallel control

software. The timings for four different algorithms have been given,

the~ being:-

- 181 -

",

ARR RARR· 2) L
Program Processor A B A B A B
i) Matrix T 4.88 4.88 6.28 6.28 4.86 4.86

Mul tiplication I 0.15 0.01 1.56 1.46 0.12 0.00

(RBMTX1) N 4.73 4.87 4.72 4.82 4.74 4.86

. (total) . (9.60) (9.54)' (9.60)

(uniprocessor - with/without ARR 9.56/9.49)

ii) Eigenvalue T 17.78 17.78 27.15 27.15 17.66 17.66
Solver'- I 0.96 0.62 9.56 10.63 0.95 0.56

(RBEIGR) N 16.82 17.16 17.59 16. 52 16.71 17.10

(total) <33.98) (34. 1V <33.81)

(uniprocessor - with/without ARR 34~55/34.20)

iii) PDE T 26.18 26.18 40.11 40.11 25.78 25.78

Solver I 1.49 0.39 14.94- 14.65 1.34 0.06

(RBDIF4) N 24.69 25.79 25.17 25.46 24.44- 25.72

(total) (50.48) (50.63) (50.16)

(uniprocessor - wit~without ARR 50.85/49.84)

iv) Adaptive' T 24.02 24.02 24.78 24.78 24.02 24.02 ,
Quadrative I 6.30 0.01 6.99 0.47 6.30 0.02
(RBINT2) N 17.72 . 24.01 17.79 .24.31 17.72 24.00

(total) (41.73) (42.10) (41.72)

(uniprocessor - with/without ARR 42.54/42.53)

. C\ loss ""0 0..... \'to 1- i¥l
Table 7.6.1. Performance Figures From Dual Interdata 70 System

Notes: 1) All times are shown in seconds. 2) The times for the RARR do
not include overheads for variable saving.

-182 -

i) Matrix Multiplication

This program performs the multiplication of two square matrices.

ii) Eigenvalue' Solver

This program evaluates the eigenvalues ofa system using a

bisection algorithm based upon sturm sequences.

iii) PDE Solver

This, program solves a set of partial differential equations

using a successive line over-relaxation method.

iv) Adaptive Quadrature

A function is integrated over a given interval with the integration

being performed over a sequence of interval bisections until a

required accuracy is obtained.

From the'table of times, various comments may be made. Firstly,

comparing the two implementations of the Ab~tract Resource Ring, it

is seen that the use of the reliable implementation gives a greater

total elapsed time for the completion of the program. Most of this

increase in time is attributed to the idle processor time, which in

turn is due to a lower frequency of interrupt sending with the RARR

system. However, when placed within the context of a general multi­

processing system, this spare processor time may be rescheduled to

other processes capable of being run giving a higher processor

utilisation, than is presented in the Table. Timings with a much

lower processor idle time may be obtained by tuning the RARR system

to each particular algorithm. In practice, this would probably be

- 183 -

unrealistic, so no modi fications were made to the RAR.'t software

between the running of the various programs.

Considering the nett times of the two implementations, it is seen

that the reliable version of the software does impose an overhead in

processor time, in general of the order of one per cent. This

increase in processor time is due to the cost of the.improved death

. checking.

Comparing the first implementation of the Abstract Resource Ring and

that of Lamport's algorithm, as would be expected, Lamport's algorithm

gives better timing figures. However, the gain is not dramatic.

From section 5.5., it may have been expected that, with only two

processors, a large increase in speed would be attained, yet when

viewed within the context of a complete algorithm, the reduced

overheads of synchronisation become less apparent. It should be

, noted, however, that as the numbe~ of processors increases, the ARR

will perform more favourably than Lamport's algorithm. As yet,

however,a system with more than two processors is unavailable to

test this hypothesis.

The original implementati'on of the Abstract Resource 'Ring has been

used for a period of over, three years, and many parallel algorithms

have been run (3). Some of the algorithms have been completed in

just over half the time when run on the two processor system as

compared to a single processor system, that is close to the theoretical

- 184 -

limit.

Another aspect of performance which must be considered is the amount

of memory'occupiedby the Abstract Resource Ring and its associated

routines. Table 7.6.2 shows the amount of core required by the . ,

various aspects of the ARR and the reliability and recovery routines.

In comparison, the parallel processing subsystem occupies a total of

som~ 4.5 kb.

..

ARR MRR

GErRES/PUTRES/DRIVERS etc. 0.5 kb 0.8 kb

Reliability/Error Recovery - 0.7 kb

Data and Messages 10.4 kb 0.8 kb

Variable Saving Code - 0.8 kb

Variable Saving Data - 1.0 kb

TOTAL 0.9 kb 4.1 kb

Notes 1) On average 1 instruction occupies 3 bytes

Table 7.6.2. Implementation Sizes for Dual Interdata

70.

- 186 -

CHAPTER 8

GARBAGE COLLECTION -,

A MULTIPROCESSOR APPLICATION

8.1. Introduction

In this chapter, consideration is given to a particular problem that

has been applied to multiprocessors of the type being investigated

in order to show that a parallel solution should be developed in

its own merits and not necessarily be many coordinated copies of a

uniprocessor solution.

Within list processing systems, nodes are repeatedly added to and

removed from the various lists. The storage locations in the memory

space available to the list processing system tend to be allocated

for use in a particular list and then freed. It i·s clearly

desirable to reclaim these freed cells for subsequent use, and there

are a number of techniques whereby this may be accomplished. The one

that is of particular interest for the ensuing discussion is Garbage

Collection which was first proposed by McCarthy (52) and used. in

the LISP 1.5 system (53).

Using this technique, the problem of storage reclaimation is (often)

ignored until the list of available cells (free list) becomes empty.

When this arises, the list processing is temporarily suspended and a

garbage collection process locates cells which have become free and

adds them to the free list.

The basic garbage collection algorithm falls into four phases:-

1) Marking phase in which all accessible"nodes are marked.

-188 -

2) Relocate phase in which all accessible nodes are compacted·

into a.single contiguous area.

3) Update phase in which all pointers to relocated nodes are

changed.

4) Reclaim phase in which the inaccessible cells are collected

to form the new free list.

Of these phases, numbers 2) and 3) may be omitted if desired.

Interest has recently arisen in using multiprocessor systems for list

processing (58·). With this scheme, one processor would perform

all the list· processing operations, while a second would perform the

garbage collection function. By splitting the operation of the total

system between two processors, the garbage collection may be run in

parallel with the list processing, not just when the free list

becomes exhausted. In ~his way, an improved response to the users

should be achieved.

Lamport (49)· has taken the solution·for the dual processor list

processing/ garbage collection problem developed by Dijkstra et al

(25) and expanded it to incorporate mUltiple list processors

(mutators) and mUltiple garbage collectors.

Consideration will be given to the marking phase of the garbage

collection and it will be shown that the marking algorithm used by

Lamport may be improved by aligning it more with the inherent structure

- 189 -

of the system.

Firstly, the terminology will be introduced, then the algorithm

adopted by Lamport will be described. A different solution will be

developed and finally results will be presented to show the

performance of the two algorithms.

- 190 -

8.2. Definition of Terminology

The list structure to which consideration will be given consists of

a collection of list cells (nodes). Each node consists of some (and

possibly no) data fields and an ordered sequence of pointers to other

nodes (edges). The node from which an edge emanates will be called

its source and that to which it points the destination. Some'of the

edges are distinguishable as null edges, that is the edge doe's not

connect two nodes but acts as a terminator.

If an edge connecting two nodes (A and B)exists and B is the

destination of that edge then B is (one of) the successors of A and

A is a predecessor of B. Nodes having no successors are known as

terminal nodes (or terminals).

Some of the nodes, called root nodes, are fixed. A node is said to

be reachable (or accessible) if there is a path to it from a root

via reachable nodes. A non-reachable node is called a garbage node.

- 191 -

8.3. Lamport's Algorithm

Lamport introduces an extra field into the nodes for use during the

marking phase. This field is intended to hold a colour which may

be one of black, grey or white, and indicates at which of the stages

of the marking phase the node is.

Operations are introduced to change the colour of a node to a

specific value. Also introduced is a shading operation which changes

a white node to grey but leaves other colours unchanged. These

operations on a node are required to be indivisible with respect to

'the list processing system (i.e. they must be point operations).

The node space is divided into several (not necessarily disjoint)

subsets. A marking process (marker) is assigned to each of the

subsets. No details are given as to the method of division, so a

physical division seems simplest. Initially all nodes are white.

The operation of the marking algorithm commences with the roots being

shaded. Then each marker searches its subset of nodes. When a grey

node is located by anyone of the processors then it shades all the

successors of that node and colours the original node black. All the ()

markers are then requested to restart the search of their portion of

the node space. The marking terminates when no grey nodes exist,i.e.

all reachable nodes have been coloured black. The garbage (unreachable)

nodes are then 'those that remain white.

- 192 -

Several points may be made about this algorithm. Firstly, no

attempt is made to use the structure of the list within the

algorithm itself. All reachable nodes may be located by Chaining

down the list structure from the roots. This leads to a second point,

that all the garbage nodes will have to be inspected, possibly several

(and in some cases many) times. This time is, of necessity, "wasted"

since a garbage node, by definition, cannot become grey. This is an

inevitable consequence of dividing the node space in physical subsets •.

Further, the synchronisation between the markers is non-trivial,

despite the fact that Lamport glosses over the problems. The ability

for one marker, on discovering a grey node, to cause all others to

restart the search of their subspace requires a "communication path"

between every pair of markers. Also, when a marker completes the

search of its subspace,no guarantee can be given that it has completed

its work as another marker may later discover a grey node. Only when

all the markers have completed searching their own subspaces can the

marking process terminate. This requires each. marker to monitor the

state of all the others(potentially requiring much communication

traffic or frequent access to shared variables). Again, on a

particular implementation it may be possible for all the other markers

to "appear" to have completed their marking; yet for a restart

request to be received. or, worse still, in transit.

- 193-

", .

8.4. Chaining Algorithm

Since it'was noted that objections may be raised against the above

algorithm, due to its lack of correspondence to the data structure

an algorithm more closely aligned with the data structure was

developed. The algorithm,described below, marks the reachable nodes

by searching down the list structure and hence has been given the

name Chaining Algorithm.

In order to partition the list space, and thus enable several markers

to operate, the concept of a subject is introduced 'with the Chaining

klgorithm. Each marker is allocated a section of the total list

structure and marks the nodes contained in this sublist. Once a

marker has a sublist it may proceed independently of the other markers

(thus reducing the synchronisation overheads). However, to enable

marking to be equitably distributed between the markers, an additional

list, the subtree list, is introduced.

This list contains the roots of unmarked sublists. Initially, the

list contains the roots 'of the whole list structure. The list can be

kept short,with possibly one entry for each marker since this list

represents work yet to be allocated to a marker. The colour yellow

is introduced for a node contained within the subtree list, so the

roots of the list structure are initially coloured yellow. Also, the

term "uncoloured" is introduced for a node which is either white or

grey.

- 194 -

I

,---------------------------------,-----------------.-----

'tlhen a marker is initially started, or whenever it has completed the

marking of a subtree, it removes a node from the subtree list to·

discover the section of the list which it is to process. This node

is shaded. The marker then refills the sub tree list, by adding the

uncoloured successors of the subroot to the list until either the

list is filled or only one uncoloured successor remains. Those nodes

added to the subtree list are coloured yellow. At all stages in the

remainder of the algorithm, yellow nodes are treated as black when·

encountered by a marker since the nodes following them are guaranteed

to be marked at a later stage.

The remainder of the algorithm, shown in outline in Figure 8.4.1, is

as follows.. The marker maintains two pointers to the subtree it is

processing, the root of the subtree and the node which it is currently

inspecting. Both of these initially point to the root of the subtree.

If only one uncoloured successor of the current node exists then that

node is shaded, the current node is coloured black and both the subroot

and current pointers are advanced to the successor. This process is

repeated until a node with several or no uncoloured successors is met.

If the current node has some uncoloured successors then one is chosen.

It is shaded and the current pointer is advanced to it. This shading

and advancing is repeated until the current node has no uncoloured

successors. When this situation arises, the current node is coloured

black and the current pointer is set to the subroot. The whole of

this procedure is then repeated until the subroot is coloured black.

When that occurs, the,subtree for which the marker was responsible

- 195 -

marker =

while subtree list is not empty ~

remove node from subtree list;

shade node;

refill subtree list;

while sub root is not black do

while number of uncoloured successors = 1 do -
shade successor;

colour node black;

advance to successor setting as subroot

od--'
!!!.lli number of uncoloured successors:> 0 do

choose one successor;

shade succe'ssor;

advance to successor

od--'

colour current black;

current: = subroot

od

od

end--'

Figure 8.4.1. Algorithm for a marker

~ 196 -

has been marked and a new root is chosen from the subtree list. The

marker terminates when it cannot obtain a node from the subtree list.

With a simply connected list structure (that is one containing no .

closed loops and no interconnection between sublists), the algorithm

is guaranteed to be correct and to terminate, the list structure

appearing as many independent lists each with its own marker.

Furthermore, the only synchronisation required between the markers is'

when accessing the subtree list. If the addition to and the removal

of a node from this list are independent, then the overheads of the

synchronisation when accessing the subtree list may be reduced. If

one m'arker is attempting to refill the sub tree list then the overheads

may again be reduced by allowing further markers to by-pass the ,

refilling stage of the algorithm. The initial phase of the marking

algorithm then becomes as in Figure 8.4.2.

If the list structure is not simply connected but the sub trees have

common nodes (but still without loops) then consideration must be

given to the possible events at the intersection points. The simplest

possibility to consider is that one marker colours the common node

yellow or black before any other marker accesses that node. When

another marker reaches the node, it will proceed no further. If the

intersection node is white or grey then the structure. beyond the node

needs to be inspected and several markers may attempt to colour the

subtree. This will have the same effect as several passes down the

branch by a single marker, that is, the several markers will jointly

-197 -

marker =
begin

~ sub tree list is not empty~

remove node from subtree list;

shade node;

if no other marker is refilling the subtree list then

refill sub tree list

•
•
•

Figure 8.4.2. Modified Initial Stage for a Marker

- 198 -

colour the nodes below the intersection point.

If two markers attempt to update the colour of the intersection node

simultaneously, then one must complete its update after the other.

The node then becomes ,that colour. Whichever colour is finally given

to the node, it is valid for at least one of the markers,and this

marker, will complete the colouring.

However, with the algorithm as described, a list structure containing

cycles (closed loops within 'the edges) may cause a marker to permanently

loop. To overcome this, some intelligence may be given to the markers.

If, while chaining down through the successors, the marker visits an

excessive number (e.g. more than, the maximum height of the structure

or more than the total quantity of nodes) of nodes without reaching a

terminal (or a yellow or black node), then it may assume that a loop

exists and arbitrarily colour the current node yellow and'add it to,

the subtree list. In this way, a terminating condition is placed

within the loop. Loops will therefore reduce the efficiency of the

algorithm due to wastage in searching the loops.

- 199 -

8.5. Comparison of Marking Algorithms

Fmpirical testing of , the algorithms was'carried out using a simulated

multiprocessing system. The algorithms were tested and compared with

a number of types of list structure. Four types of structure were

chosen to exercise the algorithms under a variety, of conditions.

These types were:-

a) Linear List

b) Curtain

This structure consists of many linear lists emanating from

a single root

c) Highly Interconnected

In this structure, each node.has many branches with a large

number of nodes shared between subtrees. Two versions of each

structure were generated, the second being the mirror image of

the first, that is the sub trees that were placed left to right

from a node in one version were placed right to left in the other.

d) Random

The interconnection was generated randomly.

Each of the first three structures were used with both a high and a

low proportion of the node space consisting of reachable nodes. All

structures were'loop free. Lamport'salgorithm was performed twice,

once with, the markers searching from low addresses to high addresses

- 200 -

',t,

, and secondly from high addresses to low. Table 8.5.1. shows some

of the results obtained from the simulation studies when the node

space consisted of 100 nodes.

From the Table it can be seen that, with one exception, the Chaining

Algori thm out' performs Lamport' s algorithm on each 'of the values,

tabulated.' In most cases, the number of nodes visited is vastly

, reduced (often by a factor of 50 or more). Also the costs of

synchronising the markers is reduced. The overall improvement obtained

from the Chaining Algorithm can be observed from the elapsed times

given in the Table.

The structure with ,which the Chaining Algorithm performs least well

is one with high interconnectivity. Yet even with this strUcture,

the synchronisation overheads are minimal. This is of great advantage

since a synchronisation will (in general) be much more expensive than '

a node visit.

The 'first highly-interconnected structure provides a pathalogic case

for the Chaining Algorithm. In order for the blackening of the nodes

from the terminal nodes towards the subroots to take place, the

sublists need to be traversed many times. This is partly due to the

high interconnection which will yield a high degree of overlapping

subtrees and partly due to the greater number of successors which

each node has.

As is known for programs designed for uni-processor systems,

- 201 -

.. I .
··;'N

2
I

.. -,-.,,'- ,- , .,~-..

;MARKING ALGORITHM

~GOMPARISON TABLE.
... ,

:--------------~--. 1'/ , ,.
"I I , ,
, ,
"

. Cha i 11 i ng

. r,l go rith,o

. 'I : , Larrlpo rt ,",
-. ,>'~J :.:;:.-:;...--.-..... ~--,----:-- ---_...:-- --~,;.. . ..:.-----.-:.:...--...:- :-,

Up , , , , DOWI1
, 0
, 0

.:-:-.;~~,..;'.,..:;.-.;.; . ..:..~-;,;. - .,.'" ,..;-...... : :.- -'~':----..::.---,':"'.---~":"'--~~ f : ":'"-:-:--.----~-----:_~~--. ..:.: ; ---.:.--,-------------,- ': :".
rf"··l)·p~ -I·G~"! t'f""::'Node :" W.: f"Tlf!',e"'I':-Node- I Syn'! Til'lle- :I'Node : Syn": Ti'!'le I:'

:::r·!.~~.'<:~::, .. _ ·'·'-;"',r'N-.. ,,:l .. ::, Vs:td r"p'~' r ".1: Vs'td.el·· :. , ":: 'Vstd 'I ," -" :(:

!"'
f r~';·;':-~:.:":'--'~';''';'--l-''';--: :~::.;:...: : -"':" .. :~--: -'---l------"-': ::;..:.---- f-----: ---'--'-: : ----__ : _____ : ___ . ___ : ':

.. 0

"; 1 List
~,,' i'r ':. r)'~'-~l~~

, .
)
o

':_L. ., .

",0"

o ..
.) . 1

, 0 · ,
t: 'I'
,~. "

, I I:"; j I
I'" • I"

lOO I o
·'t'

o·

f06: 24

·0:26

1:1',1
. .

." I I , ,
,'I'
00

00
00

00 , ,
0'
0'

5150

5710
o· ,

100 8:56
0'
00

115150

, ,
, 0

100

500

, ,
'1:00

9:28

., , , ,

(i :, "'::':,:_~;;' .. '-'.,::..:~.7 (-'~~ __ ,: ~ ~ .~-.l'~ _. __ :... __ -: ~'_ -:-_ -----~-I :---~-~l----- ----"--: : .:..----- : ----- : -----:..:. :
00

"
f : - L i nt'?i'l i"

! r l,,:,itit
:"r "f)'pB r';;~'

'1.1".

, . , , · .
, : <:"; ~:~ .:. 1 · , o •

95
"I" ,

· , t_ I.
" , ~~ j')

I , 'I

. , , , 0

• •

, , ,
'. I .•..

5 0 ': _ 6:02': I 305
, 0 , ,

5 '24": .-0:06 I1 125

5

25

, 0
00

0:32 I:
00
o 0

0: 13 ::
I I' t l, I I

'I ,I t I" I 1 I

400 :. 5 0:42

600

,
. ,

0' ,

-:--':'I--:"--~...; I 1--':"'--";"': -----: ------: 1------: --'---1-----..:..:
-, ,- .

l t-' CU1;.tain "":

. , , o 0 • •
, 1 -- : !

;: : .. ,~';:Dcnse,:> " !'.' _,,: ! : '
~"r: "0'1 5 : l 10'3

,), :-,:"'-:,
) ,"
, 0

. , , ,
"' - • I'

0'

. ,.
o

o
o

,. "I o· ,

, , , ,

.0 , ,

, 0 , ,
0' , .
: ":,
'" ' , ,
o 0 · , 19

o
,.

. '
, o· , ,
1'1'
o , 5150

, ,
I' . , . I', "I

I ," '. I,

·100

27 0:33 :'1 "2251 200
·0 ,

o ..
. ,

:
27.

o •

·0 ,

o o

.0 0 , ,

00 , ,
I'",' , ,
, o· , ,

1):09 r:
o 0 , ,

·908

959

., . ,

,
o

16

80

9: 11
00
0'

: I 5150
, 0 , ,

3:58 : I 3370
f· '

,"',
. '

·0,
0'

, I "
o 0

,
o

1:37 :: 908 ! , . ,
1:40

o ,
, 0 ., ,
0'
00
, 0

,
. '

987.
- . _. .., " - .

101)

.350

16

80

, ,

'7': 14
, 0
o 0

5:46 ::
, o·
00

0'
0'

1:38 I:
0' o ,

1:42 ::
o , , ,

------------------------_._---

Tablu 8.5.1Simulaliol1 Results for Marking Algorithms.

... . , .. "" ,-;" ,.. , ,- ,"" ,,'--" .. ' . • ",._",_C:.'. ____ '"", ______ ' ,.,~ ___ ' _____ M_..,. __ __ . _________ _
. -. -, ,." .. " ""-"', -, ,. ,.,,, '" ,

1,_' ,""
"", I

.·rr<H·~gh
--'r:]titer-

,
• · (· , , ,

:,:r,-: .-:~' CD'rl:iect~~_ : '

I"" I j , , ,
1 l 1,'::.2310' .!.

:"('1086":·
I ,.. "I ," ('
I, I' I

o
o

[r'D(~t1<:;e T r .. 5:-: l 4':335 ": " '42 '
r,:," .•.
":

,- . f' ,.

• ,
•

:J r,'12,··"7.::· 45

• · .

, . · ,
6:03 t: 514,8
3:05 I:

• • · , , ..
•

99

. ,.
, I'.

"12:'46, "f:
4: 17 ::

41~0 :400': 6:52

" i • , .
, ..

• • ,
:. 5051

:. 3875

J L

9'''1

400 I~: 31
, , .

• • • •
, , , ,
I I
; . , .
t t
I:

· .. ·'···::·:·:·"· .. ···_;.'F.~-.~ l. ~-,~-- ... ~;...--:-~ f _~_-~~: ~--.! t :.;.~:::..---,,":, r..:.-:-.;.:·:.-~.-;~_-- r I ~-:-'~--: -:'":"_:..._: _____ --: ; _____ ~ I __ ~ __ ' ______ ; :
I f' - ·1- "," \ • r . . I I I I I •

'N o
.. -.' \Jj .,
.. - , ,

I I I I t I I I I t I I

I.High ... 1,51·Ll:: 55. ():0=16 271749 4:.50 ::2432.: 49 4:44::
'"'rl:lt'e"r~~"","'-: 'r:" '250' ': 0:' '0:5'4 J I: : :.

::':-;:--r""~: .
" f' ',,1

, , , ,

, . ,
· , ,

·J_t -.Fc_arld6({, ,.-;
11'Ch:le- ';

40

, :': 40,

,
. '

.. ,

" ,

,", I-I , '.
5 :: ., , · , , , , ,

, . , ,
, , .

" , , · ,
, , , ,

90

-- .' I

•
(' 38':

195 . I, 27
0:34

i . ():36'

186

• ,

" ,
1· -', 0.-

- I ' . i , ,
42 :.

, ,.

, , .
, , , ,
, , , ,

" , , .

2346

4060

i :' 1465
I .' ' , .

, .
•

215

60

170

4:00

'. 7:07

'2:32

1'1 I
I I I'

:: 2704 245
• I' i
I I ,'I

t:

, . , ,
:: 2200 · , . , ,
I; 2612 , , , ,

60

'255 ..

, , .

4:38 : :
- I r'

3:56.

, , · ,
, ,

;:,~-.~~,;"'-~~~'~,:_~~;;;:_: :;'1"'-:.-::':_ ~ __ :,,'; _~ __ -:-_ j :-~_~ ':----"':":'"".- t : -- --.:..I--:'-~-: ---'--- I I---',~:--; --~''';'-l----:--I
I I ••

I - 79~'
--,' j " , ,

. 1'" f:
. I I'" , ,

5 ~ ~'I
, . · ,

84 '_.; o 0: 18.

0:52.

, , , ,
.: .. · , , , , . 1893 21

': : '1227. lOO.
'I'"

•

: 3: 19

';2:04

; .. '.428'

" •
.1201

21.

11)0'

:·:',,;':~::")J~~'~£:'7'~:;.:·;~~~~r~~~- L-:--"':::'- r I ~--;...--! .~.~~,-: I ..:..;-- ~-:

"j .' ,
:..;.'~-..;.:.~-: --"':-~': --~:"-:-': : ~.",::-.---: ---~-: -----~:

-I "1 - . -, I ,"'1 " I
I I I • , I. I

··~;~r_~ - R\lndom'
". :: Hll'e'"'

'-: :::75

., . ,
75 ,. ,

, l' !!

'.5

, , , ,
} ,1 .' .-':'. ~~2 "':
, f. . I . , , .

o : ·0:17. , , , .
, ,

1943 : , ,

. , , , " · ,
25 ': ·3: 24 :.: . , , , , . 782

" •
.25

1380':'125
," ,

. , , , , ,
1:24 :: , , , .

1 ' 2: 20 ,'f t'
'j' I I , , ,

'<~-~;""-"-..;;.;..;;.-'-";';":';'-";';--;"'--------';"':"-----~--"';:-------------------.:.;...----------------------------

. , - . .
"Table' 8.5.1 cent i nued.

""." .

".~ ... :;.: " ..

.. ~ .. " .

".:'-:
. , ~

NOTES

%f~,t,;, of" i'esults. ,'d('~ given for the, High' Inter-Connectivity with
tl1£4",Cfl.l1.n"ir-.gAlgol'ithm. these"being 'for a structul'e and its
sYffietrlcal pattern •

. 2)'l·Lr1i"{iport'(5 a!g'cvithltf 'is:pel"'for"f,~ed twice with the Inarkers searching
" -'fraffilowaddrasses lo high ~ddresses (Up) and searching from

nlghaddrusses la" lowdddresses"(Oown).

. N~' ' .. __ .
'0,:::::"" '
~:::.-'.::'.'~,~',: .

1/p.' '
"_H.N.

M

I,EY

TII~ fo~m~tion of the list structure.
'The Iwmber of g~rbage nodes inth~ structure.
The ntllr.b", r '"of ma rke rs emp I oyed;
The number of nodes visited during the marking phase."
Tlh:: t'!I.,"cni·H:!"r of lilu·e. ster.)$ during which a marker was waititig­

Dtl thec ':listfrotlt'f. semaphore .
Th(~ ~,-'i .::lp~;E?d t imf~ (in minutes and 5ec~:Jt1ds) for' the

:ciu.uiation .of t.he,' ma"king phase.
The ~u~baroftimes. in total, that the markers were

1''''5t~I't.,d ,al thebE!gintling oftheir,subspace.,

Table 8.5.1 continued. ,

,".".

pathalogical data can greatly increase the processing time.

Similar problems may also arise in programs designed for multi­

processor systems. This is evidenced by the three-fold improvement.

in the performance of the Chaining Algorithm for the High-inter­

connectivity Structure when the mirror image of the structure was

used.

It has been noted, and indeed Lamport himself states, that

synchronisations are costly operations. By considering the problem

above in the light of the potential synchronisation, it has been.

reduced to a small level in the Chaining Algorithm. Lamport, however,

by adapting an often used uniprocessor solution has maintained a

potentially high level of synchronisation, and its inherent cost.

- 205 - ..

CHAPTER 9

CONCLUSIONS

9.1. Summary

Multiprocessor computer systems may provide many benefits over

. similar uniprocessor systems. However, it.is possible to use a

multiprocessor in an unsuitable application or to use one

inappropriately in an application which may take advantage of a

multiprocessor organisation. Indeed, such pitfalls exist for

conventional uniprocessor systems. For a multiprocessor system to

be utilised to advantage, consideration should be given to all

aspects of the system, that is the hardware, the operating system

software and the application software.

At the hardware level, many organisations of the processors and

memory exist, ranging from array processors to multipart memory

systems. Each of the many possible organisations has certain

operational characteristics which make it most suitable for a

particular class of problem. If an application from another class

is implemented on that organisation, poor performance may be obtained

from the system.

A simple model of a multiprocessor system was introduced (Chapter 4).

The parameters of the model allow the processor and memory

characteristics and the memory access pattern to be specified. The

model was then analysed, with reference to the memory access pattern,

and formulae were derived and an upper bound was placed upon the

performance which could be expected from the modelled system. It was

also shown that, for any particular access pattern,.there is a

- 206 -

practical limit to the number of processors that should be attached

to the shared memory if each is to accomplish useful work. A

formula giving that limit was also derived (4.6.1.).

Whilst an application is executing on a multiprocessor, coordination

will be required between the parallel paths as they are being executed.

In Chapter 5, a tool, the Abstract Resource Ring (ARR), whereby the

paths may synchronise, was described. The ARR is based on a 'Resource

Master'technique. Comparisons were made between the ARR and two

algorithms found in the literature. It was shown that, as the load

placed upon the synchronisation method increased so the performance

of the ARR increased whereas that of the other solutions deteriorated.

The ability for a multiprocessor system to withstand the 'death' of

one 'of the processors within the system was discussed, with particular

'reference to the Abstract Resource Ring. It was shown that the ARR

could be adapted to detect the failure of one of the processors and

cause appropriate recovery action to be taken. This recovery action

may include reconfiguration of the system as viewed by the supervisory

software.

The Abstract Resource Ring has been used as the synchronising tool

within a parallel processing system at Loughborough University.

Figures may be found (Table 7.6'.1) giving the performance of the

system for a number of test programs. Comparison was made between

two implementations of the ARR and one of the synchronisation tools

described in the literature. The parallel processing system has also

-m-

provided a.testbed for the reliability aspects of the ARR. as

discussed in Chapter 6.

Finally, to highlight the difficulty in designing multiprocessor

applications, an example found in the literature.was considered.

A new solution to the problem of multiprocessor garbage collection

was developed. This solution takes advantage of the inherent

structure of the problem, and, in most circumstances, shows

improvement in performance over the published algorithm, as is shown·

in Table 8.5.1.

- 208 -

9.2. Areas for Further Research

Within this thesis, a number of topics within the subject of

multiprocessor systems have been considered. However, as stated

earlier, the subject is vast with many areas where worthwhile

research may be carried out. In the following subsections,. areas

are suggested where the research reported in this thesis may be

extended.

a) Hardware Model Evaluation

It was claimed that the model presented in Chapter 4 applies to a

large range of multiprocessor organisations. However, due to the

lack of available hardware, this hypothesis has not been extensively

tested. As more multiprocessor systems become available, further

tests could be performed. Indeed, with the cheapness of microprocessor

. technology, it may be feasible to build small systems to test the

hypothesis.

Also, two classes of memory were considered, private and shared. The

relationship between the sizes of private and shared memory and their

function (whether to store code or variables etc.) could be

investigated, possibly with reference to a particular algorithm. This

may yield new understanding on the relationship between hardware and

application program •.

b) Abstract Resource Ring

It was shown that the Abstract Resource Ring had the desirable effect

that under high load conditions the overheads associated with its use

- 209 -

were reduced. However, under low load conditionS its performance

. deteriorated such that one of the published solutions became a·

more viable tool to be used for synchronisation. It would be of

advantage if the ARR could be modified so that. its performance under

low load improved. This would provide a synchronisation tool suitable

for all contexts.

" c) Algorithm Structure

The example of multiprocessor garbage collection, considered in

Chapter 8, shows that the relationship between an application and its

implementation on a multiprocessor system is not fully understood.

This is one area which may be fundamental to all multiprocessor

operation. If any automatic parallelisation is to be achieved with

any success,more understanding of the underlying structure of a

problem and the consequential interactions and synchronisations

between the parts is required.

- 210 -

I .

REFERENCES

1. ,Arnold, S.J. et al. "Design of Tightly-Coupled Multiprocessing

Programming", IBM System Journal, Vol. 13 No. 1 (1974) pp.60-87.

2. Aspinall, D. and Dagless, E.L. "Overview of a Development

Environment", Microprocessors and Microsystems"Vol. 3 No. 7

(1979) pp. 301-305.

3. Barlow, R.H. "Parallel Algorithms for Sorting, Quadrature and

Eigenvalue Determination", Report No. 44, Dept. of Computer

Studies"Loughborough University (1977).

'4~ Barlow, R.H. et al. "Historical Survey of the Implementation of

Parallel Programming on the Interdata Dual Processor Computer",

Report No. 40, Dept. of Computer Studies, Loughborough University

(1977) •

5. Barlow, R.H. et al. "Implementing Parallel Processing on a

Production Minicomputer System", Report No. 58, Dept. of Computer

Studies, Loughborough University (1977).'

6. Baskett, F. and Smith, A.J. "Interference in Multiprocessor,

Computer Systems with Interleaved Memory", CACM, Vol. 19 No. 6

(1976) pp. 327 - 334.

7. Bhandakar, D.P. "Analysis of Memory Interference in Multiprocessors",

IEEE Trans. on Computing, Vol. c-24 No. 9 (1975) pp. 897 - 908.

- 212-

8. Bhandakar, D.P. arid Fuller, S.H. "A Survey of Techniques for

Analyzing Memory Interference in Multi-Processor Systems",

Technical Report, Carnegie-Mellon University, Pittsburgh (1973).

9. Brinch Hansen, P. "A Comparison of Two Synchronizing Concepts",

Acta Informatica, Vol. 1. (1972) pp. ,190-199.

10. Brinch Hansen, P.' "Concurrent Programming Concepts", ACW

Computing Surveys, Vol. 5 No. 4 (1973) pp. 223 - 245.

11. Brinch Hansen, P. "Operating System Principles", Prentice-Hall

Inc., Englewood Cliffs, New Jersey (1973).

12. de Bruijn, N.G. "Additional Comments on a Problem in Concurrent

Programming Control", CACM, Vol. 10 No. 3 (1967) pp. 137 - 138.

13. Burnett, G.J. "Perf~rmance Analysis of Interleaved Memory

Systems", PhD Thesis, Princeton University, Princeton, New

Jersey (1970).

14. Burnett, G.J. andCoffman, E.G. "Analysis of Interleaved Memory

Systems Using Blockage Buffers", CACM Vol. 18 No. 2 (1975)

pp. 91 - 95.

15. Casey, D.P. and Wasserman, R.S. "Alternate CPU Recovery", IBM

Technical Disclosure Bulletin, Vol. 16 No. 6 (1973) pp. 2005 - 2010 •

..; 213 -

16. Coffman, E.G. et al. "System Deadlocks", ACM Computing Surveys,

Vol. 3 No. 2 (1971) pp. 67 - 78.

17. Courtois, P.J. et al. "Concurrent Control with 'Readers' and

'Writers' It, CACM, Vol. 14 No. 10 (1971) pp. 667 - 668.

18. Courtois, ·P.J. et al. "Comments on 'A Comparison of Two

Synchronising Concepts' It, Acta Informatica, Vol. 1 (1972)

pp. 375 - 376.

19. Conway, M.E. "A Multiprocessor System Design", AFIPS Conference

Proceedings, Vol. 24 FJCC (1963) pp. 139 - 146.

20. Dahl, O-J et al. "Structured Programming", pub. Academic Press,

New York (1972).

21. Dijkstra, E.W. "Solution of a Problem in Concurrent Programming

. Control", CACM, Vol •. 8 No. 9 (1965) p. 569.

22. Dijkstra, E.W.·"Cooperating Sequential Processes",Technological

University, Eindhoven, The Netherlands (1965), reprinted in

"Programming Languages", Genuys, F.(Ed), Academic Press,

New York (1968).

23. Dijkstra, E.W. "Self-Stabalising Systems in Spite of Distributed

Control", CACM, Vol. 17 No. 11 (1974) pp. 643 _ 644.

- 214 -

24. Dijkstra, E.W. "Guarded Commands, Nondeterminacy and Formal

Derivationof Programs",CAGM, Vol. 18 No. 8 (1975) pp. 453 - 457.

25. Dijkstra, E.W~ et al. "On-the-fly Garbage Collection: an
,:'{' .. ~

Exercise in Cooperation", to be published.

26. Dowsing, R. "Software for CYBA-M", Microprocessors and

Microsystems, Vol. 3 No. 7·(1979) pp. 306 - 310.

27. Eisenberg,' M.A. and McGuire, M.R. ''Further Comments on Dijkstra's

Concurrent Programming Control Problem" '. CACM, Vol. 15 No. 11

(1972) p. 999.

28. 'Enslow, P.R. "Multiprocessors and Other Parallel Systems: An

Overview and Introduction", Multiprocessor Systems, Infotech

State of the Art Report No. 29, Infotech International Ltd.,

Maidenhead (1976) pp. 219 - 262.

29. Enslow, P.H. ''Multiprocessor Organisation -' A Survey", AGM

Computing Surveys, Vol. 9 No. 1 (1977) pp. 103 - 129.

30. Evans, D.J. and Barlow, R.H. "An Analysis of the Performance of a

Dual Minicomputer Parallel Computer System", Report No. 59, Dept.

of Computer Studies, Loughborough University (1978).

31 •. Flynn, M.J. "Very High Speed Computing Systems", Proceedings of

the IEEE; Vol~ 54. No. 12 (1966) pp. 1901 - 1909.

- 215 -

)2. Gilchrist, B. (Ed). "A Multi-microprocessor - CYBA-M", Information

Processing 77, IFIP, North Holland Pub. Co. (1977).

33. Habermann; A.N. "Prevention of Systems Deadlocks", CACM,

Vol. 12 No. 7 (1969) pp. 373 - 377; 385.

34. Halsall, F. and Fenesan, A.E. "Software Aspects of a Closely

Coupled Multicomputer System", Computer and Digital Techniques,

Vol. 1 No. 1 (1978) pp. 21 - 26.

35. Heart,.F.E~ et al. "The PLURIBUS Multiprocessor System",

Multiprocessor Systems, Infotech State of the Art Report No. 29,

Infotech International Ltd., Maidenhead (1976) pp. 307 - 330.

·36. Hoare, C.A.R. ''Minotors: An Operating System Structuring Concept",

CACM, Vol. 17 No. 10 (1974) pp. 549 - 557.

37. Hoare, C.A.R. "Communicating Sequential Processes", CACM, Vol. 21

No. 8 (1978) pp. 666 - 677.

38. Hoare, C.A.R. and Perroth, R.H. (Eds.) "Towards a Theory of

Parallel Programming" in "Operating Systems Techniques",

Academic.Press,New York (1973).

39. Horning, J.J. et al. "A Program Structure for Error Detection and

Recovery", Proceedings of the Conference on "Operating Systems:

Theoretical and Practical Aspects", IRIA (1974) pp. 177 - .193.
- 216 _.

·40. Rciward, J.H. "Mixed Solutions for the Deadlock Problem", CACM

Vol. 16 No. 7 (1973) pp. 427 - 430.

41 •. Interdata Inc., "Disc Operating System (OOS) Reference Manual",

pUblication number 29 - 293, Interdata Inc., Oceanport,·New

Jersey (1974).

42. Interdata Inc., '~odel 50/55 Communications Processor Reference

Manual", pUblication number 29 - 249, Interdata·Inc., Oceanport,

New Jersey (1972).

43. Interdata Inc., "Universal Logic Interface Instruction Manual",

product code M48 - 013, Interdata Inc., Oceanport,.New Jersey (1975).

44. Jacks on , M.A. "Principles of Program Design", Academic Press,

New York (1975).

45. Knuth, D.E. "Additional Comments on a Problem in Concurrent

Programming Control", CACM, Vol. 9 No. 5 (1966) pp. 321 - 322 •

..
46. Kober, R. et al. "SMS 101 - A Structured Multimicroprocessor System

with Deadlock-Free Operation Scheme", Euromicro Newsletter, Vol. 2

No. 2 (1976) pp. 56 - 64.

47. Kurtzburg, J.M. "On :he Memory Conflict Problem in Multiprocessor

Systems", IEEE Trans. on Computing, Vol. C-23 No. 3 (1974)

pp. 286 - 293.

- 217 -

48. Lamport, L. "A New Solution of Dijkstra's Concurrent Programming

Problem", CACM, Vol. 17 No. 8 (1974) pp. 453 -'455.

49. Lamport, L. "Garbage Collection with Multiple Processes: An

Exercise in Parallelism", Proceedings of the International

Conference on "Parallel Processing", Walden Woods (1976) pp. 50 - 54.

50., Lehman, M. "A Su'rvey of Problems and Preliminary Results

Concerning Parallel Processing and Parallel Processors",

Proceedings of the IEEE, Vol. 54 No. 12 (1966) pp. 1889 - 1901.

51. MacKinnon, R.A. "Advanced Function Extended with Tightly-Coupled

Multiprocessing", IBM System Jour~al, Vol. 13 No. 1 (1974)

pp. 32 - 59. <

52. McCarthy, J. "Recursive Functions of Symbolic Expressions and

their Computation by Machine", CACM, Vol. 3 No. 4 (1960) pp. 184 - 195.

53. McCarthy, J. et al. "LISP 1.5 Programmer's Manual", MIT Press,

Cambridge, Mass (1962).

54. Randell, B. "Research on Computing Syst~m Reliability at the

University of Newcastle Upon Tyne 1972/73", Technical Report No.

57, Computing Laboratory, ,University of Newcastle (1974).

- 218 -

55. Randell, B. "System Structure for Software Fault Tolerance",

Proceedings of the. International Conference on "Reliable Software",

Los Angeles (1975) pp. 437 - 449.

56. Sastry, K.V. and Kain, R.Y. "On the Performance of Certain

Multiprocessor Computer Organisations", IEEE Trans on Computing,

Vol. c-24 No. 11 (1975) pp. 1066 - 1074.

57. Science Research Council. "Distributed Computing Systems Annual

Report Sept. 78 - Sept. 79" (1979).

58 •. Steele, G.L·. "Multiprocessor Compactifying Garbage Collection",

CACM, Vol. 18 No. 9 (1975) pp. 495 - 508.

59. Strecker, W.D. "An Analysis of the Instruction Execution Rate in

Certain Computing Structures", PhD Thesis, Carnegie _ Mellon

University ARPA Report (1971).

60. Swan, R.J. et al. "Cm· - A Modular, multi-microprocessor", AFIPS

Conference Proceedi.ng~, Vol. 46 NCC (1977) pp. 637 - 644.

61. Swan, R.J. et al. "The Implementation of the CM· Multi-micro-

processor", AFIPS Conference Proceedings, Vol. 46 NCC (1977)

pp. 645 - 655.

62. Tandem Computers Inc. "TANDEM Non-Stop System~", Sales Literature,'

Tandem Computers Inc., California (1978).

219 -

• 63. Ward, quoted in "Introduction", Multiprocessor Systems, Infotech

State of the Art Report No. 29, Infotech International Ltd.,

Maidenhead (1976) p. 18.

64. ,Williams, S.A. "Approaches to the Determination of Parallelism

in Computer Programs", PhD Thesis, Loughborough University (1978).

65. Wirth, N. "On Multiprogramming, Machine Coding and Computer

Organisation", CACM, Vol. 12 No. 9 (1%9) pp. 489 _ 498.

66. Wulf, W.A. "Hydra: The Kernel of a Multiprocessor Operating

System", CACM, Vol. 17 No. 6 (1974) pp. 337 - 345.

67. Wulf, W.A. and Bell, C.G. "C.mmp _ A multi-mini-processor",

AFIPS Conference Proceedings, Vol.,41 Part 2 FJCC (1972) pp. 765 _ 777.

68. Yau, S.S. and Cheung, R.C. "Design of Self Checking Software",

Proceedings of the International Conference on "Reliable'Software",

Los Angeles (1975) pp. 450 - 457.

69. Proceedings of "Computer Networks", an .Advanced Course, Dublin

(1977) to be published.

- 220 -

,
, . ~' .

APPENDIX 1

AN IMPLEr1ENTATION OF

THE ABSTRACT RESOURCE RING

This Appendix consists of a listing of an implementation of the

Abstract Resource Ring. The implementation, which is based upon the

periodic restart, is written in Algol 68R.

- 222 -

1
2 ' C ,
3 '. '
4 ' C ,
~
/l
7
II
9

1 (I

'1 12
13

,14
, S
1(,

1 ;'
1/\
19
2fl'
21
22
23
24
25
2(,

2,7
21l '
29
30

, Cl,

, t; ,

PASle DlFl~lTlONS Of VARIABLES AND PROCEDURES

VARIA~LFS AND CCNSTANTS,

, JtJ:r , Ni
PI
PHJctjO,
tJl! OF SVS RES'

'lli'T' Cf:~f\TEc1 r

, c , , c, '
, C ,
I C ,
, C I

NO Of PROCESSORS
HO OF RESOURCeS
LOCA~ PROCESSOR NUMBeR
NO Of PERMANANf (SYSTEM) RESOURCES
'CREATE" RESOURCE NUMBER

t~:p,Ollj;-1i2)'nlT'~INGI 'Cl 'HE RING STRUCTURE
",OOE,'R[SUUPClDEFNI.'STRUCT'<'INTYNODE,'STRJNGINAME)~
t~ :P)'REGOURCFDErN'RESOURcES/· ICI ~RESOURCES~ TABLE
t1:NO UF SYS RlSl'REF"STRINGISYSNAME, ICI N~MES OF SYSTEM REsoukcej
t'r~,':~]'I~TILUCAL TIME, 'Cl TfMING ARRAY FOR DEATH cHfeKtNG

"RDCIWAlT!'VOID'1
!B!:GIN'

A PRD~~bUnE wfllCH CAUSES THE CALLINC ACTIVITY TO BE SUSPENDED
FOP A MINltIU~l TI~IE

'Ill LT
If NO"

PAGE;

, let
let
H' let
!et

le.

'C t
!et , c.

,

I

'" gj
I

" "".

,",

f,(,SH O\.:FHlITIO'tiS OF vARIABI.ES AND PROCEDURES

. . .' '.

31 • PRO C' FA U L ,.~ ([3 , C HA R IM E SS) I
3~ "'EGI~'
33 'r'
34 A PRot~DURE w'llCH CAUSES THE CALLtNG ACTIVITY TO FAIt FOR '~E
35 GIVEN REA~O~
3(, 'Cl
37 Ifll Lt
31\ 'EIIIP,
3\J
4P ,p~nC'T~LtCPE':A'DRSa(rl'CHAR'X/'INTTYltlICHAR'!)1

,41'O[GIN'
4~ 'C' '

, 43 A PRDtEbORE uHICH CAUSES A MESSAGE TO, BE PRINTED ON THE Ope~ATOR
4. COUSO~~

45 ' C '

, C '

, c ,

'IqL'
• f. tH) / I

~rRnc'INJTIATEF(IR~F'IPROCI('INT')P7'INT'X)'
~HGIfJ'

A PROC~~URE Tri CREATE' A NEW ACTIVtTY TO BE ADDED TOTRE
Sys TE 11 t () fI HU L E

I h I L'
• I: IJ D 'I ,

'PRnC'ALREADVOOINGP(IRFF"PROC'(fl»T')P"JNT'~)'BOQL'1
'[<[(lIN'

'~P(jLI MiS I

PAGE, 2 '

" I
, I

I '

et·
I\J

• I :.-' .

" . ..' .

61
62
63
64
65
66
(,7
61;
69
7u
71
72
73
71, .
75
7r.1
77
711 ..
79
Bt'
81
82
83
8/,

, e ,

, C '

, C '

BASIC DEFIHITID~S OF VARIABLES AND PROCEDURES

AIlS
. 'f.IJD':

.PHnC'~lLL~('RlF"PROC'('INTI)P,IINTlX),
l~[CIH' .

A PROC~DOHE UHICH RFMOVES THE ACTIVITY SPECIFIED ay THE
PARAHtTFRS TO P[REMOVEO FROM THE SYSTE" SCHEDULE

'N 1L!
• [11 D ' I

'PRPC!REINSTATL RESOURCEc('INTIRESOURce NO),
lBf.GIN'

A PROCEbUHE WHICH RECOVERS THE speCIFIED RESOURCE TO A
CURRECT AriD SELF CONSISTANT STATE

!Iq Ll
~ EIHlI I

, .;.',

PAGE 3

I •

:g.
I

.. ,
. I

j

1
2
3
It

5
6
7
IJ
9

10

"

, C ,

! C '

12 , C ,
1 :~

IIEXT rROC ~n ~DUTINE

~ PI10C' N!:XT PJ{OC· I,D" (11 ~T' 1)11 NT' I
'r(I,iIN'

'. , 1 F' I >or III Till N , 1 , E l SE' I'" 1 ' f I ,

PELIV~R HEXT PROCESSOR NU~BER IN eVCLJC ORDER

11.' rlJD' I

PAGE

- .-."

.. ,
~

.--: .

. ..,.,',
-,,- . "-: ' . ..~

. 1
i!
3
4
5

" 7
Il
\I

10
11
12
13
11,
15
1(.
17
111
19
20
21
n
23
24
25
2&
27
2B
29.
3\1

, C.I

, C ,

, C ,

, C 1

, C 1

.. rliTRES ACiIVITY

1 P k uc 1 \ 1 1'1 T ,) Pt! TP E S . A C Tt V IT Y P' (, r N'rr R eS OUR C E NO) L
f!lUiIN'

'UunL!fXITI~IFAlSE',
I~"ILEI'"OT'EXI"AND'RING[RESOURCE NO,PROCNO,1l~OIDOI
'~\LGIIjl

'IfITIJ ,.PRoeIIOI
~WIIILE'JI.RING[RESOURCE N07J,Z~I'NdTIE~lTjANDIJ#PROCNOIPoi

IIFIR'NGtRESOURCE No;ai1l.1ITHENI .

SOMEOflE lIAhTS IT
*** GIVe IT IN A SAFE UPDATE - ••

**! fllO OF SAFE UPOATE **'Ifr

FXITI·ITRUE'
'n" !IF"NOT'EXIT'THEN.'WAIT)PI'

. ":'."

< I'

PAGE· .• 1:

. I

fij

; ,"

31
3~
33
34
3!>

, C ,

PllTR(S. ACTIVITY

WAIT FUA A SPELL THeN TRV AGAIN~ UNLESS GOT RIO OR IT

'EN!)'
'ftlD'r

, -"-.

~' ,

2

.' ,,' ~ - ,
! "

1
2
3'
4
5.
6
7
8
9

10
11
12
13
14
1S
16
17

.Hl
19
20
7.1
22
23
24
25
2 !,

'1.7
28
29
30

I C I

, C I

, C I

, C !

, C I

, C ,

'i1,TRES . ROUTHI(

. GETRES pROCUDURE

'PROCJG~TReS~(!INT'RESOURce NO),
'OEGIU'

CH~CK VALID RESOURCE NO

'!F,RESbURCE NO>pIOR,RESOURCE NOC"THEN'
FAULTC"INVALIO RESOURCE NUHBER~)

'FlI.t
'IF'~lNG[H[SOURCe NO.PROCNOi2'N~"T~EN'

IF ON TilE RING

RINn[R(SOU~CE~OfPROCNOI']'="

SCT (IAtIT FLAG

'IF'ALREAD~ ~OING(PUTR.S ACTlVJTV,RESOUR6E NO)ITHeN'
KILL(PUTRES ACTIVIT"RESOURCE NO)

HI'I

.PAGIl 1 ,

.' ." . ;. . '

..

.. ; ";', '

31
32
33
34
35
30
37
31!

. 39
40
41

I C I

'" .

GOR~S ROUT!IJE

KILL UFF eUTRfS ACTIVITY IF GOING. WEVE TAKEN fT BACK

!WHILE'~ING[RESOURCENOIOi1]#PROCNDIDOl
IJA I T

IlLS~1
FAIJLT("CANNOT GeT RESOUR(!E AS N'OT ON·RfNG").·

I FIr
., E tl D ' ,

,

PAGe ·2.· .

. . I .

.,

. ~.

'" I

--------------------------c--------- - ----

,
2
3
.4
5
(,

7
8
\I

10
11
12
13
14
15
16
17
18
19
20
21
22

. 23
24
25
26
27
28
29
:SO

, C ,

, C '

, C ' .

, C ,

, C ,

PIJTHES ~OUTnIF'

IPRQC'PUTR~S.('!NT'REsOuReE ~D)I
!lJr(jlu'

CHHK VALID ReSOURce NO

'IF~RESOURCE NO>P'ORIRESOURCE NOC'I?HENI
fAIJLT("!NVALID ~ESOURCf NUMBER")

IF 11 r
IIF!RING[RESOURCE NO,PRQC~012"~1'THEN'

IF ON THE RING

RING[RESOU~CE NO,PROCNO,'li-O/

CLEAR OUR UANT FLAG

'.

.. -:.' ,

PAGE,' 1

31
32 'C'
33
34
:SS
36

. 37
38
39
4(1
41 .
1,2
1,3
44
45
46
47
411
49
50
51 .
52
53
54
55
51>.
57 .
51l
59
60

rUTR~S RnO~lflE

. HI'
le tJ D ' I

.

J

'HGIN'
'INT'JI"PROCNOf
1800LIDUNE,.IFALSEI,
I~NILE'JI.RINGtRESOURCE NOtJi2~IJ#PROCNO'ANDI

INOTfDONEI[lO'
IIFIRING(RESOURCE NO,J11l""THEN'

IF 1'1
IIFIINOT'DONEI'REN'

. , Ft ,
, EN 0 ,

INITIATE(PUTRES ACTIVITV,RESOORCE NO)

PAGE; . 2 .

I

N

~
I ..

,
2
3
4
5
6
7,
8
9

10
11
12
13
14
15
16
17
111
19
20
21
22
23
24
25
26
27
23
29
30

~-------------,-----------------------,------------------

, C '

1 C',

, C ,

OEALLOCATE ACTIVITV,

DEA LLVCA TE A eT I v ITv.

'PRUCI('I~T')DEALlACTIVITVI=(IINT'~ESOURCENO)1
,n[GIN'

WAIT fUR 50~E ONE TO REQUEST THE RESOURCE,
THEN ~IVEIT UP AND DELETE US

'OUO~!ExtTI='FALS£"
'~HILEIINOT'EXIT'DO'
, U ~G tIn

GETRES (CRHTE) I
fIF'A!NGtRESOURCE No,PROeNO;Z]=PROCNO'THaN'~

JUST US LEFT ON THE RING e REMOVE FROM RESOURCES
**. START OF SAFE U~DATe •• *

**1!

NOD~IOFIRESOURCEsrReSOURCE NO]I-""
N~ME'OFIRESOURCEsrRESOURce NOll-~'r
RING[RESOUReENo,PROCNO,2'1!~11~

ErlO OF SAFE U~DATE *.*

PAGE ',"

I

S
I , '

.,,-.-

31
3i!
33

. 31,.
· 35.·

36
37
38

· 30

40
41

· 42
43'
44
4S
46
47
48
41)
SO
51
52
53
54 .
55
56· .

, Cl

I C I

'e'
'e'

57 , t I

58
59
60

prALLDCATE ACTIVITY

EXITI=Il'RUE'/ .
PUTRe~(CREATe)

! F.LS£'
IS[GIN'

'INTIJI
JI·P~OCNOI
IWHILF'JI.~ING[RESOORCE NO.J,2]IJ#PROCNO'AND"NOTIEXITIDOI

SEARCH ROUND THr RI~G FOR SOMEONE ~HO WANTS THe RESOURCE

'IF'RING(RESOURCE NO,J,']#O'THe~'

PROCESSOR J WA"TS THE RESOURCE

'aeGINI
.IINTIK,
KI =PROCNOJ .
IWHILEIRINGTRESOURCE NOiKrZ]#PROCNOfDOI
. K,aRtNGtRESOURCE NO,K,2]1

K IS U~R PREOtCESSOR
R(tIOV~ US AND GivE. THE RESOURCE AWAV .*. SAF~ .uPPATE COMING ***

PAGE'··· 2,

.... :.

" 61
62
63

',',64
6S
66
67
68
69
7Q
71
7Z
73
74
75
76
77
78
79
80
81
82
83
84

! C I

, C ,

\

D[ALLOCATE ACTIVITY PAGE . 3'

RINGtRESOORCE NOiPROCNO,'l,-O,
'RI~G[RESOORCE NO;O,']"Jr
NODE'OF'AESOURCeS[RESOU~CE NOJ,zKI
RINGtRESOURCE ~O,K'~]I~RINGtRESOURCfNOIPROCNO,2]1
RINGtRESOURCE NO,PRQCNOiZl, •• "

~~o OF SArE UPDATE ***

'EtlD' ~,,,

EXIT,-ITRIlE'1
pUTRES(CRE~TE'

'END'
, F I I

'F" I
'IF"NDT'EXITITHEN'

PUTRES(CREATE) I
\-lA IT

!F I ,
'~rl[l'

?E fJ D ' I '

,
,~ , '

'I

,L'

1
2
3
4
5
6
7
l!
9

10
11
12
13
14
15
'6
17
18
19
20
21
22 .
23
24
25
26
27
211
29
30

, c ,

, C I

, C I

ALlOCAT~ ROUTlhE

ALLDCATE TRANSI~NT RESOURce ROUTINE

'PROC'A~LOCATE=('STRING'RESOURCE.NAMC)'INTI, .
'nE:G1N'

CREATE A New TEI'P RESOURcf YITH THE GIVEN NAME ; RETURN RESOURCE NUMBER

"NTTHOLfI""1,J,."
'~UOL'EXITI·'fALse"
HTRES (CRlATE) I
,WHILE'J<=P'AND"NOTIEXIT'DO'
.'U~(jtN'

'If'hOLE=.''ANDINODE'OF'RESOUReES[Jl~~fl'HEN'·
IIOLElaJ

HI'I
'1~INAME'OF'RESOURCES[J1WRESOURCE NAMEIT~EN'

EXIT,.'UUE'
!ELSE'

~ F JI
"ENO!!

J'PLUS"

IF J<"P TUE RESOURCE ALREADY. EXlns HSE HOLE. IS FIRsT FREEst;OT

, .

'. ';l?,
·N ,

. .'-',' ;'

,.'1

'." i

31
32

'. 33

34
3S
30
37
311
39
40
41 I.,
43
44
4S
46
47
411
49
50
51
52
53
54
55
5t>
57
53
59
60

---------c---c-~---- -- ------ ---------c---:-:-:--:c-:---::-:---,--~

.. ALLOCATE ROU'I~~

, IF'J<IIII"'I'ilf:lJI
~lF'ALHEAOV DOING(DEALL ACTIVITV,J)'THEN~

Klll(DEALL ACrIVITY~J)
!ELSfIPI~G[JiPROCNO,2]=_"THEN'

ADP uS IF YE ARf NOT ON THE RING.
"** SAFE IJPOIlTE ***

RING[J,PROC NO,11,-Of
RINGtJjPROCNOtZl,.RtNG[J,NODE'OFIRESOURCES[J],2!'
RINGtJ,NODE'OFIRESOURCEStJ),211·PROCNO

, ;-:

PAGe· 2.

,-
,,< ." ,

,., . '

". ;'.'" .. '

,"-'
.. : :.:. '

61
6~
63
64
65
6e>
67
/)u
69 . 'e' .

ALLUCATE ' ROUTINC

NAPiEIOPRESOIlRCEStJll=RESOliRce NAME/.
110 [\ E I Cl F' RE S 0 IJ il C E S ~ J J I • PRO C N Q I
RING[J,PHOCNtl,2ll·P~OCNOt
HING[J,O,11IaPRoCNO;
IlP:GIJ ,P,ROCN0I11I a O

7() *** ~"D OF SAFE UPDATE' **.
71 ' C ,
72
7:1.. Ifl't
74 P~TRES(CREATE)I
75 p~TnES(J)1
7(.
77
7B
79
80
81
82
83

, C '

, C ,

GET RID Of RESOURCE
RHURIJ RI!SOIlRCE IWMAER

PAGE , . :5

'.1

,--------- - - - -- -, - -----,---,-----,----,------,-----,---,----------,-----,-------:-,----,---~-~,---,___-__:_c--___:_--

1
;(

3
4
5

otALLOCATE ROUTINE

! Cl
DEALLDCATE 'EHPORARV RESoU~CE ROUTINe"

I C I

" b lPHUCIDEALLOCATE~(IINT'HESOURCE NOli
7!DEGIII'
. i\ "
C;

10
, 1
12
13
14
15
16
17
18
19
20
21
U
23
2/.
25
20
,,(
7.1\.
29
30

'e'
, c '

le'

I C I

!
CH(C~VAL1DR(S(IURCe NO

'!F'RESOURCE NO>P'ORIRESOURCE NO<"THEN'
FAULT(~INVALIO RESOURCE NUI1BER")

!FIn

TRAP DEALLOCATIDN OF PERMANANT RESOURCES

'IFIR~snURCE NO<=NO OF SYS RESfTHEN'
f"AIIL T("CANNOT OEALLOCATE PERllANANTRESOURCE"

If! H .
'IFIR!NG[kESOURCE NO.PROCN072"~1'ANO'

'~OT'ALREADVDOING(D!ALL ACTIVITY1RESOUReE NO)rTHENI

IF ~OltlTER IS SET", IE.ON THE RING

" "

.0'

31
32
33
34
3~
3(>

37
31\
3('
I,ll
41
42
43
44
45
41J
47
48
49 "
S (I
51
52
53
54

,55
56
57
58
59
60

'e' '

, C I

'e'
, c ,

, c '
! C ,

nrA~LbcATE RDUTIke'

'IFIALREAOY,DOING(PUTRES ACTIVITY/RESOURCE NO)'THE~I
KILL(PUTRES ACTIVIT'iRESOURCE NO)

• F I ' I
GETRES(PESOURCE NO)I.

. (jETP.ES(CRE~re) I
'IF'RING[R~SOURCE NO~PROCNO,~l=PROCNO'THEN'

IF \i~ ARE ONLY PERSON ON THE RING
RUIIiV~ TilE; RfSOURCE FROM THE 1.)5T .*. START OF SAFE. UPDATE •••

**!

NODE'OF'RESOUR~EstResOURCeNO],~~!r
NAMEIOF'RESOURCES!RESOU.C& NO],.Q','

,~ING[RESOURCE NO,PROCNOI2!,~"",

~"D OF SAFE UPDATE *.*

Pl!TREs(CREATE)
·'!EI,SE'

PUTRES(CREATEll
INITIATE(OEALL ACTI'ITV,RESOURCE

.,

NO'

START TIlE DEALLOCATE ACTIVITY IF' OTHERS ON THE RING

pAGE

51' ,,'
N

, ,

. ,,',,'~ '. . .

,
,
,

, ,

".". ,,"

.'. ,

. . ~ ,

61
62
63

Or.i\UOCIITF.

fIl

R PUTlt! E PAGE'

! F I'

1
7.
3
4

. 5·
(,

7
8
9·

1(;
11
12
13
14
15
16
17
11i
19
2(1

21
22
23
2 t.
2~
26
27
21j
29
3 {I .

, C ,

, C '

't'
'C'
, C ,

, c,

~[COVERY ACTIVITY

'PHQC'('INT')REC(IVERYza('INT'DEADPROC)1
!flEGIlj'

INITIATED WHEN A PEAO,PROCESSOR IS FOUND
THl SINGLf PAHA"ETER IS. THE NAME OF THE DEAD PROCESSOR

, F Uf,'! 'TO' P' DO I
'IF'RING[I,nFADPROC,21#."THENI '

IIFIRINGtl,O,1]#DEADPROCITHEN'
RING[I,DEADPROCi11,-o

. CLEAR ALL WANT FLAGS OF'RESOURCeS NOT OWNED

\lAP Fun ALL pUTRES TO THE OEADPROC TO FINISH

. > PAGE

,.
1\1 ..
-* 1\1

. . . ',' "~~ ,

......... :.'. '.·····'1 ..

31
32
33
34
35
3(, ICI
37
38 . , C ,
39
4(1

41
42 'C'
43
44 , C ,
45
46
47
46 , C ,.
49
50 , C ,
51
52
53
51.
55
56
57 'C'
58
59
60 , C ,

RrCOVtRY . ACTIVITY

'fU~'JlTO'PIDO'
IIlH 1 tJ ,

'aOOL'FLAG,alFALSEI,fLAGt,.IFALSEI, .
'1f'FlhG[I,OEADpROC,21#-ttTHENI

FUR EACH PiNG H(IS ON .

ADP US TO T~E RING IF NOT THER ALREADY ~ NOTE WE ALREADY OWN CREATE

**t

FUGulTRUEl,

START Of SAFE UPDATE ***

RI~G[IIPROCNOI')j_O,
RI NG(I,PROCNOi2)j_RING[I,NODE,Q"RESOURC!stl],21,
RING(I,NODEIOFfRESOURCESCIlI211-PROCNO' .
~onE'oF'RESOURCES[lJ,.PROCNO

INCAst. DEAD PhOCFSSOR WAS THERE .
~ ~rlo or SArE UPDATE· ***

PAGe .. 2

.,
~.
N

61
62

,63
64
65
66
67
68 -
69

, 7('
71
n
73
74
7~
76

,77
78
79
80
81
82
83
84
85
86
87
88

, 89
9(1

'e,
, C ,

, Cl,

'e'

, C I

, c ,
, c ,

Rl'COytRYACT1VITY

'ELSE' " ,'. '
'FLAG".RING[IIPRO~NO,11·1

'Rf:f1llll;EP, IF WE ~iANT THE RESOURCE

, FIll
'Ir'RINGII,O,'l=PEADPROC'THEN'

GRAB ~ESOU~CE IF HE HAS IT
.*! V51NG A SAFE UPDATe' •••

'RING[I,PROCNo,.".1/ '
RI~G[I,Oi'l'.PROCNUI

END OF SAFE ,UPDATE •••

IIFIRtNGCI,DEADPROC,11!1'THENI
RI~GI1,DEADPROC,11'~O'
REINSTATE RESUURe~(I)

RECOVER THE RESOURce IfHf WAS USING IT

.' " '

" ,"

",".:, .

, ,
'=l
'f '

"

91
9?
93
94
li5
96
97
98 't'
99

10(l,'CI
'01
102
103
104 'Cl
105
10(> 'C'
107
108
109
110
", 'Cl

, 11 2
113
114,', IC"
1 1 ~

, 11 t>

'17
118
119 'Cl
120

- - -- - - - - - - - -----c------~--___,_____,_____

, , Ft I

'ELSE'
, PU'RF.S(CREATE>1
GErRES(I)/
r.ETRES<CREATE)

6[T, ThE n~SnURCE PROPERLY

,R(110V~ RIM fROM THE,RING'

'FOR'J'TO'N'DUI
" 'IFIRINGtI.J72'~DEADPROC'THEN'

, AE HAvr FOUND HIS PRE~ECESSOR
,;,*... START, or SAFE' UPDATE *t*

**'!!

RINGtl,J/ZI._RINGtl,DEADPROCiZJ,
RINGtl'DEADPROC,211.~1

PAGE

, "
C.' ."

••• 'J'

1

",I

121
122
123
124
125
126
127
128
129
130
131
132 .
133
134
13~
136
137
138
139
'40
141
142
143
144
145
146

·'47.
148.

le'

'e'

'e'

I C I

RECOVERY ACTIVITV

, Ftll

~EMOV~ us J~ WE WERE NOT ORJGJONALLV ON

IIF'FLAGtTHENI
OEALLOCATECI)

t[LSF"NOT'FLAG1tANDtl#CREATEITHENI

GET RID OF .T~E RESOURCE .IF WE DID NOT WANT IT

'F"
l~tlD!'

PUTREsCI)

TJ:LL OPFRATOPS("PROC "IDEAOPROC;~ IS DEAD"lr

SET A6 R~COVERED IN LOCAL TIME

LOCAL TIME[CEADPROCt1'1·~'
, EIHlI,

, e";

.. ~.
·N

I .

,-' .

,', ;,',,:.

, ,"
.. ,' ~.

- ','. '" .. ::. -, ~"-; .

1
2
3
4
5

, c '
, C !

D[ATH ChECk' Ac,IVITV , pAGE

PEATH CllECkING POUTINE

6'PR~C"V0JP'~EAT" CHFCKI~'VOID'I
7 HEGlPl'
8 ' ,INT!lr=PROCiJO,
SI

1(1
'1
12
13
14
15
16
17
11l
19
20
21
22
23
24
25

, C ,

, C ,

, c !

FOR EACII PROCESSOR FOLLOWING Us TtLL EITHER OURSELVES
OR A LIVE PROCESSOR IS MeT

'WHILE'II~NEXT PROC NO(I)II#P.OCNUIANDILOCAL TIMEfPROCNO,11>­
LCCAL TIME[Ij1].LOCAL TIME[I,21'DOI

R~covt~ AIM IF NOT ALREADV DOING SO AND NOT BEEN RECOVERED 8E,ORE

!I~"NOT'ALREADV DOING(R~CO~ERV~I)'ANOTioCALTIME[t,'l>~O'THENI
I~ITIATe(ReCOVERV,11

'Ft'

- " .". ,:,", '", ': .'

,

, ,
C'--'
~'

I\J
" ,

. '. I ;:., ,-..:.,~

I

1
2
3
4
5
6
7
8.
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

'C'
, C I

, C '

! C !

, C ,

, C ,

, C ,

SCltEPULAR STARTUP ROUTINE

SCHCDULAR STARTUp PROCEDURE

'PRDC'S(liED START~P.'VOID'I
'BUilt!'

ALLOCATt ALL SYSTEM (FIXED) RESOURCES AND KILL OFF THE RE Sf

'fun'~ITOINOOF SVS RES'DOI
!~ECtNI .

NOnE'OFIRESQURceStJ]ie"

GIVE SYSTEM RESOURCES TO PROCESSOR 1

. NAME'OFIRESOURCESrJl~~SYSNAMe[J]1
RING[J,1 ,1] ,-0,

. RJ/,1G[J,O,1],.1,

SET 1 AS OWNER

INITIATECPUTRES. ACTIVITV1J),

.... PAGE
, ,,'

.1:',

.,.',

"" ,"

"" .' . ,

31 , C I
32
33 'e,
34

. 35
36
37
38
39 le'
40
41 'Cl
42 .
43
44
45
46
47
48
49
50 'e'
51
52 . le,
53
54
55

. 56
57
51!
S9
60

SCHEPUL~B S'A~TUP ROUTINE

INITIATt PUTRES ACTIVITV FOR ~ROCBSSOR 1

RlliG[J,1,2],1I21
~FnR'K'FROM'2'TOIN'OO'
!orGltll

CIIA I N ALL THE PROC E SSOIlS TOGETHER

-

!END'
HNC' ,

RIN<i[JjK,'l,IIO,
RING[JiK,2],8NEXT PROe NO(K)

'rORT~'rROM'NO OF SVSRES+"TO,PfDO,
'~~GINI

KILL PfF THF REST

NOnE'OFIReSOURcEstJ]18~1# .
NAMEIOFIRESOURCestJl'."'f

. 'FOR'K'TllPHDOI
! B r: G 1 III .

RtNG[J,K,131"O,
RING[J,K,2],,, .. ,

'END'

PAGe

.. ,
.0' .•.

'it
. .. I

.,,' .. ,

,-----------------------,-------,-,-----,-------,-------~,-,-~-----------

SCHEDULAR STARTUP

nNDT
'E tJ 1)1 ,

ROUTI~E

".'-

plGE l

I,

fk
N

"

-'. -",

,

',"i'

. '~: ",

. APPENDIX 2

AN IMPLEMENTATION OF ,THE

RELIABLE UPDATE

, ' .' , . ,.-, .. '- ,

,', .'

.' .: " .. ,

This Appendix consists of a listing of an implementation of the

Reliable Update algorithm discussed in Section 6.7. The

implement~tion is written in Algol"68R.

- 252 -

"' ;.

---------:----,------------------------~------ - ---

1
i1
3
4

,5
6
7,
8
9

10
11
1;1

13
14
15
16
17
18
19
20
21
2i1
23
24
25
26
27
28
29
30

, C '

, C '

'C'

, C '

, C'

, C '

, C '

SYS1EM PRO~EDU~e

~PRQC~fAULT.('STRJNG'S'1
~BIl~IN'

A PUOCEDURE WHICH eAUSIS THE CALLING PROCESS TO FAIL COR THE GIVEN REASON

,SKIP'
fEND':

,PASICMODEDEFINITIONS

fMOOE.'VAiuEI.'UNJONICIINTI,IREAL!7 1 CHARI)1
lMODE," BlSTABLE'.'INTI, , ',', ' , '," ',,'
'MoaEI'SAFEENTRVI.'STAUCTI('VALUEf~ALUEINEWVALUEi.IIS~AILE'.S,,',

, .. '.; ,.'

- - --c-cc----

, . ~ ..

I

'" lO
, -. "

, ,

, 31,
, 32

33
34
35
36
37
31S
39
40
41
42
43
44
45 '
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

, 'C I

, C',

, C I

, C I

EX4MPLE "RELIABLE UPDATE- PROCEDURE'

SAF~ UPDATE PROCEDURE

,PRDC'SAFEUPDATE_C[]'RIF',SAFEENTRY'TABLE,tJ'VALUE'NEWVALUES.
~REF"BrSTABLE'FLAG~1

!BE'iIN'

TRE ARHAY ~TABLE~ CO~TAINS POINTERS TO THE, ~NTRIES TO lE CHA~G.D;
THE NEW VALUeS TO BE INSERTED ARE GIVeN IN ARRAY ~NEWVALUES"l
AND TH~ FLAG IS GIVEN BY "FLAG"

,IINT'II.'UPBITA8LII
'IF~J"UPB'NEWVALUES'T"EN'

fAULT(~BAD p.RAHETERS")
'F n«

FAll IF DIFFERENT NUHBIR OF ENTRIES AND NEW VA~UES

STE~ A

.: .,'

, 2:,

,""

, "

,-cr:,
N "

, , ", ' , "

, r' ;

I

61
6i!
63
6 ..
65
66'
67 'e'
68
69
70
71 'e'
72
73
74
75 'e'
76
77
78
79 '. 'e'
80
81
82
83
84 .
85
86
87 'e'
88
89
90

eXAMPLE "RELrABL~ UPDATe- PROCEDURE

JFOR'J 'TO'l 'DO'
'BEGIN'

, NEUVALUE'OF"ABLEtJll·NEWV~LUEStJll
eS'OF'TABLE[Jl,.1

I.END'I

STEp, B

HAGI"1,

ST!;!' C

'FUR'J'TO'I'DO'
'BEGIN' .

VALUE'OF'TABLE[J],.NEWVAlUE·OF"ABLEtJJ.
BSIOF'TABLE[J],.O

'END'I

STEIl D

" '-"

:."; ,

~--------------------------~----------~--~----------~~~-------------

EXAMPLE "RELIABLE UPDATE' PROCEDURe

91 I C'
92
93 FLAG/ao
94
95 I C I
96
97 UPDATE UyER
98
99 I C I

100
101 'ENIl':
'02

)0
, I ,

, ,,'-.
'-~ ",

, ',,'

