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1.1. Introduction 

Computer technology, particularly at the circuit level, is fast 

approaching its physical limitations. As future needs for greater 

power from computing systems grows, increases in cfrcuit switching 

speed (and thus instruction speed) will be unable to match these 

requirements. 

Greater power can also be obtained by incorporating several processing 

units into a single system. This ability to increase the performance 

of a system by the addition of processing units is one of the major 

advantages of multiprocessor systems. Four major characteristics of 

multiprocessor systems have been identified (,28 ) which demonstrate 

their advantage. These are:-

Throughput 

Flexibili ty' 

Availability 

Reliability 

The additional throughput obtained from a multiprocessor has been 

mentioned above.. This increase in the power of the system can be 

obtained in a modular fashion with extra processors being added as 

greater processing needs arise. The addition of extra processors 

also has (in general) the desirable advantage of giving a smoother 

cost - performance curve ( 63'). Flexibility is obtained from the 
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increased ability to construct a system matching the user 'requirements 

at a given time without placing restrictions upon future expansion. 

With multiprocessor systems; the potential also exists of making 

greater use of the resources within the system. 

Availability and reliability are inter-related. Increased availability 

is achieved, in a well designed system, by ensuring that processing 

capabilities can be provided to the user even if one (or more) of the 

processing units has failed. The service provided, however, will 

probably be degraded due to the reduction in processing capacity. 

Increased reliability is obtained by the ability of the processing 

units to compensate for the failure of one of their number. This 

recovery may involve complex software checks and a consequent decrease 

in available power even when all the units are functioning. 

-3 -



1.2. Efficiency Considerations 

The use of multiprocessor systems potentially provides many 

advantages over single processor systems. However, caution must be 

expressed as regards the potential of multiprocessor systems. These 

two aspects are summed up in two well known proverbs: 

"Many hands make light work" 

"Too many cooks spoil the broth". 

A certain overhead has to be faced in the construction of multiprocessor 

systems. At the hardware level, this overhead is manifest in the cost 

of interconnection between the processors and memory of the system. 

This may impose delays within the hardware not experienced by a single 

processor system. Also, the interaction between processors places an 

overhead upon realisable processing power. In practical realisations 

of multiprocessor systems, these overheads must be considered, and it 

is known t!lat for certain organisation, a limit exists upon the number 

of processors that may be usefully added to a system ( 35 ). 

At the software level, similar problems of interaction between the 

processors arise. If they are actually to co-operate then it is 

necessary for the processors to synchronise. This may be due to 

operating system functions or because of interaction between tasks' 

running on different processors. The synchronising overheads can prove 

to.be unnecessarily large if there .is a PO?r.choice of synchronising 

tool. 
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The interactions between tasks can also impose great inefficiencies. 

A poorly designed program may impose many more synchronisations upon 

various tasks than a well designed solution to the same problem. 

Poor' design may, therefore, impose extra costs upon the processing 

capacity of the system as a whole. 

The meaning of the term efficiency is, of course,contentious and a 

definition of the concept, in the context of multiprocessor systems, 

is needed to ,enable an effective discussion of the "efficiency" of 

such systems to be undertaken. Efficiency may be expressed as the 

amount of useful work which can be accomplished in,relation to the 

potential capacity of the components. ' At the hardware level, the 

potential capacity of a multiprocessor system could be expressed as the 

sum,of the power of the components in terms of work which could be 

accomplished. The realisable power is reduced by the overheads 

associated with the interconnection of and interaction between the 

processors. This available power would be further reduced at the 

software level by the costs of intercommunication and synchronisation. 
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1.3. Motivation for Research' 

The problems associated with multiprocessor systems (indeed with any 

computer system) may be split into three broad classes:-

i) Hardware 

ii) Systems Software 

iii) User at Application Software. 

If an overall system is to be efficient, that is ,make good use of the 

total system resources, all three areas must be considered and given 

due merit. The power of a system with sophisticated hardware and a 

well designed operating system may be wasted if badly designed or 

inappropriate applications are executed on it. 

1.3.1. Hardware Level 

It is, perhaps, at this level that consideration should first be given 

to efficiency as, no matter how well designed, software run on poor 

hardware cannot make it operate faster than is feasible as the 

maximum power of the system is inevitably limited by the hardware. 

For multiprocessors with shared memory, one of the major areas of 

consideration must be that of memory contention. The degree of 

memory contention is dependent upon the number of processors accessing 

the shared memory and the use to Which it is put. As will be noted 

in Chapter Two, some,authors have developed complex models to study 

- 6 -
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the behaviour of multiprocessor systems, yet these are often 

specialised, being applicable to only a specific class of hardware. 

1.3.2. Systems Software 

Having designed and built (or purchased) a multiprocessor system, 

several possibilities lie before the user in the organisation of the 

software on the machines. Whatever regime is chosen for the multi­

processor, be it· master/slave, an anonymous treatment of the processors 

or a compromise, questions will arise as regards synchronisation· 

between the processors and also as regards recovery on the failure of 

one (or more) of the processors. 

One of the major advantages of multiprocessor systems is their ability 

to provide processing capabilities even when one or more of the 

processors have failed. If use is to be made of this ability to 

recover; then some forms of hardware synchronisation may be unacceptable • 

... As will be seen (Chapter Three), if one processor has lowered a 

semaphore and all other processors are waiting and the running processor 

dies then the system may permanently hang waiting for the semaphore 

to be raised. 

Of the software .mechanisms. that have been developed, most (e.g. critical 

regions, readers and writers) require a lower level of synchronisation 

upon which they may be based. Some algorithms have been developed 

whereby synchronisation may be achieved by software, but rarely are 

these algorithms considered in terms of reliability or error recovery. 
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The algorithms also tend to become less efficient'as the load 

placed upon them increases. 

1.3.3. User Software 

Having obtained an efficient system, the problems at the user level 

then become apparent. On single processor systems, the bad 

construction of programs can yield vast inefficiencies in machine 

usage. Some design methodologies are being popularised nowadays (20,44), 

and these have been shown to provide improvements in efficiency over 

many level.s, including those of systems analysis and programming. 

With multiprocessor systems, the potential for resource wasting 

increases with the possibility of processes vying for a resource instead 

of co-operating over its use. 

When designing multiprocess (or parallel) programs, care and foresight 

must be used to develop programs which suitably represent the 

parallelism of the problem. The techniques that should be used in the 

detection and exploitation (either human or automatic) of a problem 

are not yet fully understood, though some progress is being made in 

this direction ( 64). 
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1.4. Proposed Areas of Investigation 

There are, therefore, an extremely large number of topics relating 

to multiprocessor systems which would merit investigation and, 

indeed, there is much research work currently being undertaken in 

this area. Since the overall efficiency of a multiprocessor system 

relies ·on the efficiency of' each of the three areas mentioned above, 

consideration has been given to a topic from each, though greater· 

emphasis is placed upon the second area. 

It was felt, from the above discussion, that,at the hardware level, 

there was scope for a general model which would be of use in the early 

stages of a system design exercise and would provide some bounds for 

the maximum realisable power of a multiprocessor system. The model 

should take into account the type of interconnection and the type of 

use to be made of the system. 

At the level of systems software, it was decided to investigate the 

subject of synchronisation between the processors. As was noted 

above, certain disadvantages exist with the algorithms found in the 

literature, and it was hoped that a reappraisal of the problem could 

produce a solution with different operational characteristics. 

Finally, a particular user application was chosen for investigation 

to highlight the difficulties of designing user software for a 

multiprocessor system. 
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1.5. Framework of Thesis 

Chapter Two discusses the. possible organisations of multiprocessor 

systems and outlines the problems faced at the hardware level with 

each organisation. Chapter Three deals with the corresponding 

software organisations and problems. The difficulties of synchronisation 

between processors are discussed and the existing, published, solutions 

are described. Some aspects of the current state of research into 

reliability are also described in the chapter. 

In Chapter Four, a model of a multiprocessor system is introduced. 

This model is then used to develop formulae for bounds which may be 

placed upon the memory contention experienced by multiprocessor 

computer systems. Results obtained from these are compared with 

timings from actual hardware. 

Chapter Five deals' with the development of a software synchronisation 

tool (the Abstract Resource Ring or ARR). Two distinct implementations 

of the basic technique are introduced. The tool is compared with 

other algorithms found in the literature. In Chapter Six, the ARR is 

developed with specific reference to reliability and error recovery 

within multiprocessor systems. In Chapter Seven, the role of the ARR 

in a parallel processing system is described, including discussion of 

its use in the realm of reliability. 

Chapter Eight, by way of an example, shows the difficulties of writing 
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"efficient" software for multiprocessor systems. 

Finally, the thesis is drawn to a close by bringing together some 

conclusions and pointing to areas where further research might be 

pursued~ 

• 
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CHAPTER 2 

MULTIPROCESSOR HARDWARE 

I 



2.1. Introduction ~ 

In 1966 Flynn ( 31) introduced a classification for digital computers, 

which is in common use today. By observing parallelism in both the 

instruction stream'and the data stream for computers, four classes 

were identified:-

1) Single Instruction Single Data Stream (SISD) 

This is the standard serial uni-processor system 

2) Single Instruction Multiple Data Stream (SIMD) 

In this classification, a single instruction is executed by 

several arithmetic units with different data. This yields the 

array or vector processors 

3) Multiple Instruction Single Data Stream (MISD) 

This class of hardware ,would involve a single data item being 

operated upon by several different, instructions. A realistic 

interpretation of a processor of this class is difficult, although 

it may include a Dataflow architecture. 

4) Multiple Instruction Multiple Data Stream (MIMD) 

In this class of hardware· lie systems of processors which may 

Operate independently upon different sets of data with different' 

programs yet may also co-operate upon.a computation if required. 
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The latter classification may be subdivided into loosely coupled and 

tightly coupled multiprocessor systems. Most network systems and 

distributed' computing applications (e .g. ( 69» would be examples 

of loosely coupled MIMD computers. The processors have no shared 

storage medium; being connected by relatively low speed communication 

lines only. With closely-coupled multiprocessors, however, the 

individual processors have access to a shared or common storage 

medium and may communicate or co-operate through this medium. Usually 

this storage medium is core (or a similar high speed random access 

medium), though shared disc or drum systems equally fall into this 

classification, as would independent machines with separate stores 

and a high speed memory to memory link. 

This thesis is, however, concerned with the shared memory version of 

the latter group of machines (i.e. closely coupled MIMD systems). 

In the following section, various hardware organisations for this type of 

system are described ... Some special purpose systems which have been 

developed by various research teams are then discussed. The chapter 

closes by describing two further areas of research in multiprocessor 

hardware. 
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2.2. Multiprocessor Organisation 

The basic model of a multiprocessor system is of a number of processor 

units connected to memory and input~outputdevices. It is the manner 

of this connection which gives rise to the different organisations. 

Enslow ( 28) has "identified three fundamentally different system 

organisations. used in multiprocessors: 

• Time shared or common bus 

• Crossbar switch matrix 

• Multiport memories 

••• the entire scope of interconnection schemes is much larger and 

certainly more complex ••••• these categories nonetheless form a 

useful base for a discussion of the organisation of multiprocessor 

systems •••• 1I 

a) Time. shared or common bus (Figure 2.2.1) 

With this organisation, all the system components (processors, memory 

modules and I/O devices) are connected by a common communication path. 

(the bus)~ The operation of this system is in concept simple, though 

in practice it may be quite complex. A unit wishing to communicate 

with another must first ascertain that the. bus is free. It then places 

on the bus the address of the requested unit together with any other 

information required in the communication. Units which may potentially 

receive communication must inspect the bus for their address being 
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transmitted. The necessary synchronisation over the use of the 

bus may ,be handled by an interface between each component and the 

bus in co-operation with a single arbitration unit for the bus. 

With this organisation, however, as the number of components increases, 

the load placed upon the bus increases, and the bus may become a 

bottleneck. Also,' if the bus fails, then the system as a whole is 

unusable. To overcome both these problems, the bus may be duplicated, 

though this greatly increases complexity. 

b) Crossbar,switch matrix (Figure 2.2.2.) 

With this organisation, the number of connections between processors 

and memories is increased such that a different access path exists 

from each processor to each of the memory modules. The important 

characteristic of these systems is that transfers to or from each 

memory module can potentially be made simultaneously. Whilst this 

design is not complex, much' Circuitry is required to cope with the 

potential contention at each interconnection in the crossbar. An 

example given in the literature ( 29) gives, for a twenty-four 

32-bit processor system with 32 memory modules, the number of 

circuits required in the crossbar switch as two to three times the 

number required for an IBM System 360 Model 75. 

Expansion of this organisation is, however, conceptually straight-
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forward requiring only the size of the switch to be increased. 

c) Multiport Memories (Fig. 2.2.3) 

If the logic controlling switching and arbitration, which is 

distributed among the interconnections in the crossbar, is concentrated 

at the interfaces to the memory modules then multiport memory systems 

are obtained. Often, preassigned priorities are given to the parts 

.to reduce the contentions which may arise allowing the system to be 

configured as required at each installation. One advantage with 

multiport memory systems is the ease with which private memories 

(that is memories accessible to only one processor) may be given to 

each processor. (Figure 2.2.3b) This has advantages with respect to 

security against unauthorised access of data, but has. disadvantages 

with respect to reliability. Since only the one processor may access 

data in its private memory, if that processor fails,access cannot 

be made to the data and it is "lost". 

Another disadvantage with multiport memories is due to the fixed 

number of ports (which is generally small). This restricts the number 

of processors that can be connected to a single memory module and 

. thus limits the maximum size of the system. 

Unfortunately, although this classification is intended to provide 

a general description of the hardware; many practical systems cannot be 

neatly assigned to one or other of the categories. 
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2.3. Commercial Multiprocessors 

Many computer manufacturers are willing to supply multiprocessor 

systems. Indeed, many so-called uniprocessor systems are actually 

multiprocessor systems, with the different processors being given 

well defined tasks. Examples of such systems are the larger ICL 

1900 systems and the CDC 6600, in which specially designed processors 

are dedicated to the role of peripheral processors, relieving the 

main processo~ of this duty. 

Some manufacturers, e.g. IBM, CDC and UNIVAC, supply multiprocessor 

systems with operating systems able to take advantage of the whole 

configuration. Examples of this are the IEM 370/158 MP and IBM 370/ 

168 MP both of which may be operated under OS/VS2 (1,51). These 

systems contain no local memory, but contain special hardware to 

perform some memory mapping as well as handling inter-processor 

interrupts and the serialisation of processor cycles. ' The serialisation' 

is required to prevent interruption of instructions requiring several 

,memory cycles (e.g. Test and Set). Hardware is also included to 

enable one processor to interrogate, or set, the status registers of 

another. The OS/VS 2 operating system allows the processors to be run 

in multiprocessor mode or as several uniprocessors. The control 

program is considered in two parts. One part is concerned with 

servicing functions local to each processor, the other with global 

functions of the multiprocessor as a whole. Locks, software flags, 

are used to prevent several processors performing sections of code 
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simultaneously.' These locks enable software functions to be 

serialised in a similar manner to the hardware. 

Other manufacturers are willing to supply multiprocessor 

configurations, though without any software to control the system 

·inmultiprocessor mode. Examples of these are Ferranti, Texas 

Instruments and Perkin Elmer. Such systems will contain the hardware 

necessary to handle bus contention, though.in some instances, 

instructions requiring multiple memory cycles may be interruptable. 
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2.4. Multiprocessors in Research 

Many organisations and research groups are currently investigating 

the problems peculiar to multiprocessor systems, leading, in some 

instances, to the building of multiprocessors. Often, however, the 

hardware designs of these machines cannot be directly related to one 

of the major classes considered in the previous section. 

One of the foremost groups is that at Carnegie-Mellon University. 

In 1971, a project was started there to develop a multiprocessor 

computer system based on the PDP-11 minicomputer. This resulted in, 

the now famous, CMMP system ( 67). The project arose, not only to 

perform research in multiprocessor systems but also to provide 

computational power for existing projects. The organisation of the 

system is shown in Figure 2.4.1. 

Each processing element, up to a design total of 16 in the development 

system, consists, of a processor, some. local memory and some local 

devices. Two crossbar switches have been added. The first connects 

the processors to shared memory, the second connects them to shared 

peripherals. Each processor may access all shared devices and all 

shared memory. The processing elements include interface hardware,to 

these crossbar switches to convert locally generated addresses into 

addresses suitable for the switch architecture. 

The hardware also contains a system clock, providing a clock interrupt 

to all the processors, and an interprocessor interrupt mechanism. 

~ 23 -
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With the latter, one processor may interrupt any number of its . . . 

. counterparts at one of several interrupt levels. 

One of the. areas that provided some design. problems was the area .of 

memory contention (see section 2.6.).· Calculatio!l3 based on Strecker's 

formulae ( 59 ) were made during the design stages to attempt to find 

cost-effective processor and memory configurations. Research was also 

undertaken in aspects of systems software. This led to the development 

of the kernel of the operating system, called HYDRA ( 66). HYDRA is 

not in itself an operating system, but provides all the mechanisms 

for building one. 

The group are currently developing a multiprocessor system, Cm", 

based on microprocessors which 'is intended to be a testbed for 

exploring a number of research questions concerning multiprocessor 

systems, for example: potential for deadlock, structure for inter-

processor control-mechanisms,modularity,-reliability and techniques 

for decomposing algorithms into parallel co-operating processes"( 60) •. 

The hardware design chosen for this system, whilst forming a multi-

processor system with all memory sharable, closely links memory modules 

with processors. A network of buses provides access to non-local 

memories, as is shown in Figure 2.4.2. 

Each processor-memory module contains a local switch (Slocal). This 

switch provides the first level of memory mapping. References to the 

local memory are serviced directly. References to non-local memory 
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modules are placed, by the Slocal, onto a bus connecting the switch 

to a Kmap processor. The ~~aps are mapping processors which provide 

the routing mechanism for access to remote memory modules.· Each 

Kmap is connected to several processor-memory modules to give a 

.clust·er and the clusters are also connected by buses. 

When a Kmap processor receives a request for memory access, the 

request is sent either to the correct Slocal, if the reference is made 

to memory within the cluster, or the request is p~ssed to another ~ap 

for servicing. 

This hardware organisation gives highly asymetrical memory access times. 

Access to local memory suffers minimal degradation, while accesses 

to remote clusters may experience a large overhead due to the routing 

of the request. In order to ma~e efficient use of the hardware, a 

large proportion of memory accesses should be to the local memory. 

"It has been hypothesized that the local -iJ.i t· ratiow ould lie in the 

range 85 to 95 percent, in which case, the effect of non local 

references would be I reasonably' small". ( 61·) 

A second unusual hardware organisation has been developed by a group 

in Siemens AG. The 8MS 101 (46·) is also a multi microprocessor systeai, 

but designed with particular reference to problems of the class of 

large systems of differential equations or on-line process control. 

In many senses, the system is not strictly a multiprocessor (the 

processors do not directly share some common store) yet all processors 
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can access the memories of other processors. 

The basic hardware de"sign is shown in Figure 2.4.3. The' system 

comprises a main processor consisting of a processor and memory. This 

is connected via a single bus to several further processor-memory 

modules. Each of the modules is interfaced to the bus through a 

switch. The main processor controls the bus and also the switches in 

each of the modules. Each of the modules has the capacity for 

independent program execution. " 
\ 

The operation of the system falls into distinct phases while running 

a program. Firstly, the main processor distributes the code and data 

among the modules. Each of the modules then completes its portion of 

the workload." In the third phase any results or variable changes 

derived by the modules are distributed to the other processor allowing 

the cycle to be repeated. "The switches are used to govern the 

" " distribution of the information derived, allowing it to be directed-

in a" number of ways. 

In the United Kingdom, several groups are investigating the problems 

of multiprocessor systems. One group is concerned with the development 

of the CYBA-M system (2,26,32)~his system consists of up to 16 Intel 

8080 microprocessors, each with some private memory. These micro 

processors are connected, via a switch, to two banks of shared memory. 

The organisation is shown in F1gure 2.4.4. Program segments performing 

well defined functions are assigned to each processor, indeed the 
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system is envisaged as a testbed for proving the validity of such 

assignments. The Global memory is used'for inter-process 

communication. The memory is logically divided into several sections, 

or lines, each of which is dedicated to a particular communication 

path. The Image memory is. used for accessing peripherals, which are 

all memory mapped. Again, the memory is partitioned into lines with 

lines being associated with peripheral registers. Some of the Image 

memory lines have semaphores associated with them to enable contention 

over shared peripherals to be resolved. All processors derive their 

timing from a common clock. 

One processor also has connections to the private memories of 

all the other processors. This processor is used to downline load 

the program, segments to the individual processors and also to provide 

• 
control and monitoring facilities. To this special processor is 

attached a keyboard, floppy disc and other peripherals to aid in the 

,. ~----- setup of the system and the following monitoring. 

Another group, at Sussex University, is developing a multiprocessor 

system which may have application in the office situation ( 34). The 

arrangement of this system is of a number of communication highways 

to each of which several computers (either minis'or micros) are 

attached. The communication highways are themselves interconnected 

via highway coupler processors (Fig. 2.4.5). ,The communication highways 

all use the same protocol, with each processor being interfaced to 

the highway. This interface includes some buffering of messages to be ' 
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transmitted/received on the highway. 

It is envisaged that the system would be organised (at the software' 

level) with each processor containing a single application program 

performing a dedicated function, e.g. a terminal processor or a file 

handler. Each processor would also contain ,the necessary software t~ 

drive the interface to the highway, this being called the nucleus. 

As the application programs require service (e.g. access to a file) 

messages are sent, via the communication network, to the processor 

running,the appropriate service program. 

The same group is also investigating the problems at the software 

to hardware, interface in multiprocessor systems ( ,57 ). 
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2.5. Multiprocessor Systems and Reliability 

One of the major advantages of multiprocessor systems is their ability 

to continue operation even when one of the processors fails. This 

ability has been used to advantage in many situations ,where high 

availability is one of the system requirements. These 'applications 

range from process control, to networking. Often, however, special 

purpose hardware has to be added to enable an adeq~ately high degree 

of reliability to be obtained. 

The TRANSPAC network system ( 69) in France is typical of many 

applications where redundancy (that is the duplication of components) 

is used. In this network, the major routing nodes,are dual processors, 

with many of the other components, including memory modules, being 

duplicated. One of the two processors at each node operates as the 

routing processor. The second processor, together with a special 

hardware module, act asa watchdog 'over the main processor. If a 

failure occurs within the processor, then the second processor 

assumes responsibility for the routing of the network traffic. 

Recently, an American Company, Tandem Computers Incorporated, have 

begun marketing a multiprocessor system, the Tandem Non-Stop System 

( 62). It' is claimed, as a consequence of the design and implementation 

of the hardware and software, that the system can be configured 

automatically to continue processing despite the failure of any 

component. A high degree of redundancy is present in the hardware with 
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most components duplicated and redundancy of a higher order may be 

incorporated. Some less common features, such as multi-part disc 

drives, have also been included. However, it appears that the 

hardware may not be con figured to provide memory shared between 

processors. 

A special purpo'se operating system, the Guardian Operating System, is 

available and it is claimed that, with the use of the facilities it 

provides, the failure of hardware components may be made transparent 

to the users of the system. 

- 35 ~ 



2.6. Memory'Contention 

One subject of particular interest in the field of multiprocessors 

is that of memory contention (or memory clashing). In a system where, 

several processors are connected to a storage module, it,is possible 

for two or more of the processors to simultaneously request access 

to the shared storage. In this situation, only one may actually 

have its request honoured with the others being delayed until they 

in turn can be serviced. 

Many authors have developed statistical models of such situations 

and have carried out analysis of their performance, and these have 

appeared in'the literature (13,14,etcJ. A variety of models have 

been considered, though each has normally been applicable to a certain 

type of hardware. A survey of the techniques has been produced by 

, Bhandakar and Fuller ( 8 ), but some comments on a few representative 

papers are given below. 

Baskett and Smith ( 6 ) consider a model of a multiprocessor 

consisting of a number of processors and memory modules, each of 

which may be accessed by all the processors. All the processors and 

memories are synchronised, that is, all the processors make their 

requests at the same time with each'memory taking the same time to 

service the requests. If two (or more) processors make a request to 

the same memory module then only one of the requests is serviced. The 

access pattern of the processors is random, with all the memory modules 

- 36 -



having an equal probability of selection. The authors consider their 

model particularly applicable to systems where the hardware is bound 

by the speed of its memory, with emphasis on interleaved memory. 

They also acknowledge that their model may "describe only a minority 

of current or proposed multiprocessor systems.1t, 

Bhandakar ( 7 ) also. considers a model in which the processors have 

no private memory. The model is of a number of processors and memory 

modules connected by a crossbar switch. The access pattern to the 

modules is again random, being considered (for each processor) as a 

sequence of Barnoulli Trials. The phases of a memory access are 

considered in much more detail with parameters being incorporated into 

the model to describe the states of the processor and memory during an 

access. The extra complexity enables Bhandakar to remove the 

synchronisation constraint present in Baskett and Smith's work. 

Bhandakar also ignores the effects of input/output operations, as is 

. the general· practice in the literature, claiming support from Strecker· 

( 59). 

Sastry and Kain ( 56·) model a system similar to the above, with·a 

number of processors and memory modules. Each processor can access 

every memory module, with arbitration logic being incorporated in the 

memory module to resolve the contention. They direct their investigation 

towards a situation in which instructions and data are stored in 

separate memory modules enabling, a form of pipelining to be incorporated. 
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Generally, the analysis adopted to derive formUlae from the model 

, is that of Discrete Marcov Chains. This is, indeed, the method 
I 

adopted by all of the above. Having derived formulae to predict 

the amount of contention that is experienced by their model, the 

authors provide simulation results, ~~d occasionally measurements 

from multiprocessor systems, to support these calculations. 

Sastry and Kain, having adopted a model with certain attributes 

(the separation of code and data) demonstrate the relationship between 

the memory contention experienced and the parameters of the model 

defining the attributes. Kurtzburg (47 ) considers the problem of 

allocating jobs among a number of memory modules. Having developed 

his model, the parameters are varied to show how the distribution 

affects the theoretical memory contention. 

Many of the organisations are of a more specialised nature, as is 

,indeed acknowledged by Baskett and"Smith." Other models rely on ' 

specific organisational decisions to be made by the operating system, 

the model of Sastry and Kain being such an example. These models, 

and those making similar assumptions or design decisions,are clearly 

applicable to a small cross-section of multiprocessor systems. 

Other models,for' example Bhandakar's require very detailed information 

on the performance characteristics of the system components. Whilst 

giVing very accurate predictions for the given specification, even 

slight modification in the hardware may invalidate the accuracy of the 
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prediction& Also, the more detailed (and, probably, greater quantity 

of) parameters to the model may make calculations more complex. 

In Chapter Four, a model of a multipro~essoris presented which is 

applicable to a larger number of hardware organisations and, whilst 

a number of parameters are required, these are not of a highly detailed 

nature as some of those in the literature. 
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CHAPTER 3 

SOFTWARE CONSIDERATIONS'IN 

MULTI PROCESSORS 

" 



3.1. Introduction 

The programs written to solve·problems·often contain discreet sections 

which do not necessarily have to be executed in a fixed order. On 

a uni-processor system, the various stages must inevitably be 

executedsequentially. When-a multiprocessor system is used, however, 

this constraint is removed giving the potential for several parts of 

a program to be run simultaneously. 

In order to exploit the natural parallelism in programs, certain 

. restrictions must be placed upon the software operating on the multi­

processor. The processors must be-allocated to the tasks, or parallel 

sections, within a program and there must be some synchronisation, 

for example where two or more parallel sections meet (terminate). 

The synchronisation may be performed purely by software or be based 

upon some underlying hardware mechanism. 

A method must also be· provided whereby the user of a multiprocessor 

system may express the parallelism within his program, either explicitly 

or implicitly •. This may be .by the use of language constructs which 

generate parallel code or by requesting automatic generation of 

parallel code from a sequential program. 

With the availability of several processors in a multiprocessor system, 

processing may continue despite the failure of one of their number. 

If this advantage is to be taken, the software on the multiprocessor 
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must be able to recover from the death of a processor,and possibly 

retrieve its workload. 

In the next section the basic organisation of multiprocessor operating 

systems is considered. The problems of both synchronisation and 

reliability are then considered. Finally, the chapter closes with. 

a brief consideration of parallel processing. 
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3.2. Operating System Organisation 

The operating system is that part of the software on a computer 

that manages the resources (devices, memory, central processor time). 

The operating system provides the mechanism for the execution of 

programs and the environment in which they run. 

"'Three basic organisations have been used in the design of operating 

systems for multiprocessors: master-slave; separate executive. for 

each processor; symmetric or anonymous treatment of all processors" 

( 28). Each organisation provides different operational characteristics. 

With the master-slave organisation, the operating system routines are 

always executed in the same processor, the 'master'. If one of the 

slave processors requires a service that must be provided by the 

operating system, a request must be made to the master processor. This' 

may cause a delay within the slave processor. Since the operating system 

only runs in one processor, the problems of multiple update of system 

tables and device access cannot arise. A means whereby communication 

between the master and the slaves may take place must, however, be 

provided. 

The master-slave organisation has some disadvantages. Foremost amongst 

these is the reliance of the whole system upon the master processor. 

If the master fails then the system as a whole will be lost. It may 

be possible to redesignate one of the slaves as a new master, but this 

would (probably) require action from either operators or engineers. 
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Also, if the, master cannot keep pace with the service requirements 

of the slaves, then the idle time of the slaves may increase 

significantly. Despite being comparatively inflexible, this 

organisation is relatively simple to implement. 

With a separate executive (or operating system) on each machine, the 

characteristics are very different •. Each processor is capable of 

servicing its own needs and manages its own (local) resources. Each 

processor, therefore, maintains its own set of tables. Some tables, 

representing'the shared resources, must be shared between the processors 

and therefore require synchronised access. Thus ,this organisation gives 

several co-operating but potentially independent systems. The 

supervisory code, under this scheme, may be placed in shared memory 

in which case only one copy need reside in memory, or it may be placed 

in the local memory of each system. The failure of one of the 

processors will not cause a catostrophic failure, as in the case of the 

- -._ .. --~ ._-- ,. - mat?ter-slave organisation,' since no one. processor. p~~vides all the" 

supervisory functions. However, some recovery of the shared tables 

may b'e required before the remaining processors may proceed to 

(correctly) use the shared resources. Some facilities (e.g. some i/o 

devices) will be lost if they are accessible only through the failed 

processor. 

With the third approach, in which all processors are treated as any 

other resource, all resources will be shared, that is the tables 

defining their state ,will be shared. The maBtership "floats",among 
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the processors, though several may be executing supervisory code 

at once. Clearly, each shared resource may have ,only one master, this 

being decided through the synchronisation required prior to them 

being accessed. Because no one processor has any special privileges 

or properties, if one of the processors fails, then only the processing 

power of the whole system need be affected. Again, system tables may 

need to be recovered, but the possibility exists for graceful 

degradation to take place. Also, as a processor acts as one of the 

system resources, scope exists for better load sharing. 
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3.3. Synchronisation 

In the previous sectio~ it was noted that, for a multiprocessor system, 

the need for synchronisation between the processors arises in order, 

to prevent two copies of , the executive simultaneously accessing a 

shared table or device. This need for table lockout occurs not only 

at' the'operating system level, but at all levels of software on 

multiprocessor systems. Brinch Hansen ( 10) provides a useful 

Survey of synchronising techniques. 

The most famous form of synchronisation is the semaphore, originally 

proposed by Scholten and Dijkstra. A semaphore is basically an integer 

variable upon which two indivisible operations may be performed. 

These operations are variously known as P and V, Wait and Signal or 

Down and Up. The V operation causes the semaphore to be incremented. 

The P operation causes the semaphore to be decremented unless the 

'value of the semaphore would become negative.' In this case, the 

,processor performing the P operation waits until it may be completed. 

Many examples of the use of semaphores may be found in the literature 

( 11 ). Brinch Hansen ( 10) noted, however, that as, originally 

proposed,semaphores may leave some processors permanently blocked., 

This may be overcome by assuming some scheduling policy within the P 

and V operations. 

Critical Regions ( 22) provide a similar technique to semaphores. 

A critical region is basically an area of code associated with a 
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shared variable. Each shared variable may be associated with,several 

different code segments. The critical region mechanism ensures that, 

for each shared variable, only one processor is allowed to execute 

one of the areas of code associated'with that variable. Critical 

regions provide an excellent medium for describing the use of and 

protection'of shared data structures. 

A modification of critical regions leads to the so-called Conditional 

Critical Regions ( 38). Not only is a section of code associated 

with a shared variable, but also a list of conditions to be satisfied 

before entering the region is given. The region is entered only when 

all the conditions are satisfied. 

The elegance of these tools has led to discussion in the literature 

( 9,18) as to their suitability in certain contexts • 

. . . For shared resources,another approach is to create a resource manager. 

process. Processes then wishing to access the resource must make 

requests to the resource manager. This requires a message queue, to 

which processes add their requests~ The addition of these requests 

must be an indivisible operation with respect to the processes. That 

is, if two processes attempt to add a message to the queue simultaneously, 

one will complete its addition before the second may make its addition 

and they will not mutually interfere. The resource manager removes 

messages from this queue, processing the requests as required. 
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Wirth (65) has noted that the message queueing techniques and 

semaphoresare remarkably similar, a semaphore merely being a queue 

with no attached messages. An example of this class of tools are 

Hoare's Monitors (36). 

All of these techniques may be used.to great advantage upon uni­

processor systems where indivisible operations may be guaranteed. 

However, if several processors are used then these techniques require 

some lower level of synchronisation upon which they maY be based. 

Brinch Hansen (10) suggested that a hardware lockout device ('arbiter') 

was required. Indeed, in many multiprocessor systems, such devices 

have been implemented in hardware, for example the IBM 360/158 MP and 

168 MP systems, as described in section 2.3, contain several 

instructions that may be used for this purpose. 

In the absence of special hardware, it becomes necessary to develop 

synchronising algorithms using standard instruction sets. This problem 

of performing synchronisation between processors using only read and 

store instructions, . originally proposed by Dijkstra, was first solved 

by Dekker (22), and generalised by Dijkstra (21) •. However, as 

Dijkstra noted, the method is cumbersome and potentially very time 

consumptive. Furthermore, Knuth (45) noted that one or more 

processors may be blocked indefinitely since the algorithm relies on 

a 'first past the post' mechanism, having no memory of the waiting 

time spent by a processor attempting to gain control. 

Several authors (12, 27, 45) have proposed refinements to the algorithm to 
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reduce,the time taken and to introduce some element of scheduling. 

All these algorithms, however, maintain the basic structure of the 

original solution. 'The improvements culminated in an algorithm ( 48) 

, which guarantees safe access to a resource fn a multiprocessor 

environment. on a first-come-first-served basis.' 

The method adopted in all .these cases is to allow one processor access 

to the shared resource and, when the processor has finished with the 

resource, it is freed to allow another processor to gain access to it. 

Thus the resource is alternately in use· (or "owned" by a processor) 

and free. A processor, when it requires access to the shared resource 

must wait for that resource to become free. Then, if no other 

processor simultaneously requires the resource, it will become the 

owner and proceed to use the resource. Complications arise, however, 

When many processors attempt to gain ownership of a resource 

Simultaneously since there must be a "competition" to decide who 

becomes the new· owner. Indeed,even if a single processor only requires 

access to the shared resource, it must take part in the "competition" 

to discover that no other is also attempting to access it. 

When this "competition" arises, the processors have to decide which 

of their number is to become the new owner. As the number of processors 

requiring access to the resource increases, the decision making becomes 

more complex and, in a general purpose algorithm" the case where all 

processors may require access needs to be catered for. As the 

complexity increases, so does the cost of performing the synchronisation. 
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This may be observed from the (sometimes complex) looping structure 

of the algorithms in the literature. This results in the cost 

(overhead) of synchronisation rising at least proportionally with 

the number of processors being synchronised. For heavily used system 

tables, the cost may become unacceptable. 
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3.4. Software Reliability 

Much" research is now being carried out in the field of fault­

tolerant systems and other areas of increased reliability at the 

software level. This has led to the design of new languages and 

methodologies. With multiprocessor systems', the need for reliable 

software lies not only in obtaining correct programs, but also in 

withstanding processor (or other component) failure. ·Since the 

multiprocessor system contains several processors, there is the 

potential for performing useful work despite the failure of one of 

them. However, some recovery of shared data structures may be 

necessary before resuming the computational workload of the dead 

processor, if, indeed, the latter is. possible. 

Of the major manufacturers, IBM provides a process (the Alternate CPU 

Recovery process ( 15» which is invoked on the death of a processor 

in the tightly coupled multiprocessor system described in Chapter Two. 

The process is initiated when a special interrupt is received 

indicating that a processor has died. The use of the ACH process 

enables.various components of the system to be checked and recovery 

action to be taken as required. The problems facing the ACR, and 

associated routines, are sometimes complex. The"considerable range of 

states that the processors may be in when the death, and ensuing 

interrupt, occurs contribute to the complexity of the problem. The 

recovery relies on the recovery process being able to ascertain much 

information on the dead processor at its point of death. Once the. 

- 51 -



recovery is complete, the system is then free to continue running, 

but providing a degraded service due to the reduced processor power. 

Research is also being carried out into techniques for software error 

recovery (54,55,68 ) •. The aim of the group at Newcastle University is to 

provide a methodology which will not only cope with process failure, 

but also with errors due to inadequate or faulty design or coding. 

Due to the complexity of the software required for multiprocessor 

systems, the ability to withstand some design faults and continue to 

perform useful work in the presence of errors would be of advantage. 

The approach taken is to provide the equivalent, at the software level, 

of standbycomponents at the hardware level. It is accepted practice 

to write programs (especially those which are large and complex) in 

blocks (be they subroutines, procedures or modules, etc.). These 

blocks may be written in terms of sub-blocks; and so on. Each block 

may be viewed as providing an operation within. the total system. A 

block is turned into a recovery block by adding an 'acceptance test' 

at the end of the block and zero or more stand-by blocks (alternates). 

The acceptance test is a logical expression by which the correct 

operation of the block may be tested. ; If the operation has failed, 

then one of the alternates is used.· However, before the alternate is 

entered, ·the state of the process is restored to that current just 

before entry to the block which failed. A software technique for 

providing this ability to restore a process to an earlier state has 

been described in the literature ( 39 ). 
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3.5. Parallel Processing 

Even when the' organisational problems of multip~ocessors at the 

hardware and operating system level have been resolved, there still 

remains the task of applying the system to the solution of problems 

in an efficient manner. However, the whole topic of parallel 

programming has recently gathered momentum due to recent hardware 

developments. The falling cost of processors and the availability 

of Array processors, such as the Illiac IV, and Vector processors 

as well as the multiprocessor systems described above, have contributed 

to this interest. 

The, so called, array and vector processors, which are of the SIMD 

classification (see section 2.1), consist of a large number (often 

thousands) of small processing elements attached to a host. Parallelism 

is obtained, in such,systems, by arranging for all the processing 

-~~~'-elements to perform the same single operation, but on different values. 

Algorithms to run upon these systems thus need to be formulated in 

terms of arrays of values upon which operations are performed. This 

makes such hardware particularly suitable for the solution of large 

numerical problems. 

Research is also being carried out into the automatic detection of 

parallelism within programs. This research may be partitioned into 

two main groups:-
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a) Statement level 

b) Block level 

At the. statement level, single statements, particularly arithmetic, 

are· considered. It is hoped that techniques to enable these 

statements to be compiled for optional parallelism may be derived. 

A survey of such research may be found in the. literature ( 64). 

However, due to the great frequency of synchronisation required 

between processors when using this form of parallelism, it is not a 

viable technique when using a multiprocessor system of the type being 

considered. 

At the block level, several statements can be grouped together and 

the blocks can be considered for execution in parallel. This 

technique provides a much more cost effective means of achieving 

parallelism on a multiprocessor system. As the size of these groups 

. of instructions· increases; ·so the relative cost of the inter-processor 

synChronisation will diminish, assuming that the groups are mutUally 

independent. Results have been obtained ( 30) showing that the 

effective degree of parallelism obtainable is indeed dependent upon 

the length of these groups. 

Proposals have been in existence for many years (19,22) for language 

extensions to enable parallelism to be expressed in programs. This 

approach enables programmers to directly insert parallel properties 

into their programs in a manner which they deem suitable to the 

application. 
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The suggestion "that parallel composition of communicating sequential 

processes is a fundamental program structure method" has recently 

appeared in the literature ( 37). A formal notation, based on 

Dijkstra's guarded commands ( 24.), is presented which allows the 

communication between processes to be expressed. The communication 

is of the form of messages and not through shared variables. 
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CHAPTER 4 

THE INVESTIGATION'OF A MODEL 

OF A MULTIPROCESSOR 
. . 



4.1. Introduction 

It was noted in Chapter 2 that many detailed or complex models 

have been developed in the study of the theoretical computing 

power which can be realised in a multiprocessor system. Also 

noted was the fact, that these formulae are, in general, specialised, 

to a small class of hardware. It would be valuable if a more 

general tool were available which would enable an estimate of the 

maximum power that would be realised from a given multiprocessor 

system to be evaluated. Conversely, it may be desirabl~ given a 

particular workload, to evaluate the number of processors that may 

efficiently be included in the system. 

In this chapter, therefore, a simple model of a multiprocessor 

system is presented and from the study of this model, an attempt 

is made to derive a formula for an upper bound to the computer 

power which may be realised. 
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4.2. Model of a Multiprocessor 

The basic hardware model is of a collection of N, possibly 

different, processors. The characte'ristics of each processor are 

given by, two variables, the execution speed of the processor, in 

instructions per'second~ and ,the private memory size, in instructions. 

These are denoted by ri and si for the ith processor respectively. 

All the processors are linked to a large block of common memory. 

Information, either code or data, can be transferred between common 

memory and the private memory of any of the processors at the rate 

of I blocks of information per second. Each of these blocks contains 

, b instructions giving an effective common to private (or private to 

common) memory transfer speed of lb instructions per second. These 

two parameters represent the line speed and bandwidth of the 

communication line between common and private memory. A processor 

may directly access the common memory for an instruction or data 

word without requiring it to be stored in its own private memory. 

The time required to perform this operation is expressed as the time 

to access private memory (inherently included in the processor 

execution speed) plus a fraction, fo of the transfer time between 

common memory and private memory. An assumption inherent in the 

model is that all accesses to common memory suffer some degradation 

whether memory contention ,takes place or not. This is due to the 

need for a contention resolving "black-box" to be placed in the 

access path to common memory of each proc,essor (see Figure 4.2.1). 

If required, the degradation caused by this "black-box" may be 
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Figure 4.2.1. Modelled Multiprocessor System. 
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ignored by setting f to zero. 

The instruction was chosen as the unit of data since no confusion 

over existing terminology, largely manufacturer dependant, would 

arise. With the modularityof current hardware, it "may seem that 

a model catering for multiple memory modules would be" necessary, 

but by the correct choice of the values for the parameters specifying 

the common memory,the operational characteristics of several blocks 

of common memory may be obtained. 

By suitably altering the values of the parameters, the model can be 

applied to a variety of hardware configurations, including 

• 

a) Many processors each working from private memory using the 

common memory for communication only 

b) Many processors each with no, or very little, private 

memory linked to a single block of common memory 

c) Many processors each with limited private memory, using the 

common memory as a data base. 

The same model may also be used for many processors accessing a 

common disc system as a variation on a) or c) above. In this case, 

tre data access fraction, f, will have a value of one, since any 

data accessed must be copied to the private memory before it can be 

used. 
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In order to make calculations of computing power, the workload 

for. the multiprocessor system must be incorporated into the model. 

The unit of work which is most clearly associated with users is 

that of the program. It would appear that, ideally, a general set 

of programs, or benchmarks, would be necessary. However, it is 

not possible to select a set of programs which would be representative 

of all situations. Furthermore, the theoretical analysis of such a set 

would be extremely difficult. It was, therefore, decided to examine 

the operation of the hardware model by postulating that a single 

program is run repetitively on all the processors. 

It is further postulated that the program is initially loaded into 

the common memory but can only be executed from private memory. The 

program instructions, therefore; must be copied from common to 

private memory before execution can take place. Clearly, the private 

memory may not be sufficiently large to accommodate the whole of the 

program, in which case several copying operationswQuld be required 

during the course of the run of the program in a manner analagous 

to paging (no attempt is made to mode.l this activity but it is 

implicitly included in the parameter ci defined below). 

The characteristics of the program used in the model are 

a) E, the execution length, or number of instructions 

executed by the processor in completing the program 

b) ci' the transfer or copy size, that is the total number 

of·instructions that have to be copied from common to 

- 61 -



private memory 

. 
"c) a data access rate of 1 access to common memory per d 

instructions executed" 

d) no external input or output operations. 

Each of the parameters plays an important role in the model. E, 

the execution length, is effectively a normalisation constant or 

scaling function for the evaluation of computing power. The 

incorporation of ci into the model allows short regular bursts of 

high rates of access to common memory. This parameter would be 

used when investigating systems performing copying operations to 

or from common and private memories. If no such function is 

performed, this parameter may be omitted (by setting it to zero). 

The variation in the parameter d can be used in the investigation of 

systems using only common memory (d having a value of one or less) 

through to systems rarely accessing common memory (d being large). 

Thus, causing a representative program to be run repetitively on 

all the processors places no great restriction upon the workload 

that can be modelled since various classes of program may be 

considered by suitably varying the parameters of the representative 

program. 
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4.3. Derivation of Computing Power 

A measure of the computing power of a multiprocessor system is 

the number of representative programs processed per unit time by 

the multiprocessor configuration, denoted by Pm. 

In order to determine the effective performance of the system, 

this must be compared with the computing power of the same 

computers working separately. That is the number of representative 

programs p;ocessed per unit time by the separate processors, Ps. 

Taking the model described above, the time for the ith processor 

to execute the representative program, whilst working separately, 

would be 

E/ri seconds 

Thus the number of programs executed by the N separate processors 

in unit time (Ps) is 

• 
Ps = 

The total time for a program to run in one of the N processors in 

the multiprocessor configuration has four components', namely 

a) the time required to transfer the program from common 

memory to the private memory of an individual processor. 
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b) the time required to execute the program 

c) the time overhead of making data accesses to common 

memory 

d) the time spent waiting to be serviced by the memory. This 

delay, due to memory contention,may occur in two instances 

- i) while copying instructions to private memory 

- ii) while "performing data accesses to common memory. 

The first three components are obtainable from the model directly 

a) program copy time 

cilb transfers are required to copy the program to the 

private memory of the.ith processor. This takes cil (lb) 

seconds 

b) execution time 

This component is identical to that for the single processor 

'case," that is E1ri seconds for the-i th processor , 

c) common memory access overhead 

The overhead for each data access is f/l seconds. During 

execution of the program, a total of E1d accesses are made 

to common memory giving a value of Efl (dl) seconds for this 

component. It is implicitly assumed that a data item is of 

an equivalent size to an instruction, however d could be 

altered to model other data sizes. 

The fourth component, that due to contention over common memory, 
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is dependent upon the strategy used by the hardware to distribute 

memory cycles between the processors. In order to obtain bounds 

for computing power of a multiprocessor, two distinct strategies are 

considered. 

The first strategy treats all processors as strictly equal, and 

provides a common memory cycle to each processor in strict rotation 

(Round-Robin). With this strategy, there is the potential for 

(large) delays while accessing the common memory. Delays will 

inevitably arise due to memory contention in any practical situation, 

but it is possible, with this model, for a processor to wait for a 

memory cycle even if no other processor is accessing the memory. 

Under these circumstances this theoretical strategy gives a greater 

common memory access overhead than would practically be experienced 

due to memory contention alone, and when included in performance 

calculations it will therefore provide lower performance figures 

--than could be experienced in practice. 

In contrast to the first strategy, the second imposes an inherent 

order upon the processors. A memory cycle will always be. allocated 

to the highest processor in this ranking list currently making a 

request, thus giving a Priority servicing policy. To obtain an 

upper bound for performance an assumption is made about the ordering 

of the memory requests from the processors. It is assumed that the 

memory requests made by the processors are synchronised so that no 

processor ever waits for service from the common memory unless all 
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the memory cycles are being used by the processors of higher rank. 

Thus no overheads or delays are experienced due to common memory 

contention provided that the total number of requests made by the 

processors does not exceed the capacity of the memory. There is 

still, however, a delay due to accessing the shared memory via 

the interface hardware. 

Since, with this strategy all common memory cycles are being used, 

P'riority represents the maximum processing power. When all the 

memory cycles have been used, further processors may not access the 

memory. This limit to processor power will be discussed in Section 

Six of this chapter. 

In the next two sections, the formulae for the computing power of a 

multiprocessor system are derived for the two memory servicing 

policies. 
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4.4. Round-Robin Servicing 

As noted above, the waiting time (the component dependent upon 

the memory servicing policy) arises in two situations. Firstly, 

the waiting time while copying is the time required for the N-1 

memory cycles between each copy. These N-1 cycles take (N-1)/1 

seconds, and hence the total time spent waiting by the ith processor 

while copying is 

Ci (N-1) / (lb) seconds 4.4.1. 

The second factor in the waiting time is due to waiting for a 

memory,cycle while making a data access to common memory. The 

elapsed tim'e between accesses is d/ri seconds for the i th processor. 

After this time, the processor has to wait for its next memory 

cycle. 'The time spent waiting, Yi, is therefore 

Yi = xN/l - d/ri seconds 4.4.2. 

where x is the minimum integer such that 

4.4.3. 

That is, it is on the xth memory cycle due to the processor since 

its last access that its next request is honoured. 

This overhead is for each of the &Id accesses, giving a total waiting 

time, while performing data accesses, for the ith processor of 

(YiE) / d seconds 4.4.4. 
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where y is given in equation 4.4.2. 

The total time to run a representative program on the ith processor 

with Round-Robin common memory servicing, TR, may now be evaluated 

as the sum of the four components 

TRi = Ci/{lb) +. E/ri+. Ef/{dl) + (Ci{N-1)/{lb) +. (YiE)/d) 

4.4.5. 

simpli fying, 

4.4.6. 

Hence, the number of programs completed per unit time on processor 

i is 

1/l'Ri 

and the total number ,of programs run on the system as a whole (JRi) 

,-~.-~~. ,. is given by 

N 

JRi = [( 1/TRi) 

i = 1 

and expanding , 

N 

4.4.8. 

JRi = [ (1/{CiN/{lb) +. E{1/ri +. r/{dl) +. Yi/d») 

i = 1 

where Yi is given in 4.4.2. 
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4.5. Priority Servicing 

As mentioned in Section Three, the processors are assumed to be 

exactly synchronised and that no processor waits for servicing 

unless all common memory cycles are taken by.processors of higher 

priority. When all memory cycles are being utilised by a number 

of processors, any other processors added to the system (at a 

lower priority) will· be unable to access the common memory. 

The processing power of the configuration under this form of common 

memory servicing can be evaluated by considering the operation of 

the processors in priority order. 

Since the highest ordered processor experiences no delay, the time 

taken to complete a representative program on this.processor TP1 

in the sum of the first three components 

Since only the first and third components involve usage of the 

common memory, there is a period of time during which the common 

memory is free, given by 

F/r1 seconds 

The processor with second highest priority will take 

TP2 = C2 /(lb) + F/r2 + Ef/(dl) seconds 
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to run the representative program and can, therefore, potentially 

complete 

programs in time TP1' Since each run of the representative program 

requires access to the common memory for a time of 

C2l(lb) + Ef/(dl) seconds 

The time spent accessing common memory in time TP1 is given by the 

product of equations 4.5.4. and 4.5.5., that is 

If the time given by 4.5.6. is less than, or equal to, the 

execution time of the first processor, given by 4.5.2, then the 

assumption made regarding memory clashing may be applied and, 

therefore, all"common memory accesses made by the second processor 

overlap the execution time of the first processor. 

A smaller amount of time will remain when the common memory is not 

being acces~ed. This time is given by the difference between 

equations 4.5.2. and 4.5.6., namely 

The argument may be continued for subsequent processors until the 

free time of the common memory is inadequate to allow the common 
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memory accesses of the-next processor, denoted byNL, to be 

satisfied. 

Systems with fewer than NL processors will, therefore, from 4.5.4. 

complete 

representative programs in time Tp1, where TPi is the time for the 

ithprocessor to complete.the representative program (cf.4.5.1.). 

Hence the number of representative programs executed in unit time 

on a multiprocessor system with fewer than NL_processors and a _ 

Priority servicing policy for common memory, JP, is 

-N 

Jp = (1/TP1) L (Tp1/TPi) 
i = 1 

and simplifying 

or 

N 

Jp = L (1/Tpi) 
i = 1 

N 

Jp = L (1/(~/(lb) + E/ri + Ef/(dl») 

i = 1 

This throughput represents each of the N processors working at 

maximum speed. When the number of processors reaches or exceeds 

the capacity of the common memory, the NL th processor cannot achieve 
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its maximum throughput and all subsequent processors will be 

unable to access common memory and therefore perform no useful 

work. Thus the throughput obtained from,a configuration withN· 

processors where N~ NL lies between that obtained for a 

configuration with NL - 1 processors and that obtained from a 

system with NL processors as given by formula 4.5.10. 

Graph 4.5.12. shows a typiCal Priority curve with the characteristic 

cut-off. 
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4.6. Constraints for Effective Configurations 

With Priority servicing used to allocate shared memory cycles, 

it was demonstrated that there was a limit to the number of 

processors which could access the memory. A system containing a 

greater number of processors would inevitably lead to a waste of . 

resources since some of the processor could not perform useful work, 

being unable to access the shared memory. This limit is ,from 4.5.7., 

NL-1 = 1'+ max integer k such that 

k 

«E'/r 1) - L (Tp1/Tpi) (Ci/(lb) + Ef/(dl»»O 
i = 2 

4.6.1. 

From the original specification of the model, the Priority common 

memory servicing strategy gives the highest,possible throughput 

since the slowdown factor is due only to the hardware inter-

"'~"-' connection and no memory clashing factor is included. 

The Priority servicing strategy makes optimum use of memory cycles, 

with no time being wasted due to contention between the processors. 

Any cut off which exists with the Priority servicing must, therefore~ 

apply to all other servicing strategies. Given parameters which 

characterise both the constituent processors in a multiprocessor 

configuration and the workload to be placed upon the system, a limit 

to the useful number of processors may be evaluated. In practice, it 

might be anticipated that this ideal situation would be unattainable, 

- 74 -



in which case the effective maximum number of processors which 

could usefully be connected would be less than that given by NLo 
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4.7. Analysis of Performance 

In Section Three, it was postulated that the effective performance 

of the multiprocessor computer system could be found by comparing 

the computing power of the multiprocessor (Pm) with that of the 

computers running separately (Ps). This may be accomplished by 

expressing Pm as a percentage of Ps. The effective performance (EP) 

may therefore be evaluated for the two servicing strategies using 

N 

= 100 ( i~1 (1/(Ci/(lb) + ~ri + Ef/(dl»» 

% 

These formulae describe a situation where the processors and local 

memories have different characteristics. In practice, most multi-

processor systems might be expected to consist of combinations of 

identical (or near identical) processors. The formulae 4.7.2. and 
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.4.7.4. can be simplified in this case. In the remainder of this 

chapter it will be assumed that all the processors are identical. 

This, however, places no restrictions upon conclusions drawn in 

later sections. 

If all processors are assumed to be identical,'all.subscripts 

disappear and the summations may be replaced by a multiplication, 

factor. The equations 4.3.2., 4.4.9. and 4.5.11. for Ps,' JR and 

Jp respectively may be simplified to give 

Ps = Nr/E 

JR = N/(CN/(lb) +E(1/r + f/(dl) + yid»~ 

with y = xN/l - d/r 

where x is the minimum integer such that 

xN/l? d/r 

Jp = N/(C/(lb) + F;/r + Ef/(dl», . 

Rewriting equations 4.7.2. and 4.7.4. with these simplified 

equations, values for the effective performance will be given by 

Round-Robin: 

EPR = 100(N/(CN/(lb) + E('t/r + f/(dl) + y/d)))/(Nr/E) % 

4.7.8. 

Priority: 

EPp= 100 (N/(C/(lb) + F;/r + Ef/(dl))}/(Nr/E) %. 4.7.9. 
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Simplifying, these become 

EPR = 100 F/(r(CN/(lb) +E(1/r + f/(dl) + y/d») % 
4.7.10 

EPp = 100 EKr(C/(lb) + FIr + Ef/(dl») % 

These two formulae for effective performance apparently provide 

the bound6on the performance of the multiprocessor system which 

were sought. However, by observing the predictions of the formulae 

for a particular choice of the parameters (shown in Fig.4.7.12), it 

is seen that under some circumstances the efficiency achieved with 

the Round-Robin servicing is equal to that with the Priority 

servicing. This clearly violates the upper-lower bound hypothesis. 
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4.8. Refinement of Servicing Policy 

If the denominator of the right hand side of equation 4.7.11 is 

denoted by v then equations 4.7.10 and 4.7.11 may be rewritten in 

terms of v as 

EPR = 100 E/(v + (N-1)rC/(lb) + E/d) % 

EPp = 100 E/v % 

where v = rC/(lb) + E + rEf/(dl) 

·4.8.1. 

4.8.2. 

The two extra terms in the denominator of equation 4.8.1 are due 

to the waiting times while copying from common memory and while 

making data accesses to the common memory. The deficiency in the 

Round-Robin strategy now becomes apparent. If these two extra 

terma, 

(N-1)rC. /(lb) +E/d 4.8.4. 

can become zero, or very small, the Round-Robin strategy instead 

of reflecting the case where there is memory interference, becomes 

equivalent to the Priority servicing strategy. This will occur, 

in general, if both y and C themselves become very small. In 

practice both of these conditions may hold. C would be small if 

the private memory· of the individual processors is large and very 

little copying were required in relation to execution length. The 

waiting.time for a data access to common memory (y) can be zero if 

the access is requested when a cycle is offered, that is when (from 

equation 4.4.2) 

d/r = x (N/l) 4.8-5. 
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where x is some integer •. 

The possibility for the waiting time to become zero will clearly 

give rise to'a "peaking" characteristic to the function defined 

by 4.7.10, as has·be~n seen in Fig. 4.7.12. 

In practice, common memory requests do not. occur at strictly 

regular time points, but are distributed about these time points. 

While the mean arrival time may be coincident with the offering of 

a memory cycle, the mean waiting time will not be zero • 

. This can be illustrated by conSidering the case in which the 

probability. of arrival of a common memory request can be represented 

by an arbitrary distribution function with a mean at the point at 

which a memory cycle is offered. This is illustrated in Figure 

4.8.6. 

Any request which arrives before the memory cycle is offered must 

wait until it is offered, while any request that arrives afterwards 

must wait for the next cycle. Thus the mean waiting time is 

TA 

~. ~ (TA - t) 3t + 

t = t1 
I h (TB - t) St 

t = TA 

and this must have a non-zero value. In the general case where 

the mean is not coincident with the offer of a cycle, the mean 

waiting time can be expressed as 
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y = g (xN/l - d/r) 4.8.8. 

where g is a function which reflects the actual distribution of 

data access requests. 

Various distributions were in~estigated, and Table 4.8.10. shows 

the mean waiting time for the four. distributions shown in Figure 

4.8.9. To produce the table, the following values were chosen 

for the parameters of the distribution as shown in Figure 4.8.6 

t2 - t1 =TB - TA =1 

the mean of g, r(g) = (t2 + t1)/2 4.8.11. 

This choice of parameters describes a situation where a request 

can arrive at any time between two successive offerings of a memory 

cycle. The value of M in the table is the distance 

. 4.8.12. 

that is, the offset of the mean from the offer of a memory cycle. 

~-~~-- From th,i table it can- be seEm that the three distributions giVe 

similar waiting times so, for ease of calculation, the triangular 

distribution is adopted throughout the remainder of this chapter. 

Figure 4.8.13 shows the same graph as Figure 4.7.12, but with the 

triangular arrival distribution applied to smooth the peaking. 
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M Triangular Elliptical Truncated Normal· 

• Truncated at 95% confidence limits· 

Table 4.8.10. Comparison of Arrival Distributions 
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4.9. Application of Formulae, 

In this section examples of the use of the formulae are given 

showing comparisons with both simulation studies and practical results 

obtained from multiprocessor systems. 

The primary test-bed for the formulae was a simulation program 

written in BASIC. The simulation program contained variables 

corresponding to the major parameters' of the model presented in 

this chapter. The variables cover the number of processors, the 

frequency of access to shared memory (for both data access and 

program copying) and the memory speed. 

Each of the processors in the simulation model would repeatedly 

execute the program, specified by the memory access parameters, 

until a pre-specified number of time steps had been completed. 

"When the simulation firiished the number of representative programs 

executed by each processor was reported. Memory accesses in the 

simulation model were not made at strictly regular intervals, an 

element of randomness being incorporated into their arrival. This, 

randomness represented the situation where memory requeatswere evenly 

distributed over the memory cycle. 

Two algorithms were encoded for the resolution of memory contention. 

The first of these corresponds to the Priority servicing policy. 

At each memory cycle, the processors are searched in order as in 
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the Priority policy. The second corresponds to the Round-Robin 

policy, with. memory cycles being offered in strict rotation. 

Due to the ideal representation of the hardware inherent in the 

Priori ty model (that is no memory contention) '" it would be expected 

that results obtained from the formula would overestimate the 

throughput as determined by the simulation. Also, this overestimate 

would increase as the potential for contention increases. The 

results for the Round-Robin servicing would, however, be expected 

to correspond more closely to those from the simulations. 

Table 4.9.1'. shows some results obtained from the'simulation studies. 

It is seen that the results correspond to those expected, with 

greater discrepancy being shown in the Priority servicing. Also, 

as the frequency of accesses to the memory increases (either by 

increasing the data access rate or by increasing the number of 

,...---.. ~~·-·processors), there is a drop in actual performance obtained from 

the simulation. 

Experience for predicting the performance of real hardware was 

obtained using the dual Interdata Model 70 system within the 

Department of Computer Studies at Loughborough University. The 

memory of the system is 1 micro second. The memory contention 

resolving mechanism is complicated due to the fact that the shared 

memory is physically attached to one of the processors. When the 

other processor wishes to access the shared memory, it bids for 
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PRIORITY ROUND-ROBIN 

THIDRY I SIMULATION THIDRY SIMULATION 
Max Av Min Max Av Min 

.. 

1 )N=2 ;D=5 90.9 82.1 81.7 81.7 76.9 78.0 77.8 77.7 

2)N=5;D=5 90.9 73·9 73.9 73.7 62.3 62.6 62.4 62.3 

3)N=2;D=50 99.0 98.1 98.1 98.0 97.0 97.1 97.0 97.0 

4)N=5;D=50 99.0 98.0 98.0 98.0 94.3 94.5 94.4 94.3 
. 

Notes: 1) No program copying 

2) Memory Speed = 1 micro second 

3) All values show effective performance in % 

Table 4.9.1. Comparison of Theory with Simulation Results 
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access to the memory and suffers a delay of 1 micro second. Also, 

while it is accessing the shared memory, the first processor may 

not access its own private memory. 

Two programs were used in a·test of the formulae. These programs 

involved access to the shared memory, but at differing rates. 

Values for the parameters to the formulae were obtained from the 

programs and these were used to obtain comparative results. Table 

.4.9.2. shows the results obtained. The potential expansion of the 

system can be found by evaluating the formulae for a greater number 

of processors. Figure 4.9.3. shows the curves for the first of 

these two testa, and it can be seen that the processor limit is 20. 

In (29 ), a formula, developed by UNIVAC, is cited for evaluating 

the extra performance achievable from the addition of extra 

processors. Results are quoted for the 1108 system. Table 4.9.4 

shows the corresponding predictions based upon the formulae derived' 

in this thesis. The values adopted for the parameters are an 

instruction time and memory access time of ~sec, with memory being 

accessed in one word units. It is assumed that common memory is . 

accessed every instruction with accesses to common memory increasing 

access time by one eighth. 
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Observed Priority Round-Robin 

TEST 1 90. 8% .. 94.7% 85. 'i% 

TEST 2 70.4% 75.0% 60.0% 

Table 4.9.2. Comparison with Timings from Dual Interdata 
Model 70 

UNIVAC FORMULA 
WITH 2 PROCESSORS 85.9)6 

PRIORITY 91.4% 

. 

ROUND-ROBIN 49.7% 

.. . , ' 

Table 4.9.4. Comparison with UNIVAC Formula 

- 92 -

I 

I 



CHAPTER 5 

THE ABSTRACT RESOURCE RING 

- A SYNCHRONISING TOOL 



-" ----

5.1. Introduction 

This chapter, and that following, are concerned with the description 

of the development of a reliable synchronising tool to enable 

resource sharing and mutual exclusion within multiprocessor systems. 

Again, the model ofa multiprocessor is of several processes 

connected to same shared memory but without any hardware 

synchronisation available, except that required to prevent mUltiple 

accesses to shared memory". 

As discussed in Chapter Three, existing software solutions to the 

synchronising problem in these circumstances have some inherent 

deficiencies. These include the potentially large amount of 

computational time required to synchronise, when demand becomes 

high, and the possibility, with some of the algorithms, that one or 

more of the processes can be blocked, indefinitely. In this 

chapter, we approach a solution by re-appraising the problem and in 

the following chapter the synchronising tool, so developed, is 

investigated with respect to ·reliability. 

As has been noted, the time is spent in discovering a new owner for 

the resource and the ensuing "bartering". If the method of 

discovering the new owner could be modified, or removed, then the 

cost of synchronisation may be reduced. One method whereby this may 

be achieved is to make the "resource free" state illegal and.give the 

current resource owner. the responsibility of locating anew owner and 

passing ownership, instead of merely relinquishing the resource; 
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; 

~" 

As will be seen later, this technique, which may be· termed a 

resource master technique, has performance advantages when the 

shared resources are reasonably heavily used but means extra 

overheads when the resource is' used infrequently. 

The resource sharing takes place between processes on the different 

processors. The problem of resource sharing may, therefore, be 

split into two phases 

i) the sharing of the resources. between processors (or more 

correctly between the schedulers on the processors) 

ii) the distribution of the resource between the processes on 

a particular processor. 

The latter problem can be readily handled by existing techniques, 

it being exactly the problem faced on a standard uni-processor with 

the scheduling system. acting as a master or controller. Consideration 

is therefore given to the former phase, that is the sharing between 

processors where no mastership exists. 
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5.2. The Abstract Resource Ring 

The problem of managing access to a single resource will first be 

considered and this will later be generalised to cover the 

management of several resources. 

< 

A data structure will be required to represent the current 

ownership of the resource and those processors wishing to use it. 

Clearly, this must be placed in the shared memory of. the multi-

processor system if all processors are going to access it. It will 

also be necessary to have algorithms to access and alter the fields 

of the data structure to enable the required resource sharing to 

take place.· 

A node is required in this data structure for each processor which 

may wish to access the shared resource •. A suitable ordering of the 

---nodes is in the form of a closed ring •. Each- node is required to 

maintain information on whether the processor requires use of the 

resource and also whether the processor is the current owner or not. 

This may be held in two boolean fields known as WANT (which if set 

indicates that the processor requires the resource) and CAN (which 

if set indicates that the processor.is the current owner). Also, 

a separate field (NEXT) containing a pointer to the next node on the 

ring is required.' The whole data structure must be accessible to 

all the processors, and each field must be individually addressable. 

This structure is known as an Abstract Resource Ring (ARR). 
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Two algorithms are required, firstly to enable a processor to gain 

access to the resource and secondly to relinquish it. The 

algorithm for gaining access to the resource (GErRES) consists 

of setting,the WANT flag and then, conceptually, looping inspecting 

the,CAN ,flag until it is set. Once the CAN flag is set, then the 

processor has become the owner of,the resource and may freely use it. 

The second algorithm, to relinquish the resource (PUTRES), consists 

of clearing the WANT flag then inspecting the WANT flags of the other 

'processors. When one is found set then ownership (indicated by the CAN 

flag) may be passed. This is accomplished by the processor clearing its 

own CAN flag and then setting that of the requesting processor. The 

second processor will then discover that its CAN flag is set and will 

then start to use the resource. These two algorithms are shown in 

Figure 5.2.1. 

~'---'--'--In order to demonstrate that these basic algorithms can provide. a 

satisfactory resource sharing tool, it is necessary to show that 

only one processor may become the owner of the resource. 

Theorem 

If all accesses to the Abstract Resource Ring are made only 

through the GErRES and PUTRES algorithms, then the number of 

set CAN flags can never increase. 
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getres = 

putres = 

i: = our processor number; 

WANT of node [i]:= set; 

~ CAN of node [iJ = clear ~ 

nothing 

od· -' 
end· --' 

begin 

end· -' 

i: = our processor number; 

WANT of node [i] := clear; 

j: = i; 

~ WANT of node [j] = clear ~ 

advance j to next processor number 

od· -' 
CAN of node [i] 

CAN of node [j] 
= clear; 

= set 

Figure 5.2.1. Basic GErRFoS and PUTRFoS algorithms 
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, 
Proof 

i) Consider firstly the GETRES algorithm. 'In,this algorithm, the 

CAN flags ,are 'not assigned to, only the CAN flag of the node 

corresponding to the processor is inspected. Therefore the number 

of set CAN flags cannot increase by using GETRES., 

ii) The PUTRES algorithm has two steps involving the alteration 

of CAN flags. Firstly, that in which the CAN flag of the curre'nt 

owner is cleared and secondly that of setting the one of the new 

owner. If the number of set CAN flags is not to increase then two 

conditions must be fulfilled _ 

a) The CAN flag must be set prior to clearing, otherwise the 

'number set increases by 1 i.e. PUTRES must not be executed 

unless the CAN flag is set 

b) The resource should not be passed to more than one new 

processor i.e. PUTRES should not be executed twice in the 

same machine. 

The first condition can be met by ensuring that the CAN flag is 

set prior to passing'the ownership. The second by ensuring, within 

the operating system, that a PUTRES of the resource is not started 

twice. 

If both of these conditions are met then firstly the number of set 

CAN flags is decremented and then incremented, leaving the total 

unchanged. If the Abstract Resource Ring is initialised with a 

single CAN flag set (a single owner) then there can never be more, 
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than a single owner following a sequence of GETRES and PUTRES 

operations and the necessary resource protection is obtained. 

When the PUTRES algorithm is invoked, a search is made of the ARR 

for another processor to pass ownership of the resource to. If 

none is found the algorithm does not terminate, but continually 

loops. Clearly, this is highly undesirable since it may be some 

time before the resource is required again. To overcome this 

excessive use of processor time a separate PUTRES activity is 

created to dispose of the resource. This may be a separate process 

or a function of the operating system. This activity periodically 

checks the resource ring, attempting to relinquish ownership until 

the resource can be disposed of. 

Basically, the problem is to decide when next to check whether it 

is possible to pass ownership. Two strategies may be employed in 

--- --determining this time:-

a) Periodic restart 

b) Interrupt restart 

With solution a), the PUTRES activity is restarted periodically, 

that is, after each search of the ARR, the activity suspends itself 

for a period of time. It may also be incorporated into a section 

of the operating system which is executed periodically, for example 

)he scheduler. - To reduce system overheads with the ,latter 
• f;: 

implementation, a flag should be set when the resource is owned but 
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not wanted so that the scheduler only performs the check when the 

flag is set., 

W~th the second solution, the interrupt restart, the PUTRES activity 

is only restarted when another processor requests ownership, that is 

as a function of the GETRES algorithm. A mechanism is, therefore, 

required whereby a processor performing a GETRES may restart the 

PUTRES activity in another processor (if present). 

A mechanism whereby this may be accomplished is by using interrupts. 

If a hardware path corresponding to the Abstract Resource Ring is 

formed such that each processor may raise an interrupt in its 

successor processor, then when a GETRES is initiated, an interrupt 

can be sent to the successor. Clearly, the successor need not be ' 

the owner so whenever an interrupt is received by any processor it 

must be passed to its successor. Thus the interrupt will circulate 

--~--·---round the ring. When the processor with the-PUTRES activity is 

interrupted, it should restart the activity. As a consequence, the 

resource ownership will be passed to the requesting processpr. 

As the interrupt is passed round the ring, it will eventually reach' 

the processor which initiated the cycle. Clearly, there is no need 

for the interrupt to pass any further. ,If each processor maintains 

a count which is increment each time an interrupt is sent and 

decremented when one is received then the interrupt should be passed 

only if the count is negative. 
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Since interrupt cycles are started when a GETRES is initiated 

then two (or more) interrupt cycles may be in progress simultaneously 

if several processors request the resource (see Fig. 5.2.2.). 

However, when one processor receives an interrupt, it is not passed 

on if there is one outstanding, so the many interrupt cycles are 

cOalesced into one. 

The performance characteristics of the two solutions (the Periodic 

Restart and Interrupt Restart) are different with each performing 

better under certain conditions. With the periodic solution, the 

PUTRES activity may be needlessly restarted if the periodic time is 

too short. However, if the time is too large, there may be excessive 

delay in passing the resource. There is, however, no requirement 

for an interrupt path to exist between the processors. 

With the interrupt restart, if a GETRES unilaterally causes an 

interrUpt to be sent then one could be issued while the resource 

is still in use. Also,the interrupt path must be created. 

With both solutions, the PUTRES activity and GETRES must be non­

interruptable with respect to each other (except for the waits). 

This is to prevent the resource, in a "partially-passed-on" state 

being claimed by the GETRES causing the basic assumptions to be 

violated. 
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/ 

\ 
\ 

\ 

Interrupt A initiated 
interrupt B terminated 

,..----., 

'0 . 
------

Interrupt B initiated 
interrupt A terminated 

Path of Interrupt A • 
Path of Interrupt B -.-.-~ 

Figure 5.2.2. Multiple Interrupt Cycles 
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5.3. Multiple Rings 

So far, the discussion has been based upon a single resource. 

However, in a multiprocessor system many·resources will be shared' 

and each will therefore need protecting with a synchronising mechanism. 

Therefore the mechanism described above needs extending with several 

resources. 

The function of· the Abstract Resource Ring will be split into two 

parts and each will be considered separately, these being 

a) the handling of the ring nodes 

b) the operation of the PUTRES activity. 

Firstly, the basic ring structure and operation. Clearly, a ring 

structure similar to the structure already devised will be required 

for each resource. Since every resource may not be used by all the 

--·-------processors, the resource rings may not be, identical. The rings need 

only contain nodes for those processors which may access the resource. 

The functions of GETRES and PUTRES also need to be modified to include 

a parameter giving the identification of the resource required. Each 

processor will require a routing table to convert this identification. 

into a pointer to the appropriate node. One.simple technique whereby 

this may be accomplished is by numbering each resource and using that 

number as an index to a row of pointers. If this scheme is followed, 

a structure of the type shown in Figure 5.3.1. is obtained. 
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P1 

8-
P3 

Resource 
2 

Resource 3 

Resource 
1 

Figure 5.3.1. Multiple Resource Ring Structure 

- 105 -



With the PUTRES Activity, using the second solution (the interrupt 

Wakeup mechanism), complications arise if multiple PUTRES activities· 

are in existence ·on a particular processor, as may, in general, 

be the case. When an interrupt is received from the predecessor, 

the question arises as to which of the PUTRES activities should be 

restarted. If multiple PUTRES activities are· created then either 

some message needs to arrive with the interrupt to indicate for 

which PUTRES activity it is intended or all the PUTRES activities 

should be resumed. Another disadvantage with this solution is the 

potential number of interrupts circulating, and the associated 

counting complexity. A more rational approach would be to unify the 

mechanism. The PUTRES activities could be merged into a single 

.routine, which could check for resources owned but not wanted, with 

an interrupt manager being created. When the GErRES routine decides 

an interrupt should be issued, a request is made to the interrupt 

manager. When an interrupt is received, the interrupt manager will 

restart the resource checker and then perform the necessary counting 

and pass the interrupt if required. 

Clearly, the sending of two interrupts in quick succession will 

frequently make little difference in response. Some of the interrupt 

requests from the GErRES routine may be ignored by the interrupt 

manager, for example, if it has just passed. an interrupt round the 

ring or if two processes perform a GErRES for different resources in 

quick succession. 

With the first solution, that of periodic restart, the existence of 
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multiple PUTRES activities causes no difficulties with restart. 

The only disadvantage is the potential number of activities which 

may be in existence and the corresponding overhead within the 

scheduling system and possible reduction in the number of user 

processes which can be supported. If several PUTRES activities 

would consume too many scheduler resources (e.g. items in the 

scheduler list), a single resource checking procedure could be 

adopted as for the interrupt restart. If the PUTRES activity is 

incorporated into the scheduler, then a,count of owned but not 

wanted should be maintained. The scheduler then,need only check 

if the count is non-zero. 
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5.4. Temporary Resources 

It has been assumed in the previous sections that the ring structure 

was a permanent part of the system. It "is reasonable that, for 

certain permanent shared system resources, the ring structure 

should be created at system ,initialisation, in the same way as other 

system tables, with a node for each processor in the system. However, 

many of the resources used in the system will be of a transitory 

nature, being required only during the running of certain sets of 

complementary programs. It would be possible to create a number of 

rings at system initialisation time which may be used for these 

transient resources. However, this may cause unwanted interaction 

between two (otherwise independent) programs which happen to be using 

one particular resource ring for two completely different transient 

resources. Some mechanism must therefore be provided to enable 

dynamic creation of resource rings. 

We require a procedure for uniquely creating rings, adding new nodes 

to existing rings and distinguishing between the different resources. 

One possible solution would be to maintain a table giving identifying 

information about the temporary resources and a pointer to a node on 

the ring. A system resource ring will also be required to protect 

this shared table as it is a sensitive resource. This ring may 

suitably be called CREATE and the table RESOURCES. 

A processor running a process requiring access to a temporary resource 
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must first call an allocation routine to obtain the resource number 

of the temporary resource. After all the processes referencing this 

temporary resource have completed, the processor should-remove itself 

from the resource ring by calling a deaUocafion routine. 

The allocation procedure claims ownership of the CREATE resource 

to obtain access to the RESOURCES table. The table is inspected 

to see if a resource ring for that resource already exists. If a 

ring exists, then a new node-is added to the ring for the processor. 

Adding a node to one of the rings consists merely of altering the 

pointer and not the_value fields. Since the pointers are only 

modified when a new node is added to (or removed from) the ring and 

the corresponding processor must own the CREATE resource, only one 

processor may be modifying the pointers. The addition should be made 

in a wa:,r such that the rin-g is never broken, that is, the pointer 

(NEXT) field of the new node should be set to point to its successor 

---- -- before the NEXT field- of-its future predecessor is -altered. If a ring 

does not exist a free resource number is chosen and the description of 

the resource is entered in the RESOURCES table. A ring consisting 

of-a single node is created and a pointer to this node is placed in 

the entry for the new resource. In both cases, .the number of the 

temporary resource is returned. 

_The deallocate procedure operates in the opposite manner. Firstly, 

both the resource to be deallocated and the CREATE resource are 
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claimed. This is necessary to prevent several nodes being removed 

simultaneously and also to prevent another processor searching the 

ring while the node is being removed. Note that CREATE should. be 

claimed last to prevent possible deadlock. 

If the processor performing the deallocate is the only processor on 

the resource ring, then the entry for that temporary resource is 

removed from the resources table, enabling that entry to be used 

for another temporary resource in the future, and CREATE is released. 

If, however, other processors are still on the ring, then the processor 

performing the deallocate must wait for one of the other processors 

to request the resource. While waiting, however, the CREATE resource 

should be released to allow other processors access to the RESOURCES 

structure. As with PUTRES, this waiting can be achieved more readily 

by creating a separate activity to allow the scheduler to continue.· 

. When a request is made,. the processor should remove itself· from the 

ring and pass ownership to the requesting processor. 

The operation of these two procedures is shown pictorially by the 

state of the data structures at various stages in Figure 5.4.1. A 

possible implementation of these procedures will be found as part of 

Appendix 1. 
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CREATE· CREATE 

XYZ 

P1 

Initial State P1:R:=ALLOCATE ("XYZ") 

CREATE 

XYZ 

P1 P2 

P2:R:=ALLOCATE (''XYZ") 

CREATE CREATE 
. 

,/'-

V 011 XYZ --
~ 

1--- --- -

r----·:--

P2 

P1: DEALLOCATE (R) P2: DEALLOCATE (R) 

Figure 5.4.1. Example of operation of Allocate and 
Deallocate routines. 
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5.5. A Comparison of Synchronising Tools 

For a synchronising algorithm to be a viable tool in a multiprocessor 

system, it must not consume too many of the system resources during 

operation. Two factors, at least, are"a useful indication of the 

performance of such an "algorithm. "These two factors are th~ amount 

of time during which the resource is requested but is unowned and 

the amount of time between becoming owner of the resource and being 

able to use it. These may be thought of as the times between 

requesting a resource and being allocated it and from being allocated 

it to using it. The Abstract Resource Ring will be compared with 

two other synchronising tools found in the literature. These are 

.firstly Dekker's original solution to the problem as described by 

Dijkstra (22) and secondly a more recent solution devised by 

Lamport (48). These two algorithms are reproduced in Figure 5.5.1. 

The algorithms will be compared on the two characteristics noted above. 

Firstly, algorithm response time. Ideally, a processor should be 

able to use a resource immediately after it has been passed (or 

gained) ownership. By inspection of the algorithms, it is seen that 

both the Dekker and Lamport algorithms contain multiple loops. In 

particular, both algorithms require a processor to inspect the state 

of all" other processors with possible secondary loops in certain 

circumstances. In contrast, however, the algorithm for the Abstract Resource 

Ring contains only a single tight loop upon a single variable. 

In order to investigate this static cost of accessing a resource 
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claim = 

label: 

release = 

besin 

i: = our processor number; 

!!.h.ll! turn <.:> i .!!2. 

c[i}:=1; 

gb [turn) = 1 ~ 
turn: = i 

fi 
od' -' 
c[i]:=O; 

~ j : = each processor number except ourselves .!!2. 

od 

end' -' 

end' -' 

gc [j) ~ 0 then 

goto label 

i : = our processor number; 

turn: = 0; 

c [i1: = 1 • , . 
b [i1: = 1 

where b and c are arraya dimensioned 0 to N, both initialised to 

1, and turn is initialised to O. Processor numbers range 

from 1 to N. 

Figure 5.5.1 a) The Dekkar algorithm 
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claim = 

end' -' 

release = 

end' -' 

i : '= our processor number; 

choosing [i] : = 1; 

number [ i) : = 1 + maximum of number [1) to number [ N] 

choosing [iJ: = 0; 

for ' j : = each processor number do - -

od 

while choosing [j 1 < '> 0 do 

nothing 

od' -' 
~ number [ j]<> 0 and 

(number [ j] , j ) <.(number [iJ, i ) ~ 

nothing 

i : = our processor number; 

number [i) : = 0 

where choosing and number are dimensioned 1 to N, both initialised 

to 0 and ' (i,j) <. (k,l) ;: (i< k) or ((i = k) and (j < 1» 

Figure 5.5.1. b) The Lamport algorithm 
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empirically, the algorithms of Lamport and the ARR were encoded on 

a single processor system, but with the data structure that would 

be required for several. Calls to the.GETRES and PUTRES routines 

were placed in a loop. Table 5.5.2 gives the times obtained with 

various numbers of processors. The cost of the nested loops can 

be observed in the times given in the table. 

Secondly, what may be called wasted resource time. This is the 

time during which at least one processor requires the resource, but 

due to the transitional state of passing ownership (or gaining 

ownership) the resource remains unowned, or owned by a processor 

which does not require the resource. With the Dekker and Lamport . 

algorithms, this cost factor is due to the 'bartering' nature of the 

algorithms and the fact that the resource is freed after it has been 

used by a processor. With the Abstract Resource Ring, this overhead 

may be incurred when a processor performs a PUTRES but no processor 

requires the resource.' If a processor later requires· the resource, 

it will be unable to obtain ownership immediately, but will have to 

wait for the owning processor to check for unwanted resources. The 

ARR therefore contains some tuning facility in that the frequency of 

checking for resources may be altered either by changing the frequency 

with which interrupts are sent or the .time step between reactivations 

of the PUTRES activity. If the frequency is increased, the overhead 

of wasted resource time will decrease, but the cost of performing 
, 

the check will increase. 
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.. 
. 

Loop Size ARR Lamport's Algorithm' 

N = 4 N = 8 N= 16 
. 

1000 ·0.81 
. . 

0.94 1.06 1.31 

10000 8.03 9.44 10.64 13.04 

20000 16.05 18.88 21.29 26.08 

30000 24.07 28.35 31.95 39.15 
... 

• N gives the number of processors in the ring 

Note: all times are in. seconds 

Table 5.5.2. Response time comparison 
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Shared resources which are heavily used, that is when one processor 

releases the resource another requires it will suffer negligible 

overhead with the Abstract Resource Ring since a PUTRES will always 

be completed with no requirement fora delay following a retry. 

However, the overheads for the Dekker and Lamport algorithms will 

increase with the number of processors taking part in the resource 

sharing. Both these algorithms have a section of code which,ideally, 

would be executed by a single processor at one time. Checks have to 

be made for multiple execution of that section of code, with possible 

retries in the case of Dekker's algorithm •. As the number of 

processors increases, so does the possibility of simultaneous 

execution of the critical section of code by several processors and 

correspondingly the potential overhead of the· algorithms. 

It is worth noting that if a resource is heavily used (as mentioned 

above) then the only overhead associated with the Abstract Resource 

Ring is the cost of locating the new owner within the PUTRES routine, 

that is, the cost of searching the ring structure~ 

To confirm these predictions, the performance of the algorithms was 

tested under simulation conditions. The simulations were of a coarse­

grained nature, with an algorithm-step as opposed to a machine 

instruction being executed by each processor in turn. This is a 

sufficient formulation of the algorithms, since no action between 

algorithm steps may affect the synchronisation being performed, and 

each step is a single action. 
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The simulation program was written in the BASIC language and 

enabled a number of resources to be shared amongst a number of 

processors. Both the number of resources and the number of 

processors were supplied as input data. Each processor would 

randomly choose one of the available resources, claim that resource, 

hold it for a number of algorithm steps and then relinquish the 

resource. A further number of algorithm-steps would elapse before 

that processor would again choose a resource and repeat the cycle. 

The size of the time periods holding and not holding the resource 

were specified by input data. The three algorithms were incorporated 

into the simulation progr~. 

The three algorithms were compared under various configurations and 

workloads. Figure 5.5.3 shows graphs drawn from some of the results 

obtained from the simulations. All the graphs show the operation 

with six resources being shared. Two of the graphs a) and b) show 

----- results for a varying number of processors while graphs c) and d) 

show results for varying workload, that is frequency of resource 

access. For each variant, a graph is given showing the two critical 

measures of the performance of the algorithms. The wasted time, 

expressed as a p:rcentage of total elapsed time, is shown in graphs 

a) and c) and graphs b) and d) show the total resource usage expressed 

as a percentage of total possible resource usage. 

From these graphs, it can be seen that a performance similar to that 

predicted is obtained. As the load upon the resource sharing 

mechanism is increased, either by increasing the number of processors 
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or by increasing the frequency of access to the mechanism, so the 

performance of the Abstract Resource Ring improves.against that of the 

other two algorithms. Under light usage, where frequent use of the 

PUTRES activity will be required, the ARR performs poorly compared 

to Lamport's algorithm. As the number of processors increases, the 

Abstract Resource Ring rapidly improves in performance and with a 

heavy workload gives considerably improved performance (only half of 

the overheads) against Lamport's algorithm. 

Therefore the Abstract Resource Ring is most suited to the protection 

of heavily used resources, in particular potential system, bottle necks. 

In Chapter Seven it will be shown that even with less frequently 

used resources the ARR gives acceptable performance. 

Another aspect that should be considered when comparing the various 

algorithms is their ability to distribute the resource usage among 

---~--- the processors.' As' was noted in Chapter Three,---some synchronisation 

algorithms may allow processors to remain blocked indefinitely if 

resource usage is heavy. The algorithm developed by Dekker falls 

into this category. Lamport, however, has 'developed an algorithm 

which guarantees service on a first-come - first-served basis. 

With the Abstract Resource Ring, however, some scheduling may be 

incorporated. If the standard searching algorithm is used then no 

processor will be blocked, the use of the resource being on a form 

of Round-Robin. However,this search algorithm may be replaced by 
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another which locates the next user of the resource on another 

basis, for example on priority. This adds an extra dimension of 

flexibility to the ARR. 
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5.6. Multiple Users of a Resource 

In the preceding sections of this chapter, it has been assumed 

that for each protected resource, only a single processor may 

access that resource at a given time. However, a class of problems 

have been described, the.readers and writers problem (17), in which 

several types of resource use exist. With some of these types it 

is possible for several users to simultaneously access the shared 

resource. 

With the Abstract Resource Ring as described, this is not directly 

attainable. It may also be necessary, within the scope of multiple 

users, to periodically reduce the number of processors allowed to 

access the resource. For example, a file may be read by any number of 

processors, but when one requires to write to that file, it may be 

necessary to stop any other reading and writing. 

Two very similar solutions to this problem are presented in this· 

section, the first using the Abstract Resource Ring in its current 

format, the second using a modified form of the ARR. 



making note in the data block· as necessary. Access to the data 

block is then released by calling PUTRES. This approach requires 

that the code handling the usage information block be placed in the 

user program. This may place unwanted management responsibilities 

upon the user, although great flexibility may be achieved by 

careful structuring of the data block. 

The second approach involves modification of the Abstract Resource 

Ring. As will be seen in the next chapter, the modification improves 

error recovery capabilities of the ARR. If the ARR data structure 

is altered (in some sense inverted) to consist of a node per 

processor as before, but consisting of only a WANT flag and pointer 

to the next. node in the ring. The CAN flags can be replaced by a 

single location for each. resource ring. This location will contain 

the name (number or other identification) of the processor currently 

owning the resource. The GETRES procedure now loops inspecting this 

--~"- .. - --new OWNER location ,until the processor',s identification is placed 

in it. PUTRES places the name of the new owner in the location rather 

than clearing and setting the CAN flags. 

If multiple users of a resource are required, they may be incorporated 

into the ARR by providing several OWNER locations for each ring. The 

number of OWNER locations would specify the maximum number of 

simultaneous users of the resource. A call to the GETRES routine 

would specify the resource required and also the number of ownership 

locations required. The processor would loop within the GETRES 

routine until the required number of ownership locations contained 
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its name and would then be able to use the resource. 

Unfortunately, this algorithm is not sufficiently strong to 

counteract a possible deadlock. This may be shown by considering 

a case where four ownership locations exist and two processors 

require three of these locations each. It would be possible for 

the processors to obtain two of the ownership locations each thus 

blocking the other, and the resource. 

This problem may be overcome by only allowing a single processor to 

obtain "multiple ownership" at anyone time. This may be accomplished 

by adding another location, say MULTIPLE, similar to the OWNER locations. 

Before a processor may attempt to obtain multiple ownership, its 

identification must be placed in MULTIPLE. The problem arises when 

two processors partially claim multiple ownership but insufficient 

ownerships remain to complete either,the problem attacked by the 

--.-.- Banker' sAlgori thm ( 22) •. Since any processor between one passing 

an ownership and the mUltiple requester which will have a request 

honoured requires only a single ownership of the resource, the 

ownership will be used and then be passed on, eventually to the 

. multiple requester. After sufficient ownerships have circulated and 

been claimed by. the multiple requester, it will use the resource.· A 

consequence of this strategy of having a single multiple oWner is 

that a processor requiring multiple ownership of a "higher order" 

than that which it already has must not retain any of its ownerships 

until its identification is placed in MULTIPLE since the ownerships 
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may "be required by another processor. This implies that, in general, 

a processor may not increase its ownership while keeping those it 

has. 

Once a processor has achieved its required number of ownerships, it 

may pass the MULTIPLE location to another processor since it may 

only relinquish the ownerships it ha~without any possible deadlock. 

The PUTRES and PUTRES ACTIVITY must be modified to pass all the 

ownerships held but only passing to a processor which has need of 

an ownership, there being no advantage in passing on ownerShip to a 

processor which already has its requirements met. 
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CHAPTER 6 

THE ABSTRACT RESOURCE RING 

AND RELIABILITY 



6.1. Introduction 

"The use of computers in on-line control situations and for 
other applications giving rise to ever-more stringent reliability 
and availability specifications, resulted in the construction 
of systems including two or more central processing units •••••• 
As a result of the multiplicity of units in such multiprocessing' 
systems, failure of anyone would degrade, but not immobili~e, 
the system, since a supervisor program could re-assign activities 
and configure the failed unit out of the system." (50 ) 

If the potential for increased reliability in a multiprocessing system 

is to be realised, then care must be taken to ensure that the shared 

resources, in,cluding system tables, cannot be corrupted or lost due 

to the failure of a system component (e.g. the central processing unit). 

In this chapter, a brief classification of failures is made then the 

design of the Abstract Resource Ring is re-analysed and an alternative 

implementation is discussed which enables graceful degradation of the 

multiprocessor system to take place for one of the classes of failure~ 
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6.2. Classification of Failures 

Failures may be categorised into two main groups, namely 

1) Hardware failures 

2) Software failures 

Each of these groups may be subdivided into the following two partitions 

a) Cessation of operation 

b) Fault in operation 

Examples of the type of failure in the four subgroups are 

1a) Cessation of operation of a processor may arise if the operator 

switches off a processor or if a power failure occurs 

1b) Faults in hardware can arise in many ways evidencing themselves 

in such phenomena as 'dropped bits' in memorY accesses, a failure 

in addressing, etc • 

. ~. 2a) Cessation of process execution may arise because of, a system 

deadlock, or a scheduler malfunction 

2b) Faulty operation of a process may be evidenced in "random" 

corruption of code or data due to incorrect coding •. 

Whilst perfect security and reliability is clearly desirable it can 

never be achieved in the hardware. At best, the probability of 

failure can be reduced to a suitably low level. Many of today's 

reliable systems provide their reliability at a heavy cost in terms 

- 131 -



of duplicated components and special logic. Yet with the current 

state of the art , many areas of potential error are being overcome. 

For example, store protection and addressing mechanisms have largely 

overcome the problem of. user programs corrupting system code and 

data. Thus, reliability against a certain type of failure can 

frequently be achieved in a cost-effective manner. In the bulk of 

this chapter, consideration will be given to providing reliability 

to cover class 1a) of failures above, with respect to the CPU only. 

In sections 9 and 10 of the chapter, brief consideration is given 

to other errors. 

The standpOint from which the solution presented in the next section 

was taken was to provide a version of the Abstract Resource Ring 

which would allow the remaining processors to continue to share the 

resources after the failure of one or more processors. 

--,----~-. - .. 
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6.3. Initial Death Detection 

The starting point for the investigation was the Abstract Resource 

Ring with a single resource'using the interrupt mechanism to ensure 

that the resource ownership would be transferred. However, this 

arrangement will not work as it stands if one or more of,the 

processors on the interrupt ring ceased operation ("died"). Two 

possibilities could arise: 

a) (see Figure 6.3.1.) The interrupts would not complete a 

cycle of the ring, proceeding no further than a dead processor. In 

the Figure, processor A can never receive an interrupt to cause it 

to pass the resource, so it will be lost to all processors except 

A itself 

b) A second, and possibly more catastrophic, situation is that 

,the dead processor owned the resource when it died. The resource 

would then remain unusable. 

Clearly some action is required when a processor dies. This action 

is required in two phases, firstly the death of the processor must 

be detected and secondly recovery action must be taken for the dead 

processor. It is worth noting that for the system to continue to 

give a response, though degraded, the only recovery that ~ be 

taken is that of the shared resources. This is because the processors 

are assumed to be otherwise independent. Thus it appears that 

recovery action is only necessary if the deaa processor was actually 

using, that is had ownership of, the shared resource. This 
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information is readily accessable from the ring data structure by inspection 

of the CAN/WANT flags for the resource to which the dead processor 

has access. This makes the Abstract Resource Ring system a very 

good medium for death detection and error recovery initiation • 

. The first.solution followed naturally from the constraint which. 

must be placed upon the recovery:-

only one processor may perform recovery action on the death of 

another. 

A suitable candidate for the processor performing the death detection 

is the predecessor of the dead processor, .. this always being unique. 

in a ring structure. If, when an interrupt from the ring is received 

by a processor, it acknowledges receipt of that interrupt by sending 

a reply to its predecessor, then the predecessor may ascertain whether 

its successor is dead or alive. If. a reply is received, within a 

suitable time span, then· the successor is assumed to be alive, 

otherwise it is deemed to be dead. Once a processor has discovered 

that its successor is dead, recovery action may be taken. 

The form of the error recovery, for the single resource, is shown 

in Figure 6.3.2. Firstly, the state of the WANT flag of the dead 

processor is remembered and it is then cleared. This step is to 

prevent the resource ownership need lessly passing to the dead 

processor •. The processor performing the recovery should now wait for 

a sufficient length of time for a processor which maybe in the 
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progress of passing ownership to the dead processor. 

Secondly, the CAN flag is inspected. As stated above, no recovery 

action on the resource is required unless the CAN flag is set. If 

this situation arises, the ownership of the resource may be forcibly 

acquired by the (unique) predecessor of the dead processor (termed 

"grabbing") by clearing the CAN flag of the dead processor and 

setting its own. The need for the constraint above now becomes 

apparent. If several processors attempted to recover from the death 

of another processor, then more than one of them could become the 

owner of the resource during the recovery period. This would violate 

the basic premise of the mechanism. 

If both the CAN flag and WANT flag of the dead processor were set 

then not only did it own the resource, but it was potentially using 

it. In this case,some recovery action must be taken to.check the 

.----.-.. -internal consistency of the resource. This may involve a number of 

steps, for example comparing forward and backward pointers within 

a data structure etc. In section seven of this chapter, a description 

of a technique is given whereby a shared data structure may be updated 

in a manner such that it may be restored to a self consistent state 

even if the update was only partially made. 

·Having returned the resource to a useable state, if necessarY, 

recovery action needa to be made to the ARR structure. This recovery 

. is required even if the dead processor was not using the resource. 

The ring structure mechanism will not function since interrupts 
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cannot pass the dead processor. The dead processor must be removed 

from the ring, and the corresponding interrupt path needs to be 

reformed. Prior to removing the node corresponding to the dead 

processor,' the recovery processor should obtain the resource, if it 

does not own it, by performing a GETRES. The condition is laid down 

that a processor may only remove a node from the ring if it owns 

the corresponding resource. Since only a processor performing a 

PUTRES, and hence owning the resource, may inspect the nodes of 

other processors, no other processor may be inspecting the ring while 

the node of the dead processor is being removed(by the resource ownerl. 

The removal is easily accomplished by replacing the NEXT field of 

the recovery, processor's node with that of the dead processor. 

With the above mechanism, a system sharing a single resource may 

gracefully degrade in the presence of a single failing processor. 

However, many deficiencies remain in the system. In the next section, 

these deficiencies will be presented and solutions to them will be 

given. 
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6.4. Rigorous Death Detection 

The following deficiencies can be observed in the recovery aspect 

of the Abstract Resource Ring as described in the previous section: 

i) recovery takes place within a single resource environment only 

ii) in general, recovery cannot be made from multiple deaths 

(see below) 

iii) a processor in a repeated stop/start state may be deemed dead, 

but "come back to life" and potentially cause havoc by using a 

resource ownership which has been removed from it 

iv) the potential need for operator intervention to reconnect lines' 

to ensure that the interrupt path corresponds to the Ring Structure. 

To show the validity of point ii),above, consider Figure 6.4.1. Processors 

A and B have both died, with B owning and using the resource - none of 

processors A, C or D want the resource. On discovering the death of 

processor A, as shown in the flowchart of Figure 6.3.2, processor D 

performs a GETRES on the shared resource. However, that GETRES can 

never be satisfied since the owning processor is dead and cannot be 

recovered. That is, a form of deadlock arises. 

The development of,the Abstract Resource Ring will be described, and 

it will be shown how the developments overcome the deficiencies above. 

The first matter to be considered is the recovery with multiple 
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rings. In section 5.3. it was postulated that a single process 

on each processor (the interrupt manager) should administer the 

interrupt prompting mechanism. Any prompting interrupts would then 

circulate the Ring Structure passing to every processor, not just those 

capable of sharing a particular resource. This led to the conceptual 

splitting of the Abstract Resource Ring into two classes of rings: 

a) "Software" Rings - the ring structures used within the 

sharing of particular resources 

b) "Hardware" Ring - a ring structure showing the physical 

ordering of the processors, and used by 

the interrupt manager on each processor. 

This breakdown of functions naturally allows pr~cessor death 

detection to take place within the context of the Hardware Ring, on 

a similar principle to that employed with a single-resource. The 

death detection, therefore, becomes independent of the actual resource 

sharing. 

, -'-

The interrupt manager's function is modified to include the reply/ 

time out mechanism, as proposed in the previous section, to enabl~ 

the death detection to take place. When a death is detected, the 

recovery·process must firstly rebuild the Hardware ring by removing 

the node for the dead processor and arranging (with possible operator 

intervention) for the interrupts to be sent to the new successor. 

This may be accomplished because of the independence of the Software 

and Hardware Rings. It has been seen that, with a single resource, 
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detection of multiple deaths was severely handicapped. But for 

the interrupt manager operating under the Hardware Ring, the death 

detection may be continued before recovery of any of the Software 

rings is·started. 

Having rebuilt the Hardware Ring, the recovery process may then 

perform any recovery necessary for each Software Ring to which the 

dead processor is attached. The operations performed will be directly 

comparable to those for the single resource case. The WANT flags of 

all resources not owned by the dead processor should first be cleared 

to prevent it becoming an owner, and thus increasing the cost of 

recovery. For a particular ring to which the dead processor is 

attached, it may be that the recovery processor has no node as it is 

a temporary resource. In this case, before any necessary grabbing of 

the resource or other recovery action which may be necessary can take 

place, the recovery processor must add itself to the ring by the 

technique described in section 5.4. Since this technique relies on 

the CREATE resource, it may be necessary to overlap recovery 

procedures if a second (or later) death caused the (temporary) loss 

of CREATE. Once the recovery of the resource is completed, the 

processor should remove itself from the ring. Also, removal of the 

dead processor's node is not as straightforward as in the single 

resource case, since the recovery processor need not be the predecessor 

of the dead processor on a Software Ring. The Software Ring may need 

to be searched to locate the predecessor. The need to own the resource 

before removing a node is again required since several processors 

may otherwise be searching the ring. 
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With the Software Rings, however, (except in the case of transient 

resources (see section 5.4.» there is no strict need to remove 

the nodes of' the dead processors. The reason for the removal of 

nodes of dead processors was to enable further death detection to 

be performed. Since death detection operates independently of the 

Software Rings, the removal of nodes need not take place. If the 

nodes are removed then it reduces the size of the Software Ring, 

reducing searching costs, however when the processor is brought back 

into the system after being repaired the cost of , adding it back to 

the rings from which it had been removed must be paid. 

Thus, by separating the resource sharing and error recovery aspects 
" 

of the Abstract Resource Ring, deficiencies i)and ii) above have 

been overcome. 

The need for operator intervention (point iv» is due to the need 

-----", for'an interrupt path existing between adjacent processors. Some 

multiprocessors systems have an inter-processor interrupt mechanism 

( 51), yet others do not. In the latter case, external I/O ports 

may need to be used back-to-back (as in the system described in 

Chapter Seven). When a processor dies, rearrangement of cabling may 

therefore be necessary in order to keep the physical interrupt path 

corresponding to the internal Hardware Ring structure. This operator 

intervention may be undesirable, and is potentially error prone. An 

alternative approach to the interrupt mechanism was therefore sought. 

The solution to the problem proved straightforward once the principles 



concerned had been isolated. The basic requirement, from the error 

recovery aspect, is that a processor indicates (or fails to indicate) 

that it is alive. As has been suggested previously, two basic 

methods may be used to achieve this indication. It may be either 

i) on demand 

. or ii) periodic. 

The interrupt mechanism is an example of the first type. A processor 

indicates that it is alive by replying (on demand) to an interrupt. 

The alternative might be expected to be of the second type. 

If each processor maintains a local clock variable readable by all 

processors, and this clock is guaranteed to be correct (to within a 

fixed accuracy) to the "real time" maintained by the system as a 

whole, then a processor may safely be deemed dead if its local time 

is outside the required accuracy. A simple realisation of this 

would be to have a location containing system time and have each 

processor copy this time into their local time locations, say every 

second. If the difference between system time and the local time 

of any processor exceeded one second, then that processor would be. 

assumed dead. A degree of safety may be added by using a cruder· 

accuracy for checking the copy. 

These local times would replace part of the nodes in the Hardware 

Ring, and the interrupt manager would be replaced by a process which 

periodically checked the local times to detect dead processors. This 

death checking process needs to compare the local time for its successor 
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against the current system time.' If the processor is dead then recovery 

action should be taken. However, if multiple deaths are to be handled 

then the following processor should be inspected. This should continue 

until all the dead processors immediately following the checking 

processor are found. 

With this technique, no operation intervention is required during the 

recovery action overcoming point iv) above. However, the problem of 

maintaining the system clock arises. Initialisation of any clock requires 

operator interaction, and so when this action is performed, the system 

clock can be initialised. Each successive processor may then initialise 

its local time from the system clock. If all processors are given the 

responsibility of maintaining the system clock according to the rule:-

"Each periodic interrupt, the local time is advanced. If this· 

time is later than system time then the system time is advanced" 

then some advantages follow. If all the processors are operating 

correctly, then the local time on each will advance in step. If, 

however, one of the processors dies (or stops), its local time will 

lag behind the system time maintained by the others, and if it 

restarts, it will not reset the system time. This difference between 

system time and local time may be used to improve trapping of the 

stop/start effect of point iii) above. If the local time of the 

processor bears a greater discrepancy to the system time than the. 

guaranteed accuracy then the system on that processor could deem itself 

dead, and terminate any further access to shared resources on the 

assumption that recoverY action had been taken. Note, however, that 
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if the processor was about to update a shared resource or the ring 

structure when it stopped it may, on restart, continue with that 

update, causing possible corruption of data if recovery had taken 

place. Local time would need to be reset as a specific act if a 

processor is legitimately restarted after a failure. 

If the. local time accuracy is not a fixed quantity but made flexible 

for each processor, then when a processor is about to enter a known 

stop/start state (for example single-shot operation) the accuracy 

could be made very crude. This operation would clearly be a function 

of the Hardware Ring, with the accuracy for each processor being 

stored in its node on that ring. 

From the above discussion, the periodic scheme for handling the 

function of the Hardware Ring has certain advantages. The first of 

these is the ability of the total system to reconfigure itself. 

--- without the need for operator intervention. In some applications, 

this may be of some importance. Also, the stop/start state may be 

more easily handled and, with the periodic technique, a processor 

may incorporate some self checking against stop/start. However, it 

does require a clock to be present on each machine in the ring. 

Against the periodic scheme the arguments of the previous chapter 

may be raised, that is needless restart of.the checking processes 

and the ensuing processor. overhead. 
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6.5. Failure within ARR Routines 

So far, no consideration has been given to the consequences of 

a processor failing during any of the Abstract Resource Ring routines. 

Those procedures which need to be considered are GETRES, PUTRES, 

the allocate and deallocate routines and the recovery procedure. 

Of these, the allocate and deallocate come under the class of general 

resources, since they involve a data structure protected by a resource 

ring (CREATE). Recovery techniques may be applied to them as to any 

other data structure. 

The remaining three, however, need separate consideration • 

. 6.5.1. GETRES routine 

The only operation this routine performs upon the ARR data structures 

.----- is to alter the value of the WANT flag. If a processor fails during 

execution of this routine the ARR will appear either with or without 

the appropriate WANT flag set.· Neither of the two conditions is 

illegal, so failure within GETRES is safe. 

6.5.2. PUT RES routine 

The consideration given to PUTRES also applies to the PUTRES Activity. 

The act of clearing the WANT flag cannot affect the legality of the 

ARR data structure if a failure occurs, nor can the searching of the 

ring. However, the passing of ownership between processors poses 

difficulties. The·processor passing the resource needs to clear its 
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own CAN flag-and set that of the second processor. This clearly 

takes more than one operation on most computers, so the processor 

may fail between the two steps. 

If the processor clears its own flag prior to failing, then the 

ring appears to have no owner. However, if the setting and clearing­

operations are interchanged and the CAN flag of the new owner is set 

prior to failing, then after recovery two owners of the resource 

exist. Both situations break the basic condition for correct 

operation of the Abstract Resource Ring. 

The. technique of reliable update,described in section seven of this 

chapter, may be used to guarantee a legal state of the ring structure 

data. 

Another solution may be obtained by adopting the OWNER location 

-------techhique described in section 5.6.(that is. of maintaining a location 

holding the identification of the current owner of the resource rather 

than many CAN flags). The problem arises because a single piece of 

information, that is the current owner of the resource, has been 

distributed amongst. several nodes. In general, this distribution 

of information raises many reliability problems. In this context; if 

the distributed ownership information is replaced by the single 

OWNER cell, the passing of ownership becomes a single operation and 

difficulties with failure no longer remain,. since the location will 

either contain the old owner or the new owner of the resource • 
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The technique of section 7 of this chapter is the generalisation of 

this technique. 

6.5.3. Recovery Procedure 

Two possible illegal conditions may arise if a failing processor 

was executing a recovery procedure. 

a) The death of the recovering process may occur after the 

original processor has been removed from the ring but before 

it has had complete recovery action taken over its resources. 

b) An invalid structure within one of the resources may be 

generated due to partial recovery being performed upon it. 

Consider the latter possibility first. If the processor was actually' 

performing recovery upon the resource, then it must have ownership 

of the resource. The recovery procedure itself should be constructed 

.~-------in a manner which,- if it is being performed as a processor which­

dies, the recovery may be restarted. 

The ring structure is altered on two occasions (see Figure 6.3.2.). 

Once when nodes are removed and once when the resource_is grabbed. 

The removal of a node involves the changing of a single location in 

the node (the NEXT field) and is a single operation and is therefore 

safe with respect to a failure. However, the grabbing of a resource 

is not a single operation, but it is an operation corresponding to 

that of the PUTRES routine. Using the single ownership location as 

described earlier, this operation may be made safe. 
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The second major condition to be considered is to be able to 

continue the recovery of the original dead processor. If the 

interrupt mechanism is employed, the node in the Hardware Ring 

for the dead processor is removed before any recovery action is 

taken. So the death of the first processor cannot be rediscovered 

if the recovery processor dies. Yet, as has been noted, if the node 

remains, it may not be possible to recover from multiple deaths. 

'The node must therefore be removed. It then remains that a processor 

must maintain a list of processors from whose deaths it is recovering 

in order that they may be resumed on its own death, if the need 

arises. The addition to this table must take place before the node 

iS,removed from the Hardware Ring. 

With the periodic death detection, no extra action need be taken.' 

Since processors may discover more than one death at a time, the 

need to remove a node from the Hardware Ring does not arise, so 

.---'~~~~rediscovery of'a death is possible and' a partial recovery cannot be 

lost. A consequence of this is that'when the periodic restart of 

the PUTRES activity is used, a dead processor should not be removed 

from the Hardware Ring until it has had all its resources 

recovered. 
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6.6. Addition and Replacement of Processors 

Once a processor has failed and been repaired, it would be desirable 

to be able to add it back to the system, refltoring it to full power. 

Also, the addition of new processors may be possible. Some method 

must therefore be found whereby nodes can be added to both the 

Hardware and Software Rings. The rings may be split into two groups 

a) those to which the new processor has to be added by another 

e.g. the CREATE resource 

b) those to which the new processor may add itself e.g. one of 

the temporary resources. 

The criterion upon which a processor is added is dependent upon the 

criterion for removing a node. For some nodes, the removal criterion 

is that the predecessor on the Hardware Ring must remove the node 

(corresponding to group a) above), whereas for others, the criterion 

is the ownership of the CREATE resource (corresponding to group b) 

above). 

For class a) of rings above, another processor is requested to add nodes 

for the new processor to each of.the rings necessary. The nominated 

processor should be the new processor's predecessor if the new processor 

is present on the Hardware Ring. If the new. processor is being added 

to the Hardware Ring, it should be placed as the successor of the adding 

processor in order to reflect the detection criterion. The request may 

either be by operator command or a request from the processor via a 

message system, or any other convenient method. 
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For those rings governed by the CREATE resource, the processor 

may add itself by calls to the Allocate routine (see 5.4.). 
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6.7. Reliable Update 

In this section, and those following, brief consideration is given 

to other reliability aspects. In this section, an algorithm is 

described which permits alteration of multilocation values to be 

performed safely despite the class of failures under consideration. 

The procedure assumes that updates by different processors are 

mutually exclusive, i.e. that synchronisation already exists. 

The difficulty with updates of multilocation values is that they are 

not usually point (indivisible) operations with respect to the failing 

of a processor. That· is, the update takes several steps (instructions) 

and the processor may fail between any two steps. Thus, after the 

processor has failed, part of the new and part of the old values are 

found in the locations. A procedure, known as "Reliable Update" was 

developed whereby a point operation is introduced into the update. 

-~~-~The-extra reliability obtainable by the application of this procedure 

is achieved at the expense of both storage and processing time. 

The straightforward update fails because we have a data structure 

changing from one state to another over several steps. The point 

operation· is introduced to show when the change from the old values 

to new takes· place. In order for this to be possible, we require two 

sets of locations. One contains the old values and the other the new 

values. Before the complete update is made, the old values are used. 

Once the new values are stored, the locations containing the new 
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values are used. The point operation is introduced to indicate 

which set of values is to be used.' 

The operation of the procedure may be demonstrated by considering 

the update of ,the table shown in Figure 6.7.1., The table contains, 

a count of elements, followed by that number of elements and then 

the sum of the elements. 

If we now wish to add the number 4 to the table, three locations, 

must be changed. The count of elements must become 5, 4 must be 

added to the table (say in the sixth location) and a new total must 

be placed in the seventh location. 

In order to, be able to perform this update using the Reliable Update 

procedure, each entry of the table is duplicated. A single bit (or' 

bistable) is associated with each entry. The two values for each 

---- "-entry are known as "value'" and "new value" and the bistable is -

known as "indicator". There must also be another bistable for the 

table as a whole, called "flag". Initially, all bistables are 

assumed to be zero and the correct entries for the table are in the 

value fields (see Figure 6.7.2.). 

The procedure falls into four steps, namely 

i) For each entry to be changed, store the new value in the 

corresponding new value field and set indicator (the order of 

the two operations is irrelevant) 
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14 I 12 5 I 3 6 I 26 ...... I I 
Figure 6.7.1. Origional Table 

Flag El 
Value 4 12 5 3 6 26 

New value - - - -. - - . 

Indicator 0 0 0 0 0 0 0 . 

Figure 6.7.2. Table for use with Reliable Update 

-155 -



ii) Set flag 

iii) Copy all the altered entries from the new value field to 

the value field and then clear indicator (the copy ~ be 

performed first) 

iv) Clear flag. 

The state of the table after each phase of the procedure is shown 

in Figure 6.7.3., and an example of the coding is given in Appendix 2. 

Clearly, if the update is completed by the process performing it, 

then the data structure conforms exactly to the assumptions made 

about it on entry, that is all bistables are zero and the correct 

values are all in the value fields. Two conditions need to be 

satisfied for the procedure to be able to withstand a failure of the 

type proposed in section two of this chapter; 

a) correct and consistent values may be obtained from the data 

·structure after the failure 

b) .the data structure must be able to be brought in line with 

the assumptions made about its state before entering the 

procedure. 

The crucial phase in the procedure· is step ii) and it is this step 

which provides the indivisible operation for the update. If this step 

is completed then the data structure is considered to be updated. If 

it is not, then.noupdate has been made to the data structure. 

To obtain a correct value from the table, the following rule should 

- 156 -



If 12 5 3 6 26 - . 

5 - - - - If 30 
. 

1 0 0 0 0 1 1 0 0 
.. 

a) After Step i) 

. 

If 12 5 3 6 26 -
5 - - - - If 30 

1 0 0 0 0 1 1 0 0 . 

b) After Stepii) 

5 12 5 3 6 If 30 

5 - - - - If 30 

0 0 0 0 0 0 0 0 0 

c) After Step iii) 

5 12 5 3 6 If 30 Gl 
5 - - - - If 30 

0 0 0 0 0 0 0 0 ·0 

d) After Step iv) 

Table 6.7.3. Table During Reliable Update 
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be used 

Rule:- The correct value is contained in the. value field unless 

both flag and the corresponding indicator are set in which case 

it is in the new. value field. 

Before flag is set, according to the rule, the value field is used 

for the correct value, giving the appearance of the table not being.· 

updated. However, when the flag is set, the values for the entries 

. which have been· changed are found in the new value field since their· 

indicator is set. The copying phase returns the data structure to 

its.initialstate with modified values. 

To recover the data structure one of two operations is performed 

depending upon the state of flag. If the flag has not been set then 

the update has not taken place and all that is required is to clear 

all the indicators which are set (the contents of the new value 

fields being irrelevant). If;·however, the flag·is·set then the 

update may be completed by the recovery process performing the 

remaining copy steps required to bring the data structure to a correct 

state. The flag should then be cleared •. 

This procedure is a candidate for safe update of shared resources. 

such as the RESOURCES table. 
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6.8. Application of Reliable Update to the AAA 

If the implementation of the Abstract Resource Ring based on the 

OWNER flag is used the overhead of the Reliabl,e Update need not be 

imposed on the basic structures and routines. If each field of 

the ring structures can be implemented using a single location then, 

no special security measures need be taken (see section five of this 

chapter). 

However, if the proposal of section 5.4. for dynamic creation of 

rings is incorporated then the Reliable Update must be used. As 

was' noted, the RESOURCES table i~ a shared resource. "Access to the 

resource is only made while the CR~TE resource is owned; and access 

is therefore made by only one processor. As such the RESOURCES table 

is a candidate for use with the Reliable Update. This will impose 

an extra overhead upon the Allocate and Deallocate routines. 

With that addition to the Allocate 'and Deallocate routines, the 

complete Abstract Resource Ring mechanism can be maintained correct 

and consistent even in the presence of multiple failures of the 

class considered. 
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6.9. Failures Due to Other Errors 

In this section, brief mention is made of other types of failure 

and their effect upon the operation of the Abstract Resource "Ring 

mechanism. 

Clearly, as with all systems enabling resource sharing, the 

possibility of deadlocks is present. The problems of deadlocks 

have been known for some time (16). Two basic methods can be used 

to overcome deadlock problems. Firstly, by use of pre-emption to 

force a process to release (temporarily) a resource ( 40) and 

secondly to prevent deadlock from arising in the first place (33,40). 

Brinch Hansen describes the Hierarchal Resource Allocation technique 

( 11) for deadlock prevention. This is the technique used within 

the current implementations of the Allocate, Deallocate and Recovery 

---,-'-- routines. Each of these routines requires the use of two' resources' 

(the CREATE resource and one other) and so a potential for deadlock 

exists. If the resources are claimed in one fixed order (the same 

for all processors) and are released in the reverse order, the 

deadlock cannot take place. So the three routines always claim the 

CREATE resource last and release it first. 

The possibility of. deadlock within.the ARR routines has, therefore, 

been removed. However, by bad design of a total system based upon 

the Abstract Resource Ring, deadlocks could still arise •. 
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A second area to which consideration must be given is that of 

corruption of the data structures. With all systems" simple or 

complex, some data is crucial to the safe running of the whol~ 

system. The data structures for the ARR fall into this category. , 

At best, corruption may merely cause a delay in the system by 

unsolicited setting of a WANT flag. Various levels of degradation 

may be experienced up to complete system failure, for example 

a single Software Ring may be corrupted causing the loss of one 

resource only or major corruption may take place requiring the 

system to shutdown. Extra checks may be incorporated to validate 

the various ring structures on ,access, but this will naturally lead 

to an increase in overheads and still cannot guarantee consistency. 
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6.10. Self Stabilising Techniques 

This section is concerned with the adaption of some theoreti'cal 

work performed by Dijkstra. 'One specific case of data corruption, 

due either to hardware or software failure, is the setting of 

multiple CAN flags within a Software Ring. This implies that 

several processors may (wrongly) use the resource. The question 

posed by this situation is whether it is possible to return from 

this erroneous or illegal state to the correct state of having just 

a single owner of the resource. It should be noted that with the 

version of the ARR having the single ownership location this problem 

cannot arise. 

Dijkstra has published a paper ( 23) on self-stabilising systems in 

which he presents examples of systems where, by applying only valid 

state-transitions within a system, the system will return to a valid 

-- '<---- state from an invalid state within a finite time.- -Each system has _ 

a (finite) number of privileges and with each privilege there is a 

corresponding state transition. At each step a daemon, either 

centralised or distributed, chooses one of the privileges existing , 

and the corresponding state transition is made. The system is said 

to be self stabilising if it will return to a legitimate state 

irrespective of the privilege chosen at each step by the daemon • 

• 

If the ARR could be made self stabilising, then it would be able to 

recover from the illegitimate state with multiple CAN flags set. 

,Whether, in practice, this is desirable is questionnable since for 
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a period of time the critical resource may be accessed by several 

processors potentially damaging the resource beyond repai~' 

Dijkstra provides three examples of systems which have the self 

stabilising property. The first of these causes,a single privilege 

to circulate amongst the finite-stale machines in the system. This 

system may, therefore, possibly,be allowed to provide the facilities 

provided by the Abstract Resource Ring. 

We follow the notation of Dijkstra, that is 

L refers to the state of the left hand neighbour of a machine 

S refers to the state of the machine itself 

R refers to the state of the right hand neighbour 

to which is added 

W refers to the secondary state of the machine, and corresponds 

-to the WANT flag of the Abstract Resource Ring~ 

For the system to be described, L, S and R are all represented by 

integer value in the range 0 to N, where there are Nmachines in 

the system. W is a boolean value giving true or false. 

A system which describes the operation of the ARR is given by the, 

following privileges and state changes 

for the bottom machine: 

if L = S ~ !!.2! W ~ S: = S + 1(~ N + 1) fi 6.10.1 
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." . 

for the other machines: 

if LIS and not W then S: = L fi - ---

for all machines: 

if GErRES called'then W := true fi -
if PUTRES called then W := false fi , - - -_ .. 

6.10.2 

6.10.3 

6.10.4 

The following physical interpretation may be placed upon these rules. 

Rules 6.10.3 and 6.10.4 govern the setting and clearing of the WANT 

flag when GErRES and PUTRES are called. Rules 6.10.1' and 6.10.2 

cause the ownership to permanently circulate unless a WANT flag is 

set, in which case ownership will rest with that machine until the 

WANT flag is cleared. It should be noted that the ownership (indicated 

by the presence of the privilege) is passed to all processors, not 

just those wish~ng to use the resource, So a much greater frequency 

of checking for unwanted resources must be performed • 

Dijkstra provides no proof for his assertion that the system he 

describes is self-stabilising, but assuming it is, it can be argued 

that the system described above is also self-stabilising. As 

mentioned above, we have kept within,the, constraints of the original 

system. 'Utat is,each of the finite state"machines has K states, 

where K is greater than the number of machines. In the above system 

of N machines,each machine has N + 1 states. Also, at each step at 

least one machine will have one of the privileges given in 6.10.1 or 

6.10.2 or will be using the resource and will eventually cause PUTRES 

to be called causing the state change given in 6.10.4.' Thus the system 
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above reduces to that given by Dijkstra but with a delay placed 

upon the privileges 6.10.1 and 6.10.2 while a machine uses the 

resource. 
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CHAPTER T 

PARALLEL PROCESSING AND THE APPLICATION 

.. OF THE ABSTRACT RESOURCE RING . 

. . . 

• 



7.1. Introduction 

In this chapter, the application of the Abstract Resource Ring to 

an SRC project (under grant BRG 7010) awarded to the Department of 

Computer Studies at Loughborough University is described. The 

project comprised three. distinct sections including the development 

ofa parallel processing system and the investigation of algorithms 

run on the system. 

In the next section,thesystem as delivered by the manufacturer is 

described. Then the overall design of the parallel processing system 

and the role of the Abstract Resource Ring is outlined. Details are 

then given of the implementation of .the ARR describing the basic 

operation and the error recovery,capabilities. Finally, performance 

figures are given for various aspects of the ARR. 
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7.2. System Configuration 

The hardware supplied to the department consisted'of an Interdata 

Model 55 dual processor system (42 ) with various peripherals. The 

two processors are known as systems A and B. System A (a Model 70 

processor)'has 32kb core memory while system B (originally a Model'50 

processor but since ,upgraded to a Model 70) has 64kb of core memory. 

Both processors have several I/O ports capable of supporting terminals 

and each has a general I/O interface board, known as a Universal 

Logic Interface (ULI) (43). System B also has a 9.6 Mb disc system 

and a clock. 

The Model 55 system also includes hardware to enable sharing of core 

store. Switches are provided to allow various address ranges of store to 

be shared, but of those which may be obtained only one is of interest. 

In running parallel programs, the system is configured so that System 

A has access ,to the top.(high address) .32kbof System B's memory. This 

gives the symmetric configuration shown in Figure 7.2.1, with the two. 

processors having 32kb private memory and sharing 32kb of common memory. 

The address space is the same for both machines, that is the common 

memory is addressed from 32k to 64k-1 by both processors. 

Various items of software were delivered with the system including a 

Disc Operating System (DOS) (41 ), compilers for FORTRAN and Assembler 

and various utilities. DOS, however, was not designed to run the dual 

configuration, being a crude interactive, single user, non-multi­

programming system to run only one processor. 
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a) Physical Configuration 
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b) Logical Configuration 

Figure 7.2.1. Dual Interdata Configuration 
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,7.3. Parallel Processing System Design 

Much of the design of the parallel processing system arose from the 

nature of the operating system as supplied by the manufacturer. At 

an early stage it was decided that the parallel processing system 

would run as a subsystem under DOS and that both processors would 

run an independent version of DOS. That is, the operating system 

would remain largely unaltered and all necessary synchronisation and 

resource management would be handled by the parallel processing sub-

system. Also, since DOS is a uni-processing system, the'''program'' 

run by each processor would be the parallel processing system 

scheduler. 

• A parallel program is considered to be one which initially consists 

of a single stream of instructions. This stream may divide into 

several parallel branches (which may or may not consist of similar 

-'se'quences of code). - These branches later. merge together at a single 

point to reform the original single stream. Anyone of the parallel 

streams may itself branch and then rejoin. At anyone time, a number 

of streams of code may exist and each is considered as one of a set 

of parallel processes any of which may be executed. 

The parallel processing scheduler. provides all the facilities necessary 

for the creation and deletion of parallel processes, and the 

maintaining of the correct hierarchal ordering of the processes. The 

scheduler maintains a list (in shared memory) of the processes to be 

run together with process ordering information. 
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Each processor, then, runs the scheduler which searches the 

scheduler list for a process (synonymous with a parallel path) 

which it may run. When one has been located, the scheduler jumps 

to that process, causing it to be executed. On completion of the 

process, return is made to the scheduler. Two routines, based on 

standard parallel statements, were developed to enable a process 

to enter the scheduler. The first, FORK, causes new paths (processes) 

to be created and the second, JOIN, causes several paths to be merged· 

together. 

More detailed information may be found elsewhere (4,5). 

No synchronising hardware or software was available with the system, 

yet an obvious need for such a tool existed. It was decided, 

therefore, that the Abstract Resource Ring should be used to provide 

the synchronising facilities required for the parallel processing 

system. In fact, the ARR was originally designed to meet this·· 

problem. The use of the ARR would arise in two situations. Primarily, 

the ARR would be used by the parallel processing system itself to 

protect its own access to the scheduler list. Secondly, an interface 

to the ARR would be provided to enable high level constructs, such 

as critical regions, to be implemented within user· programs •. Just as 

no synchroniSing mechanism existed on the machines, so no interprocessor 

interrupt was available •. An external interrupt path had, therefore, to 

be created. It was decided to use the ULIs. available on the machines 

since they were easier devices to control and operated at much greater 
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,speeds (1.9 MBytes/Sec) than the terminal parts. Also,small quantities 

,of data could' be tran~mi tted using only' the control lines. 
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7.4. ARR Implementation 

In this section, the implementation of the Abstract Resource Ring 

for the parallel processing system is described. Two different 

implementations have been made, and both will be discussed. The 

first (and original) implementation provides death detection 

facilities, but no error recovery is included whereas the second. 

implementation provides full error recovery capabilities. 

The original implementation was based upon the "on request" 

philosophy, that is it employs interrupt sending for passing the 

resource and for death detection. 

The interrupt manager functions of the ARR mechanism were incorporated 

into the driver for the ULI. This interrupt manager can be entered 

in two contexts, either by an interrupt being raised on the ULI or 

.b~ the GETRES routine requesting the manager to send an interrupt.· 

The interrupt ~anager has power to ignore requests from GETRES if it 

deems that interrupts may arrive too rapidly at the other processor. 

Due to the philosophy and design of DOS, many of the functions of the 

ARR which were described in terms of individual processes may not be 

encoded as such. The process to check for unwanted resources, which 

should be initiated by the interrupt manager when·an interrupt is 

received from the predecessor, was incorporated into the interrupt 

'manager while the death detection and reporting was distributed between 
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the interrupt manager and the GETRES routine. 

The GETRES routine raises the resource request flag, then loops 

(for a fixed maximum number of times) inspecting the CAN flag. If 

this flag is set then return is made from the routine. If, however, 

the flag is not set within the number of loops then a request is 

made to the resource manager for an interrupt to be sent. The GETRES 

routine then waits in a secondary loop (also of ' a fixed size) 

inspecting not only the CAN flag but also a reply word. This reply 

word, cleared by the GETRES routine, is set every time a reply is 

received by the interrupt manager. The GETRES routine may leave this 

second loop prematurely on two counts. If the CAN flag is set then 

return is made from the GETRES routine, it now being irrelevant to 

current needs whether the processor is dead or not. This is only 

true of a two processor system since in this case there can never be 

the need for one processor to check its successor for death on behalf 

_____ '_ of a third which actually, requires a resource. The GETRES routine 

also leaves the second loop if the reply word is set, returning to 

the start of the first, loop to wait before sending another interrupt. 

If, however, the second loop is completed before a reply is received, 

then the other processor is deemed dead, a message is reported by the 

GETRES routine for the operator and the parallel program is abandoned 

with no error recovery taking place. Note that an infinite loop is 

an acceptable solution, as the parallel processing system is running 

in a uniprogramming environment. The algorithm is shown in Figure 

7.4.1. 
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getres -

begin 

end' -' 

i , - our processor number; 

WANT of node [i] : = set; 

while true do 

od -

count : = time before next interrupt sent; 

while • count > 0 do 

g CAN of node ( i) = set then 

return 

fi' -' 
count = count - 1 

od' -' 
send an interrupt; 

count : = time allowed for reply; 

while count>O and no reply received do 

g CAN of node [i) = set ~ 

return 

fi' -' 
count = count - 1 

od' -' 
if count = 0 then 

the other processor is dead; 

report error; 

stop 

fi 

Figure 7.4.1. Implementation Algorithm of GErRES' 
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The software was written with a fixed number of resources (eight) 

of which one represents the synchronisation within the parallel 

processing'scheduler, and the remainder are for use by application 

programs. 

The second implementation of the ARR provides the same user interface 

as the previous one. However, full death detection and error recovery 

procedures are incorporated, giving a powerful system for the user. 

The improved system also uses the interrupt mechanism for notification 

purposes but it is built into a modified version of the DOS system 

allowing the resource checking and error recovery to appear as 

separate processes. 

Withthia implementation, the GETRES routine requires no communication 

with other parts of the ARR, so having set the WANT flag, a single 

loop upon the CAN flag is adequate. Again, an infinite loop ,is 

allowable since, as will be seen, the other processes are interrupt 

driven and are run to completion. As with the earlier implementation, 

each time the loop is completed, an interrupt is sent before the loop 

is restarted. 

The ULI driver has incorporated into it not only the code to drive 

the ULI but also the code to enable the initiation of the process 

which checks for unwanted resources and code to start a recovery 

process if a dead processor is detected. Whilst all the steps of 

the recovery process are not required for the two processor situation, 
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it being possible· to treat this as a special case, the software 

has, nevertheless, been designed with more processors in mind. 

Indeed, more processors may be added to the system with only 

minimal modification being required to the data structure. The 

recovery process is invoked if the successor on the hardware ring 

fails to reply to ·an interrupt within a fixed time. This process 

enters the name of the dead processor in the table of dead processors, 

and proceeds to remove it from the hardware ring. Having removed the 

dead processor from the hardware ring, the PUTRES Activity is initiated. 

The PUTRES Activity not only checks for unwanted resources and attempts. 

to pass them to another processor but also checks each resource ring 

to see if the successor of this processor is still alive. If this 

processor is dead (i.e. its name is present in the table of dead 

processors) the.node for the ring is removed and if the resource was 

owned and being used by the dead processor, the integrity checking! 

recovery process for that resource is initiated •. The identification of 

this process is contained within the nodes of the ring. If no process 

identification is contained in that field of the node, then it is 

reported that the resource has been reinstated, but without an integrity 

check. Currently, only the parallel processing resource has any 

recovery incorporated and this recovery is described in the next 

section. 

The PUTRES Activity is also initiated at periodic·intervals~ 
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7.5. Reliability and Recovery Procedures 

In this· section, the reliability aspects incorporated into the 

parallel processing system, that is for the associated resource, 

will be described. 

With several processors corporately working on a parallel program, 

it would be desirable to have the program completed even if one of 

the processors failed. This may include a processor failing while 

executing one of·the parallel processes (paths). The need may 

therefore arise for a path to be restarted by a different processor 

in order to complete the program as a whole. To be able to restart a 

path, the variables for that process must be restored to their value 

before the path was originally started. Also independence must exist 

between that path and any other. 

Information upon the current state of each path (that is whether it 

is being executed or not and if so by which processor) is maintained 

within the scheduler list. It is therefore possible to discover if a 

processor which has died was executing one of the parallel processes. 

Part of the function of the recovery routines is to search the 

scheduler list for any paths being undertaken by the dead processor 

and to make them restartable by another processor. 

Currently, the function of restoring the path to its original state 

has to be performed by the applications programmer. Some routines have 
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been written whereby, prior to starting a path, the initial values 

of variables which could be altered may be saved. Within the path, 

the process may interrogate the scheduler to discover if the path 

has been restart~d. If it has then a further routine enables the 

saved variables to be returned to their original value. The scheduler 

maintains information on which variables have b·een saved by which 

paths. When paths are successfully completed, any space occupied 

by variables held for that path is freed for future use. Figure 7.5.1. 

gives an: example of the use of these routines. 

The reliable version of the Abstract Resource Ring has been used on 

an experimental basis. A number os parallel algorithms have been 

run on the dual processor system, and failure has been induced by 

switching off the power to one processor. The error recovery routines 

have functioned, although, with some algorithms, the saving of 

variables has proved expensive in time. Some of this overhead can, 

however, be attributed to the need to make these routines callable 

explicitly for the FORTRAN source,which incurs checking by the run 

. time system. Ideally, the calls to the variable saving routines would 

be inserted automatically by a "parallel FORTRAN" compiler with much 

of the run time checking removed. 

With some algorithms, notably those of an iterative nature, the 

inclusion of variable saving has proved unnecessary, as the formulation 

of the algorithm will withstand data that is not completely updated. 
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fSHARED X (20,3)' 

C INITIALISE SHARED ARRAY X 

'C 
• • 

C OBTAIN A NEWAR~ TO SAVE MODIFIED VARIABLES 
C 

$SAVEI 
C 
C NOW SAVE THE ARRAY X - TYPE IS REAL 
C 

C 

00 10 I = 1, 20 
00 11'J = 1, 3 
~SAVE REAL, X (I, J) 

11 CONTINUE 
10 CONTINUE 

C ' NOW GENERATE PARALLEL PROCESSES - ONE PER COLUMN 
C 

~OOPAR 100 I = 1, 20 
C 
C CHEX:K TO SEE IF THIS PATH HAS BEEN RESTARTED 
C 

IF (RESTRT (DUMMY) .~. 0) GOTO 20 
C 
C YES - IT HAS BEEN RESTARTED 
C ' -' RESTORE OUR COLUMN OF X 
C 

C 

00 19 J = 1, 3 
$REST REAL, X (I, J) 

19 CONTINUE 
20 CONTINUE 

C ,REMAINDER OF PATH MODIFIES THE COLUMN OF X 

C 
• • 

C END OF THE PATH ;.. WHEN ALL PATHS TERMINATE SO 
C WILL THIS SAVE ~ 
C 

100 *PAREND, 

Figure 7.5.1. Example Use of the Restart Routines 
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7.6. Performances 

In this section, results are presented for various algorithms run 

on the parallel processing system at Loughborough •. The times shown 

in·Table 7.6.1 are given for the original implementation (labelled 

ARR in the table), the implementation with added reliability (RARR) 

and, for comparison, an implementation of Lamport's algorithm (see 

section 5.5.) (L). 

Times are given for:-

i) the total elapsed time of the programs, that is the time 

taken from starting the program until the last processor 

finished. (T) 

ii) the processor idle times, that is the time when processors 

were either waiting for a path to execute or for a resource 

to be passed to them. l:l'.) 

iii) the nett processing time, that is the time when the 

processor was performing the algorithm (which is given by i) -

and iv) the total nett processing time, that is the total of iii) 

for the two processors. Li>o~\) 

The table also shows the time taken when the same algorithm is run 

on a single processor both with and without the ARR parallel control 

software. The timings for four different algorithms have been given, 

the~ being:-
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", 

ARR RARR· 2) L 
Program Processor A B A B A B 
i) Matrix T 4.88 4.88 6.28 6.28 4.86 4.86 

Mul tiplication I 0.15 0.01 1.56 1.46 0.12 0.00 

(RBMTX1) N 4.73 4.87 4.72 4.82 4.74 4.86 

. (total) . (9.60) (9.54)' (9.60) 

(uniprocessor - with/without ARR 9.56/9.49) 

ii) Eigenvalue T 17.78 17.78 27.15 27.15 17.66 17.66 
Solver'- I 0.96 0.62 9.56 10.63 0.95 0.56 

(RBEIGR) N 16.82 17.16 17.59 16. 52 16.71 17.10 

( total) <33.98) (34. 1V <33.81) 

(uniprocessor - with/without ARR 34~55/34.20) 

iii) PDE T 26.18 26.18 40.11 40.11 25.78 25.78 

Solver I 1.49 0.39 14.94- 14.65 1.34 0.06 

(RBDIF4) N 24.69 25.79 25.17 25.46 24.44- 25.72 

( total) (50.48) (50.63) (50.16) 

(uniprocessor - wit~without ARR 50.85/49.84) 

iv) Adaptive' T 24.02 24.02 24.78 24.78 24.02 24.02 , 
Quadrative I 6.30 0.01 6.99 0.47 6.30 0.02 
(RBINT2) N 17.72 . 24.01 17.79 .24.31 17.72 24.00 

( total) (41.73) (42.10) (41.72) 

(uniprocessor - with/without ARR 42.54/42.53) 

. C\ loss ""0 0..... \'to 1- i¥l 
Table 7.6.1. Performance Figures From Dual Interdata 70 System 

Notes: 1) All times are shown in seconds. 2) The times for the RARR do 
not include overheads for variable saving. 
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i) Matrix Multiplication 

This program performs the multiplication of two square matrices. 

ii) Eigenvalue' Solver 

This program evaluates the eigenvalues ofa system using a 

bisection algorithm based upon sturm sequences. 

iii) PDE Solver 

This, program solves a set of partial differential equations 

using a successive line over-relaxation method. 

iv) Adaptive Quadrature 

A function is integrated over a given interval with the integration 

being performed over a sequence of interval bisections until a 

required accuracy is obtained. 

From the'table of times, various comments may be made. Firstly, 

comparing the two implementations of the Ab~tract Resource Ring, it 

is seen that the use of the reliable implementation gives a greater 

total elapsed time for the completion of the program. Most of this 

increase in time is attributed to the idle processor time, which in 

turn is due to a lower frequency of interrupt sending with the RARR 

system. However, when placed within the context of a general multi­

processing system, this spare processor time may be rescheduled to 

other processes capable of being run giving a higher processor 

utilisation, than is presented in the Table. Timings with a much 

lower processor idle time may be obtained by tuning the RARR system 

to each particular algorithm. In practice, this would probably be 
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unrealistic, so no modi fications were made to the RAR.'t software 

between the running of the various programs. 

Considering the nett times of the two implementations, it is seen 

that the reliable version of the software does impose an overhead in 

processor time, in general of the order of one per cent. This 

increase in processor time is due to the cost of the.improved death 

. checking. 

Comparing the first implementation of the Abstract Resource Ring and 

that of Lamport's algorithm, as would be expected, Lamport's algorithm 

gives better timing figures. However, the gain is not dramatic. 

From section 5.5., it may have been expected that, with only two 

processors, a large increase in speed would be attained, yet when 

viewed within the context of a complete algorithm, the reduced 

overheads of synchronisation become less apparent. It should be 

, noted, however, that as the numbe~ of processors increases, the ARR 

will perform more favourably than Lamport's algorithm. As yet, 

however,a system with more than two processors is unavailable to 

test this hypothesis. 

The original implementati'on of the Abstract Resource 'Ring has been 

used for a period of over, three years, and many parallel algorithms 

have been run ( 3 ). Some of the algorithms have been completed in 

just over half the time when run on the two processor system as 

compared to a single processor system, that is close to the theoretical 
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limit. 

Another aspect of performance which must be considered is the amount 

of memory'occupiedby the Abstract Resource Ring and its associated 

routines. Table 7.6.2 shows the amount of core required by the . , 

various aspects of the ARR and the reliability and recovery routines. 

In comparison, the parallel processing subsystem occupies a total of 

som~ 4.5 kb. 



.. 

ARR MRR 

GErRES/PUTRES/DRIVERS etc. 0.5 kb 0.8 kb 

Reliability/Error Recovery - 0.7 kb 

Data and Messages 10.4 kb 0.8 kb 

Variable Saving Code - 0.8 kb 

Variable Saving Data - 1.0 kb 

TOTAL 0.9 kb 4.1 kb 

Notes 1) On average 1 instruction occupies 3 bytes 

Table 7.6.2. Implementation Sizes for Dual Interdata 

70. 
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CHAPTER 8 

GARBAGE COLLECTION -, 

A MULTIPROCESSOR APPLICATION 



8.1. Introduction 

In this chapter, consideration is given to a particular problem that 

has been applied to multiprocessors of the type being investigated 

in order to show that a parallel solution should be developed in 

its own merits and not necessarily be many coordinated copies of a 

uniprocessor solution. 

Within list processing systems, nodes are repeatedly added to and 

removed from the various lists. The storage locations in the memory 

space available to the list processing system tend to be allocated 

for use in a particular list and then freed. It i·s clearly 

desirable to reclaim these freed cells for subsequent use, and there 

are a number of techniques whereby this may be accomplished. The one 

that is of particular interest for the ensuing discussion is Garbage 

Collection which was first proposed by McCarthy (52 ) and used. in 

the LISP 1.5 system ( 53). 

Using this technique, the problem of storage reclaimation is (often) 

ignored until the list of available cells (free list) becomes empty. 

When this arises, the list processing is temporarily suspended and a 

garbage collection process locates cells which have become free and 

adds them to the free list. 

The basic garbage collection algorithm falls into four phases:-

1) Marking phase in which all accessible"nodes are marked. 
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2) Relocate phase in which all accessible nodes are compacted· 

into a.single contiguous area. 

3) Update phase in which all pointers to relocated nodes are 

changed. 

4) Reclaim phase in which the inaccessible cells are collected 

to form the new free list. 

Of these phases, numbers 2) and 3) may be omitted if desired. 

Interest has recently arisen in using multiprocessor systems for list 

processing ( 58·). With this scheme, one processor would perform 

all the list· processing operations, while a second would perform the 

garbage collection function. By splitting the operation of the total 

system between two processors, the garbage collection may be run in 

parallel with the list processing, not just when the free list 

becomes exhausted. In ~his way, an improved response to the users 

should be achieved. 

Lamport (49)· has taken the solution·for the dual processor list 

processing/ garbage collection problem developed by Dijkstra et al 

( 25) and expanded it to incorporate mUltiple list processors 

(mutators) and mUltiple garbage collectors. 

Consideration will be given to the marking phase of the garbage 

collection and it will be shown that the marking algorithm used by 

Lamport may be improved by aligning it more with the inherent structure 
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of the system. 

Firstly, the terminology will be introduced, then the algorithm 

adopted by Lamport will be described. A different solution will be 

developed and finally results will be presented to show the 

performance of the two algorithms. 
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8.2. Definition of Terminology 

The list structure to which consideration will be given consists of 

a collection of list cells (nodes). Each node consists of some (and 

possibly no) data fields and an ordered sequence of pointers to other 

nodes (edges). The node from which an edge emanates will be called 

its source and that to which it points the destination. Some'of the 

edges are distinguishable as null edges, that is the edge doe's not 

connect two nodes but acts as a terminator. 

If an edge connecting two nodes (A and B)exists and B is the 

destination of that edge then B is (one of) the successors of A and 

A is a predecessor of B. Nodes having no successors are known as 

terminal nodes (or terminals). 

Some of the nodes, called root nodes, are fixed. A node is said to 

be reachable (or accessible) if there is a path to it from a root 

via reachable nodes. A non-reachable node is called a garbage node. 
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8.3. Lamport's Algorithm 

Lamport introduces an extra field into the nodes for use during the 

marking phase. This field is intended to hold a colour which may 

be one of black, grey or white, and indicates at which of the stages 

of the marking phase the node is. 

Operations are introduced to change the colour of a node to a 

specific value. Also introduced is a shading operation which changes 

a white node to grey but leaves other colours unchanged. These 

operations on a node are required to be indivisible with respect to 

'the list processing system (i.e. they must be point operations). 

The node space is divided into several (not necessarily disjoint) 

subsets. A marking process (marker) is assigned to each of the 

subsets. No details are given as to the method of division, so a 

physical division seems simplest. Initially all nodes are white. 

The operation of the marking algorithm commences with the roots being 

shaded. Then each marker searches its subset of nodes. When a grey 

node is located by anyone of the processors then it shades all the 

successors of that node and colours the original node black. All the () 

markers are then requested to restart the search of their portion of 

the node space. The marking terminates when no grey nodes exist,i.e. 

all reachable nodes have been coloured black. The garbage (unreachable) 

nodes are then 'those that remain white. 
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Several points may be made about this algorithm. Firstly, no 

attempt is made to use the structure of the list within the 

algorithm itself. All reachable nodes may be located by Chaining 

down the list structure from the roots. This leads to a second point, 

that all the garbage nodes will have to be inspected, possibly several 

(and in some cases many) times. This time is, of necessity, "wasted" 

since a garbage node, by definition, cannot become grey. This is an 

inevitable consequence of dividing the node space in physical subsets •. 

Further, the synchronisation between the markers is non-trivial, 

despite the fact that Lamport glosses over the problems. The ability 

for one marker, on discovering a grey node, to cause all others to 

restart the search of their subspace requires a "communication path" 

between every pair of markers. Also, when a marker completes the 

search of its subspace,no guarantee can be given that it has completed 

its work as another marker may later discover a grey node. Only when 

all the markers have completed searching their own subspaces can the 

marking process terminate. This requires each. marker to monitor the 

state of all the others(potentially requiring much communication 

traffic or frequent access to shared variables). Again, on a 

particular implementation it may be possible for all the other markers 

to "appear" to have completed their marking; yet for a restart 

request to be received. or, worse still, in transit. 
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8.4. Chaining Algorithm 

Since it'was noted that objections may be raised against the above 

algorithm, due to its lack of correspondence to the data structure 

an algorithm more closely aligned with the data structure was 

developed. The algorithm,described below, marks the reachable nodes 

by searching down the list structure and hence has been given the 

name Chaining Algorithm. 

In order to partition the list space, and thus enable several markers 

to operate, the concept of a subject is introduced 'with the Chaining 

klgorithm. Each marker is allocated a section of the total list 

structure and marks the nodes contained in this sublist. Once a 

marker has a sublist it may proceed independently of the other markers 

(thus reducing the synchronisation overheads). However, to enable 

marking to be equitably distributed between the markers, an additional 

list, the subtree list, is introduced. 

This list contains the roots of unmarked sublists. Initially, the 

list contains the roots 'of the whole list structure. The list can be 

kept short,with possibly one entry for each marker since this list 

represents work yet to be allocated to a marker. The colour yellow 

is introduced for a node contained within the subtree list, so the 

roots of the list structure are initially coloured yellow. Also, the 

term "uncoloured" is introduced for a node which is either white or 

grey. 
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,---------------------------------,-----------------.-----

'tlhen a marker is initially started, or whenever it has completed the 

marking of a subtree, it removes a node from the subtree list to· 

discover the section of the list which it is to process. This node 

is shaded. The marker then refills the sub tree list, by adding the 

uncoloured successors of the subroot to the list until either the 

list is filled or only one uncoloured successor remains. Those nodes 

added to the subtree list are coloured yellow. At all stages in the 

remainder of the algorithm, yellow nodes are treated as black when· 

encountered by a marker since the nodes following them are guaranteed 

to be marked at a later stage. 

The remainder of the algorithm, shown in outline in Figure 8.4.1, is 

as follows.. The marker maintains two pointers to the subtree it is 

processing, the root of the subtree and the node which it is currently 

inspecting. Both of these initially point to the root of the subtree. 

If only one uncoloured successor of the current node exists then that 

node is shaded, the current node is coloured black and both the subroot 

and current pointers are advanced to the successor. This process is 

repeated until a node with several or no uncoloured successors is met. 

If the current node has some uncoloured successors then one is chosen. 

It is shaded and the current pointer is advanced to it. This shading 

and advancing is repeated until the current node has no uncoloured 

successors. When this situation arises, the current node is coloured 

black and the current pointer is set to the subroot. The whole of 

this procedure is then repeated until the subroot is coloured black. 

When that occurs, the,subtree for which the marker was responsible 
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marker = 

while subtree list is not empty ~ 

remove node from subtree list; 

shade node; 

refill subtree list; 

while sub root is not black do 

while number of uncoloured successors = 1 do -
shade successor; 

colour node black; 

advance to successor setting as subroot 

od--' 
!!!.lli number of uncoloured successors:> 0 do 

choose one successor; 

shade succe'ssor; 

advance to successor 

od--' 

colour current black; 

current: = subroot 

od 

od 

end--' 

Figure 8.4.1. Algorithm for a marker 
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has been marked and a new root is chosen from the subtree list. The 

marker terminates when it cannot obtain a node from the subtree list. 

With a simply connected list structure (that is one containing no . 

closed loops and no interconnection between sublists), the algorithm 

is guaranteed to be correct and to terminate, the list structure 

appearing as many independent lists each with its own marker. 

Furthermore, the only synchronisation required between the markers is' 

when accessing the subtree list. If the addition to and the removal 

of a node from this list are independent, then the overheads of the 

synchronisation when accessing the subtree list may be reduced. If 

one m'arker is attempting to refill the sub tree list then the overheads 

may again be reduced by allowing further markers to by-pass the , 

refilling stage of the algorithm. The initial phase of the marking 

algorithm then becomes as in Figure 8.4.2. 

If the list structure is not simply connected but the sub trees have 

common nodes (but still without loops) then consideration must be 

given to the possible events at the intersection points. The simplest 

possibility to consider is that one marker colours the common node 

yellow or black before any other marker accesses that node. When 

another marker reaches the node, it will proceed no further. If the 

intersection node is white or grey then the structure. beyond the node 

needs to be inspected and several markers may attempt to colour the 

subtree. This will have the same effect as several passes down the 

branch by a single marker, that is, the several markers will jointly 
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marker = 
begin 

~ sub tree list is not empty~ 

remove node from subtree list; 

shade node; 

if no other marker is refilling the subtree list then 

refill sub tree list 

• 
• 
• 

Figure 8.4.2. Modified Initial Stage for a Marker 
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colour the nodes below the intersection point. 

If two markers attempt to update the colour of the intersection node 

simultaneously, then one must complete its update after the other. 

The node then becomes ,that colour. Whichever colour is finally given 

to the node, it is valid for at least one of the markers,and this 

marker, will complete the colouring. 

However, with the algorithm as described, a list structure containing 

cycles (closed loops within 'the edges) may cause a marker to permanently 

loop. To overcome this, some intelligence may be given to the markers. 

If, while chaining down through the successors, the marker visits an 

excessive number (e.g. more than, the maximum height of the structure 

or more than the total quantity of nodes) of nodes without reaching a 

terminal (or a yellow or black node), then it may assume that a loop 

exists and arbitrarily colour the current node yellow and'add it to, 

the subtree list. In this way, a terminating condition is placed 

within the loop. Loops will therefore reduce the efficiency of the 

algorithm due to wastage in searching the loops. 
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8.5. Comparison of Marking Algorithms 

Fmpirical testing of , the algorithms was'carried out using a simulated 

multiprocessing system. The algorithms were tested and compared with 

a number of types of list structure. Four types of structure were 

chosen to exercise the algorithms under a variety, of conditions. 

These types were:-

a) Linear List 

b) Curtain 

This structure consists of many linear lists emanating from 

a single root 

c) Highly Interconnected 

In this structure, each node.has many branches with a large 

number of nodes shared between subtrees. Two versions of each 

structure were generated, the second being the mirror image of 

the first, that is the sub trees that were placed left to right 

from a node in one version were placed right to left in the other. 

d) Random 

The interconnection was generated randomly. 

Each of the first three structures were used with both a high and a 

low proportion of the node space consisting of reachable nodes. All 

structures were'loop free. Lamport'salgorithm was performed twice, 

once with, the markers searching from low addresses to high addresses 
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, and secondly from high addresses to low. Table 8.5.1. shows some 

of the results obtained from the simulation studies when the node 

space consisted of 100 nodes. 

From the Table it can be seen that, with one exception, the Chaining 

Algori thm out' performs Lamport' s algorithm on each 'of the values, 

tabulated.' In most cases, the number of nodes visited is vastly 

, reduced (often by a factor of 50 or more). Also the costs of 

synchronising the markers is reduced. The overall improvement obtained 

from the Chaining Algorithm can be observed from the elapsed times 

given in the Table. 

The structure with ,which the Chaining Algorithm performs least well 

is one with high interconnectivity. Yet even with this strUcture, 

the synchronisation overheads are minimal. This is of great advantage 

since a synchronisation will (in general) be much more expensive than ' 

a node visit. 

The 'first highly-interconnected structure provides a pathalogic case 

for the Chaining Algorithm. In order for the blackening of the nodes 

from the terminal nodes towards the subroots to take place, the 

sublists need to be traversed many times. This is partly due to the 

high interconnection which will yield a high degree of overlapping 

subtrees and partly due to the greater number of successors which 

each node has. 

As is known for programs designed for uni-processor systems, 
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pathalogical data can greatly increase the processing time. 

Similar problems may also arise in programs designed for multi­

processor systems. This is evidenced by the three-fold improvement. 

in the performance of the Chaining Algorithm for the High-inter­

connectivity Structure when the mirror image of the structure was 

used. 

It has been noted, and indeed Lamport himself states, that 

synchronisations are costly operations. By considering the problem 

above in the light of the potential synchronisation, it has been. 

reduced to a small level in the Chaining Algorithm. Lamport, however, 

by adapting an often used uniprocessor solution has maintained a 

potentially high level of synchronisation, and its inherent cost. 
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CHAPTER 9 

CONCLUSIONS 



9.1. Summary 

Multiprocessor computer systems may provide many benefits over 

. similar uniprocessor systems. However, it.is possible to use a 

multiprocessor in an unsuitable application or to use one 

inappropriately in an application which may take advantage of a 

multiprocessor organisation. Indeed, such pitfalls exist for 

conventional uniprocessor systems. For a multiprocessor system to 

be utilised to advantage, consideration should be given to all 

aspects of the system, that is the hardware, the operating system 

software and the application software. 

At the hardware level, many organisations of the processors and 

memory exist, ranging from array processors to multipart memory 

systems. Each of the many possible organisations has certain 

operational characteristics which make it most suitable for a 

particular class of problem. If an application from another class 

is implemented on that organisation, poor performance may be obtained 

from the system. 

A simple model of a multiprocessor system was introduced (Chapter 4). 

The parameters of the model allow the processor and memory 

characteristics and the memory access pattern to be specified. The 

model was then analysed, with reference to the memory access pattern, 

and formulae were derived and an upper bound was placed upon the 

performance which could be expected from the modelled system. It was 

also shown that, for any particular access pattern,.there is a 
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practical limit to the number of processors that should be attached 

to the shared memory if each is to accomplish useful work. A 

formula giving that limit was also derived (4.6.1.). 

Whilst an application is executing on a multiprocessor, coordination 

will be required between the parallel paths as they are being executed. 

In Chapter 5, a tool, the Abstract Resource Ring (ARR), whereby the 

paths may synchronise, was described. The ARR is based on a 'Resource 

Master'technique. Comparisons were made between the ARR and two 

algorithms found in the literature. It was shown that, as the load 

placed upon the synchronisation method increased so the performance 

of the ARR increased whereas that of the other solutions deteriorated. 

The ability for a multiprocessor system to withstand the 'death' of 

one 'of the processors within the system was discussed, with particular 

'reference to the Abstract Resource Ring. It was shown that the ARR 

could be adapted to detect the failure of one of the processors and 

cause appropriate recovery action to be taken. This recovery action 

may include reconfiguration of the system as viewed by the supervisory 

software. 

The Abstract Resource Ring has been used as the synchronising tool 

within a parallel processing system at Loughborough University. 

Figures may be found (Table 7.6'.1) giving the performance of the 

system for a number of test programs. Comparison was made between 

two implementations of the ARR and one of the synchronisation tools 

described in the literature. The parallel processing system has also 
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provided a.testbed for the reliability aspects of the ARR. as 

discussed in Chapter 6. 

Finally, to highlight the difficulty in designing multiprocessor 

applications, an example found in the literature.was considered. 

A new solution to the problem of multiprocessor garbage collection 

was developed. This solution takes advantage of the inherent 

structure of the problem, and, in most circumstances, shows 

improvement in performance over the published algorithm, as is shown· 

in Table 8.5.1. 
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9.2. Areas for Further Research 

Within this thesis, a number of topics within the subject of 

multiprocessor systems have been considered. However, as stated 

earlier, the subject is vast with many areas where worthwhile 

research may be carried out. In the following subsections,. areas 

are suggested where the research reported in this thesis may be 

extended. 

a) Hardware Model Evaluation 

It was claimed that the model presented in Chapter 4 applies to a 

large range of multiprocessor organisations. However, due to the 

lack of available hardware, this hypothesis has not been extensively 

tested. As more multiprocessor systems become available, further 

tests could be performed. Indeed, with the cheapness of microprocessor 

. technology, it may be feasible to build small systems to test the 

hypothesis. 

Also, two classes of memory were considered, private and shared. The 

relationship between the sizes of private and shared memory and their 

function (whether to store code or variables etc.) could be 

investigated, possibly with reference to a particular algorithm. This 

may yield new understanding on the relationship between hardware and 

application program •. 

b) Abstract Resource Ring 

It was shown that the Abstract Resource Ring had the desirable effect 

that under high load conditions the overheads associated with its use 
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were reduced. However, under low load conditionS its performance 

. deteriorated such that one of the published solutions became a· 

more viable tool to be used for synchronisation. It would be of 

advantage if the ARR could be modified so that. its performance under 

low load improved. This would provide a synchronisation tool suitable 

for all contexts. 

" c) Algorithm Structure 

The example of multiprocessor garbage collection, considered in 

Chapter 8, shows that the relationship between an application and its 

implementation on a multiprocessor system is not fully understood. 

This is one area which may be fundamental to all multiprocessor 

operation. If any automatic parallelisation is to be achieved with 

any success,more understanding of the underlying structure of a 

problem and the consequential interactions and synchronisations 

between the parts is required. 
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APPENDIX 1 

AN IMPLEr1ENTATION OF 

THE ABSTRACT RESOURCE RING 



This Appendix consists of a listing of an implementation of the 

Abstract Resource Ring. The implementation, which is based upon the 

periodic restart, is written in Algol 68R. 
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This Appendix consists of a listing of an implementation of the 

Reliable Update algorithm discussed in Section 6.7. The 

implement~tion is written in Algol"68R. 
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AND TH~ FLAG IS GIVEN BY "FLAG" 

,IINT'II.'UPBITA8LII 
'IF~J"UPB'NEWVALUES'T"EN' 

fAULT(~BAD p.RAHETERS") 
'F n« 

FAll IF DIFFERENT NUHBIR OF ENTRIES AND NEW VA~UES 
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eXAMPLE "RELrABL~ UPDATe- PROCEDURE 

JFOR'J 'TO'l 'DO' 
'BEGIN' 

, NEUVALUE'OF"ABLEtJll·NEWV~LUEStJll 
eS'OF'TABLE[Jl,.1 

I.END'I 

STEp, B 

HAGI"1, 

ST!;!' C 

'FUR'J'TO'I'DO' 
'BEGIN' . 

VALUE'OF'TABLE[J],.NEWVAlUE·OF"ABLEtJJ. 
BSIOF'TABLE[J],.O 

'END'I 

STEIl D 
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EXAMPLE "RELIABLE UPDATE' PROCEDURe 

91 I C' 
92 
93 FLAG/ao 
94 
95 I C I 
96 
97 UPDATE UyER 
98 
99 I C I 

100 
101 'ENIl': 
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