LoN—

© LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY ‘

-AUTHOR/FILING TITLE

e i —— — ____.___-..._.-..._-.-_.--_-— -

hy _ACCESSION/COPY NO. | :
I S, lf??.-?.?.% ,-_---.;__-.'___,;,--li .
[voL N0, TeLass m T S

LoAn GofY

-1 DEC 1984

0192008 02

I

) E

. SOME ASPECTS OF THE FFFICIENT USE OF
MULTIPROCESSOR CONTROL SYSTEMS

by

Michael Charles Woodward

- A Doctoral Thesis o e
.
Submltted in partlal fulfilment of the requlrements' o E

. for the award of Doctor of Philosophy of the
Loughborough University of Technology January,1981

Supervxsor' I. A. Newman, PhD. -~ o
Department of Computer Studles..

S L
§ e, e o g ey

i

M :
4 | . :’
- te b . T .
N ! Wy -
R] e

' - .
T - ‘ e
HE -

.',b' - :

: - -~ .

C:) by Michael Charles Woodwéfd;f1981;

Laughboreugh U"“_”"‘_W
of Tecb‘\‘}c‘y Liprey

;ﬁa Jue BY.

cless
{E: \92008/02 §

-
-

DECLARATION

I decléfe. that the .il“ollowing:' thesis ris a .record of re'séalr.ch'
work carried out‘By me, and thét the thesis is of my own

cﬁmﬁositidn.‘ I.also-certifj fhat neitﬁer.thisAtheSis‘norithe
original work cdntained'thefein has been submitted to this or

any other institution for a degree. §

M.C.WOODWARD

7 ACKNOWLEDGEMENTS

",,The author would llke to express hls thanks to all those who have:'“
3:a551sted wlth the research reported in- thls the31s. to'f;;ﬁ

Dr. I. A. Newman *or “his dlrectlon and encouragement to

'Professor D. J. Evans for hls 1nterest and to many colleagues for .

:tlmes of dlSCUSSlon. Thanks are also expressed to Mrs. S. Mercer.
' _fcr her dextrous typlng. Thanks must also be given. to the Sclence-

Research Councll for the prov151on of a Research Studentshlp. '.:'-

Flnally, many thanks must go to the author s parents for their’

concern and encouragement durlng the years of research.

k1

"CONTENTS | : 3:_'..
' . Page
CHAPTER 1: INTRODUCTION
. 1.1. Introduction _ .2
1.2. Efficiency Cbnsideratiqns b
1.3. Motivation for Research ‘ 6
'1.3.7. Hardware Level " _ .6
1.3.2.9ystems Software . - 7
1.3.3.User Software . . | 8
1.4, Proposed Areas of Investigation 9
1.5, Framework of Thesis d“" - . 10
CHAPTER 2: MULTIPROCESSOR HARDWARE
2.1, Introduction S 13
2.2.'Mu1tiprocessor Organisation L | 15
243+ Commercial Hultipfocessors 21
2.4, Multiprocessors in Research ' 23
2.5. Multiprocessor Systems and Reliability_ T 34
2.6. Memory Contention - =~ . ' ' 36
B CHAPTER 3: SOFTWARE CONSIDERATIONS IN MULTIPROCESSORS
" 3.1. Introduction S o o
3,2. Operating System Organisation . b3
3.3 Synchroniéation . o o ke
3.4, Software Reliability : -5
3.5. Parallel Processing . =~ e 53
CHAPTER 4: THE INVESTIGATION OF A MODEL OF A -
. MULTIPROCESSOR |
4.1, Introduction S s
4.2. Model of a Multiprocessor - .58
4,3, Derivation of Computing Power L | 63

4.k, Round-Robin Ser?icing__ o o o 67j

#.5} Prlorlty Serv1clng | o I . S 69

- . 4,6. Constraints for Effectlve Configurations . Vi
k.7, Analysis of ‘Performance. . R 76
4.8, Refinement of Sereicing.Poliey o 8

 4.9. Application of Formulae = o o 87 -

i CHAPTER-B THE ABSTRACT RESOURCE RING - A
' - SYNCHRONISING TOOL .

5.1, Introduction"f ' L o

'75.2. The Abstract Resource Ring = -:3-7 9%
5.3, Multiple Rings = o
"5.b4. Temporary Resources . - o 108
'5.5. A Comparison of Synchronising Tools 112 N

. 5.6, Multiple Users of a Reéource - 125

]

: - CHAPTER 6: THE ABSTRACT RESOURCE RING AND RE'L.IABILITY

6ele Introductlon R - o 130 |
6.2, Cla551£1catlon of Failures . : ' 131: ' | |
6.3. Initial Death Detection =~ - 133 | |
. 6.t. Rigorous Death Detection S 139
6.5. Failure Within ARR Routines ey
L 6.5.1. GETRES Routine | oy
- 6.5. 2. PUTRES Routlne T T e 1[4'7
- 6.5.3. Recovery Procedure .- 149
6.6. Addition and Replacement of Processors : 151
6.7. Reliable Update | | 153
'6.8. Application of Reliable Update to the ARR 159
_ 6.9. Failures Due to Other Errors - ' 160
- 6.10,.8elf .Stabilising Techniques‘_- e 162

CHAPTER 7: PARALLEL PROCESSING AND THE APPLICATION OF
o THE ABSTRACT RESQURCE RING

7.1. Introduction - _ ' - 167
72+ System Configuration 7 . 168

7.3+ Parallel Processing System Design : "1?0‘

Zolte
7.5
B ?7-60

' CHAPTER 8:.
8.
8.2,

- 8.3

8.4,

8.5

CHAPTER 9%
9.1,
9,2

APPENDIX 1:

APPENDIX 2:

ARR Implementation

Reliability and Recovery Procedures | 178,
Performancgs“ ' 181
GARBAGE COLLECTION - A MULTIPROCESSOR APPLICATION.

Introduction

Definition of Terﬁinologyﬁ‘
Lamport's Algorithm. |

Chaining Algorithﬁ. _
Comparison of Marking Algorithma

CONCLUSIONS:

Sumﬁary_

‘Areas for Further Research -

REFERENCES:

AN TMPLEMENTATION OF THE ABSTRACT .
o RESOURCE RING

AN IMPLEMENTATION OF THE RELIABLE UPDATE

173

188
191
192
164
200

206
209

211

221

.251

R1

- CHAPT

CINTRODUCTION

1+1. Introduction

Computer teChnoiogy, particularly at the circuit level, is fast

'approachlng lts physleal llmltatlons. As future needs for greater

power from computlng systems grows, increases in c1rcu1t sw1tch1ng

speed (and thus 1nstruct1on speed) wlll be’ unable to match these

requ1rements.

Greater power can also be obtalned by 1ncorporat1ng several processlng

unlts into a 51ngle system. Thls ablllty to 1ncrease the performance

of a system by the addltlon of processing unlts is one of the major

: advantages of multlprocessor systems. Four maJor characterlstlcs of

multlprocessor systems have been 1dent1f1ed (28 } which demonstrate

thelr advantage. These are:-

Throughput
 Flexibility’
Avallablllty

Rellablllty

The addltlonal throughput obtalned from a mu1t1processor has been

mentioned above. Thxs increase in the power of the system can be

: obtalned in a modular fashlon with extra processors belng added as

greater proce551ng needs arlse. The addltlon of extra: processors

also has (ln general) the desirable advantage of g1v1ng a smoother

" cost - performance curve (63). Flexlblllty is obtained from the

.-

1ncreased ablllty to construct a system matchlng the user requlrements
at a glven time w1thout placlng restrlctlons upon future expan51on.
Wlth mult1processor systems;‘the potentlal-also exlsts:cf making

greater use of the resources within the system.

Arailability and-reliebility are'inter-reiated; Increased avallablllty
is achleved, in a well de51gned system, by ensurlng that proce551ng
_capabllltles can be prov1ded to the user even 1f one (or more) of the
proce551ng units has failed. The service prov1ded, however, will
'probably be degraded due to the reductlon in proce331ng capaczty..
~Increased reliability is obtained by the ability of the processing.
units to compensate for the failure of one of their number.‘ This ‘:

recovery may 1nvclve complex software checks and a consequent decrease

in avallable power ‘even when all the units are functioning.

‘g1.2;‘Efficiénqy'Considéraﬁions_‘

The use of multiprocessor s&stemé ppteﬂtially'protidésAmany l.:,"'
. advantages over single proéessbr systems.' quevef;lcautionjmust'be ‘
expressed as regards the;poténtial,of mﬁltiprodéssor s;,‘rsi'.t-":zns.‘.= Thése

two aspeété are summed up in two well known provefbs:

"Man& hands make light_ﬁork"

" "Too many cooks spoil'the.broth“..-'

A certain overhead haéfto be.faced in the construction of multiprbcessor.
syétems; At the hardware level, this.overhead is maﬁifest in the cost
of interconnection between thé processors and memory of the systém.."
This'may impose delays within the hardware not exéeriénced_by a single
pProcessor system. - Also, the intéraction betwéen_proceésors plaéés'an
ovérhead upén realisable processing-pﬁwer. In practicél:fealisatioﬁs
of multiprocessor systems, these overheads nust be consi@eré@, ?pd;i?
is.kﬁﬁwn tﬁat forh§g£taiﬁ érgagisation; a iimit exists upon‘the'humber

of processors that may be usefully added to a system { 35).

At the software_levei, similar problems of inte?actio# betweed'thé
rprocessors arise. If théy.are actually to go-opéféte then it is
necessary for the proceésors_to.synchronisg. - This may be due to
operating system functions 6r because of interaction between tasks
running on different proceésors. The syné@ronising overheads.cah brbie
to. be unnecéssarily lérge.if there.is“a pgpr.éﬁéice of synchronising

tool,

The interections between teeks can aleo’impose greet inefficienciese

lA poorly designed program meyrimpoee meny mere eynehrdnisations upon"'.'
-various'tasks than‘a nell designed eolution to fhe eame problem.

..Poor de51gn may, therefore, 1mpose extra costs upon the proce331ng

. capac1ty of the system as a whole.

: Tne meeningaof‘the”fefm effieiency is, df course;'confennieue”and a
“‘deflnltlon of the concept, in the context of multlprocessor systems,
,13 needed to enable an effectlve dlSCUSSIOH of the "eff1c1ency" of
- such systems to be-undertaken.' Efflclency may be expressed as the
'amount of useful work whlch can be eccompllshed in relatlon to the,

potential capaclty of the components. At the hardware level the

potential capacity of a multiprocessor system could be eXpressed as the
eumlof_nne.power;of;tné:cemnenents in terms of workahich could be
-aecomplished. The realisable power is redueed by the overheeds
associated with the interconnection of and interaction between the

procésSdrs;' This available power'would be further reduced at the

software level by the costs of intercommunication and synchronisetiona

1.3. Motivation for Research -

- The problems associated with muitiproceesor systems (indeed with any

computer system) may be split into three broad classes:-

i)'Hardware'
4Hii) Syétems'software-‘

.iii) User at Application“Software.- o

If an overall system lS to be effzclent ‘that is make good use of the
'_total system resources, all three areas must be con51dered and glven
due merlt. The power of a system w1th sophisticated hardware and 8
Well de51gned operating system may be wasted if badly deszgned or

- inappropriate applications are executed on it.

1.3.1. ﬁardware‘Level

;It is, perhaps, at this level that con51derat10n should flrst be glven
A efflclency as, no matter how well de51gned software run on poor '
’ .hardware cannot make it operate faster than is feaszble as .he

_ maxlmum power of the system 15 1nev1tab1y 11m1ted by the hardware.

" For multiprooessora ﬁith shared memory, one of the major areas of
- con51derat10n must be that of memory contentlon. The degree of
memory contentlon is dependent upon the number of processors acce351ng

the shared memory and the use to which it is put.- As will be_noted

in Chapter Two, some authors have developed complex models to study

- _between the processors and also as regards recovery on the fallure of

 the behaviour of multiprocessor systems, yet these are oftea-'

_ specialised,_being applicable to_only a.specific'ciass of hardware.,.'

.3 2. Systems Software.

Hav1ng deszgned and built (or purchased) a multlprocessor system,'fdf
several pOSSlbllltles 11e before the user .in the organisation of the .

software on the machines. Whatever reglme is chosen for ‘the multie

'uprocessor, be it master/slave, an anonymous treatment of the processors '

. ora compromlse, questlons will arlse as regards synchronisation-
one {or more) of the ‘processors. ”"
One of the magor advantages of multlprocessor systems is their ablllty

to prov1de proce851ng capab111t1es even when one or more of the

'processors have failed. If use is to be made of this ability to

. recover, then some forms of hardware synchronlsatlon may be unacceptable.

" As will be seen (Chapter Three), if one processor has lowered a

semaphore and all other processors are waiting and the runnlng processor

dles then the system may permanently hang waltlng for the semaphore

to be ralsed.

- 0f the'softsare‘mechanisma,that have been developed, most (e.g. critical

‘regions, readers and writers) reqaire a 1ower level of syhchronisation.
_upon whlch they may be based. Some algorlthms have been developed
. whereby synchronlsatlon may be achleved by software, but rarely are.

these algorlthms consldered in terms of rellablllty or error recovery.

The algorithms also tend to Become-less'efficient-as the load

placed upon thém'increases.;

1-3;3. User Software

Having cbtained an efficient system, the probléms at the user-level_
thén"become aﬁparént;r On singlé'procéssor syStems, the bad

constructlon of programs can yleld vast inefficiencies in machine’

usage. Some d381gn methodologles are being popularlsed nowadays (20,44,
‘and these have been shown to prov1de 1mprovements in efflclency over

' many levels, 1ncludlng those of systems analy51s and programmlng.
With multiprocessor systems; the potential for resource wasting
increases with the poésibiliﬁy of processes'vying for a_resourée instead

of co-operating over its use.

When designing multiprocess (or parallgl) programs, care and foresight

. must be used to develop programs which suitably represent the
parallelism of the problem. The techniques that should be used in the
detection and exploitation (either human or_automatic) of a problem

are not yet fully understood, though some progress is being made in

this direction (64).

1.4. Proposed Areas of Investigation .

‘.There are, therefore, an extremely 1arge number of toplcs relatlng
to multlprocessor systems which would merlt 1nvestlgatlon and,

' indeed, therg is much research work currently being undertakeg iﬁ
this area. Since the Bverail‘effiCiency of a multiprocessor'systém-

‘ religs-on the'effiﬁiency'of‘each df fhe‘three areas mehtioned.abbve,‘
lconsiderafipﬁ has been given to a't0pic froﬁ'éach;.though greater

emphasis is placed upon the second area.

It was felt, from the above discussion, that, at the hardwafe'level,”
there waé'scopa for a general model which woﬁld be of.ﬁse in the early

stages of a system de51gn exerclse and would provide some bounds for

the maximum reallsable power of a multlprocessor system. The model
7 should take into account the type of 1nterconnect10n and the type of

use to bermade of the system.

.Afithe level of syétems software, it was decided_to investigate the
éubjegt of synchronisation betweén the processors. As was_néted
abové, gerfain disa&vantages exist with_ﬁhe aigorithms foundfin.the .
liéefature, ahd it was hoped fhat‘a reappraisal of ?he problem could

» produce a solution with different operational characteristics.

Finally, a particular user application was chosen for investigation
to highlight the difficulties of designing user software for a

. multiprocessor system.

1.5. Framework of Thesis

Chapter Two dlscusses-the posslble organlsatlons of multlprocesscr
systems and outllnes the problems faced at the hardware level with

‘each organlsatlon. Chapter Three deals w1th the corre5pond1ng

software organlsatlons and problems. The dlfflcultles of synchrondsatron
between prccessors are dlscussed and the ex1st1ng, publlshed, solutlons
are descrlbed. Some aspects of the current state of research 1nto

‘reliability are also descrlbed in the chapter.

In Chapter Four, a model of a multiprocessor system is'introduced.

fThis model is then used to_develop formulae'for bounds which may be
placed upon- the menory contention experlenced by mult1processcr
: computer systems.' Results obtalned from these are compared with

'tlmlngs from actual hardware.

”"f'Chapter Five deals with the development of a software synchronlsatlon "
~ tool (the Abstract Resource Rlng or ARR) . Two dlst1nct 1mplementat10ns |
of the basic technlque are 1ntroduced. The tool is compared with
other algorlthms found in the llterature. In Chapter Slx, the ARR is L
develcped w1th speclflc reference to rellablllty and error regovery .
w1th1n multlprocessor systems., In Chapter Seven, the role of the ARR
in a parallel proce531ng system is descrlbed, 1nclud1ng dlscusslon of .

its use in the realm of rellablllty.

Chapter Eight, by way of an example, shows the difficulties of writing

"efficient" software for‘multiprocesédr sjstems.

'Flnally, the the51s is drawn to a close by brlnglng together some

'conclu51ons and p01nt1ng to areas where further research mlght be

,31pursued,

|
MR
MULTIPROCESSOR HARDHARE
\
\
\
|
|

' programs yet may also co-operate upon a computatlon if required.

1.‘introduction_

" In 1966 Flynn (31) introduced a classification for digital combutered
which is in common use today. By observ1ng parallellsm in both the
_ 1nstructlon stream’ and . the data stream for computers, four classes

were 1dent1f1ed'

. 1) Slngle Instructlon Slngle Data Stream (SISD)

'Thls iz the standard ser1a1 unl-processor system

'2) Single Instruction Multiple Data Stream (SIMD)

In this classification; a single instruetioo is executed by

Several arithmetic'units with different'data. This yieldsithe

array or vector processors

. 3) Multiple Instruction Single Data Stream (MISD)

Thisjctass;of_hardwaredyouldLinvolve a single data item being
operated upon by aeverai different'instructions. A realistic
interpretation of a processor of this claes is dlfflcult although

it may include a Dataflow arch1tecture.

) Multlple Instructlon Multiple Data Stream {MIMD)

In thls class of hardware lie systeme of processors whlch ‘may

operate 1ndependent1y upon dlfferent sets of data w1th different

' The latter cla551f1cat1on may he subd1v1ded 1nto loosely coupled and

tlghtly coupled multlprocessor systems. Most network systems and

dlstrlbuted computlng appllcatlons (e.g. (69)) would be examples

of loosely coupled MIMD computers. The processors have no shared

" storage medlum, belng connected by relatlvely low speed communlcatlon

l1nes only. With closely-coupled multlprocessors, however, the
1nd1v1dual processors have access to a shared or common storage

med1um and may communlcate or co-cperate through this medzum. Usually ‘
this storage medium is core (or a similar high speed random access

medlum), though shared disc or drum systems equally-fall into this

: cla551f1catlon, as would 1ndependent machines wlth separate stores

_and a hlgh speed memory to memory link.

o This'thesis is, however, concerned with the shared memory version of

the latter group of machines (i.e. closely coupled MIMD systems).

In the follow1ng sectlon, various hardware organlsatlons for this type of

system are descrlbed. Some spec1al purpose systems whlch have been

developed by various research teams are then dlscussed. The chapter

- cloges by descrlblng two further areas of'research in multiprocessor

'~_ hardware.

' 2.2. Multiprocessor Organisation

' The basic model of a multlprocessor system 1s of a. number of processor

- units connected to memory and 1nput-output dev1ces. It is the manner
of thlS connectlon whlch glves rise to the dxfferent organlsatlons.
Enslow (28) has "1dent1f1ed three fundamentally dlfferent system

organlsatlons used in multlprocessors.-

. Time shared or common bus
. Crossbar switch matrix

« Multiport memories

e the entire scope.of interconnection schemes is much larger and
certalnly more complex secas these categories nonetheless form a
useful base for a dlSCUBSlon of the organlsatlon of multlprocessor
systems....“

_Ha) Time.shared or common.bus (Figure 2.2.1)
Wlth thls organlsatlon, all the system components (processors, memory
. modules and 1/0 dev1ces) are connected by a common communlcatlon path_'
‘(the bus). The operatlon of this system is in concept 51mple, though
clln practlce 1t may be quite complex.. A unlt w1sh1ng to communlcate
-with another must first. ascertaln that the bus is free. It then places
on the bus the address of the requested unit together with any other
information required in the communicetion;.'Units which nay potentially.

receive communication must inspect the bus for their address being.r

.;:15‘_

1/0- .| ‘ -
PROCESSOR | MEMORY 'PROCESSOR

/o | 1. 1 ‘
PROCESSOR | = | MEMORY | PROCESSOR

a) Time-shared/Common Bus Organisation - Single Bus

1/0 .
PROCESSCR | | MEMORY PROCESSOR

. : PROCESSOR MEMORY . PROCESSOR

_ b) Time-shared/Common Bus Organisétion.; Dual Bus

F:Lgure 242274 -

The necessary synchronlsat1on over the use of the

transmitted.
bus may be handled by an 1nterface between each component and the

bus in co-operatlon wlth a 51ng1e arbltratlon unlt for the bus.

Wlth thlS organlsatlon, however,las the number of components 1ncreases,
the load rlaced upon the bus 1ncreases, and the bus may become a ”
bottleneck. Also. 1f the bus fazls, then the system as a whole is
unusable. To overcome both these problems, the bus may be dupllcated,

though this greatly increases complexlty.

' b) Crossbar. switch matrix (Figure 2.2.2.)

With'thisrorganisationr the number of connections between processors
and memories is increased such that a different access path exists

- from each processor to each of the memory modules., The 1mportant
characterlstlc of these systems is that transfers to .or from each
memory module can potentlally be made s1mu1taneously. Whllst this
deszgn is not complex, much clrcultry is requ1red to cope w1th the
potentlal contentlon at each 1nterconnectlon in the crossbar. An
example given in the llterature (29) glves, for a twenty-four
32-b1t processor system with 32 memory modules, the number of
circuits required in the crossbar switch as two to three tlmes the

" humber requlred for an IBM System 360 Model ?5.:

Expansion of this organisation is, however, conceptually straight- :

- —_— . 1/0,
Py +- _ T +$ |
Py — —o
® - ? — _41 I/Ol
S b —4 .

: Figure 2.2.2. Cross-bar Switch Organisation

‘forﬁard requiring only the size of the swifch'to be increased.

c) Multiport Memories (Fig. 2.2.3) .

If the logic controllihg'switching and arbitrstion, whioh'is:\
dlstrlbuted among the 1nterconnectlons in the crossbar, is concentratedll‘
at the 1nterfaces to the memory modules then multlport memory systems
are obtalned. Often, preasslgned prlorltles are given to the parts |
.to reduce the contentlons whlch may arlse allowing the system to be
configured as requlred at each installation. One advantage with
multiport memory systems is the ease with which prlvate memories
(that is memories acce851b1e to only one processor) may be given to-
each processor. (Flgure 242.3b) This has advantages with respect to
security against unauthorised access of data, but has dlsadvantages
with respect to rellablllty. Slnce only the one processor may access

data in its private memory, if that processor falls,access cannot

- be made to the data and it is "lost"

Aﬁother dlsadvantage Wlth multlport memorles is due to the fixed
number of ports (whlch is generally small). Thls restrlcts the number

of processors that can be connected to a single memory module and

-thus 11m1ts the maximum size of the systenm.,

Unfortunately, although this classification is intended to provide

a general description of the‘hardware; many -practical systems cannot be -

neatly assigned to one or other of the categories.

I/ | 1/0q

a) Multiport Memory - No Private Memory

=y

. 1/0q T - 1/04

'b) Multiport Memory - With Private Memory

Figure 2.2.3. Multiport Memory Organisation

2.3. Commercial Multiprocessors |

. Many eompufer-manhfeoturers are Qilling'to suppiy multiprocessor_'
eystems;- Indeed many so-called unlprocessor systems are actually
' multlprocessor systems, wlth the dlfferent processors belng glven
| well deflned tasks. Exahples of such systems are the larger ICL |
‘19°C systens end'the CD¢‘66§0, in whieh'specialiy designed rrocessors
'..are.dedicated_to the_role,ofrperipheral.prooessors' relieving the h

main processor, of this duty.

- Some manufaoturers, e.g. IBM, CDC and UNIVAc; supply multiprocessor
" systems with operating systems able to take'advantage of fhe.whole
configuration. Examples ‘of this are the IBM 3?0/158 MP and IBM 370/
168 MP both of which may be Operated under OS/VSE (1.51) These

_ systems ‘contain no local memory, but contain special hardware to

“‘oerform some memory meppihg as well as handling inter-processor

;'interrupte and the serialisation of froceseor cycles. The serialisation . =~ '~

‘is required to prevent interruption of instructions requiring several

.. memory cycles:(e.g. Test and Set). .Hardware is also included to

: enable one processor to 1nterrogate, or set, the status reglsters of
another. The 0S/VSs 2 operatlng system allows the processors to be run
~in multlprocessor mode or as several unlprocessors. The control
:program is conszdered‘ln two‘parts. .One part is concerned with
servicing functiohs 1océl.to each processor, the ofher wifh giobéi
functlons of the multlprocessor as a whole. Locks, softﬁare flags,

'are used to prevent several processors performlng sectlons of code

- 21 -

Sihﬁitanebusly;. These locks enable_Séftwarg functions to be

serialised in a similar manner to the hardware.

Other manﬁfadturers‘are willing to supply multiproéessbr'

' configuratibps, thpugﬁ without any software"to control the system :

Vin’multipfoceséor‘mode. Examples of these are Ferrantl, Texas‘
Instruments and Perkin Elmer. Such systems will contain the hardwaref'

necessary to handle bus contentlon, though .in some 1nstances,

<.1nstruct1ons requlrlng multlple memory cycles may be 1nterruptable.

2.4, Multiprocessors in Research

".-Many organlsetlons and research groups are currently 1nnestlget1ng
the problems peculiar to mu1t1processor systems, leadlng, in some
1nstances, to the bulldlng of multlprocessors._ Often, however, the ‘:fﬂ
‘ hardware de51gns of these machlnes cannot be dlrectly related to one: ?"

of the major classes considered in the previous section.

‘One of tnejforenoet gronps is'that et Carnegie-Mellon University.

In 19?1 ‘a projeet.wae started there to develon a multiprooeesor

:computer system based on the PDP-11 mlnlcomputer. Tnis.resnlted.in,
the now famous, CMMP system (6?). The project arose;rnot only to
perform research in multiprocessor systems but aieo to provide
'compntational power for existing_projectse_.Theforganieation_of the

system is shown in Figure‘2.4;1.

-.Each-processing_elenent;-up to a design total of 16 in the developnent a
' system, consietslof a proceseor;'sone.local memory and eome local
rdevices. Two crossber switches'hare Eeen edded. The'first connects

. the processors to shared memory, the seeond connects them to shared
perlpherals. Each processor may access all shared dev1ces and all
shared memory. The processing elements 1nclude'interface hardware-to'
these crossbar swltches to convert locally generated addresses 1nto .

addresses sultable for the sw1tch archltecture.

The hardware also contains a system clock, providing a clock interrupt
to all the-processore, and an interproceesor interrupt meohanism."

'.'. 23 -

Figure 2.%.1. Basic CMMP Hardware Organisation

- 24 -

’ Wlth the latter, one processor may 1nterrupt any number of 1ts"

,counterparts at one of several 1nterrupt levels.

_ One of the areas that provzded some deslgn problems was the area of

memory contention (see section 2.6.). _ Calculatlonsbased on Strecker s .

.formulae (59) were made during the design stages to attempt to flnd

cost effectlve processor and memory conflguratlons. Research,was also

undertaken in aspects of systems software. This led‘to the development

of the kernel of the operating system,'called HYDRA-(66). HYDRA is

‘not in itself an 0perat1ng system, but prov1des all the mechanlsms

for bulldlng one.

The group are currently developlng a multlprocessor system, Cm*,

based on mlcroprocessors whlch'is 1ntended to be a testbed for

_explorlng a number of research questlons concernlng multlprocessor

systems, for examp1e° potentlal for deadlock structure for 1nter-

o processor control” mechanlsms, modularlty;’reliability and techniques_

for decomp051ng algorithms into parallel co-operatlng processes"(60).d

‘The hardware des1gn chosen for this system, whilst forming a multi-

processor system with all memory sharable. closely links Temory modules

wlth processors. A network of buses prov1des access to non-local

N memorles, as.is shown in Flgure 2 4 -2

Each processorfmemory module contains a local switch (Slocal). This -
switch provides the first level of memory mapping. References to the

local memory'are serviced directly. References to non-local memory

oy
' _
Infer-
Cluster
Bus
Kmap
I e S| .
P-SM P-S~M P«S-M
Kmap
r + 1
Pasm | ~ P-S-M
| s ‘\\ Slocal ' |
,.I ‘ t |
S | Processor . | |
L' o - Memory and Devices [

a processor=
memory module
(P-5-M)

Fiéure 2.4.2. A Simple Cm* System'

modules are placed, by the Slocal, onto a bus connecting the switch

to a Kmap processor. = The Kmaps are mapping processors which prcvide‘

‘the rduting mechanism for access to remote memory modules. Each'

Kmap is connected to several processor-memory modules to give a

" cluster and the clusters are also connected by buses.

When a Kmap processor receives a request for memory access, the

. request is sent either to the correct Slocal, if the reference is made

to meﬁory within the cluster, or the request is pdssed to another Kmap

for servicing.

This hardware organisation gives highly asymetrical meﬁory access times.
Access to local memory suffers ﬁinimal degfadatipn;‘while'acdesses

to remdtg clusters may expefienée a large ovefhead_due to.thé roﬁting
of the réﬁuest. ‘In ordef to make efficient usé.of‘thg hardware, a

large prbportion of memory accesses.shoﬁld be to the local memory.

I has been hypothesized that the local hit ratio would lie in the

range;85 to 95 pe:cenf, in which case, the effect of non local

_ references would be 'reasonably' small", (61.)

A second unusual hardware organisation has been dévelopedrby'a group

“in Siemens AG. The SMS 101 (46) is also a multi micrdprocessor.sySteﬁ;

but désigned with particular reference to'problems of the class of

" large systems of differential eqﬁations or on-line process'céntrol.

In many senses, the systém is not Strictly'a‘multiprocessor (the

processors'dd not directly sharé.some common store) yet all processors

;;37 -

can access the memories of other processors.

The‘basic herdeere desigr is'shoﬁn'in Figore 2;4.3; .Tﬁe‘system
coﬁﬁrises a mainrprocessor‘consisting‘of afprocessor_ahd memory. This
. is connecfed via a single bus to several furtHer.procesSOr-memorj

" ‘modules. Each of the soduiesiis interfaCed to ihe bus throegh a

switch. The main processor controis the bus and also fﬁe switChes iﬁ
each of the modUIes. Each of the modules has the capaclty for

1ndependent program\executlon.

The gperation of the systen. falls into disti_'ﬁct phases .while ruriﬁicg
a program. Firstly, rhe msin processor distributes the code and data

: among the soddles.: Each of the modules then completes‘its porcion of..
" the workload. - In the third phase any results cr variable changes:
| derlved by the modules are dlstrlbuted to the other processor allow1ngr'
the cycle to be repeated. ‘The swltches are used to govern the
- dlstrlbutlon of the 1nformat10n derlved, allowlng 1t to be dlrected~

in a number of ways.

" In the Unlted Klngdom, several groups are 1nvestlgat1ng the problems
of multlprocessor systems. One group is concerned w1th'the development
of ‘the CYBA-M system (2 26,32)Eh15 system conslsts ‘of up to 16 Intel
8080 mlcroprocessors, each w1th some prlvate memory. These micro

” processors are connected, via a sw1tch to two banks of shared memory.
The organisation.is shown'in Figure 2. 4 i, Program segments perform1ng

well deflned functlcns are a551gned to each proceseor, 1ndeed the

228 <

_ MAIN PROCESSOR

 MODULES

Figure 2.4.3. Basic SMS 101 Design

" Global Memory

" Global Memory Ports

'P-S~M15
P-S-Mqy|

L P-5-Mq3

P-S-M,

_ P-5-M1

Imége Memory Ports:

Image Memory

Figure 2.4.4. CYBA-M Hardware Organisation

' system is-envisaged.asne restbed for proving thé validit# or such_;
'assighrents;“ The Global memory is used for 1nter-process
:COmmunication. The memory is loglcally divided 1nto several sectlons,‘
or‘lines; each of which is dedicated to a particular communication
1'pa£ﬁ. TheiImage memory‘is,used for accessing peripherals,-whiCh are .
all memory mappec; Again,‘the memory is-partiﬁioned into lines withr
11nes belng sssoclated w1th perlpheral reglsters. Some of the Issge
memory 11nes have semaphores assoczated wlth them to enable contentlon:

'over shared peripherals to be resolved. ‘All processors derive thelr

timing from a common clock. -

One processor. also has}conﬂections to’the»private.memories of ~

- all theﬁother rrocessors. This'processor is used to downline load
the program segments to the 1nd1v1dua1 processors and also to prov1de
control and monltorlng facllltles. To this special processor is
-attached a keyboard, flOppy disc and'ofher peribherels‘to aid in the

... setup of the system and the-foliowing~monitoring. N ‘:.',‘L"-“““

Anofﬁer group,'at Sussex University¢ is deveioﬁing a multiprocesSor

system whlch may have appllcatlon in the offlce 51tuat10n (34). The

arrangement of thlB system is of a number of communlcatlon hlghwa&s
to each of whlch several computers (ezther minis or mlcros) are"

atﬁaohed.‘ The communlcatlon hlghways are themselves 1nterconnected

-via hlghway coupler processors (Fig. 2. 4.5). The communlcatlon hlghways
: all use the same protocol, with each processor belng interfaced to :

the hlghway. Th1s interface includes some buffering of messages to be .

- 31 -

:'transmittod/reosivedwon the highway.

It is env1saged that the system would be organlsed (at the software;

'level) with each- processor contalnlng a 51ngle appllcatlon program

performlng a dedlcated functlon, €eges a termlnal processor or a file -

_handler.- Each processor would also contain-the necessary software to

. drlve the 1nterface to the hlghway, this belng called the nucleus.
© As the appllcatlon programs requlre serVIce (e.g. access to a flle)
2 ‘messages are sent via the communlcatlon network, to the processor_

runnlng\the.appropr1ate_serv1ce program.

The same group is also 1nvest1gat1ng the problems at the ‘software.

‘to hardware 1nterface in multlprocessor systems (57).

2.5. Multiprocessor Systems and Reliability

» bne_of'the major advantages of multiprocessor systems is their abilitj
‘to continue operatlon even when one of the processors falls. This
ability has been used to advantage in many situations where hlgh
avallablllty-ls_one of-the system requlrements. These appllcatlone. s
range‘from process contrOI-to networking. Often, however, scecialf'
‘purpose hardware has to be added to enable an adequately hlgh degree

of rellablllty to be obtalned.

~ The TRANSPAC network syetem (69') in France is typical of many :

applications where redundancy (that is the duplication of components)

is used. In this network, the major routing nodeslare dual proceesors,
with many of the other components, including memory modules, being
_duplicated.' One of the two processors at eachrnode'operates as_the
routing processor. The* second processor, together with a special |
“hardware module, act as a watchdog over the'main'processor;'_lf a
‘failure occurs within the processor, then the second proceeéor;'

- assumes responsibility for the routing of the network traffic.

Recently, an Amerlcan Company, Tandem Computers Incorporated, have

begun marketlng a multlprocessor system, the Tandem Non-Stop System

(62). It is clalmed, as a consequence of the deSIgn and 1mplementatlon
of the hardware and software, that the system can be conflgured

automatlcally to contznue processlng desplte the failure of any

component. A h1gh degree of redundancy is present in the hardware wlth

a3k

-most components dupl1cated and redundancy of a hlgher order may be
1ncorporated. Some 1ess common - features, such as multl-part dlsc
drlves, have also been 1ncluded. However, 1t appears that the -

hardware may not be conflgured to provide memory. shared between

processors.

f A speclal purpose operatlng system, the Guardlan Operatlng System, 1s
avallable and 1t is clalmed that, with the use of the fac111t1es it

'prov1des, the fa11ure of hardware components may be made transparent

to the users of the system.’

2.6.7Memory‘Contention

\

-

Ohe subject of particalar interest in the.field of mulfiprocessors

is that of memory contentlon (or memory clashlng). In a system where
several processors are connected to a storage module, it 1s p0551b1e
for two or more of the processors to slmultaneously request access

to the shared storage. In . thls s;tuatlon, only one may actually

_ have its request honoured wlth the others belng delayed unt11 they

1n turn can be serv1ced.

Manyxauthors have develoced statistical‘eodels'of'such situations

and have carried out analysis of their performance, ahd these have
aopeared in the literature (13,14,etc3. A:varietr of models have
been considered, though each has normally been applicable to a certain

type of hardware. A survey of the techniques has been produced by

,Bhandakar and Fuller (8.),but some comments on a few representatlve

‘_Hpapers are. glven below.

Baskett and Smith (6) consider a model of a multiprocessor'

- : |
con51st1ng of a number of processors and memory modules, each of ﬂ

'whlch may be accessed by all the processors. All the processors and
'memorles are synchronlsed, that is, all the processors make their
"requesfs at the same time with each”memory taking the-same time to .

. service ‘the requests. If two (or more) processors make a request to

the -same memory module then only one of the requests is serv1ced. The

access pattern of the processors is random, with all the memory modules

: 35:,

' having an eQual probabilityfof seiection.,ijesanthors consider'their
: model partlcularly appllcable to systems where the hardware is bound
by the speed of its memory, w1th emphasls on 1nterleaved memory.

They also acknowledge that thelr model may “descrlbe only a mlnorlty

of current or proposed multlprocessor systems.“

Bhandakar (7) also. consxders a model in which the processors have

no prlvate memory. The model is of a number of processors and memory

. .modules connected by a crossbar swltch. The access pattern to the

_modules is again random, being considered'(for each processor) as a

. sequence of Boxnouiii Trials. The phases of a memory access are
. con51dered 1n much more detall w1th parameters belng lncorporated 1nt0‘
.the model to descrlbe the states of the processor and memory durlng an
access. The extra complexlty enables Bhandakar to remove the
synchronlsatlon constralnt present in Baskett and Smith's work.

' Bhandakar also 1gnores the effects of 1nput/output operatlons, as’ 1s K

. the general practlce in the llterature, clalmlng support from Strecker

(59).

..Sastry and Kaln (56) model a system similar to the above, w1th a

. number of processors and memory modules. Each processor can access

every memnory module, with arbltratlon loglc belng 1ncorporated in the
memory module to resolve the contention. They direct their 1nvest1gatlon
_.towards a. 51tuatlon in whlch 1nstruct10ns and data are stored 1n

separate memory modules enabllng\a form of plpellnlng to be 1ncorporated.

:'_j37;;'

?

 Generally, the analysis adopted to derive formilae from the mcdel |
‘is that of Discrete Marcov Chains. This is, indeed, the method |
“:adopted by all of the above. Having derived formulae'to predict

‘the amount of contentlon that is experlenced by their model the

authore prov1de sxmulatlon results, and occa51onally measurements

fromymultlprocessor;syeteme, to support_these calculatloas.u

Sastry and Kaln, hav1ng adopted a model w1th certain attrlbutes

(the separatlon of code and data) demonstrate the relatlonshlp between

the memory contentlon experlenced and the parameters of the model

_deflnlng the attrlbutes. Kurtzburg (47) con81ders the problem of

allocat1ng JObS among a number of memory modules, Having developed

~his model the. parameters are varled to show how the dlstrlbutlon

affects the theoretical memory contentlon.

Many of the organisations are of a more specialised nature, as is

'“-indeed acknowledged by Baskett and"Smiths - Other modeIS'rely on -

specific organlsatlonal decisions to be made by the operatlng system,

the model of Sastry and Kaln belng such an example. These models,

‘and those maklng 31m11ar ‘assumptions or design dec131ons, are clearly

appl1cable to a small cross-section of multlprocessor systems.

"_ Other modele,ffor'exahple Bhandakar's require very detailed'information

on the performance characterlstlcs of the system components. Whllst

‘81v1ng very accurate predlctlons for the glven spe01flcat10n, even

slight modification in the hardware may 1nva11date the accuracy of the

8-

: predictions. Also, the more detalled (and, probably, greater quantlty

- Of) parameters to the model may make calculatlons more complex.

In Chapter Four, a model of a multlprocessor is presented whlch 13
‘appllcable to a larger number of hardware organlsatlons and, whilst

a number of parameters are requlred,vthese are not of a hlghly detailed

nature as some of those in the literature.

- CHAPTER 3

SOFTWARE CONSIDERATIONS IN

* MULTIPROCESSORS

- 3.7 Introduction

The programs:wriftes to'solvefproblems'often coﬁfein_diScreet.sectioss |
which do:nof necessarily_heve forbe execoted.in e fixed_order. Cn
-a.onieprocessor systes, tﬁe various stages must iﬁevitably be
' executed‘sequehtially. When'a multiprocessor sjsfem is esed, however,
this constraint.is removed giving the'potential for several parts of

a program to be run simultaneously.

"+ In order to exploit the natural parallelism in.programs; certain
crestrlctlons must be placed upon the software operatlng on the multl—
processor.- The processors must be allocated to the tasks, or parallel
sections; within a program and there must be some synchronisation,
for example where two or more parallel sections meet (term;nsteje
The syhchronisstion may be performed purely by sofﬁware or be based_

upon some underlying hardware mechanism,

A method must also be prov1ded whereby the user of a multlprocessor
system may express the parallellsm wlthln hls program, 1ther exp11c1t1y
or 1mp11c1t1y., Thls may be by the use of 1anguage constructs whlch
generate parallel code or by requestlng automatlc generatlon of

parallel code from a sequentlal prOgram.

With the avallablllty of several processors in a multlprocessor system,
proce831ng may continue desplte the failure of one of thelr number.

. If this advantage is to be taken, the software on the multlprocessor -

. 2 BT

must be able to reéover from the death ofKa processor, and poésibly

retrieve its workload.,

In the next section the basic_organiSatioh of hultiprocessof'opérating'
systems is considered, The problems of both synchronisation and

reiiability are:then considered. Finally, the chapter closes with =~

a brief'consideratiqn_of'parallel processiﬁg.”

- k42 -

..3+2. Operating System Organisation

The operating system'is‘that part of thessoftware_dn'a_computer
that manages the resources (devices, memory, central processor time)s
The operatihg‘system‘prevides the mechanism for the execution of

programs and the enviromment in which they run.

"Three bas1c organlsatlons have been used in the de51gn of operatlng
Systems for multlprocessors. master-slave, separate executlve for
each processor° symmetrlc or anonymous treatment of all processors"

(28 Ye nach organxsat1on prov1des dlfferent operatlonal characterlstlcs.

With thelmaster-slave erganisatioh,'the operating'system'rbutlnes are
always_executed in the same processer, ther'master';‘ If one of the
slave processors requires a_serviee that must be provided by the.
operating system, a request must be made to the master processor. This-
may cause-a delay withia the slave prpcessor. Since.the-operatihg system -
| only'runs-ih one precessor, the problems of multiple update of system
tables and dev1ce access cannot arise.: A means whereby communlcatlonl

rbetween the master and the slaves may take place nmust, however, be

prqv1ded.-,‘

- The master-slave organlsatlon has some dlsadvantages. Foremost amongst ‘
these is the rellance of. the whole system upon the master processor.
If the master fails then the system as a whole will-be lost. It may

be p0551b1e to redesxgnate one of the slaves as a new master, but this

would (probably) requlre action from elther 0perators or englneers.

__43_,

Also, if the master cannot keep pace wlth the serv1ce requlrements

of the slaves, then the 1dle time of the slaves may 1ncrease
s1gnif1cantly. Desplte belng comparatlvely 1nf1ex1ble, thls

‘organlsatlon is relatlvely 51mp1e to 1mplement.

Wlth a separate executlve (or operatlng system) on each machlne, the

characterlstlcs are very dlfferent. .Each processor 'is capable of

serv1c1ng its own needs and manages its own (local) resoorces. ‘Each
processor, tﬁerefore, maiatains its.own set:of.tables, Some:tables,
_representing‘the shared resources, must be shared between the processors '
and therefore requlre synchronlsed access, Thus thls organlsatlon gives -

several co—operatlng but potentially 1ndependent systems. The

 supervisory code, under this scheme, may be placed in shared memory

:in which case only one copy_heed'reside in memory, or it may be placed

in the local memory of each system. The failure of one of the

processors will not-cause-a catostrophic‘failure, as in the case of the

'master-slave organlsatlon, since no one processor prov1des all the

.superv;sory functlons. However, some recovery of the shared tables

may be required before the remaining processors may proceed to

. (correctly) use the shared resources, Some facilities (e.g. some i/o-

- devices) will be lost ifrthey are'accessible only throogh‘the_failed

processor,

With the third approach, in wﬁich all processors are treated as'any‘ :
other resource, all resources will be shared, that‘is:the.tables.

defining their state will be shared. The mastership "floats". among

the ﬁrocessors;'tﬁough several may be'execufing superviSory code

at once. . Clearly, each shared resource may have only one master, this
belng declded through the synchronlsatlon requlred prior to. them-

_ belng accessed.. Because no one processor has any - speclal pr1v11eges
.or propert1es, if one of the processors falls, then only the processlngr
‘power of the whole system need be affected. Agaln. system tables may
need to be recovered but the pos31b111ty ex1sts for graceful
.degradatlon to take place. Also, as_a processor acts as one of'the

'system resources, scope exists for'betterliosd sharing.

- 45 -

3.3, Synchronisation g

In the previous:sectiom it was noted-that forya haltiprocessor system,‘
the need for synchronlsatlon between the processors arises in order,.
to prevent two coples of the exeout1ve 51mu1taneously acce551ng a.
- shared table or dev1ce. Thls need for table lockout -occurs not only
_ at the operatlng system level but at all levels of software on
mult1processor systems. Brlnch Hansen (10)_prov1des'a useful -

survey of synchron1l1ng technlques.

- The most famous form of synchronisation is the semaphore, orlglnally

proposed by Scholten and Dlgkstra. A‘semaphore is basically-an integer

varlable upon which two 1nd1v131b1e operatlons ‘may be performed.
These 0perat10n3 are varlously known as P and v, Walt and Slgnal or
' Down and Up. The v operation causes the semaphore to be 1noremented.r
The P operatlon'causes'the-semaphore to be decremented unless the
'“'Value of the semaphore would become negatlve.' In this case, the -
.processor performlng the P operatlon walts until 1t may be completed._
Many examples of the use of semaphores may be found in the llterature
¢ 1). Brinch Hansen ¢ 10) noted however, that as,orlglnally
proposed,semaphores may leave some. processors permanently blocked.
Thle may be overcome by assumlng some schedullng pollcy w1th1n the P

and v 0peratlons.

Crltlcal Reglons (22) prov1de a similar technlque to semaphores.-

A cr1t1cal reglon is ba31cally an area of code assoclated w1th a

- 46 -

~ shared veriable, " Each shared varisble may be.sssociated.withrseveral

_different coce segoents. 'The cfitical region mechanism ensures that,
for each shared vasiaoie, only one processor is.ellowed_to eiecute

“ one of the'erees of code essocieted‘with that tariable."critical-
regions proVide an excelleﬁt‘meoium for describing the use of‘andi

' PrOteCtion?of shared data structures.

A modlflcatlon of critical reglons leads to the so-called Condltlonal

Crltlcal Regions (38). Not only is a seotlon of code assoc1ated
with a shared variable, but also a list of condltlons to be satisfied
"before entering the regioo is given. The region is entered only when

.all the conditions are satisfied.

The elegance of these tools has led to discussion in . the literature

(9,18) as to their suitability in certain contexts.

- For shered'fesouroes;Janothef_ebproaoh is to create a resource maﬁagérj;
process. Processes then'wishing to access the resource must make
requests'to_the-resource manager. This requires a message queue, to

‘ whlch processes add their requests.4 The addltzon of these requests
must be an 1nd1v1s1ble operatlon w1th respect to the processes. That
1s, if two processes attempt to add a message to the queue 31multaneously,.
"one w111 complete its addltlon before the second may mske its addition
and they w1ll not mutually 1nterfere. The resource manager removes

‘messages from this queue, processing the requests as regquired.

_ Wirth (65) has noted that the message queueing téchniéﬁes and
_semaphores are remarkably similar, a semaphore merely being a queue
“with no'attachéd'messages. An ekahpie of‘fhislclass'of fools are

Hoare's Monitors (36).

A1l of these techniques may bé used to great advantage upon uni-
processor systems where'indiviSible operatiohs may be guaranteed.'
B However, if several'procéssdrs are used then these techhiques reQuire

some lower level of synchronisation upon which they may be based.

Brinch Hansen (10)lsuggested that a_hardﬁére‘ldckout device ('arbiter!) -
: was‘required. -Indeed,‘in'mény multiﬁrocessqr systems, such devices

have been implehented.in hardware, for example the IBM 360/558 MP and .

168 MP systens, as’déscribed.in seétion 2.3, contain seﬁéral

instructions that may be used for this purposé.

'Ih thé absence of special hardware} it becones necessary to‘develop
_éynchronising algorithms using standard instruction sets. HThia.p;oblem
of,perfprming sypchrohisation'between processofs using only read and
stope instruétioﬁs,.origina;ly proposed by Dijkstra, wgs_firat solved
ﬁy Dekkér (22), and generalised by Dijkstré (21). However, as

Dijkstra noféq; the mgthbd ig cumbersomé_and potentially veiy.time‘
éonsumﬁtive. Furtﬁermofe; Kﬁuth (45) noted that one or moré
processofslmay7£e blocked indefinitely since the algorithm reliéé'on--‘
a 'first paﬁt the'post' ﬁgchanism; having no memory of the waiting'__

time spent by a processor attempting to gain control.

Several authors (12, 27, 45) have proposed refinemehts to the algorithm to

‘e b8 -

. reduce_tﬁe time taken enoito introduce-eome element of scheduling..
All'these_algorithqs, however,rmaintain the basic structure of the
:rorigiﬁai‘solution. The.improvements culmineteine an aléorithm:(438 3
rwhich guararteee safe eccess to,a.resourCe‘in-a multiproceseorpugr

 environment on a first-oome-first-served basis.

| Tﬁe method adopted in ell these cases.is to allow one processor accesset

to the shared resource and, when the processor has flnlshed with the
.resource, 1t is freed to allow another processor to galn access to 1t..
' Thus the resource is alternately in use (or "owned" by a processor)

- and free; A processor, when it'requires access to the ehared resourcef.
must wait for that resoﬁrce_to'becoﬁe free. Then, if no other |
processor simelténeouely.requires the.resouroe;_it will'become the .
owner and-proceed:to use the resource. Complications arise, hoﬁever,.
‘when many processors ettempt to gain ownership of a resource.
simultaneously since tﬁere must be a "oompetition“ to deeide who
:becomes the new owner. Indeed,even if a slngle processor only requlres
access to the shared resource, it must take part 1n the "competltlon"

to discaver that no other is also attemptlng to access it.

'-whgn tois "competitioh" erises,‘therprocessore hevelto.deoide which

-.of their number is to become the new owner. As'the number of-proceseorsp
' requiring access to the resource increeses,;the decision makiog'becomesf
~more complex and, ie a geheral purpose‘aigorithm;;the cese where all
processors may require access needs to be catered for. As'the »

~complexity increases, so does the cost of performing the synchronieetion.-

- 49 -

‘Thls may be observed from the (sometlmes complex) 1oop1ng structure
of the algorlthms in the llterature.. ThlS results in the cost
”‘(overhead) of synchronlsatlon rising at least proportlonally w1th

the number of processors belng synchronlsed. For heav1ly used system

:tables, the cost may become unacceptable.

‘:3.4.-Softrare Reliability

- Much research is now belng carrled out in the field of fault-

' tolerant systems and other areas of 1ncreased rellablllty at the

software level. This has led to the deslgn of new languages and

ﬁethodologies. W1th multlprocessor systems; the need for rellahle

software lles not only in obtalnlng correct programs, but also 1n

WIthstandlng processor (or other component) fallure. *Slnce the

j multlprocessor system contalns several Processors, there is the
potentlal for performlng useful work desplte the failure of one of

~ them. However, some recovery of shared data structures may be

necessary before resum1ng the computatlonal workloed of the dead

processor, if, indeed, the latter is possible.

of the major nanufaoturers, 1BM provides a process (the Alternate CPU
Recovery process (15)) which is 1nvoked on the death of a’ processor

in the tightly coupled multlprocessor system descrlbed in Chapter Two."w |

_The process 1s 1n1tlated when a spec1al 1nterrupt 1s received

1nd1cat1ng that a processor has dled. The use of the ACR process

4enables varlous components of the system to be checked and recovery
actlon to be taken as requlred. The problems facing the ACR and

. associated routlnes, are sometlmes complex. The conslderable range of

states that the processors may be in when the death, and ensulng

' interrupt, occurs contrlbute to the complexlty of the problem. The

recovery relles on the recovery process belng able to ascertaln much

_1nformat10n on the dead processor at its pOlnt.Of death. Once the

recovery is complete, the system is then free to contlnue runnlng,

‘but prov1d1ng a degraded serv1ce due to the reduced processor power.

Reeeareh‘da also being'carried out into techhiQuee for software error.g
recovery (54;55,68 ').drThe aim-of the group at Newcastle ﬁniversity ig to
provide a methodology which will not only. cope with-process-failure, Ld
: but'also with errors due to inadequate or.faulty design or coding. -
Due to the complexlty of the software requlred for multlprocessor
systems, the ablllty to wlthstand some de51gn faults and continue to

perform useful work in the presence of errors would be of advantage.

The approach taken is to prov1de the equlvalent, at’the software level,
of standby components at the hardware level. It is accepted practlce
to write programs (especially those which are large and complex) in
blocks (be they subroutines, procedures or modules, etc.). These'
blocks'may be written in terms of sub-blocks; and eo on. Each block.
'7aa§.be“viewed as-providiag an operation within_the total system. A
block ds turned into atrecovery block by adding an:'acceptaace test!
at_the end of the block and zero or more stand-by blocks (alternates).
_ The acceptance_test is a logical expression by_which-the.correct '_
'operation.of the block may be tested.?'If_the operatron_has failed,
tﬁen oae of tae'alternates‘is used.' Hoﬁever, before the alternate ds.
enteredidthe state of the processrts:restored.to that‘curreat just
before'eatryito the'tlock.ahtch faiied.‘ A sortwarertechnique'for'
providing this abilit§ to restore'a process to an earlier-state ﬁas'

been described in the 1iterature (39)e

-52 -

‘3.5, Parallel Processing.

Even when the organlsational problems of multiprocessors at the)

_hardware and operating system level have been resolved there still

remains the task of applying the system to the solution of problems

in an eff1c1ent manner. However, the whole topic of parallel

' programmlng has recently gathered momentum due to recent hardware

developments. The falling cost of processors and the availability

of Array processors, such as the Illiac IV, and Vector processors

asrwell as the multiprocessor systems described above, have contributed

to this interest.

The. 50 called, array and vector processors, which are of the SIMD
classxfication (see section 2.1}, consist of a large number (often
thousands) of small proce551ng elements attached to a host. Parallelism -

is obtained, in such systems, by arranging for all the processing

elements to perform the same single’ operation, hut on different values.
Algorithms to run upon these systems thus need to be formulated in

. terms of arrays of values upon which operations are performed. This
*makes such hardware particularly suitable for the solution of large

' 'numerical problems.

Research is also being carried out into'the automatic deteetion of
parallelism within programs.l This research may be partitioned into

two main groups:e

.53

a) Statement level

b) Block level -

At the.Etatement level,'single statements, penticulerij.arithnetie,:
are'coneidered.k It is.hqned that techniques to enable these
sﬁatements to be compiled for eptionailparallelism may be derived.

A survey of such,fesearch méy be-feund in.the literature (64).
However, due to the great frequency of synchronlsatlon requlred
between processors when u31ng this form of parallellsm, 1t is not a
v1ab1e technlque when u51ng a mult;processor system of the type being -

considered. .

At the block level, several statements can be;grouped together and
the blocks'can be'considered'for‘exeeution in ﬁarallel; -This
:technique providesa much mofe edst effective meensrof.eehieving,'
' pafallelism on a mnlfiprocessor_system. Aé the size of these groupe
‘”ef'inStruétiens inereéSes;‘ee the relative cost of the inter-processor
synchronieation_will diminish,.assuming,that the groups are mutually
_ independent. 'Results have been obtained'(. 30) showing that the
effectlve degree of parallellsm obtalnable is indeed dependent upon

the length of these groups.

Propdsais have Seen in-exie@ence for many years (19,22) for ianguege
'extenSiens to enable narallelism to be enpfessed in pneéfams; iThie
approach enables pngfemmers to directly insert parallel pfoperties-
_into their p;ogrnms_in:a manner nhich'they deem suitableeto the
applicefion.:‘ | |

The suggestion "that parallel composition of-communicating'sequential

processes is a fundamental program structure method“ has recently

_appeared in the llterature (37). A formal notatlon, based-on

Dlaﬁstra s guarded commands (24), is presented which allows the

;communlcatlon between processes to be expressed. The ¢ommunication

is of the form of messages and not through shared variables.

-5 ~

. CHAPTER &

THE INVESTIGATION OF A MODEL

~ OF A MULTIPROCESSOR

4.1, Introduction .

© - It was noted in Chapfer 2 thaf many defailed ar coﬁﬁlex models
have been developed in the study of the theoret1ca1 computlng
power whlch can be rea11sed in a multlprocessor system. Also
lnoted was the fact that these formulae are, in general speclallsed;;:
to a small_qlass of hardware. It would_be_valuabla if a more ‘
genaral tool were availablg which woﬁld'enable an estimate'of‘tha |
maximum power that-would be realised from a éivén multlpracesaor‘
system to be evalﬁated. Conversaly, it may'be‘deSiraﬁlq,given'a |
part1cular workload to evaluate the number of processors that may

efflclently be 1ncluded 1n the system.

In this chapter, thereforé,.a simple model of a multiprocessor
system is presented and from the study of this model, an attempt

'is made to derive a formula for an upper bound to the computer

power which may be realised.

4.2, Model of a Multiprocessor -

| The bas1c hardoare medel is of a collectlon of N, posslbly e”
different, processors. The characterlstlcs of each processor are
given by. two variables, the executlon speed of the processor, in
1nstructlons per second, and the prlvate memory slze, in 1nstructlons.
These are denoted by rl end 8i for the 1th prooessor respectlvely.‘
Al; the processors are linked to a 1arge olock of common memory.
Informstion,'either code or data, can be transferred between common
memory and the private memory of anytof the processors at the rate

of 1 blocks of information per second. ‘Eachlof these blocks contains -
--o instructions'giving an effective comnon“to private.(or-private to
common) menory transfer speed of 1b instructions per second. These
two parameters represent the line speed and bandwidth of the
communlcatlon 11ne between common and prlvate memory. A processor
may dlrectly access the common memory for an instruction or data
© word’ wlthout requlrlng it to be stored 1n its own prlvate memory; S
The tlme requlred to perform this operat1on is expressed as the time

to access prlvate memory‘(lnherently lncluded in the processor
execution speed) pius a fraction, f; of the transfer tine'between
common memory ‘and prlvate memory. An assumptlon 1nherent in the
model is that all accesses to common memory suffer some degradat1on
whether memory contention,takes place or not. This is due to the-
. need for a contention resolving "black-box“ to be placed in-the
access path to common memory of each processor (see Figure h.2.1).

If requlred, the degradatlon caused by this "black-box" may be

- 58 -

Contentibn-
Resolver

Figﬁre b,2.1. Modelled Muitiprocessor.System._;

ignored bj setting £ to zero.

The - 1nstruct10n was chosen as the unlt of data since. no confusion
over exlstlng termlnology, largely manufacturer dependant, would
arise. Wlth the modularlty of current hardware, it may seem that

a model catering for multlp;e memqry modules would be‘necessary,
.But‘by the correct'choicé of the values for the parémeters speqifying‘
tre common memory, the operational characteristics of séveral blocks

of common memory may be obtained.

*,1:By sultably alterlng the values of the parameters, the model can be

"applled to a variety of hardware conflguratlons, 1nclud1ng

a) Many processors each iorking from private memory using the

common memory for communication only

b) Many'processors each with no, or very little, private

memory_linkedfto a Single block of cdmmbn memory o

¢) Many processors each w1th limited prlvate memory, using the

common memory as a data base.

w _The'same model may also be used for many processors accessing a
" common dise system as'a variation on a) or c) above. - In this case, .
the data access fractlon, f, w111 have a value of one, since any

 data accessed must be copled to the prlvate memory before 1t can be

- used.

iﬁ efdef‘to:make,calcalationa ef‘cdmputing peﬁer, thelwerklpad

for.the multiprocessor sjstea'must*be"incorﬁerated“into the model.

The unit of work whlch 1s most clearly assoclated w1th users 1sl

t{ that of the program. It would appear that, 1dea11y, a general set

of programs, or_benchmarksg_ would be necessary. Howeve;,Jlt is

‘net possible te select a set of programs wﬁieh would be reﬁresentative
- of all sitaations. Futthermore; the‘theoretical analysis ofﬁéubh a set
woula be extremelyldifficult.' It was, therefere, decided to examine
.the'operation of the hardware model by postulating that a_single,-

program is run repetitively on all the.prqcessers.

It is further postulated ‘that the program is initially loaded 1nto
the common memory but can only be executed from prlvate memory The
~program 1nstructlons, therefore; must be copled'fyom common to - |
private memory befere executien can take place. Clearly, the private
memory may net:be'aufficientl& large to accommodate the whole of the

- program, in which case several c0py1ng operatlons would be required

"5:dur1ng the course of the run of the program in a manner analagous

.. .to_paglng {no attempt is made to model this act1v1ty but it is.

impiicitiy included in the parameter ci-defined below).

The charaeteristics_of the program used in the model are
' a) E, the execution length, or number of instructions
executed by the processor,in completing the prOgram

, b) ci, the transfer or copy 31ze, that is the total number

‘ of 1nstructlons that have to be copled from common to

PR .

private memory - .
-c) a data access rate of 1 'access to common memory per d

1nstruct10nl executed

d) no external input or output operations. =

. Each of the parameters plays an 1mportant role 1n the model._ E,
"the executlon length, is effectlvely a normallsatlon constant or
scallng funct1on for the evaluation of computlng power. The...
1ncorporat1on of ¢34 1nto the model allows short regular bursts of
hlgh rates of access to common memory.i This parameter would be

used when_1nvest1gat1ng systems performlng copying operations to

or from common and private memories. If no such function is
".performed thlB parameter mnay be omltted {by settlng it to zero).
The varlatlon in the parameter d can be used in the 1nvest15atlon of
systems using only common memory (a hav1ng a value of one or less)

through to systems rarely access1ng common memory (d belng large).

- Thus, causing a representative progrem to be run repetitively on:

'5_ a1l the processors places no great restriction upon the workload

that can be - modelled since various classes of program may be -

considered by suitably varylng the parameters of the representative

program. -

4.3. Derivation of Computing Power

A measure of the‘comooting power of a multiprocessor eystem'ie
the number of representatlve programs processed per unit t1me by

the multlprocessor conflguratlon, denoted by Pm, .

In order to determlne the effect1ve performance of the system,
,thls must be compared wlth the computlng power of the same
computers worklng separately. That is the number of representative

. programs processed per unit time by the separate processors, Pg.

- Taklng the model descrlbed above, the time for the ith processor

to execute the representatlve program, whilst worklng seperately,_

would be
E/r; seconds _ ' : 4,341,

. Thus the number of programs exscuted by the N separate processors
- in unit time (Ps) is : e - o L

PS = . . E I‘i/E . . = .) l_ 7*"’.3.2. .

| Ci=1 S L
‘The total time for a program to run in ooelof the N proceeeore in
the[multiproceesor oonfiguration.has four components, oamely'

a) the time required to transfer the program‘fromfcommon;“'

memory to the private memory of an ihditiduel processor -

-63-"

b) the time'required-to'exeoute the_ﬁrogram
¢) the tiﬁe.overhead of making data accesses to common -

, memorj-}

- d) the time éﬁent waiting to'be-servioed by the memory. 'This
'delay, due to memory contentlon, may occur in two 1nstances

- 1) whxle copylng 1nstructlons to prlvate memory

- ii) while performzng data accesses to cornmon memory,

- The first three compohents are obtainable from the model‘directly' ‘

a) program copy time

ci/b transfers are requlred to copy the program to the =

prlvate memory of the ith processor. Thzs takes cL/ (1b)

seconds

b) execution time
‘This component is identical to that for the single_prooeSSor
-case,:that‘is'E/ri secoods for the ith processor o

¢) common memoﬁy access overhoad |
The overhead for each data access is f/l seconds.. Duriﬁg'
execution of the program, a total of E/d accesses are made
'to common memory glv1ng a value of Ef/ (dl) seconds for thls:
component. It 1s_1mp11c1t1y assumed that a dato item is of
an_equivaleot size fo an instroction, howo#er d could be

altered to model other data sizes.

The fourth component, that due to cOntentiog over common memory,

R R

is dependentfupon;the-strategy ueed:by‘the hardware to distribute
memory cycles‘between'the processors. In order te,qbtain.bounde
z_for computing power of a multiprocessor, two distinct strategies are

considered.

The flrst atrategy treats all processors as strlctly equal and
prov1des a common memory cycle to each processor in- strict rotatlon

(Round-Robln). Wlth this strategy, there is the potentlal for

(large) delays whlle access1ng the common memory. Delays will-
..inevitably-afiSe.éee to1memory'contention in any practical situation,
- but it is poesible, with this model, for a”ﬁfoceésor to wait for a
: meﬁory cjcle even if no otﬁer processor is acceseing £he memorj.

Under these circumstances this theoretical'stretegy givee-a greater
'eqmmon memqry access ovefheed than wouid precticelly,be experienced

due to memory contentioﬁ alone, and when included iﬁ performancel
e calculatlone 1t will therefore prov1de lower performance flgures
,;f“»_“e -_than could be experlenced in practlce. o

. [P ¥ . .
In contrast to the first Btretegy, the“eecond imposee'aﬁ inherent

Lerder upon tHe pfocessofe. A memery cyele will elwaye BefaliOcafea.

to.the‘higheet'proceseor _in this ranking list éurreﬁtly makiné‘a

request, thus giving e Priority servicing policj.- Te obtain'an

upper bound for performance an assumptlon is made about the orderlng
" of the memory requests from the processors. It is essumed'that the
.memory requests made by‘the processors are syhchronised so that eo'

processor ever waits for service from the common memory unless all

- 65 _.

: ‘the memory cycles are belng used by the processors of hlgher rank.

. Thus no overheads or delays are experlenced due to common memory

contentlon prov1ded that the total number of requests made by the

_ processors does not exceed the capacity of the memory. There is

-‘Btlll however, a. delay due to access1ng ‘the shared memory via

the 1nterface hardware.

~ Since, with this strategy all common memory cycles are being used,

Priority represents the maximum processing power. When'all the
memory cycles have been.used, further processors may not-access the

memory. Thls 11m1t to processor power will be dlscussed in Sectlon'

- 8ix of this chapter.

In the next two sections, the formulae for the computing power of a
multiprocessor system are derived for the two memorj servicing

policies.

66 -

. k4.4, Round-Robin Servicing

As noted above;,the waiting time (the compooeht dependent upon

the memory servicing policy) arises in tﬁo situations. Firstly; ‘

;the waltlng tlme wh11e copylng is the tlme requlred for the N-1
memory cycles between each copy. These N-1 cycles take (N-1)/1

seconds and hence the total ‘time spent waltlng by the i th processor'h '

whlle copying is’

Ci_(N-1)'/ (1b) seconds - iti? bolia1,

'The second factor in the wa1t1ng time is due to wa1t1ng for a

memory cycle whlle maklng a data access to common memory. The . .

' elapsed tlme between accesses is d/ri seconds for the ith prooessor.
~After this time, the processor has to wait for its next memory

~cycle. The time spent waiting, yj, is therefore

¥i= xN/1 - d/ri Seconde o Lh,2.
where x is the mlnlmum 1nteger such that

(xN)/l d/r - .) | 4.4’.3.‘2

That 1s, it is on the xth memory cycle due to the processor since

1ts last access that its next request is honoured.

: Thls overhead is. for each of the E/d accesses, glv1ng a total waltlng

tlme, whlle perform1ng data accesses, for the i th processor‘of

(yiE) / 4 seconds ﬁ‘_ - | '4.4.4.

where y is given in equation 4.4.2.° .

The tdtalitime to run a represeﬁtative prﬁgram onrthe‘ith processor
" with Round-Robin common memory servicing, TR, may now be evaluated
as the sum of the four components

TRy = Ci/(lb) + E/ri,+.Ef/(d1)'+ (Ci(N-1)/(lb) f (yiE)/d)

. . . L".Ifaso

 simplifying,

Tri.= (NCi)/(1b) + E(1/ry + £/(d1) + y;i/d) hori6o
Hence,_the'number'of programs compieted‘per ﬁnit timé on pfbéessor
iis - | |

. 'I1/“TRi o o - ' . - boa7.

© and the total number‘df programs run on the system as a whole (Jg;)

'?-}is given by -

Iy = E (1/TRi) ' B c b8,

and expanding L

Jp; = z (1/(CiN/(1) + B(1/ry + £/(dl) + 7i/4)))

i=1

,4.4-_9. o

where y; is given in 4.4.2.

- 68 -

4,5. Priority Servicing

_Assmentiohed'ih Section'Thfee,_the_proeeesore ere_aeeuhed to he
'exactiy synohroniSed and that no processor waits=for servicing
unless all common memory cycles are taken: by processore of hlgher :
‘prlorlty. When all memory oycles are belng utlllsed by a number
of processors, any other processors added to the system (at a)

_-lower pr1or1ty)_w111-be unable to access the'commoh memory .
- The proce551ng power of the conflgurat1on under this form of common
'memory serv1c1ng can be evaluated by con51der1ng the operation of

the processors in priority order.

' Since the highest ordered processor experiences no delay, the time

taken to complete a representative program on this proceSSor Tpq

is the sum of the first three components

Tpi' C1 /(1b} + E/r1 + Ef/(dl) seconds P P o

Slnce only the first and thxrd components 1nvolve usage of the
common memory, there 1s a perlod of t1me durlng whlch the common

‘memory is free, glven by

E/r1 secondst- o o , | ‘ ho5.2.

The'processor'with second highest priority will take

TP& Ca /(1b) + E/!‘a + Ef/(dl) seconds '. 4.5.3,

- 6o

to run. the repreeentatlve program and can, therefore, potentlally

complete

programs‘in time Tp1. 'Sihce each run of the representative_program S

requlres access to the common memory for a tlme of

C2/(1b) + Ef/(dl) seconds o b5,

The tlme spent acce351ng common memory 1n time TP1 is given by the

product of equations 4.5.4. and 4.5 Say that is

- (Tp1/Tp2) (Cg/(lb) + Ef/(dl))seconds - NP

If the tlme glven by 4.5, 6. is less than, or equal to, the
executlon t1me of the fert processor, given by 4,5.2, then the
assumptlon made regarding memory clashing may be’ applled and,
Atherefore, all common memory accesses made - by the second processor

overlap the executlon tlme of the first processor.

A smaller amount of time w111 remaln when the common memo:y 1s not .
belng accessed. ThlS tlme is given by the dlfference between

,equatlons 4.5 2. and 4.5.6., namely

E/r1 - (TP1/TP2) (Ca/(lb) + Eﬂ/(dl)) seconds 4.5.?.

The argument may be continued: for subsequent processors untll the

. free tlme of the common memory is inadequate to allow the common

-7 -

-memofy accesses of the next pfocessor, denoted by NL, to be

satisfied.
Syétems‘with fewer‘thenvNL'processors‘will,-therefore, frem b5,
complete

N _

i=1"

representatlve prOgrams in tlme Tp1. where Tpl is. the time for the ‘

ith processor to complete the representatlve program (cf 4.5. 1.).'

Hence the number of representatlve programs executed in unit time
on a multlprocessor system with fewer than NL processora and a .

Prlorlty serv1c1ng pol1cy for common memory, JP. is

- "N
Jp = (1/Tp4) Z (Tp1/Tps) | kS,

i=1

and simplifying

=) Cymy k5.0,
Coi=1 S o :
or Jp ='_E (1/(g/(1b) + E/rj + E£/(d1))) - h5.11.

Thls throughput represents each of the N processors worklng at
maxlmum sPeed.‘ When the number of processors reaches or exceeds

the capac1ty of the common memory the NLth processor cannot achleve

-7

1ts maxlmum throughput and all subsequent processors will be
runable to access common memory and therefore perform no useful
work. Thus the throughput obtamed from a conflguratlon w:.th N ‘
processors where N) Np, lies between that o‘otamed' for. a
configureﬁioe‘ﬁith NL -1 proeeséore.and that obtained from a ‘ _ :

- system with Nf, processors as given by formula 4.5.10.

Graph k.5, 12. shows a typlcal Pr:LorJ.ty curve with the characterlstm

: cut-off.

e No ff rehesentalioe jds
Xla_l' St vkl
v s

c8.4 .

19 . o ' o E= ©.3333 416°
‘ ' o S R s o tcooan! ;
L= O-\O0.0’* ID4

it

!
+

T - -
" F = 0.5

EXANPLE WITH CUT-OFF
5

L GREFH

[
W |
P>
o
[

8 B 22 2t c6- 28 3R

1418

Nz Mo of bmessew -1

B Figure'ill».E..‘lZ. Priority.Curve Showing Cut-off -

" h.6. Constraints for Effective Configurations_lo

Wlth Prlorlty serv1c1ng used to allocate shared memory cycles,
it was demonstrated that there was a 11m1t to the number of
processors whlch could access the memory. A system contalnlng a
ngeater number of processors would 1nev1tably lead" to a waste of

-. resources since some of the processor could not perform useful work,

belng unable to access the shared memory. This llmlt is,from 4.5 Zes

© Npaq = 1"+ max integer k such that

(&/rp-) " (p1/lp) /(D) + B/A@IPO b,

" From- the orlglnal speclflcatlon of the model, the Prlorlty common
memory serv1c1ng strategy gives the highest posslble throughput
since the slowdown factor is due only to the hardware inter-

e _connection-and no memoryfclashing_factor.is.included.

The Prlorlty servicing strategy makes optlmum use of memory cycles,
' wlth no tlme belng wasted due to contentlon between the processors.,
Any cut off whlch exlsts w1th the: Prlorlty serv1c1ng must therefore,
g apply to all other serv1c1ng strategles. Given parameters whlch
characterlse both the constltuent processors in a multlprocessor
' conflguratlon and the workload to be placed upen the system, a 11m1t

" to the useful number of processors may be evaluated. In practlce, 1t

L]

: ’-74 -._'

mlght be antlclpated that this 1deal situation would be unattainable, -

" in which case the effective maximum number of processors which:

COuld_usefully'be'connécted would be less than that given by NL.

L5 -

4,7, Analysis of Performance

In SectioﬁfThfee, it was'postulated'thét‘the effective pefformance
_ of the multlprocessor computer system could be found by comparlng
. the computlng power of the mult1processor (Pm) w1th that of the
_:computers running separately (Ps), Thls may be accompllshed by

- expressing Pm as a percentage of Pgs The effective performanée‘(EP)

'may therefore be evaluated for the two servicing strategles u31ng

Ps(h 3 2), JR (4, 4 9) and Jp (4.5 11).

100 Jg/Pg % SRR WX I

Round-Robin: | EPR.=
SR N;' R : SR
= 100 (7 (1/(CiN/(1b) +E(1/ri + £/(d1) + y/d))))
3 S i=1 - S . o
%
N ‘ o
_ i=1 :
’;tPridfitxfff' EPp = 100 Jﬁ/Psi% '”'ﬂ B P S,

‘ N - . C . 3 .
= 100 (Z (1/(ci/(1b) + E/ry + Ef/(a1))))
| i=1 _ o

. %
N

(3 ri/E) b7,
- 1= o
These formulae describe a 31tuatlon where the processors and- local
. memories have dlfferent characterlstlcs. In practice, most multi=

" processor systems might be expected to consist of combinations of

identical (or near identical) processors. The formulae 4.7.2. and

'-'?6'-"

4;7.4..cén be simplified in this case. In the remalnder of this
chapter it w111 be " assumed that all the processors are 1dent1cal. _
Thls, however, places no restrlctlons upon conclus1ons drawn in

later sectlons.

- If all processors are assumed to be 1dent1cal "all. subscrlpts '
dlsappear and the summatlons may be replaced by a multlpllcatlon,
factor. The equatlons 4, 3.2., h .9, and 4.5, 11. for Ps, JR and

Jp respectlvely may be 81mp11f1ed to glve

"

'Jﬁ

N/(CN/(1b) + E(1/r + £/(d1) + y/d)) - h.7.6.
withy = xN/1 - d/r
where x iz the minimum_intgger such that

N/1P &
'___';,___ 3B = NACKIG) % B/e EEAA)) . 477

Reertlng equations 4.? 2. and 447.44 with these Smellfled-"

equat1ons, values for the effectlve performance w111 be given by

EPp 100(N/(CN/(1b) + E(T/r + f/(dl) + y/)N/(Nx/E) %
4.7 8
Pridfitx: _ |
| "EPp = 100 (N/(C/(ib.)r‘+rlE.‘/lr + E£/CALN)/(Ne/E) % 4.7.9.

- 77‘-._ L

Slmpllfylng, these become :

EzJR = 100 E/(r(CN/(lb) + E(1/r s f/(dl) + y/d))) %
‘ .10
©EPp = 100 Bfr(C/(1b) + B/r + EL/(AD)) % h.p.n

‘ _These twc forrulae for effectxve performanoe apparently prov1de

the bounds ‘on the performance of the multlprocessor system whlch w
were sought. However, by observing the predlctlons of the formulae
for a partlcular ch01ce of the parameters (shown 1n Flg.4 7 12),-1t
is ‘seen that under some clrcumstances the eff1c1ency achleved with
“the Round-Robln serv1c1ng 1s equal to that with the Prlorlty

serv1c1ng. This clearly violates the_upper-lower bound hypothesis.

... E ; t:ﬁeekoa %Qﬂfn“l”;“

N
'
|

RATIO

GRAPH

| EXAMPLE SHONING PEAKING

1ol
10

cm. 18 ?cmdwgu

N 2 ‘
l € = 0.]2 w1’
2= olccoant
e D-\o;:.o ﬁ_go? |
B= \-o '

F= Lo A

L :] ._ ' ‘,. . ! — T -

oIS B 5 Wl B 45 %
; = ‘\‘b 68 “wntheNong mewk& 1)&)' .
S ey

L‘_j‘l‘-'..-_- | ..

Flgure 4.?.12. Peaklng characterlstlc of Round-Robzn “-~‘ :.,4'
. Do T serv1c1ng nolicy.:

79

terms,

4.8, Refinement of Servicing Policy

" If the denomlnator of the rlght hand 31de of equatlon 4.? 11 15

denoted by v then equatlons 4.7,10 and 4.7.11 may be rewrltten in

terms of v as

100 B/(v + (=11C /(1) + B/Q) % B,

E‘E’p. = 100 Efv %) ' _ o | 14-.8.2.

. The two extra terms in the denomlnator of equatlon 4.,8.1 are due

" to the waiting times while copylng from common memory and while

maklng data accesses to the common memery, The_deflclency in the

Round-Robin strategy now becomes apparent. If these two extra

M-D:C./(b) + B/2 o b8,
can become zero, or very small the Round-Robin strategy 1nstead
of reflectlng the case where there is memory 1nterference, becomes

equivalent.to the Priority servicing strategy. This will ogcur,

in‘general, if both y and C themselves become very-smell. In.

practlce both of these condltlons may hold. C would be small 1f

the prlvate memory of the 1nd1v1dual processors is large and very

,'llttle copy1ng were requlred 1n relatlon to executlon length. The

_ waltzng time for a data access to common memory (y) can be zero if

the access is requested when a cycle is offered, that is when (from

“equation &4.4.2)

where x is some integer. -

The p0551b111ty for the waltlng t1me to become zero will clearly ‘
give rlse to'a "peak1ng" characterlstlc to the functlon deflned

by 4 ? 10, as has been seen in Flg.'4.7 12.

‘In practlce, common memory requests do not occur at strlctly
regular tlme p01nts, but are dlstrlbuted about these t1me p01nts.
: Whlle the mean arrlval tlme may be colnc1dent w1th the offerlng of .

a memory cycle, the mean waltlng time will not be zero.

. This can be illustrated by eohsidering the case in which the
probability. of arrlval of a common memory request can be represented
by an arbltrary dlstrlbutlon functlon with a mean at the p01nt at

which a memory cycle is offered. Thls-ls'zllustrated in Figure_

4.8.6.

e .Any request which arrives before the memory cycle is offered must

wait untll it ise offered. while any request that arrives afterwards
must wa;t for the next cycle. Thus the mean waiting time is-
T T . .
h (TA'.'Q"&' . S_"*h(TB-t) St b8,
= “‘..:.'. g ?1TA-" SR
and this must have e non-zerb veiue. In the general case where.
the mean is not c01nc1dent w1th the offer of a cycle, the mean

waltlng time can be expressed as

- 81 -

" Times when memory
cycles offered

bistribution fundtidn

P}bb;\gaus 4 a.caa.z. mj"o}fw'

time

Figure 4.8.6. Distribution of Memory Requests

"‘:.; 82 -

y =g (xN/1 - d/r) |) : ' ..{' o : 4.8.8.
where g is a function which reflects the actual distribution of

data access requests,

Various dlstrlbutlons were’ 1nvestlgated, and Table 4 8.10. shows

the mean waltlng time .for the four dlstrlbutlons shown in- Flgure

'4.8.9._ To produce the table, the folloW1ng values were chosen

for the parameters of the distribution as shown in Figure 4.8.6
ta-t1=Tp - T, =1

the mean of g, /.k(g) (tg + t1)/2 . - .4.8.1‘.1. '

: Thls cho1ce of parameters describes a- sltuatlon where a request

can arrive at any time between two_successive offerings of a memory

cycle. .The value of M in the table is the distance
M = /*(S) - TA | A .) '4.8.12.

'that 15, the offset of the mean from the offer of a memory cycle.

"ffFrom the table it can be seen that the three distributions give

351m11ar waltlng times so0, for ease of calculatlon, the triangular

dlstrlbutlon is adopted throughout the remainder. of this chapter.

' Figure k. 8 13 shows the same graph as Figure 4.7. 12, but wlth the

trlangular arrival distribution applied to smooth the peaklng.

-

a) Triangular

L

b) Eliptical B « o ¢) Truncated Normal

Figure %4.8.9. Arrival Distribations

-8

"M Triangular Elliptical Truncated Normal®

o oso1 _:_,_‘b.soi . 0w03
0.1 0.581 o222 ‘.0;566_
o2 0621 o.sa8 0.605
0.3 0.620 o 0.558) 0.607 -
0 0580 . 0.548 C 0.569

0.5 0.500 T 0.500 . 0.502

0.6 0420 . ous2 036
0.7 0.3% BT 0.443’-'_ T 0.9
0.8 0.381 o 0.453 | 0.401
0.9 ok om0k

1.0 0.501 - L 0.501 04503

* Truncated at 95% confidence limits-

" Table 4.8.10. Comparison of Arrival Distributions

M 2

“'L_ = O 3333 *“0"

L Q#’ O 1000‘5!\04

R }
w e o \ooo#‘o

LEES P: \‘o

k\o,‘.‘ c& w\s\m\w Q,.‘,wa *U
da&x ocuua *D tzwwn«~ “dh“?fj

Flgure # 8 13. Smoothed Peaklng of Round-Robln Serv1c1ng

A8 4& 1’“

u-_-.,

rl
T T R R

Pollcy i

4.9, Application of Formulae.

In this section examples of the use of the formulae are given
showing comparisons with both simulation studies and practical results

obtained from multiprocessor systems.

The prxmary test-bed for the formulae was a 81mulat10n program
written in BASIC. The 81mu1atlon program contalned varlables
correspondlng to the major parameters of the model presented in
thls chapter. The varlables cover the number of processors, the
frequency of access to shared memory (for both data access and

program,copying) and the memorﬁ speed.

Each of_the'processors in the simulation nodel would repeatedly
execute the program, specified bj the memory socess paremeters,“
ﬁntil.a pre-specified number of time steps had been'completed.r
“T'When’the'simuletion”finished'the'number of'representetive'progrems"
_executed by each processor ﬁas reported. Memory accesses in the
simulation model were not made at strictly regular intervals, an
element of randomness belng 1ncorporated into their arrlval., Thls

randomness represented the s1tuat10n where memory requests were evenly

dlstrlbuted over the memory cycle.

Two algorithms were encoded for the resolution of memory contention.p
The first of these corresponds to the Prlorlty serv1c1ng pollcy. '

At each memory cycle, the processors are searched in order as in

- 87 -

the Priority'policy; The second corresponds to the Round-Robln

_pollcy, wlth memory cycles belng offered in strict rotat10n.

Due to the ideallrepresenteticn of the eerdﬁareiinhereht in the
_Prierity.model‘(thet ie no memory centeﬁtion),“it would.be exﬁected.
thet results obteined fromlthe formula would otereetimate the
*._throughput as.deterﬁined by .the simulation.:lAlsb,:thistoverestimate
would increase as the potentlal for contentlon 1ncreases; The
results for the Round~Rob1n serv1c1ng would, however, be expected

“to correspond more closely to those from the simulations.

Teble #;9.1} shows soﬁe resulte obteined frem the'simuietion studies.
It.is seen that the results correspond to thoee expected, with
greater discrepaney teing ehown in the Priority servicing. Aleo;

'as the frequency of accesses to the ‘memory 1ncreases (elther by
1ncrea51ng the data access rate or by increasing the number of

"~ processors) , there is a drop“in'actual performence.obtained"from”'

‘ fthe simulatien. -

Experience.foripredicting the performanee.of.reai hardware.was
obtaine& using the duel Interdata Model 70 system within the
‘Department of Computer Studles at Loughborough Un1ver31ty. The
memory of the system is 1 mlcro second. The memory contentlon
.resolv1ng mechanism is compllcated due.to the fact that the shared
memory is thySiCelly attaehed to one'of the processore. wten_thet

other processor wishes to access the shared memory, it:tids for

‘_.‘-88 -

PRIORITY | ROUND-ROBIN

THEORY | .° SIMULATION © | THEORY = .SIMULATION‘_
o Max - Av. Min Max ~~ Av Min
1)N;2;D=5 . 90.9 82.1 817 81.7 | 76.9{ 78.0 - 77.8 77.7

2N=5:D=5 | 90.9 | 73.9 73.9 73.7] 62.3| 62.6 624 62.3
- |3)N=2;5D=50} 99.0 | 98.1 98.1 98.0% 97.0] 97.1 97.0 97.0

WINS5iD=50 |- 99.0 | 98.0 98.0 98.0 [9h3| Oh5 b o3|

Notes: 1) No program copying
2) Mémory Speed = 1 -micro second

3) All values show effective performance in %

. Table %.9.1. Comparison of Theory with Simulation Results .

access to the memory and suffers a delay of 1 micro second. Also,
while it is accessing the shared memory, the first processor may

not access its own private memory.’

Two programs were used in a test of the formulae. These programs
1nvolved access to the shared memo:y, but at dlfferlng rates.
'Values for the parameters to the formulae were obtained from the
proéfams and these were used to obtain.comparativs pesﬁlts. TaSle
“4.9.2.:showsuthe rssu1ts obtained. The potential expassion of the
system can be found by évalssfing the.formulae for a greater numser;
of prddessofs. Figure‘#.9,3. shoss ths cﬁrﬁes fqr'the first of

_these"tws tésts, and it can be seen that thé'processqr limit is 20.

In (29)y a formsla, developed by UNIVAC, is cited for.evalsating
. the ektfa pefformsnce achievabls from the sddition of extra
prscéssors; Results are quoted for the 1168'system. Table 4.9.4
" shows’ the correspondlng ‘predictions based upon the formulae derlved"
in this thes1s. The values adOpted for the parameters are an
1nstruct10n time and memory access time of 3gsec, wlth memory being
accessed in one word unlts.; It is assumed that common memory is-
accessed every 1pstructlon w1th ‘accesses to common memory 1ncreas1ng ‘

access time by one eighth.

= 0nsoo ket
ps o e

s iices kit il

B A L

.. Figure 4.9.3. Graph for Interdata Test 1

Observed | Priority Rouhdeobin
TEST 1 0.5 B 85.7%
TEST 2 7046 75 0% - 60.0%

- Table 4,9.2. Comparison with Timings £

rom Dual Interdata

Model 70

UNIVAC FORMULA
" WITH 2 PROCESSORS 85.%
PRIORITY 91.4%
ROUND-ROBIN - 49, 7%

- Table 4}9.4._Comparison with UNIVAC Formula

 CHAPTER 5

~ THE ABSTRACT RESOURCE RING
- A SYNCHRONISING TooL

5.1. Introduction

This chapter,\aﬁdfth;t following;.ére @once}ned‘witﬁ'thé deéériptionx
of fhé deﬁglopmenfuofla.réliable‘synchr§ni$ing.fool'tbiéhaﬁle
resoﬁrce sharing and mﬁtﬁal exclusion within mﬁltiprocéssbr sjstemé.
Again, the model of'd‘multiprocessor ié’oflseverél'processes
connected to sémé sﬁared memory bﬁt'withouf any hardware
'synchroniSAtion available; except that required to prevenf ﬁultiple

accesses to shared memory.

'As discussed in Chapter Three, existing software solutions to the
synchronising problem in these circumstances have some inherent
deficiencies.. Theée include the potentialiy large amount of
computational time-required'to'synchronise, when demand becomes
high, and the possibility, with some ofrthe algorithms, that one or
. more of the processes can 5e blocked, indefiqitely. In-thié |
'chapter,'ﬁg approéch'a'solution by re-appraising the problem and inf
the following chaﬁter the ._sy_nghroniSing 1:-00'1, s0 developed, is

‘investigated with respect to reliability.

As has bgén noted, the time is spent iﬁ-discovering a new owner for
fhé resburce‘and the ensuing "bartering”. If the method of
discovering thé-new.oﬁﬁer'coﬁld be modified, or removed, then the
c&st of-synchronisation mﬁy be'redﬁqed. ' One method whereby this-may.
be achieved is to make the "resource free" staterillegal_and.gife ther
_ curfént resource owner the responsibility 6f 1§cating.a‘new owner and
- passing ownership, in5tedd of:merely relinquishing'the respﬁrce;,‘..

- -

* e
N

As will be seen later, this technique,which may be. termed a

resource maSter technique, has performanoe advantages when the R

shared resources are reasonably heavily used but means extra

overheads when the resource is used infrequently.

The resource sharlng takes place between processes on the dlfferent
processors. The problem of resource sharlng may, therefore, be

spllt into two phases

i) the sharing of the resources between processors {or more

correctly between the schedulers on the processors)

‘ 11) the dlstrlbutlon of the resource between the processes on

a partlcular processor.

The latter problem can be readlly handled by exlstlng techniques,

it being exactly the problem faced on a standard unl-processor w1th

the schedu11ng system actlng as a master or controller. Cons1derat1on

1s therefore glven to the former phase, that is the sharlng between

processors where no mastersh1p exlst:.

" 5.2, The Abstract Resource Ring

The problem of managing access té a single resource will first be
considered and this will later be generalised to cover the

management of several resources.

A data structure w111 be requlred to represent the current
ownershlp of the resource and ‘those processors wzshlng to use it.
Clearly, this must be placed in the shared memory of. the multl-
processor system 1f all processors are 301ng to access 1t. It will
:_also be necessary to have- algorlthms to access and’ alter the flelds
Iof the data structure to enable the requlred resource sharing to

take place.-'

A hode is required in this data structure for each‘hrocessor which
‘say wish to access the shared resource.. A suitable ordering of the
~nodes is in the form of a"clcsed”riﬁg.'lEach”node'ls"required to
maintaih informaticn on‘whether the processor requires use of the
resource and also whether the processcr is the current owner or not.
Thls may be held in two boolean fields kncwn as WANT (whlch if set
"1nd1cates that the prccassor requlres the resource) and CAN (whlch
1f set’ 1nd1cates that the processor is the current owner). Also,'
a separate fleld (NEKT) contalnlng a pointer to the next node on thet
‘ring is required. The whole data structure must be accesslble to .
all the processors, and each field must be individually addressable.

This structure is known as an Abstract Resource Ring‘(ARR).

- 96""

Two algorlthms afé required, flrstly to enable a processor‘to galﬁ
access to the resource and ‘secondly to rellnqulsh 1t. AThe‘

algor;thm for galnlng access to the resourqe (GETRES) conéists

of setting;the_ﬁANT flag and then, congeptuaily, looping inspecting -
the:CAN‘flag until it is set. Once the CAN flag is set, then the

processor has become the owner of the resource and may freely use it.

' The'secbnd:algorithm; to relinguish the fesourcé (PUTRES), consiéts
- of clearlng the WANT flag then lnspectlng the WANT flags of the other
'processors. When one 1s found set then ownershlp (1nd1cated by the CAN

flag) may . be passed. This is aqcompllshed by the processor clearlng its

- own CAN flag.and then setting that of the requesting pfocessof. The .
second processor will then discover that its CAN flag is set and will
then start to use the resource. These two algorithms are shown in

Figure 5.2.1;

~————In order to demonstrate that-these basic algorithms. can provide a.
satisfactory resource sharing tool, it is necessary to show that’

only one processor may become the owner of the resource.

_ Theoren
If all accesses to Ehe Abstract Resource Ringnare made only
through the GETRES'and PUTRES aigqrithms,‘thén the number of

 set CAN fiags can hever increase.

getres =

besin'

i: = our processor number;

WANT of node [i] := set;

~ while CAN of node {i] = clear do

nothing

od; -

. putres =

begin

i: = our processor number;

WANT of node [1] := clear;

hEEE ¥

" "while WANT of node [4] = clear do

- advance j to next processor number

od;

AN of node [1]

CAN of node [j] :

clears;

set

Figure 5.2.1. Basic GETRES and PUTRES

‘algorithms

.’93.-_

Proof

‘1) Consider firstly the GETRES algorithm. -In this algorithm, the
CAN flags are not assigned to, only the CAN flag of the node
corresppnding to:the_rrocessor-is inspected. Therefore the number

. 0f set CAN flags cannot increase by using GETRES. .’

11) The PUTRES algorlthm has: two steps 1nvolv1ng the alteratlon
of CAN flags. Flrstly, that in which the CAN flag of the current

. owner is cleared and secondly that of settlng the one of the new

. owner. If the number of set CAN flags is not to increase then two

‘conditions must be fulfilled -

a) The CAN flag must be set:pricrltc clearing, otherwise the
‘number set increases by 1 i.e. PUTRES must not'be'executed
unless the CAN flag is set |

b) The resocurce should not be passed to more than one new

processor i.e. PUTRES should not be executed twice in the
" same machine. |

The first condition can be met by ensuring that the CAN flag is
set prior to passing'the ownership. The second by ensuring,'within

the operatlng system, that a PUTRES of the resource IS not started

tWICe.

If both of these condltlons are met then f1rst1y the number of set 5
CAN flags is decremented and then. 1ncremented, leav1ng the total
unchanged. If the Abstract Resource Rlng is 1n1t1allsed w1th a

single CAN flag set (a slngle owner) then there can never be more

=99 -

.tﬁau a single owner 'following a sequence of GETRES and PUTRES

operations and the necessary resource protection is obtained.

:‘When the PﬁfﬁEé algorithm;is ihvoked, a search is msde_ofrtse ARR.
for auotser processor to pass ownership of.the resource to., If 7
_none is fouud the'aléorithm &oes not termihata, but continually -
_‘loops.‘ Clearly,-this is higﬁly undesirable.since‘it maj.be sose‘
-tise before the resource is reouired again; To overcome this
_exce551ve use of processor tlme a separate PUTRES act1v1ty is
: .crested to d1spose of the resource. This may be a separate process N
: or a function of the 0perat1ng system. This act1v1ty periodically
checks the resource ring, attemptlng to rellnqulsh ownershlp until

' the resource can be dlsposed of.

Bssicelly, the problem is to decide when next to check whether it
15 poasible to pass owuershlp._ Two strategies may be employed in
;_m“uum,edetermlnlng this. tlme- e
a) Periodic restart

b)) Interrupt restart =

With:solution a), the PUTRES actirity is restarted periodically,

that 15, after each search of the ARR the activity suspends 1tself
” for a perlod of tlme.r It may also be 1ncorporated 1nto a sectlon _

of the operatlng system whlch is executed perlodlcally, for example
;the scheduler-~ To reduce system overheeds with the latter

,’e,
_1mp1ementat10n, a flag should be set when the resource is owned but

- 100 =

‘ ‘flag is set..

not wanted 80 that the scheduler only performs the check when the

4 4

.W1th the second solutlon, the interrupt restart, the "PUTRES act1v1ty

"as a function of the GETRES algorlthm. A mechanlsm 1s. therefore,

-1s only restarted when another processor requests ownershlp, that 1s“ .

required whereby a processor performlngea‘GETRES may restart the

"PUTRES activity in another processor (if present).

A mechan1sm whereby this may be accompllshed is by u51ng 1nterrupts.

If a hardware path correspondlng to the Abstract Resource Rlng is
formed such that each processor may - raise an 1nterrupt in 1ts

successor processor, then when a GETRES is 1n1t1ated, an 1nterrupt

can’ be sent to the successor. Clearly, the successor need not be ;

the owner so whenever an 1nterrupt is received by any processor 1t

must be passed to its successor. Thus the 1nterrupt wlll c1rculate

vlround the ring. When the processor w1th the PUTRES act1v1ty is-

1nterrupted, it should restart the act1v1ty. As a consequence, the

~ resource ownershlp wlll be passed to the requestlng processor.

_hAs the 1nterrupt is passed round the rlng, 1t will eventually reach

the processor whzch 1n1t1ated the cycle. Clearly, there is no need

for the 1nterrupt to pass any further._ If each processor malntalns

a count whlch 1s 1ncrement each tlme an 1nterrupt is sent and

decremented when one is recelved then the 1nterrupt should be passed

'only if the count 1s negatlve._

Slnce 1nterrupt eycles are started when a GETRES is- 1n1t1ated -

then two (or more) 1nterrupt cycles may be in progress slmultaneously‘
if several processors request the resource (see Flg. 5.2.2.).. .
However, when one processor recelves an 1nterrupt, it is not passed
on 1f ‘there is one outstandlng, 80 the many 1nterrupt cycles are

coalesced 1nto one.,

The performance characteristics of the'tﬁo.solutionS'(the Periodlc'
Restart and Interrupt Restart) are differeht with eaoh performing.
better under certaln cond1t1ons. With the perlodlc solutlon, the
PUTRES act1v1ty may be needlessly restarted if the periodic time is
too short, However, if the time is too large, there may be excesslve.
delay in passing the resource. There 1s, however, no requlrement

for an 1nterrupt path to exist between the processors.

_ With'the'interrupt restart, if a GETRES unilaterally causes an'

o 1nterrupt to be sent then one could be issued while the resource

ig st111 in use, Also,the 1nterrupt path_must be created.

Wlth both solutlons, the PUTRES act1v1ty and GEERES must be nott-
' 1nterruptable wlth respect to each other (except for the walts).
Thls is to prevent the resource, in a "partlally-passed-on" state

. being clalmed by the GETRES cau31ng the basic assumptlons to be

v1olated. '

. Interrupt A initiated
-interrupt B terminated

-/
A
-
\
\
‘.
\
. b Y
Interrupt B initiated
interrupt A terminated
Path of Interrupt A =~ ——0—
Path of Interrupt B~ ~—.—.—»

_Figu_re 5.2.2, Multiple Interrupt Cycles

- 103 -

5.3. Multiple Rings

So fsr; the discussion has heen based upon a single rescurce.'
However, in a multlprocessor system many resources u111 be shared-

and each w1ll therefore need protectlng w1th a synchrcnlslng'mechanlsm.
Therefore the mechanlsm descrlbed above needs extendlng w1th Several

- resources. -

The function of the Abstract Resource Ring will be Spllt 1ntc two

parts and each w111 be ccnsldered separately, these belng

a) the handling of the ring nodes

'b) the operation of the PUTRES activity.

Flrstly, the ba31c rlng structure and cperatlcn. .Clesrly, a rlngl

: structure similar to the structure already devised will be requlred
for each resource. Since every resource may not be used by all the .

. -——processcrs, the resource- rlngs may not be 1dent1ca1. The rlngs need -
only contaln ncdes for those processors whlch may access the resource.:
The functions of GEERES and PUTRES also need to be modified to include
a parameter,glv1ng thevldentrflcatron of the-resource required. Each

- processor yill require a routing table to convert this identificaticn‘
into s pointer‘tc thefappropriate node. One 51mple technlque whereby
thls may be accompllshed is by numberlng each resource and uszng that.-
number as an 1ndex to a row of pointers, If thlS scheme is fcllowed,

a structure of the type shcwn in Figure 5. 3 1. 1s cbtalned.

- 104 =

Resource
1

Resource
a2

Resource 3

Figure 5.3.1. Multiple Resource Ring Structure

- 105 -

W1th the PUTRES Act1v1ty, uslng the second solutlon (the 1nterrupt
'Wakeup mechanlsm), compllcatlons arlse if multlple PUTRES act1v1t1es
are 1n_exlstence,on a partlcular processor, as may,.ln general,'

be the case. When an 1nterrupt is recelved from the predecessor,,-
.the questlon arises as to whlch of the PUTRES act1v1t1es should be
restarted. If multlple PUTRES act1v1t1es are created then elther
'some message needs to arrive with' the 1nterrupt to 1nd1cate for
which PUTRES act1v1ty 1t is 1ntended or all the PUTRES activities
should be resumed. Another disadvantage with this solution is the
potential number of interrupts circulating,‘ssd the associated_
countiog'coﬁplexity. A oore rational apcroach would be to unify the :
mechenlsm. The PUTRES act1v1t1es could be merged 1nto a s1ngle o
routlne, whlch could check for resources owned but not wanted, w1th
an interrupt manager belng created. When the GETRES routine decides
an lnterrupt should be 1ssued, a request is made to the 1nterrupt

 manager. When an interrupt is received, the 1nterrupt manager will

_...restart the resource checker and then perform the necessary countlng

_ and pass the 1nterrupt 1f requlred.'

Clearly, the sendlng of two 1nterrupts 1n qulck succe381on will
frequently make 11ttle difference in response. Some of the 1nterrupt
requests from the GETRES routlne may be 1gnored by the 1nterrupt
l.manager, for example, lf it has Jjust passed an interrupt round the
rlng or 1f two processes perform a GETRES for dlfferent resources in’

qulck succession. . -

With the first solution; that of periodic restert;.the existence of

=106 -

Vmultdple PUTRES.actlvxtres causes no d1ff1cult1es W1tﬁ restart.
The only dzsadvantage is the potentlal number of act1v1t1es whlch |
"‘may be in exlstence and the corresponding overhead within the 1‘
schedullng system and possible reductlon in the number of user
processes which can be supported. If several PUTRES act1v1t1es
would consume too many scheduler resources (e.ze items 1n the

scheduler 1lst), a 31ngle resource checklng procedure could be

o adopted as for the 1nterrupt restart. If the PUTRES act1v1ty'1s
-dlncorporated 1nto the scheduler, then a:count of owned but not -
'wauted should be maintained. The scheduler then need only check

if the count is non-zero.

107 -

5,4, Temporary Resources |

fIt has been assuhee-ih the'previoss secﬁionsjthat the ring structure
was a permasent part of fhe system. .It?is reasonable that,ffor“;
eerfsis permahent shafed Syseeﬁ fesources, the‘ringrsf:uctﬁre
'should'be created a£ sysfes iﬁifialisatien, in the saﬁe way as othes
system tables, w1th a node for each processor in the system. However,
many of the resources used in- the system will be of a tran51tory-.
: _natﬁre, being required only during the running of certain sets'of

' complementary progrsms. It would be'pessible to create a number of |
rings at system initialisation time which msy be used for these |
ffansient resources."ﬁeeeeef, this may eause unwanteﬁ intefaction
betﬁeen.two.(othefwise indebendenf) éroérams thch hsppen to be'ﬁsing‘_
" one particular resource ring for two cbmpletelj different transient = =
resources. Some mechanism must therefore be‘provided to enable

dynamic creation of resource rings.

.we require s proeedufe fdr:ﬁnieueiy creating rings,laddisg new nodes
“to exlstlng rings and dlst1ngulsh1ng between the different resources.
One poss1ble solutlon would be to ma1nta1n a. table glv1ng 1dent1fy1ng ,
: 1nformat10n about the temporary resources and a polnter to a node on
:the rlng.. A system resource ring wlll alsq be rqulred to protect.
this.shsred table as it is s.sensitive resource. This ring‘say

suitably be called CREATE and the table RESOURCES.
A processor rﬁnning a process requiring access to.a:temporaryfresource

must'first'call an allocation routine to'obtain the resource number
of the temporary resource. After all the processes referenc;ng thls_
temporary resource have completed the processor should remove 1tself

~ from the resource ring by calling a deallocatlon routine.

.The allocatlon procedure cialms ownershlp of the CREATE resource

to obtaln access to the RESOURCES table.. The table is 1nspected

to see if a resource rlng for that resource already exists. If a
lrlng ex1sts, then a new node is added to the ring for the processor.
Addlng a node to one of the rlngs consists merely of alterlng the
pointer and not the.value fields. Since the pointers are only
modified when a new node is added to (or removed from) the rlng and
'the correspondlng processor must own the CREATE resource, only one.
‘processor may be modlfylng the poxnters. The addltlon should be made
in a way such that the ring is never broken, that 1s, the p01nter _
(NEXT) fleld of the new node should be set to polnt to its successor -
—before the NEXT fleld of -its future predecessor is- altered. If a ring
does not exlst a free resource number is chosen and the descrlptlon of -
' the resource is entered in the RESOURCES table.i A rlng con51st1ng
: of a 51ng1e node is created and a pointer to thls node is placed in
“the entry for the new: resource. In both cases;_the number’of the

temporary resource is returned.

AThe deallocate procedure operates ln the opp051te manner.. Flrstly,

both the resource to be deallocated and the CREATE resource are

. 109 o

clalmede. Thls is necessary to prevent several nodes belng removed
slmultaneously and also to prevent another processor searchlng the
ring whlle the node is belng removed. Note that CREATE should be |
‘clalmed last to prevent possible deadlock. |
c‘If the processor performlng the deallocate is the only processor on
‘the resource rlng, then the entry for that temporary resource is
'removed from the resources table, enahl1ng that entry to be used

for another temporary resource in the future, and CREATE is released.

pr however, ‘other processors are stllllon the rlng, then the processor

perform1ng the deallocate must walt for one of the other processors

to request the resource. While waltlng, however, the CREATE resource

should be released to allow other processors access to the RESOURCES

structure. As with PUTRES, thls waltlng can be achieved more readlly

by creatlng a separate act1v1ty to allow the scheduler to contlnue.'
__When a request is made, the processor should remove itself- from the

‘ring and pass ownership to the requesting processor.

The operatlon of these two procedures is shown p1ctor1ally by the
) state of the data structures at various stages in Figure 5.4.1. A
possible implementation of these procedures will be found as part of

Appendix 1.

- 110'-

CREATE : | eefmep = 7 CREATE | ef—pm

XY3Z
P1
Initial State . P1:Ri=ALLOCATE ("XYz")
CREATE | edfmm
. XYZ
" P2:R:=ALLOCATE ("XYz")

CREATE = | e——» |_CREATE | et

I 2

XYz -~

P2

~ P1: DEALLOCATE ® | P2: DEALLOCATE (R)

Figure S5.4.1. Example of operatlon of Allocate and
. K : L Deallocate routines,

~ 5.5. A Comparison of Synchronising Tools

cFor a synchronising algocithm te be a viable tool in a maltlprocessor'
-system, it must not consume too many of the system resources durlng
'operatlon. Two factors, at 1east are a useful 1nd1catlon of the
'performance of such an.algorlthm. These two factors are‘the amount

- of time during ghich'the resource is requested but is unowned and

the amount of time between beccmiﬁg owner of the resource and being

. able to use-it. These may be thought of as the times between _
requesting a resource and being allocated 1t and frcm bezng allocated
it to‘uslng ite The Abstract Resource Ring w111 be compared wlth
two other synchsonising tools found in the literature. These are
firstly Dekker's obiginal solutdon to the problen as described by

_ Dlestra (22) and secondly a more recent solutlon dev1sed by |
Lamport (48). These two algorithms are reproduced in Figure 5.5 1e

The algor1thms will be compared on the two characterlstlcs noted above.

:_4Firstly, algorithm response time. Ideally,‘a processor should be
'1ab1e:to_ose.a resource immediately after it has been passed (or _
galned) ownershlp. By 1nspectlon of the algor1thms, 1t is seen that :V
_ both the Dekker and Lamport algorlthms contaln multlple 100ps. In
partlcular, both algorlthms require a processor to znspect ‘the state

: of all other processors with posslble secondary loops 1n certain

clrcumstances. In contrast however, the algorlthm for the Abstract Resource

_Rlng contalns only a 51ngle tight 100p upon a s1ngle varlable.

In order to investigate this static cost of accessing a resource

i plaim' = |
: HEEEE";
i ; our processor numbers;
label: 22112' t@rnr<; i do
B o ‘ci[‘illt = 1
ifb[turn].- 2 1»3}3;'9_

. turn: = i

for j : = each processor number except ourselves do
Cif e [j] = 0 then
goto label.

fi

| —

end;
. release = :
. i:= 6ur processor‘number;
turn: = 0{ |
c [il; =.1;
".b [{]: =1
end;

Qhér; b and ¢ are arrays dimensioned 0 to-N;rboth iﬁitiéiised to
1, and turn is.initialised to O, Processor ﬁumbéfs réﬁge
~ from 1 to Ne | o
Figure 5.5.1 a) The Dekkar algorithm

13-

it = ouf”pfocessﬁr nuﬁber;
choosing [1] ;= R : | |
' ht:xm‘:-:erl [i) s = 1+ maximum of number [1] to m;mber]'_N]' 3

choosing .[ij :‘=70; |

' ié:‘ j-: = ééchlpfocessor ﬁumber do :
| M choosing ['j]'<>'..-0 d_§ |
no'thing" o
while number [j](>0 -.ﬂc_l
'-V(npmber:['j]‘, i) 4;(number.‘[i]l,:i j.gg
‘. nothing

. begin
i : = our processor number;
number [1] t= 0

end;

. whgre_chogsing and number are dimensioned 1 to N, “both initialised e

to 0 and (1,3) < (k1) = (i< k) or ((i = k) and (§ < 1))

'._Figura 5.5.1. b) The Lampgré élgoritﬁm

o= -

.emplrlcally. the algorlthms of Lamport and tne ARﬁ nere encoded on.
a 51ngle processor system, but wlth the data structure that would
be required for severalc Calls to the. GETRES and PUTRES routines
: were‘placed.in a loop.‘ Table 5.5.2'givescthe‘timeseobtained with .
'varions numcers.of processors.‘ The.cost of tne nested loops can“.h”

be observed in the times given in the table.

Secondly;rrnat maj_be.called wasted‘resoﬁrce tine:_ This is the
time'dnrdng.which at least one processor requires the resource,_but.
due to the transitional state of passing ownership {or gaining
OWHErShlp) the resource remains unowned, or owned by a processor
vhich does not requlre the resource. Wlth the Dekker and Lamport
algor1thms, this cost factor is due to the 'barterlng nature of ther
algorlthms and the fact that the resource is freed after it has been _
used ty a-proceSSOr;-'ﬁith'the Abstract Resource Ring, this overhead
may oeiincurred when a processor performs a PUTRES but no processor
”requires the resource.” If a processor later reqdireS'the resource,”
-1t will be unable to obtain ownership 1mmedlate1y. but will have to'
wait for the owning processor to check for unwanted resources.. The
"ARR therefore contains some tunlng facxllty in that the frequency of
checklng for resources may be altered elther by changlng the frequency
with wh1ch 1nterrupts are sent or the tlme step ‘between reactlvatlons
; of the PUTRES act1v1ty. If the frequency is 1ncreased, the overhead
of wasted resource time wlll decrease, but the cost of perform1ng

the check will increase.

- 115 =

Loop Size | AR | Lamport's Aigor'it;hm*
| | | - N=4 | N=8 | N =16
© 1000 - e 0.9 '.1.'(')6:. o - _
_7 10000 o803 | o | oees | azow |
0000 | . 1605 1888 2129 26.08
30000 ey | a8s | 31.95 39.15

* N gives the number of Processors in the ring

Note: all times are in seconds

Table.é;B.z. Response time cohparison .

Shared resources whichrare heavily used, that is when one prOCesscr~
releases the resource another requires it will.suffer negligible
~overhead wlth the Abstract Resource Rlng slnce a PUTRES will always.
be completed_wlth no requlrement for-a-de;ay followlng a retry,
However, the‘overheade_for:the Dekker and Lamport algorithms will_
iacreese with;the number‘of processors taking pa;t'in'the resource .
sharing.‘ Both.these‘elgorithmsihave a Section of code which,ideally{
eould.be executed by a single proceesofrat one time. Checks have to
be made for multlple executlcn of that section of code, w1th p0551b1e
retrles in the case of Dekker s algorlthm. As the number cf

' processors 1ncreases, S0 doee the p0551b111ty of 51mu1taneous
execution of‘the critical section of code‘by severallprocessors‘and'

correspondingly the potential overhead of the algorithms.

It is worth ncting that if a resource is heavily used (as mentioned
'above) then the only overhead associated with the Abstract Resource
" Ring "is the cost of locating the new owner within the PUTRES routine, ~

~that is, the cost of searching the ring'structure;

To coaflrm these predlctlons, the performance of the algorlthms was.
tested under 61mu1atlon condltlons. The sxmulatlone were of a coarse-
gralned nature, Wlth an algorlthm-step as opposed to a machlne
1nstructlon helng executed by each processor in turn.' Thls is a
suff1c1ent formulatlca of the algorlthms, since no actlon.beteeen:
algorithm steps may affect the synchrocieatica being performed, and

each step is a single action.

- 117 -

. The simulation program'ues written in fhe'BASIC‘language.aud .
enauled_a number of resources -to be shared amonget a number‘ef
processors. Bothlthe number of'resoufces aud tue number.of_
processors were supplled as input data. Each proeessdr uould'.
Irandomly choose one of the avallable resources, clalm that resource,
hold it for a number of algorlthm steps and then rellnqulsh the |
resource., A further number of algorithm=-steps would elapse beforeu

' thaf'proceSSdr would again choose d'reseurce and repeat the Cycle..
' :Tue‘siue of the time'perieds hoidihg and not.holding the resource
were speclfled by 1nput data. The three algorithms were incorporeted‘

" into the simulation program.

- The three algorithme were compared under various configuratious end

- workloads. Figure 5.5.3 shows graphs draun_from some of the ;esults ,
‘obtaine&lfrou the simulations. All thelgraphs shew the operafion '
with six resourees being ehared. Two of the grephs a) and b) shew

- results for a veuying.numﬁer of processoes while graphs ¢} and @)
show results for uarying ubrkload, thatlis frequency of resoufce
access,. Fdr'eaeﬁ'varianf; a'graphris‘giveu'showing.the two critical
measures of the performance of the algorithms. The wasted time,‘:
expressed as a.percentagelef,ﬁptal elapeed time, is shown in'grepus o
ha) and ¢). and graphs b)‘and d) show the total resource usage'expressedf

as a percentage of total possible resource usage.

From these graphs, it can be seen that a performance similar.to that
predicted is obtained. As the load upon the resource sharing
mechaniem is increased, either'by_increasing the number of proceasors |

- 118 -

., S P A. A.w om-m-m o.naw.n.m -

f.J. o

1 ‘

£

TR OOF PROCY

i

N

T

or by increasing the frequency of aCcess.to-the mechanism, so the -
' performance of the Abstract Resource Ring 1mproves.aga1nst that of the‘.
other two algorlthms. Under light usage, where frequent use of the
PUTRES activity will be required, the ARR performs poorly compared

to Lamport‘s aigorithm;' As the number of processors'increases;'thez
Abstract Resource Rlng rapidly 1mproves in performance and with a
‘heavy workload gives con51derably 1mproved performance (only half of |

,the overheads) against Lamport's algorithm.

' Therefore the Abstract Resource Ring is most suited to the protection

of heavily nsed resonrces,'in particular potential system bottle necks.
In Chapter Seven it will be shown that even with less frequently

used resources the ARR gives acceptable performance.

'_.Anotherraspect'that should he considered whenlccmparing'the various
: lalgorithms is their ability to distribute the resocurce usage among
“'the processors.” As was noted in Chapter Three, some synchronisation
algorithms may allow processors to remain blocked 1nde£1n1tely lf
resource‘usage is heavy; The algorithm developed by Dekker falls
into this;categOry._ Lamport, however, has developed an algorithm

which guarantees service on a first—come -_flrst-served basis.

hIWith‘the Ahstract Resonrce Ring,'however, SOme"scheduling may be
incorporated. ' If the standard searching algorithm is used then no
processor will be blocked, the use of the resource being on a form

of Round-Robine However,this search_algorithm maj'be replaced by

. _123_

' another whlch 1ocates the next user of the resource on another

ba31s, for example on prlorlty. Thls adds an extra dlmen51on of

flexlblllty to the ARR

- 5.6. Multiple Users of a Resource

In the préceding.secfions'of this chapter, it has beén assuﬁed
:fhaflfd?_eéch prdfecteé‘fesoufdé, ohiy'a‘singlé prqcéésor may.f

- access th;t ;ésourée'gt a‘given time. Howefér, a claés of probieﬁs.
have been deécribea,lfhe_readers and writérs problem (17), in whiqh
severai t&pes,of fesouréé_use, éxist.' Witﬁ ébmé.of these fypes it?
.isjp§SSibié for éeverai‘useréltb.;imuiianeoualy acceés theishared)

resource. -

With the Abstract Resource Ring as described, this is'not directly

‘attainable., It méy‘also_be nécessary,‘within the écope of multiple
users, tb periodically reduce_the nﬁmbér of procéssors allowed fo.
access the resources For example, a file'may be read by any number of
prﬁcessdrs, but when.one fequires to write to that fiié, it may be:
neceésarj to stop any other reading and writing.

Two very_similﬁr_Solutiqns:to this groblem.é;e presented in this
sectioﬁ, fhe first using tﬁe Abstract Resﬁurce Ring in its current

format, the second uSing‘a modified form of the ARR. -

Fifsfiy,'ﬁhe fdié_df the Ab;tracﬁ Resource Riﬁg may #e.modifiéd;
Instead'of providing accéss:tﬁ the resﬁurce directly, the ABR protides
access to information og the current usége bf the resoprce.. With

this technique a procgssof obtains access to thié'infofmétion bibck
'bf céiling GETRES. Then, éfter inspéctiﬁg the data block, the
procgséof decideélwhéthér it is able to use the résoﬁrce or nof,

=125 .

making.hote in the data block:as neeessary. ‘Access to. the datal
_bloch iS‘then'released by calling PﬁTRES. - This appranh reoaires
that the cooe‘handlihg the usage informatiOn block be placed in the
user program. This may place'dnwanted,management responsibilitleai
upon the user, although great flexibility may be achieved by |

careful structurlng of the data block.;

The second approach involves modlfication of the Ahstract Resoﬁrce
Ring. As will'be'seen in- the next chapter, the modifioation improres
error recovery oapabilities of the ARR. If ‘the ARR data structure

is altered {in some sense 1nverted) to conSLSt of a node per
processor as before,‘but consisting of only a'WANT‘flag and pointer
to the next node in ‘the ring. The CAN flags can be: replaced by a -
'51ng1e location for each resource rlng. ThlB locatlon-wlll‘oontaln
the hame (number or other 1deht1f1cat10n) of the processor currently“
owning the'resouree; The GETRES procedure now loops inspecting this
~new OWNER locatlon untll the processor'e 1dent1f1catlon 15 placed

:ln it. PUTRES places the name of the new owner in the looatlon rather

than'clearlng and setting the‘CAN flags.

| If multlple users of a resource are requlred, they may be 1ncorporated_"
"1nto the ARR by prov1d1ng several OWNER locatlons for each rlng. The
number of OWNER 1ocat10ns would spec1fy the maxlmum number of
51multaneous users of the resource. A call to the GETRES routine

would speclfy the resource requlred and also the number of ownershlp

" locatlons requlred. The processor would 1oop within the GEIRES

routine untll the requlred number of ownersh1p locatlons contalned

- 126 -

its name and would then be ebie to use the reseurce.

Unfortunafely,‘tﬁis algeriehm is not sﬁffieiestly.streng-to.'
counteract a‘possible deadiock;:'This'may be shown-by censidering'
a case where four ownership locations exist and two‘processers -
require three of these locations each. It would be possible for
the'prOCessers to obtain two.of the ewﬁership'locatioﬁs each thus

 blocking the ether, and the resource.

Thls problem may be overcome by only allow1ng a 31ngle processor to
obtain "mult}ple ownersh;p“ at any-one tlme.. This may be accompllshed
by asding'anether.loeation, say HULTIPLE, simllar to the OWNER 1qcatrons.,
Before_a processor may attempt to obtain multiple ownership, its
'identificstion must be placed in MULTIBLE, The problem arises when
two processors partially‘claim mulpiple ownership but insufficient
ewnershiﬁs remain to cemplete either, the problem attacked by the
Banker s Algorlthm (22). since any processor between one passing
an ownershlp and the multiple requester which w111 have a request
honoured requires only a s1ngle ownershlp of the resource. the
'ownershlp w111 be used and then be passed on, eventually to the
-multlple_requester.' After sufflclent ownershlps have clrculated and
'beeh cisimee.by the multlple requester, it will use the resource. A
consequence of thls strategy of hav1ng a s1ngle multlple owner 1s~
 that a processor requlrlng multlple ewnershlp of a "hlgher order"
than that which 1t already has must not retaln any of its ownershlps

unt11 its 1dent1f1cat10n 15 placed in MULTIPLE since the ownershlps

- 127 -

may ‘be required by another processor. This implies that, in general,
é'processof may not increase its ownership while keeping those it

has.”

Once a processor has achleved 1ts requlred number of ownershlps, 1t
may pass the MULTIPLE locatlon to another processor since 1t may

only rellnqulsh the ownershlps it has,wlthout any p0551b1e deadlock.

~ The PUTRES and PUTRES"IACTIVITY must be modified to'pass all the
ownershlps held but only passing to a processor whlch has need of

an ownershlp, there belng no advantage in paBSlng on ownershlp to a

processor whlch already has its requirements met.-

CHAPTER 6

- THE ABSTRACT RESOURCE RING

© AND RELIABILITY

6.1. Introduction

"The use of computers in on-line control situations and for
other applications giving rise to ever-more stringent reliability
and availability specifications, resulted in the construction

- of systems including two or more central Processing units sesess

~ As a result of the multiplicity of units in such multiprocessing -
systems, failure of any one would degrade, but not immobilize, -

. the system, since a supervisor program could re-assign activities:
-and -configure the failed unit out of the system.,” (50)

. If the ﬁotential for incréaééd reliability iﬁ a'multiprocessing system‘
:ié‘to be realised, then care must be taken to ensure that the‘shéred
_resqurdes, iqcludiﬁg éystem tables, éannotJbe corrupted or lost due
"to the failure of a system component (e.g. the central processing unif).‘ '

Ih this chapter, a brief classification of faiiures is made then the |
degign‘of the Abstract Resource Ring is fe-analysed and an alternative

implementation is discussed which enables graceful degradatidn of the

multiprocessor sjstem to take place for one of the classes of failure.

" 6.2. Classification of Failures

Failures may he categorised into two main groups, namely

'1) Hardware failures

2) Software failures

Eaeh of these groups may be subdivided into the following two partitions
a) Cessation ofaoperation

b) Fault in operatioh
Examples of fhe'type of failure in the four subgroups are

1a) Cessatlon of opefatlon of a processor may arise 1f the operator
swztches off a processor or 1f a power fa11ure occurs
1b) Faults in hardware can arise in many ways ev1denclng themselves
in such_phenomena as 'dropped blts' in memory accesses, a failure
- in addressiog, eﬁc. - | .
‘ﬁm__néa),Cessatioo of‘process‘execufion,may a:ise_beoause of a systema_r
deadlock, or a_seheduler malfunction‘ :
Zb)_Faulty oﬁeration of a p:ocess @ay be evidenoed in “random"

acorruption‘of'code.or data due to incorrect coding.

Whilst perfeot.security and reliability is clearly desirable it can

never be achieved in the hardware. At best, the probability of |

failure can be reduced to a suitablyﬁiow level. Many of today's

reliable_sjstems provi&e their reliability at a heavy cost in terms

of du?licated ccmponents andrspecial-logica Yet sith~the current '
state of the art ,. many areas of potentlal error are being overcome.
For example, store protection and address1ng mechanisms have largely_
_overcome the problem of . user programs corrupting system code and
data. Thus, rellablllty agalnst a certain type of fallure can
frequently be achleved 1n a cost-effectlve manner. In the bulk of
thls chapter, con31derat10n w111 be glven to prov1d1ng rellabllxty

_ to cover class 1a) cf fallures above, wlth respect to the CPU only.

'In sectlons 9 and 10 of the chapter, brlef con31derat10n is glven

to other errors.

The standpoint from which the solution presented in the next section :
was taken was to prov1de a version of the Abstract Resource Ring
whlch would allow the remalnlng processors to contlnue to share the

resources after the fallure of one or more processors.

- 132 -

6.3. Initial Death Detection

The startlng p01nt for the 1nvestlgatlon was the Abstract Resource
'_ Rlng with-a szngle resource u51ng the interrupt mechanlsm to ensure
- that the resource ownershlp would be transferred. However, thls s

- arrangement w111 not work as 1t stands if one or more of: the
processors on the 1nterrupt rlng ceased operatlon ("dled") Two

' pOSSlbllltleS could. arlse.

a) (see Figure 6.3. 1) The 1nterrupts would not complete a
cycle of the rlng, proceedlng no . further than a dead processor. In
the Figure, processor A can never receive an interrupt to cause it.
" to pass the resource, so it will be lost to all processors except

A 1tse1f

b) A second,land possibly more catastrophic,'situation is that -

_the dead processor owned the resource when it died. The resource

. ‘would then remaln unusable.,

Clearly some actlon is requlred when a processor dzes. This. act1on:
is requlred in two phases, flrstly the death of the processor must

be deteoted and secondly recovery actlon must be taken for the dead‘
processor. It is worth notlng that for the system to contlnue to

give a response, though degraded, the only recovery that must be

taken is that of the shared resources.' Thls is because the processors:
are assumed to be otherwlse 1ndependent. Thus it appears that
1recovery actlon is only necessary lf the dead processor was aotually

using, that is had'ownershlp of, the shared resource. ,This '

- 133 -

e

-//(;nterrupts

/

..A b (:) VC)l Dead Processﬁf o

Resource
Owner

B

Resource
Requestors

Flgure .6-3010

- 13-

{1nformat10n is readlly accessable from the ring. data structure by 1nspect10n
of the CAN/WANT flags for the resource to- wh1ch the dead processor
_has_aceess; _Thls makes ‘the Abstract Resource.Rlng system a very

- good'medium'for death_detection and error recoverj initiation.

- The first. solution followed naturally from'thelconstraint whichr.

- must be placed upon the recovery:-

only one processor may perform reccvery action on the death of

 another.

:,A suitable candidate for the processoruperforming the death detection
. is the predecessor of the dead processor,;this always being uniquel

in a ring structure. If, when an 1nterrupt from the ring is recelved
by a processor, it acknowledges recelpt of that interrupt by sending

: s_reply to its predecessor, then the predeceSsor may ascertain whether
its successor is dead or alive, If a reply is recelved, within a

" Tsuitable tlme sPan, then the successor is assumed to be allve,'

'“ otherwlse it is deemed to be dead. Once a processor has discovered

. that its successor is dead, recovery actlon may be ‘taken.

The form of the error recovery, for the 51ng1e resource, 1s shown

in Flgure 6.3 2. Flrstly, the state of the WANT flag of the dead .
processor is remembered and it is then cleared. Thls step is to
prevent the resource ownershlp need lessly passxng to ‘the dead
processor., The processor performlng the recovery should now wait for

a sufficient length of time for a processor which may'be in'the

s

no yes

- set?

- grab resource

set?‘

¢lear WANT‘

reinstate resource

remove from ring

.Figure 6.3.2. Basic Flowchart for Recovery Procedure

-.136 -

 progress of passing ownership to the dead processor.

Secondly, the CAN flag is 1nspected. As stated'above, no recovery
| actlon on the resource is requlred unless the CAN flag 1s set.‘ If
th1s s1tuat10n arlses, the ownershlp of the resource may be forclbly
acqulred by the (unlque) predecessor of the dead processor (termed
"grabblng") by clearlng the CAN flag of the dead processor and :
sett1ng its own. The need for the constralnt above now becomes
'apparent. If'several processors attempted to recover from the desth
‘of another processor, then more than one of them could become the’

owner_of ‘the resource_durlng the recovery perlod. This would v1olste

the basic premise of the mechanism.

If both the CAN flag and WANT flag of the dead procéssor were set
.""thes not onlj did it_own the resource, but it was potentially using
| it. In this case,some recovery action must.be taken to check the -
bw;_internal consistency of the resource._-This may involve a number of
steps, for example comparing forward and backward polnters W1th1n
‘la data structure etc. In sectlon seven of thlB chapter, a descrlptlon
of a technique is glven whereby a shared data structure may be updated..
in a manner such that 1t may be restored to a self consxstent state _ |
even 1f the update was only partially made.
-Hevirg returned tbe resource to a useable state,!if necessary,
'recoeery action needs to be made to the ARR structures This recofery
-is required even if the ‘dead processor was not uslng the resource.'

. The rlng structure mechanlsm will not functlon since 1nterrupts :

- 137 -

cannot pass the dead proeessor. The dead proceesorfmuet.ee re@oved
from the ring, and thetcefrespondiﬁg interrupt path needs to be |
reformea. Prlor to remov1ng the node correspondlng to the dead

| processor, the recovery processor should obtain the resource, if 1t.
does not own it, by performlng a GETRES. The condltlon is lald down o .
that a processor may only remove a node from the rlng if it owns '

the correspondlng resource. Since only a processor performlng a

- PUTRES, and hence ewﬁing‘the resource, may inspect the nodes of

other processors, no other proceesof may'be inspecting the ring while
the_node of the dead_preeesso; is being removed(by the resource owner).
The removal is'easilj accomplished by replacing the NEXT fieid.of_

.the recovery‘proceseor's'node with that of'the_dead processor.

Wlth the above mechanlsm,‘a syatem sharlng a slngle resource may

gracefully degrade in the presence of a single falllng processor.

'"However, many def1c1encles remain in the system. In the next sectlen;'

‘these deficiencies will be presented and-solutions to them will be - = ~ . . .

glven.

6.4, Rigorous Death Detection

The followiﬁg deficiencies can be'observed in the recovery aspect

of the Abstract Resource Ring as described in the previous section: -

' i)lreCO¥ery takes place within a single resource envirbnmeqt'only
ii) in generai,rrecbvery cannot be made frbm multiplefdeaths

(see béigﬁ) . ‘ |

iii) a processor inla'repeatgd stop/start state may be deemed dead,

" but "come back to life" and potentially cause havoc by using a

resource ownership which has been removed from it.

_iv) the potential need for operator intervention to reconnect lines

_to ensure that the interrupt path corresponds to the Ring Structure.

To show the validity of point ii) above, consider Figure 6.k.1. Processors
A and B have both died, with B owning and using the resource - none of

processors A, c or D want the resource. On dlscoverlng the death of

processor A, as shOWn in the flowchart of Flgure 6.3 2y processor D
"performs a GETRES on the shared resource. chever, that GEERES can
never be satisfied since the owning processor is dead and cannot be

recovefed.' That is, a form of deadloék afisés.

~ The development of the Abstract Resource Ring willrbe described, and

it will be shown how-the developments overcome the deficiencies above. -

The first matter to be considered is the recovery with multiple

- 139 -

_ Eigﬁ:e 6.4.1.

- 40 -

rings. In_seoﬁion 5,3, itlsas postulsted toaf a siogle process
On.each proeessor (ﬁhe {sferrupt manager) should administer the

_ interrppt prompfing reohanisme Any prompt1ng 1nterrupts would then :
clrculate the Rlng Structure pa351ng to every processor, not Just those
capable of-shsrlng a partlcular resource. This led to the conceptual

splitting of the Abstract Resource Ring into two classes of rings:

a) "Software" Rings - the ring structures used within the

' sharing of particular resources

b) "Hardware" Ring - a ring structure:showing the physical
ordering of the processors, and used by .

the interrupt manager on each processor.

This breakdown of functions naturslly_allows processor death
detection to take place'within the context of the Hardware Ring, on
a similar principle to that employed with a single resource., The

death detection, therefore, becomes independent of the actual resource .

shariné.iw"q'm

The interrupt manager s function 1s‘mod1f1ed to include the reply/
tlmeout mechanlsm, as proposed in the prev1ous sect1on, to enable

the death detectlon to take place. When a death is detected, the
recovery process must flrstly rebulld the Hardware ring by removing '
the node for the dead processor and arranglng (Wlth p0351ble operator-
interventlon) for the 1nterrupts to be sent to the new successor.e
This may be accompllshed because of the 1ndependence of the Software

and Hardware Rlngs. It has been seen that,_w1th_a 51ng1e_resource,

detection of multiple deaths'was severeiy handicapped. But for
'the 1nterrupt manager operatlng under the Hardware R1ng, the death
+

detectlon may be cont1nued before recovery of any of the Software-

rlngs is started.

Having'rebudlt toe Hardware Riné,'the'recovery procese may‘theh“
perform any-recovery_necessaryrfor eaco Software Ring to'which the.f
‘deadrprocessor is attached. The 0peratlons performed . w111 be dlrectly :
. comparable to those for the single resource case. The WANT flags of
~all resources not owned by‘the dead proceeeor should first be cleared
to prevent it becomiﬁg anﬂowner, and thus increasirg the cost of |
_ recorery;‘ For a particular ring to which toe deed proceesor is
attached, it hay be that.the recovery proceosor has oo.node as it.is
a‘temporary resource. In this case, before'any_necessary grabbing of
toe reSOdrce or'other recorery action which'may be neceseary can take
place, the recovery proceSSor must add itself to the ring by the
~ technique described in section St Sioce-this-technique relies on
the CREATE resource, it may be necessary to overlap recocery
procedures'if a second (or later) death caused the (temporary).loss‘
of CRENEE.._Once the recovery of the resource is completed; the
proceseor should remove itself from the ring. AlSo, removal of the
dead processor's node is not as stralghtforward as in the 51ngle '
f resource case,.51nce the recovery processor need not he the predecessor.
of the dead prccessor on a Software Ringe The Software Rlng may need |
to be searched to locate'the‘predecessor. The need to own-the resource
before removing a node is again required gsince eeveral processors

may otherwise be searching the ring.

<2 -

With the Software Rings, however, (except.in the cese of'trenSient '
lresources (see section 5 4.)) there is no strict need to remove
the nodes of the dead processors. The reeson for the removal of
nodes of dead processors was to enable further death detection to
be performed., Slnce death detectlon operates 1ndependent1y of the
Software Rings, the removal of nodes need not-take place. If the

' nodes are remored-then\it reduces:the size of the Software Ring;

reduczng searchlng costs, however when the processor is brought back

into the system after belng repalred the cost of addlng it back to

the rlngs from wh1ch it had been removed must be pald.

Thus, by separsting the'reSOurce sharing and error recovery aspects
of the Abstract Resource Ring, deficiencies i) and ii) above have

been overcome.

The need for operator'intervention (ﬁoint iv)) is due to the need -
“‘for”an”interropt_path existing betﬁeen-edjacent processors. Some
multirrocessors-systems have an.inter-processor interrdpt mechanism
1‘(51),'jet’others do not. In the istter'case, external I,/0 ports
msj need to-bejused back-to-back (as in the’system described in
Chepter Seven); When a processor dles, rearrangement of oabllng may
therefore be necessary in order to keep the physlcal 1nterrupt path
‘corresponding to the internal Hardware Ring structure. This operator
intervention may be ﬁndesirabie, and is potentiallyrerror prone; An

alternative approach to the:interrupt mechanism was therefore sought.

The solution to the protlen proved straightforward once therprinciples

- W3-

~ concerned had been isolated. The basic requifement, from the error -
recovery aspect, is that a processor indicates (or fails to indicate)
that it is alive. As has been suggested previously, two basic
methods may:be used to achieve this indication. It may be either -
i) on demand

- cor ii) periodic,

The interrupt mechanism is an example of the first type. A processor
indicates that it is alive by replylng (on demand) to an interrupt.

 The alternatlve might be expected to be of the second type.r

If each processor maintains a local clock variable readable by all
"'._:pfOcessors,‘and“thisdclock is guaranteed to be_correcf (to within a
fiked accufacy) to the ﬁfeal‘fiﬁe" ﬁaintaioed byrthe sjstem_as ai
- whole, then a processor may'safely be deemed dead if its local time
‘is outside che'required accufacy. A simple realisation of this
would be to have a location containing sygt;;'u’ﬁ; ;;nd have each.
processor cOpy this time :Lnto the:.r local time locatlons. say everyl
second. If the dlfference between system time and the local time
of any processor exceeded one second, then that processor would be.
assumed dead;' A degree of safety may be added by using a ciﬁderj

accuracy for checking the copy.

These local times would replace part of the nodes in the Hardware
Ring, and the interrupt manager would be replaced by a process which
_,perlodlcally checked the local tlmes to deteot dead processors. ‘This

death checklng process needs to compare the local tlme for its successor

- 1#4 -

against the current system time. If the processor is ‘dead then recovery .
action should be‘taken.. However.:if multiple deathe are to be handled.

then the follow1ng processor should be 1nspected. This shoﬁld continue

 until all the dead processors 1mmedlately followlng the checklng

- processor'are found. °

With this technique, no operation intervention is required during the

’reeovery action overcoming point iv) above. However, the problem of ..

- maintaining the system clock arises. Initialisation of any clock requires

eperator interection;fand'so when thie action is performed, the'system
clock can.be iﬁitialised. Eeeh successiﬁe'processor may then initialiee
its local time from fhe‘SQSteﬁ clock.' If elilﬁrocessefs afe given the |
responsibility of maintaining the system clock accordiﬁg to fhe rule:=
:"Each periodic:interfupt, thellocal.time,is advanced.- If this
_time:isrlatef than system time then the system time is advanced"

then some advantagee follow. If all the processors are operating

correctly; then the local time on each wiil_advanée in sfeé.r-if;-lim

however, one of the processors dies (or stops), its local time will

lag behind the system time maintained by the others, and if it
restarts, it will not reset the system ti@e, This difference between

system time and local time may be used to improve frappiﬁg of the

- etop/starf effect of poiﬁt iii)‘above..,If the local time of:the

: processorlbears a greater.discrepancy to the system time,than the.

guaranteed accuracy then the system on that processor could deem 1tself
dead, and terminate any further access to shared resources on the

assumptlon that reeovery ‘action had been taken. Note, however, that

- W5 -

if the processor was about to update a‘shared resource or the rlng
structure when it stopped 1t may, on restart, contlnue w1th that -
.update, caus1ng pcsslble corruptlon of data 1f recovery had takeno

'.“place. Local time would need to be reset as a speclflc act if a’

processor'1s_1eglt1mate1y_restarted after a fallure.

If the local tlme accuracy is not a flxed quantlty but made flexlble

for each processor, then when a processor is about to enter a known

stop/start state (for example 51ngleeshot‘operatlon) the accuracy
:could be'made very“crude; This operatioa ﬁould clearly be a'functiond
~ of the Hardware Ring, with the'accuracy for each ?rocessor being

stored in its node on that ring.

" From the.above discussion,.the periodic'sCheae for hapdiing the
function of.the Hardware Ring has certain advantages. Thelfirst of
these is the ablllty of the total system to reconflgure itself,

"w1thout the need for operator 1ntervent10n. In some appllcatlonsg.
this may be -of some importance. Also, the stop/start state may be
more easily handled and, with the periecdic technlque, a: processor
may 1ncorporate some self checklng agalnst stop/start. However, it
does requlre a clock to be present on each machlne 1n the rlng.
Agalnst the perlodlc scheme the arguments of the prev1ous chapter
may be raised, that is needless restart of the checking processes

and the ensuing processor.overhead.

6.5. Failure within ARR Routines

So far, no consideratidn has been given to the conSequences"of o
- a processof féiling during any of the Abstract Resource Ring'routines.i_
. Those procedures which need tp be considered are GETRES, PUTRES,

the allocate and deallocate routines and the récoﬁgry procedure.

of these, the'allocéte and deallocate come under the class of general
' resourées, since they involve a data structure protecfed by a resource
ring (CREATE). Recovery techniques may be applied to them as to any

other data strucfure.

The remainiﬁg three, however, need separate consideration.

,6;5.1. GEERES routine
Tﬂe dnly:oﬁeration this routine ﬁerforms upoﬁ thé‘ARﬁldafé struétureé '
is to alter the value of_the'WANT_flag;” If a procéésof fails during
. execution of this routine the ARR willlappeaf either with or without
the appropriate WANT flagfseﬁ.~ Neither oflthe two conditioné is

illegal, so failure within GETRES is safe.

6.5.2. PUTRES routiné

The‘cénsideration given to.PUTRES-élsolapplies to the PUTRES Activity.
The_act of c¢learing the'WANT'flég'cannot affect the légalitysof‘the
ARR datalﬁtructure if a failure oceurs, no; canrfhe éeafching of.thé)
ring.l Howevér,'the passing of:oﬁnership Betﬁeen processors poses

difficulties. The processor passing the resource needs to clear its -

I 11,

own CAN flag- and set that of the second processor. This clearly
takes mofe than ene.'operation on _most cemputers', s0 the processor -

may fail between the tworsteps.

If'the ﬁrocessor elears its owﬁ flag prioe'to failing, then the

: rlng appears to have no owner. ﬁewever, if thé setting and clearing"l
| operatlons are 1nterchanged and the CAN flag of the new owner is set :i
prlo:rto falllng,_then after recovery two owners of the ;esource
exist. ~ﬁoth sitﬁations break the‘basic condition for correct

operatioﬁ of the Abstract Resource Rihg;
' The. techniqie of reliable update,described in section seven of thié"
 chapter, may be used to guerantee a legal state of the ring structure

" datae.

Another solutlon may be obtained by adoptlng the OWNER location

technlque descrlbed in sectlon 5.6 (that is. of maintaining a location -

holdlng the identification of the current owner of the resource rather
than mahy CAN flags). The problem afiseaibeceﬁse'a sipgle piece of
‘information, that is the cutfeht owner of the resource, has been
distributed emongst seteral'nodes. 'In general, this distribution:,

_ of 1nformat10n raises many rellablllty problems.i Ih:this context;‘if
the dlstrlbuted ownershlp 1nformat1on is replaced by the single

OWNER cell, the pa531ng of ownersh1p becomes a single operatlon and"
dl’flcultles wlth fallure no longer remain, since the location will

“either contaln the old .owner or the new owner of the TeS0Urce.

-8 -

The technique of section 7 of this chapter is the generalisation of

fhis technique.

6.5.3. Recovery Procedure

' Two possible illegal conditions may arise if a failing processor :

" was ‘executing a recovery procedure,’

a) The death of.the.recovering process may occur after the

original processor-has‘been removed'from_the ring but before
it has had complete recovery action_taken over its resources.

b) An 1nva11d structure w1th1n one of the resources may be

‘ generated due to partlal recovery belng performed upon 1t.

Consider the latter possibility first. If.tﬁe processor was actuallyl

performlng recovery upon the resource, then it must have ownershlp

of the resource. The recovery procedure itself should be oonstructed-
——4——4-—-in~a manner which,~if-it“is being performed-as a prooessor whichf.-~"--~

~dies, the recovery may be restarted.

The ring structure is altered on two occasions (see Figure 6.3.2.). -
Once when nodes are removed=and once when the resource is grabbed;
The removal of a node 1nvolves the changlng of a 31ngle locatlon in

the node (the NEXT fleld) and is a slngle operatlon and is therefore

safe w1th respect to a failure. However, the grabbing of a resource o

-is not a single operatlon, but it is an operation correspondlng te
that of the PUTRES routlne. Uslng the 51ngle ownershlp 1ocatlon as

descrlbed earller, thlB operatlon may be made sefe.

:_ 149 -

The second magor condltlon to be considered is to ‘be able to
.contlnue the recovery of‘the orlglnal dead processor. If the

interrupt mechanlsm 1s employed, the node in the Hardware Ring'

for the dead processor is removed before any recovery actlon is

taken.‘ So the death of the flrst processor cannot be redlscovered

if the recovery processor dles. Yet, as has‘been noted, if the node

remalns,-lt may‘not be poss;ble to recover from.multiple deaths.,
Z:The'nodelmusrhthereforeﬁhe:removed. r;t then remains that a processor
‘must maintain s31ist_of nrocessors from whose deaths it is recovering“
;,in order that.they nay be resumed'on its own death, if fhe need |

arises, The addition to this table must take place before the node

is removed from the Hardware R1ng.

With the periodic death detection, no extra action need be taken.
Since processors may discover more than one death at a time, the

need to remove a node from the Hardware Ring does not arise, so

—*~;—““"_—rediscovery of'e death is possible and a partial reCovery cannof,be e
| lost. A consequence of. thls is that when the periodic restart of
the PUTRES actlvlty is used, a dead processor should not be removed
from the Hardware Rlng until it has hed all its- resources

recovered.

- iso:-

6.6. Addition and Replacement of Processors

Once a processor has failed and been repalred, 1t ‘would be desirable

- to be able to add 1t back to the system, restorlng it to full power.

Also, the addltlon of new processors may be p0551ble. Some method
must therefore be found whereby nodes can be added to both the
Hardware and Software Rings. The rlngs may be Spllt into two groups
~'a) those to whioh'the'oew processor has to be added'by another.:
e.g. the CREATE resource | |
'-5) those to whdch tﬂe‘new processor ma&‘add.itself e.g. one of

the temporary resources.

The criterion upon which a processor is added is dependent upon the
crlterlon for removing a node, For some nodes, the removal criterion
is that the predecessor on the Hardware Rlng must remove the node

(correspondlng to group a) above), whereas for others, the criterion

d;s the ownershlp of the CREATE resource (correspondlng to group b)

above).

For class a)_of rings above, another processor is*requested to add nodes

for the new processor to each of the rings neéessary. The nominatedo

processor should be the new processor's predecessor if the new processor

is present on the Hardware Ring. If the new processor is being added.

to the Hardware Riﬁg, it should”be Placed as the successor of the adding

processor in order to reflect the detection criterion. The request may

either be by operator command or a request from the processor via a

‘message system, or any other convenient method;__3

- 151 -

For those'rings governed by the CREATE resource, the processor

-may add itself by calls to the Allocate routine (see 5.b.).

6.7. Reliable Update

In this.section,';nd thosé foiiowing, brief cbnsidéraﬁion_is.given
to other reliability aspects. In this secfioﬁ, én‘algorithm is
described whichlpgrmi;s alteration of mﬁlfilbcétion values to bé
performed safely despite the class of failures'underfdoﬁsideration.'
".The procedure aésﬁmes that updates by diffgrent:processars are'.

mutually exclusive, i.e. that syﬁchronisation élready exists.

‘ The difficulty with updates of'multilocation values is that they are

' - not usually point (indivisiblg) operations with respect fo the féiling
"~ of é pfpcessor. That is, the update takes several steps (instructions)‘
and the processor may fail between any two Steps. fhus, after the

‘processor has failed, part.of the new and part of the old values are

found in the 1ocations. A procedure, knowﬁ as "Reliable Update" was

developed whereby a point operation is lntroduced 1nto the update.
‘—“ﬁ““”“*The extra rellablllty obtalnable by the appllcatlon of’ thls procedure

is achleved at the expense of both storage and processing tlme.

'Thé.étréightfdfward update fails because we havé a aata structure

: changing‘frdﬁ one state to another b&ér several sfeps. The.poiﬁt
operation'is.intfodﬁéed to shéﬁ when fhe'ghangé from the old faiueé
to new fakes'place. In Orderzforlfhis to be poséible,.we reqﬁife two
sets of locations. bﬁé‘COntains-the old Values'aﬁd the other fhe new
valﬁes._ Before the complete update is.made, the old'vaiues are used.

Once the new values are stored, the locations containing the new -

153 .

. values are used.

The point operation ie‘ihtroduCed to indicate

which set of values is to be used.

The Operatlon of the procedure may be demonstrated by con31der1ng '

' the ‘update of the tahle showu in Flgure 6. ? 1. The table contalnsdf

a count of elements, followed by that number of elements and then

"the sum of the elements.

If we now wish to add the number 4'to-thentab1e, three locations,
must be changed. The couhtoof‘elements must become 5, 4 must be
added to the table (say in the sixth location) and a new total must

be placed in the seventh location. -

In order to be able to perform this update using the Reliable Update '

procedure, each entry of the table is duplicated. A single bit (or

bistable) is associated with each entry. The two values for each -
““‘““**““‘entry are known as "value" and '"new value'" and the bistable is - -
‘known as "indicator". There must also. be another blstable for the
table as a whole, called "flag". Inltlally, all blstables are

assumed to be zero and the correct entrles for the table are in the

value flelds (see Flgure 6.7+24)

The ﬁrocedure falls into four steps, namely

. 1) For each.entry:to be changed, store the new value in the
corresponding new value field andnset indicator (the order of .

the two operations is irrelevant)

- 154 -

b2 s 3| 6| 6| -......

Figure 6.7.1. Origional Table

. Flag 0

Value b l12 |5 {3-|161]26
‘ VNIeu.w value - =] =-f-]=- 1 -
Indicator- f 0 0to]o o} ol = - |g

Figure 6.7.2. Table for use with Reliable Update

ii) Set flag . .
iii)‘Copy all the altered entries from the new value field to

the value f1e1d and then clear 1nd1cator (the c0py must be -

performed first)

Civ) Clear flag.

~ The state of the table after each phase cf the procedure is shown.

in Flgure 6 Te3e, and an example of the codlng is glven in Appendlx 2
Clearly, 1f the update is completed by the process performlng 1t

then the data structure conforms exactly to the assumptlons nade

about it on entry, that is all blstables are zero and the correct
values are all in the value fields. Two condltlons need to be
.satlsfled for the prooedure to be able to wlthstand a fallure of the ‘

type proposed in sectlon two of this chapter.

a) correct and conslstent values may be obta1ned from the data
i structure after the fa1lure ’ |

b)_tbe data Structure must be able to'be'brougbt in liue with

the assumptlons made about 1ts state before enterlng the

s - procedure.

The crucial phase in the procedure is step 11) and it is th1s step
‘whlch prov1dee the 1nd1v1s1ble operation for the update. If thls step

is completed then- the data structure ig con51dered to be updated. Iif

- it is uot, then no update has been made to the data structure. -

To obtain a correct value from the'table, the followiug‘rule should

= 156 -

12

ololo] 1

"a) After Step i)

12

5136126

I I I S |

30

ofotfo] 1]

b). After Step ii)

12

5 31614

20

~i-1-14

30

o.Jolo]o

0

~ ¢) After Step iii)

12

5 131614

2 lat -y

olo]ojo

Table 6.7.3. Table During Reliable Update .

d) After Step iv)

=157 -

be used

Rule:- The eorrect value is centainedein the. value field unless
~ both flag and the corfesponding indieator‘are set in which case -

it is in ihe new.value field.

Before flag is set, accbrding‘te the ru1e,'the value field is used
for the"COrrect value,'giving the‘appearance of the table not Heing

updated. However, when the flag is set, the values for the entries

' _whlch have been’ changed are found in the new value fleld since thelr’

“1nd1cator is set. - The copylng phase returns ‘the data structure to

its. 1n1t1al ‘state with modlfled values.

To‘reeover the‘dafa strueture cne of two oﬁeratiens is feffefued
depending ufon the state of flag.ﬂ.If the fiag has not been set.thea
the update has not taken place and all that is required is to clear
 al1 the 1nd1cators which are set (the contents of the new value
flelds belng 1rre1evant). If, however, the flag: 15 ‘set then the

. update may be completed by the recovery process performlng the

-remaining copy steps requlxed to brlng-the data structure to a correct

state. The flag should then be cleared..

Thls procedure is a candidate for safe update of shared resources

such as the RESOURCES table.

- 158 -

6.8. Application of Reliable Update to the ARR

If the 1mplementatlon of the Abstract Resource Rlng based on the
OWNER flag is used the overhead of the Rellable Update need not be
1mposed on the ba51c structures and routlnes.h If each fleld of
the ring structures can be 1mp1emented u51ng a 51ngle locatlon then

no spec1al securlty measures need be taken (see sectlon flVB of . thls

chapter).

‘However, if the pr0posa1 of section S.ts for dynamlc creation‘of
rings is incorporated then the Rellable Update.nust be'used; As
.. was’ noted, the RESOURCES table 13 a shared resource. " Access to the

' resource is only made whlle the CREATE resource is owned, and access
is therefore made by only one processor. As such the RESOURCES table
15 a candldate for use w1th the Reliable Update.‘ Thls will 1mpose

an extra overhead upon the Allocate and Deallocete routlnes.

W1th that addltlon to the Allocate and Deallocate routlnes, the
complete Abstract Resource Rlng mechanlsm can be ma1nta1ned correct

and con51stent even in the presence of mult1p1e fallures of the

- ¢lass considered, .

~ 159 =

" 6.9. Failures Due to Other Errors

- In this section, brief mention is made of other types of failure
and their effect upon the operation ofrthe Abstract Resource Ring _

' mechanism.',

: Clearly,_as“with all.systems enaoling resource”sharing? the

: pOSElblllty of deadlocks is present. The problems:of deadlccks__
have been known for some t1me (16) Twodbasic methods_caﬁ be used
to overcome deadlock problems. Flrstly, by use of pre-emption to

force a process to release (temporarlly) a resource (40) and

secondly to prevent deadlock from arlslng in the first place (33’40)~

'Brinch Hanses describes the Hierarchal Resource Allocation technique
(1) for deadlock.prevention. This is the technique usedrwithin_.
the current impleseafations-of the Allocate, Deallocate and Recorery.'
roufines. Each of fhese routines requires the use of fwo-resources?-
- (the’ CREATE resource and one other) and so a potentlal for deadlock

© exists. If. the resources are claimed in one flxed order (the same
for all processors) and are released in the reverse order, the
deadlock caspot take place. ‘So fhe three routines always claim_fhe'k

_ CREATE resource last and release it first. :

The possibility of deadlock within the ARR routines has, therefore,
" been removed. However; by bad design of aitotal system based upon

the Abstract Resource Ring, deadlocks‘could still arise. .’

'_-J- 160 -

A second area to which*consideration_must be given is that of

corruption of the dets-stfuctures. With all systems, _simple or

complex, some data is cru01al to the safe runnlng of the whole
system. The data structures for the ARR fall 1nto this category._

At best corruptlon may merely cause a delay in the system by

unsollc1ted settlng of a WANT flag. Varlous levels of degradatlon_
may be experlenced up to complete system fallure, for example
a szngle Software Rlng may be corrupted causing the loss of one

resource only or maaor corruptlon may take place requiring the

‘ system_to shutdown. Extra checks may be 1ncorporated to valldate=

the various ring structures on access, but this will naturally lead

to an increase in overheads and still cannot guarantee consistency.

o161

' 6.10, Self Stabilising Techniques

This sect1on is ooncerned w1th the adaptlon of some theoretlcal
work performed by D13kstra.‘ One’ spec1flc case of data corruptlon,
due elther to hardware or software fallure, ig the settlng of
multlple CAN flags w1th1n a Software Rlng. Thls 1mp11es that |
"several processors may (wrongly) use the resource. The'queStion'u
‘posed by this situation is'whether it is possible to return)fron‘
;'this erroneous or illegal state'to the oorrect state of having just

a single owner of the resource; It should be noted that with the

ver51on of the ARR having the single ownershlp 1ooatlon this problem

cannot arlse.

Dijkstra has published a paper (23) on self-stabilising systems in

which'he presents ekampies of systens‘where, by appiying only'valid
state-transitions within a system, the'system will return to a valid
"Jstate from an 1nva11d state w1th1n a flnlte tlme. Each'system has
a (flnlte) number of pr1v11eges and wlth each privilege there 1s a

: correspondlng state tran31t10n. At each step a daemon, elther
centrallsed or dlstrlbuted, chooses one of the pr1v11eges exlstlng
and the correspondlng state trans1tlon is made.: The system is sald_
~ to be self stab111s1ng 1f 1t will return to a legltlmate state
rlrrespectlve of the pr1v11ege ohosen at each step by_the daemon.

If the"ARR couid be made self stabilising, then it wouid'be'able to
recover from the 111e31t1mate state with multlple CAN flags set.
:Whether, in practlce, thls is de51rab1e is questlonnable since for

-162-- '

a perlod of time the crltlcal resource may be accessed by several

'processors potentlally damaglng the resource beyond repalrs

Dlestra prov1des three examples of systeus whlch have the seif

stablllslng property. The flrst of these causes, a 31ngle prtvlleée
L: to clrculate amongst the flnlte-stale machlnes in the system. Thls
system may, therefore, p0551b1y be allowed to prov1de the faCIIltleS

prov1ded by the Abstraot Resource Rlng. '

We follow the,notation-of Dijkstra, that'is‘

L refers to the state of the- 1eft hand nelghbour of. a machlne
8 refers to the state of the machine itself
R refars to the state of the right hand nelghbour
to whlch is added
W refers to the secondary‘state'of'the machine;land corresponds

. Tto the'WANT'flaé'offtHe“Abstraot"Resourée Ring.”

For the system to be descrlbed, L S and R are all represented by
1nteger value in the range 0 to N where there ara N machlnes in

the system. Wis a hoolean value glv1ng true or false. .

'A system whlch descrlbes the Operatzon of the ARR is glven by the

followlng pr1v11eges and state changes

for the bottom machine: .-

ifL =5 and not W then S: = S + 1(mod N + 1) £i 6.10.1

TS

for the other machines:.

if L #5 and not W then Sz = L fi © L 6410.2

for all machines:

if GEIRES called then W := true fi . 6.10.3

EE‘PUTRES'called-fhen W := false £31; [‘sﬁ 6.10.4

_?he following physical_interpretation may be placed upon these rules.'
Rales 6.10.3 and 6.10.4 éovern.#he‘setting and clearing of the'wANT
flag when GETRES and PUTRES are called. nules_s;jo.1'and_6.1o.2.
-cause the ownership to_permanently circulate unless a WANT fieg_is_

- set, in which case ownership will rest with that machine until the

 WANT flag is cleared. It shouid'be noted that the'ownership (indicated
by the presence of the pr1v11ege) is passed to all processors, not
Just those WIshlng to use the resource,' S0 a much greater frequency

of checklng for unwanted resources must be performed.

Dlgkstra provzdes ne. proof for hls assertlon that the system he.

- descrlbesfls self—stablllslng, but assumlng it 1s,.1t can be’ argue&.
Vthat‘the system described above is'eiso;self-stabilising.f:Asf

. mentioned above, we have:nepF‘within;the'constraints‘6£pthe'origina1

';.:system, That is,each of the'finite state“madhinesqhss K states,
where K is greater than the number of machines. In the aoove sysfem‘
of N mnchines, each machine nss N'+ 1 stafes.; Also, at each step at
‘least one machlne wlll have one of the prlvlleges glven in 6. 10 1 or-'
6 10. 2 or Hlll be using the resource and wlll eventually cause PUTRES

to be called causing the state.change glven in 6.10.4. Thus. the system

- 164 -

above‘reduces_to that given by Dijkstra but with a delay placed
fupqn the privileges 6,10.1 and_6.10;2 while a machine uses the

resource.

- 165 =

CHAPTER 77

PARALLEL PROCESSING AND THE APPLICATION

© OF THE ABSTRACT RESOURCE RING

—_
>

7.1..introduction-

In this chaptet, the epelieetioh.ofAthelAbsttaetlﬁesource Ring to
‘an SRC project (under grant BRG 7010) awarded to the Department of
Computer Studles at Loughborough Unlver51ty is. descrlbed.‘ The

' 7pro;ect comprlsed three dlstlnct sectlons 1nclud1ng the development
of'a parallel proce581ng system and the 1nveat1gatlon of algorlthme

‘run on the system.

In the next sectlon, the’ system as dellvered by the manufacturer is
descrlbed. Then ‘the overall de51gn of the parallel proce351ng system_.
and the role of the Abstract Resource Ring is outllned.' Detalls are
h.then glven of the 1mplementat10n of the ARR descrlblng the ba31c'

operation and the error recovery capabllltles. Flnally; performance

figures are given for various ‘aspects of the ARR.

'7.2. System Configuration

'The hardware supplled to the department conSLSted of an Interdata
| Model 55 dual processor system (42) w1th various perlpherals. The=.
' two processors are known as systems A and B. System A (a Model 70.‘
dprocessor) has- 52kb core memory while system B (orlglnally a Model 50
processor but since upgraded to a Model 70) has 6l4kb of core memory..“
1 Both processors have several I/b ports capable of supportlng termlnals
and each has a general I/O 1nterface board, known as a Universal
” Loglc Interface (ULI) (43), System B also has a 9.6 Mb dlSG system

and a clock.

The Modeltss system aiso-iscludes herdwsre to enable sharing of core ”
store.' Seitches are providedlto ailow various address raﬁges-of store to_ ;
~ be shared, butnof those which say be obtaised only'one is of interest..

In runndng parallel progrsms; the.system islconfigured so that System

- A has sccess.to the top. (high-sddress) 32kb of System B's.memory. This

' glves the symmetrlc conflguratlon shown 1n F1gure Te2e 1 with theﬂtso”:”“‘

‘ processors having 32kb prlvate memory and sharlng 32kb of common memory.
The address space 1s the ~same for both machlnes, that is the common .d

memory is addressed +‘rom 32k to 6lhk-1 by both processors.

Various 1tems of software were delivered w1th the system 1nc1ud1ng a
Disc Operat1ng System (DOS) (41 Y compllers ‘for FORTRAN and Assembler
and various ut111t1es. DOS, however, was not de51gned to run the dual
' configorstios, beihg's crude'lnteractlve, 31ngle user, non-multi-

programming system to run only one processor.

- 168 -

dis¢ clock .
m |
“ terminals —
‘fUt{ L C‘ 64 memory
' _memory interface/ :
. addressing logic.
ULI -
o 32kb memory
A —
terminals =3
R a) Physical Configuration R
L dise clock - = L . ‘
' jii N o o 32kb private memory -
: . B ' S . . :

terminals éi . S ‘

o T T i shred meneny. T

S S _ memory interfac
i T logic '
A [~

terminals

32kb private memory

b) Logical Configuration

Figure 7.2.1. Dual Interdata Configuration

- 169 -

73 Parellel ProcessinQLSXstem Design

Much cf fhe design of fhe ﬁarallel processing system ercse frcm.the’
necure of the'oeeratihg system as'supplied by the mansfsctufer;f At
_an early stage 1t was de01ded that the parallel processlng system '
kwould run as a subsystem under DOS and that both processors would
-run an- 1ndependent ver51on of DOS. That 1s, the operatlng system

'would remaln largely unaltered and all necessary synchronisation and

resource management would be handled by the parallel proce351ng sub—"

system.- Also, s1nce DOS is a unl-processlng system, the "program'
run by esch_processor woqld be the‘parallel processing system .

scheduler,

L | parallel program is con51dered to be one which 1n1t1a11y consists.
o of a 51ngle stream of 1nstruct10ns. Th;s stream may. divide 1ntos-
several parallel branches (which may or may not consist of similar
-égiuéncés'of_eade);“ Theselbranchesilater.merge together at a single - .ll;”_;f
' point to reform the criginal_slngle stream.. Any one of the parallel

screaﬁs may itself braecﬁ and theﬁ rejcin. At anylcne fimef a'numEer”
- of streams ef ccde may exist ee&‘each is consldefed as one of a set

- 0f parallel prccesses any of wﬁich'may be.executed.

The.psrallel peocessing scheduler,pecvidesall the facillties necessarj
:for the creation anc deletion of parallel pfocesses, and the
malntalnlng of the correct hlerarchal orderlng of the processes. The
scheduler malntalns a llst (in shared memory) of the processes to be

run together with process ordering information.

=170 -

Each proceésqr,.thén; runs‘the scheduler which seafches the ;
séhedﬁlep listjfor.a-érocesé (synonymous with é'parallel path)
whibh it-méy run. whénlone.hés been loéated, the.schedgler jumps ‘
'td'that process, causing it to be exeéuted. On cpmplefion of thg,
' process, return islmadg to thé scheduler. Two routigés, based on
standard parallel statements,-we#e.developed to enable a process
'to enter. the sbheduler. The fifst,.FORK; céuses.new,pﬁths (prdqgsses)
to be created and the second, JOIN, causes several_paths to be mefged-

together.

More detailed information may be found elsewhere (4,5).

No synchronising hardware or software was available with the systém,_

-

yet an obvious need for such é tool éxisted. It was decided,
therefore;_that the.Abstréct Resource Ring should be used to providé
the synchronising facilities required fof the parallel processing .
o system. "Ih‘féct;rthéWARR”ﬁaé“ofiginally‘désigned to mee£~thisw
problem. The use of the ARR would arise in two situations. Primaril&,
therARR would be used by the parallel processing syétem itself tQ__ |
protect its own access to the scheduler list. :Sééondiy,'ah.interface
to the ARR.ﬁbuld be provided.to enable high level cohsfruéts,‘sﬁch
as crifical fegions, fo“be iﬁplemented within.user'p¥6grams.- Just as
no synchronising ﬁechanism existed on the ﬁachinés, S0 no.iﬁterproceSBbf
"interrupt was ava;lablg. " An extefnal iﬁterrupf péth_had,ithefef&re;.to
bg created. It was decided to use.the\ULIs. available on the machinés

since they were'easier devices to control and operated at much greater

- 171-_

.. speeds (1.9 MBytes/Bec)pthéh.the tefminal'parts. Alsq,small quantities

\of'data.cquld be-trahémittéd using only the control lines.

- 172 -

7.4« ARR Implementation

Iﬁ'tﬁisieeeeien, the iﬁplemeetation of the‘Abetract.Reeource‘Rieg
for the perallel proeeseing system is descrieed. " Two different
,implementatione have beee mede, eﬁd'both wiii Se;discuseed.i‘fhe

first (and original)‘implemehtetion ﬁrefides death detection_:
facllxtles, but no error recovery is ‘included whereas the second

llmplementatlon prov1des full error recovery. capabllltles.-

The original implementation was based upon the "on request"
philesophy, that is it_employs'interrupt sending for passing the

_ resource and for death detection.

‘The interrupt_managerrfuhctiohs of the ARR'eechanism were incorporated
| inte the driver for the ULi. This interrupt'manager.can be eﬁtered

in two.contexts, either by en iﬁterrupt being raieed on the OLI or
by the GETRES routlne requestlng the manager to send an 1nterrupt.

- The 1nterrupt manager has power to ignore requests from GETRES 1f 1t

deems that ;nterrupts may arrlve-too”rapldly at the other processor. .

: Due to the.philonPhy end.desigﬁ of bOS. men} ef the fﬁnetions.of the'
ARR whlch were descrlbed 1n terms of 1nd1v1dual processes may not be
encoded . as such. The process to check for unwanted resources, which
should be initiated_by'the interrupt manager when'an interrupt is

received from the predecessor, was 1ncorporated 1nto the 1nterrupt

‘manager while the death detectlon and reportlng was dlstrlbuted between

B R

i B

the interrupt manager and the GETRES routine.

The GETRES routine raiées‘the resource request flag, then loops

(for a fixed‘maximuﬁrnumber of times) inspecting the CAN flag. If
. this flag is set then return is made from the routine.. If, however,
the fiag_is'ﬁot set within the number of_loops then\é’request is

'made to the resource manager for an interrupt to be sent. The GETRES

routine then waits in a eecoodary loop (also of ‘a fixed size)
insbecting not only the CAN flag'but also a replj word. This reply
word, cleared by the GETRES rourine, iS‘set every time a reply.is
received.by the interrupt'manager. The GETRES rootine ma} ieeve this
second loop prematurely on two counts. If the CAN‘flag.ie set then
return ié.made from tﬁe GETRES routine, if now oeing irrelevent to
current oeeds whether fhe processor is dead or noi.' Thls is only
true of a two processor system since in thle case there can never be

the need for one prooeseor to check its successor for death on behalf

___of a third which actually requires a resource. The GETRES routine

also leaves the second loop if the reply word is set, returning to

the start of the first loop to wait before sending another interrupt. .

- If, however, the second loop is complered before a reply is received,

then the other processor is deemed dead, a message is reported by the‘
GETRES routlne for the operator and the parallel program is abandoned
with‘oo error reoovery.taking place.' Note that an-infinite loop is
an aooeptable solution, as the barallel prooessing'system is runniog
in a uniprogramming environment.' The elgorithm is shown.in Figure
751, | -

1 _‘174'-

':getres I
1= our procesoor number}
: .QANT of node i] i = set;
Egilg true. do
| couﬁt : tlme before next 1nterrupt sent;
_y_p_ig}_g count> 0 do _
- 1f CAN of node 1] set then

return

count : = count - 1
_d- .
_send an 1nterrupt,
count : = time allored for reply;
while count>0 and no reply received do
| if CAN of 'oode [i) = 's'et‘_jc_tlgg_- |
. E’
count : = count -1
92’ . L
;IEE oount = 0 Eﬁéﬂ
| . the other processor is deac!l;’ '
report error, | |

stop

Flgure 7e 4 1e Implementatmn Algorlthm of GETRES -+
- 175 -

The software wss'written with a fixed number of resources (eight)

of whlch one represents the synchronlsatlon w1th1n the parallel

_proce351ng scheduler, and the remainder are for use by appllcatlon

programs.

The second 1mplementatlon of the ARR prov1des the same user interface -

as the previous one. However, full death detectlon and error recovery

procedures are incorporated, g1v1ng a powerful system for-the users .

The improved system also uses the interrupt mechanism for notification’
pﬁrposes but it is built into a modified version of the DOS system =
allowing the'resource.checking and error recovery to appear as -

separate processes.

With this implementation, the GETRES routine reqoires no communication

with other parts of the ARR, so having set the WANT flag, a single

jloop-yponftﬁe CAN flag.is‘adequate.””Again, an infinite,loop‘is"

- allowable since, as will be seen, the other processes are interrupt

driven and are run to completion.' As with the earlier implementation,

each' time the loop is completed an 1nterrupt is sent before the 100p -

is restarted..

The ULI drlver has 1ncorporated 1nto it not only the code to drlve

the ULL but also the code to enable the initiation of the process

whlch checks for unwanted resources and code to start a reoovery

process if a dead processor is detected. _ Whllst all the steps of

the recovery process are not requlred for the two processor 51tuat1on,

- 176 -

lit being possdole'to teeat'tﬁis as a eﬁeciel.case, the sbfékare

has, nevertheless, been de51gned wlth more processors 1n mlnd.
Indeed more processors may be added to the system wlth only

' ,mlnlmal modlfleatlon_belng required to the data structuref The
recoeery_proceSs is iqfoked if tﬁe succeseoflon the hardwaréefing
.fails to replﬁ to\anrioferruﬁt within-a fixed time. This pfoCess_
enters the name of fheldeed‘pfocessof.ip the‘teole of deadlorocessors,
and proceeds to femove it feomlthe hafdware ring. Having removed the .

dead processor from the hardware fing, the PUTRES Aofivity is inifiated. _

The PUTRES Activity hof'oh;y‘checks for‘dnwented resources and aftembts;-‘
.to,pass.them to aoofher proceesof'but.aieoheheeke each resource ring
to see if fhe Euceessor of this proceesor is still alive. If this
pfocessor is dead (i;é. its name ie presenf in fhe fable of dead i
.processors) the node for the ring is removed and if the resource was
B OWned and belng used by the dead processor, the 1ntegr1ty checklng/
__recoveryuprocess for‘thatwresourceu1s 1n1t;ated,;‘The ;dentlf;oat;on of -
this procesg is contained within the nodes of the ring. If no procees'

‘identification is.contained in that fdeld of the node,ltﬁen'if‘is
reported that the resource has been relnstated, but without an 1ntegr1ty
‘ check. Currently, only the parallel proceselng resource has any
'reeovery incorporated and thls recove:y=1s descrlbed in the«next

section.

The PUTRES Activity is also initiated at periodic.intervals. .

=177 -

- 745 Reliability and Recovery Procedures

In thiS'section,the reliability aspects incorporated into the'
parallel process1ng system, that is for the assoc1ated resource,

wlll be descrlbed.

_ Withlsereral.processors'corporateiy workihg.oh a.parallei érogram,

it would be desirable to have the program completed even if one of

the processors falled. Thls may 1nc1ude a processor falllng while
executing one of -the carallel processes (paths); The need may
therefore arise-for a path to be‘restarted by'a_different processor

in order to complete the;prograr as a wholee. To be abie to restart a;'
path;‘the veriables'for that process ﬁcst be restored to their value :
_:before the'peth was'originally stsrted. Also iﬁdependence must exist |

between that path and any other.

Information upon the eurrent state’of each path (that is whether it :
is being-executed or not and if'so by)which:processor)'is mainteined
w1th1n ‘the scheduler llSt. It is therefore possibie to discover if a
processor which has dled was executlng one of the parallel processes.
.Part of the functlon of the recovery routlnes ls to search the
scheduler list for‘epy paths be;ng-undertaken by‘the dead processor.fi

‘and to make them restartable by another processor.

Currently, the function of restoring the path to its original state

has'to.be performed by the applications programmer. Some routines have N

‘_-'1_78 -

O malntalns 1nformat10n on whlch varlahles have been saved by whlch

. been wr1tten whereby, prlor to start1ng a path, the initial values
of varlables whlch could be altered may be saved. W1th1n the path,
" the process may_lnterrogate the scheduler.to dlscover if the path

" has been restarted."if,it‘has then s further routine enables the

saved varlables to be returned to thelr orlglnal value. The scheduler‘

- paths. When paths are successfully completed, any space occupled

by varlables held for that path is freed for future use, Figure 7.5.1.

fglves an;example'of the use of these routlnes.

"The rellable ver51on of the Abstrsct Resource Ring has been used on
an experlmental ba51s. A number os parallel algorlthms have been

. run on the dual processor system, and fallure has been . induced by
sw1tch1ng off the‘power to cne processor. The error recovery routines
have functioned, although, with some algcrlthms, the saving of
variables has proved expenslve in tlme. Scme of thls overhead can,
however, be attributed to the need to make these routlnes callable
'expllcltly for the FORTRAN source,whlch incurs checklng by the run
;tlme system._ Tdeally, the calls to the varlable saving routlnes would

be 1nserted automatlcally by a parallel FORTRAN" compller w1th much

of the run time checklng removed,

With some algorlthms, notably those of an 1terat1ve nature, the

1nc1uslon of varlable saV1ng has proved unnecessary, as the formulatlon

of the algorlthm will withstand data that is not completely updated.

175

a -

aca

QaQao

1

10

aaa

aaar

Taaaa

QG

aaaa

19
20

 $SHARED X (20, 3)
INITIALISE SHARED ARRAY X

-

.OBTAIN A NEW AREA TO SAVE MODIFIED VARIABLES

$SAVEI
Now SAVE THE ARRAY x TYPE IS REAL

DO 10 I=1, 20
M11JI=173
$SAVE REAL, X (I, J)
CONTINUE -

CONTINUE -

" NOW GENERATE PARALLEI. PROCESSES - ONE PER COLUMN

$DOPAR 100 I = 1, 20
CHECK TO SEE IF THIS PATH HAS BEEN RESTARTED
IF (RESTRT (DUMMY) EQ. 0) GOTO 20

YES - IT HAS BEEN RESTARTED |
- RESTORE OUR COLU'MN OF X

D019J—1 3

$REST REAL, X (1, J)
CONTINUE

'CONTINUE

 REMAINDER OF PATH MODIFIES THE COLUMN OF X

" END OF THE PATH - ‘JHI']\I ALL PATHS TERMINATE S0

WILL THIS SAVE AREA

- 100 $PAREND -

Figure 7.5.1. Example Use of the Restart Routines

S -180-

7.6. Performances.

In.fﬁis seetion,-feeulfs.are pfesenfed for various algorithms fﬁn'
‘on the pareliel processing system‘et Loﬁgﬁborough."The timee Shoiﬁ:
in Table ? .6.1 are given for the or1g1nal 1mplementat10n (labelled
"ARR in the table), the 1mp1ementat10n wlth added rellablllty (RARR)

:and for comparison, an lmplementatlon of- Lamport's algor1thm (see

 section 5.5) (L).‘

Times are given for:=-

i) the total elapsed time of the programs, thaf is fhe time
'taken from startlng the program unt11 the last processor

gflnlshed. (f)
ii) the processor idle times, that is the time when pfoeessers
were either waiting for a path to execute‘or for a fesoﬁrce
to be passed to them;- @

iii) the nett processing time, that is the time when the
processqr'was performing fhe-aigorithm {which isdgiven by. i) -
ii)) ,('»Df

and 1v) the total nett proce551ng time, that is the total of 111)

. for the two processors. k\0hﬂh

The- table also showsffhe time taken when the same elgorithm ia run-

on a-single processor both with and without the ARR parallel control

software. The timings for four different algofiihms'have been given,

these being:f

- 181 -

T 1\ T

~ Program © Processor A B oA B A B
i) Matrix. . T 4,88 4,88 6.28 6.28 4.86 4.86
Multlphcatloﬁ I 0.'.1'5' S 0.01 1.56' 146 0.12 o-.oo_

(RBMTX‘I) N 473 - h.a87 b.72 4,82 bah 4,86
- -,(total)"-".‘, (9600 (9 (9.60)

_‘(ﬁnipr'-ocessq_r - ﬁith/ﬁithoﬁt ARR .'9..56/§.’+9)

- ii) Eig_eﬁ.value T 17.78 17,78 27.15 27.15 17.66 17.66

Solver’ ' I 0,96 0.62 9.56 10.63 = 0.95 0.56
.(RB.EIGR)‘V_. N 16482 17.16 17.59 16,52 16,71 17.10
| (total) * ~(33.98) ~ (3&19 (3389

(.unipmcéssdr - with/with'out ARR 34, 55/34.20)

i) PpE . 7 26418 26,18 50,1 h0.11 25.78 25.78

Solver - I 149 039 b9k 165 1.3 0.06
(RBDIF4) N 2469 25.79 125,17 25.46 - 2hMh 25.72 -
(total) ~ (50.48) (50.63) - (50.16)

-

(uniprocessor - 'with/ﬁithout ARR 50.85/49,8K)

iv.)' Adaptive © T ',2.__.4.0.'.2 24.\03 X 24.'78‘ "24.7_8 24,02 24,02
.Quad.i'at:.i.ve_l II-' '_6;30 .-l'6.01 6.99 047 6.30 0;62_
(RBINT2) - - N 17.7é c2h01 i§.7'9'.24.31 17.72- 24,00
| (total) (41;73) a0y (41.72) |

~ (uniprocessor - w1th/w1thout ARR 42.54/’-!-2 53) o
C\\oss O oo WL ‘ .
. Table 7.6. e Performance Figures From Dual Interdata 70 System

_'Notes 1) All times are shown in seconds. 2) The times for the RARR do
not include overheads for varlable savmg.

-182- '

i) Matrlx Mult;pllcatlon

Thls program performs the multlpllcatlon of two square matrlces.

ii) Elgenvalue Solver

This program evaluates the elgenvalues of a system using a
' blsectlon algorlthm based upon sturm sequencese‘
1ii) PDE 'Solver
: Thls program solves a set of partlal dlfferentlal equatlons'_

u51ng a successive 11ne over-relaxatlon method.

iv) Adaptive Quadrature

A function is integrated over a given interval with the integration
- being performed over a sequenoe of interval bisections uatil a

. required accuracy is obtained.

From the table of tlmes, various comments may be made. Flrstly;.
comparlng the two 1mp1ementatlons of the Abstract Resource Rlng, 1t.'
hls seen that the use of the reliable 1mp1ementat10n glves a greater |
'total elapsed tlme for the completion of the program.‘ Most of thls_
1ncrease in tlme is attrlbuted to the 1d1e processor time, whlch 1n
'turn is due to a lower frequency of 1nterrupt sendlng w1th.the RARR
,system. However, when placed within the context of a general multl-
proce551ng system, thls spare processor tlme may be rescheduled to
other processes capable of being run giving a higher ‘processor | 3
utlllsatlon than is presented in the Table. Tlmlngs w1th a much
‘lower processor 1dle tlme may be obtalned hy tunlng the RARR system

to each partlcular algorlthm. In practice, this would probably be

- 183 -

unrealistic, so no modifications were msdecto the RARR software

between the running of the various programs.

“Consioericg the;nett'timesxot'tﬁe'two impiemeptations;‘it is seen

that the rellable version of the software does 1mpose an overhead in N
processor tlme, in general of the order of one per cent. Thls
1ncrease in processor tlme is due to the cost of the 1mproved death

~check1ng.

"“Comparing the first‘implementatioh of the Abstract Resource Ring'and.
that of Lsmport's.algorithm; as eouio be expected, rLamport's algorithm:
glves better t1m1ng flgures. However, the galn is not dramatlc.

From sectlon 5 5.. it may have been expected that, wlth only two |

processors, a large 1ncrease in speed would be attalned yet when

. - _v1ewed wlthln the context of a complete algorlthm the reduced

- overheads of'synchronlsatlon become less apparent. It should be
noted, however,.that.as the number of_prccessQrs increases, the ARR :

'.wiil.perform sore favoureoiy thsn-Lemport's algoritho. As yet,

‘ however, a system with more than two processors is unavallable to

“test this hypothe51s.

The'original.implementation of theiAbstrect Resource-ﬁihg'has been
used for a period of over.three: years, and many parallel algorlthms
have been run (3). Some of the algorlthms have been. completed in

Just cver half the time when run on the two processor system as

compared to a 61ngle processor system, that is close to the theoretlcal

.-184';

. limit.

Another aspect of performance whlch must be considered is the amount o

of memory occupled by the Abstract Resource Ring and its assoc1ated
rOutlnes. Table 7e 6 2 shows the amount of core requlred by the
' varlous aspects of the ARR and the rellablllty and recovery routines,

In comparlson, the parallel proce551ng subsystem occuples a total of B

Ksome 4.5 kb.

- 585 -

ARR | mamR
GETRES/PUTRES/DRIVERS ete, | 0.5 kb .| 0.8 kb
Reliability/Error Recovery | - - | = 0.7 kb
Data and Messages " ,@,4 kb . 0.8 kb
- |variavle saving Codge . | - 1 0.8 kb
Variable Saving Data . | .o - RE 1.0 kb
TOTAL] 0.9kb 4.1 kb

Notes 1) On average 1 instruction occupies 3 bytes

‘VTable 7.6.2. Implementation Sizes for Dual Interdata

 CHAPTER 8

 GARBAGE COLLECTION -

A MULTIPROCESSOR APPLICATION

8.1.'Ihtroduction

In this ohapter,.coneideration is:givenhto a'barticoiar probleowthate
" has been applled to multlprocessors of the type belng 1nvestlgated
':1n order to show that a parallel solutlon should be developed 1n -
1ts own merlts and not necessarlly be many coordlnated ooples of a

unlprocessor solutlon.

: Within-iist-prooessing syeteﬁs, nodes are repeatedly. added tohand
reaoved.from the rarioue lists. The storagehlocatione in the memory
5pace avallable to the list proce551ng system tend to be allocated
for use in a partlcular llst and then freed. It 1s clearly |
de51rab1e to reclaim these freed cells for subsequent use, and there

"'are a number of technlques whereby thls may be acoompl1shed.‘ The one

. that is of partlcular 1nterest for the ensulng discussion is Garbage

"Collectlon which was first proposed by MoCarthy (52) and used 1n
- the LISP 1.5 system (53).

Using this technique, the problem of storage reclaimation is {often)

ignored-until the list of'available cells'(free list) becomes empty.

When this arlses, the llet proce551ng is temporarlly suspended and a -

garbage collectlon process looates cells which have become free and

' adds them to the free list.

The basic garbage collection algorithm fails’into_fodr phases:~

1) Marking phaée_in which all accesaible'nodes are marked.

- ;ﬂ188 -

2) Relocate phase in_Which'all'accessible'nodes are compacted'

into a single contiguous area.

-3) Update phase in which all pointers to.relocated nodes are

changed,

4) Reclaim;phase in which the inaccessible cells_are collected‘

- to form the new free list.
Of these phases; numbers 2) and 3) may be omitted if desired.

‘Interesf has recenfly arisen io ﬁsing oultiﬁrocessor s&sfems for list
_ orocessing (58). With this scheme, one processor would perford
all the lisr-prooessing operations, while a second would oerform the
garbage collection function, _By'splitting the'operation‘of the‘cotal
system betweeh two processors, the garbage‘collectioﬁ may be run in
parallel w1th the list proce551ng, not Just when the free llSt |
‘becomes exhausted._ In this way, an 1mproved response to_the users -

should he achieved.

Lamport (49) has taken the solut1on for the dual processor llst
' proce551ng / garbage collection problem developed by Dlgkstra et al
(25) and expanded it to 1ncorporate multlple 11st processors

(mutators) and multlple garbage collectors.

Considerstion will be giren to the marking phase of the garbage =~
:collectlon and it will be shown that the marking algorlthm,used by

Lamport may be 1mproved by allgnlng 1t more Hlth the inherent structure

of the system.

‘Flrstly, the termlnology w111 be 1ntroduced, then the algorlthm
_adoPted by Lamport w1ll be descrlbed. A dlfferent solutlon wlll be
developed and flnally results w1ll be presented to show the

performance of the two algorithms.':

1.

'8,2. Definition of Terminologi

The iist struotoreltolﬁhich considefattoo:will be given consists of

a collectlon of llst cells (nodes). anﬁ node eonsists of soﬁec(end'
p0531b1y no) data flelds and an ordered sequence of p01nters to other
nodes (edges).. The node from whlch an’ edge emanates w111 be. called
Tlts source and that to whlch it p01nts the destlnatlon. Some of the '
"edges are dlstlngulshable as null edges, that is the edge does not

connect two nodes but acts-as a termlnator.

- If an edge connecting two nodes (A and B)exists and B is the -
destination of that edge then B is (one of) the successors of A and
A is a predecessor of-B. Nodes having no successors are known as

terminal nodes (or terminals).

Some'of‘the nodes, called root nodes,‘are'fixed. A node is said to

_be reachable (or acce551b1e) if there is a path to it from a root

via reachable nodes. A non~reacheb1e node is called a garbage node.

8.3. Lamport's Algorithm -

Lamportlintroduces an extra field into the nodes for use during the
marking phase.' This field is intended to hold a colour which may °
be one of black grey or whlte, and 1nd1cates at which of the stages

. of the marklng phase the node 1s.

" Operations are int:oduced to ohange the colour of a node to a
specific value. Also introduced is a shading operation which changes

Coa white node to grey'but leaves other colours unchanged. These

h operatlons on a node are required to be 1nd1v1s1b1e w1th respect to

“the list processing system (i.e. they must be point operatlons)

The node space is divided into several (not necessarily disjoint)
subsets. A marking process (marker) isiassigned to each of the
subsets. No details are given as to the method of division, so a

physical division seems simplest. - Initially all nodes are white.

"~ The operatlon of the marklng algorithm commences with the roots belng.
shaded. Then each marker searches 1ts subset of nodes. When a grey

_‘node 1s located by any one of the processors then 1t shades all the _.
successors of that node and colours the orlglnal node black. All the_

; markers are then requested to restart the search of thelr portlon of
the node space. The marklng termlnates when no grey nodes exlstgl.e.

h_all reachable nodes have been coloured black. The garbage (unreachable)

nodes are then ‘those that remaxn whlte.

- 192 -

Several points may be made about this algorithn. Firstly, no. -

"attempt is made to use the structure of the llSt within the
algorlthm-ltself. All reachable nodes may be located by chalnlng
'down the 1ist structure from the roots. Thls leads to'a second'point;"
- that all the garbage nodes wlll have to be 1nspected, p0531b1y several
_(and in some cases many) tlmes.u Thls tlme 1s, of nece551ty, "wasted“

' 51nce a garbage node, by deflnltlon, cannot . become grey. This is an

1nev1table consequence of d1v1d1ng the node space in phy31cal subsets._

Further, the synchronlsatlon between the markers is nonetr1v1al
Adesplte the fact that Lamport glosses over the problems. The ability
- for one marker, on dlscoverlng a grey node, to cause all others to
restart the search of their subsPace requlres a "communlcatlon path"
between every pair of markers. Also, when a marker completes the
search of its subspace,no guarantee can be given that it"has completed

its work as another marker may later discoﬁer a grey node. Only when

. all the markers have completed searching thelr own subspaces ¢an the

marking process terminate.‘ ThlS requlres each marker to monltor the
-state of all the others(potentlally requlrlng much communlcatlon
traffic or frequent access to shared varlables). Again, on a
'-partlcular 1mp1ementatlon it may be pOSSlble for all the other markers
to "appear" to have completed thelr marklng, yet for a restart |

request to be received. or, worse stlll, in translt.

|
|
|
|
|
|
|
=193 - ,i. - o S

8.4, Chaining Algorithm

':Slnce it was noted that objections may be ralsed agalnst the above

: algorlthm, due to its lack of correspondence to the data structure
an algorlthm more closely allgned with the data structure was
deueloped. The algorlthm.descrlbed below, marks the reachable nodes
l by searchlng down the list structure and hence has been given the

: name Chaining Algorithm.

In order to partltlon the llSt space, and thus enable several markers

‘to operate, the concept of a subject is 1ntroduced with the Chalnlng

' klgorlthm. Each marker is allocated a section of the total list

r.structure ano:merkskthe:nodesicontained ih this sublist. Once a
marker has a suhlist‘it‘may proceed_independehtly,Of‘the other markers
(thus reducing”the'syhchronisation overheads) . 'However, to enable

:marklng to be equ1tab1y dlstrlbuted between the markers, an addltlonal

llst, the subtree 1lst, is 1ntroduced.

This:llst contsihs the roots of unmarked:suhlists. Inltlally, the
llst contalns the roots of the whole list structure. The llst can he
' ﬁept short, wlth p0551bly one entry for each marker since thls list
.represents work yet to’ be allocated to ‘a marker. The colour yellow
is 1ntroduced for a node contalned w1th1n the subtree llst, 50 the.
roots of the list structure are 1n1t1ally coloured yellow. Also, the
~term "uncoloured" is 1ntroduced for a node whlch is either whlte or

. greye.

" When a marker is-initially started, or whenever it has completed the
marklng of a subtree, 1t removes a node from the subtree list to
_dlscover the sect1on of the list which it is to process. Thls node
is shaded. The marker then refllls the subtree llst. by adding the
.uncoloured successors of the subroot to the list . until either the
llst is fllled or only che uncoloured successor remalns._ Those nodes
added to the subtree 11st are coloured yellow.‘ At all stages in the
rewainder of the algorithn, yellos nodes are treated as black when .
Iencountered by a marker stncelthe'nodes.following them are guaranteed

to be marked at a later stage.

The remainder of the algorithm, shown in outline in Figure 8.4.1, is

as follows.- The marker naintains'two pointers to the suhtree it is
proce351ng, the root of the subtree and the node which it is currently
inspecting. Both of these 1n1t1a11y point to the root of the subtree.
.If only one'uncolouredﬁsuccessor of the.current node exists.then that ”
'node is shaded, the current node is coloured black and both the subroot
Vand current po1nters are advanced to the successor. Thls process is
repeated untll a node with several or no uncoloured successors is met.
If the current node has some uncoloured successors then one is chosen.
It is shaded and the current poznter is advanced to it. Thls shading
'and advanclng is repeated until the current node has no uncoloured
successors. When thls 51tuatlon arlses, the current node is coloured
_black:and the current polnter is set to the subroot. The-whole of

this procedure is then-reneated until the subroot is coloured black.

When that occurs,_the‘subtree for which the marker was responsible

- 195 -

marker =
. begin
while = subtree list is not. empty do
- remove node from subtree list;
_jshadé ndde;ﬂ .

”refill subtree list;.

while subroot is not black do
- while number of unﬁoloured succéséors =1 do -
| shéde succéésér;. '
“colouf nodé black;
advance to.succESSOr sefting as subroot
..22;
while number of uncoloured successors >0 do
. chobse one successor; |
shade éudcéésor;
aﬁvénce,to succeésor
" od;
- colour currént black; -

current: = subroot

end; -

Figure 8.4.1. Algoriths for a marker _

~ - 196_ .

has heen marked'and a new root is chosen from the‘subtree list. The

'marker terminates when it cannot obtain a node from the subtree list.

With a simply conhected list structure (that i5 one contalnlng no -
closed loops and no 1nterconnect10n between subllsts), the algorlthm
is' guaranteed to be correct ahd to terminate, the list structure -
appearing as meny indehendent lists'each_with'its‘oun markert
Furtherhore, the only synchronisetion required between the markers is:
when accessing'the suhtree'list. If'the addition to.and the removal
:of a node from this list are 1ndependent, then the overheads of the
synchronlsatlon when accessing the subtree list may be reduced. If
one marker is attemptlng to ref111 the subtree 1lst then the overheads
may again be reduced by allowzng further markers to by- pass the
'reflll;ng stage of the_elgorlthm. The initial phase of the marklng

algorithm then_becomes es_in Figure 8.4.2.

If the list structure is‘not simply'conhected but the subtrees have
.cosmon nodes (but still without loops) then consideration.must be
given to the possible evehts at the intersection points. The simplest
Possibility:to_cthider is that ohe.merher colours the common.node
.yellow or biack before any other marker accesses that node. When |
‘ancther marker reaches the node, lt will proceed no further. If the
.1ntersect10n node is whlte or grey then the structure beyond the node
needs to be 1nspected and several markers may attempt to colour the
subtree. This will have the same effect as several passes down the

'branch by a 51ngle marker, that 13, the several markers will jointly

Clag -

mafker.=
‘ Eﬁilﬂ sﬁbtree'list isvnoﬁ'empty-gg
- .remoie node from subtree‘listé‘
éhaqélnode;l |
if no other @Afker iS‘refiilipg'the subtree list Eﬁgg

refill subtree list

Figure 8.4.2. Modified Initial Stage for a Marker

- 198 -

'colour'the nodes below the intersectioh point.

If two carkers‘ettempt:to_update'the coioor of.tpe.eetersection‘nooe_i
.simoltaneousi&,‘then onefmuSt combiete;its ubdate afterfthe other.‘
The node then‘becomes.that colour. Whlchever colour is flnally glven
to the node, 1t is valid for at least one of the markers and this

‘marker.wlll complete the colourlng.

HOWever, with the aigorlthm as descrlbed, a llst structure contalnlng
tcycles (closed loops wlthln the edges) may cause a marker to permanently
loop. To overcome-this, some 1nte111gence may be glven to the markers.
 If, while chalnlng down through the successors, the marker v131ts an
excessive number (e.g. more than the maximum helght of the structure _
or more than the total quantlty of nodes) of nodes W1thout reachlng a
terminal (or a yellow or black node) then 1t may assume that a loop
exists and arhltrarlly colour the current node yellow and’ add 1t to '

. the subtree list. In this way, a terminating condition is placed

- _within the loop. Loops:wiil therefore reduce'the efficieocy:of the'

' algorithm due to‘wastage in searchiﬁg_the loops.

' 8.5. Comparison of Marking Algorithms

Ehplrlcal testlng of the algorlthms was carrled out us1ng a simulated
multlproce551ng system. The algorlthms were tested and compared w1th
. a number of types of list structure. Four types of structure were
chosen tc exerclse the algorlthms under a varlety of condltlons. a-;

These types were:-
a)lLinearAList'
b) Curtain . -
This structure consists'of many linearrlistseuanating from

a single root

c) High;y'Interconnected_
In this structure, each node has many branches with a large
number of nodes'shared between subtrees. Two versions of each

structure were generated, the second belng the mlrror 1mage of

" the first, that is the subtrees that were placed left to right

from'a node in one vers;on were placed rlght to 1eft-1n the other.

d) Random

The intercounection was generated randomly.

Each of the ;1rst three structures were used w1th both a hlgh and a’
Low. pr0portlon of the node space con51st1ng of reachable nedes. All_‘

structures were loop free. Lamport's algorithm was performed twicey

Once with the markers searchlng from lcw addresses to hlgh addresses

. and secocdly'from tiéh addresses £o=15w; ‘Table 8.5.1. shoss‘some'

'of the results obtalned from the slmulatlon studles when the node
'-space consisted of 100 nodes.-

From the Table 1t can ce seen that with one exceptlon, the Chalnlng
Algorlthm out performs Lamport's algorlthm on each ‘of the values
tabulated.: In most cases, the number of nodes v181ted is vastly

" reduced (often by a factor of 50 or more). Also‘the costs of .
syncﬁronisiné the merkers is reduced. the oversll_improvement obtained
from the Chsining Algorithm can be observed from the elapsed times

‘given in the Table.

The structcre withlwhich the Cheining Algorithm performs iesst well

1s one with high intercoﬁnectivityr: Yet_even with this strscture,

the synchronisation overheads-are minimal. This is of great advantsge L
since s‘synchronisstion will (in geheral) be much more expensivethsnl,

a node visit.

The flrst hlghly-lnterconnected structure prov1des a pathaloglc case
for the Chalnlng Algorlthm. In order for the blackenlng of the nodes B
from the termlnal nodes towards the subroots -to take place, the
subllsts need to he traversed many tlmes. ThlS is partly due to the
hlgh 1nterconnect10n whlch will yleld a hlgh degree of overlapplng
subtrees and partly due to the greater number of successors whlch

each node has.

As is known for programs designed for uni-processor systems,

=201 -

e wm we w mw wa we mm e W B Wm WE s el e Wt wm e e

B pe e e e WE dm e e wm s wEm A ms e

Down

e m e ww mE e mm W e Am sm S me e m A e e mm

- Laspart

i
]
]
1
]
¥
[}
)
1
3
]
[}
L]
t
1
[}
]
3
]
L}
1
]
]
L]
[}
L1
1
1
]
1
1
¥

Wup“”
100
500
2
100

]
t
]
b
[
]
]
1
i
¥
13
t
1
i
]
]
i
]
(]
]
+
+
1
]
t
}
*
i
4
i
[}
[}
]
]

i

1
lt
. B

Wt . g o ity SR A Y A AR e e s M i

o

CMARKING. ™ ALGORITHM
. COMPARISON TABLE

ining

]

Algorithin,

. Lha

1

t
[N
e
'

i

'

1

P
¥

DL e A M ey e ek o S e st il et s i o i, BN e e (A S S S0t M) el e B i A B s ey k. ok S i A S G o o AR D A LA Sk e, e A s R Pl 1Y,y s e o] L

e S W A 319wt A

5150

A

— e

——

-

-

-

-

-

-

-

wa -
—_- .

-

.
o

—

-

—

M o 4o A L e L WL 1 e B bl o) A PR me v et e ek s e A M M A W A PR P 0 e ——) . e . - . -) .

éimglatidn,Rééulfs:Fcf:ﬂarkiﬁgfﬁlgopitﬁhs;}J‘ﬂ'”l'

v g

nu._u«,,Aywu»h,gunn-..h.5..u.ag.nnnqa-.,,h-imnuusu-.---i---.4.u—u.-n-n---.-na—-—uvqnn.-nn.-u-------n.«anu...n._

-

-

LY

e

-

-

]

- -

1
]
§
I
]
]

e mems

L RM mw e

- -

]
}

- me mw m-

b
1
1
§
1
&

—— g —

- e me e

'
r
[
i
1
[
)
t
(]
1

7107
=z

)
1
§
[

+
1
]
|
¢
1

40,
170

+
i
1}
1
1
i
[}
]
[l
1

4060
1445

1
£
1
I
1
L}

]
]
[}
E)
1
i

- -

.- b ot it s

P
'

1

'

'

L

v -
H

1

'

1

1

L R LR

i 26
E;

12612

T mwme

-

o e e i : - e o

—— o

oy ke iy S e

e pi by sy

-

—

-

I

;...-.........‘.-_—..gv-.._--..........-...-ﬁ...--....-.—.‘.-_.------uuuy-_.-.--....--_.--...-a-.--a.--._....----.-.--—.»..-.-....n.--—-.—-— .

g
1}
3
n
Mal®
T
e
N+
c.

B.5.1

Cable

Two rnt qf-“eault care QLVPH Far the ngh Inter Cannect1v1ty wzth_*f
’ Ry Lhainiu ‘Alggrithn these belng Fur a'atructure and 1ts
_symgtriral,pqrtern."“tw?- : : : :

Lampuvt‘a algur1thm 's performed tWICE with: the markers 5earch1ng
From low addraszses to high addresses fUp) and 5earch1ng Frcm
uigh addl“%wpv to’ low addrp es fDuwn) :

Ky

The Fu?matian of the iist structure.’

O The nugaberof qarbage nodes in the structuve.

o The anbéffh{'markera employed :

. The! number of nodes’ visited during the marking phase.A'

Foartt T
SRET S P
PR
- Node: Vstd

PR <Ti R 1 113 *listfront’ semaphare.

CThe eTannsd time (in minutes and rﬁcands) Far the
i teimulation of the marking phase. : ‘
THeE puiiber of timés, in total) that’ the markers ware
"*;ruatartpd aL the beq;nnlng uf thezr subspace.,*,ﬂul'

E—

0 Table B.Si1' continued.. -

The cnmbér of tiue trﬂf durlng which a marker waa waxtxng'”

o pathaloglcal data can greatly increase the processing time. =

' Slmllar problems may also arlse in programs des1gned for multl-l
processeor systems.. ThlS is evidenced by the three—;old 1mprovementh
in the performance of the Chalnlng Algorlthm for the ngh-lnter--~r
connect1v1ty Structure when the mlrror 1mage of the structure was

used.

..It haa been ncted,'acd indeed Lamport himself staces, that__
:fsynchronisations are costl& operations. By con51der1ng the problem .
‘_above 1n the 11ght of the potentlal synchronlsatlon, it has been .
‘reduced to a small level in the Chalnlng Algorlthm. Lamport, ho;ever,_

by adapting an often used uniproceasor solution has maintained a

potentiallj~high level'of‘syﬁchronisation,'and its_inherent cost.

- 205 -

 GHPTER 9

CONCLUSIONS

9.1, 'Summasz""._: '

:Multlprocessor computer systems may prov1de many benefits over
7s1m11ar uniprocessor systems. However,rztils p0331ble to use a .
‘_multlprocessor in~an unsuitable application or to ase one
inappropriately in an appllcatlon which may take advantage of &
‘.multlprocessor organlsat1on. Indeed, such pltfalls exlet for ‘:
conventional uniprocessor‘systems. For a multlproceseor system to
be utlllsed to advantage, conszderatlon should be given to all
aspects of the system, that 1s the hardware, the operatlng system _

- software and the appllcat;on_software.'

At the hardware level,.many organieations:of_the processors and
memorp exist,.ranging from array‘prooesaors to multipart memorﬁ‘f
ayetems,' Each of the many posaible.organlsations has certain
operational characterlstics‘which make it mostjsuitable for‘a
"partieular class of problem. ‘If.an applicatlon from another class
is 1mp1emented on that organlsatlon, poor perfonmance may be obtalned

from the eystem.

A 51mple model of a multlprocessor system was 1ntroduced (Chapter 4).
The parameters of the model allow the proceaeor and memory
characterlstlca and the memory access pattern to be speclfled. The
model was then analysed, with reference to the memory access pattern,
and formulae were derived and an upper bound was placed upon the
performance whlch could be expected from the modelled system.' It was

also shown that, for any part1cu1ar access pattern, there is a

- 206 -

practlcal 11m1t to the number of processors that should be attached
- to the shared memory 1f each is to accompllsh useful work. A

formula g1v1ng thet limlt was also derived {4.6.1.).

Whllst an appllcatlon is executlng on a multlprocessor, coordlnatlon

wlll be- requlred between the parallel paths as they are belng executed.

" In Chapter 5, a tool the Abstract Resource Rlng (ARR), whereby the

paths may synchronlse, was‘deecrlbed. The_ARR is based on a 'Resource_
Hester;technique. _Qdmparisdns were made‘between the ARR and two
Ie‘lgorithh:e found in the literature. it vas shown that, as the load
placed upon'the synchronisation method increased so the éerformance

of the ARR increased whereas that of the other solutions deteriorated.

The.ability tor a multiﬁrcceseor_sjstem.to withstand the 'death' of
one of the troceSsors uithin the system was discussed, with particular
_reference to the Abstract Resource Ring. It was shown that the ARR '
ccule te adapted to detect the failure of one of the proceseorsrand

" cause epprcpriate recovery acticn to be takee. This recovery.actien
:may includc‘reconfiguretion of the'syetemlas vieyed'by the supervisory

software.

The Abstract Rescﬁrce Rieg has been uéed as the syﬁchto;ising tool
_w1th1n a parallel proce831ng system at Loughborough Unlver31ty.
Flgures may be found (Table 7 6.1) glVlng the performance of the |
system for a number of test programa. Comparlson was made between
two 1mplementatlons of the ARR and one of the synchronlsatlon tools

descr1bed‘in the literature. The parallel processing system has also _‘

R

prov1ded a testbed for the rellablllty aspects of the ARR as

discussed in Chapter 6.

.Flnally, to hlghllght the difficulty in des1gn1ng multlprocessor
applzcatlons, an example found in the llterature was con51dered.
A new solutlon to the problem of multlprocessos garbsge collection
‘was developed. This sqlution tskes advantage of the inherent
stfucture of the problem;-asd, in‘most_siscumsfanses; shows
improvemen§ in peﬁforﬁsnce over the published algorithm, as is shown'

in Table 8.5.1.

9.2. Afeas-for Further Research:

W;thln thls thesls, a ﬁumber of toplcs within the subject of
multlprocessor systems have been con51dered. Howaver, as statéd
earlier,_the subject is vast with many areas whefe wortbwhile -
‘reSéaréh may be-carried:oﬁt.- In the followlng subsectlons, areas’
are suggested where the research raported in thlB the31s may be

'extended.

a) Hardware Model Evaluation

It was claimed that thé'modél_presentéd in Chapter 4 applies to a
large range of multiprocgssof,organisations. 'Howévgr;'due to.fhé’.
black of available.hardware, bhis hypothesis hﬁs nob‘been extenbively
tested; Aé more muitiprbcaésor-aystems bebome avaiiablé, furtber

'tésté‘cohid be pérformed."Indeéd, with the cheapness of midroproééssor

'technology, it may be feasible to build'small systema to test the

" hypothesis.

Also, two classes of memory were conéideréd; privafe_aﬁd ahéred. The
‘relationéhip bétweén the sizeé 6f‘privaté and sharéd memory and_tbeir
functibn (whéfher'to'store'code.br‘variabies etb;) couid‘be-
zlnvestlgated, p0531b1y with reference to a partlcular algorlthm. This
may yield new understandlng on the relatlonshlp between hardware and
appl;catlon‘program.r : | o

 b) Abstract Resource Ring

It was shown that the Abstract Resburqe Ripg had the desirable effect

“that under high load conditions the overheads associated with ita use -

209 -

_ were reduced. However, under low load condltlons its performance
"deterlorated such that one of the publlshed solutlcns became a

. more vlable tool to be used for synchronlsatlon. It would be of

' advantage 1f the ARR cculd be modlrled 50 that 1ts performance under

low load 1mproved., ThlS wculd provide a'synchronisation tocl.suitable‘l

for alilcontexte.

c) Algorithm Structure

The example of multlprocessor garbage collectlon, con51dered in

i Chapter 8, shows that the relationshlp between an appllcatlon and its -

1mp1ementatlon on a multlprocessor system is not fully understood. B
This is one area which may be fundamental_to all multlprocesecr
operation. If'any automatic parallelisatioa ielto.be‘achiered ﬁith
‘ahfieuccees;,more understaading cf the underlying‘structure cf a
problem and the consequentlal interactions and synchronlsatlons

between the parts is requlred..

=210 -

. REFERENCES =

1.

2e

3.

,Arnoid, SeJe et al.‘"De51gn of Tlghtly-Coupled Multlproce551ng

Programmlng",' IBM System Journal, Vol. 13 No. 1 (19?4) pp.60—8’?.
Aspinall, D. and Dagless, E.D.."Overtiew of a Development
Environment™, Microprocessors and Microsystems,,Vol. 3_No.t7

(1979) pp. 3o1-305;1.

Barlow, R.H. "Parallel Algorithms for Sorting; Quadreture and

—Elgenvalue Determlnatlon", Report No. bk, Dept. of Computer

Studles, Loughborough Unlver51ty (19??).

‘Barlow, R.H. et al.‘"Historical Survey of the Implementetion of

Parallel Programmlng on the Interdata Dual Processor Computer"
Report No. 40, Dept. of Computer Studles, Loughborough Unlver51ty

(1977).

Barlow, R. H. et al. “Implementlng Parallel Process;ng on a

‘.Productlon Mlnlcomputer System" Report No. 58 Dept. of Computer

Studles, Loughborough Unlverszty (19??).

Baskett F. and Smlth, A. J. "Interference in Multlprocessor

‘Computer Systems with Interleaved Memory", CACH, Vol. 19 No. 6

(1976) pp. 327 -_33&. o

Bhandakar, D.P.‘"AnaIYSis of Memory Interference'inlMuitiprocessors",'

IEEE Trans..on Computing; Vol. C-24 No. 9 (1975) pp. 897 - 908,

-212 -

9.

10,

1M,

12,

14,

15.

Bhandakaf, D.P..and Fuller, S.H. "A Survey of Techniques for
Analyz1ng Memory Interference in Multl-Processor oystems"

Technlcal Report, Carnegle-Mellon Unlver51ty, Plttsburgh (1973).

Brinch Hansen, P. "A Comparisbn of Two Synchronizing Concepts',

Acta Informatica, Vol. 1 (1972) pp..190-199.

Brinch'Hansen; P;‘“doncurpent Programming Concepts™, ACM’

_Computihg Surveys, Vol. 5 No. &4 (19?3) pp. 223 = 245.

Brinch Hansen, P. “Operating System Principles', Prentice~Hall

Inc., Engleﬁood Cliffs, New Jerse& (1972).

de Bruijn, N.G. "Additional Comments on a Problem in Concurrent

Programming confrolﬂ, CACM, Vol. 10 No. 3 (1967) pp. 137 - 138.

Burnett, GoJ. "Perfq:mancé Analjsis’of Interleaved Memory .

~ Systems", PhD Thesis, Princeton UniVersitj, Princeton, New

" Jersey (1970).

Burnett, G. J. and Coffman, E.G. "AnalySLE of Interleaved Memory
Sjstems Uslng Blockage Buffers" CACM Vol. 18 No. 2 (1975)

Pp. 91 = 95.

Casey, D.,P. and Wasserman, R.S. "Alternate CPU Recovery", IBM

Technical Disclosure Bulletin, Vol. 16 No. 6 (1973) pp.-2005 - 2010.

- 2i3:~ ‘i

; 16. .

1'7 .

18,

19.

' Proceedlngs, Vol. 24 FICC (1963) PP 139 - 146.

20. 1

21,

22.

23,

Coffman, E.G. et al. “System Deadlocks“, ACM Computlng Surveys,

Vol. 3 No. 2 (1971) pp. 67 =~ 78

Courtois, P.J. et al. "Concurrent Control with 'Readers' and

| 'erters' ", CACM, Vol. 14 No. 10 (1971) pp. 667 - 668.

Courtois,'P.J.let'al.‘"cemments on 'A Comparison of Two

: Synchronls1ng Concepts' ", Acta Informatica, Vol. 1 (1972)

'pp. 375 --376

Conway, M.E. uy Multiprocessor System Design" AFIPS Conference

Dahl O-J et ale "Structured Programmlng“, pub. Academic Press,

- New York (1972). :

Dijkstra, E.W. "Solution of a Problem in Concurrent Programming

- Control™, CACM,.Veie.S;No.-9 {1965) ﬁ- 569, -

'D13kstra, E W. "CooPeratlng Sequentlal Processes", Technologlcal

_ Unlverslty, Elndhoven, The Netherlends (1965), reprinted in.

“PrOgrammlnv Languages" Genuys, F.(Ed), Academlc Press,'

New York (1968).

Dlakstra, E.W, “Self-Stabal1slng Systems in Splte of Dlstrlbuted

Control"; CACM, Vol. 17 No. 11 (1974) pPp. 643 - 6&#.

- 214 -

2.

Dlestra, E.W. "Guarded Commands, Nondetermlnacy and Formal

. Derivation of Progrems" ‘CACM, Vol. 18 No. 8 (1975) Pp. @53 - 457-

25,

-Dlgkstra, E.W et al. “On-the-fly Garbage Collectlon. an

7 Exerclse in Cooperatlon" to be’ publlshed.

.

27,

28,

 Dowsing, R. "Software for CYBA-M", Microprocessors and

‘Microsyetems; Vol. 3 No. 7.(1979) pp. 306 - 310.

_ Elsenberg, M Ao and McGulre, M.R. "Further Comments on Dlestra's

Concurrent Programming Control Problem', CACM, Vol. 15 No. 11

(1972) p. 999.

Enslow, P.H. "Multiprocessors and Other Parallel SyStems: An
Overview and Introduction" Multlprocessor Systems, Infotech

State of the Art Report No. 29, Infotech International Ltd.,

'-‘Matdenhead (1976) pp. 219 - 262.

29.

30,

31,

[Epslow,-P.H.;ﬁMultipfooessor Organisation Q‘A Survey",‘ACM—'

_ Computing Surveys, Vol. 9 No. 1 (1977} pp. 103 - 129,

Evans, D.J. and Barlow, R H, "An Analy51s of the Performance of a

Dual Mlnlcomputer Parallel Computer System", Report No. 59, Dept.'

of Computer Studles, Loughborough University (19?8).

Flynn, MeJa "Very ngh Speed Computlng Systems“ ‘Proceedings of }
the IEEE Vol. 54 No. 12 (1966) pp. 1901 - 1909.

- 215 -

33,

35,

360

3?-

3"’8-‘

3%.

Gllchrlst, B. (Ed). "A Multl—mlcroprocessor - CYBA-M", Informatlon

‘Proce551ng 77, IFIP, North Holland Pub. Co. (19??)

Habermann, A N. "Preventlon of Systems Deadlocks" CACM,

Vol. 12 No. 7 (1969) PPe 5?5 - 3?7, 385.

Halsail, F. and Fenesan, A.E. “Software Aspects of a'Gloeely

' Coupled Multicomputer'SyStem" Computer and Dlg1tal Technlques,

Vol. 1 No. 1 (1978) pp. 21 ~ 26.

Heart,.F. E. et al. "The PLURIBUS Multiprocessor System“

Multlprocessor Systems, Infotech State of the Art Report No. 29,

: Infotech Internat10na1 Ltd., Maidenhead (19?6) PP, 307 - 330,

Hoare, .A R. "Mlnotors. An Operating System Structuring Concept',

.-CACM v°1. 17 No. 10 (1974) pp. 549 - 557.

.Hoare, C.AJRa "Communlcatlng Sequentlal Processes", CACM, Vol. 21

No. 8 (1978) pp. 666 - 677.

Hoare, CeAoR. and Perroth, R.H. (Eds) "Towards a Theory of
Parallel Programmlng“ in "Operatlng Systems Technlques"'

Academic. Press,. New York (19?3).

Horning, J.J. et al, "A Program Structure for Error Detection and
Recovery", Proceedlngs of the Conference on "Operatlng Systems:

Theoretlcal and Practlcal Aspects" IRIA (1974) pp. 17? - 193,
) - 216 -

40,

L,

ha,

4z,

4s,

. 46.

47,

Howard J H, “Mlxed oolutzons for the Deadlock Problem" CACM

Vol, 16 No. 7 (1973)_pp, h27 - 430.

Ihferdata Ino;; "Disc Operating System (DOS)‘Reference Manual®,

publication number 29 - 293;.Interdata Inc., Oceanport, New

| Jérseyhg19?4);

Interdata Inc., "Model 50/55 Communlcatlons Processor Reference

'Manual", publlcatlon number 29 - 249, Interdata Inc., Oceanport, '

New Jersey (1972)..

Interdata Inc., "Universel Logic Interface Instruetion Manual',

 product code.M48 - 013,'Ihterdata Inc., Oceénport,_New Jereey {1975).

“Jackson, M.A. “Prineiples of Program Design",'Academic-Press,

New York (1975).

Knuth, D.E. "Addltlonal Comnents on a Problem in Concurrent
Programm1ng Control“, CACM, Vol. 9 No. 5 (1966) PPe 321 - 322.‘

T ow.

'Kober, R.et al.'"SMS‘101 - A-Structured Multimicroprocessor System

with Deadlock-Free Operatlon Scheme", Euromicro Newsletter, Vol. 2

No. a (1976) PP 56 - 64

Kurtzburg, J.M. "On the Memory Confllct Problem in Multlprocessor _
Systems“ IEEE Trans. on Comput1ng, Vol. 0-23 No. 3 (1974) -

PP 286 - 293.

- 217 -

48,

k9,

20,

51.

52.

53.

sl

Lamport, L. "A New Solution of Dijkstra's Concurrént Programmipg

Problem", CACM, Vol. 17 No. 8 (1974) pp. 453 = 455.

Lamport, L, "Garbage_Collection with Muitiplé‘Processes: An

..Exercise in'Parallelism“ Proceedlngs of the Internatlonal

Conference on “Parallel Proce551ng", Walden Woods (19?6) pp. 50 - 54.

Lehman, Mo "A Survey of Problems and Prellmlnary Results o
Concernlng Parallel Proce551ng and Parallel Processors",

Proceedlngs of the IEEE, Vol. Sk No. 12 (1966) pp. 1889 - 1901.

MacKinnon, R.A. "aAdvanced Function Extended with Tlghtly-Coupled

MultlprOcesszng“, IBM System Journal, Vol. 13 No. 1 (197#)

pp. 32 = 59.

McCarthy, J. "Recursive Functions of Symbolic Expressions and

_ their Computation by Machine", CACM, Vol. 3 No. 4 (1960) pp. 184 - 195,

McCarthy, J. et al. "LISP 1.5 Programmer s Manual", MIT Press,

- Cambrldge, Mass (1962).

e

Randell,rB.‘"Research.on Computing Systéﬁ Reliébilify at the
University of Newcastle Upon Tynéf1972/73", Technical Report No..

57, Computing Laborétory,,University of Néwcastle.(19?4)Q.

- 213 -

55

56.

57

58.

59.

60.

61.

62.

Randell B. "System Structure for Software Fault Tolerance" '

" Proceedings of | the Internatlonal Conference on "Rellable Software"

Los Angeles (19?5) pp. 437 - 449- |

Sastry, K.V, and'Kain, R.¥. "On the Performance of Certain

Multiprocessor Computer Organisations", IEEE Trans on Computing, '

Vol. C-24 No. 11 (1975) pp. 1066 - 107k,

Sc1ence Research Council. "Dlstrlbuted Compntzng Systems Annual

Report Sept. 78 - Sept.‘ 79" (1979).

‘Steele, G.L. "Multlprocessor Compactlfylng Garbage Collectlon"

CACH, Vol. 18 No. 9 (1975) PP. 495 - 508,
Strecker, W.D. "An Analysis of the Instructlon Execution Rate in
Certain Computing Structures", PhD Thesis, Carnegie = Mellon

University ARPA Report (1971).

Swan, R oJe et al. "Cm* - A Modular, multl-mlcroprocessor“ AFIPS

Conference Proceedlngs, Vol. 46 NCC (1977) pp. 637 - 6&4.,r;

Swan, Re J. et al. "The Implementat1on of the CM* Multl-mlcro-

processor", AFIPS Conference Proceedlngs, Vol. 46 NCG (1977)

pp. 645 - 655- .

Tandem Computers Inc. "TANDEM Non—Stop Systeme", Sales therature

Tandem Computers Inc., Callfornla (1978).

~-m9—-j

63.

65,

3

67.

68,

69.

ward, quoted in "Introductioﬁ“ Multiprocessor'Systems, Infotech .

Maldenhead (1976) p. 18.

Wirth, N, "On Huitiprogramming,

State of the Art Report No. 29, Infotech Internatlonal Ltd.,

,Williams,.S.A. "Approaches to the Determioation of Parallelism _

“in Computer Programs", PhD Thesis, Loughﬁorough University. (1978).

Machine Coding and Computer

Organisation', CACM, Vol. 12 No. 9 (1969) pp. 489 - 4o8.

Wulf, w;A. "Hydra: The Kernel of a Multiprocessor Operating

‘.System", CACM, Vol. 17 No. 6 (1974) pp. 337 -‘345-

Wulf,“w.A. and Bell, C.G, "C.mmp = & multi-mini-processor",.'

AFIPS Conference Proceedings, Vol, 41 Part 2 FJCC (1972) ppe. 765 = 777.

Yau, S«5. and Cheung, R.C. "Design of Self Checklng Software"

Proceedlngs of the Internatlonal Conference on "Rellable Software"

Los Angeles (1973) PP- 450 - b57.

Proceedzngs of "Computer Networks"

N (1977) to be published.

,‘on.Advanced Cou:se;'Dublin

-220 -

AN INPLEMENTATION OF
THE ABSTRACT RESOURCE RING

oI
|
|
|
|
|
|
|
|
|
|
|
|
|

.This Appendix consists of a listing of an implementation of the

Abstract Resource Ring. The impieﬁentation, whi¢h is based upon the

periodic restart, is written in Algol 68R.

- 222 -

1- fC3 AR
Lwe o . VARIABLES AND CONSTANTS . -
CApY

BASTC DEFINITIONS OF VARIABLES AND PROCEDURES

Carwmemy . 7 aey Mo OF-PROCESSORS -

Py7 rer- NO OF RESOURCES .- ,
pbuchU. . el LOCAL -PROCESSOR NUMBER - S
NU QF Sv§ REST - 1C1 KO OF PERMANANT. (SYSTEM) stouacss -

";rnw~cLLATE=1: S EL CREATEN RESOURCE NUHBER
TASP,0:NT1i23 VINTIRINGD . '€l ¥HE RING STRUCTURE

' 1MUD[!'RrSUUHClDLFN!:!STRUCT‘('INTVNODE,!STR!NGINAHE)Y

T1:pP)'FESOURCFDEFNYRESOURCESY - 1Y PRESOURCES" TABLE . R
T1:50 GF 5YS RESITREFYISTRINGYSYSNAME) 1C! NAMES OF SYSTEM RESoURCESf

O TITR, 1 TINTILOCAL TIMED 'O YTMING ARRAY. FOR DEATH CHEBK!NG

ﬂPROCEUURES_‘

'-f!PRocvwazTéyVOID':

'BEGIN'

A PRUCEDURE WHICH CAUSES THE CALLING ACT!V!TY ro BE suspsnuan el

FUR A HINIHUN'TIME

rnny' -

':*rnp-:

55
5o - .
57
w88 .
59
C 60

L
T
.33
CSA
RN TR X o B
3
38 e

b
L AT

Y A
LI

At
45

L7

4B

Wy
50
gy

51

54

Lo |

 52.

 :lt!_

L TENDY g

o

o BASIC *m:n:_n'q‘ns_;_’_or*-jv‘_aa:mes AND PROCEDURES

'-*PRoc*FAULwcctnlcnaatMesq)|_*;;;~.;”'"

TREGIU'

A PIUCFDURE UH!CH CAUSEG THE CALL?NG ACTIVITY TO FkIL FOR TBE
CIVFN RFASON :

tRILY

,!nnnciTLLL opstArcns::f!vcHAR'x,vlur?v.t!!CHAnlt)a
RLUUO LA

A PHﬂLhDURE MHICH CAUSES A MESSAGE TO BE PR!NTED OH THf OPEBATUR

CUbSOLE

' 'NIL'

- 'er-;

LTI

]-rrnncu1n171A75=(vnEF--Pnoct(llwvv)r"vxﬂrvxiu; jj_ -

THIGIN®. o R | S
A PRULLhURE TG CREATE A NEH ACTIV}TV TO BE ADDED ?0 YHE

% SYSTENM LUME LULE.
 _!¢! ‘

1hILI

l'PRUC!FLREADVDOIhGH('RFFI!PROC!('!HT7JP|UINT|x)lBOQL?l [\[; .
THEGIN' :
o 'BDOL’Ahsz'

PAGE - 2.

i 84

- 62

- ?h:- -

80
i

. BASIC DEFINITIONS -OF VARIABLES AND PROCEDURES - .

()’i 'lC|_._‘
A PROlEbUPE thCH RETURNS TRUE TF THE ACT!V!TY SPECIFIED Bv
63 CTHE RAKANETERS Is ON THE. SYSTEM SCHEDULE; ELSE FALSE xs RETURNED
TS N L
65 ~ANS
66 - -*pnav- o
a7 ‘ o .
68 'ﬂPRﬁLtleLﬂthtF'!Pﬂocit'!NT'lP f!ﬂ71x>:'4'““'“*
69 : ‘BEGIN' _ - .
FATRERRRRE I VB ' a ‘
7% A PnotkDURE UHICH RFMOVES THE AC?IVITY SPECIFIED BY THE
e ‘PARAH!TF&“ TO BEL REMOVER EROM THE SYSTEM SCHEDULE -
73 rce
a0 AHILY
75 AENDY - , _ R .-
77 ’,?ppurupb1NSTA1L RESOURCE={IINT‘RESGURCE NO): |
787 VBEGIN' . : '
79 ey
B ye PROC&DUHF UKICH RECOVFRS THE SPECIFIED RESOURCE T0 A
8 CURRECT Aﬂb GLLF CONS!STANT STATE : ,
ST 1 BN ‘
83 'HILI
TENDY] .

':'_NtXTfﬁRuc.Qu :RQUTfﬂE) 'i

DL NEXT PROC Ke ROUTINE.
 PPROCYNEXT PROC. KOSCUINTVDIVINTYy
LUV LR IR THENT TELSENE$T IFTY

oI NCVr WS

AR L DELIVER HEXT PROCESSOR NUMBER JIN EYCLIC ORDER

B P T LR

CRUTRES ACTIVITY T ey

o puTnES ACTIVITY
e o L -
'.:'PRUCU(unnpuwes A(:TIVITYH(HN‘I'IRESOURCE NO);
$BEGINY o AR . _
» 'vunL'Fxlev'FALSEll L ' '
Uy e e vaILE!lnoT'EXITIANDtRlNGtRESOURcE uo PROCNO.1]=0'DO' !
10 d PEEGINY | | i
SRR e "INTVS 1 =PROCNO T ‘ ' e g
12 - JNHILE'J|=R!NGIRESUURCE NO"J;Z!;'NOT'EXlTlANDiJ#PROCNO'DO! : e]
| |
3

LN ™S Lirs - 3

3 'IFTRINGIRESOURCE.NOTU{13e1 I THENT
S K o n e . .
M6 SOMEONE WANTS 1T : R

AT v GIVh I IN A SAFE UPDATE T

M8 e _ _

19 B R IR IS RS R T
v nxnsrnesounce NOTO¢YYi8Je

-22 'Cl .) . .-..' ' o :7 .) N
.:_-?1“-_ o j**!f.‘Enn‘OF‘SArf UPDATE _.?**.‘
FTIE T R ST T e
RO e FXITlslTRUEi E
- 2r (T Pty o
L ~.'IF'lNOT'EXIT!THEN‘NAITlFIO
20 : 8
30 N L

R L R
32
34
35

PUTRES - ACTIVITY

| TENDYE

. UAIT FUR A SPELL THEN TRY AGAIN; NNLESS GOT RID QR IT
ey T T e T

Ceenpr

Y P TEN)
TS

\’!\..'\.
Cx~T

VXN NP W

-
-l

R T G T QN W Y
= oW

et

R NN
PN D

.3 0.

)
fHC!_r

T
e

©SET WANT FLAG
e L

'PRDC'GLTREQH('
YBEGIN! :

CHEchanrh nE
L VIFYRESOUR
 FAULY

CHEDE
'IF!RiNG[R

R LA L TnE RING

' Rluﬁt

N !F.Ill :

. BETRES CROUTINE

*CETRES'PRUCEDURE‘j"“w

INT'REsouncE No:;' '

SOURCE WO .

CE HO>PIURIRESOURCE NO<TITHEN!
(”INVALID RESOURce-NUHBER!)
tsouace NO PROC”OTZ?# 1'YHEN!

RcsbdécE'NO.PROCN01fiiﬁ1fif; .

VIFVALREADY nuxﬁc<burhes‘AcT:Vfrv'nesounss NOYITHENY -

KILL(PUTRES: ACTIV!TT'"RESOURCE NO)

o3 _ o |
33 ©OKILL UFF"E‘UTRFS]ACT!UITY"I‘F' GOI‘NG-Q wEVE TAKEN IY BACK .. o
S35 - ' ' | L T
Joo o T 'NHILE'RING[RESOURCE NO o 11#Pnocno-oo| e
37 S MAITY | e -
33 S vELsEr - : |
39 FAULT(“CANNOT GeT RESOURCE AS NOT ou nrugn,
R _ g o
a1 o TENDYE

- PUTRES - ROUTINE <

gy L | |
| 'nuuchUTREs=('IhT'RFSOURcE N0)| ,~QV:;@fﬂ_;gf s

CoENSWE W 0

10 .'CHECK‘VALIDiRESDURCE‘N0~.{ L

-3 .~ VIFYRESOURCE NO>P!ORIRESOURCE NO<VITHEN!

L IR S FAHLT(“!NVALID RESOURCE NUMBERT)

45 o NFLYY .
16 7 !lFtRINGtRESOURrE NO ¢ PROCNG;E!#»1ITH£N!

R 1r-ou;TH£'R1Nq_ :

22 . .7 RINGIRESOURCE NO,PROCNOG#1jw0; -

© 255 CLEAR QUR WAKT FLAG

T R e jg;;‘:'vRIINGIRESO_UR_dE“ N_b‘,'o','“n;pnvéé_qo'! THENI R

. o

 PUTRES RAOYIWE. o *H'fl'A". R f 1,? ?‘95fo5;

T S T T G e L
RS L AT ‘IF'HE1uuN-Aub draﬁns on THE RING
L3200 g r SR T

34 :f-n E ¥" _;:f_“.‘ 'BEﬁlnr‘ L '

360 T 'BUOLlDUNE|=IFALSE'I : -
37 o 1uMILEN TRRINGYRESPURCE No,J ZJJJ#PROCNOPAND!
3B LT o 'NDTIDOKEIROY oS _

39 T :._;u !!F'RlNGtRESOURCE LY J"1Js177uenr_

A w'!c"_, Sl

h2 sonc,ﬂne uAst 1T T C ,

K3 e hIVL 17 To THEM u:vH A SAFE UPDATE LA L R
44 - 10 - o . :

an - ;'”F ‘;.? - RINGIRESUURCE No.o 1!:-3:
7 L ooNeisTTRUEY

80 . . whw END OF SAFE UPDATE www
S1rer T

53 - lFi'l'xu . 3 R :: N SRR .
oSG T ."'IFI'NGT’DONEIYHEN| . ' ' e S
ERERE. 1. EE U B ; '“‘1 o]NITIATE!PUTRES ACT!V!TY:RESOURCE NOY - T e B
560 T SN 2 I R
57 lFNDI
CRB 'F!'
' B 1R & S
e 60 tERpry

MrUWRASVENS VAW -

NI = 3 -5

oMM N
MW

[a S I L V]

LY
T o0

: 55'_,p, DEALLUCATE_AcTIVITy.;
S N _

. DEALLOCATES ACTIVITY. -

!PhULr(OIﬂT!)DEAtL ACTIVITY|=('INTTRES°URCE NOJs Sl

mcm

: {0'

ey LT A
o www o ENG Qr-sAFE}UDoATE~ S

NA!T IQ? bONE ONE TO REQUEST THE RESOURCE:
THEN bIVE IT UP AND DELETE US - ‘

!BuoL EXIT:F'FALSEII SRR
o thILEl!NOT'EXIT!DO'
TOVBEGIHY Y
GETRES(CREATE)!

'_ 'IF'RIPGIRESOURCE No,pnocuo ZJ:PROCNOITHBN'~

JUST US LEFT Oh THE RINC " REHOVE FRDH RESOURCES

R LA START OF SAFE UPDATE. - wws
ey _ . S

NobEloruResoUncesihESouRCe'Nd;,iair 2
HAMEVOFVRESOURCESIRESQURCH NOJi=to}
- axmctnesounce No,pROCNo,2!;-n1;

sgiet L,

CDEALLOCATE AcTIVITY Lo e

 -31.“.f.’C?f?f'y.-- o

C33 0 EXITistTRUENT
B L I N PUTRE%(CREATE);
CR§ e 'FLSE| rRES |
3¢ .o VEEGIN' -
3 o VeI _ S _
Lo BB T JiePROCNOT o Co |
s e ‘.,:'!NHILE'J::RINGIRESUﬂRCE uo JcEIiJ#PROCNDlAND!lNﬂT'EX[r!DOl

ey g o | : | | E
v e SEARCH ROUND THE RING FOR SOMEONE WHO WANTS THE RESOURCE
D3 gy e T T e T T
45 :”ﬁ . ._”.'_Vl:A" .f.l;FlﬁtﬁG[RESOURtE Nole1]#0'fHEN?i
48 “PROCESSOR J UAHTS“THE nesouace
40 . rgr : o ,

S 3 TBEGINT |

52 INTIKRg

B3 AU ;=PROCNO! : : |
CSAC T |NHILE|R!NGIRESOURCE NO“K.ZI#PROCNOIDOI
550 7T Ky=RANGIRESOURCE NO,Ki21)

S8 K 1S UNR PREDECESSOR - N
59 77 REMOVE US AKD GIVE THE nesouace AMAY
60 wew SAFE UP[!ATE CO‘HNG ASStie)

76
77

75
80

. DEALLOEATE-

63

T
" 65
D

69 L

o y - END OF SAFE UPDATE. Tt*§'
71 : S ST

TN
75

VEMDY
78 L R T R
“‘;f];!1NUT'EXIT|THEN' Cn et

81 -
S 'Fl"
- 84

" RINGLRESOORCE NOyPROCNO,%3t=0}
.. -RING[RESOURCE NO;O,13padF- =
8 .NODE!OF!RESOURCES[RESOURCE NO!I=K3 B T
CRING{RESOURCE NO, K.ZJ|1R!NGIRESOURC! Noapnocuowzlu R
R!NG;RESOURCE NOG Pnocuo.23:-o1a _ ol

CEXITimUTRUET)
. PUTRES(CREATE) . -
Cyenpr o R
NEIL

R

PUTREstcREATE)I
WALT

S UUALLOGATE CROUTINE T T T e pAGE
T L F T P DRI
'_l_;,_‘ALLGCATE‘TRANS!ANT_RESDURCE;ROUTINE;'é
'paoc'ALLOLATr=('sTnznuingsounce NAHE)’INT't
BALITY

B ,éREAfE_A NEw TEFP RESOURCE WITH THE GIVEN NAME # RETURN RESOURCE NUMBER 0 .. =

RN DOX N NS W

- QU .

<13 - U VINTYHOLEgReT g dy=Yg
14 ©VBUOLTEXITIEVFALSED)
15 . . . GETRES(CREATE); =~ = ,
6 '!NHILE!J<=P'AND"NUT'EKIT'DO' o
47 o VBEGINY. | ”
T R T VIR IHOLEE e lANDl\IUDEIOF'RESOURCESIJ]‘P“?HEN';
19 . o e HOLEe=g o 00 , . o
20 tpng SR
M ::__.3._ﬂ.u,,,,MAHE;O;snesouncestajunesuukce NAMEITHEN' o
22 . SR EXITysiTRUE! '
23 ~f1-.’EL55’ L
L L J'PLust1 ";,--
RS e '*fll SR .
P60 T ”.;'ENb’l

29 o TF J<=p THEsnESOURCEfnLnEADY:Ex:S!SJELSE HOLE IS FIRST :FREE StOT - .= 7=
R T s e e T e T e i

" ALLOCATE ROUTINE

*' |c}-:'

TN

arn

Cyer oo

Clage

o }-tIF J<spITHEN!

. UTEYALREADY. DOTNG(DEALL ACTIVITY:J)'THEN!
T UKILLODEALL ACTIVITY)
-J’ELSF'PING[J PROCNU el:-vlTnEN!.:r-"

ADQ us IF WE ARE NOT ON THE RING
LA SAFE UPDATE Rk

R!NG[J PROCNO 1].:01

RINGLS PROCNO:ZJIHR!NGthNODE OFIRESDugcgstJ] 23, j: '*

R!NG[J NODE'UF'RESOURC53[43023I'PROCNO
Cwse END OF SAFE UPDATE\“*t*

BEURY 2 L A
CVELSEY

NO REBQURCE = PUT [T AT WOLE
CVpmMOLER

~www SAFE UPDATE COMING was

b4

61 ver
62

65
R Y
87 7
1 -
I ’C‘

COALLUCATE CROUTINE o pRGE

o nApLrurvquouncss;JJ:=RESOURCE NAHE!
CHORETOFY rEQUHRCEStJJ:SPROCNUJ R
C RINGLJPROCND 21 13PROCNOY
TORINGIV D13 18PROCNOS -
CRINGI PROCNO 1180

BT -uEHb50F sAFE'UpDATEf'”#*i:

PUR |
- DUTPES(CntATF)i
| PUTRES(D

cﬁx“nxn_or'nasdunce" |
- RETURN RESQURCE NUMRER ~

- DEALLOGATE - ROUTIRE -

;;” j‘DEALLUCATE_TEHPORARV'RESQURCE{ROU?!NEf o
'.,lcl ”' e : : . :,. - o

o ‘PHQC'ﬂIALLOCATL:('INT!RE50URCE uo:, L
‘PEGIM' - ;

O 20 =3
¥

.- ' -CHECK VRLSD'RCSUURCE NO

-
—

-
N

!IF' E"OURCE hﬂ)P!ORIRESOURCE ND<1!THEN"
L FAULT("INVALID RESOURCE NUHBER") '
VFIvy .

B B B b b
SO O B

-f L v T S U U O
Lo TRAP DEALLOCATIUN'OF PERMANANT‘RESOURCES'

~n -
=0

:’IF'RESHUPCE N0<=N0 OF SYS RESTTHENI - ‘ a
FAHLT(”CANNOT DEALLOCATE PERHANANT RESDURCE!)
'
}

NN
N =

N
X

17 B
F R!NG[kESOURCE NO pRUCNO.Z!#-1'AND| : ' ,_'] LT
!hnTlALREADYDOING(BEALL Acr!V!rY RESOURCE.NOIITHEN1~-53

N
o w2~

e

N
= K

. ['IF:pclufEfos ssTfaﬂts;ON THe;atNGl;

™
<

DEALLOCATE nou;st',f._i----
S N ?,:‘IF'ALREADV bOINGtPUTRes ACTIV!TY RESQURCE NG)'THENl
. 2 A SRR KILL(PUTRES ACTIVITY Resounca NU) ‘
33 o 'Ft"‘
S I o “GFTPL<ctREATE): B |
36 ”'ﬂ-h;,'lrfu!hctnrsounce No PRUCNO.&]uPROPNOtTHEN?
37 : _ LT B
SR IR v - T ‘~_f~~‘. t ':‘;‘f.' o s e
30 - IF uE*AﬁE:OuLv-PERsnu'DNATHE-RING B G e d e
40 - REHoVE THE RESCURCE FROM THE LIST . : : \ S ST R SR
et wwwl STARY OF SAFE,UPDATE AL
R Y R ‘ -

Y S HQDE'OF'REsOURCEStRESOURCB NOlymalr
WS - 7. NAMEINFYRESOURCES[RESQURCE NOJp=U7f’
s RINGIRESOURCE NOyPROCNO;2Yi®ly.

48 tgv L
e wwr . END OF SAFE UPDATE wae
S50 gt e N

~
~3

s2 PUTRES(CREATE) T
ST) SO U 1f'“"ElSE' S L e
R4 PUTRES(CREATE)] = o
85 0 INITIATE(DEALL ACTIVITY!RESOURCE Nol
87 tgr e TR e o R
58 . : “START:THE‘DEALLOCATE ACT!VLTY;IF]OTHERS_ON.THEﬁR!NG‘._-2;3

6%
Y

" DEALLOCATE ROUTIME -

._-5'_1Eub';‘. ST

RO U

VX NPV B RN -2 TBHNS WA s

BT

'c!_:;<

-'!Cl

gy
‘_;”rcv?‘j

L --_”AIT‘FUR'VA.LL‘-‘PUlTRES TO THE_:_DEAOP&OC'. T0 FINI_SH.V'

| REGOVERY ACTIVITY

_VRECUVLﬁY:?RﬁCEDURE
"PR“P'('IIT')PLC(VERY:’('INT'DEADPROCJI

'PEGIH

INITIATLD WHEH A nEAD PROCESSOR IS FOUND

tFuR!I!TQIP'DO! :
' 'IF'PINGEI nFADPRUC 2]#«1!THEN'
'_|1F!RINGII 0y1IRDEADPROCITHEN!
RING[1, DEADPROC 11 1= :
R N 5 o S
YFI Yy

CLEAR ALL WANT FLAGS OF RESOURCES NOT OWNED -~ -

CWAITE.

'THL SINGLE PARANETER 15, THE NANE OF THE DEAD Pnncsssoa B -

7?1?ﬁp‘d%?}iﬂ:”5

O UKECOVERY ACTIVITY.

NI

e
'“:lci

cagn
Crer

:;!C!'

CVFURTEVTOIREDON R
THEGINY - | : ,
'BOOL'fLAGI'”"ALSE':FLAG";UIFALSEI3

YYEtplLGLI, DEADPROC, 2] #=1 1 THENY

FU# fh€H §iﬁC.Hf'i§:0§ ;_';“-”Z::i
l1}}n1n§fi;Pnﬁﬁnofziaéffrﬁsﬂ;j; T}H .

ADD US TOi¥ys.F;he‘fﬁiﬁoT?fhﬁé'QlaekéY:é;ﬁof?UE74Lﬁ535Y own erente

' .tFL5§i£}Tﬁ§?isr.. ?;f”:_i'

f*f;iiéjaﬁ¥-or sgﬁé'uﬁﬁavé" 'ff§ :

U !MG[I PROCNO:T]:-O; S e
‘RINGII.PROCNO,ZJ3=RINGIl;NUDE!QF7RESOURCES!1112]; PR
(RINGII/NODEIOFTRESOURCES{1172]18PROCNOI e e

”UOE'OF'RESOURtES[IJ|nPRocNQ e

© INGASE DEAD PKOCESSOR WAS THERE
*ws. END OF SAFE UPDATE - *aw =~ -

RrcoveRY AcTiviTy |
e
e

-::!c'}u

' .'C.l

l_;';|c|._‘ .
LI

S o R

COUNELSEY . e
h FLAGT =RINGII;PROCNO, 10w - .

.aEnEqunjlr uefgh&r'fne'pesouacg L

IFTRINGII,0,1)2DEADPROCITHENY
 GRAG RESOURCE IF HE WAS [T .
ey USING A-SAFE UPDATE #e

‘7:€"3 ?RiNG[i}ﬁkOCNO'*],Id,f'fi
o RIKGLI0i1)3=PROCNO) -

L;T‘gﬁﬁffij;iff;ﬁﬁ;?'"f; fi}i;ig”'“’ |

PO

%y END OF SAFE UPDATE ~ 4ws o

YNIRIRINGEI{DEADPROC,11311THEN! |
o O RINGCEGDEADPROC,MYem0r o
- REINSTATE RESOURCECI) - * .V e L

“RECOVER THE RESOURCE' 1F. HE WAS USING IT . -

BT
S92
93

94

95
96

K :'RECOVERYjﬁACTJViTY

. PRIV
YELSEY o '
pu?RFs(CREArE)f
GETRES(I)YY .
GETRES{CREATE),

 GLT THE. RESOURCE PRopERL# :
VFIty
,REHOVE'H1h ;hbH'Tus_ainaj"

'a‘!rontJrro'ntoo!
: :-.IIF!RING[! J“Z&-DEADPROCI?HEN|

“WE HAVE FOUND uxs:pnebscésson'”'

. dws. START OF SAFE UPDATE ¥#w.

'3RINGti, nzls-RxNGtt.oeaopaoc,zs;avi
RlNG[llDEADPRﬂC:ZIlnq1 : -

#s END OF SAFE ‘u’pmsf o

e

12
Coot22
123 -
124
125
26

127

128
129

;;JCv
o

130

131
132

133

134

435

136

37
Ca3e

Jtci '

439

140

Y

142

143

TS
4es

TR
1er
ST

 BECOVERY ~ACTIVITY |

.- l. _i_..|_c'l O

VRNV j;

" REKQVE US 1;-wE uERg.N0f;0u1b1oNALLv oN

IIF'FLAGITHEN'
" DEALLOCATEC(L).

!fLSF'lNDTlFLAG1lANDII#CREAIE'THEN!_

| cETjn:ofOF;rBE"RESOURCngr uE%otbﬂnor w;~:\:+-

_ puraestx)
PFIY-. :
SR

'tno!l

-'SEf'AS_RECOUERED'IN LotAL'Tln£g =f5

__*} LUCAL TIM[[DEADPROCn1!l=~1
aEhvv; S o :

| TELL OPFRATOPS("PROC PaDEADPROC“n ;s neaou;f SR

R I R R

'”'pncu! VOiD!nEATH cuscxsnsvolols
CUAREGIN .

gy

,;jc':-7
et

T IF R

DrATu CHECR AC%IVITY
 'ntATH ¢ﬁtckzgc'pq0i1ﬁé

, 'INT'I:-PPUCND]

FUR EACH PRGCFSSOR FOLLOu!NG US T!LL EITHER QURSELVES
- OR A LIVE PROCESSDR 1S ”ET R

leILEl:.r:NEX? PROC NO“’U#”QCNU'AND!LOCAL TlMEfPROCND,*\b I
Lt‘CAL TIMELL 1]+|_oc,u, TIHEH.ZI'DM ..

"RECOVLR:RiniF nov‘ntnsAuv"noxna’sn iNbfﬁor aEEN RECOVEREo ﬁeidRE "”“' .

_.rwxrtnrztnecovenv mn ..
ARV

| '!F'!NOT!ALREADV DOING(R!COVER? !)'ANDILOCAL 71u5t1.11>-0|1u£ut'"""“””’-

VP UN-CO0 N W~ WR s

-t el ol ol i b

-
-~

18

RN RN NN
0O =1 O8 W1 2~ L N -2

W
o

e

NN NS
LN D

'SCHEDULAR STARTUP. ROUTINE

R

T Y)

g

SCHLDULAR STARTUP bndc5nu#£

"'f IPRUClehED STARTUP:anIDll
' 'BlﬁlN' ’ A

~"FUP'J'TOlN0 0f svs aes'oot - . .
CYBEGINY RO
NODF'OF'RESOURCES!JJI'1I

‘GIV£_SYSTEH:RESDURCE§VTG»PRUCEésOR'i

‘NAME'UF'RESOURCESIJ}IISYSNAME[J);
RINGIS ;1139803 -
-,RIHC[J;0'1I!?13. e S

CSET 1 AS.OWNER

~ INITIATECPUTRES ACTIVITY{I)I =

_IELLUCRTE‘AﬁL SYSTEX (FIXED)‘RESOURCES AND KILL OFF THE REST

f:;a#éz;f;f:gféﬁi ;€£;u3 1ii;f¥ff7qf{¥]

© USCHEPULAR STARTUP ROUTINE . . -~ . pAGE .

D Acr A A
32 '_'--t‘lerlAthRUTRES-ACTlvtrv.FUR,PRQCESSGR 1
33 .Yy ._'.' S e
B £ s
35 oo L RIMG[J T 21.:2. |
36 S “'FnR!F'FROM'Z!TOIN'OOl
37 R o 'BEGIN' ' _
3 _ , 1 -
39 o ter o S ; N
40 CHAIN“ALLfTHE‘PROCESSORS TUGETHEH
W ey s ' ' e T
he S - .
&3 o RINGLYG K!11I'Ul . =
Ly o RluGtJ.K.ZJ;-NExr pnoc NO{K)
45 o e YENDE _
We. _ VENDTY ' o
7 o ~erRTJ!rnUMlN0 of svsnss+1|rorp100|
X B !BEGINI o
A S
50 e T
. R KILL UFF'THE'REST*f
.52 tev o
§3 T T
84 . _NOPEVOFYRESQURCESTJ)immtf . .
55 L T T NAME!UF'RESOURCES[J]Il”"f,"_T"
D86 -;;'ranKlTUlN'DO‘ : Ly

5 iBEGINY ’

0 70 SCHEDULAR STARTUP ROUTINE

CUYENDY

o020
T o \
AN IMPLEMENTATION OF THE l

| }

RELIABLE UPDATE

Thls Appendlx con31sts of a llstlng of an 1mplementat10n of the
Rellable Update algorlthm dlscussed 1n Sectlon 6.7. The -

: 1mp1ementat10n is wrltten in Algol 68R.

" EXAMPLE' "RELIABLE UPDATEY PROCEDURE =
" SYSTEM PROGEDURE

) 5PRUC!FAULTI('STR!NG'S)I
CMBEGINT. |

CoNOwmsUN-

A PHOCEDURE WHIGH CAUSES THE CALLING PROCESS TO FAIL §OR THE GIVEN REASON

L ENDY;

. BASTC MODE DEFINITIONS .

L ?“00El'VALUE'u'UNION'('lNY’c'REAL!“'CHAR')! _ :
O YMODE!'BISTABLE'=YINTY) -
;;-noug.' AF&ENTRY'-'STRUCTv('VALUE'VALUE:NEHVALUE.IB!StABLEIBS)l

| ?PRDC bAFEUPbATE-(I] RlF"SAFEENTRY'TAHLE't]tVALUE!NEHVALUES]‘ f'

' 'BEGIN'

. EXAMPLE "RELIABLE UPDATE® PROCEDURE:

_ SAFE UPDATE PROCEDURE

‘REF"BISTABLE'FLAG)! :

. YRE ARKAY “TABLE® CONTAINS POINTERS 7O THE. ENTRIES TO BE CHANGED; -
THE HEW VALUES TO BE INSERTED ARE GIVEN IN ARRAY TNEWVALUES®Y

© AND THE. FLAG 15 GIVEN BY "FLAG"

g

k'INTfle'UPB'TAaLII : .
"1F""UPB'NEHVALUES'THEN' .

"~ FAULT("BAD PARAMETERS"*)
CYFIYy o

."FAlL 1F o:srsnauv NUMB!R 0F ENTRIES RND neu VALUES

-"sveP A

66

62

"85

66
67
68
69
0
m

73
75

76

77

.c'

79

80
81

82
83

- 84
85
86

87
88
89
90

e .
LK R

:fExAMPiE”"REL!AéLéfuPdegv PROCEDURE .

o ‘_’FUR?J'TO'I'DU' , R
- YBEGINY - ' S
' . NEUVALUE'OF'YABLEIJJI'NEUVRLUESIJIIL;H.ﬂ4'
S , BS!OF’TABLE[J1|-1 _ _ '
: .'END?c

. STEp B

‘ ‘.'.C"f

CFLAGEEty

STEP ¢

'FORYJYTOV VDOV _ _
"BEGIN' - o '
o VALUE'OF'TABLE[J]l'NEHVALUE'UFlfABLE:J)u
. BSIOI'TABLE{JJ:uo
YENDYY -

CSTER D

92
93

98

91

Yok
96
97

- 100
1

-'bf:: |
3 :_'ubbéfs UYER

K fﬁAGi'O-: |

CvENDTG

 cumnie meLthaLe upoarer pROcEIURE

